
 
 

 

Pavlovian Cue-Driven Alcohol-Seeking: The Role of Dopamine and Impact of Vendor 

Differences in Long Evans rats 

 

Lindsay M. Sparks 

 

A Thesis in the 

Department of Psychology 

 

Presented in Partial Fulfillment of the Requirements 

for the Degree of Master of Arts (Psychology) at 

Concordia University 

Montreal, Quebec, Canada 

 

August 2012 

 

 

©Lindsay M. Sparks 



 

ii 
 

Concordia University School of Graduate Studies 

 

This is to certify that the thesis prepared 

By:   Lindsay M. Sparks 

Entitled:  Pavlovian Cue-Driven Alcohol-Seeking: The Role of Dopamine and 

Impact of Vendor Differences in Long Evans rats 

and submitted in partial fulfillment of the requirements for the degree of 

Master of Arts (Psychology) 

complies with regulations of the University and meets the accepted 

standards with respect to originality and quality. 

Signed by the final examining committee: 

                      Dr. Dave Mumby                     Chair 

                      Dr. Wayne Brake                      Examiner 

                      Dr. C. Andrew Chapman          Examiner 

                      Dr. Nadia Chaudhri                  Supervisor 

 

Approved by:  _______________________________________ 

      Chair of the Department or Graduate Program Director 

 

 

_________________________   _________________________ 

Date        Dean of Faculty



 

iii 
 

Abstract 

Pavlovian Cue-Driven Alcohol-Seeking: The Role of Dopamine and Impact of Vendor 

Differences in Long Evans Rats 

Lindsay M. Sparks 

Rationale Drug-associated environmental stimuli can acquire incentive and motivational 

properties through Pavlovian conditioning, and come to function as conditioned cues that 

elicit drug-seeking behavior. Objectives The current experiments tested the hypothesis 

that dopamine mediates alcohol-seeking driven by Pavlovian alcohol-predictive cues. 

Studies were conducted in Long-Evans rats obtained from two different sources, based on 

published reports that oral alcohol consumption can differ within-strain. Method Male, 

Long-Evans rats (220-240 g on arrival) from Charles River (St-Constant, Canada) and 

Harlan Laboratories (Indianapolis, USA) received intermittent, 24-h access to ethanol 

(15%; v/v) and water via 2 bottles on the home cage (21 sessions). Next, rats were trained 

to discriminate between 2 auditory stimuli (10-sec each; white noise or clicker); one 

stimulus (CS+) was paired with ethanol (0.2 ml per CS+; 3.2 ml per session; oral 

consumption) and the second stimulus (CS-) was not paired with ethanol. During 17 

daily, 60-min Pavlovian discrimination training (PDT) sessions rats received 16 random 

presentations each of the CS+ and CS- delivered according to a variable-time 67-sec 

schedule. Entries made into a fluid port to consume ethanol were recorded before, during 

and after each CS. Following PDT, rats were habituated (5 sessions; 60-min) to a 

different, non-alcohol context where the cues and ethanol were withheld. At test, 

responding to the non-extinguished CS+ and CS- was measured in the second, non-



 

iv 
 

alcohol context in the absence of ethanol. Rats received injections of a dopamine D1-like 

receptor antagonist (SCH 23390; 0, 3.33 and 10 µg/kg; 1 ml/kg; s.c.) or a dopamine D2-

like receptor antagonist (eticlopride; 0, 5, 10 µg/kg; 1 ml/kg; s.c.) 15-min before the test. 

In addition, we examined the impact of SCH 23390 (10 µg/kg; 1 ml/kg; s.c.); and 

eticlopride (10 µg/kg; 1 ml/kg; s.c.) on responding to the CS+ and CS- during PDT 

sessions when the CS+ was paired with ethanol. Results Rats from Charles River gained 

weight more rapidly and attained significantly higher overall weights than rats from 

Harlan. Across pre-exposure, ethanol consumption and preference were higher in Harlan 

rats. Across PDT sessions, rats from both vendors responded more to the alcohol-paired 

CS+ than the CS-. Total port-entry responses decreased across habituation in the second 

context. At test in a non-alcohol context, saline infused rats responded more to the CS+ 

than the CS-, indicating that discrimination between the two cues remained intact despite 

the absence of ethanol at test. Pre-treatment with SCH 23390 dose-dependently 

attenuated CS+ responding in rats from both vendors. However, eticlopride dose-

dependently reduced CS+ responding in Harlan rats, but not in rats from Charles River. 

An infusion of SCH 23390, but not eticlopride reduced CS+ responding when cue 

presentations were paired with ethanol. Conclusion These results indicate novel 

differences in Long Evans rats obtained from different breeders. They also suggest that 

dopamine neurotransmission is required for responding to Pavlovian alcohol-predictive 

cues that are experienced in a non-alcohol context. 

Keywords: Alcohol, Pavlovian conditioning, cues, context, dopamine, SCH 23390, 

eticlopride, vendor differences, Long-Evans 
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Pavlovian Cue-Driven Alcohol-Seeking:  

The Role of Dopamine and Impact of Vendor Differences in Long Evans rats 

 

General Introduction 

Drug and alcohol addiction can be characterized by cycles of drug use, abstinence 

and relapse (Koob, Sanna, & Bloom, 1998). Nearly two-thirds of alcoholics relapse to 

drinking within weeks to months of first initiating treatment (Sinha, 2011). Additionally, 

1-year outcome studies report that more than 85% of addicts relapse and resume drug use 

within one year of treatment (Sinha, 2011). Although considerable progress has been 

made in developing treatments for addiction, there are few interventions that consistently 

and effectively prevent relapse. 

There is mounting support for the hypotheses that relapse can be facilitated by 

exposure to environmental stimuli that are associated with drug intake (O’Brien, 

Childress, McLellan, & Ehrman, 1992). Environmental stimuli that are repeatedly paired 

with the pharmacological effects of a drug can acquire incentive value through Pavlovian 

conditioning, and thereby function as conditioned cues that elicit behavioral, 

physiological and subjective reactions that may lead to drug use (Robbins & Ehrman, 

1991; See, 2002; Weiss, 2005). These conditioned cues can be broadly divided into two 

categories, based on their relationship with drug intake. Discrete drug cues are stimuli 

that are closely linked with the act of drug intake, and reliably occur in close temporal 

proximity with the pharmacological effect of drugs. For example, the sight, smell and 

taste of an alcoholic beverage are sensory properties of alcohol that routinely precede 

intoxication, and have been shown to induce craving (McCusker & Brown, 1990). 
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Conversely, contextual drug cues are multimodal stimuli that are consistently present in 

an addict’s environment during drug administration (Conklin, Robin, Perkins, Salkled, & 

McClernon, 2008). For example, individuals who regularly smoke cigarettes in a car 

might learn to associate the shared characteristics of cars with the pharmacological 

effects of nicotine. That drug-contexts can stimulate craving has recently been 

demonstrated (Conklin et al., 2008), suggesting that like discrete drug cues, contexts may 

have the potential to induce relapse. 

Much of the progress in understanding the role of environmental cues in drug-

seeking comes from animal models of relapse (Stewart & de Wit, 1981; de Wit & 

Stewart, 1983), which utilize instrumental conditioning procedures. Rats are trained to 

perform an instrumental response such as a lever-press or nose-poke in order to obtain 

drug, and drug delivery is paired with a discrete stimulus, such as a compound tone-light 

cue. Extinction is then conducted by withholding both the drug and the compound cue. At 

test, subjects are allowed to respond for the compound cue in the absence of drug 

delivery, and cue-induced reinstatement of drug-seeking is observed if responding is 

higher at test compared to extinction. Traditionally, all three phases of the experiment are 

conducted in the same environmental context, which is linked with the availability of 

drug during self-administration and the absence of drug during extinction.  

Research conducted using instrumental conditioning models has found that 

discrete and contextual cues associated with alcohol consumption can reinstate alcohol-

seeking in rats (Katner & Weiss, 1999; Liu & Weiss, 2002; Nie & Janak, 2003; Chaudhri, 

Sahuque, & Janak, 2009). Such models have been used to characterize the 

neurobiological underpinnings of cue- and context-induced reinstatement, and have 
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identified the neurotransmitter dopamine as a key player (Crombag, Grimm, & Shaham, 

2002; Liu & Weiss, 2002; Hamlin, Newby, & McNally, 2007; Bossert, Poles, Wihbey, 

Koya, & Shaham, 2007; Chaudhri et al., 2009). While research conducted using 

instrumental conditioning procedures has provided valuable insight into the mechanisms 

that mediate reinstatement, it is noteworthy that in human addicts cue-induced craving is 

elicited by drug-predictive cues that are believed to have acquired incentive properties 

through Pavlovian learning (Robbins & Ehrman, 1991; Weiss, 2005). Dopamine 

neurotransmission mediates cue-induced reinstatement of instrumental drug-seeking; 

however, little is known about the role of dopamine in drug-seeking elicited by discrete, 

Pavlovian drug-predictive cues. Furthermore, discrete and contextual drug cues are 

believed to mediate drug-seeking through potentially distinct neurobiological 

mechanisms (Bossert et al., 2007; Chaudhri , Sahuque, Schairer, & Janak, 2010). 

Therefore, studies aimed at identifying the role of dopamine in responding to discrete 

drug cues should take into consideration the environmental context in which behavioral 

responding to such cues is tested. 

Based on this rationale, the experiments in this thesis examined the role of 

dopamine in alcohol-seeking elicited by a Pavlovian-conditioned, alcohol-predictive cue 

in rats. In an effort to better isolate the requirement of dopamine in responding to discrete 

alcohol-cues, the effect of dopamine D1- and D2- receptor antagonists on Pavlovian cue-

driven alcohol-seeking was tested in an environmental context that had never been 

associated with alcohol intake. The impact of dopamine antagonists on cue-driven 

alcohol-seeking during Pavlovian conditioning sessions where the cue was paired with 

alcohol was also assessed. 
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A second objective of these experiments was to investigate vendor differences 

between male, Long-Evans rats obtained from two different suppliers; Charles River (St-

Constant, Canada) and Harlan Laboratories (Indianapolis, USA). This inclusion was 

made based on published reports that oral ethanol intake can vary within rats from the 

same strain that are obtained from different suppliers (Palm, Roman, & Nylander, 2011). 

In the present research, vendor differences were examined in oral alcohol consumption, 

Pavlovian-conditioned alcohol-seeking, and the effect of dopamine D1- and D2-receptor 

antagonists on responding to Pavlovian, alcohol-predictive cues. 

 

The link between drug craving and relapse 

Research conducted in human drug users and addicts indicates that drug craving 

can be elicited by several factors that include environmental stressors (Sinha, 2007), re-

exposure to priming doses of drug (de Wit, 1996) and environmental stimuli associated 

with drug use (Robbins & Ehrman, 1991). A discussion on the behavioral, psychological 

and neurobiological mechanisms that mediate the impact of stress and priming on relapse 

is beyond the scope of this thesis, which focuses on the capacity of drug-predictive 

environmental cues to drive conditioned drug-seeking. There is substantial support for the 

hypothesis that previously neutral stimuli that are repeatedly associated with drug 

consumption can acquire incentive-motivational value through classical, Pavlovian-

conditioning, a fundamental learning process that occurs in many animal species 

(Robinson & Berridge, 1993; Robinson & Berridge, 2003; Weiss, 2005; Berridge, 

Robinson, & Aldridge, 2009). As a result, environmental stimuli paired with drugs come 
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to function as conditioned cues that elicit craving and can motivate drug-seeking behavior 

(Ehrman, Robbins, Childress, & O’Brien, 1991; Milton & Everitt, 2010). 

Environmental stimuli that predict drug availability can be broadly characterized 

as either discrete drug cues (proximal) or contextual drug cues (distal; Conklin et al., 

2008). Discrete cues are central to an individual’s drug use ritual. They can include 

sensory stimuli that are closely linked to, and therefore reliable predictors of, the 

pharmacological effects of a drug. For instance, the sight, smell and taste of a preferred 

alcoholic beverage serve as discrete cues that can elicit craving (McCusker & Brown, 

1990). Contextual cues refer to stimuli that are consistently present in an addict’s 

environment during drug use, but that are not directly tied to the act of drug 

administration. For example, the bar in which an individual frequently consumes alcohol 

might function as a context that could elicit craving (Conklin et al., 2008). Collectively, 

discrete and contextual drug cues function as Pavlovian-conditioned cues that can elicit 

reactivity. Furthermore, reactivity to discrete alcohol-cues is associated with an increased 

risk for relapse and predicts worse drinking outcomes in alcoholics (Rohsenow et al., 

1994; Litt, Cooney, & Morse, 2000), suggesting that conditioned responses elicited by 

drug-predictive cues, discrete or contextual, may be an important component of relapse. 

