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ABSTRACT 

Automated Configuration Design and Analysis for Service High-
Availability 

Ali Kanso, Ph.D. 

Concordia University, 2012 

 

The need for highly available services is ever increasing in various domains ranging 

from mission critical systems to transaction based ones such as online banking. The 

Service Availability Forum (SAForum) has defined a set of services and related 

Application Programming Interface (API) specifications to address the growing need of 

commercial-off-the-shelf high availability solutions. Among these services, the 

Availability Management Framework (AMF) is the service responsible for managing the 

high availability of the application services. To achieve this task, an AMF 

implementation requires a specific logical view of the organization of the application’s 

services and components, known as an AMF configuration. Any AMF configuration must 

be compliant to the concepts and constraints defined in the AMF specifications. The 

process of defining AMF configurations is error prone and requires extensive domain 

knowledge. Another major issue is being able to analyze the designed AMF configuration 

to quantify the anticipated service availability. This requires a different set of modeling 

and analysis skills that system integrators might not necessarily possess. In this 

dissertation we propose the automation of this process. The premise is to define a 

generation method within which we embed the domain knowledge and the domain 

constraints, and by that generating AMF configurations that are valid by construction. 

We also define an approach for the service availability analysis of AMF configurations. 

Our method is based on generating an analysis stochastic model that captures the 

middleware behavior and the application configuration. This model is thereafter solved 

to quantify the service availability. 
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1 Introduction 

In today’s technological and information based world nearly everyone depends upon the 

availability of services provided by various systems. Therefore, the high availability of 

services has become a necessity in various domains ranging from mission critical systems 

to transaction based ones. When such systems fail, the results can be catastrophic, leading 

to substantial damages in reputation, finance, and sometimes injuries or even loss of life. 

The high availability of a system depends greatly on its reliability. However all systems 

fail eventually, and therefore another important factor to sustain the high availability is 

the reparability of the system. In order to avoid service outage during the system repair, 

fault tolerance is needed. Fault tolerant systems are capable of providing the expected 

services even in the presence of a failure. This is typically achieved through deploying 

redundant components within the system and then managing this redundancy through 

implementing health monitoring, checkpointing, recovery mechanisms etc. There exist 

several proprietary solutions for rendering systems fault tolerant  [1] [2]. However, these 

solutions fall under two categories, (1) they are platform specific, and hence any 

application designed to run on these systems has to conform to the platform and the 

specificities of the underlying technology and may not be easily ported to other 

platforms. (2) They are based on virtualization, where fault tolerance is achieved by 

having the standby mimic the active which tend to be penalizing for the performance, and 
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lacks protecting against software failures running within the virtual machine. In either 

cases the cost of enabling and maintain high availability is high. In order to address the 

growing need of commercial-off-the-shelf (COTS) affordable high availability solutions, 

the Service Availability Forum (SAForum)  [3], a consortium that develops and promotes 

open specifications for carrier-grade and mission-critical system, has defined a set of 

specifications for middleware services. The objective is to enable an ecosystem for highly 

available platforms. Hence any application built from COTS components can be enabled 

for high availability if these components are compliant with the SAForum middleware 

(shown in Figure  1-1), i.e. they can interface with the middleware services. 

 

Figure  1-1 The SAForum middleware specifications 

 Among these services, the Availability Management Framework (AMF)  [4] is the 

service responsible for managing the high availability of the application services by 

coordinating redundant application components.  To achieve this task, an AMF 
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implementation requires a specific logical view of the organization of the application’s 

services and components known as an AMF configuration. AMF uses the information 

specified in the AMF configuration (as shown in Figure  1-2) to manage the availability of 

the services; and hence the runtime behavior of AMF in terms of service assignment and 

the service recovery in case of failure depends greatly on the information specified in the 

AMF configuration. 

 

Figure  1-2 The use of the AMF configuration 

The AMF configuration is specified according to a standardized configuration model. 

The configuration includes all the elements (e.g. software components, computing nodes, 

etc.) needed to describe the AMF managed system (including the applications). Each 

element in the model has a set of attributes that, when configured, describe the properties 

of a particular instance of this element. The AMF configuration is then considered as a 

collection of interrelated elements. The AMF model introduces over 200 attributes. In an 

actual system configuration typically composed of hundreds of elements, the number of 

attributes is by the thousands. These attributes include the description of the 

dependencies among elements, as well as the recovery/protection policies that an AMF 
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implementation must apply at runtime in order to protect and recover the services 

provided by the system in case of failures. 

Hand-crafting AMF configurations is an error prone process that incorporates several 

risks. First the complexity of the process renders it virtually impossible to achieve. 

Second even if we master the complexity by creating configurations that are syntactically 

compliant to the AMF standards, this does not guarantee that the configuration is 

semantically sound. A semantically sound configuration must (1) capture the various 

dependencies among elements, (2) ensure that the system will be able to provide and 

protect the needed services. 

Our first contribution in this dissertation is to define a method for automating the design 

of AMF compliant configurations. A companion contribution is a workload balancing 

technique, for improving the quality of the configuration in providing and protecting 

services, and which can be embedded in the configuration generation process. Our 

method generates multiple configurations that satisfy the same set of requirements. This 

raised the question that if more than one configuration can satisfy the requirements, how 

can we rank them? And according to which criteria? As we are dealing with highly 

available systems, the most relevant evaluation criterion is the availability level that each 

configuration can offer to the services. Therefore, the research question that we embark 

to answer is: can we quantify (based on the AMF configuration) the expected runtime 

availability of the services (described in the configuration) which are managed by AMF? 

By answering this question we would be able to judge the quality of an AMF 

configuration with respect to the availability criterion. In view of that, our final and main 
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contribution in this dissertation is defining a method for the service availability analysis 

of AMF configurations.  Our contributions can be summarized as follows: at the 

configuration generation input level, we have defined and implemented a model used to 

structure and validate the configuration requirements. We have defined and implemented 

a configuration generation method where we embedded the domain knowledge and the 

constraints to generate AMF compliant configurations. We have complemented this 

method with a workload balancing technique that we defined to guarantee workload 

balancing before and after a failure. Finally we have defined an approach for the 

availability analysis of AMF managed services. Our analysis is based on transforming 

AMF configurations into a stochastic model that captures the runtime behavior of AMF. 

We have defined our stochastic model using Deterministic and Stochastic Petri Nets 

(DSPNs)  [5], an extension of the Petri Net formalism. 

Our implementation of the configuration generation has been adopted by the 

development teams of our industrial partner to produce a commercial-grade software 

product. The users of this product are system integrators who need to configure their 

AMF managed systems.  

The aim of the availability analysis that we defined is not only to annotate configurations 

with availability figures, but to also constitute the corner stone of the future research 

concerning generating “optimal” configurations with respect to predefined criteria 

(mainly availability and usage of resources), whereas we would be able to generate 

configurations that, by constructions, meet the availability criteria. 
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This dissertation is organized as follows, in Chapter 2 we introduce the domain in more 

details, and illustrate the AMF configuration concepts. In Chapter 3 we survey the 

literature and discuss the related work. In Chapter 4 we present our configuration 

generation approach. In chapter 5 we introduce our workload balancing method. In 

Chapter 6 we present our availability analysis approach. Chapter 7 illustrates our tooling 

framework and presents the prototypes implementations. In chapter 8 we summarize our 

contributions and discuss the domains of their applicability, and discuss the potential 

future work, and how it would integrate with the work that has already been realized.  
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2 Background 

2.1 A Brief Look-Back 

The computing industry has witnessed a huge growth over the past two decades. The 

paradigm of one firm does all, as in the old IBM structure, has been replaced by the 

vertical integration paradigm. The latter paradigm favors the Component Based 

Architecture (CBA) [6] for system development. One of the key enablers of CBA is 

standardization and interoperability among components. For example the same hardware 

can run multiple operating systems and each operating system can host a variety of 

compatible applications. In CBA the components interact through interfaces. As a result, 

a system can be built using COTS components, as long as they can interface with each 

other. The main goal of the SAForum is to enable building highly available applications 

− using COTS components − that are portable among multiple platforms. For this 

purpose the SAForum specifications define a set of middleware services accessible 

through a set of standardized APIs. As a result, any component that implements the 

required interface can interact with the middleware, and consequently the availability of 

the services of applications that are built using such COTS components can be managed 

by the SAForum middleware. 
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2.2 Service Availability and the SAForum Middleware 

Service availability is defined as the probability that a service is available at any point in 

time  [7]. High availability is attained when the services are available 99.999% of the time 

(aka five nines of availability)  [3]. In highly available systems, the service availability 

should not be correlated with the health of the component providing the service. In other 

words, the service is abstracted as the useful functionality provided by the component. In 

case the component providing the service fails, another redundant replica of the 

component (that can provide the same functionality) should take over the assignment of 

providing the same service. When this shift is executed in a swift manner, the service 

receiver should merely experience a negligible outage. One way to achieve this is to 

employ availability management software, capable of monitoring the service providing 

software, and making sure that, in case of failure, the service provisioning is promptly 

resumed. For this purpose, The SAForum has developed the Application Interface 

Specification (AIS), for a set of middleware services which includes AMF. The role of 

AMF is to manage the availability of the service provided by an application. 

2.3 The Availability Management Framework 

The role of AMF is to manage the availability of the service provided by an application. 

This is achieved through the management of its redundant components. In fact, the role of 

AMF in the service recovery management can be summarized as follows:  

(1) Failure detection: AMF detects or gets notified that a failure has occurred.  

(2) Failure isolation: AMF isolates the failure by cleaning up the faulty component(s).  
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(3) Service recovery: AMF recovers the services by failing them over to healthy 

components.  

(4) Repair: AMF attempts to repair the faulty components by restarting them or by 

restarting the node. It should be noted that sometimes the repair is executed as 

part of the recovery itself. E.g. when the recovery is in fact a component restart. 

In order for AMF to manage the availability of the applications it needs an explicit 

description of the application’s components and services, including their groupings, 

dependency, etc. as well as the recovery policy to be enforced in case of failure. We refer 

to this configuration as the AMF configuration.  

2.3.1 The AMF Configuration 

The AMF configuration is a logical grouping of entities constituting the AMF managed 

system. The AMF concepts described in the configuration are better explained through an 

illustrative example. We present a highly available web application example shown in 

Figure  2-1 (a) the corresponding mapping of this example to an AMF configuration is 

shown in Figure  2-1 (b). The application’s architectural workflow is as follows: the user 

requests are forwarded to an active HTTP server which in turn will examine the requests, 

and forward the dynamic ones to the application server. The application server will 

determine whether the request is cached in the memory, or whether it needs to gather the 

needed information from the database server, and subsequently dynamically generate the 

HTML code and return it to the HTTP server which will finally provide the processed 

data back to the client. The HTTP server and the database synchronize their state 

information with their redundant replicas to keep them up-to-date. In the following we 
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will present the AMF entities and show how the resources in our example map to these 

entities. 

The smallest entity AMF manages is the component. It represents a set of hardware 

and/or software resources that provide some functionality. AMF manages each 

component through APIs. For instance, the component can abstract the process 

representing an instance of the HTTP server. A service unit (SU) is a logical entity that 

consists of one or more components that combine their functionalities into some service. 

For instance, since the HTTP server and the Application server collaborate closely on 

each request, they are grouped together and the collaborative service they provide can be 

considered a web service. The workload associated with providing or protecting some 

functionality and which can be assigned to the component is represented by a component 

service instance (CSI). For instance the workload of processing the HTTP request that 

include a source IP address within a specific range of IP addresses can represent the 

workload assigned to the HTTP server (namely HTTP-CSI). A set of CSIs (required for a 

service) that need to be assigned to the components of the same SU is represented by a 

service instance (SI). Thus, the SI is the workload that is assigned to an SU by AMF at 

runtime either to actively provide the service represented by the SI or protect it as a 

standby. E.g. a Web service can be formed by aggregating the HTTP server CSI and the 

Application server CSI (namely AS-CSI). 

AMF maintains the availability of the SIs by managing their assignments among a set of 

redundant SUs. For this purpose, SUs are grouped into service groups. A service group 

(SG) consists of a set of SUs that collaborate to protect a set of SIs. They collaborate 



11 
 

according to a certain redundancy model. There are five different redundancy models: 

2N, N+M, NWay, NWayActive, and No-Redundancy. These redundancy models differ in 

the number of active and standby state assignments each SI may have and the distribution 

of these assignments among the SUs. The five redundancy models can be summarized as 

follows:   

� The 2N redundancy model specifies that in an SG at most one SU will have the 

active HA (High Availability) state for all SIs protected by this SG and it is 

referred to as the active SU, and at most one SU will have the standby HA state 

for all SIs and it is called the standby SU. For example SG2 shown in Figure  2-1 

(b) has this redundancy model, where we have one active database instance and 

one standby on behalf of DB-SI. 

� An SG with the N+M redundancy model is similar to 2N, but has N active SUs 

and M standby. An SU can be either active or standby for all SIs assigned to it. 

That is to say, no SU can be simultaneously active for some SIs and standby for 

some other SIs. An SI can be assigned to at most one SU in the HA active state 

and to at most one SU in the HA standby state.   

� In the No-Redundancy redundancy model we have no standby SUs, but we can 

have spare SUs, i.e. available for assignment. An SI can be assigned to only one 

SU at a time. An SU is assigned the active HA state for at most one SI.  

� An SG with the NWay redundancy model contains N SUs that protect multiple 

SIs. An SU can simultaneously be assigned the active HA state for some SIs and 
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the standby HA state for some other SIs. At most, one SU may have the active 

HA state for an SI, but one, or multiple SUs may have the standby HA state for 

the same SI. 

� An SG with the NwayActive redundancy model contains N SUs. An SU has to be 

active for all SIs assigned to it. An SU is never assigned the standby HA state for 

any SI. From the service side, for each SI, one, or multiple SUs can be assigned 

the active HA state according to the preferred number of assignments, 

numberOfActiveAssignments, configured for the SI. The 

numberOfActiveAssignments should always be less or equal to the number of SUs 

in the SG. For example SG2 shown in Figure  2-1 (b) has this redundancy model, 

and therefore the Wed-SI is assigned active to both SUs, i.e. an HTTP request can 

be processed by any of the SUs. 

An AMF application is composed of one or more SGs and the SIs they provide. There 

are two additional AMF logical entities used for deployment purpose: The cluster and the 

node. The cluster consists of a collection of nodes under the control of AMF. 
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Figure  2-1 An AMF configuration example 

All AMF entities, except the cluster and nodes, are typed. The entity types provide AMF 

with the information about the shared characteristics of their corresponding entities. For 

example, the component type determines the component service types any component of 

this type shall provide. AMF uses this information to determine to which component 

within an SU to assign a particular CSI. Therefore, the types constitute an integral portion 

of the AMF configuration. In the AMF configuration if a service provider type supports a 

service type then an entity referring to this type can support the services of the specified 

service type as shown in Figure  2-2. 
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Figure  2-2 The types versus the entities referring to these types 

 

The AMF types are defined as follows: 

Component Type: A component type describes a particular version of a software 

implementation designed to be managed by AMF. The component type specifies the 

component service types that the components of this type can provide. It defines for each 

component service type the component capability model and any required dependency on 

other component service types. The component capability model is defined as triplet (x, 

y, b), where x represents the maximum number of active CSI assignments and y the 

maximum number of standby CSI assignments a component can handle for a particular 

component service type. While b indicates whether active and standby assignments can 

be handled simultaneously. The component type also specifies the component category, 

e.g. proxy, container, etc. For example a container component could be a virtual machine 
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that acts as an execution environment for other components, referred to as contained 

components. 

Component Service Type (CS type): It describes the set of attributes that characterizes 

the workload that can be assigned to a component of a particular type in conjunction of 

providing some service.  

Service Unit Type (SU type): The service unit type specifies the service types an SU of 

the type can provide, and the set of component types from which an SU of the type can 

be built. It may limit the maximum number of components of a particular type that can be 

included. Thus, the SU type defines any limitation on the collaboration and coexistence 

of component types within its SUs.  

Service Type: A service type defines the set of component service types from which its 

SIs can be built. The service type may limit the number of CSIs of a particular CS type 

that can exist in a service instance of the service type. It is also used to describe the type 

of services supported by an SU type. 

Service Group Type (SG type): The service group type defines for its SGs the 

redundancy model. It also specifies the different SU types permitted for its SGs. Thus the 

SG type plays a key role in determining the availability of services. 

Application Type: The application type defines the set of SG types that may be used to 

build applications of this type. 

Table  2-1 summarizes the AMF entities, and shows their acronyms and corresponding 

types. 
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Table  2-1 AMF Entities brief description 

Entity Acronym Brief description Corresponding 
type 

Component − A set of hardware and/or software 
resources 

Component type 

Service Unit SU A set of collaborating components SU type 

Service Group SG A set of SUs protecting a set of SIs SG type 

Application − A set of SGs and the SIs they protect Application type 

Service Instance SI The workload assigned to the SU Service type 

Component Service 
Instance 

CSI The workload assigned to the 
component 

CS type 

Node − A cluster node − 

Cluster − The cluster hosting AMF and the 
applications 

− 

 

The AMF configuration is standardized by  [4] as a UML  [8] class diagram illustrating the 

various classes representing the AMF concepts and their relations (shown in Figure  2-3). 
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Figure  2-3 The standardized AMF configuration model (taken from  [4]) 

2.3.2 The Dynamic Behavior of AMF 

The dynamic (or runtime) behavior of AMF can be summarized by two main activities: 

(1) managing the life cycle of the components. (2) Maintain the service assignment even 

in the presence of failures. For this purpose and according to the configuration AMF will 

instantiate the components, and assign their CSIs (which imply the SI assignment). 

However this task is not as simple as it seems. Different component categories are 

managed in a different manner, for example a proxied component can only be instantiated 

throughout the proxy. The proxy cannot communicate with the proxied without being 

assigned the proxy-CSI etc. In case of failures, AMF can either detect them by 

monitoring the health of the components, or another component (or monitoring facility) 
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can report the error to AMF (through an API call). When this happens, AMF reacts by (1) 

isolating the error, by cleaning up (abruptly terminating) the faulty component, again 

according to the component category certain dependencies apply. This cleanup may even 

be done by restarting the node if necessary. The important issue here is not to reassign the 

services of the faulty component elsewhere without making sure that the faulty 

component has been cleaned up. (2) Recovering the service, by re-assigning the CSIs 

(through re-assigning the SI) to another healthy replica (usually a standby) of the 

component that can resume the service provisioning. (3) Finally AMF attempts to repair 

the faulty component (if the configuration allows it) by restarting it. Note that in certain 

situations the recovery and the repair are combined in one step, e.g. restarting the 

component without failing-over the services. Such recovery is preferred if it costs less 

outage than the failover. It is possible that the recovery fails, e.g. a restarted component 

continues to exhibit a faulty behavior, and in such situations an escalation policy can be 

enforced. This escalation policy is specified in the configuration, whereby for instance a 

component restart can escalate to an SU restart that can further escalate to an SU failover 

and finally a complete node failover. In another scenario, a component may become 

unresponsive to the AMF commands such as the instantiate or terminate commands; this 

can result in a node reboot and failing over the services provided by this node to other 

nodes. The Escalation policy is explained in more details in Chapter 6. 

The reader can notice that the service availability is tightly coupled to the AMF behavior 

which in turn is parameterized and driven by the configuration of the application, and 

hence the importance of the issues tackled in this thesis: the design and analysis of AMF 

configurations. 
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2.3.3 The Entity Types File 

The Entity Types File (ETF)  [9] is a standardized eXtensible Markup Language (XML) 

file provided by the software vendor to describe the various deployment options 

according to which a software can be installed. In addition it describes the software 

capabilities, limitations and dependencies. It is important here to distinguish the 

difference between AMF types and ETF prototypes (here forth referred to as ETF types). 

The ETF types describe a range of deployment options to install the software in a system, 

whereas the AMF types describe the specific deployment options according to which the 

software was installed in the system. Therefore we can consider ETF types as meta-types 

from which AMF types can be derived. The ETF file also describes the software 

functional dependencies among ETF component types and ETF SU types. However, the 

AMF configuration only describes the manifestations of these dependencies. For 

instance, if ETF specifies a certain ETF component type dependency, then this 

dependency will translate into one or multiple AMF CSI dependencies (and potentially an 

AMF component instantiation order sequence), but not a dependency at the AMF type 

level. This is due to the fact that the AMF configuration only includes the information 

needed for runtime life-cycle and availability management, and therefore only the 

implications of the dependency affecting this management are specified in the AMF 

configuration. It is the responsibility of the configuration designer to interpret the ETF 

dependency and map it to the proper AMF dependency; we will discuss this in more 

details in Chapter 4 when we describe the dependency handling during the process of 

AMF configuration generation. 
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2.4 Availability Analysis 

The availability analysis of any system is normally based on analyzing the various states 

that the system undergoes during its lifespan. This analysis mainly focuses on capturing 

the failures that cause the system to switch to a faulty state, and the repairs that shift the 

system back to a healthy state. Since the occurrence of failures is erratic by nature, 

stochastic models have been used to conduct the availability analysis. Markov models 

have been extensively used for this purpose e.g.  [10] [11], mainly for their expressiveness, 

and their capability of being analytically solved. A two-state Markov Chain is shown in 

Figure  2-4, the transition from one state to another is governed by a rate.  

 

Figure  2-4 A two-states Markov model 

A major drawback of using Markov models is the large number of states that are needed 

in the model in order to describe the system behavior  [11]. As an alternative, Stochastic 

Petri Nets  [12] [13], an extension of the Petri Net formalism created by Carl Petri  [14], are 

used to capture the complexity of real systems. Such models can either be automatically 

transformed into Markov Chains (when applicable), or simulated in order to get to 

required measures (e.g. availability, performance etc.). DSPNs are an extension of 

Stochastic Petri Nets, they have been introduced in  [5] as a continuous-time modeling 

tool which includes both Stochastic (exponentially distributed) and constant timing 

events. 
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2.4.1 Deterministic and Stochastic Petri Nets 

In this section we provide a formal description of the DSPN constructs we use in our 

analysis, followed by an example of using DSPNs for availability analysis. A DSPN is 

considered as a tuple {P; T; I;O;H; g;M0; ζ} where:  

� P is a finite set of places, which may contain a discrete number of marks called 

tokens. A marking M� � |P|(Where � is the integer set) defines the number of 

tokens in each place p �  P, indicated by #(p, M). 

� T is a finite set of transitions, divided into three disjoint sets, TIm, TExp, and TDet, of 

immediate, exponential, and deterministic transitions, respectively. 

� � p �  P; � t �  T, Ip,t : � |P| → � , Op,t : � |P| → � , and Hp,t : � |P| → � are the 

multiplicities of the input arc from p to t, the output arc from t to p, and the 

inhibitor arc from p to t, respectively. Marking-dependent arc multiplicities can be 

used to simplify the modeling of complex system behavior. 

� � t�  T, gt : � |P| → {True; False} is the guard for transition t. A transition t �  T 

is enabled in marking M iff gt (M) = True and � p �  P; (Ip,t(M) � #(p, M)) ˄ 

(Hp,t(M) > #(p, M) ˅ Hp,t(M)= 0). I.e. the guard condition and the arc multiplicity 

must be satisfied. 

� M0� � |P| is the initial marking. 

� � t�  TExp� TDet, ζt: � |P| → (0;+∞) is the mean  firing time for transition t, it may 

be marking-dependent. 
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In order to illustrate the DSPN constructs we introduce a DSPN example where we are 

interested in measuring the availability of a software component over a time interval [0, 

ť], given that the Operating System (OS) where the component is executing exhibits n 

erratic failures during this time interval. When the OS fails, it causes the component to 

become impaired. When this failure occurs, the associated recovery is an OS restart. The 

restart duration of the OS is x. When the OS is started again, the component is 

automatically instantiated; the component instantiation duration is y. The corresponding 

DSPN that capture this runtime behavior that we described is shown in Figure  2-5. Most 

of the DSPN constructs, which we formally introduced earlier in this section, have a 

graphical syntax. A place p is denoted by a hollowed circle, and it is used to abstract a 

certain state. A token is denoted by a filled circle and it resides in a place. It signifies that 

we are currently in the place hosting the token (we refer to this as the current “marking” 

of place p). For instance a token in the place “Component_healthy” in Figure  2-5 

signifies that the component is healthy. Tokens can leave a state through transitions. The 

transitions described earlier are graphically represented as follows: (1) stochastic 

transitions are denoted by a hollowed rectangle. For instance since in our example the OS 

fails in a stochastic manner, a stochastic transition (namely ST1) is used to shift the token 

from the OS_healthy place to the OS_faulty place. A stochastic transition is characterized 
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by an exponential distributed firing delay according to which it fires1, for instance in our 

example the exponential rate of transition would be n. (2) Deterministic transitions are 

denoted by filled rectangles that represent deterministic events, for instance the time 

needed to restart the OS has a fixed (known) duration, therefore the transition from the 

OS_faulty to the OS healthy state is a deterministic one. Deterministic transitions are 

characterized by deterministic firing delays. In our example the delay of TT2 is x, while 

the delay for TT1 is y (the time needed to instantiate the component). (3) Immediate 

transitions are denoted by lines (or thin filled rectangles) and they represent immediate 

events, for instance when the OS is faulty, the component immediately becomes 

impaired, and therefore an immediate transition is used to shift the token from the 

Component_healthy place to the Component_impaired place. Transitions in general and 

especially immediate ones can be guarded by an enabling function (which is a Boolean 

expression referred to as the transition guard or simply guard). When the guard evaluates 

to false, the transition is disabled. It will become enabled when the guard evaluates to 

true. For instance transition TT1 is only enabled when the OS is healthy. I.e. the enabling 

function or guard of TT1 should only evaluate to true when there is a token in the 

OS_healthy state. Finally, arcs are denoted by arrows and they are used to connect places 

                                                 

 

 

1When a transition fires it transfer the token (or in some cases multiple tokens) from the source place(s) to 

the destination place(s). 
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to transitions and vice versa. Arcs can have multiplicities to denote the number of tokens 

they can transport from one place to another when the transition fires. For further details 

about DSPNs we refer the reader to  [15] [16]. 

 

Figure  2-5 A DSPN example 

2.4.1.1  Using DSPNs for Availability Analysis 

The availability of the component can be measured by solving the DSPN shown in Figure 

 2-5. This availability can be defined as the probability of having a token in the 

Component_healthy place between time 0 and t’. To concretize our example, we will 

solve the DSPN shown in Figure  2-5 with the following parameters: the time interval is 1 

year, the OS restart time in 60 seconds (equal the delay of TT2), and the component 

instantiation time is 10 seconds (equal the delay of TT1). We will vary the failure rate 

(i.e. n) of the OS between 1 and 50 failures per year. The results are shown in the graph 

of Figure  2-6, we can clearly see that when n exceeds the 5 failures, the availability drops 

below the five nines, which is normal since in our example we have no redundancy, i.e. 
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we have no replica of the component that we can failover to. It is important to note here 

how the availability of one component (e.g. the OS in our example) can impair other 

components. 
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Figure  2-6 Analytical results of solving the DSPN example 
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3 Related work 

Our work involves two main parts, the automatic configuration generation, and the 

configuration-based service availability evaluation, and therefore we have categorized 

accordingly the related work. 

3.1 Configuration Generation 

The SAForum specifications are relatively new and the implementation of SAForum 

compliant middleware is still an ongoing effort. Existing middleware implementations 

such as OpenSAF [19], OpenAIS  [20] and OpenClovis  [21] offer limited if any support 

for the generation of AMF configurations. Other works described in this section relate to 

our work in the broader sense of system configuration generation. 

The authors in  [17] apply the Model Driven Approach (MDA) to the design of AIS 

configurations. In this approach an initial AIS compliant configuration is devised using 

predefined design patterns, gathered from previous experiences. This initial configuration 

is referred to as the Platform Independent Model (PIM), which is then transformed and 

specialized automatically to a Platform Specific Model (PSM) to be used in a specific 

implementation of AIS. Meta-models are used for the transformation and for the 

validation of configurations. However the authors did not specify any methodology to 

follow in the process of configuration generation for the PIM. Moreover they did not 

include ETF in their solution, which is an integral part of the configuration generation 
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since it provides vital information about the software in terms or grouping, dependency 

etc. Our view of the automatic configuration generation differs from their view. Their 

approach is a model transformation that takes an existing configuration form a PIM level 

to a PSM level. Our work is different from this approach, as we automatically generate 

this initial configuration or PIM. 

In  [18] the authors created a modeling framework for the automatic generation of 

middleware specific deployment descriptors. The implementation of the framework is 

based on the IBM Rational Software Architect (RSA) modeling tool.  They have also 

implemented configuration generator facility for each different AIS implementation in 

the form of RSA pluglets. And they used these pluglets to generate AMF configurations 

for two middleware implementations: (1) for OpenAIS they generate a simple text file 

from the configuration UML model (2) for OpenSAF they generate an XML file using 

the Document Object Model (DOM) solution again from the configuration UML model. 

Again the authors of this work have a different view of what the automatic configuration 

generation is, and they view it again as a model transformation from an existing 

configuration at PIM level to a PSM level. Therefore their approach is missing the 

methodology and concepts of generating AMF configurations. 

