Detecting Semantic Matching In Service Oriented System

Integration

Dario Saveliovsky

A Thesis in
The Department of Computer Science

and Software Engineering

Presented in Partial Fulfillment of the Requirements for the Degree of Master of
Science (Computer Science)
at Concordia University

Montreal, Quebec, Canada

September 2012

(©Dario Saveliovsky, 2012

CONCORDIA UNIVERSITY

School of Graduate Studies

This is to certify that the thesis prepared
By: Dario Saveliovsky
Entitled: Detecting Semantic Matching In Service Oriented System Integration

and submitted in partial fulfilment of the requirements for the degree of
Master in Computer Science

complies with the regulations of the University and meets the accepted standards

with respect to originality and quality.

Signed by the final Examining Committee:

Chair
Dr. D. Goswami
Examiner
Dr. R. Witte
Fxaminer
Dr. V. Haarslev
Supervisor

Dr. Y. Yan

Approved by

Chair of Department or Graduate Program Director

Dr. Robin A. L. Drew, Dean

Faculty of Engineering and Computer Science

Date

Abstract

Detecting Semantic Matching In Service Oriented System Integration

Dario Saveliovsky

Service Oriented Architecture is being adopted by an increasing number of busi-
nesses in order to make their software available through the network, resulting in a
considerable growth in the number of available Web services. The need for an auto-
mated way for service integration becomes then a pressing issue. This thesis looks
at the major obstacles faced when trying to achieve this goal, including the problem
of finding element mappings across service interfaces. For this, a method is proposed
which employs schema matching techniques extended for the specifics of Web service
definitions. A proof of concept service integration assistant is presented, and tested
on several case studies. These include the collaboration between mainstream Enter-
prise Resource Planning and Product Lifecycle Management software systems —a

real-world scenario that illustrates the relevance of this work.

il

Acknowledgements

I take this opportunity to thank my supervisor, Dr. Yuhong Yan, who has provided

me with the necessary guidance to complete this work.

My special thanks to Dr. Volker Haarslev, Dr. Rene Witte, and Dr. Dhrubajyoti

Goswami for taking the time to review my thesis.

I want to also thank the people of Mecanica Solutions for providing the necessary

information to define a real-world case study for this study.

I would also like to thank the Department of Computer Science and Software Engi-

neering for everything I have learnt during my time in this program.

Finally, my deepest gratitude goes to my family and friends for always being there to

give me their huge support and valuable advice while I worked on this thesis.

v

Contents

List of Figures

List of Tables

Introduction

1 Introduction

2 Background

2.1

2.2

2.3
2.4
2.5
2.6

WSDL and RESTful Web Services
2.1.1 The WSDL Format
The System Integration Problem
2.2.1 Approaches to Service Integration
2.2.2 Web Service Composition
2.2.3 Development of a Service Adaptor
Schema Trees L
Stop Words
String Similarity Metrics oL oL
Schema Matching o
2.6.1 Challenges in Schema Matching
2.6.2 Approaches to Schema Matching
2.6.3 The XPriiM System

vii

2.7 The Case of Mecanica Solutions 360 Enterprise 28

Automatic Service Integration 32
3.1 Presentation of the Problem 32
3.2 Challenges 37
3.3 Techniques for Service Parameter Matching 42
3.3.1 Preparation of the Data 42
3.3.2 Computing Linguistic Similarities 45
3.3.3 Comparing Schema Elements 46
3.3.4 Obtaining the Matching Pairs 47
3.4 Evaluation Criteriao 49
3.5 Data Collection o 50
3.6 Support Tool 52
Tool Design and Experiments 53
4.1 The Service Integration Assistant 53
4.1.1 Building of Schema Trees. 53
4.1.2 Removal of Stop Words 54
4.1.3 Node Filtering and Addition of Synonyms 55
4.1.4 Computing Similarity and Obtaining Matching Pairs 59
4.2 Experiments Lo 60
4.2.1 DataSets 61
4.2.2 Effect of Combining Parent Node Names 62
4.2.3 Effect of Two Threshold Selection Method 63
4.2.4 Effect of Auxiliary Datao L. 64
4.2.5 Test Environment and Efficiency 67
4.2.6 Comparison with COMA++ 68
4.3 Concluding Remarks 0o o 70

vi

5 Conclusions

vii

71

List of Figures

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
2.10
2.11

3.1
3.2
3.3
3.4
3.5
3.6
3.7

4.1
4.2

Abstract portion of a WSDL document
Concrete portion of a WSDL document
Abstract definitions from the GeolPService WSDL
Java class generated from the GeolP XML type
Java interface generated from the GeolPServiceSoap portType
Invocation of GeolPService using the code generated by JAX-WS

Sample XML schema o0
Sample schema tree
Semantically equivalent XML structures
Calculating similarity between node names

Schema tree with post order numbers

Excerpt from SAP’s time sheet WSDL
Excerpt from 360¢’s time sheet WSDL
Services p and ¢ are integrated into processip
Sections of the SAP and 360e schema trees
Sample schema tree L
Building linguistic similarity matrix

Algorithm to compute matchings

Schema trees on the service integration assistant

Suggested stop words on the service integration assistant

viil

26

4.3
4.4
4.5
4.6
4.7

City services schema tree L. 56

A university course schema tree L. o8
A different university course schema tree 58
Lists of exclusive terms sorted by the frequency in which they appear 59

Service integration assistant prompts for threshold values 60

X

List of Tables

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9

Data sets 62
Results from testing the effect of combining parent node names . .. 63
Results from comparing two matching pairs selection methods 64
Experiment results for parts suppliers services 65
Experiment results for academic bibliographies services 66
Experiment results for parts orders services 66
Experiment results for SAP and 360e timesheet services 67
Execution time by dataset 68
Comparing results from our technique and COMA++ 69

Chapter 1

Introduction

Service Oriented Architecture (SOA) is a software development paradigm that is
based on the design of services which are published and provided over a network
through a set of common interfaces [34]. These services can be described in machine-
readable formats based on open standards, which allows for the possibility of services
to be automatically integrated. This is a major breakthrough from previous tech-
nologies, where integration of multiple information systems was a necessarily labour-
intensive task with developers having to write adaptors manually. Therefore, as the
SOA paradigm is adopted by more and more software systems, it becomes more
relevant to find an efficient way for services to be integrated seamlessly.

Two major technologies have emerged for the development of Web services
Representational State Transfer (REST) [39] services and services based on the Web
Service Description Language (WSDL) [11]. The former is a light-weight architecture,
with no standard support for the specification of service interfaces. On the other
hand, WSDL is an open standard for describing Web services in an XML format. This
allows for different services to be automatically integrated, using a computer program
to inspect their interfaces and adapt parameters to the specific requirements of a

service. However, services that have been developed by different parties are likely to

use dissimilar names and data structures to describe the same concepts, complicating
the automation of the task. This is called an interface level incompatibility. Moreover,
the number of operations exposed by each service and the order in which they should
be invoked also depend on arbitrary design decisions taken by the developers —
causing control flow level incompatibilities [34].

Some of the proposed solutions for the automatic integration of services (such as
46, 44, 4]) suggest the inclusion of metadata in service definitions in order to provide a
semantic description of the services. This kind of information about a service’s data
types, their relationships, and semantic constraints is added by extending current
Web service standards to include links to predefined ontologies. However, for this
technique to work, a standard would need to be adopted by the industry. As this
has not happened yet, the majority of Web services in existence today do not include
semantic information in their definitions [46].

Other approaches try to work around the lack of semantic information in service
definitions by analyzing their contents and finding recurring patterns across services.
An important issue that arises in this situation is the identification of semantically
equivalent concepts across services —i.e., a mapping between elements representing
the same concepts over multiple service definitions. Among the research literature,
we find some works that try tackling differences in the control flow and interfaces
of services, such as [27] and [42]. The former proposes a method for identifying the
equivalent elements across services by relying on generic schema matching techniques.
The latter paper, on the other hand, expects that the matching of these equivalent
elements be previously made as a prerequisite to using their method. In this thesis,
we will develop a method for the automated identification of semantically equivalent
elements across services. This method distinguishes itself from the ones in other works
in the fact that it targets the specific particularities of the WSDL format, making it

a more appropriate strategy for Web service integration.

As a real-world example of service integration, we will introduce the case of our
industry partner Mecanica Solutions [23]. Their 360 Enterprise (360e) Product Life-
cycle Management (PLM) software integrates a suite of solutions to optimize product
development throughout an enterprise. A typical customer of Mecanica’s product
will be a company that also uses an Enterprise Resource Planning (ERP) system for
managing other aspects of their business such as accounting or human resources. In
such cases, some of the information handled by both pieces of software will coincide.
Therefore, the ability to share data between these applications becomes important.
A traditional way of accomplishing this would be for 360e developers to write specific
code to integrate each type of common data for every known ERP system. However,
since 360e and the major ERP systems provide Web service APIs, there is a possibil-
ity to integrate the two systems automatically. In this thesis, we will discuss this as
a case study of the automatic service integration problem.

The main goal of this thesis is then to present a strategy for the semi automated
integration of Web services that can aid developers by easing this time-consuming
task. Specifically, this strategy contains methods that focus on the features of Web
service definitions to allow the automatic identification of semantically equivalent
elements across the services being integrated. In order to achieve this objective, we

provide the following contributions to the research domain:

A detailed analysis of the service integration problem along with its challenges

and a review of previous work on the subject.

e An examination of the problem with real-world data —the case of Mecanica

Solutions 360e. This way, we override many previous academic assumptions.

The introduction of new techniques for automated service integration with real-

world data.

The development of an interactive prototype tool that implements these tech-

niques to aid developers in the task of mapping semantically equivalent elements

across services.

e A series of experiments using these techniques on multiple data sets to test the

effectiveness of our methods.

This study is organized as follows. Chapter 2 offers an initial introduction of the
problem of service integration along with a survey of the literature on the subject.
It also provides a review of the different concepts that will be used throughout sub-
sequent chapters for the development of our techniques. Finally, it introduces the
case of Mecanica Solutions 360e. Chapter 3 starts with a more in-depth presentation
of the problem, applying it to the case study of 360e. It continues by showing the
details of our proposed methods. Chapter 4 is divided into two main sections. The
first one delineates the features and implementation details of the service integration
assistant tool. The second section describes the experiments performed and the re-
sults obtained from them. To conclude, chapter 5 offers a review of the contributions

of this thesis as well as an overview of topic ideas to be explored in future work.

Chapter 2

Background

Service Oriented Architecture (SOA) is a software development paradigm that is
based on the design of components referred to as services. These services are pub-
lished and provided over a network through a set of common interfaces, and described
using a set of formats based on open standards. These standards allow services to
be defined and communicate in a common way, regardless of the platform in which
they are implemented. In practice, this results in developers leveraging from this
technology to create APIs through which individual software systems communicate
[34]. On top of this, the standards in which services are described are based on
machine-readable formats such as XML, opening up the possibility of automatic ser-
vice integration a major breakthrough from previous technologies where integrating
multiple information systems was a necessarily labour-intensive task with developers
having to write adaptors manually. This chapter presents the main topics used in
this thesis. It starts with an introduction to Web services, followed by a section de-
scribing the service integration problem and its major challenges, and further sections
presenting the main concepts that will be applied in the approach presented in the

next chapter.

2.1 WSDL and REST{ful Web Services

Two major technologies have emerged for the development of software as a service
Representational State Transfer (REST) [39] services and services based on the Web
Service Description Language (WSDL) [11]. The former is a light-weight architecture
under which services provide operations to be performed on resources. Each resource
is identified by a distinct URI, while the operations are given by the standard HT'TP
methods (the main ones being GET, POST, PUT and DELETE) [13]. To describe
a RESTful service’s interface, Sun Microsystems has defined the Web Application
Description Language [15] —an XML-based format readable by both humans and
machines. However, this protocol has not seen a wide adoption rate in the industry,
and most RESTful services remain described in documents aimed to human readers
139].

On the other hand, WSDL is an open standard which is widely used for describing
Simple Object Access Protocol (SOAP) Web services [36]. Service interfaces are spec-
ified using a common XML format, detailing the names and types of the parameters
a service expects. This is what allows for different services to be automatically inte-
grated, using a computer program to inspect their interfaces and adapt parameters
to the specific requirements of a service. We will focus on WSDI-based services since
they provide a standard that is already widely used in the industry. However, if in
the future WADL gets accepted as the common format for describing RESTful Web

services, this work can easily be applied to it as well.

2.1.1 The WSDL Format

WSDL documents include several elements that contribute to the definition of ser-
vices. Multiple actions can be defined in one file —each of them contained in an

operation element, which are grouped into a portType element. The operation el-

ement lists the action’s inputs and outputs as well as its exceptions, all of which
reference message elements. The latter specify the types of data exchanged in the
message by referencing elements in the types section of the document. All these men-
tioned elements define what the actions are and what kind of data they handle but
they do not specify how to invoke these actions. That is why they are called the
abstract portion of the service definition. WSDL also includes a concrete part, which
provides the combination of an operation and a protocol used to call it —described
in a binding element. Bindings are referenced by port elements, which tie them to
the network address used to invoke the service, and are grouped into service elements

11].