The capacity of discrete drug cues to elicit conditioned reactivity such as craving and 

elevated physiological responses is well documented. Early studies report that alcoholics 

exhibit increased pupillary dilation in response to the smell of a preferred alcoholic 

beverage and are at greater risk for relapse (Kennedy, 1971). Additionally, alcoholics 

presented with the sight and smell of their preferred alcoholic beverage show increased 

salivation to such discrete alcohol cues, compared to non-alcoholics (Monti, Binkoff, 
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Abrams, Zwick, Nirenberg, & Liepman, 1987). Recent studies using a personalized 

imagery procedure report that alcohol-/drug-, and stress-related stimuli trigger craving, 

negative emotion, anxiety and physiological responses in abstinent alcoholics (Sinha, 

2007). When compared to social drinkers, alcohol-dependent individuals exposed to 

alcohol-related cues report experiencing a persistent craving state, as well as increases in 

negative emotion, anxiety, systolic blood pressure and behavioral distress responses 

(Sinha, Fox, Hong, Bergquist, Bhagwagar, & Siedlarz, 2009). Together, these findings 

highlight the relationship between cue reactivity and discrete drug cues, providing 

evidence that they can pose a threat to abstinence. 

The hypothesis that drug-associated environmental contexts can trigger 

conditioned responding was first proposed by Wikler (1965; 1984), who found that 

abstinent opioid users often reported experiencing the acute effects of withdrawal long 

after they ceased using the drug. Additionally, these symptoms were experienced when 

abstinent drug users encountered environments that were similar to those experienced 

during active drug use. Based on these reports, it was hypothesized that physical 

dependence might become conditioned to environmental stimuli that were present in the 

background during drug use, as they predict drug availability. 

Though there is substantial evidence that discrete cues elicit craving and changes 

in physiological responses, few studies have investigated the independent influence of 

contextual drug cues on relapse. In a study aimed at investigating the associative strength 

of smoking-related cues, Conklin et al. (2008) examined whether tobacco-related 

contextual cues were sufficient to elicit cue reactivity in the total absence of discrete 

smoking cues. As expected, results indicated that discrete cues elicited strong cue 
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reactivity. Interestingly, tobacco contexts that were devoid of discrete smoking cues 

elicited higher craving when compared to neutral contexts. These results suggest that 

contextual cues can acquire associative strength and may serve to stimulate drug-seeking 

in the same manner as discrete drug cues. 

 

Animal models of cue- and context-induced relapse to drug-seeking 

The cue-induced reinstatement procedure is an established preclinical animal 

model that has been developed to investigate the role of discrete cues in drug-seeking. As 

described earlier, the ability of discrete drug cues to induce drug-seeking is assessed 

using operant conditioning, in which reinstatement of instrumental responding above 

extinction levels is observed upon response-contingent presentation of discrete cues that 

were previously associated with drug delivery (Ciccocioppo, Sanna, & Weiss, 2001; Liu 

& Weiss, 2002; Nie & Janak, 2003; Bossert et al., 2007; Hamlin et al., 2007; Liu et al., 

2010). 

Animal models have also been developed to investigate the role of contextual 

cues in relapse. These models are adapted from the ABA renewal procedure (Bouton & 

Bolles, 1979), which was first developed to study the influence of context in fear 

conditioning. In Pavlovian fear conditioning a conditioned stimulus (CS) is paired with 

an aversive, unconditioned stimulus (US; e.g., foot shock) in a distinctive context (A). 

Subjects learn to freeze during the CS, in anticipation of the US. Pavlovian conditioning 

is followed by extinction in an alternate context (B), where the CS is presented without 
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the US, and a reduction in freezing is observed. At test, presentations of the CS without 

the US in the prior training context (A) trigger a renewal of freezing to the CS. 

The first study to test the renewal of drug-seeking was conducted by Crombag & 

Shaham (2002). Here, rats were trained to self-administer a combination of heroin and 

cocaine (i.e. speedball) in a self-administration context, referred to as context A. 

Following extinction in either context A or a novel context (B), rats were tested for 

renewal of speedball-seeking in the drug-associated (A) or novel context (B). At test, rats 

that received extinction in Context B demonstrated a renewal of instrumental responding 

upon exposure to the self-administration context (A), an effect that was not observed 

upon return to the novel context (B). This data, interpreted as context-induced 

reinstatement of drug-seeking, demonstrates the strong influence of drug-associated 

contextual cues on drug-seeking. The ABA renewal effect has since been replicated with 

other drugs of abuse, such as cocaine (Crombag et al., 2002), heroin (Bossert, Liu, Lu, & 

Shaham, 2004), and alcohol (Chaudhri, Sahuque, & Janak, 2008). 

Studies that have used the renewal procedure to study context-induced relapse to 

drug-seeking typically assess this effect using an operant conditioning paradigm. 

However, drug-contexts can also trigger the renewal of Pavlovian-conditioned drug-

seeking. In this task, rats are trained in a distinctive context (A) to discriminate between 

two auditory stimuli; one stimulus (CS+) is paired with alcohol, while the other stimulus 

(CS-) is not. As they learn the predictive value of the CS+, rats gradually check the fluid 

port where alcohol is delivered more frequently during the CS+, compared to the CS-. 

Following Pavlovian discrimination training, port entry responses are extinguished in a 

different context (B) where presentations of the CS+ no longer result in alcohol delivery. 
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At test, rats are once exposed to the CS+ and CS- without alcohol in the prior drug-

associated context (A). This manipulation causes a selective increase in responding to the 

alcohol-predictive CS+, with no change in responding to the CS- (Chaudhri et al., 2008; 

Chaudhri et al., 2010). The results of these studies suggest that contextual cues that have 

been paired with alcohol delivery have the potential to impact relapse to alcohol-seeking. 

Drug associated contexts can also invigorate instrumental responding for discrete 

drug cues. Tsiang & Janak (2006) compared the interactive effects of discrete and 

contextual alcohol cues using an operant conditioning paradigm. Mice were trained to 

lever press for alcohol delivery paired with a compound cue presentation (tone-light 

stimulus) in context A. Behavior was then extinguished in context B, where a lever press 

no longer resulted in ethanol delivery or compound cue presentation. Reinstatement was 

then tested under three conditions; upon exposure to the self-administration context 

without the compound cue, and upon presentation of the compound cue in either the 

extinction context or the self-administration context. The level of active lever responses 

was significantly greater when the compound cue was presented in the alcohol-associated 

context relative to the alcohol-associated context alone, suggesting alcohol contexts can 

invigorate responding for discrete alcohol. Such findings lend further support to the 

significant role of context in drug-seeking, and suggest that the interactive effects of 

discrete cues and contexts may be a more powerful trigger for drug-seeking when 

compared to discrete or contextual cues alone. 
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The role of dopamine in alcohol reinforcement 

 Animal models have enabled researchers to study the neurobiological 

mechanisms that mediate drug reinforcement, and converging evidence suggest that 

many drugs of abuse share a common feature; they all act on the brain’s reward circuitry. 

Specifically, a role for dopamine neurons has been identified in reward-related behavior 

and motivational processes (Wise & Bozarth, 1987). Dopamine is a catecholamine 

neurotransmitter that acts in the central nervous system (CNS) and is synthesized in 

neural cell bodies in the midbrain, originating from the substantia nigra (SN) and ventral 

tegmental area (VTA). Through the mesolimbic dopamine system, the VTA transmits 

dopaminergic projections to regions of the telencephalon that include the medial 

prefrontal cortex (mPFC) and the nucleus accumbens (NAc; Iversen, Iversen, Bloom, & 

Roth, 2009). More specifically, the projection from the VTA to the NAc has been 

strongly linked to motivated behavior, reward-seeking, attention and locomotor activity 

(Iversen et al., 2009). The NAc has been identified as a key area that mediates  

reinstatement of drug-seeking and its two subregions, the core and shell, are believed to 

be differentially important for cue- and context-induced reinstatement, respectively 

(Everitt & Robbins, 2005; Bossert et al., 2007; Chaudhri, Sahuque, Cone, & Janak, 

2008). 

 As is the case with other drugs of abuse, dopamine release in the striatum is 

believed to be a putative mechanism for alcohol reinforcement (Wise & Bozarth, 1987). 

Mice that are genetically deficient in dopamine D1-receptors show reduced alcohol-

seeking behavior. Additionally, blocking dopamine D1- and D2-receptors in wild-type 

mice reduces alcohol consumption, suggesting that both D1- and D2-dopamine receptor 
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mechanisms are involved in alcohol-seeking (El-Ghundi et al., 1998). In rats, dopamine 

release is stimulated by oral consumption of alcohol as well as by anticipation of access 

to alcohol (Katner & Weiss, 1999; Yoshimoto, McBride, Lumeng, & Li, 1992). 

Specifically, rats exposed to an alcohol-associated environment show increased activation 

of mesolimbic dopamine neurons during a period of time immediately before alcohol is 

made available, suggesting that dopamine is involved in conditioned responding to 

alcohol-associated contextual stimuli (Katner & Weiss, 1999). 

 

The role of dopamine in cue- and context-induced reinstatement 

Several lines of research suggest that dopamine neurotransmission is required for 

cue- and context-induced reinstatement of drug-seeking. Katner & Weiss (1999) 

investigated the impact of discriminative olfactory stimuli on instrumental alcohol-

seeking, and used intracranial microdialysis to measure dopamine release in the NAc at 

test. Discriminative stimuli consisted of a banana odour (S+) that signalled alcohol 

availability during the self-administration, and an orange odour (S-) that signalled the 

availability of a quinine solution (alcohol non-availability). Following discrimination 

training and subsequent extinction of active lever responding, subjects were exposed to 

the operant conditioning chamber for a 20-minute “waiting period” before the start of the 

reinstatement test in order to prepare for the measurement of dopamine by microdialysis. 

At test, rats were exposed to the discriminative stimuli in the absence of alcohol delivery, 

and dopamine samples were collected at 5 minute intervals. A recovery of responding on 

the active lever was observed at test, with significantly higher responding upon 
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presentation of the S+ (i.e. banana odour) when compared to the S- (i.e. orange odour). 

These results suggest that alcohol-predictive discriminative stimuli can reliably elicit 

alcohol-seeking after extinction. An analysis of dopamine concentrations found a small 

but significant increase in dopamine release during the “waiting period”, which confirms 

earlier reports that the anticipation of alcohol can activate mesolimbic dopamine neurons 

(Weiss, Lorang, Bloom, & Koob, 1993; Katner, Kerr, & Weiss, 1996). Interestingly, 

presentations of the S+ resulted in a decrease in dopamine release, an effect that was not 

observed in the S- condition. One explanation for this decrease might be due to a 

mismatch between in the predicted alcohol-availability at test and the absence of alcohol 

delivery (Schultz, Dayan, & Montague, 1997). Overall, these findings confirm the 

involvement of dopamine in responding to alcohol-predictive cues. 

Using a similar procedure, the ability for dopamine D1- and D2-receptor 

antagonists to reverse the reinstatement of cue-induced alcohol-seeking was tested (Liu & 

Weiss, 2002). Here, the reinstatement of operant alcohol-seeking was observed upon 

presentation of the alcohol-predictive discriminative stimulus (S+; banana odour), but not 

the S- (anise odour). Furthermore, administration of a D1-receptor antagonist (SCH 

23390) or a D2-receptor antagonist (eticlopride) dose-dependently attenuated the latency 

to initiate responding, and significantly reduced the number of lever presses during the 

reinstatement test. These data suggest that intact dopamine neurotransmission is required 

for responding to an alcohol-predictive discriminative stimulus, and that both D1- and 

D2-receptor subtypes are involved in this effect. 

A role for dopamine in context-induced reinstatement of drug-seeking using the 

ABA renewal paradigm has also been identified. Here, the effects of SCH 23390 and 
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raclopride, a D2-receptor antagonist, were tested in rats trained to self-administer cocaine 

(Crombag et al., 2002). Context-induced renewal of lever-pressing was observed in saline 

pre-treated rats upon placement into the self-administration context at test. Both D1- and 

D2-receptor antagonists reduced context-induced renewal of cocaine-seeking, suggesting 

that dopamine neurotransmission at both receptor subtypes is required for this effect. 

Similar findings have been reported in cue-induced reinstatement of drug-seeking, where 

systemic administration of SCH 23390 or eticlopride significantly attenuated cue-induced 

reinstatement of nicotine-seeking in rats (Liu et al., 2010). Collectively, these findings 

support the involvement of dopamine in responding for drug-predictive discrete and 

contextual cues. 