A closely related work, performed in the context of our project, is presented by the 

authors in  [22]. They define a UML profile for the design of AMF configuration, the 

domain model of the profile is based on restructuring the standard AMF model and 

extending it with a set of OCL constraints that are used to verify the compliancy of an 

AMF configuration. Among the objectives of the work is to (1) enable the validation of 
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AMF configurations (2) enable a model driven approach for the configuration generation. 

In this work the authors do not propose a method for the configuration generation, 

however in  [23] they propose a model driven approach for the configuration generation 

using the Atlas Transformation Language (ATL). Both our approach and the model 

driven one were carried on in the same project. Our configuration generation method 

predates the model driven approach which is mostly based on the steps we defined in our 

method. The model driven approach has a more declarative style, and it generates 

configurations based on the profile proposed in  [22]. Nonetheless it lacks the dependency 

analysis that we perform at the input level, and does not target the issue multiple 

configuration generation that we will discuss in the next Chapter. 

In  [27] the authors present an engine that automatically designs a service infrastructure 

which will meet the service's availability requirements. The engine explores a design 

space consisting of multiple combinations of hardware/software and repair options 

configurations presenting various tradeoffs among cost, availability, and performance. 

Their approach is rather a combinatorial approach that finds all possible combinations of 

hardware, operating systems and applications, and filters out the ones that do not satisfy 

the availability. In this work the configuration is the design of the system stack from 

hardware to application, rather than configuring the components and the services that 

constitute the application. They do not present the system recovery behavior or the 

dependencies in the system. 

More work on configuration generation has been done in the more general context of 

software configuration management, particularly using constraint satisfaction techniques 
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and policies as reported in [28] [29]. The authors in  [28], for instance, propose an approach 

for generating a configuration specification and the corresponding deployment workflow 

from a set of user requirements, operator and technical constraints, which are all modeled 

as policies. An example of constraints is, for instance, that a given operating system can 

only run on certain processor architectures. Generating a configuration is formulated as a 

resource composition problem taking into account the constraints. Our approach is 

similar from this point of view; however, our focus is on the availability and AMF 

constraints instead of general utility computing environments. Challenging constraints, 

such as generating configurations that satisfy the protection level requirements 

(redundancy model, assignments etc.) or the dependency analysis and handling are not 

taken into account in  [28] or  [29]. 

The work presented in  [30] focuses on developing a system that will automatically select 

which data protection techniques to use, and how to apply them, to meet user-specified 

dependability. By being selective in picking techniques matters – assigning different 

levels of protection to different kinds of information – the authors in  [30] believe they 

can save money or free up resources for providing more protection to important data. 

Their input consists of (1) a description of the user’s requirements for data performability 

and data reliability. (2)  A description of the failures to be considered, including their 

scope and likelihood of occurrence. (3) A description of the data protection techniques. 

Finally the design engine will come up with the appropriate protection technique. Again 

their approach is a combinatorial one that filters out the techniques that cannot satisfy the 

requirements. And they focus on reliability and performability for data, rather than for 
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applications. So basically they select and configure the protection technique rather than 

generating system configurations. 

In  [31] the authors investigate the applicability of MDE to address the middleware QoS 

configuration challenges by automating the process of mapping the domain-specific QoS 

requirements onto the right middleware specific configuration options. In particular, their 

model transformation-based approach begins with domain-specific, platform-independent 

models (PIMs) of DRE (Distributed-Realtime-Embedded) system. The QoS requirements 

are then used to iteratively transform the PIM to more refined and detailed middleware 

platform-specific models (PSMs). The variabilities in the middleware configuration 

spaces are captured in the form of parameterization of mapping rules of the platform-

independent model transformations. Subsequently individual platform-specific 

transformations are instantiated by specializations, such as by providing exact values of 

these parameters. Their notion of parameterized transformations and specializations is 

similar in concept to C++ templates and Java generics. Like most of the automatic 

configuration generation works we have surveyed, this work also starts from an existing 

PIM level configuration and automatically generates the PSM level configuration. 

3.2 Availability Evaluation 

The work presented in  [32] is the only work we are aware of that partially tackled the 

problem of calculating the availability of the services in the context of AMF. In this work 

the authors define the service availability based on user behavior, and derive formulas to 

compute service availability starting with the user behavior model. The user behavior can 

be summarized as follows, when the user issues a request, he waits for the request to be 
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processed and then the user can enter a thinking state, or issue another request, or decide 

to end the session. The authors used Stochastic Reward Nets (SRNs are a higher level 

formalism based on Stochastic Petri Nets (SPN)) to build the user behavior model. As a 

case study the authors applied their approach to a SAForum compliant media gateway 

controller (MGC) architecture in VoIP system. In the case study there are two application 

servers running on the cluster for call processing, each in charge of processing different 

call features. Process replication is adopted as the mechanism to provide application level 

software fault tolerance. The structure of the case study AMF configuration is as follows:  

Each service application has one service instance, and each service instance is assigned to 

two service units in different cluster nodes, one service unit is active and the other is 

standby. The systems has three nodes A, B and C. Either node A or node B has one 

service unit acting as the primary for any of the call processing services. Node C has two 

service units acting as standby for each of the services.  

For the recovery behavior, the authors made the following assumption about the actions 

performed by AMF. For software faults the AMF tries several levels of recovery actions: 

1) component restart, which they assume is fast and has little or no impact on the 

application; 2) switchover that switches the service to the standby service unit, in the 

meantime the faulty node is restarted; 3) manual repair of the cluster node if automatic 

restart of the previous level cannot recover the fault. For hardware faults, they assume 

recovery actions 2 and 3 are adopted by the AMF. After the fault is detected the AMF 

tries to recover the fault using from lower level to higher level recovery strategies, each 

level requiring more time to execute than the previous level. 
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The authors built a SRN to model this specific configuration; based on the SRN they 

calculate the probability that both servers are up in steady state. And then they use this 

information in the user behavior model to calculate the user perceived availability. 

Finally the authors evaluate various factors such as the user think times, session end 

probability, and fault detection rate, to see how they affect the calculated availability. 

The system modeling part of this work is based on one specific AMF configuration. Even 

the recovery behavior is based on the assumption that AMF only follows the steps 

assumed by the authors. The authors did not present any generic method for deriving this 

model based on an AMF configuration. They also did not present any generic behavior 

analysis that takes into account the various recovery actions that AMF may engage into. 

And therefore from the system modeling perspective this work in not reusable since if we 

change the configuration e.g. by changing the redundancy model, or take into 

consideration other recovery actions to be performed, or change the escalation sequence 

assumed by the authors, then the entire system model has to rebuild from scratch. 

Moreover the authors did not include any components in their configuration. And hence 

did not consider the different component categories or dependencies which have direct 

impact on the modeling of the system behavior. In addition the authors make the 

assumption that the standby service units do not fail, which is not a realistic assumption. 

So basically the case study, which is the only part of the work related to AMF, did not 

consider the specificities of the AMF configuration and the AMF behavior. And the 

system described could as well have been any generic system with one active and one 

standby component. 
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Another interesting work is presented in  [33]. This work deals with the automatic 

dependability analysis of systems designed using UML. An automatic transformation is 

defined for the generation of models to capture systems dependability attributes, like 

reliability. The main objective aims at the creation of an integrated environment where 

UML-based design tool sets are augmented with modeling and analysis tools.  

Within this work, the authors present an automatic transformation from UML diagrams to 

Timed Petri Net (TPN) models for model based dependability evaluation. The TPN 

models output of the transformation can be solved with already available automated 

tools. In order to achieve this task the authors (1) extended the UML language. 

Essentially two types of extensions were used: one for identifying redundancy (fault 

tolerance) structures and the other one for defining the dependability parameters and 

desired measures. In order to represent redundancy, the authors opted for a “class based” 

redundancy, which prescribes that components of a redundancy structure must be defined 

as specific classes. Three basic components are defined: <<redundancy manager>>,  

<<variant>>  and  <<adjudicator>>. (2) Transformed the entities and relations of the 

UML design into an Intermediate Model (IM). The IM is defined as a hypergraph, where 

each node represents an entity described in the set of UML structural diagrams, and each 

hyperarc represents a relation between entities. IM nodes have attached a set of attributes, 

describing the fault activation and the repair processes. (3) Built a TPN dependability 

model, by generating a set of subnets for each element of the IM. 

The drawback of this work is that it does not separate the concept of service from service 

provider. In other words their work is directed towards the system availability rather than 
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the service availability. Our analysis is quite different by nature since, for instance in our 

analysis, the same failure on a service provider entity can have different impacts on 

different services. And the recovery time and the outage times are not the same for all the 

services. 

The authors in  [34] present and analyze a colored stochastic Petri net model of a 

redundant fault-tolerant system. Their measure of interest is service availability. They 

defined service availability as the number of successfully completed jobs relative to the 

total number of arrived jobs. They determine service availability by modeling the system 

as a simple queuing system processing jobs/requests using a stochastic colored Petri net. 

More specifically, they model environments with a completely reliable queue and servers 

that are subject to single points of failure, i.e., the model incorporate failure and repair. 

They conclude their analysis with the realization that for high utilization one redundant 

server should be added if possible. This will greatly improve service availability of the 

system. The positive effect certainly is supported by the fact that an additional server 

reduces the load on the system. For high utilization adding more than one redundant 

server certainly has a positive effect but at much lower degree.  

The interesting part of this work is being able to determine how many extra redundant 

components are needed to satisfy a certain availability requirements. Of course in our 

domain several factors must also be considered such as the redundancy model used and 

the components categories etc. 

The authors in  [35], present a UML profile called DAMRTS (Dependability Analysis 

Models for Real-Time Systems) representing an extension to the reference metamodels of 
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the OMG profile for “Schedulability Performance and Time” (SPT). The objective is to 

provide the concepts to specify a real-time system with stochastic and probabilistic 

information allowing the dependability analysis of the system. The authors extend the 

UML class diagram with the Indicator and Cause classes. The attributes of the indicator 

class relate to the dynamic aspect of the resources being described. The attributes of the 

Cause class indicate whether an associated failure became true or not. The authors also 

propose an extended semantics of UML statecharts related to probabilistic timed 

automata (timed automata are discrete transition systems extended with a notion of time). 

The UML statecharts are then easily convertible to probabilistic timed automata. The aim 

is to verify formally probabilistic temporal properties related to the dependability of real-

time systems. 

In  [25] the authors have proposed a UML Dependability Analysis Modeling (DAM) 

profile to support the assessment of the dependability of real-time embedded systems 

(this work builds on the knowledge presented in  [36]). The profile conforms to the 

MARTE profile, issued by the OMG and, in particular, the basic concepts of 

dependability defined in the DAM profile are expressed in terms of complex non-

functional properties (NFP). The DAM profile specifically addresses the quantitative 

evaluation of dependability and the notions introduced in the profile should complement 

the ones defined in the QoS&FT sub-profile, which supports instead the specification of 

FT software architectures. However the authors present the profile as a mean to specify 

the dependability related specifications of a system, but did not discussed the issues 

related to the derivation of dependability analysis models. The authors illustrate the use 

of this profile for the dependability analysis in  [26]. The objective of this work is similar 
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to ours. However in order to reuse their approach we would have to map to the concepts 

of the AMF into the concepts of their domain model which is not a straight forward task, 

since we have many concepts in AMF that are not supported in the DAM profile, such as 

the definition of different component categories, the different redundancy models and 

their semantics etc. Such nuances affect the runtime behavior of AMF in terms of the 

availability management and thus must be considered in the availability analysis. In short, 

in order to reuse their approach we would have to modify their model to fit our 

requirements, and we would still need to model the runtime behavior of AMF from 

scratch. Therefore we decided to remain with the standard AMF model and introduce 

minor extensions instead of shifting to a different model. 

 The work presented in  [37] focuses on the dynamic modeling of degrading and 

repairable complex systems. The authors propose the extension of Stochastic Petri nets 

(SPNs) with aging tokens. The reason why aging tokens are introduced is because in 

existing SPN formulations, memory was associated solely with transitions, which 

resulted in certain difficulties in modeling the changes in the system configuration while 

preserving the memory. The concept of aging tokens is introduced to improve the 

dependability modeling flexibility and clarity of SPNs. Aging tokens can be viewed as a 

natural extension of colored Petri nets since they are effectively token labels that are 

allowed to change not only discretely upon the firing of the token, but continuously in the 

process of enabling a certain transition that has a matching policy. This work proved that 

aging tokens can be used to replace marking-dependent firing policies. 
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The authors in  [38] analyze the dependability of an electromechanical system (sprinkler 

system) in the presence of two modes of failures. The on-demand failure mode is when 

the system fails to start, and the active failure mode is when the system fails during its 

operational phase. The authors used dynamic fault trees, which extend traditional fault 

trees by including special constructs to represent sequential relationships between events. 

A new construct, DDEP (demand dependency), represents the dependencies between the 

components in the demand phase and its support components in the standby phase, where 

a component in the demand phase can require the availability of one or more support 

components in order to commence operation. The system was modeled in dynamic fault 

trees and then it was analytically solved using Markov chains. 

In summary the work on system availability evaluation has been ongoing for decades 

now; the list of related work in this domain tends to be significantly large in numbers and 

scope. However the closest related works for our domain are either focused on one hand 

on defining and solving the mathematical (stochastic) models of the system in order to 

predict its availability  [39] [40] [41] [42], or on the other hand on using/extending UML to 

support the modeling of the availability features of the system, and then use the UML 

model to generate a mathematical model that in turn must be solved  [43] [44] [45] [46]. 
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4 Generating AMF Compliant 
Configurations 

In a previous work  [47], we devised and implemented an approach for the configuration 

generation of AMF compliant configurations. This work was the first step in tackling the 

problem of mastering the complexity of creating AMF compliant configuration through 

automation. In the previous approach several assumptions were made that would burden 

the configuration designer.  In this dissertation we present a different approach that is 

sounder and more complete for configuration generation.  

The contributions described in this chapter can be summarized as follows: 

(1) Defining a UML domain model for specifying the configuration requirements 

(2) Defining a method for detecting and specifying dependencies at the input level 

(3) Defining a top-down configuration generation method based on the configuration 

requirements and other input. 

(4) Defining how to extend our generation in order to generate multiple 

configurations based on the same input. 

In the rest of this chapter we will illustrate the need for each of the contributions and the 

challenges encountered in achieving them. Note that contributions (1) and (2) are 

prerequisites for the configuration generation method.  
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4.1 Overview of Creating AMF Configurations 

A typical AMF managed system has the following properties: it is expected to provide a 

set of services with a certain protection level. These services are provided by 

components, which are grouped to enable the service provisioning and protection. Finally 

the software is deployed in a distributed manner on a cluster of nodes. The configuration 

designer is expected to know the services that the system should provide. For example 

the designer will know that the system is expected to provide a service of type “web 

service” for a certain number of users. The designer will then map this information into 

the proper SIs/CSIs (e.g. an SI can be a grouping of two CSI, HTTP-CSI and APP-Server 

CSI. In order to further divide the workload, each SI can represent the workload coming 

from a certain range of source IP addresses that can be specified in the CSI’s attributes). 

Specifying each SI/CSI individually is complicated and time consuming task. The next 

phase would be to look into the available software, and process the ETF file(s) (the ETF 

files are provided by the software providers (vendors, developers, etc.)) to find the proper 

component types and SU types that can support the CSIs and the SIs. In order to figure 

this out, the designer has to calculate the expected load of CSIs/SIs that each component 

and SU must be able to handle, and accordingly select the proper types. Certain 

dependencies may apply according to the selection which may trigger further selections 

and SI/CSI creation, for this purpose the designer has to thoroughly examine the ETF file 

and make sure to handle all the dependencies. Moreover, SIs may have different 

priorities, where for example the SIs representing paying customers should have a higher 

level of availability then other SIs. For this purpose the designer may want to provide 

more protection for such SIs by protecting them in different SGs with more redundancy. 
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After the type selection the designer has to figure out the number of entities needed (e.g. 

number of components of a certain type per SU etc.), and then proceed by creating them 

while making sure that the configuration complies to all the AMF specification 

requirements in terms of how entities can be grouped and how dependencies should be 

captured etc. This is just an overview of the process of creating AMF configurations 

without going exhaustively into its details. In short, the process of creating AMF is 

complicated, time consuming and requires deep domain knowledge. Designing such a 

configuration in an ad-hoc manner is extremely challenging and error prone, even for 

relatively small systems consisting of a cluster having few nodes.  

4.2 Overview of Automatic Generation of AMF Configurations 

The objective of the automation is to overcome the complexity of generating 

configurations compliant to the AMF specification. We have defined our configuration 

generation process as follows: on the requirement side the configuration generator 

specifies a set of services (the SIs and their CSIs) and the corresponding protection level, 

as well as the cluster description in terms of the available nodes.  The description of the 

(available) software capable of providing these services is provided through one or many 

ETF files. When this input is specified, the configuration generation engine will process 

it and subsequently generate the corresponding AMF configuration that satisfies the 

requirements and enables AMF to manage the provision of these services in a highly 

available manner. An overall view of the configuration generation process is shown in 

Figure  4-1. 
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Figure  4-1 Overall view of the AMF configuration generation 

Our configuration generation approach consists of three main steps: 

(1) Collect the configuration requirements and make sure they are consistent and 

complete 

(2) Select the proper ETF types capable of satisfying the requirements 

(3) Create the AMF configuration based on the selected ETF types and the 

requirements 

4.3 The Configuration Requirements (CR) 

Collecting the configuration requirements is an interactive stage of our approach where 

the configuration designer specifies the requirements according to a CR model. If further 

specifications are deemed necessary based on the dependency analysis, then the input 

will be augmented with the missing information.   
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4.3.1 Why a CR Model? 

The services to be provided by the AMF managed system are abstracted in the form of 

SIs and CSIs. In large systems with hundreds of nodes hosting several applications, the 

number of SIs and respectively CSIs tend to be significantly large. Among these SIs, 

some share the same characteristics such as their service type, or the level of protection 

the designer wishes to give them (e.g. number of standby assignments etc.). Similarly, 

each cluster node must be specified in the AMF configuration, this specification includes 

information about the node resource capacities as well as repair and recovery 

information. In clustered systems, the nodes or the subsets of nodes are typically 

identical, and therefore it is possible to describe these nodes in a generic way. In short 

specifying each node, SI and CSI individually is a demanding and time consuming task 

that diminishes the values of the time/effort saving aspect of automating the process of 

configuration generation. Therefore we need a generic way to specify the nodes, the SIs 

and their CSIs sharing common features. We defined the CR model to target this issue of 

enabling the configuration designer to specify the input in a structured and generic 

manner. This is later on mapped (during the configuration generation process) to the 

instance level description (the individual SI/CSI level) that must be included in the AMF 

configuration. 

The CR model is expressed as a UML domain model that includes a class diagram that 

structures the required input and constrained by a set of Object Constraint Language 

(OCL)  [48] constraints that are used to validate the consistency of the input, and make 

sure that no AMF concepts are violated.  
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The rationale behind using UML to define the CR model can be summarized as follows: 

(1) the AMF model is standardized as a UML class diagram and therefore by using the 

same language we can easily map the concepts defined in the CR model to the AMF 

concepts in a consistent manner. (2) UML provides the artifacts needed to structurally 

specify our model and annotate it with the proper constraints. (3) UML is widely 

accepted standard for object-oriented modeling and therefore it is supported by a wide 

range of CASE tools, which facilitates the implementation aspect of our approach.  

4.3.2 The CR Domain Model 

The objective behind defining the CR model is to facilitate the specification of a large 

number of entities at the input level. For this purpose we have used the notion of 

templates to specify the entities that share common features. Whereby an instance of the 

template would include those features and the number of replicas that must be created 

based on the template. The three main templates of the CR model (shown in Figure  4-3) 

are the SI template, the CSI template and the node template. For example the SI template 

holds all the information relative to a single SI generated from the template. Depending 

on the redundancy model according to which we wish to protect the SI, the number of 

active and standby assignments varies, and the SI template allows the configuration of 

those numbers. Within the same SG, if the number of SIs of a certain service type is 

proportional to the number of other SIs of a different service type, we defined the notion 

of the proportional SI template, which is a specialization of the SI template. In other 

situations where the proportionality is not applicable then the regular SI template can be 

used. In an AMF configuration, an SI groups CSIs, similarly in our CR model, the SI 

template groups CSI templates. The semantics of our grouping is as follows:  Each SI 
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generated from the SI template will group the number of CSIs specified in each of the 

CSI templates the SI template groups. For example, if an SI template with 5 SIs groups a 

CSI template with 3 CSIs, then each of the 5 SIs generated from the SI template will 

group 3 CSIs generated from the CSI template. The same approach is used with the node 

template to generate the node entities at a later stage. 

Specifying the SIs/CSIs through templates is the first objective of the CR model; the 

second objective is to be able to specify the protection level required for each set of SI 

templates. For this purpose we have defined the SG template. The SG template specifies 

the required properties (e.g. redundancy model) of the SG that is expected to protect the 

SIs of the SI templates grouped within this SG template. If further information about the 

protection level is needed (e.g. the number of active assignment in an NwayActive 

redundancy model), it can be specified per SI template. This is completely aligned with 

the AMF specifications, where in the same SG different SIs may have different number 

of assignments (if the redundancy model allows it). The third and final objective of the 

CR model is to allow a flexible method of specifying the grouping of SIs per SG and 

application. In other terms, we want to give the configuration designer the flexibility of 

specifying which SIs can be serviced within the same application, and the distribution of 

SIs per SG. For this purpose we defined the notion of Administrative Domain with the 

following semantics: The SIs that are generated from SI templates that belong to different 

Administrative Domains must not be served by the same application instance. In order 

not to limit the SIs of the same template to be protected by only one SG, we allow (in the 

regular SI template) the specification of the minimum and maximum number of SIs per 

SG. For instance if within SI template SITa we specify the number of SIs to be 10, and the 
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maximum number of SIs (of this SI template) per SG to be 4, then we will generate 3 

SGs in the AMF configuration to support the SIs of this SI template. However if within 

the same SG template of SITa we define SITb with 10 SIs and a minimum of 5 SIs per SG, 

then a maximum of 2 SGs can support the SIs of this template. In such case we have a 

conflict where the maximum of 2 is less than the minimum of 3 SGs (needed to support 

SITa). In other words we must not allow the configuration designer to specify conflicting 

information. For this purpose, and to make sure that the input does not violate any AMF 

constraints, we annotated our UML class diagram with various OCL constraints that can 

detect conflicting information either with the semantics we assigned to the CR model, or 

the semantics of the AMF specifications. For instance the OCL constraint shown in 

Figure  4-2 is applied to the SG template to detect the conflict between the minimum and 

maximum number of SIs across the SI templates of an SG template. 

 

Figure  4-2 Example OCL constraint for the SG template 
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Figure  4-3 The UML class diagram of the CR model 

4.3.3 Specifying and Analyzing Dependencies 

Before explaining our approach for detecting and specifying the dependency, it is 

essential that we present and explain the dependency in AMF. In AMF managed systems, 

service providers are mainly software component instances (i.e. running processes) that 

collaborate and interact with each other to provide the services that are assigned to the 

service provider. A service provider that is not assigned any workload is basically idle, 

and not providing any service. Note that a service provider is either a component or an 

SU (which is basically a group of components), for simplicity’s sake we will remain at 

the abstraction level of service provider. 



47 
 

The service provider types in AMF are derived from the ETF file service provider types. 

The ETF service provider type specifies the service types it can provide, and whether it 

can provide them independently, or it depends on other service provider types that we 

refer to as sponsoring service provider types. Any service provider must be assigned a 

workload for each service it is expected to provide. When the service consists of 

sponsoring another service provider (e.g. proxying a proxied component) then the 

sponsor service provider must be assigned a sponsoring workload. The type of the 

sponsoring service is also specified by the software vendor through ETF. 

The software dependency can be specified in two different directions, either the 

dependent specifies the sponsor service provider type, and the sponsoring service type, or 

the sponsor will specify the dependent service provider type it can sponsor and the 

corresponding sponsoring service type. The latter direction is typically used in ETF when 

describing the prototype of a proxy software component that is developed to proxy 

another software component2. We also distinguish between total and partial dependency. 

In a total dependency the dependent depends on the sponsor in order to provide any 

service, e.g. if the dependent is contained in a virtual machine, it cannot operate or 

                                                 

 

 

2 For example, when a software component is developed to proxy a legacy software component the latter 

one would be unaware of the proxy component. 
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provide any service until the sponsoring virtual machine is instantiated. In partial 

dependency the dependent only depends on the sponsor when providing specific service 

types. In the partial dependency, the sponsoring service provider type is not always 

specified (denoted in dashed borders in Table 4-1). Sometimes, and depending on the 

nature of the dependency, the sponsor service provider prototype is not specified in ETF, 

instead the dependent refers only to the sponsoring service type, and any sponsoring type 

capable of providing the sponsoring service type is a candidate to be selected to satisfy 

this dependency. Table 4-1illustrates the dependency description provided in ETF by the 

software vendor. For example the partial dependency specified in the first row is 

interpreted as follows: In order for a service provider of type X to provide any service of 

type A, it depends on another sponsoring service provider of type Y, to be assigned a 

sponsoring service of type B. And as aforementioned, sometimes only the sponsoring 

service type is specifying without referring to the sponsor service provider type. 

Table  4-1 Service provider type dependencies 

Dependency 

direction 

Dependency order (partial/total)and description 

Dependent 

�sponsor 

Partial 

dependency
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Total dependency 

 

Sponsor � 

dependent 

Total dependency 

 

 

4.3.3.1 Issues and Challenges 

The dependency that is specified in ETF at the service provider type level is actually 

captured in the system configuration at the instance level. In fact the only dependency 
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that can be specified in the system configuration is the service dependency and the 

instantiation dependency of the components. So the challenge here is how to map an ETF 

type dependency into a dependency at the AMF entity level. 

Another issue is that the configuration designer may be unaware of the details of the 

software description including the existing dependencies, in fact one of the motivations 

behind the automated configuration generation is to relieve the designer from the burden 

of exploring the complete software description especially if the system is expected to host 

a significant number of software components. Therefore the designer may fail to specify 

the required sponsoring services, and hence even if the automated process was able to 

locate and include the sponsoring service provider in the configuration, it will not be 

assigned the sponsoring service simply because it was never defined in the first place. 

Finally, it should be noted that the dependency specification consists of two main steps. 

First the required sponsoring services must be defined. And second the dependency 

relation among the dependent and sponsors must be specified. In other words it is not 

enough that the designer specifies the services. The designer must explicitly specify the 

dependency link between the dependent and the sponsoring service(s).  Nonetheless the 

services are defined at the template level. Once again we face the problem of granularity 

that the automation is supposed to handle. So the question here is how can the 

dependency be specified in a generic way without going down to the individual SI/CSI 

level? 
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4.3.3.2 The Dependency Specification Approach 

Our approach for solving the dependency issue consists of an interactive process that is 

based on analyzing both: the configuration designer input (in terms of the already 

specified services and dependencies) and the software description (i.e. available ETF(s)). 

When a service provider type dependency is detected, the input is examined to check 

whether the dependency is satisfied, or whether further actions are needed in order to 

satisfy the dependency. The approach for specifying dependency is illustrated in the 

activity diagram presented in Figure  4-4. The diagram is annotated on the right with 9 

levels, merely to simplify the explanation of the approach. 
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The designer specifies a service

Analyze the software dependency of the selected service provider types

Search within the software description and select the service provider types
that can satisfy the required service type and other criteria

At least one independent service provider type was found No independent service provider types are found

No

Are the required services
and the dependency relations

already defined

The required services (or some of them) and
the dependency relations are missing

The required services are already defined
but the dependency relation(s) is missing

Let the designer create the required services

The designer does not want to use
the existing required service
to satisfy the dependency

The designer wants to use
the existing required service
to satisfy the dependency

Let the designer specify the dependency
Relation among services

More services No more services to be defined

1

4

2

3

5

6

7

8

9

 

Figure  4-4 The dependency specification approach 

Level 1: the designer specifies a service, in practice this specification is 

performed through a (SI/CSI) template, so in fact it is not a single service. The 

services of the same template all share the same service type (or CS type 

depending of the template), and therefore if a dependency is revealed later on, it is 

applicable to all the SIs/CSIs of this template 
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Level 2: The software description file, i.e. ETF is analyzed to find all the 

candidate service provider types that are capable of supporting the service defined 

in Level 1. Mainly a service provider type is selected if it can provide the required 

service type, and satisfy other criteria (discussed further in this chapter).   

Level 3: The selected service provider types may depend on other service 

provider types in supporting the required service type. Therefore this dependency 

must be analyzed. The service provider type’s dependency is described in ETF 

according to Table  4-1. So basically in this analysis step we will extract what are 

the sponsoring service types that are needed to satisfy the dependency. 

Level 4: In fact the approach that will be used to generate the configuration at a 

later stage (whether it is a single or multiple configuration generation), will affect 

the decision made at this level. For instance, if among the service provider types 

selected, we found that several of them are independent and several are 

dependent, then, if the configuration generation approach is an exhaustive one 

that considers all possibilities, then the dependency must be satisfied for all the 

dependent ones. On the other hand, if the configuration generation approach opts 

for at least one independent service provider type, then there is no need for further 

dependency analysis. In either case the general dependency specification 

approach does not change, however, if the decision is made to specify all 

dependencies than the only modification for the approach would be to keep 

looping between Level 4 and Level 8 until every dependency is properly captured.  
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In this section, and for simplicity sake, if at least one independent service provider 

type is found, we do not consider the need to specify any dependency. Moreover 

when no independent service provider type is found, and more than one option of 

the dependent service provider types is found, we opt for specifying the 

dependency for only one of these options. Again specifying all options is simply a 

mechanical process of repeating the same approach over and over again until all 

options are considered. 