Example 2.1.1 Figure 2.1 shows the abstract portion of a WSDL document. Here
we can see the service provides an action called getProjectDetails, which has an input
and an output message. By looking at the types referenced by the message elements,
we can see the input expects an int value called projectlD and the output contains

three fields: projectlD, projectName and startDate.

Example 2.1.2 The concrete part of the service defined on Figure 2.1 can be seen on
Figure 2.2. The binding element specifies the operation is available via SOAP over
HTTP, while the service element includes a port tying the binding to the URL used

for accessing the seruvice.

Since WSDL files follow this open standard, it is possible to programmatically
inspect one to obtain the list of operations defined in its abstract part. With further
parsing of the document, the names and types of expected parameters —as well
as the ones of return values— can be extracted. This leads to the possibility of
automatically creating the client code for a service. The Java API for XML Web
Services (JAX-WS) is an API that facilitates the development of Web services using

the Java language. It includes a tool called wsimport that reads a WSDL document

7

<types>
<schema targetNamespace="http://wsdl_example" xmlns="http://www.w3.org/2000/10/XMLSchema">
<element name="getProjectDetailsRequest">
<complexType>
<sequence>
<element name="projectID" type="int"/>
</sequence>
</complexType>
</element>
<element name="getProjectDetailsResponse">
<complexType>
<sequence>
<element name="projectID" type="int"/>
<element name="projectName" type="string"/>
<element name="startDate" type="date"/>
</sequence>
</complexType>
</element>
</schema>
</types>

<message name="getProjectDetailsIn">
<part name="body" element="getProjectDetailsRequest"/>
</message>

<message name="getProjectDetailsOut">
<part name="body" element="getProjectDetailsResponse"/>
</message>

<portType name="projectPortType">
<operation name="getProjectDetails">
<input message="getProjectDetailsIn"/>
<output message="getProjectDetailsOut"/>
</operation>
</portType>

Figure 2.1: Abstract portion of a WSDL document

<binding name="projectBinding" type="tns:projectPortType">
<soap:binding style="document" transport="http://schemas.xmlsoap.org/soap/http"/>
<operation name="getProjectDetails">
<soap:operation soapAction=""/>
<input>
<soap:body use="literal"/>
</input>
<output>
<soap:body use="literal"/>
</output>
</operation>
</binding>

<service name="projectService">
<port name="getProjectDetailsPort" binding="tns:StockQuoteBinding">
<soap:address location="http://somedomain/projectService"/>
</port>
</service>

Figure 2.2: Concrete portion of a WSDL document

and automatically generates code for invoking the Web service [16]. The WSDL is
parsed, and a Java class representing the service is created, along with an interface
providing the operations defined in the portType, and the necessary class structure

for the input and output parameters.

Example 2.1.3 GeolPService is a service for looking up the country where an IP
address is located []7]. Using JAX-WS’s wsimport tool, we obtain a group of classes
that can be used in the development of a client for this service. Figure 2.3 shows
part of the WSDL file for this service. As defined in the types section, the output
of the GetGeolP operation contains an element of the complex type GeolP. This
includes a series of fields such as the country name, country code and IP address.
Accordingly, a GeolP Java class is generated, with instance variables corresponding
to those fields. Figure 2.4 shows this Java class. A class representing the service
(GeolPService) and an interface providing the service’s operations are also created.
Figure 2.6 illustrates how the service can be invoked by a client program, using an

instance of the GeolPService class to obtain the GeolPServiceSoap port.

<wsdl:types>
<s:schema elementFormDefault="qualified" targetNamespace="http://www.webservicex.net/">
<s:element name="GetGeoIP">
<s:complexType>
<s:sequence>
<s:element minOccurs="0" maxOccurs="1" name="IPAddress" type="s:string"/>
</s:sequence>
</s:complexType>
</s:element>
<s:element name="GetGeoIPResponse">
<s:complexType>
<s:sequence>
<s:element minOccurs="0" maxOccurs="1" name="GetGeoIPResult" type="tns:GeoIP"/>
</s:sequence>
</s:complexType>
</s:element>
<s:complexType name="GeoIP">
<s:sequence>
<s:element minOccurs="1" maxOccurs="1" name="ReturnCode" type="s:int"/>
<s:element minOccurs="0" maxOccurs="1" name="IP" type="s:string"/>
<s:element minOccurs="0" maxOccurs="1" name="ReturnCodeDetails" type="s:string"/>
<s:element minOccurs="0" maxOccurs="1" name="CountryName" type="s:string"/>
<s:element minOccurs="0" maxOccurs="1" name="CountryCode" type="s:string"/>
</s:sequence>
</s:complexType>
<s:element name="GeoIP" nillable="true" type="tns:GeoIP"/>
</s:schema>
</wsdl:types>

<wsdl:message name="GetGeoIPSoapIn">

<wsdl:part name="parameters" element="tns:GetGeoIP"/>
</wsdl:message>
<wsdl :message name="GetGeoIPSoapQOut">

<wsdl:part name="parameters" element="tns:GetGeoIPResponse"/>
</wsdl:message>

<wsdl:portType name="GeoIPServiceSoap">
<wsdl:operation name="GetGeoIP">
<wsdl:input message="tns:GetGeoIPSoapIn"/>
<wsdl:output message="tns:GetGeoIPSoapQOut"/>
</wsdl:operation>
</wsdl:portType>

Figure 2.3: Abstract definitions from the GeolPService WSDL

public class GeoIP

{
protected int returnCode;
protected String ip;
protected String returnCodeDetails;
protected String countryName;
protected String countryCode;

// getters and setters for all fields
/] ...

Figure 2.4: Java class generated from the GeolP XML type

10

public interface GeoIPServiceSoap
{

public GeoIP getGeoIP(String ipAddress);
}

Figure 2.5: Java interface generated from the GeolPServiceSoap portType

GeoIPService service = new GeoIPService();

GeoIPServiceSoap port = service.getGeoIPServiceSoap();

GeoIP geoip = port.getGeoIP(ipAddress);
System.out.println("Country code: " + geoip.getCountryCode());
System.out.println("Country name: " + geoip.getCountryName());

Figure 2.6: Invocation of GeolPService using the code generated by JAX-WS
2.2 The System Integration Problem

System integration refers to the interaction of multiple software components, in order
to collaborate in the performance of a task. In the SOA paradigm, these components
are services, so we refer to the problem as service integration. As more and more
software projects are developed following SOA, the need for service integration be-
comes more important. However, there is still no automated way to achieve seamless
service integration. The main difficulty is that even though services are defined using
common standards, these standards only apply to the syntactic structure of service
definitions. So while services comply to a standard format, their semantics —which
include interfaces and business protocols— are left to be designed by the developers.
A service’s interface includes the names and types of its operations and parameters,
while its business protocol defines the order in which messages should be exchanged
when using these operations [18]. This means that two services that have been de-
signed to perform the same task can each be available through a distinct interface
and business protocol. The semantic interoperability problem originates when two
services that were not specifically designed to interact with each other are required to
do so. In such cases, the semantic details of their communication must be agreed on

in order for the interaction to succeed [27]. Once this has been achieved, either one

11

of the interacting services can be modified to match the requirements of the other, or

an adaptor can be developed to mediate between them [18].

2.2.1 Approaches to Service Integration

The absence of semantic information in service descriptions is identified as a major
item contributing to the service integration problem. To solve this, a practise that
has been proposed consists of including semantic descriptions in service definitions via
the addition of metadata. Metadata refers to data that describes other data —in this
case meta data describes the operations and parameters handled by a service. This
can include descriptions of data types, their relationships, and semantic constraints
that affect them. To add semantics to a service’s data types, metadata references
predefined ontologies, which are vocabularies that describe a business domain in a
standard way agreed upon by the community. Ontologies allow services to commu-
nicate through a set of common terminology in their particular domain [34]. The
Resource Description Framework (RDF) [5] and Web Ontology Language (OWL)
[14] are XML-based languages endorsed by the World Wide Web Consortium (W3C)
used in the definition of ontologies. These ontologies can be combined with existing
service description standards. [44] proposes the addition of references to ontologies
in order to add semantics to WSDL. Other examples of work in this direction are
OWL-S [12] and USDL [4], which share the goals of facilitating the automation of
service discovery, invocation and interoperation. Both of these languages are based
on the OWL standard, but while the former requires the use of an ontology defined by
the appropriate industry, the latter proposes the use of Wordnet [24] as its ontology
source. The development of these technologies can help solve the semantic interop-
erability problem. However, this will depend on a standard being widely adopted by
the industry, so that developers can start including semantic information in service

definitions.

12

There also exist approaches to service integration that try to circumvent the lack of
semantic information in current service definition standards. These approaches focus
on the analysis of the services involved, in search of mismatches in their interfaces
and protocols. Several frameworks for the creation of service adaptors have been
proposed [18, 45, 42]. The concept of mismatch patterns (or mismatch classes) is
used in [18], [42] and [27], to define abstractions of the differences that occur between
service interfaces. Identifying these recurring dissimilarities and providing templates
for their resolution are suggested as aids in adaptor development. Mismatch patterns
can be at the message or the control flow level, with the former referring to cases
where the services involved handle messages of incompatible data types, and the
latter describing two processes whose operations have different activity structures.

[42] proposes a framework for service integration, addressing both the message
and control flow aspects. It defines mismatch patterns which include message data
generation to produce default values for fields that are not provided by one of the
services, message data casting to convert between data formats, message fragmen-
tation and aggregation for reformatting data from lists or tuples to single elements,
and message reconstruction to rearrange tuples or lists. The paper also provides an
algorithm for the creation of an adaptor between two services. This algorithm is
based in the categorization of mismatches into three cases. First, if a send and a
receive action share all the same parameters, they are called full-duals and do not
need adaptation to work together. Secondly, when all of a send action’s parameters
are included in a subset of the parameters of a receive action (or vice versa), this is
called a partial match. The last case occurs when the union of parameters of a group
of send actions matches the parameters of a single receive action, and is called a full
match. The algorithm iterates through the services’ operations looking for instances
of these cases, and using this to build a sequence in which messages are sent and

their results transformed to create other messages. However, in this paper the au-

13

thors make two significant assumptions. The first one is that a service’s messages and
their fields have been previously mapped to their equivalent counterparts in the other
service. And associated to this there is a second assumption that a set of functions
to perform the necessary transformations of messages between the formats used by
the different services have been predefined. This means that an important portion of
the integration process is left to be done by the developers —either manually or by
other means not contemplated by the authors.

The work in [27] identifies the following message mismatch patterns: a) message
signature pattern for differences in the message data types; b) split/merge pattern,
where one service’s message corresponds to multiple messages in another; ¢) miss-
ing/extra message pattern where a service’s message has no correspondence in the
other service; and d) message ordering pattern, where the order in which a certain
message is expected differs from one service to the other. For the latter pattern, a
special case is observed when both services in question are waiting for the other to
send a message a deadlock situation. The method for service integration proposed
by the authors uses finite state machines to navigate through the possible states in
the interaction between a pair of services. Each state in the machine consists of a
pair, with each component of this pair representing the current state of one of the
services. Transitions in the machine indicate a message received by one of the ser-
vices. The algorithm keeps a queue of the possible states —starting with the initial
state— and iterates through the values in the queue. At every step, if a transition
is available, the state that results from it is added to the queue. If no transition is
available, on the other hand, it means that the state results in a deadlock. All the
deadlock states detected by the algorithm are compiled into a mismatch tree where a
node represents a deadlock state, and its children show future deadlocks that would
occur after resolving the original one. To resolve a deadlock situation, the user is

prompted for input on how to produce one of the missing messages. The mismatch

14

tree is presented at this point to aid the user in the decision —depending on the user’s
choice, subsequent deadlocks can occur. The inputs to the algorithm are the proto-
col definitions of the pair of services, as well as a mapping between the equivalent
messages and parameters of these services. Although their method focuses mostly
on the control flow issues of service integration, the authors also propose a means
to avoid computing the mapping of interfaces manually, leveraging schema matching
techniques. However, they use generic schema matching tool COMA++ [8] which
does not take advantage of specific features of WSDL. As we will show in the next
chapter, our work proposes methods directed toward the WSDL format, which can

produce better results.

2.2.2 Web Service Composition

Web service composition refers to the combination of multiple services —each of
which can carry out a specific task— in order to build a composite service to perform
a more complex task [34]. This concept is similar to service integration, and both
terms are sometimes used interchangeably. However, among the research literature,
there are certain issues that are usually associated with the problem of Web service
composition. The following aspects have received considerable attention from the

research community:

e Finding a way to efficiently compose services to achieve a required result. The
problem gets complex when there is a large number of available services to
choose from, resulting in a search space too big to be exhaustively searched [29].
As a solution for this, some papers propose the use of Artificial Intelligence (AT)

methods, such as A* [30], planning [37, 22, 50|, and genetic algorithms [1].

e Adding constraints to the problem described by the previous item, such as

quality of service values —for example, throughput, response time and reliability

15

of the services involved— [51, 1]. This adds complexity to the problem, since
instead of finding the smallest number of services to fulfil a task, the algorithms

need to take extra considerations to satisfy the constraints.

e Recovering from change among the composed services. When a service that
is part of a previously defined composition experiences a failure, it causes the
whole composition to malfunction. In such cases, rebuilding the composition
from scratch is an option that can be expensive. Research has therefore focused

on how to replace the failing service in such cases [53, 52].