 

Vendor differences in rodent research: An important empirical consideration 

Developing treatments for alcohol use disorders is challenging, as the behavioral 

and neurobiological mechanisms underlying alcohol reinforcement and alcohol-mediated 

behavioral effects remain unclear. These questions have been studied using various rat 

strains, some of which are selectively bred for high and low voluntary alcohol 

consumption (Bell, Rodd, Lumeng, Murphy, & McBride, 2006). Strain differences in 

voluntary alcohol intake can parallel drinking patterns in people suffering from 

alcoholism or alcohol abuse disorders, who exhibit varied patterns of drinking and can 

achieve different levels of intoxication (e.g. alcoholics, vs. heavy drinkers, vs. binge 

drinkers, vs. social drinkers). Making use of the genetic variability in rats enables the 
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development of animal models that can extend to the different patterns of human alcohol 

use. 

While strain differences can provide useful information, research has shown that 

there are differences in alcohol consumption and alcohol-mediated behaviors from rats of 

the same strain that are obtained from different vendors. A study by Palm, Roman, & 

Nylander (2011) compared voluntary ethanol intake in Wistar rats obtained from five 

different suppliers (B&K Universal, UK [BK]; Charles River, Germany; Harlan 

Laboratories, Indianapolis, IN, USA [Hsd]; Harlan Laboratories, The Netherlands 

[RccHan
TM

]; and Taconic, Denmark). Rats underwent voluntary ethanol consumption 

using a 3-bottle choice ethanol exposure procedure in which they received access to 5% 

ethanol, 20% ethanol and water for 6 weeks. Oral consumption of each solution was 

measured. Overall, RccHan
TM

 rats (Harlan Laboratories, The Netherlands) significantly 

differed from rats from other vendors. For example, they exhibited the highest ethanol 

preference percentage (80%), which was significantly higher than rats from BK (B&K 

Universal, UK) that had the lowest ethanol preference percentage of approximately 20%. 

Across 6 weeks of pre-exposure, only Hsd rats (Harlan Laboratories, Indianapolis) 

displayed an increase in ethanol consumption in 5% ethanol solution. In summary, 

although all rats used were of the Wistar strain, significant differences in ethanol 

consumption were observed depending on the supplier.  

Preliminary data from our laboratory has also demonstrated differences in ethanol 

intake and preference between male Long-Evans rats obtained from Charles River 

Canada (St-Constant, Canada) or Harlan Laboratories (Indianapolis, USA). These 

differences in ethanol consumption suggest that the choice of vendor can have serious 
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implications for the outcome of ethanol studies, making the generalization of findings 

across research conducted in different laboratories increasingly difficult. Consequently, 

research presented in this thesis incorporated male, Long-Evans rats from two different 

sources in order to examine potential differences in oral ethanol consumption, the 

acquisition and expression of Pavlovian-conditioned alcohol-seeking, and sensitivity of 

cue-driven alcohol-seeking to dopamine. 

 

Specific aims of the present research 

The research presented above highlights an important role for dopamine in cue- 

and context-induced relapse to drug and alcohol-seeking. However, the majority of these 

studies in preclinical models have used instrumental conditioning procedures, in which 

the impact of dopamine D1- and D2-receptor antagonists are examined on lever pressing 

that previously resulted in drug delivery. Little is known about the role of dopamine in 

responding elicited by Pavlovian drug-predictive cues, which is important because 

reactivity to drug cues in humans is believed to be mediated through Pavlovian learning 

mechanisms. Furthermore, few studies attempt to isolate the behavioral and 

neurobiological underpinnings of cue- and context-induced relapse which, if understood, 

could be differentially targeted by pharmacotherapies against relapse. 

Based on these considerations, the present experiments investigated the role of 

dopamine D1- and D2-receptors in responding to a non-extinguished, alcohol-predictive 

Pavlovian cue in rats. We hypothesized that dopamine neurotransmission is required for 

cue-driven alcohol-seeking, and predicted that blocking dopamine D1 and D2 receptors 
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with SCH 23390 and eticlopride, respectively, would dose-dependently attenuate cue-

driven alcohol-seeking. In order to isolate the role of dopamine in responding to a 

discrete alcohol cue, the impact of dopamine antagonists on behavior was tested in a 

context that had never been associated with alcohol availability or consumption. A 

second objective was to investigate vendor differences in Long-Evans rats obtained from 

Charles River and Harlan Laboratories, with respect to oral alcohol consumption, the 

acquisition and expression of Pavlovian cue-driven alcohol-seeking, and the role of 

dopamine in responding to discrete alcohol-predictive cues. 

Oral alcohol consumption was assessed during a 21-session pre-exposure phase, 

in which rats had access to alcohol and water via two bottles on the home cage. Sessions 

in which alcohol and water were provided were alternated with sessions in which both 

bottles contained water. This intermittent 24-hr access schedule has been shown to 

produce an escalation in alcohol consumption in rats (Wise, 1973; Simms et al., 2008). 

Following pre-exposure, rats underwent Pavlovian Discrimination Training (PDT) 

sessions in which they were presented with 2 discrete, auditory cues in a distinct 

environmental context. One cue was consistently paired with alcohol delivery (CS+) and 

the second cue (CS-) was presented without alcohol. Subjects were then habituated in a 

second, different context where cue presentations and ethanol delivery were withheld. 

The purpose this phase was to reduce the frequency during which rats checked the fluid 

port where alcohol has previously been delivered during PDT sessions. At test, cue-

driven alcohol-seeking was assessed by presenting both the alcohol-predictive cue (CS+) 

and CS- in the second, non-alcohol context without alcohol delivery. The role of 

dopamine was examined by systemically infusing rats with SCH 23390 (Exp. 1) or 
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eticlopride (Exp. 2) before test. We predicted that both the D1- and D2- receptor 

antagonists would dose-dependently attenuate Pavlovian cue-driven alcohol-seeking. 

Lastly, we examined the impact of SCH23390 and eticlopride on Pavlovian cue-driven 

alcohol-seeking during sessions in which the CS+ was paired with alcohol delivery. As 

operant responding for alcohol is reduced by dopamine antagonists (Rassnick, Pulvirenti, 

& Koob, 1992; Hodge, Samson, & Chappelle, 1997), we anticipated a similar reduction 

in Pavlovian alcohol-seeking at test.  
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General Methods 

Subjects 

 Male, Long Evans rats (220-240 grams on arrival) were obtained from Charles 

River Canada (St-Constant, Canada) and Harlan Laboratories (Indianapolis, USA). 

Subjects were individually-housed in polycarbonate shoebox cages containing beta-chip 

bedding (colony room temperature, 21°C) and maintained on a 12-hour light/dark cycle 

(lights ON at 0700-hour). All experimental procedures were conducted during the light 

phase of the light/dark cycle. Access to rat chow (Charles River Rodent Animal Diet) and 

water was unrestricted throughout the experiment, unless otherwise indicated. All 

procedures were approved by the guidelines of the Canadian Council on Animal Care and 

the Concordia University Animal Research Ethics Committee. 

Apparatus 

 Behavioral training and testing were conducted using twelve operant conditioning 

chambers (32.8 cm x 32.8 cm x 32.8 cm; Med Associates Inc., St-Albans, VT) each 

contained within a ventilated, sound-attenuating melamine cubicle (53.6 cm x 68.2 cm x 

62.8 cm). Each chamber was composed of a stainless steel bar floor, paneled aluminum 

side-walls, and a clear, Plexiglas rear wall, ceiling and front door. The right wall of each 

operant chamber featured a central port, which contained a circular fluid receptacle into 

which fluid could be delivered. Fluid delivery occurred through a 20-ml syringe attached 

to a pump (Med Associates Inc., PMH-100, 3.33 rpm) that was located outside the 

cubicle. The upper left wall of the operant chamber featured a clicker stimulus (Med 

Associates, ENV-135M) and white noise stimulus generator (Med Associates, ENV-
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225SM), as well as a white houselight (75W, 100mA). Port entries were measured by 

interruptions of infra-red beam across the entrance of the port and recorded to a computer 

using Med PC-IV software (Med Associates Inc.), which also controlled fluid delivery 

and stimulus presentations. 

Drugs 

 Ethanol (15% v/v) was prepared by diluting 95% ethanol in tap water. Sweetened 

ethanol was prepared by dissolving sucrose (2% w/v) in 15% ethanol. SCH 23390 

hydrochloride (R (+)-7-Chloro-8-hydroxy-3-methyl-1-phenyl-2,3,4,5-tetrahydro-1H-3-

benzazepine hydrochloride; Sigma Aldrich) was dissolved in 0.9% sodium chloride to 

obtain a dose of 10 µg/ml. An additional dose of 3.33 µg/ml was obtained through serial 

dilution.  Eticlopride hydrochloride (FLB 131, S-(−)-3-Chloro-5-ethyl-N-[(1-ethyl-2-

pyrrolidinyl) methyl]-6-hydroxy-2-methoxybenzamide hydrochloride; Sigma Aldrich) 

was dissolved in 0.9% sodium chloride to obtain a dose of 10 µg/ml. An additional dose 

of 5 µg/ml was obtained through serial dilution. Doses of SCH 23390 and eticlopride 

were contained in 1 ml aliquots and stored at -20°C until use. SCH 23390 was protected 

from exposure to light at all times due to its light sensitive properties. Doses of SCH 

23390 and eticlopride were selected based on previous reports that demonstrate 

behavioral effectiveness using similar behavioral procedures (Liu & Weiss, 2002; Bossert 

et al., 2007; Hamlin et al., 2007; Liu et al., 2010;). 
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General Behavioral Procedures 

Ethanol pre-exposure 

 Two weeks after arrival, subjects were exposed to the taste and pharmacological 

effects of ethanol (15% v/v) in their home cages. Pre-exposure was conducted over 21 

sessions, with 3 sessions per week (Monday, Wednesday and Friday) using a 24-hour 

intermittent-access schedule that has been shown to induce high ethanol consumption in 

rats (Wise, 1973; Simms, et al., 2008). At the start of each session rats were handled and 

weighed. They were then given access to ethanol in a pre-weighed, 100 ml graduated 

cylinder, as well as water in a pre-weighed 400 ml plastic bottle. Both containers were 

corked using rubber stoppers with metal sipper tubes that contained ball bearings to 

prevent spillage. At 24-hrs after placement onto the home cage both bottles were re-

weighed, and then the ethanol-containing graduated cylinder was replaced with an 

alternate graduated cylinder containing water. In order to control for spillage that 

occurred while inserting and removing bottles from the home cages, a graduated cylinder 

and plastic bottle containing ethanol and water, respectively, were placed on two empty 

home cages in the animal colony. Water and ethanol bottles were placed on these cages, 

and weighed at the end of each 24-hour session. Spillage was calculated as an average 

between the two control cages. Subjects had continuous access to both the graduated 

cylinder and standard water bottle to monitor for bottle preference. Additionally, the left 

and right placement of bottles on the home cage was alternated daily to reduce the 

development or impact on consumption of a side preference. Body weight and fluid 

consumption were recorded daily. Ethanol intake was calculated by determining the 

amount of ethanol consumed (gm) as a function of body weight (kg).  The distribution of 
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ethanol in solution as a function of its density was accounted for by multiplying the 

grams of ethanol consumed by 0.1185. Subjects with low ethanol intake values (g/kg ≤ 

0.50, averaged across sessions 6 and 7 for experiment 1; sessions 13 and 14 for Exp. 2a) 

were given a sweetened ethanol solution (15% ethanol, 2% sucrose) for 3 sessions in 

order to increase consumption. In experiment 1, 15 rats (Charles River n = 13; Harlan n = 

2) were given access to the sweetened ethanol solution. In experiment 2a, 12 rats (Charles 

River n = 8; Harlan n = 4) required the sweetened ethanol solution, and 2 rats were 

excluded due to self-mutilation. 

 

Pavlovian discrimination training 

 Prior to experimental sessions, rats were exposed to the behavioral testing room 

and equipment. On day 1, they were transported on carts to the behavioral testing room 

where they remained in their home cages for approximately 20-min with the behavioral 

equipment turned on. Over the following 2 days, subjects were exposed to the operant 

conditioning chambers and exposed to the 2 distinctive contexts that would be used over 

the course of the experiment. On each day rats were brought into the behavioral testing 

room, weighed and then placed into the operant conditioning chamber for 20-min, during 

which the number of times they made port entries was recorded. Operant conditioning 

chambers featured context 1 on the first day and context 2 on the second day (see below 

for detailed description of each context). 