Level 5: The service dependency does not necessarily always originate from a 

software functional dependency. And the designer must be given the means to 

specify dependencies among services regardless of the service provider type’s 

dependency. However it might happen that the dependency that is already 

specified by the designer satisfies a selected service provider type dependency.  

Level 6: As discussed in the previous section, the dependency specification 

consists of (1) defining the sponsoring services (2) defining the dependency 

relation that links those services. So basically at this level of our approach, we 

might find that either the sponsoring services are already fully defined but it is the 

dependency relation that is missing, or, neither the sponsoring service nor the 

dependency relation is defined and the designer needs to specify both. 

Level 7: Even if all the sponsoring services are already defined. The designer may 

either choose not to use them and define new sponsoring services specifically for 

satisfying the dependency. Or use the existing sponsoring services and proceed to 

defining the dependency relation. 
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Level 8: the designer will specify the required sponsoring services, the service 

type of these services is already determined in the step illustrated in Level 3. So 

basically we will guide the designer by already letting her know the service type 

to be specified in the template. 

Level 9: At this level the designer simply needs to specify the dependency 

relation among the already defined sponsoring services and the dependent ones. 

If there are more services to be defined, the same approach is repeated. 

4.3.3.3 The Dependency Relation Specification Mechanism 

Once the sponsoring service type is revealed, specifying the dependency relation between 

a dependent service and a sponsoring service consists of linking the two services through 

a dependency relation. But what if there are 2 sponsoring services, then a dependency 

relation must be defined for each.  In general, we might have N services of a dependent 

service type, that depend on M services of the sponsoring service type. Since ETF 

describes the dependency at the type level, and provides no information about the 

cardinality of the dependency (i.e. how many of the N service depend on how many of 

the M service, e.g. should each X of the N services depend on 1 on the M services?), then 

it is up to the configuration designer to figure out and specify this dependency relation for 

each service according to the semantics of the service. 
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Figure  4-5 A dependency relation between two sets of services 

Figure  4-5 illustrates an example of a dependency specification between two sets of 

services. In the first set, the services are of a dependent service type, and in the second 

set, the services are of sponsoring service type. In summary it is up to the designer to 

figure out the dependency relation and link the two sets, we assume that the designer 

knows the dependency relation according to the application specificities and we offer the 

support for specifying the dependency relation, i.e. linking the dependent services to the 

sponsoring ones. 

Linking two sets of services is a demanding task if done individually on each of the set’s 

elements. Therefore we need a notation to ease this task and raise the level of abstraction 

to the set level rather than the elements level. The challenging part is that the semantics 

of the relation vary from one relation to another; moreover the cardinality of the sets is 

also a variant.  

In order to solve this problem we resort to relational algebra. Relational algebra is a 

formalism for creating relations among sets  [49]. It has a strong formal foundation based 

on first order logic. A well-established language that is based on first order logic and 

supports the relations defined in relational algebra is the Structured Query Language 
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(SQL)  [50]. SQL is a query language for relational databases. Our approach to solve the 

dependency specification is to leverage the capabilities of SQL in specifying the 

dependency relation by transforming our services into database records. The main 

objective is to give the designer means by which she can specify the dependency relation 

in a generic manner. 

The dependency specification approach is as follows: first the services created as an 

instance of the CR model are stored in a database table as data records. Each SI/CSI is 

characterized by a base name (which is the template name and an index [between 1 and 

number of SIs/CSIs in the template). When it is time to specify the dependency, the 

configuration designer will specify three SQL queries specifying (1) the sponsoring set 

(which will create a database table holding this set), (2) the dependent set (which will 

also create a database table holding this set), and finally (3) the relationship between the 

sets representing the dependency. For example the relationship shown in Figure  4-5 can 

be specified through the below SQL query: 

 

Finally the dependency relation will produce a record set where each record consists of 

the sponsor and dependent service (SI or CSI, note that the same sponsor or dependent 

can appear in more than one record). This dependency information captured in the record 

set is then mapped into a service dependency in the instance of the CR model for which 

we are specifying the dependency. 
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4.4 Generating AMF Configurations 

The overall process of generating configurations is shown in Figure  4-6. After specifying 

a complete CR information (with the proper dependencies specified), the following steps 

consist of (1) select the proper ETF types that can handle the requirements (2) create the 

AMF configuration based on the selected ETF types and the requirements.  

The ETF types may specify capacity limitations on the component types and SU types. 

Therefore before being able to select the proper ETF types, a prerequisite step is needed. 

This step consists of determining the expected load of SIs per SU. Knowing the load is 

crucial (1) for evaluating the candidacy of certain ETF types, and (2) to determine the 

needed number of components and SGs to be created during the creation of the AMF 

configuration.  
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Figure  4-6 Configuration generation process 

4.4.1 Determining the SI-Load an SU Is Expected to Support 

In our CR model, each SG template can group multiple SI templates. The SIs of these 

templates are expected to be protected by one or multiple SGs, the number of SUs within 

each of these SGs is induced from the number of active/standby/spare SUs specified in 

the SG template. The question we need to answer here is: what is the minimum number 

of SIs of each SI template an SU of these SGs is supposed to be able to handle? We call 

this the minimum load of SIs the SUs is expected to handle. As we will see later on, this 

load is extremely important for the type selection, since ETF types may have limited 

capacity in terms of handling the SI/CSI load. This load is calculated according to a 

process of three steps. 
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Step 1: calculate the maximum number of SGs that are allowed to protect the SIs of a particular 

SG template 

The reason why we need to know the maximum number of SGs is because we are 

looking at the minimum load of SIs an SU is expected to handle. And therefore by 

spreading the SIs over greater number of SGs, we decrease the density of SIs per SG, and 

subsequently the SG’s SUs will have less SI load to handle. 

The regular SI template specifies the minimum number of SIs that is required to be 

present within any single SG protecting this SI template SIs. 

1. Integer minMAX = Integer.maxValue; // assigning an initial very large value 

2. Integer min = 0; 

3. FOR each MagicCrRegularSiTemplatei grouped by the MagicCrSgTemplate  

a. min = Ceil 

(MagicCrRegularSiTemplatei.magicCrRegSiTempNumberofSis / 

MagicCrRegularSiTemplatei.magicCrRegSiTempMinSis); 

b. IF min < minMax THEN minMax = min EndIF 

4. EndFOR 

5. IF minMax > MagicCrSgTemplate.magicCrPropSgTempFactor THEN 

a. minMax = MagicCrSgTemplate.magicCrPropSgTempFactor;  

6. EndIF // the max number of SGs cannot be greater than the factor. 
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Algorithm 1 Calculating the maximum number of SGs 

In Algorithm 1 we calculate the maximum number for SGs for each SI template (at 3.a). 

However we are interested in the maximum number of SGs allowed for the SG template 

and not simply a single SI template of the template and that is why we go for the 

minimum of all the maximum number of SGs (at 3.b). For proportional SI templates the 

number of SGs should not exceed the factor (at 5, 5.a). 

Step 2: for each SI template determine the number of SIs that will be distributed on each SG 

Based on the maximum number of SGs calculated in Step 1, in this step we determine the 

number of SIs from each template that will be assigned to each SG.  

1. FOR each MagicCrSiTemplateigrouped by the MagicCrSgTemplate  

a. IF MagicCrSiTemplatei is a MagicCrRegularSiTemplate THEN 

i. MagicCrSiTemplatei.expectedSIsperSG = Ceil 

(MagicCrRegularSiTemplatei.magicCrRegSiTempNumberofSis / 

minMax); // the minMax is calculated from Step 1 

b. ELSE 

i. MagicCrSiTemplatei.expectedSIsperSG = 

MagicCrSiTemplatei.magicCrPropSiTempProportion * 

Ceil(MagicCrSgTemplate.magicCrPropSgTempFactor / minMax); 

c. EndIF 
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2. EndFOR. 

Algorithm 2 Calculating the number of SIs per SGs 

In Algorithm 2 we use the ceil value, since we are interested in the maximum number of 

SIs a certain SG may protect. We make the assumption that all the SGs protecting the SIs 

of the SI templates of a particular SG template are identical, and we create the 

configuration accordingly. 

Step 3: Distribute the SIs protected by an SG over the SG’s SUs 

Now that we know what is the minimum number of SIs an SG must handle (from Step 2), 

we need to determine the load of SIs that each SU of the SG is supposed to support. In 

this analysis the SIs active and standby assignments are equally distributed among the 

SG’s active and standby SUs. In case of Nway redundancy the SUs we don’t distinguish 

between active and standby SU, however we still assume that the active and standby 

assignment will be equally distributed among the SG’s SUs. That is, the SIs of each 

template are assumed to be equally distributed among the SG SUs. 

We also include in this analysis the number of active and standby assignments the SUs 

are supposed to have on behalf of the SIs, e.g. if an SI has 2 active assignments than the 

active load it imposes on the SUs is doubled. 

1. Integer isFaultTolerant; // can assume one of two values, either 0 or 1. 

2. FOR each MagicCrSiTemplateigrouped by the MagicCrSgTemplate  
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a. IF MagicCrSgTemplate.magicCrSgTempRedundancyModel = Nway or 

NwayActiveTHEN 

i. MagicCrSiTemplatei.activeLoadperSU = ceil 

((magicCrSiTemplatei.expectedSIsperSG * 

MagicCrSiTemplatei.magicCrSiTempNumberofActiveAssignment

s) / (MagicCrSgTemplate.MagicCrSgTempNumberofActiveSus – 

isFaultTolerant)); 

ii. MagicCrSiTemplatei.stdbLoadperSU = ceil 

((magicCrSiTemplatei.expectedSIsperSG * 

MagicCrSiTemplatei.magicCrSiTempNumberofStdbAssignments) 

/ MagicCrSgTemplate.MagicCrSgTempNumberofActiveSus); 

b. ELSEIF MagicCrSgTemplate.magicCrSgTempRedundancyModel = 2N 

or N+M THEN 

i. MagicCrSiTemplatei.activeLoadperSU = ceil 

(magicCrSiTemplatei.expectedSIsperSG / 

MagicCrSgTemplate.MagicCrSgTempNumberofActiveSus); 

ii. MagicCrSiTemplatei.stdbLoadperSU = 

ceil(magicCrSiTemplatei.expectedSIsperSG) / 

MagicCrSgTemplate.MagicCrSgTempNumberofStdbSus; 

c. ELSEIF MagicCrSgTemplate.magicCrSgTempRedundancyModel = No 

redundancy THEN 
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i. MagicCrSiTemplatei.activeLoadperSU = 1;  

ii. MagicCrSiTemplatei.stdbLoadperSU = 0; 

d. EndIF 

3. EndFOR 

Algorithm 3 Calculating the load of SIs per SU 

Each SU within the SG is expected to be able to support the active load and standby load 

(calculated in Algorithm 3) for each SI template of the SG template. 

4.4.2 Top-Down Type Selection Criteria 

In the previous approach discussed in  [47], the type selection was performed using a 

bottom up approach that starts by selecting the component types and works its way up to 

the application type. However this approach would group together component types that 

belonged to different SU types and therefore they may not be suitable for this grouping. 

To rectify this issue we propose here a Top-down approach that starts at the application 

type level and works its way to the component type. Moreover we relaxed some 

assumptions made in  [47] such as having the same service type of SIs of the SG. As a 

result our search algorithm was modified to accommodate the new requirements. Note 

that in ETF not all types are mandatory, in other words if there are no restrictions on how 

a type can be grouped, then a parent type is not needed, we refer to such unrestricted 

types as orphan types that are not grouped by parent types. In such case our configuration 

generation method will create the missing types as AMF types. 
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4.4.2.1 Application Type Selection 

The selected application type must simply group a proper SG type, i.e. an SG type that 

satisfies the SG type selection criteria discussed next. 

4.4.2.2 SG Type Selection 

The selected SG type must support the proper SU type (by proper we mean that it 

satisfies the SU type selection criteria discussed next), in addition it must have the 

redundancy model specified by the SG template. 

4.4.2.3 SU Type Selection 

Any selected SU type must support all the service types specified by the SI templates of 

an SG template, in addition the component types of the SU type must support all the CS 

types specified in all the CSI templates of all the SI templates of a given SG template, 

with the required capacity. 

4.4.2.4 Component Type Selection 

In order to determine the proper component type, it needs to satisfy three criteria: 

� It needs to provide the required CS type (i.e. the CS type specified in the 

CSI template). 
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� It needs to have the appropriate capability model with respect to the CS type for 

which the component type is selected. For instance, if the components of this 

component type are to be used in an SG that has a redundancy model of Nway, 

then the component type’s capability model should be x_Active-and-y_Standby. 

� It needs to have the required capacity in supporting all the CSIs of the required CS 

type. This capacity is determined by two factors: (1) the component capability 

model with respect to the CS type. (2) The maximum number of components of 

this component type in a single SU.This is applicable if the component type has a 

parent SU type that limits the number of components of this type per SU. Hence 

the above mentioned capacity is a product of the two factors. 

A prerequisite step to determining the eligibility of a component type, is to determine the 

CSI load of each CS type the components of this component type are expected to provide.  

In order to calculate the load of CSIs of each CS type, we first create a list of all the CS 

types in the SG template, and then we associate with each CS type the load of CSIs that 

refer to it. Only one component type is used to support a particular CS type. 

1. LIST cstList // an empty list that will hold the CS types 

2. FOR each MagicCrSiTemplateigrouped by the MagicCrSgTemplate  

a. FOR each MagicCrCsiTemplatejgrouped by MagicCrSiTemplatei 

b. IF MagicCrCsiTemplatej.magicCrCsiTempCsType �cstList THEN 

i. Add MagicCrCsiTemplatej.magicCrCsiTempCsType TO cstList 
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c. EndIF 

3. EndFOR. 

Algorithm 4 Creating the list of all the CS types that are referred to by the CSI templates of an SG template 

Now that we have a list of all the CS types that the components of any SU within the SGs 

(The SGs that will be created to protect the SIs of the SI template of a SG template) must 

support, we will calculate the load of CSIs associated with each CS type. 

1. FOR each CS typeithat belongs to cstList 

a. FOR each MagicCrSiTemplatejgrouped by the MagicCrSgTemplate  

i. FOR each MagicCrCsiTemplatekgrouped by MagicCrSiTemplatej 

1. IF MagicCrCsiTemplatek.magicCrCsiTempCsType = CS 

typei THEN 

a. CS typei.activeLoadperSU += 

MagicCrSiTemplatej.activeLoadperSU * 

MagicCrCsiTemplatek.magicCrCsiTempNumberof

Csis; 

b. CS typei.StdbLoadperSU += 

MagicCrSiTemplatej.stdbLoadperSU * 

MagicCrCsiTemplatek.magicCrCsiTempNumberof

Csis; 

2. EndIF 
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ii. EndFOR 

b. EndFOR 

2. EndFOR 

Algorithm 5 calculating the load of CSIs associated with each CS type 

In the component type selection process, any component type selected to support a 

certain CS type, must also have the capacity to support the load associated with the CS 

type. It should be noted here that the limited capacity does not apply to orphan 

component types since they have unlimited capacity because they do not belong to an SU 

type that would limit the number of components of this component type in an SU. 

4.4.3 Creating AMF Types and Entities 

After selecting the proper ETF types, our method proceeds by creating the AMF types 

that are derived from the ETF types. The mapping from the ETF types to the AMF types 

is performed by creating an AMF type and assigning the attribute values of this type the 

values specified in the corresponding ETF type. In case of the ETF attributes where a 

range is specified instead of a specific value, then we go with the upper limit of the range. 

In case of the orphan ETF types that are selected, we create an AMF type that groups the 

orphan types. 

After creating the AMF types, it is important to determine the number of entities of each 

type we must create. The number of applications does not have an upper limit. The 

number of SGs per SG template is bounded by a minimum and a maximum as we have 
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seen in Section 4.1. The number of SUs per SG is predefined and specified in the SG 

template. Finally the number of components needs to be determined.  

4.4.3.1 Creating Applications 

By definition, the SIs of the templates of the same administrative domain can belong to 

the same application, however if for a single administrative domain more than one 

application type is needed (this is the case when the proper SG types of the SG templates 

of the administrative domain belong to different application types). Than we create as 

many applications as the number of proper application types selected. 

4.4.3.2 Creating SGs 

It is important here to note, that in Section 4.1 we calculated the maximum number of 

SGs, but we still don’t know what the minimum required number of SGs is. The required 

number of SGs is not necessarily the maximum. If that is the preference then we can 

proceed and always create the maximum number of SGs. However this will increase the 

size of the configuration and thereafter may increase the administrative complexity, e.g. 

when upgrading, there will be more SGs, SUs and other entities to upgrade. If on the 

other hand the preference is to minimize the number of SGs of a selected SG type, then 

we propose the following approach: 

(1) If the selected component types have unlimited capacities (e.g. they are orphans), 

then we can go with the minimum number of SGs. The minimum number of SGs 

is calculated based on maximizing the number of SIs protected by each SG. 

1. Integer maxMin = 0; 
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2. Integer max = 0; 

3. FOR each MagicCrRegularSiTemplatei grouped by the MagicCrSgTemplate  

a. max = Ceil 

(MagicCrRegularSiTemplatei.magicCrRegSiTempNumberofSis / 

MagicCrRegularSiTemplatei.magicCrRegSiTempMaxSis); 

b. IF max > maxMin THEN maxMin = max EndIF 

4. EndFOR 

5. IF maxMin > MagicCrSgTemplate.magicCrPropSgTempFactor THEN 

a. maxMin = MagicCrSgTemplate.magicCrPropSgTempFactor;  

6. EndIF // the min number of SGs cannot be greater than the factor. 

 

Algorithm 6 calculating the minimum number of SGs 

(2) If the component types have limited capacities (i.e. they belong to an SU type). 

Then we can calculate the maximum component type capacity, and based on that 

we figure out the maximum capacity of the parent SU type in supporting the SIs 

of each SI template. However the problem with using this approach is that it 

cannot solve the complexity of our problem. This problem maps to the knapsack 

problem, where the SU capacity represents the sack, and the different load of 

CSIs each SI presents represents the weights. And therefore this problem is NP 

complete, and cannot be solved in polynomial time. 
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4.4.3.3 Overcoming the Complexity of Calculating the Required 

Number of SGs 

In order to avoid the complexity of this problem, we use a different approach and instead 

of starting with the SU capacity to calculate the minimum required number of SGs, we 

start by looking for the minimum required number of SGs, and then check if the SUs 

capacity can handle that minimum. In other words, since, we know by now how to 

calculate the minimum and maximum allowed number of SGs, the question is how to 

determine within this range the minimum required number of SGs. The solution of our 

search problem comes in the form of a binary search algorithm that works as follows:  

1. Integer newMinRequired = 0; 

2. Integer answer = 0; // holds the final value of the minimum required number of 

SGs 

3. Integer maxMin; // equals the value obtained by running Algorithm 6.  

4. Integer minMax; // equals the value obtained by running Algorithm 1, or 

maxMin+1 if unbounded 

5. IF the selected SUT can handle the load of SIs based on maxMin THEN 

a.   answer = maxMin; Exit; 

6. EndIF 

7. While (TRUE) 

a.   newMinRequired = Floor((maxMin + minMax)/2); 
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b. Calculate the load of SIs per SU based on newMinRequired 

// this includes repeating the steps in Algorithms 2�5 

c.  IF the selected SUT can handle the new load of           SIs THEN 

// decrease the # of SGs 

i. newMinRequired --; 

ii. Calculate the load of SIs per SU based on 

newMinRequired  

iii. IF the selected SUT cannot handle the new load of 

SIs THEN 

1. answer = newMinRequired +1; 

Break; 

iv. ELSE // the SUT can still handle the load, so we 

need to decrease furthermore the # of SGs 

1. minMax = newMinRequired; 

v. EndIF 

d. ELSE // the selected SU cannot handle the load, so we 

increase the number of SGs 

i. newMinRequired ++; 
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ii. Calculate the load of SIs per SU based on 

newMinRequired  

iii. IF the selected SUT can handle the new load of SIs 

THEN 

1. answer = newMinRequired; Break; 

iv. ELSE // the SUT still cannot handle the load, so we 

need to increase furthermore the # of SGs 

1. maxMin = newMinRequired; 

v. EndIF  

e.   EndIF 

8. EndWhile 

Algorithm 5 Calculating the minimum required number of SGs 

The algorithm above will perform a binary search between the minimum and maximum 

number of SGs. For each iteration, the load of SIs per SU will be revaluated based on the 

modified number of SGs. Then the SUT will be re-examined based on its capacity. The 

process will continue until we find the minimum required number of SGs. The 

assumption here is the each SI template of the SG template will impose an equal load of 

its SIs on the SUs of the SG. 
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4.4.3.4 Creating SUs 

The number of SUs to be created within an SG is rather simple; it is simply the sum of 

the number of active/standby/spare SUs specified by the designer in the SG template. 

4.4.3.5 Creating components 

Based on the minimum required number of SGs calculated in Section 4.3.2, we repeat the 

analysis done in Sections 4.4.1 and 4.4.2.4 to determine the exact CS type load of CSIs 

the selected component type is expected to handle. And based on this number and the 

max capacity of the component type (active and standby), we can determine the required 

number of components of the selected component type. 

4.4.3.6 Creating the Nodes and the Cluster 

The number of nodes to be created is specified in each node template. We have only one 

cluster that can be created based on the CR information. The SUs are distributed on the 

nodes in a round robin manner in order to guaranty (as much as possible) hardware 

redundancy, whereby we try not to distribute two SUs of the same SG on the same node 

(if the number of nodes is large enough to allow it). 

4.4.3.7 Populating the Configuration Attributes with the Proper 

Values 

The attribute values of the AMF configuration come from various sources listed below 

� User specified: these values are specified by the configuration designer for the 

services and the cluster, and they are directly mapped to the created entities. 
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� ETF mapped: most of the types’ attribute values are specified or bounded by 

ETF. Most of the values of the AMF type attributes are mapped from their ETF 

counterparts. Some of the AMF entities attributes get their default values from 

their types 

� Calculated: some attributes values must be calculated. Those attributes are 

configuration specific and must be calculated within the context of each 

configuration. A good example of such attributes is the attribute that specifies the 

rank of each SU of the SG with respect to a particular SI. This rank specifies 

which SI is assigned to which SU at runtime. It is through this attribute that we 

can guarantee runtime load balancing through the AMF configuration. We will 

discuss this issue in more details in Chapter 5. 

� Undefined: a very small portion of the attribute values remain undefined. This is 

due to the fact that the values of those attributes depend on the specificities of the 

deployment platform. These attributes must be specified manually after the 

configuration is generated. A good example of such attributes is the relative path 

to a Command Line Interface (CLI) command which needs to be adjusted to the 

execution environment where the component will be deployed. (The current 

configuration generation method maps the same value defined in ETF, however 

this value may need adjustments). 

4.5 From One to Multiple Configuration Generation 

Based on a CR instance specified for the configuration generation, more than one AMF 

configuration can be generated, for example consider the case where more than one ETF 
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type supports a required service. Since we do not have any data that favors one type over 

another (e.g. the type reliability or performance) we decided to explore all the possible 

valid configurations for a particular input. The goal is to be able thereafter to compare 

and rank those configurations. Therefore after designing and applying the automatic 

generation of an AMF configuration, we decided to leverage this process and add to it the 

capability of generating multiple configurations. 

There are four main contributors to the existence of multiple valid configurations for the 

same input: (1) multiple ETF type selection options (2) multiple AMF types can be 

created from the same ETF type (3) the number of entities to be created is not fixed (4) 

multiple deployment options. The multiple configuration generation approach is a 

combinatorial one that explores all the possible configurations that can be generated 

based on the same input. And therefore the complexity of the problem grows 

exponentially with more options to explore. In order to reduce the solution space 

explosion and reduce the complexity of the problem, we have made several reasonable 

assumptions among which for instance (1) we do not select multiple component types to 

provide the same CS type within the same SU. The rationale behind this decision is that 

at runtime it is up to AMF to decide which component is assigned which CSI. And if a 

preferable component type was chosen to provide a CS type, then there is no guaranty 

that AMF will assign the CSIs of this CS type to the components of the preferred 

component type, if there are other components of other component types that can do the 

job. (2) We opt for the minimum required entities to be created, as discussed in Section 

4.3.3.2. (3) We do not explore all the possible deployment options. The multiple 

configuration generation approach was designed to identify the selection points for which 
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optimizing criteria need to be identified. In other words, we can design and configure the 

same system in many different ways and yet provide the same functionality. Therefore 

analyzing the non-functional properties of each configuration will provide criteria needed 

to compare and rank AMF configurations according to certain measurements such as the 

availability.  

4.5.1 Approach for Multiple Configuration Generation 

Our approach for multiple configuration generation is based on finding all the types that 

can satisfy the input requirements. For instance, for a given administrative domain AD1, 

one or more application types may be found suitable to satisfy the requirements imposed 

by this administrative domain. In this case for each possible combination of types that 

satisfy the requirements, we build what we refer to as a type stack. A type stack is a set of 

types starting from a set of component types in the bottom of the stack, grouped by an SU 

type that in turn belongs to an SG type that in turn belongs to an application type. For 

each administrative domain multiple type stacks may be built based on how many 

suitable candidate types our search algorithms can find at each level. Note that it is only 

mandatory to have the component types in the type stack. Note that the dependency 

handling differs in multiple configuration generation, since here we are exhaustively 

selecting the candidate types, and therefore for the same SI or CSI template all the 

existing dependencies will have to be specified.  

Figure  4-7 illustrates a multiple configuration generation example where for the same 

configuration requirements comprising multiple administrative domains, the types stacks 
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(built for each administrative domain) are combined to produce a different configuration 

corresponding to each combination. 

 

Figure  4-7 Multiple configuration generation illustration 

4.6 Summary and Discussion 

Generating AMF compliant configurations is a tedious and error prone task. We can 

mitigate this complexity through automation. Nonetheless we need to make sure the 

compliancy is captured throughout the automation process.  In this section we discuss this 

issue as well as other challenges that we faced in during the automation of configuration 

generation. 
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4.6.1 Compliancy with the AMF Specifications 

Beginning with the input, we defined various OCL constraints on the CR model to ensure 

that the input is consistent and complete. Within the context of our project, the authors in 

 [22] defined a UML domain model that restructures the standard AMF configuration 

model and annotates it with over 90 OCL constraints that capture and further refine AMF 

concepts and constraints from the standard specification. This domain model, including 

all the OCL constraints, has been used as a basis for the design and implementation of a 

configuration validation tool [24], which was used in different sub-projects in the group 

to validate generated or third party provided configurations. 

 For ensuring compliance by construction with the standard, several of the constraints in 

the domain model were implicitly embedded directly into our configuration generation 

algorithms (e.g. the constraint specifying the allowed component capability model to be 

used with a certain redundancy model). However we could not embed directly all of these 

constraints into our method. This is mainly because of the large scope that certain 

constraints have. Such a scope can spread over several types and entities. Such 

constraints can only be invoked after the configuration is generated and not during the 

generation. For validating our configuration generation technique, we checked the 

compliance of our generated configurations to the standard using the validator.  We 

defined a test plan in which we generated and checked various configurations that include 

various corner cases and typical cases.   
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4.6.2 Selection of Orphan Types 

The selection of an orphan type requires the population of the attributes of the created 

parent type. These attributes may require a good understanding of the software 

implementation and therefore may not be derived automatically. An example of such a 

type attribute is the component restart probation period found in an SG type. This 

attribute applies to components in service units belonging to a service group of this type. 

If the AMF SG type is created (instead of being derived from ETF) then this attribute 

needs to be determined without any guidance from the vendor. We need to introduce 

artificially a value, which will affect the software behavior at runtime and therefore 

impacts the quality of the generated configuration. It is still unclear how to determine 

safely the attributes of the different entity types when they are created.  

A related observation is that it is necessary to maintain the information whether a type 

was created by our method or provided by the software vendor in the ETF. Created types 

do not reflect implementation limitation and therefore should not restrict the use of 

orphan types. However they may be reused whenever they are appropriate to ease the 

type creation task. 

4.6.3 Selection of Higher Level Types 

In the single configuration generation approach, our preference is to only analyze orphan 

types when the non-orphan ones have been checked and found unsatisfactory with respect 

to the configuration requirements. However, there might be situations where we have an 

ETF (or multiple ETFs) where more than one type can be a candidate. This is typically 

the case for different versions of software or that offers similar services but provided by 
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different vendors. Some vendors (versions) may constrain the way their components 

should be configured by having the corresponding component types refer to SU types, 

while other vendors may provide components that do not need to be constrained from the 

ETF perspective. In other words, the component types corresponding to these 

components are orphans. Depending on the required services and the deployment system, 

there might be situations where orphan component types are a better choice than non-

orphan types due to their flexibility. This comes at the price of the difficulties of type 

creation as aforementioned. Our technique is easily adaptable to select types in any 

desirable order.   