Our main concern in this thesis is to discover automated ways of integrating two
services so that they can work together. This means that the services that need
integration are known by us —as opposed to the case of Web service composition,
where an important part of the problem consists in finding the right services which
composed can achieve a predetermined task. Moreover, finding the mapping between
service interface elements is an aspect not usually studied as part of the Web service

composition problem, whereas in this thesis we explore that issue in detail.

2.2.3 Development of a Service Adaptor

As a solution to service integration, a service adaptor can be built. This adaptor
is responsible for the mediation between the two services not originally designed to
work together [18]. The following main steps can be identified in the development of

a service adaptor:

1. Find the matching operations between service S; and service S;. For example,
a service provides an operation retrieveOrder that matches another service’s
createOrder operation. In some cases, relationships between operations can be
more complex than one-to-one matches, such as an operation getCustomerDe-

tails matching both addCustomer and addCustomerAddress.

16

2. Identify the protocol differences between the services, such as the specific order-
ing in which operations must be invoked. For instance, on the previous example
the first service expects one call to its getCustomerDetails operation, which re-
turns one set of return values. The second service however, requires two calls

to be made —first to addCustomer and then to addCustomerAddress.

3. Find the matching parameters between the matching operations, for instance
customerlD to clientID, or a one-to-many case such as employeeName to em-

ployeeFirstName and employeeLastName.

4. Write functions to transform instances of Si’s output messages to Sy’s input

messages.

5. Write the mediator process that coordinates the communication between the
two processes, by transforming and forwarding the messages from one service

to the other.

In this thesis, we will focus on the third step of the list above, assuming the
matching operations from each service have already been identified, and leaving out
the analysis of the business protocols. The focus on the matching of parameters
allows us to concentrate on a complex part of the problem —arguably the most im-
portant one. While some cases of integration involve services with single operations,
for which steps 1 and 2 become trivial, step 3 always remains essential to the problem.
Therefore, our analysis and development of techniques for the matching of semanti-
cally equivalent service parameters constitutes our main contribution in this thesis.

Furthermore, we intend to leave steps 4 and 5 as the focus of future work.

17

2.3 Schema Trees

It is common to model an XML schema as a tree structure, using nodes to represent
elements and attributes in the schema, and edges to represent the relationship between

them. A formal definition of this structure can be seen in Definition 2.3.1 [2].

Definition 2.3.1 A schema tree T is a 4-tuple T = (N, Ep, Labyt, 1) where:

Ny = {ny,n2,...,n,} is a set of uniquely identified nodes, which represent either

an element or an attribute definition in the XML schema.

Er = {(ni,n;)|ni,n; € Nr} is a set of edges, which represent a parent-child

relationship between two nodes.

Labyt is a set of labels, which represent node properties, including name and

data type.

[: Ny7 — Labyt which maps every node to its labels.

Example 2.3.1 Figures 2.7 and 2.8 show the correspondence between an XML schema

and a schema tree.

18

<?xml version=1.0 7>
<xsd:schema xmlns:xsd=http://www.w3.org/2000/10/XMLSchema>

<xsd:simpleType name="nameType">
<xsd:restriction base="xsd:string">
<xsd:maxLength value="100"/>
</xsd:restriction>
</xsd:simpleType>

<xsd:simpleType name="telType">
<xsd:restriction base="xsd:string">
<xsd:pattern value="(d{3})-d{3}-d{4}"/>
</xsd:restriction>
</xsd:simpleType>

<xsd:simpleType name="dateType">
<xsd:restriction base="xsd:date"/>
</xsd:simpleType>

<xsd:simpleType name="stateType">
<xsd:restriction base="xsd:string">
<xsd:maxLength value="2"/>
</xsd:restriction>
</xsd:simpleType>
<xsd:simpleType name="zipType">
<xsd:restriction base="xsd:string">
<xsd:pattern value="[0-9]1{5}"/>
</xsd:restriction>
</xsd:simpleType>

<xsd:simpleType name="order_numType">
<xsd:restriction base="xsd:string">
<xsd:pattern value="[A-Z]{1}[0-9]1{6}"/>
</xsd:restriction>
</xsd:simpleType>

<xsd:complexType name="addressType">
<xsd:sequence>
<xsd:element name="street" type="nameType"/>
<xsd:element name="city" type="nameType"/>
<xsd:element name="state" type="stateType" minOccurs="1" maxOccurs="1"/>
<xsd:element name="zip_code" type="zipType" minOccurs="1" maxOccurs="1"/>
</xsd:sequence>
</xsd:complexType>

<xsd:complexType name="customerType">
<xsd:sequence>
<xsd:element name="name" type="nameType"/>
<xsd:element name="address" type="addressType"/>
<xsd:element name="tel" type="telType"/>
<xsd:element name="ship_date" type="dateType"/>
</xsd:sequence>
<xsd:attribute name="order_num" type="order_numType" use="required"/>
</xsd:complexType>

<xsd:element name="customer" type="customerType"/>

</xsd:schema>

Figure 2.7: Sample XML schema

19

customer

name address tel ship_date

street city state zip_code

Figure 2.8: Sample schema tree

2.4 Stop Words

Stop words are a concept used in information retrieval to specify words that do
not add semantic significance to the context in which they appear. On the other
hand, words that do contribute with meaning are called content words. People have
compiled generic lists of stop words [19] but unfortunately this type of list will not
always be helpful. In fact, terms included in such a list can actually be content words
depending on the context in which they are used. This is because the classification
of terms into stop words and content words depends on the domain in which they
are used [9]. For example, the list in [19] includes the words “group” and “shows”.
However, if working in the context of music, one will probably consider those to be
important content words, used in phrases like “the most popular group of the year”
and “several upcoming shows throughout the city”.

In this thesis, we use stop words to overcome the problem of terms that do not
contribute to the meaning of the service parameters in which they appear. Our
approach combines the use of a list of standard stop words, along with human input

to build a domain-specific set of stop words.

20

2.5 String Similarity Metrics

Several metrics have been developed to determine the similarity of two strings. Fol-

lowing is an explanation of three of the most popular ones.

e Levenshtein or Edit Distance: This is a measure of the number of character
operations needed to transform one string into another. The allowed operations
are insertion, deletion and substitution. For example, the distance between the
words manually and January is 3, obtained by replacing m for j, removing the
first [, and replacing the second one by an r. This metric has a lower bound of
0, when applied to identical words. Its upper bound is the length of the longer

of the two strings being compared [28|. This metric can be normalized into a

mazx(|t1],|ta])—edgist(ti,t1)

0, 1] interval, as in [3]: normedgist(ti,ts) = e (N

e Dice Coefficient or n-gram Distance: n-grams are the sequences of n con-
tiguous characters contained in a string. For example, the 3-gram sets for man-
ually and January are {man, anu, nua, ual, all, lly} and {jan, anu, nua, uar,
ary} respectively. To compare two strings, their sets of n-grams are extracted,

and the ratio of common n-grams over the total number of n-grams is com-

[ngrams(si1)Nngrams(sz)|
[ngrams(s1)|+|ngrams(s2)|

puted, following the following formula: dist(s;,s2) = 2 *
[17]. The metric is bounded by 0 at the lower end, in the case of strings with no
common n-grams, and 1 in the upper end, for strings sharing all their n-grams.
The common 3-gram between manually and January are anu and nua, so the

distance is 2% 2/11 = 0.3636.

e Jaro Distance: This metric is based on the count of matching characters
between the two strings. A character a appearing in string s; at position 7 and
character b appearing in string so at position j are said to be matching if a =
b and |i — j| < 4§, where 6 = M — 1. The Jaro distance is computed

as follows: dist = 3 <‘S—”Z| Tt %), where m is the number of matching

21

characters and t is the number of transpositions, i.e. the number of matching
characters for which the order of appearance in n; is not the same as in no
[6]. For our example of manually and January, § = %(8’7) — 1 = 3 and the
matching characters are {a,n,u,a,y}, which occur in the same order in both

words. So the Jaro distance is dist = % (g + g + %) = 1.7798.

2.6 Schema Matching

As we have previously discussed, a WSDL document provides the list of parameter
names and data types used by the service it defines. We will then need to identify the
common concepts represented in a pair of service definitions. Since SOAP parameters
are XML structures, they are detailed in their corresponding WSDL files using the
XML Schema Definition language (XSD) [35]. Therefore we present the concept of
schema matching which we will use in the next chapter.

Schema matching is the action of identifying semantically equivalent elements
among two schemata. This task is commonly performed in a variety of applications,
such as the merging of different data sources into a data warehouse, the migration of
data from an XMI-based source into a relational database, or the integration of two
databases after a company is bought by another one [8]. Following are some of the

challenges encountered in schema matching.

2.6.1 Challenges in Schema Matching

e Each schema may use different terms to refer to the same concept.
When designing an API, developers must decide on how to name each field in
the set of input and output parameters. Since each system is developed by a
different group of people, differences in these names are bound to happen. For

example, one software may use the term entry while another one uses the term

22

<header id='"'1'"'>
<items>
<item id=''1'' name=''A'' />
<item id=''2'' name=''B'' />
</items>
</header>

<header>
<id>1</id>
<item id=''1''>A</item>
<item id=''2''>B</item>
</header>

Figure 2.9: Semantically equivalent XML structures

item to refer to the same thing.

The structures of two schemata may vary. An XML schema follows a
tree-like structure. As is the case with field naming, schema structure greatly
depends on the developers’ design choices. Figure 2.9 shows an example of two

XML instances that represent the same information using different structures.

Field names may contain terms that do not directly contribute to the
fields semantics. In some cases, the name of a field can contain one or more
terms that do not add meaning to the field itself. Instead, they could refer
more generally to the problem domain, or be too generic to be considered in the
matching process. For example, in the case of employee time sheets, we could
find fields named timeSheetDetail, timeSheet Entry and timeSheet ProjectID. The
terms time and sheet are present in all of them but refer to the domain itself,

instead of the specific meaning of each field.

Fields in one schema may not have a corresponding match on the
other. Often a subset of the concepts defined in a schema will not exist in
the schema to which is being matched. In such cases, the group of fields which

define these concepts will not be mapped to any field in the other schema.

23

2.6.2 Approaches to Schema Matching

Approaches to schema matching can be divided into two categories, a schema-level
one, and an instance-level one. The former relies on schema definition information
—such as elements, tables, relationships and constraints— to discover the matches,

while the latter approach inspects the values found in instances of a schema [38].

e Instance-level matching. In situations where data samples are available,
instance-level approaches can effectively help in the matching process by in-
specting the contents of schema elements. These techniques rely on the values
inside schema elements to identify patterns among instances of the different
schemata. One method consists in linguistically analyzing the data instances
to find frequently occurring terms, which are then used to suggest matches
between the fields that contain those common terms. Instance data can also
be inspected to find the specific type of information contained in a field. For
example, a field in schema X can be identified as being an email address by
inspecting the format of its data samples. Therefore, its counterpart in schema

Y would be expected to also hold email addresses [10].

e Schema-level matching. Multiple approaches have been developed to dis-
cover element mappings based only on the information included in the data
schema definitions [43]. Element names, data types and the structures in which
they are arranged constitute the input to this kind of technique. [8] and [20]
use string similarity measures to find schema elements with similar names. Ini-
tially, the strings are normalized and tokenized to extract the terms inside them.
Then a variety of measures, such as Edit Distance, n-gram, and soundex are
applied to the pairs of terms being compared. These measures are combined
and standardized into a value in the [0, 1| range, a potential similarity value

between elements in the different schemata. XML provides a set of built-in data

24

types to be used when defining a schema in XSD [35]. This information can
also contribute to the process of matching elements. [8] includes a data type
matcher which checks the schema elements’ data types against a lookup table.
This table assigns a compatibility value to each combination of data types. For
example, the decimal-float pair will have a higher value than the decimal-string
pair. Another way of analyzing the element labels is by using a thesaurus,
which can be either a general purpose one or one containing terms specific to
the domain of the schemata in question. For a general purpose list of synonyms,
Wordnet is often used. Wordnet is a lexical database that groups words into
sets of synonyms, like in a thesaurus. However, it also provides extra features,
such as linking of synonym sets into a hierarchical structure of hyperonyms and
hyponyms [24]. A word z is a hyperonym of a word y if z’s meaning includes
y but z is a less specific term, i.e. y is a type of 2. Conversely, y is a hyponym
of x. For example, appliance is a hyperonym of dishwasher, and dishwasher is

a hyponym of appliance.

In our study of the integration of service-oriented systems, we will leverage schema

matching techniques to identify the common concepts shared by the services being

integrated. Specifically, we choose a schema-level approach, since data instances for

the inputs and outputs of the services in question may not be available.