 Subsequently, rats underwent 17 daily, 1-hour Pavlovian Discrimination Training 

(PDT) sessions on a Monday to Saturday schedule for the first 28 days, followed by a 
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Monday to Friday schedule for the remainder of the experiment. At the beginning of each 

PDT session subjects were weighed and then placed in the operant conditioning chamber. 

At 5-min after starting the behavioral program, the houselight turned on to signal the start 

of the session. During each session rats were presented with 16 random presentations 

each of two 10-sec auditory stimuli (clicker or white noise) delivered independently 

according to a variable-time 67-second schedule. One stimulus (CS+) was consistently 

paired with the delivery of 15% ethanol (0.2 ml per CS+ presentation, delivered over the 

last 6-sec of the CS+; total of 3.2 ml per session) into the fluid port. The alternate 

stimulus (CS-) was not paired with ethanol delivery. Port entries were measured 10-sec 

prior to, during, and 10-sec following each CS presentation, as well as throughout the 1-

hour session. Ports were verified at the end of each session to ensure that rats consumed 

the ethanol delivered during the session. 

 Subjects underwent PDT in one of two contexts that differed in visual, olfactory 

and tactile properties. Context 1 consisted of black cardboard walls placed over the 

Plexiglas walls of the operant conditioning chamber, with a smooth Plexiglas floor. A 

waste pan placed under the chamber floor contained a white absorbent sheet of paper (~9 

cm x 18 cm), and 3 sprays of a lemon odour were sprayed onto the non-absorbent side of 

the white sheet of paper. Context 2 consisted of the clear, Plexiglas walls, with a 

perforated stainless steel floor. Brown paper towels (~9 cm x 18 cm) lined the inside of 

the waste pan and 3 sprays of almond odour were sprayed onto it. Odours were made 

from diluting lemon essential oil (SAFC Supply Solutions, St-Louis, USA) or 

benzaldehyde (almond odour; ACP Chemicals Inc., Montreal, Canada) with tap water to 

obtain a final concentration of 10%. The context designated for Pavlovian discrimination 



 

23 
 

training remained consistent across session, and was referred to as context A (alcohol-

associated context). 

Rats from each vendor (Charles River and Harlan) were counterbalanced across 

context types (1 and 2) and CS+ type (clicker or white noise) based on ethanol intake 

(g/kg) averaged across sessions 19-21 of pre-exposure. One rat was excluded from 

experiment 1, and 3 rats were excluded from experiment 2 based on low ethanol intake. 

 

Habituation 

 Following the last PDT session rats underwent 5, daily 1-hour habituation 

sessions. Subjects were placed in the same operant conditioning chambers as in PDT: 

however, chambers that were configured as context 1 during PDT were re-configured as 

context 2 during habituation, and vice versa. During each habituation session the auditory 

cues were withheld and no ethanol was delivered. The total number of port entry 

responses made in each session was recorded. The context designated for habituation was 

referred to as context B, and served as a non-alcohol context. 

 

Test 

 Following habituation, rats were counterbalanced into 3 groups based on 

performance during the last 4 sessions of PDT. At 24-hours after their final habituation 

session, responding to the CS+ and CS- in the absence of ethanol was assessed in context 

B, the non-alcohol context. At test, the cues were presented as during PDT, but ethanol 
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delivery was withheld. Fifteen minutes prior to the test session, rats received a 

subcutaneous injection of 0.9% sodium chloride (1 ml/kg), SCH 23390 (3.33 µg or 10 

µg/kg; Exp. 1) or eticlopride (5 µg or 10 µg/kg; Exp. 2a). 

 

Experiment 1 

 The purpose of this experiment was to investigate the role of dopamine D1-

receptors in responding to a non-extinguished Pavlovian alcohol-predictive cue (CS+) 

and CS- in a non-alcohol context. A total of 30 male, Long-Evans rats were obtained 

from Charles River (n = 16) and Harlan Laboratories (n = 14). After 21 sessions of 

intermittent access to 15% ethanol and water, rats underwent 17 sessions of PDT in 

context A (alcohol-associated context) followed by 5 habituation session in context B 

(non-alcohol context). Saline sham injections were conducted in the animal colony to 

acclimate the rats to the injection procedure. The first sham injection was carried out 

within an hour after the end of the 9
th

 session of PDT. The second sham was conducted 

before the 3
rd

 session of habituation. At 24-hours after the final habituation session 

responding to the CS+ and CS- from PDT was tested in the non-alcohol context, without 

ethanol. Fifteen minutes prior to test, rats received an injection of 0.9% sodium chloride 

or SCH 23390 (3.33 µg/kg or 10 µg/kg, s.c.; 1 ml/kg). A within-subjects design was used 

such that each subject was tested in each treatment condition. After each test rats 

underwent 3 sessions of PDT re-training in context A and 4 sessions of habituation in 

context B (pre-session saline sham before session 4 of habituation). 
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Experiment 2a 

 The purpose of this experiment was to determine the role of dopamine D2-

receptors in responding to an alcohol-predictive cue (CS+) and CS- in a context that had 

never been associated with ethanol intake. A total of 29 male, Long-Evans rats were 

obtained from Charles River (n = 16) and Harlan Laboratories (n = 13). Following 21 

sessions of intermittent access to 15% ethanol and water rats underwent 17 sessions of 

PDT in context A (alcohol-associated context) followed by 5 habituation sessions in 

context B (non-alcohol context). Saline sham injections were conducted under the same 

schedule and conditions as in experiment 1. At 24-hours after the final habituation 

session responding to the CS+ and CS- was measured in the non-alcohol context, in the 

absence of ethanol. Fifteen minutes prior to test, rats received an injection of 0.9% 

sodium chloride or eticlopride (5 µg/kg or 10 µg/kg; s.c.; 1 ml/kg). A within-subjects 

design was used such that each subject was tested in each treatment condition. After each 

test rats underwent 3 sessions of PDT re-training in context A and 4 sessions of 

habituation in context B (pre-session saline sham before session 4 of habituation). 

 

Experiment 2b 

 Following their last test from experiment 2a, 25 rats (Charles River, n = 18; 

Harlan Laboratories, n = 7) were used to investigate the impact of dopamine D1- and D2-

receptor antagonists on Pavlovian-conditioned ethanol-seeking during PDT sessions in 

context A, where presentations of the CS+ were paired with 15% ethanol delivery. 
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 Subjects underwent 2 sessions of PDT in context A (same context as in Exp. 2a). 

At 24-hours after the second PDT session responding to the alcohol-predictive cue (CS+) 

and CS- was tested in context A, where each CS+ presentation was paired with the 

delivery of ethanol. Fifteen minutes prior to test, rats received a subcutaneous injection of 

0.9% sodium chloride (1 ml/kg), SCH 23390 (10 µg/kg; 1 ml/kg) or eticlopride (10 

µg/kg; 1 ml/kg). A within-subjects design was used with 2 PDT re-training sessions 

between each test. 

 

Statistical analyses 

 During ethanol pre-exposure, the dependent measures included body weight (gm), 

ethanol and water intake (ml), ethanol intake (g/kg) and ethanol preference (%; calculated 

as ratio of ethanol consumed in ml divided by the sum of water and ethanol intakes in 

ml). 

During PDT and test the dependent measures consisted of port entries made into 

the fluid port during each CS+ and CS- presentation, as well as during a 10-sec interval 

before (pre-CS) and after (post-CS) each CS. The total number of port entries was also 

measured during each daily session. Normalized port entries were calculated to account 

for individual differences in baseline behavioral responding by subtracting the number of 

port entry responses made during the pre-CS period from responding during the 

corresponding CS interval. 
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Ethanol pre-exposure 

 Data from ethanol pre-exposure were analyzed using a repeated-measures 

analysis of variance (ANOVA) with Session (1-21) as a within-subjects variable and 

Vendor (Charles River, Harlan) as a between-subjects variable. 

 

Experiment 1 and 2a 

 Data from PDT were analyzed using a repeated-measures analysis of variance 

(ANOVA) with Session (1-17) and CS (CS+, CS-) as within-subjects variables and 

Vendor (Charles River, Harlan), Context Type (1, 2), and CS Type (clicker, white noise) 

as between-subjects variables. Data from test were also examined using ANOVA with 

Dose (saline, low dose, high dose) and CS (CS+, CS-) as within-subjects variables and 

Vendor (Charles River, Harlan) as between-subjects variables. Port entries made during 

each CS+ trial were analyzed using ANOVA with CS+ trial (1-16) and dose (saline, low 

and high dose) as a within-subjects variable and Vendor (Charles River, Harlan) as a 

between-subjects variable. 

 

Experiment 2b 

 Data from test were analyzed using a repeated-measures ANOVA with Drug 

(saline, SCH 23390 and eticlopride) and CS (CS+, CS-) as within-subjects variables and 

Vendor (Charles River, Harlan) as between-subjects variables. 
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 Any significant violations of homogeneity as indicated by Mauchly’s Test for 

Sphericity were corrected with the Huynh-Feldt test. Follow-up analyses were conducted 

using paired-samples or independent-samples t-tests where applicable. All statistical 

analyses were conducted using PASW Statistics software (version 18.0) with significance 

level of α = 0.05. 
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Results 

Experiment 1 

Ethanol pre-exposure. Figure 1a depicts the weight (gm) of Charles River and 

Harlan rats across 21 sessions of ethanol pre-exposure during which rats had access to 

15% ethanol and water via 2 bottles on the home cage. Rats from both vendors gained 

weight across sessions [Session, F (20, 700) = 1065.104, p = .000]. However, compared 

to rats from Harlan, rats from Charles River were heavier [Vendor, F (1, 35) = 99.925, p 

= .000], and gained more weight per session [Session x Vendor, F (20, 700) = 68.271, p = 

.000]. 

Water consumption (Fig. 1b) decreased in parallel for rats from both vendors 

across session [Session, F (20, 700) = 11.353, p = .000; Session x Vendor, F (20, 700) = 

0.97, p = .840]. However, rats from Charles River consumed more water overall [Vendor, 

F (1, 35) = 50.219, p = .000]. An examination of ethanol consumption (Fig. 1b) revealed 

that rats from Harlan drank more ethanol than rats from Charles River [Vendor, F (1, 35) 

= 5.614, p = .023]. Across session, ethanol consumption increased in parallel for both 

vendors [Session, F (20, 700) = 12.352, p = .000; Session x Vendor, F (20, 700) = 0.838, 

p = .504]. 

 Figure 1c depicts ethanol intake in grams of ethanol consumed per kilogram of 

body weight. Across session, g/kg increased in parallel for rats from both vendors 

[Session, F (20, 700) = 6.269, p = .000; Session x Vendor, F (20, 700) = 0.916, p = .466]. 

However, Harlan rats exhibited a higher g/kg overall [Vendor, F (1, 35) = 14.144, p = 

.001]. 
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These levels of fluid consumption resulted in rats from Harlan exhibiting a higher 

ethanol preference (Fig. 1d) [Vendor, F (1, 35) = 26.009, p = .000]. Across session, 

ethanol preference increased in parallel for rats from both vendors [Session, F (20, 700) = 

15.717, p = .000; Session x Vendor, F (20, 700) = 1.361, p = .187]. 
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Figure 1. Weight gain and alcohol consumption across 21 sessions of alcohol pre-

exposure in Charles River (filled symbols) and Harlan (open symbols) rats. A Mean (± 

SEM) body weight in grams. B Mean (± SEM) water and EtOH intake in ml. C Mean (± 

SEM) EtOH intake in g/kg. D Mean (± SEM) percent EtOH preference. 
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Pavlovian discrimination training. Figure 2a depicts normalized CS+ and 

normalized CS- port entries across 17 sessions of Pavlovian Discrimination Training in 

Context A. Normalized port entries increased across Session [F (16, 448) = 19.791, p = 

.000], with responding to the CS+ stabilizing at higher levels than CS- responding 

[Session x CS, F (16, 448) = 10.344,  p = .000]. This outcome was verified by a main 

effect of CS [F (1, 28) = 43.187, p = .000]. Rats from Charles River and Harlan showed 

similar acquisition of Pavlovian discrimination training. ANOVA indicated no main 

effect of Vendor [F (1, 28) = 0.025, p = .875] or significant interactions with Vendor 

[Session x Vendor, F (16, 448) = 0.796, p = .564; CS x Vendor, F (1, 28) = 1.680, p = 

.205; Session x CS x Vendor, F (16, 448) = 1.115, p = .355]. 

 Follow-up paired samples t-tests collapsed across Vendor indicated that with the 

exception of PDT sessions 1 and 3, CS+ responding was significantly higher than CS- 

responding (p < .05 for each comparison). 