4.6.4 Multiple Configuration Generation 

 Multiple configuration generation is a more complicated process than the one generating 

single configurations. This complexity is not only limited to defining the process but also 

to executing it. For instance while the algorithms for single configuration generations 

have a polynomial time complexity, in multiple configuration generation this complexity 

becomes exponential. In addition, having multiple configurations without the proper 

metrics to evaluate them is impractical. With highly available systems it is extremely 

important to be able to characterize a system configuration with the level of availability it 

offers to its services. In Chapter 6 we define an approach to evaluate the service 

availability of a given AMF configuration which enables us to compare AMF 

configurations and select the one that best satisfies our requirements. 
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5 Workload Balancing through 
AMF Configurations 

In this chapter we target the issue of workload balancing through the information 

specified in the AMF configuration. More specifically we want to make sure that at 

runtime, AMF will equally distribute the SIs among SUs, and in case a failure occurs, we 

want to keep this workload assignment balanced. 

The contributions discussed in this chapter are as follows: 

(1) Defining an approach for workload balancing in NwayActive redundancy model 

and discuss its applicability to Nway. 

(2) Defining an approach for workload balancing in N+M redundancy models 

5.1 Introduction 

As aforementioned in previous chapters, the assignment of SIs to SUs is performed at 

runtime, this assignment, and the re-assignment after an SU failure, is performed for each 

SI according to its ranked list of SUs. The ranking is established at configuration time. In 

this chapter, we will demonstrate that if the ranked list is determined according to 

conventional algorithms, like round robin, the shifting of SIs from a failed SU to healthy 

ones may lead to an unbalanced workload among the SUs, which may lead to overload 

causing subsequent failures and performance degradation. To ensure a continuous load 
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balancing in the presence of a failure, we propose an approach that views the issue as a 

Constraints Satisfaction Problem (CSP)  [51]. 

The AMF specification defines five different redundancy models, in 2N and No-

redundancy the workload is balanced by default, for the remaining redundancy models, 

we define the ranking techniques for NwayActive and N+M, and discuss how the 

solution can be extended to support Nway. We first introduce the ranking mechanism, 

and the existing solutions in the literature, and then we present our solutions for both 

NwayActive and N+M redundancy models. 

5.2 The Ranking Mechanism for Runtime SI Assignment 

The ranking mechanism defined in  [4] indicates in the configuration the preferred SI 

assignments applicable at runtime. Thus it allows a configuration time solution to be 

executed at runtime. SIs may have different preferences toward the SUs. This preference 

can be captured through ranking and used by AMF (for certain redundancy models) to 

distribute the workload assignments. The ranking is applied as follows: 

(1) Each SI has a ranked list of all the SUs in the SG protecting the SI.  

(2) At runtime AMF assigns to the SU with the highest rank (lowest integer value) 

the active state on behalf of the SI. The SU with the next highest rank will be 

either the standby SU for this SI (e.g. in Nway), or the second active one (in case 

of NwayActive). 
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(3) In case of an SU failure, its active assignments will be given to the standby SU(s) 

with the next highest ranks for each SI. In case of NwayActive the SU with the 

next higher rank will get the active assignment. 

Figure  5-1 shows an example SG with NwayActive redundancy model.  

 

Figure  5-1 An example of NwayActive SG 

A corresponding ranking for the assignments shown in Figure  5-1 is presented in  

Table  5-1. Note that in this example the numberOfActiveAssignments for each SI is 

configured to two. Therefore for SI1 it is SU1 and SU2 that get the active assignments 

since they have the highest ranks (lowest integer values). In case SU1 fails, SU3 will get 

an assignment for SI1 since it is the SU with the next highest rank. 

 

Table  5-1 A ranking example 
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5.3 Predefined Workload and Workload Assignment: a 

Motivating Example 

In AMF managed systems, the workload that will be assigned to the SUs is defined as 

SIs. Each SI in the system configuration is defined based on the semantics and interaction 

of the service and the distribution of the resources. Considering a telephone billing 

system as a motivating example, it may be composed of billing software and an in-

memory database that stores the customers’ accounts. When the database is too large to 

be deployed on a single node, it is distributed among the nodes of a cluster. Each node 

will have the same billing software and a different portion of the database3. To shorten 

response time it is preferable that when a customer makes a phone call, the billing 

software processing this call executes on the node hosting the database portion that 

includes this customer’s account information. The SU is then defined as being the 

execution of the billing software and the database portion (including the DBMS) 

                                                 

 

 

3 The redundant replicas are also distributed on the standby nodes. Any node will have (remote) access to 

the complete database, but can only accommodate a portion of the database in-memory. 
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collocated on the same node. The SI is then the workload of processing the calls of the 

users whose account information is stored in the database portion of the SU. The standby 

SU for this SI must also be on a node that stores the replica of the exact portion of the 

database. In this case, it is important that the workload assignment is predetermined at 

configuration time, so that the SI assignment and the deployment of the database match.  

In our approach we assume that the configuration designer defined the SIs such that they 

impose identical load on the SUs. The process of defining the SIs to meet such a criterion 

is outside the scope on this dissertation, and is perhaps better addressed using approaches 

similar to the ones defined in [52] [53]. 

5.4 Existing Workload Balancing Solutions 

The peculiarity of our problem comes from the fact that the workload must be specified 

at configuration time. Load balancing in general has been addressed by both runtime and 

static algorithms  [54]. Existing runtime workload balancing techniques  [55] [56] [57] 

consider only actual workloads and would select the least busy SU for each incoming call 

which in our example would then likely to result in remote database access at the call 

processing time thus increasing the response time. In short, such solutions are agnostic of 

the assignment preferences. For instance in the work presented in  [57], a runtime load-

balancing dynamic scheduling (LBDS) algorithm is proposed, where in case of a machine 

failure it partially re-adjusts the original scheduling solution, with the aim of maximizing 

the machine utilization ratio, nonetheless the assignment preference is not considered. A 

relevant conventional configuration time workload balancing algorithm that we can use 

as a reference is round robin  [58] [59]. In this case the assignments can be determined and 
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balanced at configuration time; nonetheless this algorithm has several drawbacks we 

discuss in the upcoming sections. An interesting work was presented in  [60] where an 

approach for load balancing in the presence of a random node failure is proposed; 

however several assumptions like knowing the mean time to fail and the mean time to 

recover are made, as well as nodes knowing the initial workload of other nodes. In  [61] 

the authors propose a load balancing algorithm for distributed systems with N processors. 

Their aim is to determine the best task-processor assignment given that they are provided 

with certain parameters such as the probability task i fails on processor x and the time 

needed to restart this task on this processor. They do not consider standby processors. 

Our problem is different by nature, and our analysis does not require any failure 

information. 

The work presented in  [52] [53] [62] focuses on finding the optimal static load balancing 

strategy which determines the optimal load at each host in order to minimize the mean 

job response time. The objective is to define a static job-scheduling policy to be used at 

runtime. Such techniques can be useful in defining the SIs and their scope. Nonetheless 

they do not consider load balancing after failure.  

In  [63] the authors address the problem of static assignment of non-partitioned files in a 

distributed storage subsystem, they assume that the file accesses exhibit Poisson arrival 

rates and that service times have a fixed duration, their solution does not address load 

balancing after failure. This work is useful in determining the optimal database 

distribution, which is a prerequisite of our work presented in this chapter.  
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5.5 Workload Balancing in NwayActive 

In this section we explore the issues that may arise when defining the ranks at 

configuration time, and we present our approach to surmount these issues. 

5.5.1 The Problem with Conventional Load Balancing Algorithms at 

Configuration Time in NwayActive 

We examine the problem of load balancing after a failure using the conventional round 

robin algorithm. As a case study for the NwayActive redundancy model we will discuss a 

scenario with 14 SIs protected with an SG of 6 SUs. The numberOfActiveAssignments for 

each SI is set to 3, i.e. each SI is configured to have three active SUs.  

Table  5-2 A ranked list of SUs using a round robin algorithm 
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Table  5-2 shows a ranked list of SUs generated using a round robin algorithm. According 

to this ranking, at runtime, AMF will assign the HA active state for each SI in the 

following manner: 

o SU1, SU2 and SU3 will be assigned the HA active state for SI1, SI3, SI5, SI7, 

SI9, SI11, SI13.  

o SU4, SU5 and SU6 will be assigned the HA active state for SI2, SI4, SI6, SI8, 

SI10, SI12, SI14.  

The cells with the bold numbering (of 1) correspond to the active assignments. Based on 

this ranking the load will be evenly distributed among the SUs. Each SU will have 7 

active assignments. In absence of failure, a round robin algorithm solves the problem of 

ranking with load balancing. 

Now let us assume that SU1 (or SU2 or SU3) fails, all its workload would be shifted to 

SU4 causing it to bear twice the load of any other SU. All the active assignments of SU1 

are shifted to SU4 because it has the next highest rank for all the SIs (i.e. SI1, SI3, SI5, 

SI7, SI9, SI11, and SI13) assigned to SU1 (and SU2 and SU3). In other words, SU4 can 

be looked as a “backup” for SU1 with respect to all its assignments.  

The shortcoming of the round robin algorithm is that it develops a repetitive pattern as 

shown in Table  5-2. After SI2, the ranking pattern keeps reappearing after every two SIs. 

SU1 and SU4 are the only SUs that are backing up the other SUs in case of failure as 

illustrated in Figure  5-2, which is derived from Table  5-2. SU1 is backing up SU4, SU5 

and SU6, while SU4 is backing up SU1, SU2 and SU3. 
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Figure  5-2 The SU back up graph using the round robin algorithm 

5.5.2 A Ranking Solution to Ensure Load Balancing Before and After 

One Failure in NwayActive Redundancy 

We have a predefined set of SIs that will be assigned to a set of SUs. The portion of SIs 

that each SU is supposed to serve can be easily computed, and a corresponding ranking 

can be produced. However, one main concern as shown in the previous section is what 

happens after an SU failure. How will the load assigned to the failed SU be distributed 

among the remaining SUs? We want the SUs to be assigned equal initial load, and in case 

of failure, we want the load of the failed SU to be evenly assigned among the remaining 

SUs to maintain a balanced load and avoid cascading failures caused by overload. Our 

main problem is to capture this at configuration time through the SU ranking for SIs. 

As shown in the previous section the problem of the round robin algorithm is in the re-

assignment of the SIs to the remaining SUs after an SU failure. Only one SU, e.g. SU4 

will be re-assigned all the SIs initially assigned to SU1 when the later fails. Therefore, the 

solution to this problem of load balancing after single failure must be tackled from the 

perspective of SUs backing up each other for SIs and make sure that SIs assigned to a 

particular SU are equally backed up by the remaining SUs. 

Each SU can have at most one active assignment with respect to a particular SI. So, if an 

SU has X active assignments, then it is assigned X different SIs. We want to ensure that 
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these X SIs are backed up evenly by the other SUs.  In order to achieve this, we start by 

assigning each SU an equal number of SIs to backup, then we determine the SUs that will 

be active for those SIs, and finally we generate our ranked list of SUs for each SI. 

The solution we are presenting in this section is for the NwayActive redundancy model, 

but it applies for the NWay redundancy model as we will discuss it briefly at the end of 

this section. This solution is based on the following assumptions: 

� The SUs have the capacity to support the SIs that AMF assigns to them even after 

an SU fails and its load is shifted to the other SUs.  

� The SIs of the same SG have the same protection level, and therefore the 

numberOfActiveAssignments is the same for all of them. 

� The SIs impose the same load on the SUs.  

� The numberOfActiveAssignments is less than the number of SUs. 

Systems managed by AMF are intended to have no single point of failure and are 

expected to tolerate the failure of one SU without causing a service to be dropped. 

Therefore this work targets a single failure, and load balancing after multiple failures is 

outside the scope of this thesis. 

We first introduce our approach and then apply it to an example.   

5.5.2.1 Approach for the NwayActive Redundancy Model 

Our approach consists of four steps: 
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1. Determine the total number of assignments to backup (or simply backup 

assignment4) each SU will have, 

2. Distribute the total backup assignments of each SU equally among the other SUs, 

3. Balance the total number of active assignments for all the SUs, and 

4. Derive the ranked list of SUs for each SI from the assignment table. 

In the NwayActiveredundancy model one or many SUs will be assigned the active state 

on behalf of an SI. However, only one SU will serve as a backup for this SI if any of its 

active SUs fails. In this case it is said that the backup SU is backing up the active SUs in 

terms of this SI.  If this particular SI requires x active SUs where x is the 

numberOfActiveAssignments, we say that the backup SU is backing up x active 

assignments, since one SI can only be backed up by one SU for all its active assignments. 

It is important here to distinguish that although the backup assignment is in terms of SIs, 

we bring the numberOfActiveAssignments each SI has into the equation because if one 

SU is backing up an SI this means it is backing up all of its active assignments, while on 

the other hand being active for an SI means having a maximum of one of its active 

assignments.  

                                                 

 

 

4 The backup assignment is not to be confused with the standby assignment.  
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Equation  5-1 Backup assignment for each SU 
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A prerequisite for ensuring back up balancing is that each SU must back up an equal 

number of SIs. Therefore, the backup value of an SU is given by Equation  5-1.  Since the 

number of SUs is not always a divisor of the numberOfSIs, some SUs will get the floor of 

this division while others will get the ceiling with the constraint that the sum of the 

backup assignments for all SUs is equal to numberOfSIs * numberOfActiveAssignments.  

Of course, an SU does not back up its own active assignments, but the active assignments 

of the other SUs as we will see it in Table  5-3. 

In order to ensure backup balancing, it is not enough that the SUs backup the same 

number of active assignments, because if all those active assignments are provided by 

one SU, and this SU fails, its entire load will go to the backup SU that is already active 

for its own SIs. We will end up in the same pitfall of the round robin algorithm. 

Therefore, the number of active assignments backed up by an SU must be the sum of 

equal contributions� 1 from all the other SUs. In other words, if the SU is calculated to 

have x back up assignments, and we have n SUs, then we make sure that the SU will back 

up each of the other SUs in x �  (n-1) active assignments. This division may result in a 

decimal value; some SUs may get an extra back up from the SU in question. 
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In order to render the solution more concrete, we visualize our assignments in terms of 

what we defined to be the assignment table shown in Table  5-3, which, when populated, 

would show simultaneously the active and backup assignments. 

Table  5-3 The assignment table blueprint 

 

 

Table  5-3 represents the blueprint of an assignment table. A value x in cell SUij represents 

a number of assignments. However this value can either mean the number of active 

assignments for the SU at the top of the column, or the number of backup assignments for 

the SU of the raw. The SU rows represent the number of backup assignments each SU 

will have for the other SUs. The cells denoted with N/A (Not Allowed) means an SU 

cannot back up itself. A value x in cell SUij means that the SUi will back up SUj in x of 

SUj’s active assignments. The “Baking Up” column is used to hold the value of the total 

backup assignments that we calculate with Equation  5-1 for each SU. We assign the SUs 

cell values of any row i in such a way that (1) their sum is equal to the ”Backing up” cell 

value in row i (2) the cell values can only be the floor or the ceil of the baking up value 
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after it is divided by the number of SUs -1. In other words if SUi is backing up x active 

assignments, we want those assignments to be equally distributed among other SUs. 

The “Act” row is used to hold the values of the total active assignments each SU is 

expected to have. It is the sum of the column cells values. Note that the SUs of the 

columns and the rows of the table are identical. We simply used different indexing (i for 

row and j for column) to avoid ambiguity. 

So far we have balanced the backup assignments. However, the total active assignments 

that each SU is handling from previous calculations may be uneven, i.e. that values of the 

‘Act’ row may be imbalanced. In order to solve this issue we need to make sure that the 

SUs have equal active assignments. 

If we have a number of SIs each having a numberOfActiveAssignments to be assigned to 

the same number of SUs, the load will be evenly balanced among the SUs if each SU is 

assigned one of the values defined in Equation  5-2. Again since the number of SUs is not 

always a divisor of the value of the numberOfSIs * numberOfActiveAssignments, some 

SUs will get the floor of this division while others will get the ceiling with the constraints 

that the sum of the active assignments for all SUs is equal to numberOfSIs * 

numberOfActiveAssignments. Some SUs may have an extra load of one active assignment 

compared to other SUs.  The sum of the cells in the “Act” row and the sum of the cells in 

the “Backing up” column are both equal to numberOfSIs * numberOfActiveAssignments. 

This is due to the fact that this number represents the total active assignments an SG will 

protect, regardless how we assign the active and backup assignments; this number is 

always going to be the same. 
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Equation  5-2 Active assignment for each SU 
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Our third step consists of making sure the total active assignments for each SU is one of 

the values in Equation  5-2.  This must be completed without affecting any value in the 

“Baking Up” column. In other words we need to shuffle the values in the row cells in 

such a way that (1) their sum remains intact and equal to the value of the “Baking Up” 

cell in the row, and (2) achieve a balance so that the cells of the “Act” row have values as 

given by Equation  5-2. This reasoning converts our problem into a constraint satisfaction 

problem, where we have a set of values within a table, and they are constrained by the 

fact that the sum of the row cell values and the sum of the column cell values must obey 

to certain magnitudes. 

Algorithm  5-1 solves the constraints satisfaction problem of balancing the active load. 

1. balance() 

a. IF (each column has a sum equal to  Active) THEN  

i. RETURN true 

b. ELSE 

i. RETURN false 
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2. END balance() 

3. solveCSP() 

a. While (not balanced()) 

i. minColumn� the column with minimum sum of cells 

ii. maxColumn� column with the maximum sum of cells  

iii. While (sum(maxColumn) – sum(minColumn) > 1) 

1. swap the minimum value in minColumn with the  

maximum value in maxColunm 

iv. EndWhile 

b. ENDWhile 

4. 23.END solveCSP 

Algorithm  5-1 The CSP solution for NwayActive.   

This algorithm consists of two main functions, the balance() function that test whether 

the SUs have equal active assignments, and the solveCSP() function that keeps swapping 

row values until the balance is obtained. 

Notice that we could have started working with the columns of Table  5-3, and therefore 

balance the active load first and then work with the backup assignment, or work 

simultaneously with both as it is the case for such constraints satisfaction problems. 
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Our final step is to automatically generate the ranked list of SUs for each SI. The rank 

values of this list are based on the assignment table. The list is generated in the following 

manner.  For each row in the table that corresponds to SUi, we will calculate the number 

of different SIs that this SU is backing up by dividing the value in the “Backing Up” cell 

of the row over the numberOfActiveAssignments. The assignment table will tell us how 

many active assignments each of the other SUs will have on behalf of the SIs backed up 

by SUi, but we still need to determine to which particular SU each SI will be assigned. 

Here, again, we face another CSP problem, with the following constraints: 

� The number of SUs assigned active to each SI must be equal to the 

numberOfActiveAssignments and 

� The number of SIs each SU (excluding SUi) will be active for is specified by 

the assignment table and must be respected. 

By solving this CSP problem we determine the active SUs and assign them the lower 

ranks, the SU that was assigned the N/A value (i.e. SUi) will serve as the backup, and 

therefore will have the first rank higher than the SUs with the active assignments, the 

other SUs will have ranks greater than the one assigned to the backup SU. The above 

process will result in a sub-list of ranked SUs generated for the SIs backed up by SUi. The 

same process is repeated for all the rows, and the sub-lists of ranked SUs are joined 

together repeatedly until we get the ranked list of SUs for all SIs.  The process is further 

illustrated in the next example. 
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5.5.2.2 Application of the NwayActive Ranking Approach 

For illustration purpose, we reuse the example presented in Section 5.5.1. Step 1 would 

be to calculate backup assignment for each SU. According to Equation  5-1, the backup in 

terms of SIs is equal to the floor or ceiling of (14 �6) = 2.33. Some SUs will back up 

two SIs while others will back up three. We multiply those numbers with the 

numberOfActiveAssignments to get the baking up value each SU will handle in terms of 

active assignment. Knowing the backup assignments, we can proceed into the second step 

and populate our table with values as shown in Table  5-4. The values in the cells are 

assigned by taking the value in the backing up cell of each row and dividing it evenly 

among the other cells of the same row. 

 Note that at this step of the table is still not balanced, we simply balanced the backup 

value among the SUs. 

Table  5-4 The assignment table before balancing. 

 

The third step consists of balancing the active load among SUs, as aforementioned the 

problem here is a constraint satisfaction problem that involves shuffling the values in the 
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table cells in such a way that the sum of the columns would be floor or ceil of the value 

calculated according to Equation  5-2 [Active = (14 x 3) �6 = 7]. 

Solving the CSP by swapping the values in the row cell will result in the balanced Table 

 5-5 shown below. 

Table  5-5 The assignment table after balancing. 

 

The final step is to derive from Table  5-5 a ranked list of SUs for the SIs. Each row of 

our assignment holds the information needed to generate the ranked list of SUs for a 

subset of SIs. We take a row at a time, extract the information encapsulated in this row, 

and based on this information, we generate our ranked list of SUs. Figure  5-3 shows the 

ranked list of SUs generated for the subset of SIs backed up by SU1. The process is 

carried out as follows:  

Based on the first row of Table  5-5 we deduce that SU1 will back up three SIs ( 39� ; 

where 3 is the numberOfActiveAssignments), so for SI1, SI2 and SI3 the backup is SU1, 

therefore SU1 is not allowed to be active for those SIs and as a result will be assigned a 

rank higher than the one we will assign to the active SUs of behalf of those three SIs. In 
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order to determine which SU is active on behalf of which SI, we need to solve the CSP 

problem defined by assigning 9 active assignments to 5 SUs on behalf of 3 SIs in such a 

way that each SU will have the exact value of active assignments specified in the 

assignments table (e.g. the table specifies that SU5 has only one active assignment and 

therefore will be active for at most one of the SIs backed up by SU1). Figure  5-3 presents 

one possible solution to this problem. The SU with the active assignment is given the 

lowest rank value. The rest of the SUs will be given a rank higher than the one assigned 

to the backup SU (i.e. SU1). This process is repeated successively for all the rows, until 

we have a complete list of ranked SUs for all SIs. 

 

Figure  5-3 A mapping from the assignment table row to a ranked sub-list. 

Figure  5-4 is a snapshot of our generated ranked list of SUs, the table cells are rendered 

such that the cells holding the backup assignment value are marked in green, while the 

cell holding the active assignment value are marked in gray.  
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Figure  5-4 A snapshot of our ranked list of SUs. 

5.6 Workload balancing in N+M 

N+M differs from NwayActive by having dedicated standby SUs and having the number 

of active assignments fixed to one. Workload balancing in N+M can be summarized as 

follows: we have a set of SIs that needs to be assigned to two sets of SUs, an active set 

and a standby one. The number of SIs assigned to an active SU must be balanced with the 

one assigned to its active siblings. The same applies to the standby set. From this 

perspective, again a simple round robin distribution of the SIs among the active SUs and 

also among the standby SUs seems to achieve the desired result. Nevertheless after a 

failure, this approach exhibits major drawbacks. 

5.6.1 The Problem with Conventional Load Balancing Algorithms at 

Configuration Time in N+M 

Again, we use Round robin as a reference configuration time ranking solution in order to 

explore the pitfalls of such a solution and how to surmount them. The issue with Round 

robin is that it does not associate an active SU with a standby one, in other words it does 

not take into consideration the implicit relation that exists between an active SU for a 

particular SI and the counterpart standby one. This relation can be defined as follows: it 
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suffices that the standby SU be a standby for any of the SIs assigned to the active SU, so 

that in case this active SU fails, the standby one will turn into active. The entailment of 

this relation is the following, if SUx is assigned the active state on behalf of x SIs, and for 

each of these SIs a different standby SU is assigned the standby state, when SUx fails, it 

will be replaced by x standby SUs. The consequences of this shortcoming after a failure 

can be summed up as: (1) we are making unnecessary sacrifices among the standby SUs, 

where in the worst case scenario, the failure of one active SU may cause the loss of all 

the standbys by turning them into active ones. (2) If one active is replaced by multiple 

standbys, then the workload that was once handled by this active SU (that is balanced 

with the workload handled by its sibling active SUs) is now split among several SUs, 

causing a misbalance of the active assignments. (3) The number of active SUs after a 

failure may exceed the configured value set by the system configuration designer. 

The second shortcoming of such a simple approach is that it does not take into account 

what happens with the standby assignments after failure. That is, when a failed active SU 

is replaced by a standby, the standby assignments originally assigned to this standby SU 

need to be redistributed among other standby SUs. Round robin does not cover this issue. 

It should be noted that any load balancing solution for the N+M redundancy, must 

address the above issues, whether it is a runtime or a configuration time solution. We can 

summarize these issues as requirements that workload balancing approaches should 

satisfy: 

(1) Ensure active workload balancing before a failure. 
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(2) Maintain the active workload balanced after a failure. 

(3) Ensure standby workload balancing before a failure. 

(4) Maintain the standby workload balanced after a failure. 

(5) Upon failure replace one active SU with one standby. 

5.6.2 Can We Find a Solution that Satisfies all the Requirements? 

Consider the following example: 5 SUs (3 active and 2 standbys) serving 30 SIs. We 

balance the active workload of the active SUs by assigning (30/3) 10 SIs in their active 

state to each of the active SUs, SU1, SU2 and SU3. Similarly, we assign to each standby 

SU, SU4 and SU5, (30/2) 15 SIs in their standby state.  

So far we have achieved the balancing of the workload before failure. In order to make 

sure that when an active SU fails it is replaced by exactly one standby, all the SIs 

assigned to the active SU must be re-assigned to at most one standby SU. In other words 

each standby SU must be standby to an integer number of active SUs. For example, SU4 

must be standby for 1, 2, or more active SUs. However, if SU4 is standby for only one 

SU, then it will be assigned only 10 standby assignments (since each active SU has 10 

active assignments). If it is a standby for two SUs, it will be assigned 20 standby 

assignments (exceeding the desired value of 15). In both cases we violate the balanced 

number of standby assignment calculated for SU4. Otherwise stated, no combination of 

1, 2, or more SUs will have the sum of 15 active assignments for which SU4 can be the 

standby for. So basically in this given example, when the active and standby workloads 

are perfectly balanced, we cannot guaranty that when any active SU fails, it will be 
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replaced by only one standby. In conclusion, having a single approach that satisfies the 

five requirements defined earlier may not always be possible. 

5.6.3 Ranking Solutions Targeting Workload Balancing Before and 

After One Failure in N+M Redundancy 

In this section we present three different solutions for solving workload balancing in 

N+M. Each solution targets only three requirements of the five based on different 

priorities. Again we are making the assumption that the SUs have enough active/standby 

capacity to handle the SIs assigned to them, and that the SIs impose equal loads on the 

SUs. 

5.6.3.1 The One Active for One Standby Solution 

This approach for workload balancing in N+M targets the issue of not replacing one 

active SU with more than one standby, while keeping the active workload balanced 

before and after a failure. As for the standby workload, while it may not be possible to 

maintain it in complete balance, we aim at having it “substantially balanced5”.  

                                                 

 

 

5 Substantially balanced means minimizing the difference between the minimum and maximum number of 

SIs assigned to the different SUs according to distribution policy of the given approach. See more at each 

approach. 
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This approach meets requirements 1, 2 and 5 defined in Section 5.6.1. The consequence 

of covering these requirements is having an unbalanced standby load even before failure; 

therefore requirements 3 and 4 are not met, and the approach tries to compensate that as 

much as possible by keeping the standby load at a minimum misbalance. In case of a 

failure, the workload originally assigned to the standby SU is then redistributed among its 

standby siblings in a way that favors standby load balancing.  

As a result, in addition to satisfying requirements 1, 2 and 5, this approach has the 

following properties:  

(1) Makes sure that each standby SU is standby for an equal number of active 

SUs (±1)  

a. With the constraint of keeping the standby workload 

substantially6balanced. 

(2) Makes sure that the standby workload of an SU is re-distributed among the other 

standby SUs again with the constraint of keeping the standby substantially7 

balanced. 
                                                 

 

 

6In this approach some standby SUs may be standby for the workload of one extra active SU compared to 

their standby siblings. If that is the case, we make sure that the maximum difference in the standby 

assignments among the standby SUs never exceeds the floor value of Equation (1). 
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Equation  5-3 and Equation  5-4 below represent our definition of a balanced active and 

standby workload per SU. We use the floor and ceil notations since the number of SIs 

may not always be dividable by the number of SUs, and therefore some SUs may get 

assigned an extra SI. The variable names are self-explanatory, where stdb stands for 

standby.  

 

Equation  5-3 Active load in N+M 

 

Equation  5-4 Standby load in N+M 

 

                                                                                                                                                 

 

 

7During the redistribution of the standby load, the standby SUs with the least load will get a bigger portion 

of the standby assignments, so that the overall standby load becomes more balanced. 
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5.6.3.1.1 The One Active for One Standby Approach 

Deriving a configuration-time ranking for load balancing is not a straight forward task. 

Again here we use the assignment table artifact which visualizes our solution by 

simultaneously displaying multiple assignments. Since in N+M we need to balance the 

active and the standby assignment, we defined two assignment tables. We start by 

introducing what we refer to as the ‘standby assignment table’. We define this artifact to 

visualize our solution in a form of a table that simultaneously displays the active and 

standby assignments. Table  5-6 represents the blueprint of this table. 