2.6.3 The XPruM System

In [2] the authors propose a schema-level matching method that combines structure

and element measures. Each schema is parsed and a tree is built from it. Then, terms

are extracted from node names by splitting these names at common boundaries such

as underscores, spaces and uppercase letters. With the tokens extracted from the

schema trees’ nodes, the process continues by comparing the token sets of each pair

of nodes (ng, nr) where ng is a node in the source schema tree and nr is a node in the

25

input: ng, nr

procedure tokenSetSimilarity
Ts := extractTokens(ng)
Tr extractTokens (ny)

for t1 € Ts do
m :=0
for to € T do
m := max(stringSimilarity(¢i,¢2), m)
end for
sum += m
end for

for to € T do

m:=0
for t; € Ts do
m := max(stringSimilarity(t2,t1), m)
end for
sum += m
end for
numQFTokens := size(Ts) + size(I'r)

return sum / numOfTokens
end procedure

Figure 2.10: Calculating similarity between node names

target schema tree. The tokens are compared using a combination of the edit, trigram
and Jaro string similarity metrics and an average maximum is computed as shown
in Figure 2.10. The data types of the XML elements are also compared during this
phase, by using a lookup table that assigns compatibility values between pairs of XML
data types. Thus, the data types of the nodes being compared are checked against
this table and their compatibility value is combined with the previously computed
name similarity value, to obtain their so-called linguistic similarity.

This approach then continues by comparing the nodes according to their context

in the tree structures.
Definition 2.6.1 A node n is said to have:
e A child context, which contains the children of n.
e A leaf context, which contains all leaf nodes descending from n.

e An ancestor context, which contains all nodes in the path from the root node to

n.

26

ny 16

s 6 ns 10 N 15
3 4 5 7 8 9 11 14
ns Ng nz ng Ng N0 ni1 N2
1 2 12 13
13 14 nis Nie

Figure 2.11: Schema tree with post order numbers

To structurally compare a pair of nodes, the similarity of each of their contexts
defined in Definition 2.6.1 is measured, and the three values are combined. The
child contexts of nodes ng and ny are compared by finding, for each child of ng,
the child of ny which has the maximum linguistic similarity to it, then computing
an average of these maximum linguistic similarity values. This grants higher child
context similarity values to pairs of nodes with higher proportion of children that are
linguistically similar. Since leaf nodes have no children, comparison of child contexts
is only done between internal nodes.

Leaf context similarity is based on the gap vectors of the nodes being compared.
A gap vector contains the differences between the post order number of a node and
that of each of its descending leaves. The similarity between two leaf contexts is then
defined as the cosine measure of their gap vectors. As with child context, leaf context

similarity is only relevant to internal nodes.

Example 2.6.1 Figure 2.11 shows a sample schema tree with its post order num-
bers assigned. The leaf context of node ny is {ni3, nia, ng, 7}, and its gap vector is

{5,4,2,1}.

Ancestor context similarity is a measure of how two paths —from the tree root to

the node being compared— resemble each other. This is obtained by computing the

27

weighted sum of three measures, all of them normalized to fit in the [0, 1] range:

e The longest common sequence between the paths, to ensure similar nodes in
both paths appear in the same order. To determine if two nodes are common,

their linguistic similarity is checked against a predefined threshold.

e A measure of the gaps between the nodes in the paths, in order to give higher

scores to nodes that are closer together.

e The difference between the lengths of the paths, assigning a higher value to

paths of similar length.

Thus, complex nodes from each tree are paired and the structural similarity met-
rics defined above are computed on them. Then the combined value of their linguistic
and structural similarities are checked against a predefined threshold. The pairs of
nodes with a value that exceeds this threshold are put in a set of compatible nodes.

For each compatible node, a category set is built from the union of:
e all its children which are leaves,
e all its non-leaf children that are not compatible nodes, and

e all the children of the latter which are leaves.

Finally, for every pair of compatible nodes, the linguistic and structural similarity
of the nodes in their category sets are summed. The pairs of nodes with the highest

values are then suggested as the best matching candidates.

2.7 The Case of Mecanica Solutions 360 Enter-
prise

For this research we have teamed up with our industry partner Mecanica Solutions [23]

to provide a real-world case study. The people at Mecanica have developed a Product

28

Lifecycle Management (PLM) software suite called 360 Enterprise (360e) aimed at
the optimization of product development throughout an enterprise. Its features are

divided into four main modules:

e Universal Product Management: Allows the importing of engineering data
such as CAD documents, and provides different visualization tools to keep track

of product parts and configurations.

e Business Process Management: Provides standardization of business pro-
cesses by switching from manual to automated processes which can also be
saved into templates to be reused. Tasks can be assigned to users according
to their type, and automatic messages are sent to the appropriate stakeholders

when a status has changed.

e Enterprise Program Management: Includes tools for monitoring multi-
ple projects and portfolios. Stores information about human resources which
includes a person’s skills and provides a view of their current and upcoming
workload. It also includes time sheet management to keep track of the tasks an

employee has worked on.

e Document Management System: Stores all kinds of documents, keeping
track of changes and providing document sharing through the network, and

access control depending of user privileges.

Enterprise Resource Planning (ERP) systems are integrated solutions that pro-
vide tools aimed at managing all aspects of an enterprise. These include modules for
accounting, project management, human resources, supply chain management, and
manufacturing. There are areas in common between these products and Mecanica’s
360e software, which means that some of the information managed by these appli-

cations will be of the same type. Moreover, it is not uncommon for a company to

29

use 360e as their PLM software and an ERP system —such as SAP [41], JD Ed-
wards [32], or PeopleSoft [33]— to cover their accounting and human resources needs
for example. In such cases, the ability to share data between applications becomes
important.

For example, a company may enter employee time sheet information into their
SAP system for payroll purposes, and then import this information into the 360e
system to be taken into account for project management. For this to be achieved,
the current solution requires Mecanica’s developers to manually build a module for

the integration of time sheet data between SAP and 360e. This involves:

e The analysis of SAP’s time sheet APIs and data structures to find how each
concept is represented and how they can be mapped to the representations of

the same concepts in 360e’s data structures.

e The development of an adaptor process that converts the time sheet data from

SAP’s structure into 360¢’s own format.

With the current solution, this would have to be repeated for a client who wants
to integrate time sheet information from a different ERP system. Similarly, if a client
requires the integration of project information from SAP, the whole process needs to
be repeated for this situation. In general, the developers will have to go through this
manual process for each pair (F, D), where F is a third-party ERP system and D is
some type of data that needs to be integrated.

We can see that the current solution is far from ideal, since it requires potentially
repeating these tasks many times. This is why we want to develop a new method,
in which service integration is automated as much as possible, from the first step
of finding a mapping of semantically equivalent concepts between the two systems
involved, to the creation of data adaptors to transform instances of this data. It

is not trivial to write an algorithm for these tasks —each case can have arbitrary

30

complexities depending on how the data structures have been defined— so we cannot
expect to achieve a wholly automated solution. However, our work has permitted the
development of semi-automated techniques for system integration. Moreover, we have
built a service integration assistant that relies on the methods described in this thesis
to partially automate the service integration process, easing the work of developers.
In the next two chapters we will present our proposed techniques as well as the tool

we have built, and the experiments we have conducted to test them.

31

Chapter 3

Automatic Service Integration

In the previous chapter we offered an introduction to the topic of service integration,
introducing the semantic interoperability problem and its challenges, as well as the
topics relevant to the developing of solutions to the problem. This chapter presents a
more thorough description of the problem as well as the approach we have developed

for solving it.

3.1 Presentation of the Problem

To illustrate the topics covered by this work, we provide the following example, based
on the case study of the integration of Mecanica Solutions 360e and SAP’s ERP
system. Let us consider an engineering company ABC which uses 360e for their
project lifecycle management tasks. Moreover, ABC uses SAP’s ERP solution for
several tasks, including their accounting and human resources needs. For accounting
purposes, ABC keeps track of how many hours have been spent on specific projects
and tasks. Every employee has to enter this information into a time sheet interface in
the ERP system, which is later reviewed and approved by a supervisor. Additionally,
project managers need to know which employees have worked on which tasks and for

how long. To record this, employees are required to re-enter the same information

32

into the PLM system, which is tedious and error-prone.

This real-world scenario represents a typical situation where system integration is
required. Ideally, the employees would need to enter their time sheet information into
the ERP system only, and an automated process would transfer this data into the
PLM system. SAP has a Web service based API that can be used to query employee
time sheet information. On the other hand, 360e also provides Web service operations
to enter employee time sheets. In theory, these two pieces of software could be made
to communicate with each other through their Web services in order to transfer time
sheets from the ERP to the PLM system. However, for this integration to happen,
an adaptor is needed since the two applications were not specifically designed to work
together.

SAP’s Web service exposes an operation called Find Employee Time Sheet By
Employee, which takes the ID of the employee and a date period as parameters. We
will call this the source service and its operation the producer operation. Figure 3.1
is an excerpt of the WSDL for this service. On the side of Mecanica’s 360e, we find
an operation called OpenTSFExecute which can be used to enter an employee’s time
sheet entry into the system —what we will call the consumer operation, provided by
the target service. Figure 3.2 shows an excerpt of this WSDL. We identify two main
incompatibilities between the services: a) the producer operation can extract a whole
list of time sheet entries in a single request whereas the consumer operation requires a
request per entry being added, and b) the format in which time sheet data is specified
is not the same on both systems. A process to transfer data from SAP to 360e will

then have to take the following steps:

1. Accept an employee ID and data period as initial input.

2. Invoke SAP’s service, passing these parameters to it, and receiving a list of time

sheet entries in return.

33

<wsdl:message name="EmployeeTimeSheetByEmployeeQuery">
<wsdl:documentation>Query for EmployeeTimeSheetByEmployee</wsdl:documentation>
<wsdl:part element="p2:EmployeeTimeSheetByEmployeeQuery" name="EmployeeTimeSheetByEmployeeQuery"/>
</wsdl:message>
<wsdl:message name="EmployeeTimeSheetByEmployeeResponse">
<wsdl:documentation>Response for EmployeeTimeSheetByEmployee</wsdl:documentation>
<wsdl:part element="p2:EmployeeTimeSheetByEmployeeResponse"
name="EmployeeTimeSheetByEmployeeResponse" />
</wsdl:message>
<wsdl:message name="StandardMessageFault">
<wsdl:documentation>Default Standard Fault Message</wsdl:documentation>
<wsdl:part element="p2:StandardMessageFault" name="StandardMessageFault"/>
</wsdl:message>
<wsdl:portType name="EmployeeTimeSheetByEmployeeQueryResponse_In">
<wsdl:documentation>Find Employee Time Sheet By Employee</wsdl:documentation>
<wsdl:operation name="EmployeeTimeSheetByEmployeeQueryResponse_In">
<wsdl:documentation>Interface for EmployeeTimeSheetByEmployee</wsdl:documentation>
<wsp:Policy>
<wsp:PolicyReference URI="#0P_EmployeeTimeSheetByEmployeeQueryResponse_In"/>
</wusp:Policy>
<wsdl:input message="pl:EmployeeTimeSheetByEmployeeQuery"/>
<wsdl:output message="pl:EmployeeTimeSheetByEmployeeResponse"/>
<wsdl:fault message="pl:StandardMessageFault" name="StandardMessageFault"/>
</wsdl:operation>
</wsdl:portType>

Figure 3.1: Excerpt from SAP’s time sheet WSDL

3. Reformat the time sheet entry list into a series of records according to 360e’s

specification.

4. Send each record in a request to 360e’s service.

In general, the producer operation is invoked with an input, and it returns a set
of outputs. Therefore, after it has been invoked, the values for both its input and
output parameters will be available to be used as input to the consumer operation.
We then define a process transferTimeSheet that will invoke Find Employee Time
Sheet By Employee and use its input and output to generate calls to OpenTSFExecute

the integrated process.

34

<wsdl:message name="OpenTSExecuteSoapIn">
<wsdl:part name="parameters" element="tns:0OpenTSExecute"/>
</wsdl:message>
<wsdl :message name="OpenTSExecuteSoapOut">
<wsdl:part name="parameters" element="tns:0OpenTSExecuteResponse"/>
</wsdl:message>
<wsdl:portType name="OpenTSSoap">
<wsdl:operation name="OpenTSExecute">
<wsdl:input message="tns:0penTSExecuteSoapIn"/>
<wsdl:output message="tns:0penTSExecuteSoapOut"/>
</wsdl:operation>
</wsdl:portType>
<wsdl:binding name="OpenTSSoap" type="tns:0penTSSoap">
<soap:binding transport="http://schemas.xmlsoap.org/soap/http"/>
<wsdl:operation name="OpenTSExecute">
<soap:operation soapAction="http://mecanicasolutions/plm360/ws/OpenTSExecute" style="document"/>
<wsdl:input>
<soap:body use="literal"/>
</wsdl:input>
<wsdl:output>
<soap:body use="literal"/>
</wsdl:output>
</wsdl:operation>
</wsdl:binding>
<wsdl:service name="OpenTS">
<wsdl:documentation xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">A Web service that performs
timesheet management.</wsdl:documentation>
<wsdl:port name="OpenTSSoap" binding="tns:0penTSSoap">
<soap:address location="http://localhost/OpenMPM/OpenTS.asmx"/>
</wsdl:port>
</wsdl:service>

Figure 3.2: Excerpt from 360e’s time sheet WSDL

35

Definition 3.1.1 We define our Web service interface mapping problem over a tuple

(p7 C, Aa B: K Z, t, ip) where:

e p: A — B is a producer operation that expects a set of input parameters A, and

returns a set of output parameters B.

e c: Y — Z is a consumer operation that expects a set of input parameters Y,

and returns a set of output parameters 7.

e Y can be generated by a processt: (AUB) — Y, which transforms the concepts
represented by A and B into the format required by c. This process is in charge
of building an input message for ¢ —i.e., its set of parameters Y—. It does so
by using the values in A and B —which are in the format handled by p— and

reformatting them to fit the format expected by c.

e ip: A — Z is the integrated process that combines the functionality of p and c.