Figure 2b depicts total port entries during PDT. Total port entries increased across 

the first 6 sessions and then decreased for the remaining sessions [Session, F (16, 448) = 

3.873, p = .000]. There were no vendor differences in total port entries [Vendor, F (1, 28) 

= 1.561, p = .222], with rats from both vendors exhibiting similar patterns of responding 

across session [Session x Vendor, F (16, 448) = .964, p = .496]. There was no change in 

total port entries made across habituation [Session, F (4, 112) = 3.060, p = .058). 

Furthermore, there were no vendor differences in total port entries and rats from both 

vendors maintained similar patterns of responding across session [Vendor, F (1, 28) = 

.715, p = .405; Session x Vendor, F (4, 112) = .249, p = .910; Fig. 2b inset]. 
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Figure 2. Behavioral discrimination between an alcohol-predictive CS+ and CS- across 

17 sessions of Pavlovian Discrimination Training in Charles River (filled symbols) and 

Harlan (open symbols) rats. A Mean (± SEM) normalized port entries made during the 

CS+ (circles) and CS- (triangles), CS+ > CS- * p < .05. B Mean (± SEM) total port 

entries across PDT and 5 sessions of habituation in a non-alcohol context (inset). 
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Dose-dependent effects of SCH 23390 on Pavlovian cue-driven alcohol-

seeking. Figure 3 depicts normalized port entries during the CS+ and CS- at test for rats 

from Charles River (3a) and Harlan (3b). At test both cues were presented as during PDT, 

but without ethanol and in the non-alcohol context. Overall, rats responded more to the 

CS+ than the CS- indicating that discrimination between the two cues remained intact 

[CS, F (1, 28) = 97.447, p = .000]. Blocking dopamine D1 receptors dose-dependently 

reduced CS+ responding, with no effect on CS- responding. These results are supported 

by a significant main effect of Dose [F (2, 56) = 10.601, p = .000] and a significant Dose 

x CS interaction [F (2, 56) = 10.359, p = .000]. 

There was no Dose x Vendor interaction [F (2, 56) = 1.529, p = .226] and no 

Dose x CS x Vendor interaction [F (2, 56) = 1.462, p = .240] suggesting that SCH23390 

dose-dependently reduced CS+ responding in rats from both vendors.  Follow-up t-tests 

for paired samples on normalized CS+ responding collapsed across Vendor indicated a 

significant difference between saline and 10 µg/kg [t (29) = 4.608, p = .000] and the 3.33 

µg/kg and 10 µg/kg doses [t (29) = 3.822, p = .001], but no difference between saline and 

3.33 µg/kg dose [t (29) = 0.992, p = .329]. 

Interestingly, the pattern of CS+ and CS- responding differed as a function of 

vendor. ANOVA indicated a significant main effect of Vendor [F (1, 28) = 5.245, p = 

.030] and a significant Vendor x CS interaction [F (1, 28) = 8.223, p = .008]. Follow-up 

t-tests for independent samples on data collapsed across Dose indicated that Harlan rats 

responded more to the CS- than did Charles River rats [t (88) = -2.328, p = .024]. 

However, rats from Harlan responded less to the alcohol-predictive CS+ at test compared 

to rats from Charles River [t (88) = 2.995, p = .004]. This difference appears to be driven 
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by a greater dose-dependent reduction in CS+ responding by SCH 23390 in Harlan rats 

(Fig. 3b). 

Figures 3c and 3d depict port entries for each CS+ trial at test for Charles River 

and Harlan rats, respectively. Overall, the number of port entries per CS+ trial decreased 

across the test session [Trial, F (15, 420) = 17.009, p = .000]. Pre-treatment with 

SCH23390 dose-dependently reduced responding [Dose, F (2, 56) = 11.232, p = .000] 

and this effect was greater at the start of the test compared to the end [Trial x Dose, F 

(30, 840) = 1.974, p = .002]. There was no Dose x Vendor interaction [F (2, 56) = 1.438, 

p = .246] and no Trial x Dose x Vendor interaction [F (30, 840) = 1.154, p = .261] 

suggesting that the dose-dependent reduction in responding to each CS+ was similar for 

rats from both vendors. Follow-up 2-way ANOVAs collapsed across Vendor revealed a 

significant Trial x Dose interaction [F (15, 435) = 2.759, p = .006] for the comparison 

between saline and 10 µg/kg. Paired samples t-tests verified that saline pretreated rats 

responded more to the CS+ compared to rats pretreated with 10 µg/kg of SCH 23390 on 

trials 1, 3-6 & 9 (p < .05 for all comparisons). There was also a significant Trial x Dose 

interaction [F (15, 435) = 2.510, p = .020] for the comparison between 3.33 µg/kg and 10 

µg/kg. Paired samples t-tests verified that rats pretreated with 3.33 µg/kg responded more 

to the CS+ compared to rats pretreated with 10 µg/kg of SCH 23390 on trials 1 & 3  (p < 

.05 for all comparisons). 

There was a significant main effect of Vendor [F (1, 28) = 7.396, p = .011], which 

appears to be driven by lower levels of port entries per CS+ responding in Harlan rats. 

The pattern of CS+ responses across trial was also different as a function of vendor [Trial 

x Vendor, F (15, 420) = 2.059, p = .011]. Follow-up t-tests for independent samples on 
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data collapsed across Dose indicated that compared to rats from Charles River, rats from 

Harlan responded less on CS+ trials 3-5 and 16 (p < .05 for each comparison). 
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Figure 3. Pavlovian cue-driven alcohol-seeking in a non-alcohol context. Mean (± SEM) 

normalized port entries during the CS+ (filled bars) and CS- (open bars) following saline 

and SCH 23390 (3.33 µg/kg or 10 µg/kg) pre-treatment in Charles River (A) and Harlan 

(B) rats. Mean (± SEM) port entries made during each CS+ trial at test following saline 

and SCH 23390 (3.33 µg/kg and 10 µg/kg) infusions in Charles River (C) and Harlan rats 

(D). 
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Figures 4a and 4b depict total port entries during habituation and test for Charles 

River and Harlan rats, respectively. Habituation data represent means from the last 2 

sessions before the corresponding test. At test, rats from Harlan made fewer total port 

entries than rats from Charles River [Vendor, F (1, 28) = 6.214, p = .019]. Pre-treatment 

with SCH 23390 dose-dependently reduced total port entries in rats from both vendors 

[Dose, F (2, 56) = 9.065, p = .000], with no Dose x Vendor interaction [F (2, 56) = 0.616, 

p = .544]. Follow-up t-tests for paired samples on data collapsed across Vendor indicated 

a significant difference between saline and 10 µg/kg [t (29) = 4.720, p = .000] and 

between 3.33 µg/kg and 10 µg/kg [t (29) = 2.623, p = .014]. There was no difference 

between saline and 3.33 µg/kg [t (29) = 1.585, p = .124]. 
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Figure 4. Mean (± SEM) total port entry responses during habituation and at test in a 

non-alcohol context. Habituation data (open bars) represent total port entries made across 

the last 2 sessions. Test data (filled bars) are averaged across a single session in saline 

and SCH 23390 (3.33 µg/kg or 10 µg/kg) pre-treated Charles River (A) and Harlan (B) 

rats. 
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Figure 5 depicts latency (in seconds) to the first port entry at test. ANOVA 

indicated a main effect of Dose [F (2, 56) = 5.877, p = .013], suggesting that SCH 23390 

dose-dependently increased the time taken to make the first port entry. There was no 

main effect of Vendor [F (1, 28) = 0.131, p = .720] or Dose x Vendor interaction [F (2, 

56) = 0.041, p = .959]. Follow up t-tests for paired samples on data collapsed across 

Vendor indicated a significant difference between saline and 10 µg/kg [t (29) = -2.703, p 

= .011] and between 3.33 µg/kg and 10 µg/kg [t (29) = -2.481, p = .019]. There was no 

difference between saline and 3.33 µg/kg [t (29) = 0.126, p = .900]. 
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Figure 5. Latency to first port entry at test. Mean (± SEM) latency to first port entry at 

test in saline and SCH 23390 (3.33 µg/kg or 10 µg/kg) pre-treated Charles River (filled 

bars) and Harlan (open bars) rats. 
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Experiment 2a 

 Ethanol pre-exposure. Figure 6a depicts weight (gm) of Charles River and 

Harlan rats across 21 session of pre-exposure during which rats had access 15% ethanol 

and water via two bottles on the home cage. Rats from both vendors gained weight across 

session [Session, F (20, 740) = 1747.345, p = .000]; however, as with Experiment 1, rats 

from Charles River were heavier than rats from Harlan [Vendor, F (1, 37) = 36.362, p = 

.000] and gained more weight per session [Session x Vendor, F (20, 740) = 39.203, p = 

.000]. Independent samples t-tests confirmed a significant difference between vendors 

across all ethanol pre-exposure sessions (p < 0.01 for each comparison). 

 Water consumption (Fig. 6b) decreased across pre-exposure sessions [Session, F 

(20, 740) = 12.651, p = .000], although at a different rate for rats from each vendor 

[Session x Vendor, F (20, 740) = 4.099, p = .000]. Rats from Charles River drank 

significantly more milliliters of water than rats from Harlan [Vendor, F (1, 37) = 93.355, 

p = .000]. Alternatively, ethanol consumption increased across sessions [Session, F (20, 

740) = 18.029, p = .000], with rats from Harlan drinking more milliliters of ethanol 

overall and escalating consumption across sessions at a faster rate than rats from Charles 

River [Vendor, F (1, 37) = 13.487, p = .001; Session x Vendor F (20, 740) = 3.202, p = 

.000]. Independent samples t-tests indicated significant differences between vendors on 

sessions 4 and 15-17 (p < .05) and sessions 1-3 and 5-14 (p < .01). 

 Ethanol intake in grams of ethanol consumed per kilogram of body weight (Fig. 

6c) increased across sessions [Session, F (20, 740) = 8.150, p = .000] and differed as a 

function of vendor [Vendor, F (1, 37) = 24.234, p = .000], with Harlan rats exhibiting 
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higher overall ethanol intake values. There was a significant Session x Vendor interaction 

[F (20, 740) = 3.228, p = .000] likely attributable to the observation that ethanol intake in 

Harlan rats remained relatively stable across sessions, whereas ethanol intake increased in 

Charles River rats. Independent samples t-tests indicated significant differences between 

vendors on session 19 (p < .05) and sessions 1-3, 5-17 and 21 (p < .01). 

Rats from Harlan developed a higher ethanol preference (Fig. 6d) than Charles 

River rats [Vendor, F (1, 37) = 24.234, p = .000]. Overall, ethanol preference increased 

across session [Session, F (20, 740) = 8.150, p = .000] with a significant Session x 

Vendor interaction [F (20, 740) = 3.228, p = .000]. Independent samples t-tests indicated 

significant differences between vendors on session 18 (p < .05) and sessions 1-17 and 19-

21 (p < .01). 
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Figure 6. Weight gain and alcohol consumption across 21 sessions of alcohol pre-

exposure in Charles River (filled symbols) and Harlan (open symbols) rats. A Mean (± 

SEM) body weight in grams. B Mean (± SEM) water and EtOH intake in ml. C Mean (± 

SEM) EtOH intake in g/kg. D Mean (± SEM) percent EtOH preference. 
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Pavlovian discrimination training. Figure 7a depicts normalized port entries 

during the CS+ and CS- across 17 sessions of Pavlovian discrimination training in 

context A. Normalized port entries increased across session [Session, F (16, 432) = 

20.776, p = .000]. A main effect of CS revealed that rats responded significantly more to 

the CS+ than the CS- [CS, F (1, 27) = 68.395, p = .000]. A significant Session x CS 

interaction verified that while responding to both cues increased, rats achieved higher 

levels of responding to the CS+ [F(16, 432) = 11.574, p = .000]. 

Unlike in Experiment 1, vendor differences were observed in the acquisition of 

Pavlovian discrimination training. Rats from both vendors learned to discriminate 

between the CS+ and CS- [CS x Vendor, F (1, 27) = 3.822, p = .061]; however, there was 

a trend for the number of responses made to differ as a function of vendor [Vendor, F (1, 

27) = 4.131, p = .052]. Furthermore, while the overall number of responses made 

increased across session, this measure differed significantly as a function of vendor 

[Session x Vendor, F (16, 432) = 2.141, p = .006]. Specifically, rats from Harlan 

achieved and maintained a higher level of CS+ responses than rats from Charles River 

[Session x CS x Vendor, F (16, 432) = 2.607, p = .001]. Follow-up t-tests for independent 

samples verified this higher level of CS+ responding in Harlan rats on sessions 13, 14, 

16, and 17 (p < .05) and session 12 (p < .01). 