Table  5-6 The standby assignment table 

 

In the ‘standby assignment table’ the rows and columns are indexed by two different sets 

of SUs. The columns are indexed by the standby SUs and the rows are indexed by the 

active SUs. The rightmost column holds the value of the balanced active assignments an 

SU must handle. This value is one of the outcomes (a floor or a ceil) of  

Equation  5-3. The bottom row will hold the value of the standby assignments that a 

standby SU will handle. This value is not necessarily the outcome of Equation  5-4. As we 

stated in this approach we do not target the issue of balancing the standby assignments, 

rather we sacrifice it in order to make sure that we do not replace an active SU with 

multiple standbys. The values in the cells of the standby assignment table are interpreted 
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as follows: A value x in the cell (SUi , SUj) means that SUj (which belongs to the set of 

standby SUs) is standby for x SIs assigned active to SUi (which belongs to the set of 

active SUs). The steps of this approach are the following: 

Step 1: we calculate the active workload of SIs based on  

Equation  5-3.  

Step 2: we populate the standby assignment table with the values that we calculated in 

step one. It does not really matter how we populate the table, since Step 3 will balance 

the table by reshuffling the cell values. 

Step3: in this step we balance the table so that each standby SU is a standby for an equal 

number of active SUs (±1) compared to its standby siblings. The CSP algorithm used to 

balance the table takes as input a standby assignment table populated with the active 

values, and then balances the standby assignments within the table by granting each 

standby SU the proper number of active SUs that have the proper number of active 

assignments, with the constraint that the maximum difference in the standby assignment 

never exceeds the floor value of  

Equation  5-3. 
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Step 4: this step consists of finding the best possible redistribution of the standby 

workload among the standby SUs in case we lose one standby SU. We introduce here the 

notion of the ‘backup-standby’. If SUx has the backup-standby assignment8 for a certain 

SI, this means that when the standby SU for this SI fails, SUx will become a standby for 

this SI. We define another assignment table, namely the ‘backup-standby assignment 

table’ that will give a simultaneous view of the standby and the backup-standby 

assignments. Table  5-7 represents the blueprint for this table. 

Table  5-7 The backup-standby assignment table 

 

In the ‘backup-standby assignment table’, the columns and the rows are indexed by the 

same set of SUs ─ the standby SUs. The rightmost column holds the value of the backup-

standby assignments we will assign to SUi. The bottom row will hold the value of standby 

assignment we will assign to SUj. The values of this bottom row are the same ones that 

appear in the bottom row of the ‘standby assignment table’ that was balanced in Step 3. 

                                                 

 

 

8 The backup-standby assignment is a virtual assignment that does not imply any actual load on the SU. 
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We can also notice that the cells of this table have gray margins. These margins will hold 

certain values that will be used in our calculations. The values in the cells of the ‘backup-

standby assignment table’ are interpreted as follows: a value x in the cell (SUi, SUj where 

i ≠ j, since the both SUs belong to the same set) means that SUi is backing up x standby 

assignments of SUj. The margins are used to reflect the extra standby workload that a 

certain SU possess compared to the SU with the minimum standby workload. The 

objective here is that after a standby SU fails, we want to be fair in the way we re-

distribute its workload, and consider the original misbalance in the standby workload. 

Step 5: The final step is to derive the ranked list of SUs based on the assignment tables 

balanced in the previous steps. After completing the first 4 steps, deriving the ranked list 

becomes a mechanical process defined as follows: 

(1) Based on the balanced standby assignment table, give each standby SUj a rank of 

‘2’ for each SI it is standby for. For each SU that is supposed to be active for 

these SIs give a rank of ‘1’. 

(2) Based on the balanced backup-standby assignment table, give each SU that is 

supposed to back up the standby assignments of SUj a rank of ‘3’ for the 

number of backups it is supposed to handle. 

5.6.3.1.2 An Example for the One Active for One Standby Approach 

As an example of this approach we present a simple example consisting of 23 SIs to be 

assigned to 7 active SUs and 4 standbys. Step 1 consists of finding the balanced active 

workload according to  
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Equation  5-3. In Step 2 we populate the ‘standby assignment table’ with the values 

calculated in Step 1 (shown in Table (a) of Figure  5-5. In Step 3 we run the CSP 

algorithm that balances this table, and we end up with Table (b) of Figure  5-5. At this 

point we have the standby assignments balanced. We move on to balance the backup 

assignments in Step 4, where we first populate the margins of the ‘backup-standby 

assignment table’. For example the cells of row SU8 have a value of +3 in their margins 

because SU8 is standby for two active SUs (Table (c) Figure  5-5) and therefore has 3 

extra standby assignments over the SU with the minimum number of standby 

assignments (SU10). Then we proceed by assigning the backup-standby assignments, 

where the SU with the least standby assignments (smallest margin value) will get the 

most backup-standby assignments. The rationale behind this is to exploit the failure of an 

SU by making the standby distribution more balanced. The values (2,4,1) in column SU8 

(Table (d) of Figure  5-5), indicate that when SU8 turns active or fails its 7 standby 

assignments will be redistributed as 2, 4 and 1 to SU9, SU10 and SU11 respectively 

based on their margin values. SU9 will have 2 new standby assignments to its original 6, 

SU10 will have 4 new added to its existing 4, and SU11 will have 1 added to its 6, which 

renders the standby workload substantially balanced.  

The final step is to derive the ranked list of SUs. The runtime assignments will be 

performed according to this list. This list is defined based on the balanced tables. Figure 

 5-6 illustrates this process. More specifically it specifies how the ranked list is derived for 

the SIs for which SU8 is standby. Based on column SU8 of Table (b) of Figure  5-6, we 

know that SU8 is standby for 7 SIs, and that is why it is given a rank of ‘2’ for these SIs, 

the same column also indicates that it is SU1 and SU3 that are active SUs for respectively 
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3 and 4 of these SIs and this is why they are given a rank of ‘1’. The column SU8 of 

Table (d) of Figure  5-6 specifies the backup-standby SUs for SU8, and accordingly the 

rest of the standby SUs are given a rank of ‘3’. It should be noted that the empty cell of 

the ranked list can be filled with any value > 3. The same process is repeated iteratively 

for each column of our assignment tables until the full list is generated for all the SIs. 

 
Figure  5-5 The balanced assignment tables 

 
Figure  5-6 The process of deriving the ranked list of SUs 
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5.6.3.2 The One Active for One Standby for One Backup Solution 

This solution targets the same requirements as the previous one (1, 2, and 5). In addition 

it maintains the active load balanced even in the presence of a second failure. The 

approach for this solution consists of modifying the ‘one active for one standby’ 

approach to have only one standby for each active SU after the first failure. For this we 

simply modify the fourth step and instead of distributing the backup-standby workload in 

a way that favors standby workload balancing, we simply give the backup-standby 

assignment to the standby SU with the least standby workload. As a result the active load 

is balanced not only before and after the first failure, but it also remains balanced even 

after a second failure.  

Table  5-8 illustrates the modifications made in the values of the backup-standby 

assignments in the presented example. The process of deriving the ranked list remains the 

same.  

Table  5-8 The backup-standby assignments for the ’one active for one standby for one backup’ approach 

 

 

5.6.3.3 The Complete Balance before Failure Solution 

The objective of this approach is to maintain the workload balanced while the system is 

in its healthy state and hence it meets requirements 1, 3, and 4. However in order to meet 

these requirements, we may need to sacrifice the requirement 5 of replacing one failing 
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active SU with only one standby. After a failure this may result in two drawbacks: first, 

we may lose more than one standby SU; and second, the active load assigned to these 

standbys is going to be less than the one assigned to the other active SUs. Thus, the active 

load is not going to remain balanced after failure.  

This approach compensates for these drawbacks by limiting the loss of standbys: It 

makes sure that an active SU is never replaced with more than two standbys. So in 

addition to satisfying requirements 1, 3 and 4, this approach has the following property: 

� It makes sure that no active SU is replaced by more than two standby SUs after a 

failure.  

 

5.6.3.3.1 The Complete Balance before Failure Approach 

The first three steps of this approach are identical to the ones used in the ‘one active for 

one standby’ approach. However after the third step, we proceed towards balancing the 

standby load per SI rather than balancing per SU workload9. 

Step 4: consists of calculating the balanced standby load (±1) and assign it to each SU. 

Here we add an extra row to the ‘standby assignment table’ and call it the ‘desired 

                                                 

 

 

9In the previous approach we balanced per SU. I.e. each standby SU was a standby for an equal number of 

active SUs (±1), whereas here we balance per SI. 
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standby’ row. The values of this row are calculated based on Equation  5-4 and they 

represent the desired balanced standby assignments we want to achieve. Note that in this 

approach the SIs assigned active to one SU are not necessarily assigned standby to 

exactly one standby SU, in fact this workload can be divided among two standby SUs if 

this is needed to balance the standby workload among the standby SUs. Next, we will use 

another CSP algorithm to reshuffle/split the cell values so that the sum of standby 

assignments of each column matches the desired standby assignment value calculated for 

this column. In order to do so, we look for the columns with a sum of standby 

assignments that exceeds the desired standby value for this column, and split one of its 

values with another column where the sum of the standby assignments is less than the 

desired standby value of this latter column. The splitting is repeated until the balancing 

objective is achieved (with the constraint that no cell value is split more than once). 

Step 5: The final step is to make sure that after a standby SU turns active or fails, its 

standby load is evenly re-distributed among the healthy standby SUs. Since the standby 

load is evenly distributed among SUs, we divide the load of each of the M standby SUs 

into equal shares, where the number of shares is equal to M - 1. Then we assign each 

share to be backed up by one of the standby SUs.  However we have stated that in this 

approach 2 standby SUs can turn active simultaneously, this means that the number of 

standby SUs can become M – 2. The main challenge here is how to come up with a 

ranking to accommodate both scenarios: the single and the double loss of standby SUs. 

We solve this problem by introducing another level of backup standby balancing, a level 

that considers the simultaneous loss of two standby SUs. We also introduce the ‘level-

two backup standby assignment table’. This table is only used for the standby SUs that 
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have the implicit relation of both having standby assignments of SIs that are assigned 

active to the same SU. This relationship among the standby SUs implies that if the 

common active SU fails, they will both turn active simultaneously. 

Step 6: The final step is to derive the ranked list of SUs based on the above analysis. This 

is carried on as follows: 

Based on the balanced standby assignment table, give each standby SUj a rank of ‘2’ for 

the number of SIs it is standby for. For each SU that is supposed to be active for these SIs 

give a rank of ‘1’. 

o Based on the balanced backup-standby assignment table, give each SU 

that is supposed to back up the standby assignments of SUj a rank of ‘3’ 

for the number of backups it is supposed to handle. 

� Based on the ‘level-two backup standby assignment table’, give 
each ‘2nd level standby’ SU a rank of 4. 

5.6.3.3.2 An Example for the Complete Balance before Failure Approach 

We use the example presented previously in Figure  5-7 (c) which illustrates the balanced 

standby assignment table. We are reusing the first three steps of the ‘one active for one 

standby’ approach, and the same CSP algorithm is used to obtain the balanced table 

shown in Figure  5-7 (b). However a different CSP algorithm is used to balance the 

standby SI assignments (this is because the constraints for balancing the standby 

workload have changed in this approach). The objective is to obtain the desired standby 

values shown in the bottom row by splitting particular cell values among (at most) two 

cells of the same row. The implication of such splitting is that the active SU will be 
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replaced by the standby SUs that hold the split values. E.g. in table (c) of Figure  5-7 

below, when SU3 fails it will be replaced by both SU8 and SU10. We intentionally split 

among at most two cells as an optimization decision. By doing this we never replace one 

active SU with more than two standbys. Figure  5-8 illustrates the balanced backup-

standby assignment tables used in this approach. We can see in Figure  5-8 (b) that when 

SU8 turns active each of the other standby SUs will take over 2 of its standby 

assignments including SU10. However, since SU10 may turn active simultaneously with 

SU8 (this is the case when SU3 fails); the ‘level-two backup standby assignment’ table 

(Figure  5-8 (c)) is used to capture the redistribution of the load given to SU10 by SU8. 

The first column of this table indicates that SU9 and SU10 will share equally this 

workload redistribution. The process of deriving the ranked list of SUs is illustrated in 

Figure  5-9.  

 

Figure  5-7 The balanced standby assignment table in the ‘complete balance before failure’ approach 

 

 

Figure  5-8 The backup-standby assignments for the ‘the complete balance before failure’ approach 
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Figure  5-9 The process of deriving the ranked list of SUs in the ‘complete balance before failure’ approach 

5.7 Conclusions and discussion 

In this chapter we have introduced ranking solutions to handle workload balancing for the 

NwayActive and the N+M redundancy models. Most importantly the solutions we 

presented also satisfy some placement preferences of the workload while maintaining an 

overall load balance before and after failure. These solutions are provided at 

configuration time and we used the SU ranking to express the placement preference. The 

SU ranks express our load distribution preferences that are calculated based on the 

equations we have defined. AMF will enforce our placement preferences based on the 

rankings. We define our load balancing solution based on how we wish the load to be 

distributed before and after a failure. Achieving load balancing before failure is rather 

straight forward, however in order to make sure the load remains balanced after a failure 

we had to define the backup notion. We can achieve load balancing after failure if the 

originally balance load is equally redistributed after failure, I.e. the SUs are backing each 

other equally. For this we defined the assignment table where two constraints had to be 

met, (1) the sum of the values in each column had to evaluate to a predefined value (2) 

the sum of the values in each row had to evaluate to a ‘substantially’ balanced values. By 
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solving these two constraints (what we refer to as balancing the table) we make sure that 

load distribution preference (whether it is active or standby) before and after failure is 

respected. This preference is thereafter translated into rankings. Based on the balanced 

tables, defining the ranking is a mechanical process that can be achieved based the 

mappings we defined.  

We were able to satisfy the load balancing in NwayActive, however for N+M, several 

issues arose and for that we have presented three approaches for N+M. Each approach 

targets different requirements in workload balancing. Accordingly they may suit some 

applications and configurations better than others. It is the responsibility of the 

configuration designer to select the most appropriate one to use. Here we provide some 

pointers that can guide the selection. When failures in the system are rare (i.e. the system 

is very reliable), and rapidly fixed, the ‘complete balance before failure’ is a suitable 

approach. The same applies for situations where the standby capacity is limited, i.e. a 

single standby SUs cannot handle the standby assignment of the workload assigned to 

two active SUs. However if the system is not configured to auto-adjust (i.e. when the 

faulty active SU is repaired the system does not readjust to its original SI assignments) 

then this approach is a poor choice because after the system recovers from a failure and 

the repair is complete, it will still run short of one standby SU, and have an unbalanced 

active workload with two active SUs having half of the workload that the other active 

SUs are supporting. The first two approaches are suitable when the standby workload that 

an SI imposes on an SU is relatively small, and when the number of standby SUs is 

limited. Nonetheless, when placement preferences is not a priority, the approaches we 

presented for N+M and implemented through the ranking mechanism, can also be 
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implemented as a runtime solution using different mechanisms, since they target generic 

issues that any N+M load balancing solution must handle. A runtime solution, however 

may bring further challenges such as the algorithm performance, and time/space 

complexity. At this moment these challenges are not of great significance to our 

solutions, since the calculation is performed offline, and does not consume resources or 

cause delays in the live system at runtime. 
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6 Configuration Based Service 
Availability Analysis 

In this chapter we target the issue of evaluating the availability that, an AMF 

implementation, can offer to the services specified in the corresponding AMF 

configuration. We present our approach for defining the prerequisite steps needed to 

enable this analysis, and thereafter we present the approach for mapping AMF 

configurations to a stochastic model we defined to enable the quantification of the service 

availability. 

The contributions presented in this chapter can be summarized as follows: 

(1) Defining a method to determine how the recommended recoveries are altered into 

the actual recoveries based on the information specified in the AMF 

configuration. 

(2) Categorizing the dependencies within an AMF configuration and capturing their 

effect on service availability 

(3) Defining a stochastic model that captures the runtime service assignment and 

recovery behavior of AMF. 

(4) Defining the mapping from an AMF configuration to the stochastic model that 

can be solved to quantify the availability of the services in the AMF 

configuration. 
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6.1 Introduction 

In Chapter 4 we have established that several configurations can be generated that satisfy 

the same configuration requirements. It is the non-functional properties of these 

configurations, such as availability, that will favor one configuration over another. In 

highly available systems, quantifying the anticipated runtime availability of the services 

is a crucial task. In this chapter we present an approach for quantifying the service 

availability based on the configuration. 

6.2 The Service Outage 

The service availability analysis consists of determining the percentage of the time that 

the service is provided. From this perspective we calculate the availability by examining 

the failures that cause the service outage, and analyze the outage duration caused by these 

failures.  

A component failure is defined by  [64] as a deviation from providing its intended service. 

The failure is considered the manifestation of an error in the intended service, whereas 

the error itself is the manifestation of a fault in the system. In our analysis we consider 

that whenever an error is reported to or detected by AMF, a failure has occurred, and 

thereafter a service recovery is triggered. 

The actual service outage that is caused by an error spans from the time the error 

occurred till the time the service was successfully recovered. However in practice errors 

are not usually instantly detected and reported, therefore there might be a delay from the 

time the error occurs till the time AMF is aware of the presence of this error. Calculating 

these “additional” delays is outside the scope of this dissertation. In this document we 
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analyze and calculate the service outage from the time AMF is aware of this error, till the 

time AMF recovers the services. Nonetheless if the additional delays are provided they 

can be incorporated in the analysis process. Figure  6-1  illustrates the discussed timings10.  

 

Figure  6-1 Service outage time 

6.3 The Service Recovery 

AMF is responsible for managing the availability of the SIs and their CSIs. This 

management is based on the AMF configuration. Error detection is the responsibility of 

all entities in the AMF managed system. Errors are typically reported to AMF through a 

component error report API. The error report also specifies the recommended recovery to 

be performed by AMF. The recommended recovery depends on the scope and type of the 

error. For example, if the error is at the component level, then the recovery could be a 

                                                 

 

 

10 Note that if AMF detects the error, then there is no delay between the time the error is detected and the 

time AMF becomes aware of it. 



125 
 

component restart. But if the error is related to the execution environment of the 

component on the current node, then a different recovery may be more suitable like a 

component failover. If the report contains no recommendation, or if AMF detects the 

error without receiving of an error report, then AMF resorts to the configuration of the 

faulty components, and checks its default recommended recovery. After completing the 

recovery, or if the default recommended recovery does not specify a recovery action, 

AMF engages in a repair action. If the repair fails, AMF isolates the SU containing the 

faulty component. It is important here to distinguish between the recovery and the repair. 

The recovery is applicable at the service level, whereas the repair is applicable at the 

service provider level. The service may be recovered by shifting it to a healthy redundant 

component, while the original component is still not repaired. When calculating the 

service availability we are more interested in the recovery timing then the repair. 

There are 9 recoveries defined in the AMF specifications. These recoveries target 

different scopes of failures and they can be summarized as follows: 

� Component restart or failover: these recoveries are typically recommended when 

the failure manifests within the faulty component. In case of failover, the 

component’s workload is failed over to another redundant replica that can 

continue the provision of the service that the workload signifies. Note that even in 

case of the component failover recovery, after recovering the services, AMF will 

still attempt to restart the component as a repair measure. When the recovery itself 

is a component restart, the component is repaired by a restart and the component-

services it served before the failure are reassigned to it. 
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� Container restart: a container component provides an execution environment 

where the contained can be executed; e.g., a component deployed in a virtual 

machine, which itself is a container component.  When the contained component 

is not achieving its functionality because the container is faulty, restarting the 

contained will not resolve the problem, a more suitable recovery is restarting 

container.  

� Node Switchover or failover or failfast: when the failure reported on the 

component indicates that the whole node has been contaminated therefore all its 

workload needs to be failed over (or switched over) and the node cleaned up. A 

failfast is a faster version of the failover. Typically in a failover the components 

are abruptly terminated using the operating system while in failfast they may be 

terminated by powering-down the hardware for instance, which results in a faster 

and almost instant termination. 

� Application restart or cluster reboot: these are applied when the failure indicates 

that a fault is affecting the services provided by the application or the entire 

cluster. Note that the restart of the application is not equivalent to restarting all its 

components. Instead all the components must be abruptly terminated first, before 

any of them is instantiated again. The rationale behind this is to prevent the old 

incarnation of the components from propagating their state and consequently the 

fault to their new incarnation by saving or exchanging this information. The same 

applies to the cluster reboot in terms of nodes. 
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6.3.1 Recovery Altering Attributes 

The recommended recovery is either set as a default for a component or recommended 

through the API, which means it is embedded in some code. As a result it may not suit all 

configurations and therefore needs to be tuned to suit better a particular configuration. 

For instance in the example shown in Figure  2-1 the HTTP server and the Application 

server may have originated from two different vendors/providers, and grouped together in 

the same service unit by the system integrator. The software provider may be agnostic of 

how the software will be used or grouped by the system integrator. Therefore the 

software provider cannot recommend a recovery that is at the SU level for instance, 

simply because he/she is not aware of the scope of the SU and how it is formed. It is the 

system integrator’s responsibility to determine the proper scope of recovery and hence 

adjust the configuration accordingly. For instance, if the HTTP server and the 

Application server collaborate closely, and a failure in either of them can easily propagate 

to the other and eventually to the receiver of the service, then the system integrator must 

force a recovery on both of them when either one fails. In other words whichever 

recovery that is recommended to either of them must be altered to include both of them. 

An AMF configuration model includes attributes that allow the mutation of certain 

recommended recoveries into different recoveries, namely, what we refer to as the “actual 

recoveries”.  Hence, with a particular setting of the AMF attributes, a configuration 

designer can craft more suitable recoveries and force AMF to execute them when needed.  

We refer to these attributes as “recovery altering attributes” and we have identified the 

following set of them:  
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� Component disable restart (defined for the component): when the component 

restart is expected to cause a longer service outage than the failover, then the 

system integrator can disable it, thus forcing the AM to failover the services even 

if the recommended recovery is to restart the faulty component.  

� Service-unit failover (defined for the service-unit): when the components of the 

service-unit are tightly coupled with service dependency and therefore do not 

provide fault isolation, the system integrator can use this attribute to specify that 

all components of the unit must failover together, since the failure may have 

propagated to all of them.  

� Component restart tolerance (defined at the service-group level): it defines 

whether the restart of any component in the service-group should escalate to the 

restart of the entire service-unit.  

� Service-unit restart tolerance (defined at the service-group level): it defines 

whether the restart of any service-unit in the service-group should escalate to the 

failover of the service-unit. 

� Service-unit failover tolerance (defined at the node level): it defines whether any 

service-unit failover at the node level escalates to failing over all the service-units 

hosted on the node. 

� Enable auto-repair (defined for the node or service-group): this attribute specifies 

whether AMF is allowed to engage in the repair of the faulty entity in addition to 

recovering the service. When it is set to false, AMF is not allowed to perform any 
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repair and therefore a recovery action that implies a simultaneous repair, e.g. 

component/application restart and node/cluster reboot.  

6.3.2 Issues and Challenges 

There are several issues that arise during the availability analysis. The availability 

analysis is based on analyzing the service outage associated with failures; however the 

AMF configuration does not include the failure information of the components and 

nodes. Moreover, the actual recovery that AMF will execute at runtime is not necessarily 

the same as the recommended one, due to recovery altering attributes. However the 

availability analysis must be based on the actual recovery. The AMF configuration may 

specify various dependencies, and these dependencies may impact the service availability 

and therefore they must be captured by the analysis, hence another challenge is to define 

the analysis model in such a way that captures the impact of the software dependency on 

the service outage. The AMF configuration also describes escalation policies that AMF 

must enforce in case a recovery or a repair fails, and these policies must be reflected in 

the analysis model. The analysis model must also capture the SI assignment preference, 

such as the ones specified by the rankings we discussed in Chapter 5. 

6.4 The Availability Analysis Framework 

Our approach for quantifying the service availability consists of defining an analysis 

framework based on which we can derive a stochastic model that emulates the runtime 

system behavior. This model can thereafter be solved to get the availability measures of 

interest. Nonetheless deriving this stochastic model is not an easy task. It requires 
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prerequisite steps that we illustrate in this chapter. Our process of defining the analysis 

framework is as follows: 

� Extend the AMF model 

� Define the algorithms that determine the actual recovery 

� Define the (stochastic) analysis model 

� Define the mapping from an AMF configuration instance to an instance of the 

analysis model 

o Define the dependency mapping 

o Define the recovery mapping 

o Define the service assignment mapping 

6.4.1 Extending the Standard AMF Model 

The standard AMF model for a configuration does not include all the needed failure 

related information e.g. failure rates. This is because the model is defined for the purpose 

of runtime availability management and such information is not needed for this purpose. 

However, for the availability analysis, this information is crucial, and since we are 

following a model based approach, we decided to extend the AMF model to 

accommodate this information. The only two entities in the AMF configuration that are 

susceptible to failures are the node and the component. Therefore we have associated 

each one of them with zero or more failure types. Each failure type has a rate and a 

recommended recovery. This statistical failure information is assumed to be provided by 
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the software or hardware vendor, or obtained through benchmarks. Other attributes that 

are needed for the availability analysis but are not specified in the configuration are, for 

example, the time needed to start or shutdown a node or the probability of successfully 

instantiating a component. We also added the missing attributes to the relevant classes. 

The process of obtaining the values of these attributes is outside the scope of this thesis. 

 

Figure  6-2 The extension to the standard AMF model 

Figure  6-2 illustrate the class diagram showing the extensions. Notice that each failure 

type is associated to an actual recovery. This is because the actual recovery associated 

with the failure type is not necessarily the recommended one, and hence it needs to be 

captured in the model. The question remains how to determine the actual recovery? 

6.4.2 Actual Recovery Analysis 

We have identified two types of recommended recoveries:  
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� Mutable recommended recoveries: are the ones that can mutate to other recoveries 

either at the same level or at a higher level based on the recovery altering 

attributes. These recoveries are shown in Figure  6-3 with the dotted and dashed 

border. 

� Immutable recommended recoveries: are the ones that are immune to the recovery 

altering attributes and hence cannot mutate to other recoveries. These recoveries 

are shown in Figure  6-3 with the solid border. 

 Note that we can consider the SU level recoveries as mutated recoveries (shown in 

Figure  6-3 with the dashed border) since the only way to force their execution is through 

the proper setting of the configuration attributes. Figure  6-3 illustrate the mutation path 

that a recommended recovery can follow. 
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Figure  6-3 Recovery mutation path 

In order to determine how the recovery altering attributes mutate a recommended 

(mutable) recovery, we have devised an actual recovery algorithm that is based on a deep 

analysis of the AMF specifications. This analysis revealed that the mutation of a recovery 
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does not solely depend on the recovery altering attributes, but also on other attributes that 

reflect the properties of certain entities (such as the pre-instantiability11 of a component). 

The actual recovery algorithm is captured through the subsequent flowcharts illustrated in 

Figure  6-4, Figure  6-5 and Figure  6-6. The main recovery flowchart illustrated in Figure 

 6-4, will take as input a recommended recovery, and based on the recovery it can branch 

either to the component restart flowchart illustrated in Figure  6-5, or the component 

failover flowchart illustrated in Figure  6-6. When we return from either flowchart, the 

recovery value will be examined again to verify whether or not it will mutate to a node 

failover. The outputted recovery action in Figure  6-4 is stored in the extended 

configuration instance that we are analyzing, and it reflects the actual recovery that AMF 

will perform at runtime in case the failure for which the recommended recovery was 

defined occurs.  

                                                 

 

 

11A component is said to be non-pre-instantiable if it starts providing its service at the moment of its 

instantiation, i.e. it cannot remain idle after instantiation waiting for AMF to make the service assignment 

(which is the case of pre-instantiable components). An SU is considered non-pre-instantiable if it is 

exclusively composed of non-pre-instantiable components. 
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Figure  6-4 The main recovery flowchart 
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Figure  6-5 The component restart recovery flowchart 
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Figure  6-6 The component failover recovery flowchart 

6.4.3 Defining the Stochastic Analysis Model 

In order to quantify the service availability, we need to formally capture the runtime 

system behavior in terms of service assignment, and recovery execution. For this purpose 

we have defined a stochastic model based on the DSPN formalism. The rationale behind 

using this formalism is the following: the AMF managed systems we are trying to 

analyze exhibit three types of runtime events, (1) stochastic events like the occurrence of 

failures. (2) Deterministic events, like the time needed to instantiate a component. (3) 

Immediate events, such as when a node is abruptly shut down, all the components 



138 
 

running on this node will immediately become un-instantiated. In order to quantify the 

availability we need a stochastic model where failures/recoveries can be described. 

Stochastic Petri Nets only support stochastic events, and therefore a more suitable 

formalism for modeling our system are the Deterministic and Stochastic Petri nets 

(DSPNs). Another advantage of using DSPNs is their expressiveness in terms of 

capturing the system behavior by allowing us to specify complex guard conditions (that 

are marking dependent) which can reflect the complex system behavior, e.g. in terms of 

capturing the effect of dependencies on the behavior and consequently the service 

availability. 