Figure 3.3 shows a model of the process ip, where it is fed an input A and it
produces an output Z. Internally, ip interacts with services p and ¢ and its mediator

t to achieve this.

36

Figure 3.3: Services p and ¢ are integrated into process ip

3.2 Challenges

In order to achieve service integration, two major steps are required. First the APIs
for the producer and consumer operations have to be analyzed, looking at their data
structures and identifying the pairs of semantically equivalent fields. Once this is
done, an adaptor process has to be built, which will handle the interaction between
the two operations. This includes the conversion of instances of the data structures
handled by the producer operation into the format of the consumer operation. This
research contributes to the research in system integration by providing an analysis
of the complete requirements for automated service integration, and presenting new

techniques for discovering semantically equivalent service parameters.

Definition 3.2.1 We define semantically equivalent parameters as those which carry
information about the same concepts, regardless of the format used to represent this

information.

In the case of Web services, parameters are defined as XSD schemata. Therefore,

the identification of semantically equivalent parameters across a couple of services

37

can be seen as a type of schema matching. However, the nature of WSDL adds some
particularities to this variation of schema matching, which makes it worth studying

as a separate problem. We summarize some of these issues below:

e Lack of a formal ontology. Web service parameters are defined using terms
that are meaningful to the designers and the intended main target users of the
service. However, these terms do not usually conform to a standard industry-

agreed ontology.

e Stop words. Some of the terms which appear in parameter names do not

contribute to the meaning of the fields in which they occur.

e Highly context dependent. The terms used to define fields have a specific
meaning in the context of the industry to which the service belongs. Resulting
from this, a generic stop word list may not be useful to filter out non-meaningful
terms. Similarly, when trying to match terms sharing the same meaning, a

standard thesaurus does not usually help.

e Random schema structure. Some schema matching techniques put emphasis
in the similarity structures [43]. However, the structure of Web service param-
eters can vary greatly and this practise may not help identifying semantically

equivalent elements.

e Variation in cardinality. Another item that varies from service to service is
the cardinality of the elements. One operation may handle a list of a specific
concept while the other one works with individual instances. Therefore, this

cannot be used as a comparison factor.

e Random data types. Similarly to the previous two points, the choice of XML
data types for the definition of atomic fields can vary among multiple services,

so using it as a similarity factor may not improve the results.

38

e Non-matchable concepts. The occurrence of concepts in one schema that
have no matching counterpart in the other makes some branches of the schema

non-matchable.

Example 3.2.1 Figure 3.4 shows sections of two schema trees, indicating some map-
pings between semantically equivalent fields. The tree on the left belongs to SAP’s ser-
vice while the one on the right corresponds to Mecanica 360e’s service. The first thing
to notice s that the term timeSheet is a stop word in 360¢’s tree, appearing in mul-
tiple nodes without contributing to their meaning. Furthermore, the mapping between,
nodes /EmployeeTimeSheet/EmployeeTime/Item/ID and /OpenTSParam/timeEn-
tryld serves as an example of the lack of a formal ontology: the same concept is called
item by SAP and entry by 360e. Lastly, 360¢’s service includes a set of fields under
the node called metaDatalist that can be used to pass extra information about the

time sheet data. These are fields that have no correspondence on the SAP side.

Once the pairs of semantically equivalent parameters have been identified, in-
stances of the source service’s parameters must be adapted to the format of the
target service. The way in which this transformation of the parameter structures is
achieved will vary depending on the difference in formatting between a parameter

and its matching counterpart. Some possibilities are:

e The trivial case, where both services use the same format to represent a concept.
This allows to simply copy the value in question from its containing field in the

source structure to the matching field in the target structure.

e Cases where the data has a slightly different format, e.g. [YYYY-MM-DD] and
[DD-MM-YYYY] date fields, or [FIRST_NAME LAST_NAME] and [LAST_NAME,
FIRST_NAME] name fields. These can be reformatted by a script that extracts
the individual tokens out of the source value and repositions them according to

the target format.

39

EmployeeTimeSheet OpenTSParam

Employb timeSheetHeaderld
1D

timeSheetHeader
ExternalKey startDate
WorkAgreementID endDate
ApprovalUserAccountID projectld
Item I ApprovedByld
ID metaDatalist
binaryData
textData
dateTimeData
timeSpanData
longData

timeSheet Detailld
eSheetDetail
timeEntryld
timeEntry
timeSheetUserld
timeSheetOperationld
timeSheetProjectld
employeeld
projectld

Figure 3.4: Sections of the SAP and 360e schema trees

40

e When a concept that is represented in one field in an API, is split into two fields
by the other, a join or split operation needs to be performed. For example, the
values for firstName and lastName fields will need to be joined to fit into a

fullName field.

e Sometimes there are multiple ways of referring to the same concept. An example
of this is how a company can give their suppliers both an ID and a unique code.
In this case, if an API works with a supplierID field and another one with a
supplierCode field, the transformation will require the use of a lookup table to

convert from one to the other.

The previous list shows some of the types of transformations that an adaptor
process will need to perform —other cases can arise depending on the structures in
which data is defined. Moreover, we would like to point out that the employee time
sheet example discussed in this section represents a two operation case in which the
output of the first operation is used as the input of the second one. More complex
situations spanning more than two operations also exist, and they result on a less
straightforward business protocol. Handling such cases is also the responsibility of the
adaptor process. However, the task of identifying semantically equivalent parameters
remains essentially the same regardless of the complexity of the business protocol. The
main contribution of this work is the presentation of new techniques for the matching
of semantically equivalent service parameters, which have been developed focusing on
the particular features of the WSDL format. This is a valuable contribution to the
research field because it covers an issue not yet resolved by other work. Some studies,
such as [42], have concentrated on other aspects of service integration, assuming the
mapping of parameters has previously been done. On the other hand, the authors
of [27] have focused part of their study on the problem of parameter mapping but
their solution uses the generic schema matching tool COMA++ [8], which does not

concentrate on the specific intricacies of WSDL.

41

The next section describes the details of our proposed techniques, whereas chapter
4 presents the tool we have built leveraging from them, as well as the experiments
conducted to test them. Further analysis and development of the data adaptor process

is beyond the scope of this thesis, and is left as the topic for future work.

3.3 Techniques for Service Parameter Matching

This section features the techniques for parameter matching contributed by this work.

3.3.1 Preparation of the Data

Our approach starts by building a schema tree for each of the two operations involved.
The one corresponding to the consumer operation parameters will be called the source
tree, while the tree that represents the parameters from the producer operation will
be called the target tree. The root of the source tree will have two children: one corre-
sponding to the operation’s input parameters, the other one to its output parameters.
Since the output of the consuming operation is not relevant for the integration, the
target tree will only contain the input of said operation.

Having constructed the trees, the next steps will analyze their node names to
extract the terms that will be used for comparison. Following are the series of steps

performed to accomplish this:

1. Tokenization. Node names can often contain multiple terms, formatted in
different ways. For instance, they can be camel cased, underscore separated,
or space separated. Thus, node names have to be tokenized and normalized,
i.e. their individual terms must be extracted and turned into lower case letters.
For example, a node called employeeStartDate will be tokenized into {employee,

start, date}.

42

2. Elimination of stop words. The next task we want to accomplish is clean-
ing up the schema trees from terms that are not relevant, so that they do not
interfere with the matching algorithms. For this, a list of stop words will be
used. Nodes in both trees will be scanned and any occurrences of stop words
in their token sets will be removed from them. It would be possible to use a
standard list of stop words such as the one in [19]. However, the same word can
either be a stop word or a content word depending on the domain in which it
appears [9], especially so in the definitions of Web services parameters, which
usually contain a relatively small set of industry-specific terms. So using such
a generic list brings in the problem of semantically relevant words being elimi-
nated. Therefore, a better approach consists in using a context-specific list of

stop words.

3. Addition of synonyms. Similar concepts are often described using different
terms by the distinct services. To overcome this issue we use a thesaurus to
find synonyms for these terms. For each node in the schema trees, tokens are
looked up in the thesaurus, and their synonyms are added to the node’s token
set. As in the case of stop words, synonyms can also vary greatly depending
on the context. For example, the words field and column are often given the
same meaning in the context of relational databases —another example being
the terms record and row. However, Wordnet, being a general purpose tool,
does not include these pairs of terms in the same synonym sets. Therefore,
we will prefer the use of a context-specific thesaurus. Some of these have been
published by a specific industry, for instance the food and agriculture thesaurus
Agrovoc [48]. In cases where a domain specific thesaurus is not available, the

method proposed in [26] can be used to extract one from Wikipedia.

Example 3.3.1 For a node named manager_id, the tokens manager, id are

extracted, and the synonym supervisor is added for manager, so the resulting

43

token set is manager, id, supervisor.

. Combination of parent and child nodes. Because of the hierarchical struc-
ture of Web service parameters, it is common to have nodes whose names are
not sufficiently descriptive of the concept they represent. Instead, the concept
is defined by both the node and its ancestors. In particular, a node often repre-
sents a property of their parent node, so the node’s name refers to that property
but not to the concept it is applied to (which is described by the parent’s name).
To circumvent this issue, we have decided to propagate a node’s tokens toward
its descendants. One possibility was to assign, for a given node, the union of all
tokens found in the path from it to the root. The problem with this option is
that it essentially flattens the tree structure, and makes most nodes similar to
each other, since nodes at deeper levels will all share the same tokens coming
from nodes at the top levels. Therefore, a better option was to combine only
a node’s tokens with the ones from its parent. As shown on section 4.2.2, our

experiments have confirmed that this mechanism produces better results.

Example 3.3.2 The schema tree in Figure 3.5 contains two nodes named id
and two named code. They represent properties of their respective parents,
namely the documentHeader and detail nodes. By merging the names of the
leaf nodes with their parents’, the token set for node 3 is item, id while the one

for node 2 is document, header, code.

. Removal of non-matchable elements. As we have already discussed, the
services being integrated may have very dissimilar designs. It is not uncommon
then for some of the parameters in one service to refer to concepts that do not
exist on the other service. These parameters cannot be matched since they have
no counterpart in the other schema, so they can be ignored by the algorithm.

This means that if we had a way of identifying them, it would help speeding

44

documentHeader ¢

id 4 code o item 5

id 5 code 4

Figure 3.5: Sample schema tree

up the process, as well as making it more effective by filtering potential false
positives. For this purpose, we use a list of terms that can be ignored by the
matching algorithm —when scanning a schema tree, if a node that includes one
of these terms is found, we tag it as non-matchable, so that the next steps of

the process will ignore it.

3.3.2 Computing Linguistic Similarities

Having obtained and cleaned up the token sets for the tree nodes, the next step
consists in measuring the similarity between nodes in the source and target trees. To

this end, we use the measure of linguistic similarity in Definition 3.3.1.

Definition 3.3.1 A measure of linguistic similarity linsim is computed as follows:

Weype * typecomp(ni, nz) + Wname * namesim(ny, no)

linsim(ny, ng) = T
type name

where,

e typecomp is a lookup function that checks the data types of two nodes and

returns a value between 0 and 1 representing their compatibility.

45

e namesim is a metric of name similarity between two nodes. A combination of
bigram measure and a normalized edit distance is applied to each pair of tokens
obtained with a token from ny and a token from ns), and an average of the
maximum similarity pairs is computed. The algorithm on Figure 2.10 shows
in more detail how this is calculated. Before choosing this similarity metric,
we have tried using different combinations of edit distance, bigram, trigram
and Jaro metrics. Our tests produced the best results with the bigram and edit
distance measures. This supports previous evidence that bigram is usually more
effective than trigram [17]. Moreover, edit distance is not biased against the
boundaries of terms, as n-gram measures are [17], so combining both measures

provides better coverage of different cases.

® Wiype aNA Wygme are constants that assign weight to the values of type compati-

bility and name similarity functions respectively.

Intuition suggested that name similarity is a more important factor in determining
node similarity so we should give it a higher weight than that of data type compat-
ibility. This can be explained by the fact that data type selection can be arbitrary,
e.g. one can store a date value in a string field, a numeric field holding a UTC value,
or a date field. Our experiments have shown that this is in fact the case, with the
best results obtained when the value of wygm, is five times that of wyype.