Total port entries during PDT (Fig. 7b) decreased across session [Session, F (16, 

432) = 4.283, p = .000]. Overall, while the total number of port-entries did not differ 

between Charles River and Harlan rats [Vendor, F (1, 27) = 3.881, p = .059] the pattern 

of responses across session varied as a function of vendor [Session x Vendor, F (16, 432) 

= 2.692, p = .000]. Independent samples t-tests confirmed that rats from Charles River 
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made more total port entries on sessions 14 and 15 (p < .05) and sessions 1-3 (p < .01). 

Total port entries decreased across habituation sessions for both vendors [Session, F (4, 

108) = 6.933, p = .000; [Session x Vendor, F (16, 432) = 2.692, p = .000] and the total 

number of port entries did not differ between rats from Charles River and Harlan 

[Vendor, F (1, 27) = 1.528, p = .227; Fig. 7b inset]. 
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Figure 7. Behavioral discrimination between an alcohol-predictive CS+ and CS- across 

17 sessions of Pavlovian Discrimination Training in Charles River and Harlan rats. A 

Mean (± SEM) normalized port entries made during the CS+ (circles) and CS- 

(triangles). Norm CS+, Harlan > Charles River * p < .05. B Mean (± SEM) total port 

entries across PDT and 5 sessions of habituation in a non-alcohol context (inset). Total 

port entries, Charles River > Harlan * p < .05. 
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Dose-dependent effect of eticlopride on Pavlovian cue-driven alcohol-seeking. 

Figure 8 depicts normalized port entries made during the CS+ and CS- at test for Charles 

River (Fig. 8a) and Harlan rats (Fig. 8b) when both cues were presented without ethanol 

in the non-alcohol context. Overall, rats responded more to the CS+ than the CS-, 

indicating that discrimination between the two cues remained intact [CS, F (1, 27) = 

117.452, p = .000]. Blocking dopamine D2 receptors resulted in a dose-dependent 

reduction in CS+ responding, with no effect on CS- responding [Dose, F (2, 54) = 8.172, 

p= .001; Dose x CS, F (2, 54) = 6.077, p = .004]. This pattern of results was obtained in 

rats from both vendors [Vendor x CS, F (1, 27) = .005, p = .941], who also did not differ 

in the number of CS responses made at test [Vendor, F (1, 27) = .055, p = .817]. 

However, the dose-dependent reduction in responding varied as a function of vendor 

[Dose x Vendor, F (2, 54) = 3.439, p = .039]. As there was no Dose x CS x Vendor 

interaction [F (2, 54) = 1.361, p = .265] data were collapsed across CS for subsequent 

analyses. 

 Independent samples t-tests revealed no significant differences between vendors 

at any of the three doses (p > .05 for each comparison). Paired samples t-test revealed a 

significant difference in normalized port entries between the 5 µg/kg and 10 µg/kg doses 

[t (15) = 2.366, p = .032] in rats from Charles River. In Harlan rats, paired samples t-tests 

revealed significant differences between saline and the 10 µg/kg dose [t (12) = 3.645, p = 

.003], and the 5 µg/kg and 10 µg/kg dose [t (12) = 2.862, p = .014]. 

Figures 8c and 8d depict port entries made during each CS+ trial at test for 

Charles River and Harlan rats, respectively. In rats from both vendors, responding to the 

CS+ was higher at the start of the test when compared to the end [Trial, F (15, 405) = 
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32.074, p = .000; Trial x Vendor interaction, F (15, 405) = 1.566, p = .080]. Eticlopride 

dose-dependently attenuated the number of port entries [Dose, F (2, 54) = 7.372, p = 

.001] in both vendors [Dose x Vendor, F (2, 54) = 2.138, p = .128]. The attenuation in 

CS+ responding induced by eticlopride was greatest during the first half of the test 

session [Trial x Dose, F (30, 810) = 1.616, p = .020]. The effect of dose on responding 

across CS+ trials did not differ as a function of vendor [Trial x Dose x Vendor interaction 

[F (30, 810) = 1.329, p = .113], and nor was there a significant difference in levels of 

responding between vendors [Vendor, F (1, 27) = 0.011, p = .917]. 
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Figure 8. Pavlovian cue-driven alcohol-seeking in a non-alcohol context. Mean (± SEM) 

normalized port entries during the CS+ (filled bars) and CS- (open bars) following saline 

and eticlopride (5 µg/kg or 10 µg/kg) pre-treatment in Charles River (A) and Harlan (B) 

rats. Mean (± SEM) port entries made during each CS+ trial at test following saline and 

eticlopride (5 µg/kg and 10 µg/kg) infusions in Charles River (C) and Harlan rats (D). In 

Charles River, Norm CS+, eticlopride (5 µg/kg) > eticlopride (10 µg/kg); in Harlan, 

Norm CS+, eticlopride (10 µg/kg) < saline and eticlopride (5 µg/kg), * p < .05. 

 

 

* 
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Figure 9 depicts total port entries made during habituation and at test for Charles 

River (Fig. 9a) and Harlan rats (Fig. 9b), respectively. ANOVA comparisons on test data 

revealed no main effect of Dose [F (2, 54) = 1.248, p = .295], Vendor [F (1, 27) = 1.800, 

p = .191] or Dose x Vendor interaction [F (2, 54) = 1.172, p = .317]. 
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Figure 9. Mean (± SEM) total port entry responses during habituation and at test in a 

non-alcohol context. Habituation data (open bars) represent total port entries made across 

the last 2 sessions. Test data (filled bars) are averaged across a single session in saline 

and eticlopride (5 µg/kg or 10 µg/kg) pre-treated Charles River (A) and Harlan (B) rats. 
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Figure 10 depicts the latency to first port entry at test, represented in seconds. 

ANOVA comparisons indicated no main effect of Dose [F (2, 54) = 0.153, p = .858], 

Vendor [F (1, 27) = 1.773, p = .194] or Dose x Vendor interaction [F (2, 54) = 0.082, p = 

.922]. 
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Figure 10. Mean (± SEM) latency to first port entry at test in saline and eticlopride (5 

µg/kg or 10 µg/kg) pre-treated Charles River (filled bars) and Harlan (open bars) rats. 
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Experiment 2b 

 Effects of SCH 23390 and eticlopride in responding to an alcohol-predictive 

cue under alcohol-paired conditions. Figure 11a depicts normalized port entries made 

during the CS+ and CS- following treatment with saline, SCH 23390 (10 ug/kg) or 

eticlopride (10 ug/kg) in context A, when the CS+ was paired with ethanol delivery. 

 Overall, rats from both vendors responded more to the CS+ than the CS- [CS, F 

(1, 23) = 81.477, p = .000; CS x Vendor, F (1, 23) = 2.891, p = .103]. There was no main 

effect of Treatment [F (2, 46) = 2.300, p = .112] suggesting that there was no impact of 

D1 or D2 receptor antagonists on alcohol-seeking. However, a significant Treatment x 

CS interaction [F (2, 46) = 3.532, p = .037] indicated that treatment had an effect on one 

CS but not the other. This pattern was consistent for both vendors [Drug x CS x Vendor, 

F (2, 46) = 0.310, p = .735]. Response levels to the CS+ and CS- were comparable for 

rats from Charles River and Harlan [Vendor, F (2, 46) = 0.084, p = .919]. 

Follow-up ANOVA comparisons of normalized CS+ responding collapsed across 

Vendor revealed a main effect of Treatment [F (2, 48) = 3.854, p = .039]. Paired-samples 

t-tests indicated a significant difference in CS+ responding between saline and SCH 

23390 (p < .05) with no significant differences between saline and eticlopride, or 

eticlopride and SCH 23390 (p > .05). With respect to normalized port entries made 

during the CS-, there was no main effect of Treatment [F (2, 48) = .420, p = .659]. 

Figure 11b illustrates total port entries made at test across saline, SCH 23390 and 

eticlopride treatment conditions. ANOVA revealed a main effect of Treatment [F (2, 46) 

= 4.782, p = .017], with no difference in the number of total port entries made as a 
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function of vendor [Vendor, F (1, 23) = 0.194, p = .663] and no Treatment x Vendor 

interaction [F (2, 46) = 0.057, p = .944]. Paired-samples t-tests on data collapsed across 

vendor revealed a significant difference in total port entries between saline and SCH 

23390, and eticlopride and SCH 23390 (p < .05), with no significant differences between 

saline and eticlopride (p > .05). 

Overall, rats from both vendors responded more during the 10-sec interval that 

followed the CS+ presentation than the 10-sec interval that followed the CS- presentation 

[PostCS, F (1, 23) = 22.290, p = .000; PostCS x Vendor, F (1, 23) = 0.810, p = .377]. 

There was no main effect of treatment, suggesting that there was no impact of the D1- or 

D2-receptor antagonist on alcohol-seeking; this finding was consistent for both PostCS+ 

and PostCS- intervals and was observed in rats from both vendors [Treatment x PostCS, 

F (2, 46) = 0.441, p = .646; Treatment x PostCS x Vendor, F (2, 46) = 0.103, p = .902]. 

Response levels during the PostCS intervals were comparable for rats from Charles River 

and Harlan [Vendor, F (1, 23) = 0.005, p = .944; data not shown]. 
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Figure 11. Behavioral outcomes during Pavlovian Discrimination Training sessions. 

Mean (± SEM) normalized port entries during the CS+ when paired with EtOH delivery 

(filled bars) and CS- (open bars) following saline, eticlopride (10 µg/kg) and SCH 23390 

(10 µg/kg) pre-treatment in Charles River (A) and Harlan (B) rats. Mean (± SEM) total 

port entries made during the last 2 sessions of PDT (open bars) and at test (filled bars) 

following saline, eticlopride (10 µg/kg) and SCH 23390 (10 µg/kg) pre-treatment in 

Charles River (C) and Harlan (D) rats. 
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General Discussion 

The present experiments examined the role of dopamine in responding elicited by 

a Pavlovian-conditioned alcohol-predictive cue. In order to isolate the role of dopamine 

in responding to discrete alcohol-cues from potentially separable mechanisms that might 

mediate the impact of alcohol-associated contexts on behavior, we tested the effects of 

dopamine receptor antagonists on cue-driven alcohol-seeking in a context that had never 

been associated with alcohol intake. At test, saline pre-treated rats consistently responded 

more to the alcohol-predictive cue (CS+) than to the CS-, demonstrating that discrete 

cues can trigger alcohol-seeking despite being experienced in a non-alcohol 

environmental context. Dopamine D1- and D2- receptor antagonists dose-dependently 

reduced Pavlovian cue-driven alcohol-seeking. Furthermore, the D1- but not D2-receptor 

antagonist significantly reduced responding to an alcohol-predictive cue when it was 

presented in combination with alcohol during re-training. 

A second objective of these experiments was to investigate potential differences 

in ethanol consumption, Pavlovian conditioning and the role of dopamine in Pavlovian 

cue-driven alcohol-seeking based on which supplier the experimental subjects were 

obtained from. Vendor differences in male, Long-Evans rats obtained from Charles River 

and Harlan Laboratories were primarily observed in weight gain and oral alcohol 

consumption. Although rats from Charles River gained more weight throughout the 

study, rats from Harlan Laboratories developed a higher overall ethanol preference. There 

were no consistent differences in the acquisition and expression of Pavlovian 

discrimination training as a function of vendor. Neither were there any statistically 

significant vendor differences in the effect of the D1-receptor antagonist SCH 23390 on 
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responding to an alcohol-predictive cue. However, there was a more robust, dose-

dependent attenuation of responding by the D2 dopamine receptor antagonist eticlopride 

on responding to the alcohol-predictive cue in rats obtained from Harlan. Overall, these 

results provide novel evidence for the involvement of dopamine in mediating Pavlovian 

cue-driven alcohol-seeking. Furthermore, the replicable differences between Charles 

River and Harlan rats in alcohol consumption highlight the importance of considering 

vendor selection in preclinical alcohol research. 

 

Behavioral discrimination between an alcohol-predictive CS+ and CS- 

Subjects from both experiments learned to discriminate between the alcohol-

predictive cue (CS+) and a second stimulus (CS-) that was presented without alcohol. 

Discrimination was characterized by a significant increase across session in port entries 

made during the CS+ as rats learned to associate the availability of alcohol with this cue, 

and the comparatively lower rate of responding to the CS-. Behavioral discrimination 

occurs as the alcohol-predictive cue acquires incentive-motivational properties upon 

repeated pairing with the pharmacological effects of alcohol (See, 2002; Weiss, 2005; 

Chaudhri et al., 2008). In the present experimental design the CS- served as a within-

subject control, providing a measure of specificity of conditioned responding to the 

alcohol-paired cue. 