We defined our stochastic model as DSPN templates. For each AMF entity class on 

which a recovery can be executed, and also for the SIs/CSIs and the association between 

component/CSI and SU/SI, we created a DSPN template. The template captures the 

various states that an entity of these classes can undergo at runtime. The transitions and 

the guards capture the runtime system behavior in terms of service assignment and 

recovery execution. We will proceed by introducing each of the templates through the 

mapping of AMF entities to the corresponding templates. Thereafter we will present how 

the guard conditions and the transitions rates/times are mapped.  

6.4.4 Mapping the Configuration to a DSPN Model ─ Overall Process 

We have divided the mapping into two separate phases; the first phase is the structural 

mapping where, based on a given AMF configuration, we instantiate the DSPN templates 

(we will present the detailed description of the templates later on in this chapter). The 

next phase is the annotation, where we annotate the DSPNs with the proper transition 
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rates and times, and we create the proper guard conditions to capture the dependencies, 

recoveries, assignments etc. To illustrate how the mapping is performed we consider a 

very basic example shown in Figure  6-7 where we map an application to an instance of 

its corresponding template. Assuming that the application has two components, where 

each component is associated with a failure that has rate, and a recommended recovery 

which is in both cases an application restart. The first phase of the mapping consists of 

selecting the predefined templates defined for each entity. For instance the first step is to 

select the application DSPN template and the component DSPN template and instantiate 

them. The next step would be to annotate the selected template (we only annotate the 

application template in this example) with the proper values in terms of rates and guards. 

As shown in Figure  6-7, the rate of the stochastic transition to the faulty application state 

is the aggregation of the rates for the component failures where an application restart 

recovery is recommended. On the other hand we consider the application to be healthy 

when all the components of the application are terminated, and thus an immediate 

transition should place a token in the place reflecting the application healthy state. The 

guard condition of this immediate transition would evaluate to true when all the 

application components are in a terminated state. I.e. it depends on the marking of the 

components. Reciprocally (and due to the semantics of the application restart recovery), 

when the parent application is in a faulty state, a condition would be placed to prohibit 

the transition of the component to its instantiated state.  



140 
 

 

Figure  6-7 Example an application mapping to its corresponding DSPN 

We first present an overall description of the structural mapping and then the annotation 

of the template instances. Since we believe that the dependency mapping is of significant 

importance we will include it in our overall description. A more detailed description of 

the mapping (at the attribute level) is described in the definition of the templates 

themselves. 

6.4.4.1 The Structural Mapping 

The structural mapping is a relatively straightforward process of creating for each 

relevant AMF entity (component, SU, application, cluster, node, SI, and CSI) an instance 

of the corresponding DSPN template, with the proper naming. For each CSI that a 

component may provide in the SG, a comp-CSI template instance must be created. For 

each SI in the SG, an SU-SI template instance is created. These association template 
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instances are used to capture the runtime assignments of the components and SUs on 

behalf of the CSIs and SIs. This structural mapping, instantiates a DSPN model which 

can be easily traced back to the AMF configuration model instance in terms of the 

relevant entities. For instance, based purely on the DSPN model instance, we can 

determine the structure of the SUs and their components, etc. in the originating AMF 

model instance. 

6.4.4.2 Annotating the Template Instances 

The DSPNs created in the structural mapping must be annotated with the proper values. 

These values are derived from the attribute values of the extended-configuration. For 

instance, the delay value of the transition that takes the component to the instantiated 

state is directly mapped from the configuration. However when the AMF configuration 

specifies that the component category of a component is “contained”, this triggers a 

specific configuration of several guards of the DSPN instances that capture the 

dependencies of a component of such a category. This configuration is not directly 

mapped into a single guard or transition; in fact it is mapped to various guards and 

transitions in the model in order to capture the way AMF deals with this kind of 

component category. 

6.4.4.2.1 Mapping the transition rates and times 

� The times used for the deterministic transitions are mapped from the instance of 

the extended-configuration model. For instance the time delay of the transition 

that takes the component from the un-instantiated state to its instantiated state is 

mapped from the saAmfCompInstanteTimeout attribute of the component. The 
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delay for other transition originates from attributes with which we extended the 

configuration (such as the node startup duration). 

� The rates used for the stochastic transitions are collected from the configuration. 

For each node and component, the failures are analyzed. For the node, the failures 

that have the same actual recoveries are grouped and their rates are aggregated. 

E.g. if the node is associated with several failure types from which the actual 

recovery is a node failfast, then the rate associated with the transition that takes 

the node into the failing fast state will be the summation of all these rates. Note 

here that the component as well might have node level recoveries. Therefore all 

the components residing on the node must be analyzed as well, and the failure 

rates of the actual recoveries applied on the node must be added to those already 

specified on the node. For instance the failure types associated with the 

component that have an actual recovery applied on the node such as a node 

failover, must have their rates added to the node failover rates of the node itself. 

Note here the node switchover recovery for the component needs to remain at the 

component level, and then propagate to the node. This is because the faulty 

component for which the actual recovery is issued must indeed failed over, and it 

is the siblings of this component running of the same node that will actually 

switchover. 

As for the component actual recoveries they are grouped into three categories. (1)The 

ones that remain at the component level and for this again the rates of similar recoveries 

for the component are aggregated to be used for the relevant transition. (2) For each SU, 
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all the actual recoveries of its components that evaluate to an SU failover will have their 

rates aggregated to form the rate of the transition that takes the SU into the failing over 

state. (3) Similarly for the application, all the actual recoveries of its components that 

evaluate to an application restart will have their rates aggregated to form the rate of the 

transition that takes the application into the restarting state.  

Finally the cluster reset recovery may be an actual recovery of the node of the 

component, and therefore the rate of this recovery is the aggregated rate of all the actual 

recoveries in the configuration that indicate a cluster reset.  

6.4.4.2.2 Dependency mapping 

In Section 4.2.3 we discussed dependency handling at the configuration requirements 

level. The goal was to identify the dependencies that would affect the input, and possibly 

require the designer intervention to complement the input. In this chapter we examine the 

dependencies from a different perspective. The goal here is to map the dependencies that 

will affect the service availability. For this purpose we have identified and categorized 

the dependencies in a somewhat different manner as we explain next. Here we map four 

different types of dependencies as follows: 

� Instantiation level dependency: this dependency is specified by the 

saAmfCompInstantiationLevel attribute of the component. It is applicable within the 

scope of the SU.  

o Meaning: this dependency states that the components of the lower 

instantiation level (the dependent ones) cannot be instantiated until all the 

components with a higher instantiation level (sponsors) within the SU are 
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instantiated. During an SU restart, the SU with the lower instantiation 

level are terminated first.  

o Implications: this dependency does not imply any assignment 

dependency, i.e. once the components are instantiated they can be 

assigned independently 

o Impact: we consider this to be the weakest dependency in terms of its 

impact on the service availability, because even if at a certain point in time 

the sponsor is un-instantiated, if the dependent component is already 

instantiated it can be assigned the service. 

o Mapping: this dependency is captured in the guard of the transition that 

takes the component into the instantiated state. This transition is disabled 

if the sponsor is not already instantiated. During the SU restart, the 

sponsor cannot go into the terminated state, unless the dependent is 

already terminated. 

� Proxy/proxied dependency: this dependency exists between the proxy (sponsor) and 

the proxied (dependent) component.  

o Meaning: this dependency states that the sponsor must be assigned the 

sponsoring CSI (proxy CSI), before the dependent can be assigned its CSI 

workload. Moreover the proxy must be assigned the proxy CSI before we 

can instantiate or terminate the proxied. If the proxied is external, then 

even the cleanup is performed through the proxy. 



145 
 

o Implications: this dependency implies an instantiation dependency, since 

the proxy must be instantiated and assigned the proxy CSI before the 

proxied is instantiated. 

o Impact: we consider this to be stronger than the instantiation dependency 

in terms of its impact on the service availability, because we must have an 

active assignment of the sponsoring workload before assigning the CSI 

workload for the dependent. However even in the absence of the sponsor, 

if the dependent component is instantiated and assigned the CSIs, it can 

continue providing service represented by the CSIs until the proxy has 

recovered. 

o Mapping: this dependency is captured in the guard of the transition that 

takes the component into the instantiated state. This transition is disabled 

if the sponsor is not already instantiated and assigned the proxy CSI. 

Similarly the proxied cannot be assigned any CSI unless the proxy CSI is 

assigned active to the proxy. This implies the guard conditions of the 

transitions to the active or standby states in the Comp-CSI DSPN evaluate 

to false when the proxy CSI is not assigned active to at least one proxy. 

During the SU restart, if the proxy resides in the same SU, then it cannot 

go into the terminated state, unless all the proxied in the SU are already 

terminated. 

� SI and CSI dependency: this dependency is an SI-SI or a CSI-CSI dependency. Note 

that the dependent can have many sponsors and vice versa. 
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o Meaning: this dependency states that the dependent SI/CSI cannot be 

assigned until all its sponsors are assigned active. Moreover when one of 

the sponsor SIs is not provided the dependent SI can only survive for a 

predefined period of time specified in the saAmfSIToleranceTime 

attribute of the dependency class. 

o Implications: this dependency implies that the sponsor SI/CSI must be 

assigned active before the dependent one; nonetheless it does not imply an 

instantiation level dependency at the component level. I.e. the component 

providing the sponsor CSI (or a CSI of a sponsor SI) can be instantiated 

irrespectively of the component proving the dependent CSI (or a CSI of a 

dependent SI). If the component is non-pre-instantiable, then its transition 

to the instantiated state is correlated with the assignment of its CSI. 

o Impact: we consider this to be a stronger dependency than the proxy-

proxied dependency in terms of its impact on the service availability, 

because when the sponsor CSI is not provided the dependent one is 

immediately dropped. When the sponsor SI is not provided, the dependent 

SI can only be provided for a predefined period of time before it is 

dropped. 

o Mapping: This dependency is captured by the guards that guard the 

transition to the active/standby assignment of the CSI, where a CSI cannot 

be assigned unless its sponsor is assigned active. And by the guards of the 

SU assignment on behalf of the SI. Moreover due to the tolerance, an 
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additional deterministic transition is added to the SI DSPN, where for each 

sponsoring SI, a deterministic transition is added with a time value equal 

to the corresponding tolerance time. The transition is enabled when the 

sponsor SI is not provided, when the transition fires, it moves the SI into 

the dropped state. 

� Container/contained dependency: this dependency exists between the container 

(sponsor) and the contained (dependent) component. The container typically acts as an 

execution environment for the contained; where without the container the contained 

cannot exist. 

o Meaning: this dependency states that the sponsor must be assigned the 

sponsoring CSI (container CSI), before the dependent can be assigned its 

CSI workload. Moreover the container must be assigned the container CSI 

before we can instantiate or terminate the contained. Any recovery applied 

on the container will affect its contained component(s). 

o Implications: this dependency implies all the previous dependencies, in 

addition the life cycle of the dependent is tightly coupled with the sponsor. 

o Impact: we consider this to be the strongest dependency in terms of its 

impact on the service availability, because we must have an active 

assignment to the sponsoring workload before instantiating or assigning 

the CSI workload for the dependent. Moreover in the absence of the 

sponsor, the dependent cannot exist. 
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o Mapping: this dependency is mapped through not allowing the contained 

to be instantiated or assigned any service before the container is assigned 

the container CSI. When the container is not instantiated, the contained 

will go into the un-instantiated state. When the container CSI is not 

provided then the workload assigned to the contained is dropped as well.  

6.4.5 The DSPN Templates 

As mentioned earlier, some attribute values are mapped directly into transition delays or 

arc multiplicities. In the following tables, attributes in bold text describe the exact name 

of the configuration attribute from which the value is directly mapped. 

6.4.5.1 Naming convention for the template models 

In this section we present the naming conventions that we use when creating the DSPN 

model. Note that the names shown in the templates have to be parameterized for each 

instance. For example the name of the place Application_healthy of the DSPN template 

has to be parameterized as Application1_healthy when used in the DSPN instance 

describing Application1 and the same applies for the transitions. The naming convention 

is as follows: 

o Place: <entity name>_<entity state> e.g. Cluster_healthy 

o Transition: T_t| i|r_<source place reference>-<destination place 

reference> e.g. T_r_ch-cr stands for a transition with an exponential rate 

<r> going from Cluster_healthy <ch> state to cluster resetting <cr> 

place.  
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o Guard: [G_<transition name>] e.g. [G_T_r_ch-cr] stands for guarding the 

transition T_r_ch-cr 

6.4.5.2 The Cluster DSPN Template  

The cluster template (Figure  6-8) is used to capture the states that the cluster may go through. The description 

of the states, transitions and guards are presented respectively in  

 

 

 

Table  6-1, Table  6-2, and Table  6-3. 

 

Figure  6-8 The cluster DSPN template 
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Table  6-1 The cluster states 

State12 (or place) Description 

Cluster_healthy Initially or after a cluster reset, when all the cluster nodes are 

shutdown, the cluster is considered to be healthy. 

Cluster_resetting The cluster is resetting as a recovery action. 

Cluster_going_on_prob

ation 

This state is needed to make sure that when a cluster reset 

occurs while the cluster is still on probation, then the probation 

period is reset. The token in this place cannot move on to the 

Cluster_on_probation place until the latter is empty, i.e. has no 

tokens. 

Cluster_on_probation A token in this place signifies that no SU-SI assignment is 

allowed, until either the startup period is over, or all the needed 

components in the cluster are instantiated. 

 

Table  6-2 Cluster transitions 

                                                 

 

 

12 In this section, we use the term state and place interchangeably, simply because in certain contexts the 

term state conveys a better meaning.  
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Transition Description 

T_r_ch-cr This transition has an exponentially distributed rate. The rate is 

the summation of all the rates of the cluster reset actual 

recoveries issued on the cluster’s components and nodes. The 

transition takes a token out of the Cluster_healthy place and 

positions one token in the Cluster_resetting place, and another in 

the Cluster_going_on_probation place. 

T_i_cr-ch This is an immediate transition. It takes a token out of the 

Cluster_resetting place and positions it in the Cluster_healthy 

place. 

T_i_cgop-cop This is an immediate transition. It takes a token out of the 

Cluster_going_on_probation place and positions it in the 

Cluster_on_probation place.  

T_i_cop This is an immediate transition that flashes the token in the 

Cluster_on_probation place when all the components of the 

cluster are instantiated. 

T_t_cop This is a deterministic transition; it reflects the time needed for 

the cluster startup probation period to expire. The time value of 

this transition is specified by the saAmfClusterStartupTimeout 

attribute of the SaAmfCluster class. 
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Table  6-3 Cluster guard conditions 

Guard Description 

G_ T_i_cr-ch It guards the transition of the cluster to the Cluster_healthy state, 

the guard condition evaluates to true when: 

� All the cluster nodes are in the Node_shutdown state. I.e. 

all the nodes have a token in the Node_shutdown place. 

G_ T_i_cgop-cop It guards the transition of the cluster to the Cluster_on_probation 

states, the guard condition evaluates to true when: 

�  The cluster is not already on probation i.e. there are no 

tokens in the Cluster_on_probation state. And when the 

cluster is in a healthy state. 

G_ T_i_cop It guards the flushing of the Cluster_on_probation state. The 

guard condition evaluates to true when either of the below 

conditions are true: 

� All the components of the instantiated SUs of the cluster 

are instantiated i.e. they have a token in the 

Comp_instantiated state.  

� When yet another cluster reset recovery occurs while the 

cluster is still on probation, i.e. the place 
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Cluster_going_on_probation has a token. 

6.4.5.3 The Node DSPN Template 

The node template (Figure  6-9) must capture the various states that the node goes 

through. The assumption here is that there exists a process monitoring the health of the 

node, and in case anomalies are detected, the process will report to AMF the 

recommended recovery. Thus we find in the model the stochastic transition to the failing 

fast, failing over and switching over states. The description of the states, transitions and 

guards are presented respectively in Table  6-4, Table  6-5, and Table  6-6. 
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Figure  6-9 The node DSPN template 

Table  6-4 The node states 

State Description 

Node_shutdown The AMF node is not started, i.e. the components on this node 

cannot be instantiated. 

Node_started The AMF node is considered healthy, and ready to host 

instantiated components. 

Node_failing_fast The node is in a failing fast state as a recovery action, the 

sojourn time in this state is not very significant. 

Node_failing_over The node is in a failing over state as a recovery action, where 

all the components are abruptly terminated. When all the 

components have been cleaned up, the node will become ready 

for restart. 

Node_switching_over The node is in a switching over state, all the node’s 

components (except for the faulty one(s)) have their workload 

assignments gracefully removed. When this is completed, and 

the faulty components have been cleaned up, the node is ready 

for restart. 

Node_ready_for_repair When the node auto repair is ON, then a node in this state can 

transition to the shutdown state, as a first step towards being 
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restarted. 

Node_SU_failover_prob When any SU of the node fails over, then node enters a 

failover probation period, this state is used to keep track of the 

number of SUs failing over within the probation period. 

Node_failover_enabled This state indicates that the node is ready to go into a failing 

over state as an escalation recovery due to repetitive failovers 

of the node’s SUs 

 

Table  6-5 Node transitions 

Transition Description 

T_t_nsh-ns This is a deterministic transition; it reflects the time needed for a 

node to go from its shutdown state13(Node_shutdown) into a 

                                                 

 

 

13 For simplicity’s sake we refer to transitions shifting entities from one state to another, the shift of the 

token is implied. 
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started state (Node_started). The time value of this transition is 

specified by the user14in the extended attributes of the AMF 

configuration. 

T_t_ns-nsh This is a deterministic transition that reflects the time needed for a 

node to go from its started state (Node_started) into a shutdown 

state (Node_shutdown) caused by a cluster reset. The time value 

of this transition is specified by the userin the extended attributes 

of the AMF configuration 

T_r_ns-nff This is a stochastic transition that takes the node from its started 

state (Node_started) into a failing fast state (Node_failing_fast). 

This transition has an exponentially distributed rate; the rate is the 

summation of all the rates of the node failfast actual recoveries 

issued on the node’s components15and the node itself. 

                                                 

 

 

14 The user may be the system configurator or administrator who has the knowledge of the hardware and 

the OS, or has tested the system to get some booting and shutting down timings. 

15For this, we make the assumption that for each SU, the hosting node is specified in the configuration. 

Thus we can associate at configuration time the components and nodes. 
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T_i_ns-nff This is an immediate transition that transitions a started node 

(Node_started) to a failing fast state (Node_failing_fast) due to an 

escalation caused by the node’s components failing to 

instantiate/terminate. 

T_r_ns-nfo This is a stochastic transition that takes the node from its started 

state (Node_started) into a failing over state (Node_failing_over). 

This transition has an exponentially distributed rate; the rate is the 

summation of all the rates of the node failover actual recoveries 

issued on the node’s components or the node itself. 

T_i_nsufp This is an immediate transition that flushes the tokens in the 

Node_SU_failover_Prob place. It should be triggered after a node 

reboot to signal that the node is no longer on probation. 

T_i_ns_nfo This is an immediate transition that transitions a started node 

(Node_started) to a failing over state (Node_failing_over) due to 

an escalation caused by the node’s SUs failing over. 

T_i_ns-nso This is an immediate transition that takes the node into a 

switching over state (Node_switching_over). It is triggered by 

any component of the node requesting a node switchover as a 

recovery action. 

T_r_ns-nso This is a stochastic transition that takes the node from its started 

state (Node_started) into a switching over state 
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(Node_switching_over). This transition has an exponentially 

distributed rate; the rate is the summation of all the rates of the 

node switchover actual recoveries issued on the node itself16. 

T_t_nff-nsh This is a deterministic transition that reflects the time needed for a 

node to go from failing fast (Node_failing_fast) to shutdown state 

(Node_shutdown). The time value of this transition is specified 

by the user in the extended attributes of the AMF configuration. 

T_i_nfo-nrfr This is an immediate transition that transitions a failing over node 

(Node_failing_over) to a state where it is ready for repair 

(Node_ready_for_repair) i.e. restart.  

T_i_nso-nrfr This is an immediate transition that transitions a switching over 

node (Node_switching_over) to a state where it is ready for repair 

(Node_ready_for_repair) i.e. restart. 

                                                 

 

 

16We distinguish between the switchover issued on the node and the one issued on the component, because 

with the node switchover recovery issued on the component the faulty component is in fact failed over, and 

it is its siblings on the same node that are indeed switched over. When the node switchover is triggered for 

the node, all the components are switched over. 
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T_t_nrfr-sd This is a deterministic transition that reflects the time needed for a 

node to go from its ready for repair state (Node_ready_for_repair) 

into a shutdown state (Node_shutdown). The time value of this 

transition is specified by the userin the extended attribute 

(shutDownDuration) of the AMF configuration. 

T_t_nsufp This is a deterministic transition that reflects the time needed for 

the SU failover probation period to expire. When this transition 

fires, it flushes all the tokens in the Node_SU_failover_prob. The 

time value of this transition is specified by the 

saAmfNodeSuFailoverProb of the SaAmfNode class. 

Note that the arc cardinality ‘z’ = the number of tokens in the 

Node_SU_failover_prob state. 

T_i_nsufp-nfe This is an immediate transition that is triggered when the number 

of tokens in the Node_SU_failover_prob reaches the threshold. 

This Threshold (the arc cardinality ‘k’) is equal to 

saAmfNodeSuFailoverMax. 

T_i_nfe This is an immediate transition that is triggered to flush the 

Node_failover_enabled state, indicating that the node failover 

escalation was executed. 

 

Table  6-6 Node guard conditions 
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Guard Description 

G_ T_t_nsh-ns It guards the transition of the node to the started state. (it is 

applied to transition T_t_nsh-nsincluded in the name of the 

guard)The guard condition evaluates to false when: 

� The cluster is in the Cluster_resetting state. I.e. it is false 

when there is a token in the Cluster_resetting place. 

G_T_t_ns-nsh It guards the transition of the node from the started state to the 

shutdown state. The guard condition evaluates to true when: 

�  The cluster is in a Cluster_resetting state. I.e. it is true 

when there is a token in the Cluster_resetting place. 

G_T_i_ns-nff It guards the immediate transition of the node to 

Node_failing_fast state. The guard condition evaluates to true 

when either one of the below conditions are true: 

� Acomponent of this node is in the 

Comp_instantiation_failed state (i.e. there is a token in 

this state) and the 

saAmfNodeFailfastOnInstantiationFailureattribute of 

the SaAmfNode class is set to true. 

� Acomponent of this nodeis in the 

Comp_termination_failed state (i.e. there is a token in this 
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state) and the  saAmfNodeFailfastOnTerminationFailure 

is set to true 

G_T_i_ns-nfo It guards the transition of the node to Node_failing_over state. 

The guard condition evaluates to true when: 

� There is a token in the Node_failover_enabled state as a 

result of the number of SUs failing over reaching the 

saAmfNodefailoverMaxvalue. I.e. the number of tokens 

in the Node_SU_failover_prob reaches this value. 

G_T_i_ns-nso It guards the transition of the node to Node_switching_over state. 

The guard condition evaluates to true when: 

� Any of the node’s components has a token in the 

Comp_node_switchover state. 

G_T_i_nfo-nrfr It guards the transition of the node to being ready for repair state 

(Node_ready_for_repair) after being in theNode_failing_over 

state. The guard condition evaluates to true when: 

� All the nodes components have beencleaned up. I.e. there 

is a token in the Comp_un-instantiated place of all the 

node’s components. 

G_T_i_nso-nrfr It guards the transition of the node to being ready for a restart 

state after being in a switching over state. The guard condition 
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evaluates to true when: 

� All the node’s components do not have any HA state on 

behalf of any CSI. I.e. they all have a token in the 

Comp_CSI_unassigned for each CSI they can provide. 

G_T_t_nrfr-sh It guards the transition of a node in a Node_ready_for_repair 

stateto a Node_shut_down state. 

� This guard has the same value asthe node auto repair 

attribute saAmfNodeAutoRepair of the SaAmfNode class. 

G_T_i_nfe This guard is enabled when there is a token in the 

Node_failing_over state. It signifies that when the node is already 

in the failing over state, we can go ahead and flush the token that 

is in the Node_failover_enabled state. 

G_T_i_nsufp This guard is used to flush the tokens in the 

Node_SU_failover_prob place. It evaluates to true when: 

� The node has a token is in the Node_shutdown place 

6.4.5.4 The Application DSPN template  

The application model (Figure 3) is used to capture the state that the application goes 

through. 
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Figure  6-10 The application DSPN template 

The application template states, transitions, and guards are explained respectively in 

Table  6-7, Table  6-8, and Table  6-9. 

Table  6-7 Application states 

State Description 

Application_healthy This state simply means that the application is not undergoing a 

restart in order to overcome a failure. 

Application_restarting The application is restarting as a recovery action. 

 

Table  6-8 Application transitions 

Transition Description 

T_r_ah-ar This is a stochastic transition that takes the application from its 

healthy state (Application_healthy) into a restarting state 

(Application_restarting). This transition has an exponentially 

distributed rate. The rate is the summation of all the rates of the 
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application restart actual recoveries issued on the application’s 

components. The transition takes a token out of the 

Application_healthy place and positions it in the 

Application_restarting place.  

T_i_ar-ah This is an immediate transition. It takes a token out of the 

Application_restarting place and positions it in the 

Application_healthy place. 

 

Table  6-9 Application guard conditions 

Guard Description 

G_T_i_ar-ah  It guards the transition of the application to the 

Application_healthy state, the guard condition evaluates to true 

when: 

� All the application components are in the un-instantiated 

state. I.e. all the application components have a token in 

the Comp_un-instantiated place. 

6.4.5.5 The SU DSPN Template 

The SU model (Figure  6-11) is used to capture the recoveries specified at the SU level. 
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Figure  6-11 The SU DSPN template 

 

The SU can transition from the healthy state into either the failing over state, or the 

restarting state. The default state of the SU is the SU_healthy state. The SU template 

states, transitions, and guards are explained respectively in Table  6-10, Table  6-11, and 

Table  6-12. 

Table  6-10 The SU states 

State Description 

SU_healthy This state simply means that the SU is not undergoing a restart 

or a failover in order to overcome a failure. 
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SU_restarting The SU is restarting as an escalation of a component restart 

recovery action. 

SU_failing_over The SU is failing over as a recovery action or an escalation of a 

component failover. 

SU_comp_restart_prob The SU is on a component restart probation, caused by a 

component restart triggered on one of the SU’s components 

SU_restart_prob The SU is on an SU restart probation, it escalated to this state 

after being in the SU component restart probation state. 

 

Table  6-11 The SU transitions 

Transition Description 

T_i_suh-sur This is an immediate transition that takes the SU from a healthy 

state (SU_healthy) into the restarting state (SU_restarting). 

T_i_sur-suh This is an immediate transition that takes the SU from 

SU_restarting to SU_healthy. 

T_r_suh-sufo This is a stochastic transition that takes the SU from its healthy 

state (SU_healthy) into a failing over state (SU_failing_over).This 

transition has an exponentially distributed rate; the rate is the 

summation of all the rates of the SU failover actual recoveries 
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issued on the SU’s components. 

T_i_suh-sufo This is an immediate transition that takes the SU from the 

SU_healthy to the SU_failing_over state as a result of an 

escalation. 

T_i_sufo-suh  This is an immediate transition that takes the SU back to its 

SU_healthy state from the SU_failing_over state. 

T_t_sucrp This is a deterministic transition that reflects the duration until the 

SU component restart probation period expires. When this 

transition fires it flushes all the tokens from the 

SU_comp_restart_prob state. The time value of this transition is 

specified by the saAmfSgCompRestartProb attribute of the 

SaAmfSG class (i.e. the parent SG of this SU). The arc cardinality 

x is equal to the number of tokens in the SU_comp_restart_prob 

state.  

T_i_sucrp-surp This is an immediate transition that takes the SU to an SU restart 

probation (SU_restart_prob) state. And flushes the 

SU_Comp_restart_prob state of its tokens. The arc cardinality x is 

equal to the number of tokens in the SU_comp_restart_prob state.  

T_t_surp This is a deterministic transition that reflects the duration until the 

SU restart probation period expires. The time value of this 

transition is specified by the saAMFSGSuRestartProb attribute 
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of the SaAmfSG class. 

T_i_surp This is an immediate transition that flushes the SU_restart_prob 

state of its tokens. The arc cardinality m is equal to the number of 

tokens in the SU_restart_prob state.  

T_i_sucrp This is an immediate transition that flushes the 

SU_Comp_restart_prob state of its tokens. The arc cardinality x is 

equal to the number of tokens in the SU_Comp_restart_prob 

state. 

 

Table  6-12 The SU guard conditions 

Guard Description 

G_T_i_suh-sur It guards the transition of the SU to its restarting state. The guard 

condition evaluates to true when: 

� The number of components restarted within the probation 

period exceeds the threshold. I.e. when the number of 

tokens in the SU_comp_restart_prob reaches the 

saAMFSGCompRestartMax attribute value specified in 

the parent SG. 

G_T_i_sur-suh It guards the transition of the SU to its healthy state (SU_healthy), 
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the guard condition evaluates to true when: 

� All the components are not in a recovering state. I.e. they 

are either in the Comp_un-instantiated or 

Comp_instantiated state. In other words none of the 

components are faulty. 