Following the algorithm in Figure 3.6, a matrix is constructed to hold the linguistic

similarity values of nodes.

3.3.3 Comparing Schema Elements

With the linguistic similarities computed, we continue by comparing all pairs of com-
plex nodes (ng,ny) where ng is a node in the source tree, and ny is a node in the

target tree. We use an average of three metrics for this comparison:

46

input: sourceTree, targetTree
procedure buildLingSimilarityMatrix
for ng € sourceTree do
for nr € targetTree do
mlng][nr] := linsim(ng, nr)
end for
end for
end procedure

Figure 3.6: Building linguistic similarity matrix

e A child similarity measure to identify pairs of nodes (ng,nr) where a high

proportion of ng’s children are linguistically similar to children of nr.

e A leaf similarity measure to identify pairs of nodes (ng,nr) where ng is an
ancestor of a high proportion of leaf nodes that are linguistically similar to leaf

nodes descending from ny.

e The linguistic similarity of ng and nr.

By using these three metrics, we can consider not only the similarity of the two
nodes being compared, but also the similarity of the nodes that descend from them.
In other words, for a pair of nodes, the similarity of their descendants contributes to
their own similarity.

We then proceed to select compatible nodes, i.e. the pairs of complex nodes whose
similarity exceeds a predetermined threshold. For each of these pairs, we extract their
category sets as done in [2] and explained in section 2.6.3. Then, for every source node
in a category set, we sort in descending order of similarity the nodes in the category
set of its corresponding compatible target node. This produces a list of source nodes

along with a list of best matching target nodes for each of them.

3.3.4 Obtaining the Matching Pairs

It would be possible at this point to take the top target node —or the top k target

nodes for each source node and present them as the potential matches. However,

47

some of these candidate matches may not be strong enough, and we would like to filter
them out in order to avoid returning false positives. What the authors of [2] propose
is to take the candidates with similarity values exceeding a predefined threshold.
However, we have found there is considerable variation between the similarity values
of different correct matches. In other words, by using a single threshold to determine
whether a candidate is accepted or not, we would either filter out many correct
matches (if the threshold is set too high), or accept many wrong matches (if the
threshold is set too low.) To get a better filtering mechanism, we propose to compare
the computed similarity values against two thresholds. First, we compare a source
element’s top candidate against a top candidate threshold (T'Hy.). If the similarity
value exceeds the threshold, we take the a next best candidates for the node, where o
is a predefined constant, and compute the average similarity value among them. If the
difference between the top candidate’s similarity value and this average is larger than
the difference threshold ((7"Hg)), we consider the candidate as a positive match. This
method guarantees that the selected candidate not only has a generally high similarity
value but that the value is also significantly higher than that of other candidates for
the same source node. Figure 3.7 shows the algorithm used for this, and section 4.2.3
offers a comparison of the results obtained using the one-threshold and two-threshold

selection methods.

48

input: sourceTree, potentialMatchLists, similarityValues, «, (T Hi.), (TYI@O
procedure suggestMatchings
for ng € sourceTree do
potentialMatches := potentialMatchLists[ngl
nr := potentialMatches[0]
topCandidateSimilarity := similarityValues[ng,nr]

if topCandidateSimilarity >= (1'H:) then

averageSimilarity := 0
for i := 1 to o do
averageSimilarity += similarityValues[potentialMatches[i]]
end for
averageSimilarity := averageSimilarity / «

if averageSimilarity >= (T'Hgs) then
matchings := matchings U (ng, np)
end if
end if
end for

return matchings
end procedure

Figure 3.7: Algorithm to compute matchings
3.4 Evaluation Criteria

To evaluate the effectiveness of our approach, we run it over a series of data sets
and analyze the results obtained, looking at their correctness and completeness. The
parameter matching techniques presented in the previous section take two Web service
operations as input and produce a list of suggested mappings between their parameter
sets. Previously to running the experiment on a data set, we manually identified the
semantically equivalent parameters between the two services involved —creating a list
of correct element mappings— to be able to compare the algorithm’s results against
the expected ones. We then check how many of these computed mappings are in
the list of correct mappings —these are called the true positives. Conversely, the
computed mappings that do not occur in the list of manually identified mappings
are the false positives. Finally, the source nodes for which no match has been found
are also checked against the correct mappings. The ones that have in fact a correct
mapping are our false negatives. With these three values, we can compute three

measures: precision, recall and F-measure, as shown below [31].

49

tp

precision =

tp+ [p
t
recall = _P
tp+ fn
2
F — measure = T T
precision + recall

Precision measures the correctness of the results. It is the rate of true positives
against the total matches returned by the algorithm, i.e. among all the suggested
matching parameters, how many are correct. Recall, on the other hand, is a measure
of the completeness of the results. This measure is computed as the ratio of true
positives against the total correct matches, i.e. among all the actual matching pa-
rameters, how many have been found by the algorithm. Usually, there is a trade off
between precision and recall. This is why, the F-measure is defined to combines both
of these metrics in a single value by computing their harmonic mean. As in the case
of precision and recall, F-measure is in the (0, 1) range, with higher values meaning

better results.

3.5 Data Collection

In order to test our method for service parameter matching, we have compiled a series
of sample data sets for both real-world and synthetic cases. Each of these data sets
is a pair of Web service definitions, which have not been designed to work together.
However, each service in the pair provides an operation that can be combined with
an operation provided by its counterpart.

A real-world example using the software from our industry partner Mecanica So-

lutions is taken from their employee time sheet solution, which has an API based on

50

SOAP Web services. We obtained the WSDL document corresponding to the defi-
nition of this service from the developers at Mecanica. This document includes the
definition of an operation called OpenTSEzecute which is defined in a way so that
it can be used for a variety of actions on time sheet data. Instead of providing an
individual service operation for each type of action, this standard operation includes
an input parameter called method which is used to identify the type of action to
be performed. To allow for this operation to be flexible, its parameters include all
the data fields associated with time sheet information, as well as extra generic fields
that can be used when an action needs to handle some unforeseen information. As
a matching counterpart we selected an operation called Find Employee Time Sheet
By Employee provided by SAP. The latter’s online documentation includes specifi-
cations for their Web service-based APIs, from which we acquired the corresponding
WSDL document [40]. This case study is based on a real world situation —the task
of importing time sheet information from SAP into Mecanica’s 360e.

As a synthetic example, we defined a pair of sample services based on Amalgam, a
schema and data integration benchmark suite developed at the University of Toronto
125]. This suite contains a set of schemata of bibliographic databases. We used two
of these schemata as a basis for two library operations called getBookByAuthor and
addBook.

Two more case studies were defined in the field of a parts supplier business —
for example for computer, or household appliances parts. To build the interfaces
of these web services, we took the names for the source operations’ elements from
the TPC-H relational database schema, which has tables for orders, parts, suppliers,
and customers [7]. To define the interfaces of the target services we used a parts,
distributors and orders data model freely available online [49]. Although the two
pairs of services are in the same domain, one of them deals with parts suppliers, with

the source service offering a getSupplier operation and the target service offering its

51

counterpart called addSupplier. The second pair of services deals with orders of parts,

and the operations being integrated are getOrder and placeOrder.

3.6 Support Tool

To make the techniques described throughout this chapter available to developers
working in service integration, an interactive tool which implements them is needed.

We have identified the following requirements for this tool:

e Guide the developer along the process of entering the necessary information

about the services and the additional data used in the integration process.

e Provide a graphical view of the interfaces of the services being integrated, along

with the mapping between elements in these interfaces.

e Since the automated methods cannot guarantee 100 percent efficacy, allow for

manual input and adjustments to the computed results.

As part of this work, we have built a support tool that provides these features.

The next chapter explores its details more closely.

52

Chapter 4

Tool Design and Experiments

This chapter is divided into two main sections. The first one includes a description
of the service integration tool we have developed. In the second portion, we describe

the experiments conducted to test our method.

4.1 The Service Integration Assistant

As part of the work for this thesis, we have developed a proof of concept tool aimed at
alleviating the task of service integration. Specifically, this tool applies the concepts
presented in the previous chapter to aid developers in the finding of semantically
equivalent parameters across two SOAP Web services. The user interface for this
service integration assistant follows a wizard style which guides the user through the

steps of the process.

4.1.1 Building of Schema Trees

In the first step of the wizard, the user is prompted for the location of the WSDL
documents that define the Web services involved. Once this is done, the system scans

the files to find the available operations. In case a file defines more than one operation,

53

File Edit Help

[getBooks | 3 addBook =
9 [getBnoksReguestType [addBookRequestel
[y authorip 9 [hook
¢ [getBooksResponseElement D hooklD
¢ [publications Gy
9 [publication 5 O
[P [year L
[y it [years i
D D manth
[Abstract [y pages
[apstractindicator LS [val
D Language D i
[Journainame 0 lae
D JournalAnnouncement D class il
[conferenceinfarmation [note
0O e - [} annote -

Source: gethooks wedl

Target: addbookwsd|

Figure 4.1: Schema trees on the service integration assistant

these are presented for the user to select the desired one. For each of the two Web
service operations, its parameter structure is loaded, and a schema tree is constructed

to represent it. Figure 4.1 shows the tool’s main window with two schema trees in it.

4.1.2 Removal of Stop Words

As mentioned in section 3.3, stop words should be filtered out from the schema trees
in order to only consider relevant terms during the matching process. The wizard will
prompt the user to provide a list of stop words. Ideally, this list will be a domain-
specific one because generic lists can contain terms that should not be considered as
stop words in the context of the services in question. Regardless of the kind of list
provided, the tool will in a later step give the user a chance to validate it before it is
used, as shown in Figure 4.2. Once the stop word list is loaded, the schema trees will
be scanned and a new list will be constructed. We will call this the list of potential
stop words and it will take three steps to build it. First, the terms that appear both

in the trees and in the provided stop word list will be added.

Proposition 4.1.1 Terms appearing at the root of the tree are likely to describe a

54

general concept —such as the purpose of the service itself— rather than a more specific

detail.

Following proposition 4.1.1, the terms that constitute the name of the root node
of each tree will be added to our set of potential stop words. The set will then be
presented to the user, who will mark the words that should be validated as stop words
in the context of the particular services being integrated. Then, as a last step the
user can manually append additional stop words to the list.

Having now a set of stop words, the system scans the schema trees, removing any
stop words that occur inside node names. It is important to do this filtering of stop
words at this point in order for the words not to be considered in any of the following

steps of the process.

Example 4.1.1 Figure 4.3 illustrates a possible structure for the services offered by a
city. The Service Integration Assistant will suggest a list of stop words SW = { “city”,
“services”, “and”}, where the terms “city” and “services” are obtained from the root

node, while the term “and” comes from the provided list of stop words.

4.1.3 Node Filtering and Addition of Synonyms

Once stop words have been removed, the tool will help overcome two issues: a) the
presence of concepts that are described using different terms by the different services,
and b) the presence of concepts in one service that do not exist in the other one.
This will be done by first counting the frequency in which each term appears in the
schema trees. This count will allow us to generate the list of terms that occur the

most frequently in a tree, but do not exist in the other one.

95

Please choose which of the following terms you would like to add as stop words.

add

addbook
book
hookrequest
books
booksrequest
hooksresponse
el

element

get

Igetbooks
|requesl

Ll

Bisch H ‘Next ‘ ‘ ®Cancel

Figure 4.2: Suggested stop words on the service integration assistant

CityServices
LibraryServices RoadServices SportsAndRecreation
RoadRepair | | SnowRemoval
AdultLibraries | | ChildrenLibraries | | SkatingRinks || SwimmingPools | | SoccerFields

Figure 4.3: City services schema tree

56

Proposition 4.1.2 Let T and R be two schema trees, and N = {t1,ta,....;t,}, M =

{r1, 79, ...;Tm} their respective sets of terms. If t, € T, t, ¢ R we can say that either:

e t, represents a concept that exists in T but does not exist in R, or

e t, represents a concept that exists in both T and R but the latter uses a different

term to refer to this concept.

These terms will be presented to the user in two separate tables, one for each tree
—sorted by term frequency in descending order. For each of the terms, the user can
choose to perform two actions. First, the term can be added to a list that will be
used to filter non-matchable concepts. Nodes that contain terms that appear in that
list will be ignored by the matching algorithms. Alternatively, the user can choose to
enter a list of synonyms for the term. These synonyms will be appended to the nodes
containing the original term, aiding in the matching of concepts that are represented
by different terms. Figure 4.6 illustrates this interaction. In the following step, the
wizard offers the option of loading a thesaurus file, providing additional synonyms for

the schema trees’ terms.

Example 4.1.2 Figures 4.4 and 4.5 show two different schema trees representing a
university course. The term “code” occurs frequently in the second tree but is not
present in the first tree. Therefore, this term will be presented to the user, who will
be able to decide if the nodes containing it should be ignored or synonyms should be

added for it. In this case, the term “id” is an appropriate synonym to be used.