In both experiments the number of total port entry responses increased across 

initial sessions of PDT, which may be the result of subjects associating the context with 

alcohol availability. By mid-phase, a decrease in port entry responses suggests that rats 
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no longer made spontaneous entries to the fluid port; rather they became more selective 

indicating they learned the predictive relationship between the CS+ and alcohol delivery. 

Following PDT, subjects underwent habituation in a second, different context, 

referred to as context B. The purpose of habituation was to expose the rats to an 

environmental context in which alcohol was never presented. The number of times that 

subjects checked the fluid port, putatively for alcohol, during this phase decreased across 

sessions, suggesting that they learned to stop checking the fluid port for alcohol delivery 

in the non-alcohol context. 

 

Dose-dependent effects of SCH 23390 on cue-driven alcohol-seeking 

Cue-driven alcohol-seeking was assessed by presenting the non-extinguished, 

alcohol-predictive CS+ as well as the CS- in a context that was not associated with 

alcohol. Saline pre-treated rats from Charles River and Harlan responded more to the 

CS+ than the CS-, indicating that discrimination between the two cues remained intact. 

Such results are consistent with recent findings that a non-extinguished Pavlovian 

alcohol-predictive cue can elicit alcohol-seeking when presented in a non-alcohol context 

(Chaudhri et al., 2010). Systemic infusions of the dopamine D1-receptor antagonist SCH 

23390 resulted in a dose-dependent reduction in responding to the alcohol-predictive cue, 

with no effect on CS- responses. Specifically, we observed that an infusion of 10 µg/kg 

of SCH 23390 significantly reduced responding to the alcohol-predictive cue, relative to 

rats that were pre-treated with saline or 3.33 µg/kg of SCH 23390.  
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An analysis of the pattern of responses obtained at test revealed that CS+ trials at 

the start of the test session elicited more responses than subsequent CS+ trials. In 

particular, saline pre-treated rats consistently exhibited this pattern of behavior, 

suggesting that repeated presentations of the alcohol-predictive cue without alcohol 

delivery resulted in within-session extinction of port entry behavior. Specifically, the 

incentive value of the CS+ becomes increasingly weakened as it comes to predict non-

reward (Wise, 2004), or the decrease in CS+ responding is attributed to learning that the 

CS+ no longer predicts alcohol delivery (Bouton, 2004). Systemic infusions of SCH 

23390 dose-dependently reduced responding to each CS+ trial. Specifically, we observed 

that 10 µg/kg of SCH 23390 blocked responding on the first CS+ trial (Fig. 3). In 

addition, an examination of latency to first port entry indicated that SCH 23390 dose-

dependently increased the time to make the first port entry, with significant differences in 

latency between saline and 10 µg/kg SCH 23390, and 3.33 µg/kg and 10 µg/kg doses 

(Fig. 5). 

The most conservative explanation for the observed reduction in CS+ responding 

at test using the 10 µg/kg dose of SCH 23390 is that blocking dopamine D1 receptors 

reduced overall locomotor activity. For example, it has been shown that a subcutaneous 

injection of 1 mg/kg of SCH 23390 suppressed locomotor activity and rearing in rats 

(Hoffman & Beninger, 1985). However, we think this to be an unlikely explanation for 

the present results for the following reasons. First, the attenuation in port entry 

responding at test was specific to the CS+: SCH 23390 did not reduce CS- responding, 

albeit the levels of responding to the CS- might have been too low to detect an effect. 

Second, although the total number of port entries made by rats infused with SCH 23390 
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decreased dose-dependently at test, this measure did not differ between test and 

habituation for the 10 µg/kg dose (Fig.s 8a and 8b). That there was no difference between 

these two phases suggests that SCH 23390 did not reduce port entries to a level below 

what is typically observed in the absence of cues or ethanol, and instead blocked the 

specific increase in port-entries attributable to the presence of the CS+ at test. Third, we 

examined the effects of SCH 23390 (10 µg/kg) on port entry responding under conditions 

where the CS+ was paired with alcohol (Exp. 2b). Here, responding to the CS+ was 

significantly higher relative to CS- and SCH 23390 had no effect on responding to either 

cue, which suggests that the D1- receptor antagonist did not have an impact on alcohol-

seeking or port-entry responses in general. Lastly, published studies that have 

investigated the effect of SCH 23390 on context-induced renewal of cocaine-, sucrose-, 

or ethanol-seeking (Crombag et al., 2002; Liu & Weiss, 2002; Hamlin et al., 2007), as 

well as on context- and discrete cue-induced heroin-seeking (Bossert et al., 2007) have 

reported that SCH 23390 doses similar to those used in the present experiments had 

minimal effect on high rates of instrumental responding for sucrose or food (Crombag et 

al., 2002; Nakajima, 1986). 

Based on these studies, we can assume that the attenuation in responding caused 

by SCH 23390 is not attributable to locomotor deficits. Though dopamine has been 

implicated in motor function, it is also important for motivational processes (Wise & 

Rompré, 1989; Di Chiara, 2002). It has been reported that moderate doses of dopamine 

antagonists attenuate the motivation to act before they inhibit the ability to act. For 

example, rats treated with dopamine antagonists exhibit a gradual decline in well-learned 

responses. This suggests that antagonists reduce the motivation to act as opposed to the 
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ability to act, in which case rats would exhibit a sudden decrease in responding 

(Fouriezos & Wise, 1976; Wise, Spindler, de Wit, & Gerber, 1978; Wise, 2004). 

Dopamine is also involved in responding to and establishing incentive-motivational 

properties to previously neutral stimuli. Therefore, it is likely that a dopamine D1-

antagonist might disrupt the incentive value attributed to the alcohol-predictive cue, 

leading to decreased motivation in cue-driven alcohol-seeking (Wise, 2004). 

 Previous studies provide a clear indication for the role of dopamine in drug-

seeking. For example, blocking dopamine D1-receptors has been shown to reduce 

discrete cue-induced reinstatement of cocaine-, alcohol-,nicotine-, heroin-, and sucrose-

seeking in rats (Ciccocioppo et al., 2001; Crombag et al., 2002; Hamlin et al., 2007; Liu 

et al., 2010; Bossert et al., 2007). While the NAc has been identified as a key brain area 

involved in drug-seeking, the NAc core and shell have different roles in reinstatement 

induced by discrete or contextual cues. Specifically, the NAc core and appears to be more 

important for cue-induced drug-seeking, whereas the shell is more involved in context-

induced drug-seeking. For example, intracranial infusions of SCH 23390 into the medial 

and lateral NAc shell but not NAc core have been shown to reduce context-induced 

reinstatement of heroin-seeking (Bossert et al., 2007). Alternatively, blocking dopamine 

D1-receptors with SCH 23390 infused into the NAc core attenuates discrete cue-induced 

reinstatement of heroin-seeking, when tested in a context that has never been associated 

with heroin self-administration (Bossert et al., 2007). Similar findings have also been 

observed with respect to Pavlovian cue- and context-induced alcohol-seeking. 

Specifically, presentation of the CS+ and CS- in an alcohol-associated context elicited the 

renewal of port entry responding, and inactivating the NAc shell with muscimol/baclofen 
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attenuated this effect. Alternatively, cue-driven alcohol-seeking was observed when the 

CS+ and CS- were presented in a context that had not been associated with alcohol, and 

was attenuated by inactivating the NAc core. To our knowledge, the present findings are 

the first to identify a role for dopamine D1-receptors in Pavlovian-conditioned cue-driven 

alcohol-seeking, as SCH 23390 dose-dependently attenuated responding to an alcohol-

predictive cue. 

The involvement of dopamine in responding to Pavlovian drug-predictive stimuli 

is consistent with clinical reports. For example, positron emission tomography (PET) 

studies report dopamine increases in the dorsal striatum of cocaine addicts upon watching 

a video of cocaine-related proximal cues, suggesting that dopamine is involved in 

reactivity elicited by cocaine-conditioned cues (Volkow et al., 2006). Amphetamine-

predictive stimuli have also been shown to elicit striatal dopamine release in humans 

(Boileau et al., 2007). Subjects received a pill which contained amphetamine on 3 

separate occasions. Two weeks later, the amphetamine pill was switched to a placebo pill 

that looked identical to the first amphetamine-containing pill. Raclopride binding to 

dopamine D2- and D3-receptors was assessed during the amphetamine pill, placebo pill, 

and no pill (control) PET scan. Interestingly, amphetamine administration and placebo 

administration decreased raclopride binding potential with the same amplitude relative to 

what was observed in the control scan. Collectively, these studies indicate that drug-

associated cues can elicit conditioned dopamine release and craving in humans, thereby 

increasing the propensity to relapse. 
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Dose-dependent effects of eticlopride on cue-driven alcohol-seeking 

In experiment 2a, rats acquired discrimination between both cues and the 

acquisition and habituation phases were identical to experiment 1. Eticlopride, a 

dopamine D2-receptor antagonist dose-dependently attenuated responding to the alcohol-

predictive CS+, with no effect on responding to the CS-. In addition, we observed that 

this effect differed as a function of vendor: neither the 5 µg/kg nor the 10 µg/kg of 

eticlopride reduced responding to the alcohol-predictive cue relative to saline pre-treated 

rats from Charles River. Alternatively, in Harlan rats an infusion of 10 µg/kg of 

eticlopride significantly reduced responding to the alcohol-predictive cue when compared 

to pre-treatment with saline or 5 µg/kg of eticlopride. 

 As in Experiment 1, an analysis of the pattern of responses at test revealed that 

CS+ trials elicited more responses at the start of the session compared to consecutive 

CS+ trials. Saline pre-treated rats showed this pattern of responding suggesting within-

session extinction of port entry responding similar to experiment 1. Again, this provides 

evidence that the incentive value of the CS+ becomes weakened as it comes to predict 

non-reward (Wise, 2004) or that subjects have now learned that the CS+ no longer 

predicts alcohol delivery (Bouton, 2004). A systemic infusion of eticlopride dose-

dependently attenuated responding to each CS+ trial (Fig. 8c and Fig. 8d). Additionally, 

the number of total port entry responses did not significantly differ between rats that were 

pre-treated with saline or eticlopride. Unlike experiment 1, an investigation of latency to 

first port entry (in seconds) suggests that an infusion of eticlopride had no effect on the 

rats’ ability to make a first port entry response: there were no significant differences in 
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latency between the saline pre-treated rats and the 5 µg/kg or 10 µg/kg doses of 

eticlopride (Fig. 10).  

Although D2-receptor antagonists are known to produce motor deficits (Smith, 

Smith, Zigmond, Amalric, & Koob, 2000), we do not attribute the reduction in CS+ 

responding to a locomotor impairment based on these findings. In addition, the 10 µg/kg 

dose of eticlopride did not affect responding to the alcohol-predictive cue when paired 

with alcohol delivery Exp. 2b). These results are consistent with previous findings that 

eticlopride does not cause a locomotor deficit within this dose range (Liu & Weiss, 2002) 

and that the D2-receptor antagonist induces motoric impairments at a 20 µg/kg or higher 

(Bardo, Valone, & Bevins, 1999; Bevins, Besheer, & Pickett, 2001). Similar to 

experiment 1, we therefore suggest that blocking dopamine D2-receptors reduces 

responding to the alcohol-predictive cue by attenuating the motivation to response to 

alcohol-predictive cues (Wise, 2004). 

That dopamine D2-receptors are required for Pavlovian cue-driven alcohol-

seeking is consistent with reports that D2-receptors are involved in reinstatement to 

alcohol-seeking induced by a discriminative olfactory cue which signals the availability 

of alcohol (Liu & Weiss, 2002). The capacity of discriminative cues to elicit alcohol-

seeking can be dose-dependently reduced by SCH 23390 and eticlopride, suggesting that 

both dopamine receptors subtypes are also involved in discriminative-cue-induced 

alcohol-seeking. This study used a reinstatement procedure, in that the discriminative 

olfactory cue was extinguished before test. Interestingly, our findings suggest that similar 

neural mechanisms are required for responding to extinguished and non-extinguished 

drug-predictive cues whether acquired through operant or Pavlovian conditioning.  
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However, a recent study investigating the role of dopamine D1- and D2-receptors 

in discrete cue-induced food seeking reported opposing roles for these receptor subtypes. 

Whereas systemic injections of SCH 23390 attenuated discrete cue-induced reinstatement 

of food seeking, systemic injections of eticlopride significantly increased responding to a 

food-related cue during reinstatement tests (Ball, Combs, & Beyer, 2011). Similar effects 

of D2 antagonists have been observed in cue-induced reinstatement of cocaine seeking 

(Berglind, Case, Parker, Fuchs, & See, 2006). These results suggest that effect of D2-

receptor antagonists on discrete cue-induced reinstatement might differ as a function of 

reward. 