G_T_i_suh-sufo It guards the transition of the SU to its failing over state. The 

guard condition evaluates to true when: 

� The number of times the SU is restarted within the 

probation period exceeds the threshold. I.e. when the 

number of tokens in the SU_restart_prob reaches the 

saAmfSgSuRestartMax attribute value of the parent SG 

G_T_i_sufo-suh

  

It guards the transition of the SU to its healthy state (SU_healthy), 

the guard condition evaluates to true when: 

� All the components are not in a recovering state. I.e. they 

are either in the Comp_un-instantiated or 

Comp_instantiated state. In other words none of the 

components are faulty. 

G_T_i_sucrp The guard condition evaluates to true when any of the below 

conditions are true: 



170 
 

� The parent node is shut down 

� The SU is failing over 

� The parent application is restarting 

G_T_i_surp The guard condition evaluates to true when any of the below 

conditions are true: 

� The parent node is shut down 

� The SU is failing over 

G_T_i_sucrp-surp The guard condition evaluates to true when: 

� The SU is in the SU_restart_prob state. 

6.4.5.6 The Component DSPN Template 

The component model (Figure  6-12) is used to capture the recoveries that the component 

undergoes; these recoveries are either intended for this specific component, or they are 

implicated by other recoveries performed on higher level entities e.g. the SU or the node. 
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Figure  6-12 The component DSPN template 

The component template states, transitions, and guards are explained respectively in 

Table  6-13, Table  6-14, and Table  6-15. 

Table  6-13 The component states 

State Description 

Comp_un-instantiated This state means that the component is still un-

instantiated.  

Comp_instantiated The component is instantiated. 

Comp_failing_over The component is failing over 

Comp_node_switching_over The component will be cleaned up and the entire 
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node must switchover 

Comp_switching_over The node is switching over, and as a result the 

component can no longer keep any assignment. 

Comp_restarting The component is restarting as a result of a 

component restart issued on the component or the 

SU or the application. 

Comp_failing_fast The component is failing fast as a result of a node 

failfast. 

Instantiation_failed_without_delay A component in this state means that an attempt to 

instantiate the component without delay has failed. 

Attemps_failed_without_delay This state is used to keep track of the number of 

attempts made without delay 

Instantiation_failed_with_delay A component in this state means that an attempt to 

instantiate the component with delay has failed. 

Attempts_failed_with_delay This state is used to keep track of the number of 

attempts made with delay 

Comp_instantiation_failed The component reaches this state when all the 

attempts with/without delay have failed. According 

to the configuration, when this state is reached, the 
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node may go through a failfast state. 

Comp_terminating A component in this state is on its way of being un-

instantiated, if the termination fails, it will go into a 

termination failed state. 

Comp_termination_failed The component reaches this state when an attempt 

to clean it up fails. According to the configuration, 

when this state is reached, the node may go through 

a failfast state. 

 

Table  6-14 The component transitions 

Transition Description 

T_t_cu-ci This is a deterministic transition that shifts the component 

into the instantiated state. This transition is associated 

with a probability (1-(Px + Py)17that the component might 

instantiate successfully. (PX and Py are introduced 

                                                 

 

 

17These probabilities are statistical information that is assumed to be available to the system administrator. 
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subsequently in this table, they are part of the extensions 

to the configuration). The transition time is equal to the 

saAmfCompInstanteTimeoutattribute value of the 

component. 

T_i_ci-cfo This is an immediate transition that takes the component 

to the failing over state (Comp_failing_over) caused by 

the failover of the SU or the node or the containing 

container component (if this is a contained component). 

T_r_ci-cfo This is a stochastic transition that takes the component 

from its instantiated state (Comp_instantiated) into a 

failing over state (Comp_failing_over). This transition has 

an exponentially distributed rate equal to the summation 

of all the actual recoveries of the component that evaluate 

to a component failover. 

T_r_ci-cnso This is a stochastic transition that takes the component 

from its instantiated state (Comp_instantiated) into a node 

level switching over state (Comp_node_switching_over). 

This transition has an exponentially distributed rate equal 

to the summation of all the actual recoveries of the 

component that evaluate to a node switchover. 

T_i_ci-cso This is an immediate transition that takes the component 
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from its instantiated state (Comp_instantiated) into a 

switching over state (Comp_switching_over), state caused 

by the switchover of the node where the component is 

running. 

T_r_ci-cr This is a stochastic transition that takes the component 

from its instantiated state (Comp_instantiated) into a 

restarting state (Comp_restarting). This transition has an 

exponentially distributed rate equal to the summation of 

all the actual recoveries of the component that evaluate to 

a component restart. If the component is a container, then 

all the actual recoveries that evaluate to a container restart 

are added to this rate as well. 

T_i_ci-cr This is an immediate transition that takes the component 

to the restarting state (Comp_restarting), where the restart 

is in an enclosing entity, i.e. the SU or the application or 

the containing component is restarting. 

T_i_ci-cff This is an immediate transition that takes the component 

into a failing fast state (Comp_failing_fast). 

T_i_cff-cu This is an immediate transition that takes the component 

from the Comp_failing_fast state to the 

Comp_terminatingstate.  
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T_t_cr-ct This is a deterministic transition that shifts the component 

from the Comp_restarting to the Comp_terminating state. 

The time duration of this transition is equal to the 

saAmfCompCleanupTimeout attribute value of the 

component.  

T_t_cfo-ct This is a deterministic transition that shifts the component 

from the Comp_failing_over to the Comp_terminating 

state. The time duration of this transition is equal to the 

saAmfCompCleanupTimeout attribute value of the 

component. 

T_i_cnso-cu This is an immediate transition that takes the component 

from the Comp_node_switching_over state to the 

Comp_un-instantiated state. 

T_i_cso_cu This is an immediate transition that shifts the component 

from the Comp_switching_over state to the Comp_un-

instantiatedstate.  

T_i_cif-cu This is an immediate transition that takes the component 

from the Component_instantiation_failed state to the 

Comp_un-instantiated state. 

T_i_cu-cif  This is an immediate transition that takes the component 

from the Comp_un-instantiated state to the 



177 
 

Comp_instantiation_failed state 

T_t_cu-ifwod This is a deterministic transition that shifts the component 

from the Comp_un-instantiated state into the 

Attemps_failed_without_delay state. It reflects a failed 

attempt to instantiate the component without delay 

between attempts. The time duration of this transition is 

equal to the saAmfCompCleanupTimeoutattribute of the 

component. This transition is associated with a probability 

Px that the component might fail to instantiate without 

delay. 

T_i_ifwod-cu This is an immediate transition that takes the component 

into the Comp_un-instantiated state after failing to 

instantiate without delay. It also places a token in the 

Attemps_failed_without_delay state to keep track of the 

number of attempts made. 

T_i_afwod This is an immediate transition that flushes the 

Attempts_failed_without_delay state. The arc cardinality y 

is equal to the number of tokens in this state. 

T_t_cu_ifwd This is a deterministic transition that shifts the component 

into the Instantiation_failed_with_delay state. It reflects a 

failed attempt to instantiate the component with delay 
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between attempts. The time duration of this transition is 

equal to the saAmfCompInstantiateTimeout attribute of 

the component + the delay duration specified by 

saAmfCompDelayBetweenInstantiateAttemps. 

This transition is associated with a probability Py that the 

component might fail to instantiate with delay. 

T_i_ifwd-cu This is an immediate transition that takes the component 

into the Comp_un-instantiated state. It also places a token 

in the Attemps_failed_with_delay state to keep track of 

the number of attempts made. 

T_i_afwod This is an immediate transition that flushes the 

Attempts_failed_with_delay state. The arc cardinality x is 

equal to the number of tokens in this state. 

T_i_ct-cu This is an immediate transition that takes the component 

into the Comp_uninstantiation state. It is associated with a 

probability Pz that the component terminates 

successfully. Pz is specified by the user in the extended 

attributes of the AMF configuration. 

T_i_ctf-cu This is an immediate transition that takes the component 

into the Comp_un-instantiated state.  



179 
 

T_i_ct-ctf  This is an immediate transition that takes the component 

into the Comp_termination_failed state. It is associated 

with a probability (1- Pz) that the component will not 

terminate successfully.  

 

Table  6-15 The component guard conditions 

Guard Description 

G_T_t_cu-ci It guards the transition of the component from the 

Comp_un-instantiated state the Comp_instantiated state, 

the guard condition evaluates to true when all the below 

conditions are true: 

� The hosting node is started (i.e. there is a token in 

the Node_started state of the hosting node) 

� There is no application restart taking place. (I.e. 

there is no token in the Application_restarting state 

of the parent application) 

� No component with lower instantiation order still 

un-instantiated.  

� If the component is a proxied, then the proxy must 

be assigned the proxy CSI (i.e. there is a token in 
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the Comp_CSI_active state of the proxy comp 

with respect to the proxy CSI).  

� If the component is contained, then the container 

must be assigned the container CSI. (I.e. there is a 

token in the Comp_CSI_active state of the 

container comp with respect to the container CSI).  

G_T_i_cff-cu  

 

It guards the transition of the component to the un-

instantiated state, The guard condition evaluates to true 

when: 

� The hosting node is in the shutdown state. (I.e. 

there is a token in the Node_shutdown state of the 

hosting node). 

G_T_i_ci-cso 

 

It guards the transition of the component to a switching 

over state. The guard condition evaluates to true when 

either of the below conditions are true: 

� The hosting node is in the switching over state. 

(I.e. there is a token in the Node_switching_over 

state of the hosting node). 

� (If the component is contained), the container 

component is switching over. (I.e. there is a token 
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in the Comp_switching_over state of the container 

component) 

G_T_i_ci-cr It guards the transition of the component to the restarting 

state. The guard condition evaluates to true when either of 

the below conditions is true: 

� The SU goes into a restarting state. (I.e. there is a 

token in the SU_restarting state of the parent SU) 

� The application goes into a restarting state. (I.e. 

there is a token in the Application_restarting state 

of the parent application) 

� (If the component is contained), the container 

component goes into a restarting state. (I.e. there is 

a token in the Comp_restarting state of the 

container component) and the 

saAmfCompDisableRestart attribute value of the 

contained is set to false. 

G_T_i_ci-cff It guards the transition of the component to the failing fast 

state. The guard condition evaluates to true when: 

� The hosting node is in the failing fast state. (I.e. 

there is a token in the Node_failing_fast state of 
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the hosting node) 

G_T_i_cso-ct It guards the transition of the component to the 

terminating state. The guard condition evaluates to true 

when: 

� The hosting node is in the shutdown state. (I.e. 

there is a token in the Node_shutdown state of the 

hosting node) 

G_T_i_ci-cfo It guards the transition of the component to the failing 

over state. The guard condition evaluates to true when 

any of the below conditions are true: 

� The hosting node is failing over. (I.e. there is a 

token in the Node_failing_over state of the hosting 

node) 

� The parent SU is failing over. (I.e. there is a token 

in the SU_failing_over state of the parent SU) 

� (If the component is contained), the container 

component is failing over. (I.e. there is a token in 

the Comp_failing_over state of the container 

component). Or if the container component goes 

into a restarting state. (I.e. there is a token in the 
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Comp_restarting state of the container component) 

and the saAmfCompDisableRestart attribute value 

of the contained is set to true. 

G_T_i_cnso-cu It guards the transition of the component to the un-

instantiated state. The guard condition evaluates to true 

when: 

� The hosting node is in shut down. (I.e. there is a 

token in the Node_shutdown state of the hosting 

node) 

G_T_i_cif-cu It guards the transition of the component to the un-

instantiated state. The guard condition evaluates to true 

when: 

� The hosting node is shut down. (I.e. there is a 

token in the Node_shutdown state of the hosting 

node) 

G_T_i_cu-cif It guards the transition of the component to the 

instantiation failed state. The guard condition evaluates to 

true when either of the below conditions is true: 

� The CompNumMaxInstantiateWithoutDelay is 

reached (in terms of the number of tokens in the 
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Attempts_failed_without_delay state) while the 

CompNumMaxInstantiateWithDelay is zero.  

� The CompNumMaxInstantiateWithDelay (≠ zero) 

is reached (in terms of the number of tokens in the 

Attempts_failed_with_delay state). 

G_T_i_ctf-cu It guards the transition of the component from the 

termination-failed state to the un-instantiated state. The 

guard condition evaluates to true when: 

� The node is in a shutdown state. (I.e. there is a 

token in the Node_shutdown state of the hosting 

node). 

6.4.5.7 The Comp-CSI DSPN Template 

For each CSI that the component can serve, it can be assigned the active, standby or 

unassigned state. Note that there are other states such as quiescing and quiesced that are 

not of particular interest for our analysis. The Comp-CSI DSPN template (shown in 

Figure  6-13) is used to capture the runtime assignment state for a component on behalf of 

a CSI. Note that in the analysis model, an instance of this template must be created for 

each CSI (within the SG) that the component can provide, i.e. the component supports the 

provisioning of the CS type of the CSI. The template states, transitions, and guards are 

explained respectively in Table  6-16, Table  6-17, and Table  6-18. 
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Figure  6-13 The comp-CSI DSPN template 

Table  6-16 The Comp-CSI states 

State Description 

Comp_CSI_unassigned This state means that the component is not assigned for 

this particular CSI. 

Comp_CSI_active The component is assigned active for this CSI 

Comp_CSI_standby The component is assigned standby for this CSI 
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Table  6-17 The Comp-CSI transitions 

Transition Description 

T_t_ccsi-u-a This is a deterministic transition that reflects the duration 

it takes the component to go from an unassigned state 

(Comp_CSI_unassigned) to an active state 

(Comp_CSI_active) on behalf of a CSI. The time value is 

specified by the saAmfCompCSISetCallbackTimeout 

attribute of the component. 

This transition has a priority that is relevant to the load of 

CSIs we want this component to handle. For instance if 

the SI has several CSIs of the same CS type and several 

components in the SU of the same component type can 

handle this CS type.Then we would like this load to be 

distributed equally, thus each component will have a 

higher priority for a certain set of CSIs it is expected to 

handle. This load can be obtained based on the algorithms 

we defined in Chapter 4 for the load distribution. 

T_i_ccsi-u-a This is an immediate transition that takes the component 

from the unassigned state (Comp_CSI_unassigned) to the 

active state (Comp_CSI_active) on behalf of the CSI. 
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T_t_ccsi-a-u This is a deterministic transition that reflects the duration 

it takes the component to go from an active state 

(Comp_CSI_active) to an unassigned state 

(Comp_CSI_unassigned) on behalf of aCSI. The time 

value is specified by the 

saAmfCompCSIRmvCallbackTimeout attribute of the 

component. If the component is no-pre-instantiable then 

we use the saAmfCompTerminateTimeout as the 

transition delay 

T_i_ccsi-a-u This is an immediate transition that takes the component 

from the active state (Comp_CSI_active) to the 

unassigned state (Comp_CSI_unassigned) on behalf of the 

CSI. 

T_t_ccsi-u-sb This is a deterministic transition that reflects the duration 

it takes the component to go from an unassigned state 

(Comp_CSI_unassigned) to a standby state 

(Comp_CSI_standby) on behalf of a CSI. The time value 

is specified by the saAmfCompCSISetCallbackTimeout 

attribute of the component. 

This transition has a priority that is relevant to the load of 

CSIs we want this component to handle. For instance if 
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the SI has several CSIs of the same CS type and several 

components in the SU of the same type can handle this CS 

type. Then we would like this load to be distributed 

equally, thus each component will have a higher priority 

for a certain set of CSIs it is expected to handle. Again the 

load can be calculated based on the load calculation 

algorithm define in Chapter 4. 

T_i_ccsi-sb-u This is an immediate transition that takes the component 

from the standby state (Comp_CSI_standby) to the 

unassigned state (Comp_CSI_unassigned) on behalf of the 

CSI. 

T_t_ccsi-sb-u This is a deterministic transition that reflects the duration 

it takes the component to go from a standby state 

(Comp_CSI_standby) to an unassigned state 

(Comp_CSI_unassigned) on behalf of a CSI. The time 

value is specified by the 

saAmfCompCSIRmvCallbackTimeout attribute of the 

component. 

T_t_ccsi-sb-a This is a deterministic transition that reflects the duration 

it takes the component to go from a standby state 

(Comp_CSI_standby) to anactivestate (Comp_CSI_active) 
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on behalf of a CSI. The time value is specified by the 

extended attributes of the component.  

 

Table  6-18 The Comp-CSI guard conditions 

Guard Description 

G_ T_i_ccsi-a-u  It guards the immediate transition from the active state 

(Comp_CSI_active) to the unassigned state 

(Comp_CSI_unassigned). It evaluates to true: 

� The component is undergoing any recovery 

(excluding the component switching over). I.e. 

when there is no token in the Comp_instantiated 

state, or Component_switching_over state. 

G_T_t_ccsi-a-u 

 

It guards the deterministic transition from the active state 

(Comp_CSI_active) to the unassigned state 

(Comp_CSI_unassigned). The guard condition evaluates 

to true when: 

� The component is in a switching over state 

(Component_switching_over). 

o If the component is a proxied, then the 

proxy must be assigned the proxy CSI (i.e. 
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there is a token in the Comp_CSI_active 

state of a proxy comp with respect to the 

proxy CSI).  

 

G_ T_i_ccsi-u-a 

 

It guards the immediate transition from the unassigned 

state (Comp_CSI_unassigned) to the active state 

(Comp_CSI_active). This guard is applicable for the non-

pre-instantiable components. The guard condition 

evaluates to true when: 

� The parent SI is assigned active to the parent SU 

and the non-pre-instantiable component is 

instantiated, i.e. has a token in the instantiated 

state. 

o If the component is a proxied, then the 

proxy must be assigned the proxy CSI (i.e. 

there is a token in the Comp_CSI_active 

state of the proxy comp with respect to the 

proxy CSI).  

G_ T_t_ccsi-u-a 

 

It guards the deterministic transition from the unassigned 

state (Comp_CSI_unassigned) to the active state 

(Comp_CSI_active).  The guard condition evaluates to 
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true when all of the below conditions are true: 

� The parent SI is assigned active to the parent SU 

and the (pre-instantiable) component is 

instantiated. And the container (or a proxy) CSI is 

assigned active (if applicable). 

� If the component capability model allows this 

transition. I.e. the component has not consumed all 

of its capability in serving other CSIs and can still 

handle this assignment.  

G_ T_t_ccsi-u-sb It guards the deterministic transition from the unassigned 

state (Comp_CSI_unassigned) to the standby state 

(Comp_CSI_standby). The guard condition evaluates to 

true when all of the below conditions are true: 

� The parent SI is assigned standby to the parent SU 

and the (pre-instantiable) component is 

instantiated, and the container (or a proxy) CSI is 

assigned active. 

� If the component capability model allows this 

transition. I.e. the component has not consumed all 

of its capability in serving other CSIs and can still 
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handle this assignment. 

G_ T_i_ccsi-sb-u 

 

It guards the immediate transition from the standby state 

(Comp_CSI_standby) to the unassigned state 

(Comp_CSI_unassigned). The guard condition evaluates 

to true when: 

� The component (or the container) is undergoing 

any recovery, i.e. it does not have a token in the 

Comp_instantiated or Comp_un-instantiated state 

(except the component switching over, in this case 

we use the deterministic transition). 

G_ T_t_ccsi-sb-u It guards the deterministic transition from the active state 

(Comp_CSI_active) to the unassigned state 

(Comp_CSI_unassigned). The guard condition evaluates 

to true when: 

� The component (or the container) is undergoing a 

component switching over recovery. 

G_T_t_ccsi-sb-a It guards the deterministic transition from the standby 

state (Comp_CSI_standby) to the active state 

(Comp_CSI_active). The guard condition evaluates to 

true when: 
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� The parent SI is assigned active to the parent SU 

and the (pre-instantiable) component is 

instantiated. And the container (or a proxy) CSI is 

assigned active (if applicable). 

� If the component capability model allows this 

transition. I.e. the component has not consumed all 

of its capability in serving other CSIs and can still 

handle this assignment. 

 

6.4.5.8 The SU-SI DSPN Template 

For each SI that the SU can serve, it may be assigned the active, standby or unassigned 

state. The SU-SI DSPN template (shown in Figure  6-14) is used to capture the runtime 

assignment state for an SU on behalf of the SI. Note that in the analysis model, an 

instance of this template must be created for each SI within the SG. The template states, 

transitions, and guards are explained respectively in Table  6-19, Table  6-20, and Table 

 6-21.Table  6-18 
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Figure  6-14 The SU-SI DSPN template 

Table  6-19 The SU-SI states 

State Description 

SU_SI_unassigned This state means that the SU does not have an assignment 

for this particular SI. 

SU_SI_active The SU is assigned active for this SI 

SU_SI_standby The SU is assigned standby for this SI 

 

Table  6-20 The SU-SI transitions 

Transition Description 

T_i_susi-u-a This is an immediate transition that takes the SU from the 

unassigned state (SU_SI_unassigned) to the active state 
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(SU_SI_active) on behalf of the SI. 

T_i_susi-a-u This is an immediate transition that takes the SU from the 

active state (SU_SI_active) to the unassigned state 

(SU_SI_unassigned) on behalf of the SI. 

T_i_susi-u-sb This is an immediate transition that takes the SU from the 

unassigned state (SU_SI_unassigned) to the standby state 

(SU_SI_standby) on behalf of the SI. 

T_i_susi-sb-u This is an immediate transition that takes the SU from the 

standby state (SU_SI_standby) to the unassigned state 

(SU_SI_unassigned) on behalf of the SI. 

T_i_susi-sb-a This is an immediate transition that takes the SU from the 

standby state (SU_SI_standby) to the active state 

(SU_SI_active) on behalf of the SI. 

 

Table  6-21 The SU-SI guard conditions 

Guard Description 

G_ T_i_susi-u-a It guards the immediate transition from the unassigned 

state (SU_SI_unassigned) to the active state 

(SU_SI_active). It evaluates to true when all the below 
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conditions are true: 

� This is the most eligible SU for active assignment 

(i.e. this SU has the highest rank for this SI, or the 

next highest rank for an additional assignment). 

� The total number of active SUs for the SI is not 

satisfied. 

� If the SI is dependent then the sponsor SI(s) must 

also be assigned active. 

� The SU has enough remaining capacity (through 

its components) to handle all the CSIs of this SI. 

� The SU active SI assignments have not reached the 

saAmfSGMaxActiveSIsperSU attribute value of 

the parent SG. 

� If the cluster is on probation, i.e. it has a token in 

the Cluster_on_probation place, then the 

assignment should wait until all the needed pre-

instantiable components are instantiated. 

G_ T_i_susi-a-u  It guards the immediate transition from the active state 

(SU_SI_active) to the unassigned state 
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(SU_SI_unassigned). It evaluates to true when: 

� At least one CSI of the SI is not assigned active to 

any of the SU’s components 

G_ T_i_susi-u-sb  It guards the immediate transition from the unassigned 

state (SU_SI_unassigned) to the standby state 

(SU_SI_standby). It evaluates to true when: 

� This is the most eligible SU for standby 

assignment (i.e. this SU has the highest rank for 

this SI, or the next highest rank for an additional 

assignment). 

� The total number of standby SUs for the SI is not 

satisfied. 

� The SU has enough remaining capacity (through 

its components) to handle all the CSIs of this SI. 

� The SU active SI assignments have not exceeded 

the saAmfSGMaxStandbySIsperSU attribute 

value of the parent SG. The total number of 

standby SUs for the SI is not satisfied and this is 

the most eligible SU for standby assignment. 
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G_ T_i_susi-sb-u  It guards the immediate transition from the standby state 

(SU_SI_standby) to the unassigned state 

(SU_SI_unassigned). It evaluates to true when: 

� At least one CSI of the SI is not assigned standby 

to any of the SU’s components. I.e. there is no 

token in any the Comp_CSI_standby states 

relevant to this CSI of the SI. 

G_ T_i_susi-sb-a  It guards the deterministic transition from the standby 

state (SU_SI_standby) to the active state (SU_SI_active). 

It evaluates to true when: 

� This is the most eligible standby SU for active 

assignment (i.e. this SU has the highest standby 

rank for this SI, or the next highest rank for an 

additional assignment). 

� The total number of active SUs for the SI is not 

satisfied. 

� If the SI is dependent then the sponsor SI(s) must 

also be assigned active. 

� The SU has enough remaining capacity (through 

its components) to handle all the CSIs of this SI. 
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� The SU active SI assignments have not exceeded 

the saAmfSGMaxActiveSIsperSU attribute value 

of the parent SG. 

 

6.4.5.9 The SI DSPN Template 

The SI DSPN template (shown in Figure  6-15) is the one used to eventually determine 

the service outage. In other words, the goal of the analysis model is to identify when the 

SI is in a provided state, and thereafter quantify the sojourn time is this state. By 

performing this, we will be able to quantify the SI availability, i.e. the service 

availability. It should be noted here that we evaluate service availability by different 

criteria than AMF, for instance when the SI is failing over, AMF still considers it to be 

served, while in our analysis when any CSI of the SI is not assigned active for any reason 

or period, then we consider this as a service outage. The template states, transitions, and 

guards are explained respectively in Table  6-22, Table  6-23, and Table  6-24. 
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Figure  6-15 The SI DSPN template 

Table  6-22 The SI states 

State Description 

SI_provided This state means that the SI is provided, i.e. there is at 

least one SU assigned active for this SI, and all the CSIs 

of the SI are assigned active to at least one component, 

and the component is healthy and instantiated. 

SI_failing_over The SI transitions to this state when at least one of the 

components assigned active to at least one of its CSIs is in 

a failing over state, or the node hosting those components 

is failing over or failing fast. 
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SI_switching_over The SI is switching over when the components serving its 

CSIs are switching over, or the node hosting those 

components is switching over. 

SI_restarting The SI is restarting when it remains assigned to the same 

SU but at least one component serving at least one of its 

CSIs is in a restarting state. An SI in this state must not be 

reassigned to other SUs. 

SI_dropped The SI is dropped when there is no SU that can be 

assigned the active state on its behalf, or during a cluster 

or an application restart. 

 

Table  6-23 The SI transitions 

Transition Description 

T_i_sip-sifo This is an immediate transition that takes the SI from the 

provided state (SI_provided) to the failing over state 

(SI_failing_over). 

T_i_sifo-sip This is an immediate transition that takes the SI from the 

failing over state (SI_failing_over) to the provided state 

(SI_provided). 

T_i_sip-siso This is an immediate transition that takes the SI from the 
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 provided state (SI_provided) to the switching over state 

(SI_switching_over). 

T_i_siso-sip 

 

This is an immediate transition that takes the SI from the 

switching over state (SI_switching_over) to the provided 

state (SI_provided). 

T_i_sir-sip 

 

This is an immediate transition that takes the SI from the 

restarting state (SI_restarting) to the provided state 

(SI_provided). 

T_i_sip-sir 

 

This is an immediate transition that takes the SI from the 

provided state (SI_provided) to the restarting state 

(SI_restarting). 

T_i_sid-sip 

 

This is an immediate transition that takes the SI from the 

dropped state (SI_dropped) to the provided state 

(SI_provided). 

T_i_sip-sid This is an immediate transition that takes the SI from the 

provided state (SI_provided) to the dropped state 

(SI_dropped). 

T_t_sip-sid This is a deterministictransition that takes the SI from the 

provided state (SI_provided) to the dropped state. It is 

only used for dependent SIs. This transition is used when 
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the sponsoring SI(s) for this (dependent) SI is not 

provided. The time associated with this transition is the 

saAmfToleranceTime attribute of the 

SaAmfSIDependency class. This transition has a variable 

multiplicity, i.e. for each sponsoring SI for the dependent 

SI; we create an additional transition with the relevant 

timing and guard.  

 

Table  6-24 The SI conditions 

Guard Description 

G_T_i_sip-sifo It guards the immediate transition from the provided state 

(SI_provided) to the failing over state (SI_failing_over). It 

evaluates to true when:  

� Any of the components providing any of the CSIs 

of the SI (in an active state) are failing over, or 

failing fast. I.e. they have a token in the 

Comp_failing_over or Comp_failing_fast states. 

G_T_i_sifo-sip It guards the immediate transition from the failing over 

state (SI_failing_over) to the provided state (SI_provided). 

It evaluates to true when:  
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� All the CSIs of the SIs are provided (assigned 

active). I.e. they have a token in a 

Comp_CSI_active state. 

G_T_i_sip-siso It guards the immediate transition from the provided state 

(SI_provided) to the switching over state 

(SI_switching_over). It evaluates to true when: 

� True when all of the components providing any of 

the CSIs of the SI (in an active state) are switching 

over. I.e. they have a token in the 

Comp_switching_over or 

Comp_node_switching_over state. 

G_T_i_siso-sip It guards the immediate transition from the switching over 

state (SI_switching_over) to the provided state 

(SI_provided). It evaluates to true when: 

� All the CSIs of the SIs are provided (assigned 

active). I.e. they have a token in a 

Comp_CSI_active state. 

G_T_i_sir-sip It guards the immediate transition from the restarting state 

(SI_restarting) to the provided state (SI_provided). It 

evaluates to true when: 
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� All the CSIs of the SIs are provided (assigned 

active). I.e. they have a token in a 

Comp_CSI_active state. 