57

course

name syllabus | | department | | student | |instructor
M name

name

name || office_address

Figure 4.4: A university course schema tree

class

name

code

outline school

student lecturer

)

code || name

name

name

Figure 4.5: A different university course schema tree

58

SOURCE “TARGET

term frequency term frequency

abstract 00649 - pages 0.059
Journal 0069 loc 0.058
affiliations Lo class 0.054
infarmation | Add to ignore list ol 0.059
indicatar Remove from ignore list | |nuUm 0.058
ANMOURCer manth 0.0549
pid ALt years 0053
aid 0.034 = annote 0.058
pub 0.034 niote 0.058
publication 0.034

extension 0.034

category 0.034

publications 0.034

wititten 0.034

clagsification 0034 ||

language 0034 -

‘ ‘Back H ‘Next ‘ ‘ @Cancel

Figure 4.6: Lists of exclusive terms sorted by the frequency in which they appear

4.1.4 Computing Similarity and Obtaining Matching Pairs

With the schema trees built and cleaned up, the data is ready to be run through the
similarity computations. Following the techniques described in section 3.3, linguistic
and structure similarity values are computed and combined for the pairs of nodes
from the source and target trees, producing a set of source nodes along with a list of
best matching candidate target nodes for each of them. To determine which of these

candidates to present to the user, a set of values is needed:

e The top candidate threshold T'H;., which is the minimum similarity value that

a best matching candidate must have to be considered.

e The number of top candidates to consider a, which specifies, for each source
node, how many of its top matching candidates will be compared to its best

matching candidate.

e The difference threshold T'Hy, which is the minimum difference between the
best candidate’s similarity value and the average similarity of the a top candi-

dates, for a matching candidate to be considered.

59

Get suggested matchings

Top candidate threshold:

—Q_

Difference threshold:

Top results to consider: | 10 "—I

Bisch | ‘Next | ‘ @Cancel

Figure 4.7: Service integration assistant prompts for threshold values

The wizard prompts the user for these three values on the screen shown in Figure
4.7, and feeds them to the algorithm that produces the matching candidates. The
latter are then showed to the user using colour codes to mark the matching tree nodes.

Once the software has presented the suggested matchings, the user can review
them on the tree components, and export them to an XML file to be used in later
steps of service integration. Additionally, the tool allows mappings to be manually

added or removed by the developers in case the proposed results need tweaking.

4.2 Experiments

To evaluate our method, we have run tests on the series of sample data described in

Section 3.5. The test process accepts the following information as input:

e A pair of WSDL documents describing the source and target operations.
e A thesaurus file containing the domain-specific synonyms used.

e A file containing the pre-computed matching parameters for the pair of opera-

tions.

60

A list of non-matchable concept terms.

A list of stop words.

The value of the top candidate threshold.

The value of the difference threshold.

The number of next best candidates used for comparing their average value to

the top candidate’s value.

After a test is run, the following output is produced:

e The number of true positives, false positives, and false negatives.

e The values of precision, recall and F-measures.

All the results presented in the following sections have been obtained by running
an implementation of the technique described in section 3.3. The lists of stop words
used were obtained using the method described in section 4.1.2. The lists of non-
matchable terms and the thesauri were built by inspecting the sets of exclusive terms
described in section 4.1.3 —each term was either added to the non-matchable list, or
looked up for synonyms in a thesaurus. It is also important to mention that, even
though our Service Integration Assistant allows manual adjustments, the tests results
presented are the ones produced directly by the tool, and have not been manually

corrected.

4.2.1 Data Sets

Using the data sets we have compiled, we have run the experiments to evaluate the
performance of our method. Our main data set is the pair of employee time sheet
operations from SAP and Mecanica 360e. The additional data sets are synthetic

examples of service integration in the domains of parts suppliers and orders, and

61

academic bibliographies. We have created these using the names of fields in the
TPC-H database schema for parts and suppliers [7], a free parts and distributors
data model [49] and the amalgam project [25] respectively. Table 4.1 shows, for each
data set, the number of nodes in the source and target services as well as the number

of matching pairs of nodes manually identified.

Suppliers Biblio Orders SAP - 360e

Nodes
(source / target) 15 /19 18 /31 19 /50 157 /250

Matching pairs 7 8 12 17

Table 4.1: Data sets

4.2.2 Effect of Combining Parent Node Names

In this section we show the effect of combining the node tokens with the ones from

its parent node. For each of the data sets, we have run the process three times:

e One without combining the tokens, so that a node includes only the terms from

its own name.

e A second time adding to a node the group of tokens from the whole path starting

at the root of the tree.

e A third time adding to a node the tokens from its parent’s name.

Table 4.2 lists the results from these experiments, which show that the best results

are obtained when combining a node’s tokens with the ones from its parent.

62

TP FP FN Prec. Rec. F-meas.
(nodes) (nodes) (nodes)

Suppliers

Not combining 2 0 5 1 0.2857 0.4444
Combining all 2 0 5 1 0.2857 0.4444
Combining parent 5 2 2 0.7143 0.7143 0.7143
Biblio

Not combining 5 3 0.714286 0.625 0.6667
Combining all 0 1 8 0 0 0
Combining parent) 3 0.714286 0.625 0.6667
Orders

Not combining 3 0 9 1 0.25 0.4
Combining all 2 0 10 1 0.1667 0.2857
Combining parent 4 0 8 1 0.3334 0.5
SAP - 360e

Not combining 4 13 13 0.2353 0.2353 0.2353
Combining all 1 0 16 1 0.058% 0.1112
Combining parent 7 18 10 0.28 0.4118 0.3334

Table 4.2: Results from testing the effect of combining parent node names

4.2.3 Effect of Two Threshold Selection Method

Here we present a comparison between two methods for the selection of results. In
the first case, a single threshold value is used. If a candidate pair’s similarity exceeds
this value, it is considered a positive result. For the second case, a second threshold is
added —to check that a candidate pair’s similarity value is considerably higher than
the one of the next best candidates. Table 4.3 compares the results obtained using
each of these methods. We can see that the two-threshold method either outperforms

or ties with the one-threshold method.

63

TP FP FN Prec. Rec. F-meas.
(nodes) (nodes) (nodes)

Suppliers

One threshold 5 2 2 0.7143 0.7143 0.7143
Two thresholds 5 2 2 0.7143 0.7143 0.7143
Biblio

One threshold 5 2 3 0.7143 0.6250 0.6667
Two thresholds 5 2 3 0.7143 0.6250 0.6667
Orders

One threshold 4 2 8 0.6667 0.3333 0.4444
Two thresholds 4 0 8 1.0000 0.3333 0.5
SAP - 360e¢

One threshold 8 26 9 0.2353 0.4706 0.3137
Two thresholds 7 18 10 0.2800 0.4118 0.3334

Table 4.3: Results from comparing two matching pairs selection methods

4.2.4 Effect of Auxiliary Data

For each of the data sets, we have run our service parameter matching process multiple
times, alternately supplying it or failing to supply it with lists of stop words and terms
to ignore. To build these lists we have used the techniques implemented in our service
integration tool, as explained in section 4.1. Specifically, the stop words have been
chosen from the collection of terms occurring at the root of the tree, whereas the
ignored terms come from the sets of most frequent terms that appear exclusively in
one of the trees. We have found that the results get consistently better —or in the
worst case stay unchanged— as the algorithm is provided with more of this kind of
auxiliary information. Particularly, this data helps in the trimming of false positives
from the results. The following examples offer closer looks at each of the case studies,

each one showing the different results obtained by running experiments with varying

64

amounts of auxiliary information provided. In all cases, the tables show the number

of true positives, false positives and false negatives (in number of nodes), as well as

the values of precision, recall and F-measure.

Example 4.2.1 For the parts suppliers services, we notice that adding either the list

of terms to ignore or the list of stop words increases the number of true positives, with

no additional gain from using them both at the same time.

TP FP FN Prec. Rec. F-meas.
(nodes) (nodes) (nodes)

No stop words
No ignored terms 4 2 3 0.6667 0.5714 0.6154
With stop words
No ignored terms) 2 2 0.7143 0.7143 0.7143
No stop words
With ignored terms) 2 2 0.7143 0.7143 0.7143
With stop words
With ignored terms 5) 2 2 0.7143 0.7143 0.7143

Table 4.4: Experiment results for parts suppliers services

Example 4.2.2 For the academic bibliographies services, we notice that neither the

list of terms to ignore nor the the list of stop words have an effect on the results.

65

TP FP FN Prec. Rec. F-meas.
(nodes) (nodes) (nodes)

No stop words
No ignored terms 5) 2 3 0.7143 0.625 0.6667

With stop words
No ignored terms 5 2 3 0.7143 0.625 0.6667

No stop words
With ignored terms) 2 3 0.7143 0.625 0.6667

With stop words
With ignored terms) 2 3 0.7143 0.625 0.6667

Table 4.5: Experiment results for academic bibliographies services

Example 4.2.3 As in the case of the academic bibliographies services, the parts or-
ders results were not affected by the introduction of stop words. However, the supplying

of terms to ignore reduces the number of false positives.

TP FP FN Prec. Rec. F-meas.
(nodes) (nodes) (nodes)

No stop words
No ignored terms 4 1 8 0.8 0.3334 04706

With stop words
no ignored terms 4 1 8 0.8 0.3334 04706

No stop words
With ignored terms 4 0 8 1 0.3334 0.5

With stop words
With ignored terms 4 0 8 1 0.3334 0.5

Table 4.6: Experiment results for parts orders services

Example 4.2.4 In the case of SAP and Mecanica 360e, we can see that both the list
of stop words and the terms to ignore have an individual positive impact on the results

of the experiment. Moreover, the results are best when both of them are supplied.

66

TP FP FN Prec. Rec. F-meas.
(nodes) (nodes) (nodes)

No stop words
No ignored terms 7 24 10 0.2258 0.4118 0.2917
With stop words
No ignored terms 7 20 10 0.2593 0.4118 0.3182
No stop words
With ignored terms 7 21 10 0.25 0.4118 0.3112
With stop words
With ignored terms 7 18 10 0.28 0.4118 0.3334

Table 4.7: Experiment results for SAP and 360e timesheet services

4.2.5 Test Environment and Efficiency

We have also timed the execution of the algorithm to test its efficiency. As expected,

the SAP - 360e data set takes longer to execute because of its larger number of nodes.

Table 4.8 shows the time (in seconds) taken by each of the data sets. For these

experiments, the lists of stop words and terms to ignore were supplied in all cases.

The following platform was used for the tests:

e CPU: Intel Core 2 Duo 3.00 GHz

e RAM: 2.0 GB DDR PC-6400

e OS: Windows XP Professional SP2

e Java: 1.6.0.32

67

Suppliers Biblio Orders SAP - 360e

Number
of nodes 34 49 69 407

Tree
building 0.063 0.015 0.078 1.234

Matching
process 0.062 0.11 0.157 15.828

Table 4.8: Execution time by data set

4.2.6 Comparison with COMA 4+

The COMA++ system is a generic schema matching tool developed at the University
of Leipzig, aimed at different schema formats and application domains. Its approach
consists of a combination of multiple matching techniques —including both instance
and schema-level approaches— based on the linguistic and structural similarity of
elements. The researchers behind the development of COMA-++ have made available
a prototype implementation which includes a graphical user interface [21]. We have
run this tool on our case studies to compare the results. Since COMA++ is a generic
schema matching tool, it does not support WSDL documents as an input format.
However, it does include support for XSD files, which has allowed us to use XSD
documents extracted from the types section in each of our WSDL files as input. For
these experiments, the same thesauri were used with our method and COMA++-.
Table 4.9 show the results obtained for each of the data sets, using both our tech-
nique and COMA++. In three of the four cases, the outcomes from our approach
are better than the ones from COMA++. This works as evidence that our con-
tributed methods provide an improvement when working with the matching of Web
services, since they are specifically directed toward the features of the WSDL format
—including the presence of stop words, the lack of a formal ontology, and the occur-

rence of concepts that are only present in one of the services being matched. There

68

TP FP FN Prec. Rec. F-meas.
(nodes) (nodes) (nodes)

Suppliers
Our method 5 2 2 0.7143 0.7143 0.7143
COMA++ 2 3 5 0.4 0.2857 0.3334
Biblio
Our method 5 2 3 0.7143 0.625 0.6667
COMA++ 5 1 3 0.8334 0.625 0.7143
Orders
Our method 4 0 8 1 0.3334 0.5
COMA++ 4 4 8 0.5 0.3334 0.4
SAP - 360e
Our method 7 18 10 0.28 0.4118 0.3334
COMA++ 1 32 16 0.0303 0.0588 0.04

Table 4.9: Comparing results from our technique and COMA++

69

is one case where COMA-++ delivers slightly better results. Being a generic schema
matcher, COMA++ differs from our Web service oriented approach in a number of
items. For instance, it does not include removal of stop words from elements’ token
sets nor does it allow ignoring of elements containing specific non-matchable terms.
In our experiment results shown in section 4.2.4 where we measure the effect of these
kinds of auxiliary data, we can see that the case of academic bibliographies is not
affected by the presence of auxiliary data. This case is the same one where the results
from COMA++ are slightly better than the ones given by our technique, therefore
showing that our method’s positive impact is more important when used on data sets

that include stop words or unmatchable terms.