Studies that have examined the intracranial locus of D2-mediated effects indicate 

that infusions of raclopride in the basolateral amygdala (BLA) attenuated cue-induced 

reinstatement of cocaine seeking, but exclusively at a high dose (5.0 µg/side). 

Interestingly, a lower dose of raclopride (1.25 µg/side) potentiated cue-induced 

reinstatement. Proposed explanations for the inverted-U dose response were the location 

of D2-receptors within the BLA, the temporal changes in D2-receptor occupancy and the 

nature of raclopride in that it increases extracellular dopamine. Specifically, the effect of 

a high dose of raclopride combined with cocaine infusions likely produced increasing 

levels of extracellular dopamine, displacing raclopride and increasing post-synaptic 

dopamine receptor stimulation in the BLA at the D1- and D2-receptors (Berglind et al., 

2006). Although our drug was administered systemically and we used eticlopride and not 

raclopride, it is interesting that the low dose resulted in a small increase (although not 

significant) in responding to the alcohol-predictive cue in rats from Charles River. 
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Here, we found that D1-receptor antagonists produced a dose-dependent decrease 

in responding to an alcohol-predictive cue, suggesting that intact dopamine 

neurotransmission is necessary in cue-driven alcohol-seeking. Alternatively, we observed 

that D2-receptor antagonists produce different effects, which might depend on several 

factors. For example, we might expect differences in the effects of eticlopride depending 

on the dosage administered, and the reinforcer or unconditioned stimulus, as was 

evidenced by the potentiation of cue-induced reinstatement in food-seeking and cocaine-

seeking (Ball et al., 2011; Berglind et al., 2006). Differences might also occur depending 

on whether acquisition is controlled by Pavlovian or instrumental learning mechanisms. 

With respect to our findings, we suggest that the D2-receptor antagonist might produce 

differences in its effect based on vendor, as eticlopride dose-dependently attenuated cue-

driven alcohol-seeking in Harlan rats, with no effect in rats from Charles River. In 

addition, we observe that the interactive influence of the alcohol-related contextual and 

discrete cues paired with alcohol delivery reliably trigger alcohol-seeking under these 

conditions. The dopamine D1- but not D2-receptor antagonist significantly reduced 

responding to the alcohol-predictive cue when paired with alcohol delivery. However, 

treatment with SCH 23390 and eticlopride did not affect responding during the 10-sec 

interval that followed the CS+ presentation when rats were likely consuming alcohol. 

These results suggest that the D1-receptor antagonist specifically reduced responding to 

the alcohol-predictive cue, suggesting that blocking dopamine D1-receptors might have 

altered the incentive value of the alcohol-predictive cue even when paired with alcohol 

delivery. Additionally, fluid ports were dry at the end of the test sessions indicating that 

the the D1- and D2-receptor antagonist did not affect alcohol consumption. 
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Vendor differences in alcohol pre-exposure, Pavlovian Discrimination Training and the 

role of dopamine in Pavlovian cue-driven alcohol-seeking 

Results from both experiments revealed several interesting and replicable findings 

with respect to vendor differences in weight gain and ethanol consumption. Despite 

starting off at the same weight and being housed under identical conditions, male, Long-

Evans rats from Charles River gained weight at a significantly faster rate and 

consequently became significantly heavier than rats from Harlan Laboratories (Figures 1 

ab and 6ab). Ethanol consumption (ml) increased significantly across pre-exposure 

sessions for rats from both vendors: however, Harlan rats consumed a greater volume of 

ethanol per session than their counterparts from Charles River, particularly across the 

first 10 sessions of pre-exposure. Ethanol intake measured in grams of ethanol consumed 

per kilogram of body weight (g/kg) also increased significantly in rats from both vendors. 

However, g/kg was significantly higher in rats obtained from Harlan, as was to be 

expected since Harlan rats drank significantly more ethanol than rats from Charles River 

and displayed a significantly lower body weight. Interestingly, we found that ethanol 

preference was more than twice as high in rats from Harlan compared to rats from 

Charles River, which could be expected as Harlan rats drank less water than Charles 

River rats. 

These data are consistent with vendor differences found in male, Wistar rats 

obtained from 5 different suppliers. Significant differences in body weight were reported 

in Wistar rats obtained from the United Kingdom (B&K Universal), Germany (Charles 

River Europe), U.S.A (Harlan Laboratories), The Netherlands (Harlan Laboratories) and 

Denmark (Taconic Farms Europe). Wistar rats from Harlan Laboratories in The 
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Netherlands differed significantly from most of the other vendors. They drank 

significantly more ethanol than rats from the other suppliers, with 80% of the total 

number of rats exhibiting a mean ethanol intake of more than 3.0 g/kg/day. By the end of 

the experiment, 90% of the Harlan rats from The Netherlands had an ethanol preference 

above 60% (Palm et al., 2011). Overall, these results highlight that selection of vendor 

can have serious implications in studies that measure alcohol consumption. Collectively, 

results from both studies demonstrate that although all rats are of the same strain, they 

strongly differ with respect to ethanol consumption and preference based on vendor. 

Several factors have been proposed to explain such differences. For instance, they could 

result from differences in genetic makeup from years of breeding rats at different 

facilities. Vendor differences can also be attributable to environmental early life 

experiences such as maternal separation or weaning age which can impact alcohol 

consumption in adulthood in certain rat strains (Roman, Gustafsson, Hyytia, & Nylander, 

2005; Gustafssson & Nylander, 2006; Ploj, Roman, & Nylander, 2003). Because 

differences between rats are always a risk with outbred strains, we emphasize the 

importance of understanding these differences and considering them when designing 

alcohol studies (Palm et al., 2011). 

Unlike the replicable differences observed during ethanol pre-exposure, there 

were no consistent vendor differences with respect to the acquisition of Pavlovian 

discrimination training. Charles River and Harlan rats from both experiments learned to 

discriminate between the alcohol-predictive cue (CS+) and the cue that was presented 

without ethanol. The observed increases in CS+ responding across session suggest that 

rats from both vendors learned the predictive relationship between the CS+ and ethanol 
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availability. That said, while Charles River and Harlan rats from experiment 1 displayed 

similar levels of responding during acquisition, rats obtained from Harlan learned to 

discriminate between both cues at a faster rate and achieved higher levels of responding 

than rats from Charles River in experiment 2, resulting in higher level of responding to 

the CS+ at test. These results suggest that behavioral inconsistencies might also exist in 

rats obtained from the same vendor but at different times.  

At test, we observed differences in Charles River and Harlan rats with respect to 

the effect of SCH 23390 and eticlopride. In experiment 2a, blocking dopamine D2-

receptors did not attenuate responding to the alcohol-predictive cue (CS+) or the cue that 

was presented without ethanol (CS-) in rats from Charles River. Relative to saline, rats 

infused with the low dose (5 µg/kg) or high dose (10 µg/kg) did not exhibit a reduction in 

responding to either cue. Therefore, dopamine neurotransmission at D2 receptors might 

not be required for responding to an alcohol-predictive cue in rats obtained from Charles 

River. Conversely, we found a significant difference in responding between saline and 

eticlopride (10 µg/kg) pre-treated rats from Harlan, indicating that dopamine D2-

receptors might be involved in cue-driven alcohol-seeking in rats from this vendor. One 

possibility is that a higher dose of the D2-receptor antagonist would be required to 

attenuate cue-driven alcohol-seeking in Charles River rats. Interestingly, differences in 

the effect of SCH 23390 followed a similar pattern in rats from Charles River and Harlan. 

More specifically, Figure 3a depicts a reduction in responding to the alcohol-predictive 

cue in the highest dose (10 µg/kg) of SCH 23390 in rats from Charles River. In Harlan 

rats however, we observe a reduction in port entry responses in the low (3.33 µg/kg) and 

high (10 µg/kg) doses of SCH 23390, relative to pre-treatment with saline (Fig. 3b). 
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Therefore, it is possible that male, Long-Evans rats from Charles River and Harlan differ 

in terms of dopamine sensitivity. While differences in dopamine sensitivity across rats of 

the same strain but from different vendors have not been studied, differences in dopamine 

sensitivity have previously been identified in different strains of rats. For example, Wistar 

rats are less sensitive to the effects of morphine, an opioid agonist, compared to Sprague 

Dawley rats. An early study reported that Wistar rats needed a dose of morphine twice as 

high than Sprague Dawleys to induce conditioned place preference and comparable 

increases in dopamine activity, suggesting that these strains show differential sensitivity 

to the opioid agonist (Shoaib, Spanagel, Stohr, & Shippenberg, 1995). The fact that these 

differences in sensitivity exist between strains might suggest that they can also differ 

across vendors. 

 

Methodological strengths and limitations 

 The current studies demonstrate that blocking dopamine D1- and D2-receptors 

with pharmacological antagonists can attenuate Pavlovian cue-driven alcohol-seeking. 

Our data were obtained using a procedure that attempts to isolate the neural circuits 

required for responding elicited by discrete alcohol-predictive cues from potentially 

differentiable mechanisms that mediate the impact of alcohol-associated environmental 

contexts on alcohol-seeking. That contexts are an important factor to take into account is 

suggested by an extensive literature demonstrating that extinguished Pavlovian-

conditioned responses can be renewed in contexts where CS-US associations are initially 
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formed (Bouton, 2004; Crombag, Bossert, Koya, & Shaham, 2008; Chaudhri et al., 

2010). 

Furthermore, preliminary data from our laboratory has provided evidence of the 

interactive influence of contextual and discrete cues. A higher level of responding to the 

alcohol-predictive cue was observed when rats were exposed to the alcohol-associated 

context relative to non-alcohol or novel contexts. These data provide further evidence 

that the collaborative effects of discrete and contextual cues can impact craving and lead 

to relapse, perhaps having a greater influence on relapse than the independent effects of 

discrete or contextual cues. Therefore, our procedure isolates the role of the alcohol-

predictive cue by examining behavior in a non-alcohol context as opposed to an alcohol-

associated context. 

It should be noted however, that testing the ability of discrete cues to trigger 

alcohol-seeking in a non-alcohol context might present certain limitations. For example, 

the non-alcohol context may have acquired inhibitory properties resulting in lower levels 

of responding. In contrast, an additional strength of our procedure is that we explore non-

extinguished cues, which might translate more accurately to human addicts that do not 

undergo cue-exposure therapy during rehabilitation. Understanding the neurobiological 

mechanisms that mediate cue-driven alcohol-seeking can lead to the development of 

effective therapeutic interventions that target responding to non-extinguished cues. 
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Future studies 

It remains a goal for future studies to examine the brain areas in which dopamine 

acts to mediate responding to Pavlovian-conditioned alcohol-predictive cues. The nucleus 

accumbens (NAc) has been identified as an important brain region responsible for the 

ability of environmental cues to facilitate drug-seeking (Crombag et al., 2002; Bossert et 

al., 2007; Hamlin et al., 2007; Chaudhri et al., 2008) and has been implicated in cue-

driven alcohol-seeking (Chaudhri et al., 2010). More specifically, the NAc core and shell 

have been implicated in discrete-cue- and context-induced drug-seeking, respectively 

(Bossert et al., 2007; Chaudhri et al., 2010). Therefore, it would of great interest to 

examine the effect of infusing SCH 23390 and eticlopride in the NAc core and shell to 

localize the specific brain areas required for responding to a Pavlovian-conditioned 

alcohol-predictive cue in a non-alcohol context. Future directions should also investigate 

vendor differences in dopamine D1- and D2-receptor sensitivity as vendor selection has 

proven not only to be an important consideration when examining ethanol intake and 

preference, but also in the effects of D1- and D2-antagonist on cue-driven alcohol-

seeking. 

 In summary, our findings demonstrate that alcohol-predictive cues can 

consistently and reliably elicit Pavlovian-conditioned alcohol-seeking in rats, even when 

those cues are experienced in a context that has never been associated with alcohol 

intake. Dopamine D1- and D2-receptor antagonists attenuate this effect, suggesting a role 

for both receptor subtypes in Pavlovian cue-driven alcohol-seeking. The existence of 

vendor differences with respect to weight gain, ethanol consumption and preference 

indicate that vendor selection should be an important consideration when designing 
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alcohol studies. Therefore, our findings might help explain some discrepancies in 

response to ineffective pharmacological manipulations in animal models of addiction 

research. Furthermore, we expect that our conclusions will help researchers be mindful in 

their interpretations of preclinical models, and their application to the study of human 

addiction. 
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