4.3 Concluding Remarks

As we have seen in the case studies presented in the previous sections, mapping the
equivalent elements between the interfaces of services not designed to work together
is not a trivial task. In fact, a pair of services often includes elements that are not
matchable at all —when an element in one service describes a concept that does not
exist in the other one. For instance, in our real-world example of employee time sheet
operations, our source tree consists of 157 nodes, of which only 17 can be mapped to
nodes in the target tree. This does not mean that the services cannot be integrated
to work together it only shows that the information that can be shared between
services is only a small portion of the whole data set handled by them. Among these
parameters that can be mapped, our tool was able to identify slightly over 40 percent,
with the value of the F-measure being 0.3334. This is better than the results obtained
using a generic schema matching tool. However, the manual editing feature of our

service integration assistant is still necessary so that the rest of the mappings can be

added.

70

Chapter 5

Conclusions

The growing popularity that SOA has seen as a choice of software development
paradigm among businesses increases the importance of research on the subject. In
particular, the issue of automated service integration has received close attention be-
cause of the potential gains that could be obtained from it. In spite of this increased
interest, it remains a complex subject that requires further work. The open-standard
XMI-based nature of Web services results in a technology that is easily adapted by
the industry. In addition, it provides a standard syntax that is independent of un-
derlying platforms, greatly facilitating system integration. In spite of this, the lack
of a semantic standard for service definitions is a major obstacle to the automation
of this integration.

In this thesis we have offered a look into the major issues of the automated service
integration problem. We have discussed the steps in the development of an adaptor
to mediate between two services. Having identified the issue of finding semantically
equivalent elements across service definitions as a major step toward adaptor con-
struction, we have focused on the development of techniques to automate this. Our
methods leverage schema matching techniques to take advantage of the XSD format of

Web service operation parameters, while at the same time expanding them to tackle

71

specific features of WSDL —namely, the lack of formal ontologies, highly context
dependent meaning of terms, randomness in the schema structures and cardinality of
elements and data types, and the presence of non-matchable terms. We have built a
prototype of an interactive tool which implements our techniques and tested this on
several data samples. The latter include the real-world case study of the integration
of time sheet information between Mecanica Solutions’ 360e and SAP’s ERP soft-
ware. The results from our experiments look promising, comparing positively against
the ones obtained by using a general-purpose schema matching tool. Moreover, our
tool provides developers with the option of manually adjusting the results, so that
mappings not automatically discovered can be added as well.

The method proposed in this thesis examines WSDL documents to determine
a mapping between service interfaces. We have taken the decision of using only
this information since message instances —from service invocations and returned
results— are not always available during the adaptor development process. However,
we acknowledge the fact that in the cases where this data is available, it can help
significantly in the matching process. Therefore, as future research, we will work on
extending our current method with techniques that exploit this information, with
the goal of improving the efficacy of the automatic interface matching. Additionally,
when documentation is available on the service definitions, this information can also
be inspected to further deduce element mappings.

Moreover, the main focus of the method we have developed in this thesis is the
identification of semantically equivalent elements in service interfaces. The results
of this operation can then be used in the building of a script to transform instances
of messages between the formats of the services involved. In future work, we will
concentrate our efforts on the automation of this task, which will bring us closer to

the goal of an automated service integration solution.

72

Bibliography

1]

2]

L. Ai. QoS-aware Web service composition using genetic algorithms. PhD thesis,

Queensland University of Technology, 2011.

A. Algergawy, E. Schallehn, and G. Saake. Improving XML schema matching

performance using Priifer sequences. Data Knowl. Eng., pages 728747, 2009.

A. Algergawy, E. Schallehn, and G. Saake. A sequence-based ontology matching

approach, 2009.

A. Bansal, S. Kona, L. Simon, and T. D. Hite. A universal service-semantics
description language. In Proceedings of the Third European Conference on Web
Services, ECOWS ’05, pages 214—, Washington, DC, USA, 2005. IEEE Computer

Society.

D. Beckett. RDF/XML syntax specification. http://www.w3.org/TR/

REC-rdf-syntax/, 2004.

W. W. Cohen, P. Ravikumar, and S. E. Fienberg. A comparison of string distance

metrics for name-matching tasks. In ITWeb, pages 73-78, 2003.
T. P. P. Council. Tpc-h benchmark. http://www.tpc.org/tpch, 2011.

H.-H. Do and E. Rahm. COMA: a system for flexible combination of schema
matching approaches. In Proceedings of the 28th international conference on

Very Large Data Bases, VLDB ’02, pages 610-621. VLDB Endowment, 2002.

73

[9]

[10]

[11]

[12]

[13]

[14]

[15]

E. Dragut, F. Fang, P. Sistla, C. Yu, and W. Meng. Stop word and related
problems in web interface integration. Proc. VLDB Endow., 2:349-360, August
2009.

D. Engmann and S. Mamann. Instance matching with COMA++-. In BTW
Workshops’07, pages 28-37, 2007.

G. M. Erik Christensen, Francisco Curbera and S. Weerawarana. Web Services

Description Language (WSDL) 1.1. http://www.w3.org/TR/wsdl, 2001.

D. M. et al. OWL-S: Semantic markup for Web services. http://www.w3.org/

Submission/0OWL-S/, 2004.

R. F. et al. Hypertext transfer protocol — HTTP/1.1. http://www.w3.org/

Protocols/rfc2616/rfc2616.html, 1999.

W. O. W. Group. OWL 2 Web Ontology Language. http://www.w3.org/TR/

owl2-overview/, 2009.

M. J. Hadley. Web application description language (WADL). Search, 12(TR-
2006-153):19, 2006.

[16] java.net. Java API for XML Web services. http://jax-ws. java.net/, 2008.

[17]

18]

[19]

G. Kondrak. N-gram similarity and distance. In Proc. Twelfth Intl Conf. on

String Processing and Information Retrieval, pages 115-126, 2005.

W. Kongdenfha, H. R. Motahari-Nezhad, B. Benatallah, F. Casati, and R. Saint-
Paul. Mismatch patterns and adaptation aspects: A foundation for rapid devel-
opment of Web service adapters. IEEE Trans. Serv. Comput., 2(2):94 107, Apr.
2009.

lextek. Default stop word list. http://www.lextek.com/manuals/onix/

stopwordsl.html.

74

[20]

[21]

[20]

27]

J. Madhavan, P. A. Bernstein, and E. Rahm. Generic schema matching with
Cupid. In Proceedings of the 27th International Conference on Very Large Data
Bases, VLDB 01, pages 49 58, San Francisco, CA, USA, 2001. Morgan Kauf-

mann Publishers Inc.

S. Mamann, S. Raunich, D. Aumller, P. Arnold, and E. Rahm. Evolution of the
coma match system. In P. Shvaiko, J. Euzenat, T. Heath, C. Quix, M. Mao, and
I. F. Cruz, editors, OM, volume 814 of CEUR Workshop Proceedings. CEUR-
WS.org, 2011.

D. V. Mcdermott. Estimated-Regression Planning for Interactions with Web
Services. In M. Ghallab, J. Hertzberg, and P. Traverso, editors, AIPS’02: Pro-
ceedings of the Siath International Conference on Artificial Intelligence Planning

Systems, pages 204 211, Toulouse, France, Apr. 2002. AAAT

Mecanica. Mecanica Solutions 360 enterprise website. http://www.

360enterprisesoftware.com, 2012.

G. A. Miller. Wordnet: a lexical database for english. Commun. ACM, 38(11):39—
41, Nov. 1995.

R. J. Miller, D. Fisla, M. Huang, D. Kymlicka, F. Ku, and V. Lee. The Amalgam
Schema and Data Integration Test Suite. www.cs.toronto.edu/ miller/amalgam,

2001.

D. Milne, O. Medelyan, and 1. H. Witten. Mining domain-specific thesauri from
wikipedia: A case study. In Proceedings of the 2006 IEEE/WIC/ACM Interna-
tional Conference on Web Intelligence, W1 06, pages 442-448, Washington, DC,
USA, 2006. IEEE Computer Society.

H. R. Motahari Nezhad, B. Benatallah, A. Martens, F. Curbera, and F. Casati.

Semi-automated adaptation of service interactions. In Proceedings of the 16th

75

international conference on World Wide Web, WWW ’07, pages 993-1002, New
York, NY, USA, 2007. ACM.

G. Navarro. A guided tour to approximate string matching. ACM Comput.
Surv., 33(1):31-88, Mar. 2001.

S.-C. Oh, D. Lee, and S. R. T. Kumara. A comparative illustration of ai planning-
based Web services composition. SIGecom Exch., 5(5):1-10, Jan. 2006.

S.-C. Oh, B.-W. On, E. J. Larson, and D. Lee. Bf*: Web services discovery and
composition as graph search problem. In In Proceedings of IEEFE EEE, Hong
Kong, pages 784-786, 2005.

D. L. Olson and D. Delen. Advanced Data Mining Techniques. Springer, 2008.

Oracle. JD Edwards website. http://www.oracle.com/us/products/

applications/jd-edwards-enterpriseone/index.html, 2012.

Oracle. Peoplesoft website. http://www.oracle.com/us/products/

applications/peoplesoft-enterprise/index.html, 2012.
M. P. Papazoglou. Web Services: Principles and Technology. Pearson, 2008.

K. P. Paul V. Biron and A. Malhotra. XML schema part 2: Datatypes second

edition. http://www.w3.org/TR/xmlschema-2, 2004.

K. P. Paul V. Biron and A. Malhotra. SOAP version 1.2 part 0: Primer (second

edition). http://www.w3.org/TR/soapl2-part0/, 2007.

S. R. Ponnekanti and A. Fox. SWORD: A developer toolkit for Web ser-
vice composition. In Proceedings of the 11th International WWW Conference

(WWW2002), Honolulu, HI, USA, 2002.

76

[38]

[39]

[40]

[44]

[45]

E. Rahm and P. A. Bernstein. A survey of approaches to automatic schema

matching. The VLDB Journal, 10(4):334-350, Dec. 2001.
L. Richardson and S. Ruby. RESTful Web Services. O’Reilly, 2007.

SAP. Employeetimesheetbyemployee WSDL. http://
esworkplace.sap.com/socoview(bD11biZjPTAWMSZKPW1pbg==)
/render.asp?packageid=DE0426DD9B0249F19515001A64D3F462&id=

54163F5B5FE311DA36BBO00F20DACOEF_WSDL, 2012
SAP. SAP website. http://www.sap.com, 2012.

7. Shan, A. Kumar, and P. Grefen. Towards integrated service adaptation a
new approach combining message and control flow adaptation. In Proceedings
of the 2010 IEEFE International Conference on Web Services, ICWS 10, pages
385 392, Washington, DC, USA, 2010. IEEE Computer Society.

P. Shvaiko and J. Euzenat. A survey of schema-based matching approaches. In
S. Spaccapietra, editor, Journal on Data Semantics 1V, volume 3730 of Lecture

Notes in Computer Science, pages 146-171. Springer Berlin / Heidelberg, 2005.

K. Sivashanmugam, K. Verma, A. Sheth, and J. Miller. Adding semantics to

Web services standards, 2003.

M. Strommer, F. Kromer, C. Pichler, and C. Huemer. Business document trans-
formation using core components and XSLT. In Proceedings of the 2011 IEEFE
13th Conference on Commerce and Enterprise Computing, CEC ’11, pages 129—
136, Washington, DC, USA, 2011. IEEE Computer Society.

K. Sycara, M. Paolucci, A. Ankolekar, and N. Srinivasan. Automated discovery,

interaction and composition of semantic Web services. Web Semantics: Science,

Services and Agents on the World Wide Web, 1(1), 2011.

7

[47]

[52]

[53]

WebserviceX.net. Geoipservice. http://www.webservicex.net/

geoipservice.asmx, 2012.

B. Williams. Agricultural information management standards. http://aims.

fao.org/standards/agrovoc/about, 2011.

B. Williams. Library of free data models. http://www.databaseanswers.org/

data_models/, 2011.

D. Wu, B. Parsia, E. Sirin, J. Hendler, , D. Nau, and D. Nau. Automating
DAML-S Web services composition using SHOP2. In In Proceedings of 2nd
International Semantic Web Conference (ISWC2003), 2003.

Y. Yan, M. Chen, and Y. Yang. Anytime QoS optimization over the plangraph
for web service composition. In Proceedings of the 27th Annual ACM Symposium
on Applied Computing, SAC "12, pages 1968 1975, New York, NY, USA, 2012.
ACM.

Y. Yan, P. Poizat, and L. Zhao. Repair vs. recomposition for broken service
compositions. In P. P. Maglio, M. Weske, J. Yang, and M. Fantinato, editors,

1CSOC, volume 6470 of Lecture Notes in Computer Science, pages 152-166, 2010.

Y. Yan, P. Poizat, and L. Zhao. Repairing service compositions in a changing
world. In R. Y. Lee, O. Ormandjieva, A. Abran, and C. Constantinides, editors,
SERA (selected papers), volume 296 of Studies in Computational Intelligence,

pages 17-36. Springer, 2010.

78