G_T_i_sip-sir It guards the immediate transition from the provided state 

(SI_provided)to the restarting state (SI_restarting). It 

evaluates to true when: 

� Any of the components providing any of the CSIs 

of the SI (in an active state) are restarting (I.e. they 

have a token in the Comp_restarting state) while 

the application is not restarting  

G_T_i_sid-sip It guards the immediate transition from the dropped state 

(SI_dropped) to the provided state (SI_provided). It 

evaluates to true when: 

� All the CSIs of the SIs are provided (assigned 

active). I.e. they have a token in a 

Comp_CSI_active state. 

G_T_i_sip-sid It guards the immediate transition from the provided state 

(SI_provided) to the dropped state (SI_dropped). It 

evaluates to true when: 

� The parent application is restarting (i.e. it has a 
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token in the Application_restarting state) or the 

cluster is resetting (i.e. it has a token in the 

Cluster_resetting state).  

G_T_t_sip-sid It guards the immediate transition from the provided state 

(SI_provided)to the dropped state. It evaluates to true 

when: 

� The sponsoring SI is not is the SI_ provided state. 

 

6.4.6 Availability Analysis Discussion 

In this section we discuss four main issues: measuring availability, the DSPN templates, 

the mapping, and automating the mapping process. 

� Measuring availability: our availability measuring criteria is focused on the SI, 

whenever any of the CSIs of the SIs are not assigned active for any reason or 

period of time we consider this to be an outage. This differs from the AMF 

definition of service outage, where an SI is dropped when no active assignment 

can be made. However when an SI is in the phase of failing over, i.e. the active 

assignment is shifting, from an AMF perspective it is not considered an outage 

but in our analysis it is, since we are interested in the actual service outage. Note 

that it can be argued that even this is not the user perceived service outage. I.e. the 

service user might experience a longer outage depending on the delay it takes the 

service to be delivered after it is restored. In certain related works e.g.  [10], the 



207 
 

user behavior is also incorporated in the availability analysis. However this is not 

the objective of our work. The middleware itself is a distributed software that is 

susceptible to failure as well, however we do not consider the middleware failure 

in our analysis. If we were to include the middleware failures on certain nodes, we 

would have considered it a way that is somehow similar to the one where we 

consider the node failure.  

� The DSPN templates: an important issue here is to make sure that the DSPN 

templates do capture the runtime behavior of the entities and AMF. Our design of 

the templates is based on our analysis of the AMF specifications. The templates 

have been validated by the domain expert to ensure compliancy with the 

specifications.  

� The mapping: our mapping consists of instantiating the templates and annotating 

the guard conditions and the transitions delays with the proper values (as well as 

the proper naming for the places, transitions and guards). The question here is 

how to make sure that the mapping does really capture the information specified 

in the configuration? For this purpose we defined the templates to remain aligned 

with the AMF model, whereas each template describes a different entity. When 

the DSPN model is created, it can be structurally traced back to the AMF 

configuration structure. The relevant attributes that are directly mapped from the 

configuration (e.g. the saAmfCompInstanteTimeout). Other configuration attributes 

such as the component category can be inferred from its guard conditions (e.g. if 

another component affect its lifecycle then it is a container for this component). In 
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short the reverse mapping of the DSPN instances in to the AMF configuration is a 

way of validating to that the mapping is accurate. 

� Automating the mapping to the DSPN model: mapping an AMF configuration 

instance to the DSPN template instances, is not an easy task, especially for large 

AMF configurations. For this purpose, automation would render the mapping 

much simpler. Nevertheless the issue here is that there is no standard Petri Net 

syntax that we can map to, and that can run on any Petri Net tool. The authors in 

 [65] propose the Petri Net Markup Language (PNML) which is an XML-based 

language for describing Petri Nets. Some tools such as Renew  [66] can interpret 

this format. However, and to the best of our knowledge, none of the tools that can 

interpret this format support DSPNs or allow the definition of complex guards. A 

promising tool that we used in our analysis is TimeNet  [67]. This tool has the 

capability of simulating our DSPNs. However, and like most of the well planted 

Petri Net tools, they predate PNML and thus their Petri Net representation is not 

based on this language. A major advantage of TimeNet is that it provides a XML 

schema based on which the Petri Net model is defined. This is extremely useful 

for a model driven approach to automate the transformation. On one hand we 

would have the AMF configurations (that are based on a UML model) and on the 

other hand we would have the Petri Nets that are based on an XML schema. In 

this dissertation we did not tackle the problem of automating the mapping, and we 

leave it for future work. 
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7 Tooling Framework and Case 
Study 

In this chapter we discuss how we implemented our approach for the configuration 

generation and the availability analysis. We present the tool which implements our 

dependency specification, configuration generation and load balancing algorithms. And 

then we report on our experience with the Petri net tool we used to solve our DSPN 

model. To demonstrate the effectiveness of our approach, we generate the configuration 

of an online streaming server which allows users to access (watch and listen to etc.) 

media files either in on-demand or in a broadcast manner. In this chapter, we first 

introduce our prototype tool. Then, we use it for the case study.  

7.1 Tooling Framework 

Our configuration generation method relies heavily on various UML models that are used 

to describe the AMF, ETF, and CR concepts. We defined these models as Ecore models 

 [68]using the Eclipse Modeling Framework (EMF)  [69] as our modeling infrastructure. 

Figure  7-1 illustrates the data flow within our tool, which consists of several modules as 

follows: 
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Figure  7-1 The data flow diagram in the configuration generation tool 

The Graphical User Interface (GUI): the configuration designer specifies the 

configuration requirements using the GUI of the tool. It is also through the GUI that the 

configuration is graphically  displayed in a tree like structured where each tree node 

represents a configuration element. The GUI consists of two main parts. The first part is 

provided by Eclipse Modeling Tools (Indigo)  [70]when we run our packages as an 

Eclipse application, and the second part is a set of frames that we defined using Java 

Swing  [71] to input the various templates defined in the CR. The two parts are integrated 

in such a way that from the user perspective they constitute a single GUI. Various aspects 

of the GUI will be shown in what follows in the chapter. Through the GUI the designer 

can (1) select the ETF XML files (2) define the templates, (3) specify the dependencies 

(4) run the configuration generation (5) view, load, edit and save the configuration.  

The I/O Modules: these modules are responsible for fetching the designated XML files 

and parsing them into the proper Object Models. They are also responsible for binding 

the data in the designated ETF file with the GUI. And therefore presenting to the designer 



211 
 

the various options allowed in ETF (e.g. the various service types that an SI template can 

specify). The same modules are thereafter used to store the AMF configuration as an 

XML file based on the standardized IMM XML schema  [72]. 

The Configuration Generation Modules: these modules constitute the bulk on our tool, 

where we implemented our algorithms for type selection, dependency analysis, 

configuration generation etc. These modules can instantiate certain objects in the GUI, 

such as the one representing the dependency specification frame. In addition, these 

modules will extend the object model created by the I/O modules to include the AMF 

configuration that is generated. 

The Object Model: this model is composed of various instances of the different UML 

class diagrams discussed earlier (namely the AMF, ETF, and CR).  

7.2 The Media Streaming Case Study 

In order to demonstrate our approach, we present a media streaming case study. This case 

study is based on modifying an open source application (namely VLC– the Video LAN 

Client  [73]) so that it can be managed by the OpenSAF middleware which is an open 

source implementation of the SAForum middleware. The objective of this work was to 

demonstrate how legacy applications can be tuned to interface with the SAForum 

middleware and thus rendering the service they provide highly available. VLC is a media 

streaming server and a media player client at the same time. In this case study the 

streaming server was modified while the client remained intact. The server was then 

deployed on a cluster managed by OpenSAF. By regularly checkpointing the stream 

position on the VLC server, the failover to a standby was performed in a swift manner 
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and the whole recovery was performed in under a second, and thus the failure was 

scarcely noticeable by the end user. To illustrate our availability analysis approach we 

will use the VLC case study. However for the sake of demonstrating our configuration 

generation process, we extend this case study to include other components that we did not 

actually incorporate with VLC. The goal is to add more components to the case study 

with various types of dependencies to better clarify the experience of generating 

configurations. 

 

Figure  7-2 Overview of the media streaming example workflow 

The workflow in the media streaming application is as follows, the users can request a 

media, e.g. video (in a pay-per-view fashion) through a web site. On the server side an 

HTTP server will process the requests. The static ones, i.e. the ones simply browsing the 

site for existing videos (or other media) will be handled solely by the HTTP server. 

However the dynamic request that involve logging-in and selecting on-demand movies 
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will be first forwarded to an Authorization service that will verify the credentials of the 

user. The user credentials are stored in the Database from which the Authorization 

service has to fetch them. If the authentication is successful, the request is forwarded to 

an application server that will dynamically create the customized content of the requested 

page (e.g. the one showing the account of the user, with the remaining credit etc.). When 

the user requests a movie for instance, the Application server will consult with the Billing 

service to verify that this is a valid request. Again, the Billing service will fetch and 

modify the account information from the Database. Finally, when the request is verified, 

the Application server will instruct the streaming server to stream the selected media to 

the user’s address. The streaming server will then fetch the media file from the database 

and stream it in the requested format. The user will then have the right to pause, stop, 

suspend and resume the stream by interacting with the streaming server until the end of 

the stream. The streaming server can also broadcast streams to all the listening users. 

Such service will be used for announcements and advertisement and the users will not be 

charged for it.  

Figure  7-3 illustrates the various dependencies that exist in the streaming application. The 

HTTP server needs the Authorization and the Application server in order to handle the 

various types of requests. The Application server needs the Billing software in order to 

display to the user its remaining credit. The Billing software, the Authentication software 

and the Streaming server need the database (and its DBMS) in order to function. Finally 

in our example, the database is assumed to be legacy software that does not interface with 

the SAForum middleware that is going to manage the availability of the service. 
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Therefore a proxy component is needed to mediate the interactions between the 

middleware and the database. 

 

Figure  7-3 Dependency graph in the media streaming example 

In our example, the configuration designer is tasked with designing a configuration that 

allows the streaming to be performed in a highly available manner. The designer will 

have access to the ETF file(s) that describe the content of a software repository, from 

which the software can be deployed in the cluster to provide the needed software.  

An overview of the ETF file describing the available software is shown in Figure  7-4. We 

can also see in this figure that the database proxy component type (DB proxy-CT) can 
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only proxy the Oracle-CT while for MySQL-CT we do not have any proxy, and therefore 

it is considered non-proxied-non-SA-aware component type. For the VLC component 

types we differentiate between the SA-aware VLC, the version that was modified to 

become SA-aware, and the Non-SA-aware one. The component type capability model is 

shown in the association relating the component type with the CS type it can provide. For 

instance the Billing-CT can support either five CSIs of the Billing-CS type in an active 

state, or five standby ones. 

 

Figure  7-4 Overview of the ETF content (Component type and CS type) for the example application 

7.3 Configuration Generation Example 

The configuration requirements for the configuration will be specified by the 

configuration designer using the concepts of the CR model. Figure  7-5 shows the various 

input frames that can be used by the designer to input the templates. 



216 
 

 

Figure  7-5 A snapshot of the input frames 

Figure  7-6 shows a snapshot for the SG, SI, and CSI template frames. The tool will 

automatically guide the designer through the input, for instance in the SG template 

below, we can see that when the redundancy model is 2N the number of active/standby 

SU is locked to ‘1’, which is a requirement of the redundancy model. The same is carried 

on to the SI template where the number of active/standby assignment is locked to ‘1’ as 

well. On the CSI template of the same template we can see that the designer has only the 

option of choosing the CS type of the service type specified for the parent SI template. 

This is just to show how certain constraints are embedded in the tool to ensure 

compliancy and consistency. 
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Figure  7-6 A snapshot of the SG, SI, and CSI template 

In Figure  7-6 we can see that the service type specified for the SI template is ”On demand 

streaming” while the ETF file does not specify such a service type (as shown in Figure 

 7-4). The tool allows the designer to compose service types out of orphan CS types (in 

our case study all of the CS types are orphan). Figure  7-7 illustrates how a new service 

type can be created by aggregating a set of orphan CS types. The I/O module of the tool 

will process the ETF content and bind it with the GUI. E.g. in Figure  7-7 we see how the 

available orphan CS types are shown to the designer through the value options of the 

“Component service type” combo box. In short since the definition of the SI template 

requires the existence of service types, and ETF may not necessarily specify anything 

besides the component types and the CS types, we give the designer the means to create 

his/her own service types. 
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Figure  7-7 A snapshot of creating a service type 

The complete user input is as follows. We have a cluster of 6 nodes. On which the 

designer specified one administrative domain with the following SG templates to be 

deployed as shown in Table  7-1. 

Table  7-1 List of values of certain attributes of the SGTemplates specified for the media streaming application 

Attribute                       SGTemplate Streaming 
SGT 

Web 
SGT 

Security 
SGT Billing SGT 

magicCrSgTempRedundancyModel  
2N N way 

active 
N+M N-Way 

magicCrSgTempNumberofActiveSus 1 5 2 2 

magicCrSgTempNumberofStdbSus 1 0 1 0 
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Each of the above specified templates groups one SI template as shown below in Table 

 7-2. Note that the streaming SI template and the Web SI template will each group two 

CSI templates. 

Table  7-2 List of the values of certain attributes of SITemplates and CSITemplates of the media streaming 

application 

Attribute                                       SI Template Streaming SIT Web SIT 
Authentication 

SIT 

Billing 

SIT 

magicCrSiTempSvcType On demand streaming Webservice  Access control Billing 

magicCrSiTempNumberofActiveAssignments 1 3 1 1 

magicCrSiTempNumberofStdbAssignment 1 0 1 1 

magicCrRegSiTempNumberofSis 7 18 5 4 

CSI Template 

Attribute        

Database-

CSIT 

Media 

streaming- 

CSIT 

HTTP-

CSIT 

App 

server-

CSIT 

Authentication

-CSIT 

Billing-

CSIT 

magicCrCsiTempCsType 
Database-

CS type 

Media 

streaming- 

CS type 

HTTP-

CS type 

App 

server-

CS type 

Authentication

-CS type 

Billing-

CS type 

magicCrCsiTempNumberofCsis 1 1 5 5 2 3 

 

In our example, we have several dependencies that the designer may not be aware of. Our 

tool incorporates the dependency detection and specification method (explained in 

Chapter 4) that can detect the dependencies and allow the designer to specify the needed 

SI and CSI templates and the dependency relation between the sponsor and the dependent 

(according to Figure  4-4). This relation is specified through SQL queries entered by the 

designer. The “help” button on the “Dependency window” will open another document 
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explaining the process of dependency specification, with specific keywords (reflecting 

predefined database table names) to be used in the SQL queries (as shown in Figure  7-8). 

For instance the Database-CT in our example is proxied, and needs a proxy component, 

therefore a proxy CSI and potentially SI needs to be defined by the designer, and the 

dependency relation set between the proxy and proxied. Note that all the dependencies 

shown in Figure  7-3 must be specified using this approach. 

 

Figure  7-8 A snapshot of the dependency specification 

For the sake of simplicity, we kept the input simple e.g. by not specifying a minimum and 

maximum number of SIs per SG and not overlapping CS types of the different CSI 

templates belonging to different SI templates of the same SG. This is in order not to 

burden the reader with additional calculations that the tool will automatically perform. 
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However we will show how certain calculations are performed, to clarify how certain 

algorithm defined in Chapter 4 and 5 are used. 

 When the input is ready, the AMF configuration can be created. It is done by first 

calculating the expected load of SIs per SU and respectively CSIs per component, then 

the type selection process will take place. And finally the AMF types and entities will be 

created. For instance the load of SIs per SU for the Web SIT (according to Algorithm 3) 

is the ceiling of (18 SIs × 3 active assignments) ÷ 5 SUs = ceiling 10.8 = 11 SIs per SU. 

The App server CSIT for instance specifies 4 CSIs per SI, i.e. each SU must handle 

5×11= 55 CSIs of the App server-CS type. The only eligible component type to be 

selected for this CS type is the App server-CT. A component of this type can handle at 

most 4 CSIs of the App server CS type. Hence the needed number of components is the 

ceiling of 55 ÷ 4 = ceiling 13.75 = 14 components per SU are needed to support the 

expected load of CSIs. Note that in Algorithm 3, we have a variable (isFaultTolerant) 

that specifies whether we want to include fault tolerance in the equation,If that is the 

case, then the load of SIs per SU will be calculated with the assumption of having a 

missing SU in the SG. As a result of using the fault tolerance option18 the load of SIs per 

SU will increase to 14, which will increase the number of needed components of the App 

                                                 

 

 

18This feature can be set in the “preferences” of our tool. 
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server-CT from 14 to 18 components per SU. The same type of calculations, type 

selection and entity creation will be carried out for the rest of the templates. We remain 

with the same SI template to define the ranks of the 5 SUs defined in the SG to support 

the 18 SIs of the template where each SI has 3 active assignments. A snapshot of the 

generated rankings for the list of SIs is shown in Figure  7-9. These rankings are derived 

by applying the method specified in Section 5.5.2.1. An accompanying load chart is 

generated by the tool simply to visualize the load distribution to the configuration 

designer. We can see in this chart that (according to the generated rankings) each SU will 

have either 10 or 11 active assignments, while each SU will have either 9 or 12 backup 

assignments. 

 

Figure  7-9 A snapshot of the rankings generated for the SIs of the WebSIT 

Finally the configuration generated is shown is Figure  7-10 where we can see on the left 

hand side panel the entities (surrounded by a rectangle) and the types in a tree like 

structure. For instance we can see that we have a created application with 4 child SGs 

corresponding to the templates (plus one SG for proxying the database). Each SG will 
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have the corresponding child SUs and similarly the SUs will have the child components. 

On the right hand side panel we see a table showing the attributes of a selected entity and 

their values. In this snapshot we see the attribute values of a selected SG. 

 

Figure  7-10 A snapshot of the configuration generated 

7.4 Availability Analysis Example 

In the availability analysis we examine the availability of the streaming SIs (i.e. the seven 

SIs specified in the “streaming SIT” template). For the sake of simplicity, we consider 

only the configuration elements that affect the availability of the streaming SIs. Figure 

 7-11 illustrates the SUs of two SGs of the application that will be considered in the 

analysis. The Streaming SG has a 2N redundancy model and is protecting seven SIs, 

while the Proxy SG has the same redundancy model but it protects one SI. We included 

those elements in the analysis because of the dependency that exists between the 

streaming server (VLC) and the database and the database with the proxy components. In 
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the context of our configuration, the failure of other components will not affect the 

availability of the streaming SIs. Figure  7-11 also shows the failures associated with the 

relevant entities and their recommended recoveries. The analysis steps are as follows: 

 

Figure  7-11 The configuration portion under analysis 

� The first step is to extend the configuration with the needed information, the 

failure rates with their respective recommended recoveries, as well as other 

information such as the node startup time. 

� The second step in the analysis is to perform the actual recovery analysis 

(presented in Section 6.4.2). Based on the values of the disable restart and the SU 

failover parameters shown in Table  7-3, the restart of the VLC components will 
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be altered by the actual recovery algorithms (Figure  6-5) to a component failover, 

and since the SU is configured to fail as a unit it will further be altered to an SU 

failover. The other recommended recoveries are executed without alteration. 

Table  7-3 Parameter values for the configuration under analysis 

Parameter Value Description 

0.542-1 sec-1 

VLC instantiation rate 

(saAmfCompInstantiateTimeout attribute from the 

SaAmfComp class) 

0.027-1  sec-1 

VLC cleanup rate  

(saAmfCompCleanupTimeout attribute from the 

SaAmfComp class) 

0.080-1  sec-1 

VLC assignment rate 

(saAmfCompCSIsetCallbackTimeout attribute from 

the SaAmfComp class) 

0.030-1 sec-1 VLC switching from standby to active assignment rate 

64800-1 sec-1 VLC failover rate  (MTTF = 18 hours) 

43200-1 sec-1 VLC restart rate  (MTTF = 12 hours) 

Disable restart = The VLC restart is disabled 
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true (saAmfCompDisableRestart attribute from the 

SaAmfComp class) 

Parent SU 

failover = true 

Whenever one component fails over, the whole SU 

must fail over 

(saAmfSUFailover attribute from the SaAmfSU class) 

2-1 sec-1 

DB instantiation rate 

(saAmfCompInstantiateTimeout attribute from the 

SaAmfComp class) 

1.5-1  sec-1 

DB cleanup rate  

(saAmfCompCleanupTimeout attribute from the 

SaAmfComp class) 

0.5-1  sec-1 

DB assignment rate 

(saAmfCompCSIsetCallbackTimeout attribute from 

the SaAmfComp class) 

2-1 sec-1 DB switching from standby to active assignment rate 

259200-1 sec-1 DB failover rate  (MTTF = 72 hours) 

172800-1 sec-1 DB restart rate  (MTTF = 48 hours) 

Disable restart = The database restart is enabled 
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false (saAmfCompDisableRestart attribute from the 

SaAmfComp class) 

0.7-1  sec-1 

Proxy instantiation rate 

(saAmfCompInstantiateTimeout attribute from the 

SaAmfComp class) 

0.8-1  sec-1 

Proxy cleanup rate  

(saAmfCompCleanupTimeout attribute from the 

SaAmfComp class) 

0.6-1  sec-1 

Proxy assignment rate 

(saAmfCompCSIsetCallbackTimeout attribute from 

the SaAmfComp class) 

0.9-1 sec-1 
Proxy switching from standby to active assignment 

rate 

345600-1 sec-1 Proxy failover rate  (MTTF = 96 hours) 

259200-1 sec-1 Proxy restart rate  (MTTF = 72 hours) 

Disable restart = 

false 

The proxy restart is enabled 

(saAmfCompDisableRestart attribute from the 

SaAmfComp class) 
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120-1 sec-1 Node reboot rate (time needed to reboot a faulty node) 

864000-1 sec-1 Node failover rate (MTTF = 240 hours) 

 

� The next step is to build the DSPN model corresponding to the configuration 

shown in Figure  7-11. For each of the entities shown (except the SGs) a DSPN 

instance is created according to the corresponding DSPN template, For instance 

for each node, SU, component, SI, CSI the corresponding template is instantiated. 

For each CSI that a component can provide a Component-CSI template is 

instantiated. The same apply for each SU and the SI it can support within the SG. 

Thereafter the template instances are annotated with the proper values (in terms of 

transition rate values, and guard conditions). The rates are extracted from Table 

 7-3. The cells with the bold text indicate that those values are do not belong to the 

attributes of the standard AMF configuration, but the ones that were added (while 

extending the configuration in the first step). These values can be derived by 

benchmarking for instance. In the context of our analysis for this case study we 

examine the availability of a single streaming SI, however the availability of the 

other streaming SIs is identical, since they are assigned to the same SU and 

components at any point in time (due to the 2N redundancy model and not having 

several components of the same type in the same SU).  

� The final step is to obtain the availability of the streaming SI by solving the 

DSPN shown in Figure  7-12, the measure of interest was the probability of having 
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a token in the Streaming_SI1_provided place at steady state. By using the failure 

rates shown in Table  7-3, to solve the DSPN, we found that the SI availability 

measures to 99.999280. I.e. we can achieve the five nines of availability with the 

given configuration.  

Further experimentation: In order to examine the impact of the node failures and the 

proxy failures on the availability of the streaming SIs, we have multiplied at one 

experiment the nodes failure rates by a doubling factor (2λ-1, where λ ranges from 1 to 5). 

And in the second experiment we used the same node failure rate specified in Table  7-3, 

but we multiplied the proxy components failure rates by the doubling factor. 
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Figure  7-12 The DSPN instance for the availability analysis 



231 
 

Figure  7-13 illustrates the result of our experiment, where the effect of the failure of the 

proxy on the availability of the streaming SI proved to be much less significant than the 

effect of the node failure. This is mainly due to the fact the failure of the proxy impacts 

the database only during the database instantiation and service assignment, otherwise, the 

failure of the proxy does not prevent the database from performing its intended 

functionality.  

 

Figure  7-13 The availability chart of the streaming SI 

The availability figures shown above are based on the assumption that the active proxy 

SU and the active streaming SU are on the same node, (i.e. streaming SU1 has higher 

rank within its SG than streaming SU2 and hence it will be chosen by AMF to be the 

active SU, and the same for proxy SU1). And it is assumed that the auto-adjust feature for 

the SG is set to true. Nonetheless this means that during a node failure the proxy SI will 

have to first be assigned active to the standby SU (proxy SU2) before the any streaming 
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SI can be assigned active to its respective standby SU (streaming SU2). We can reverse 

the proxy SI assignment by reversing the ranking of the SUs in the proxy SG. I.e. By 

having the proxy SU active on Node2 when the streaming SU is active on Node1 (and 

vice versa), we decouple the assignment of the streaming SI from the assignment of the 

proxy SI during a node failover, because the proxy SI will already be assigned on a 

different node. Figure  7-14 illustrates the improvement in the availability of the 

streaming SI that can be achieved through reversing the assignment of the proxy SI. It 

should be noted here that we are making the assumption that the delay in proxying when 

it is performed from a remote node, is generally shorter than the time needed to assign the 

proxy CSI active to the proxy component, and in this particular example we consider this 

delay to be negligible. 

 

Figure  7-14 The availability chart of the streaming SI with reversed proxy SI assignment 
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8 Conclusion and Future Work 

8.1 Summary of Challenges and Contributions 

The SAForum specifications provide open-specifications of APIs based on which highly 

available applications can be developed. Such applications are portable among any 

SAForum compliant middleware implementation. The availability management is 

performed in the context of the AMF configuration. This configuration will define the 

runtime behavior of the middleware implementation in managing the life-cycle and the 

service recovery in such applications. Creating AMF configurations is a complex and 

error prone task. In this dissertation we presented an approach to overcome this 

complexity by automating the design process of the AMF configurations. The objective 

behind automation is to enable the creation of AMF configurations in a feasible manner, 

where the configuration designer is relieved from acquiring detailed domain knowledge 

and performing complex calculations. To achieve this, we had to surmount several 

challenges. The first challenge was in defining the starting point of automation, i.e. 

defining what is the input required for automating this process, and how much of this 

input should originate from the configuration designer. Depending on the size of the 

cluster and the number of applications, the input portion that originates from the 

configuration designer can be tedious to perform, which led us to define the notion of 

templates, which were implemented in a CR domain model, this allows the specification 

of the input in a scalable and consistent manner. The consistency is ensured through the 
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use of OCL constraints. The software description (through ETF(s)) specifies the software 

dependency at the software type level, but not at the entity level. Though the dependency 

specification can be partially automated (e.g. specifying the instantiation level), the 

designer intervention is needed to specify the dependency relation at the service level. 

The issue here is that the designer may not be aware of such dependencies. In order to 

solve this issue our approach incorporates dependency analysis and a dependency 

specification mechanism that notifies the designer of the dependencies and allows 

specifying the dependency relation in a generic manner. Once the input is complete, the 

configuration creation can be performed. A key issue here is detecting the ETF attributes 

that affect the configuration creation. The AMF specification defines various constraints 

that we identified and embedded in the configuration generation process. Quantifying the 

workload that the SUs must be capable of handling is an important mandate that is 

needed at various stages of the process. It is important that this workload is defined in 

such a way that we do not over-dimension the system and thus underutilize resources, 

and not fall short and have services dropped. Certain configuration attributes require 

complex analysis to be populated. The SU ranking for SIs falls under this category. It 

defines the runtime workload distribution of SUs and it is defined at configuration time. 

The challenge lies in anticipating the runtime workload redistribution after a failure 

occurs, and define the proper rankings that maintain the workload balanced before and 

after a failure. We tackled this problem by defining the workload that each SU must 

handle, and the workload that each SU must back up. In fact, defining the backup load 

and making sure it consist of equal contribution from each of the SUs in the SG proved to 

be a crucial factor in the solution. SU ranking in the N+M redundancy model presented 
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additional constraints which cannot be addressed in a single solution; therefore we 

devised three solutions that target different constraints. 

In highly available systems, non-functional properties such as the achievable runtime 

service availability are extremely important. In this dissertation we presented a 

framework for the availability analysis of the services provided by applications managed 

by an AMF implementation. In order to achieve this task we had to surmount several 

challenges. It was clear that the analysis had to be carried based on the information 

specified in the AMF configuration, since this information includes the recovery actions 

and essential timings that we are needed. However the configuration is defined for 

runtime availability management purpose and not for the availability analysis, thus it was 

missing key information for which we had to extend the configuration model to 

accommodate. Another issue was that the recommended recovery is not necessarily the 

actual runtime recovery that AMF will perform. This is due to what we identified to be 

recovery altering attributes in the configuration. To surmount this challenge we defined 

actual recovery algorithms capable of analyzing an extended configuration and annotate 

it with the actual recovery associated with each failure type. AMF has a complex runtime 

behavior. This behavior varies according to the configuration attributes. For instance the 

component category affects how AMF handles the recoveries executed on this 

component. As a result, mapping the AMF configuration to an analysis proved to be a 

very challenging task, especially when the mapping is affected by the configuration 

attributes. To master this complexity we defined what we refer to as DSPN templates that 

capture the generic runtime recovery behavior. Thereafter we defined the mapping that 

allows the instantiation of these templates and their parameterization with the proper 



236 
 

guards and transitions delays. The parameterization of the instances is based on the 

configuration attributes. Finally this DSPN instance is solved using off-the-shelve tools to 

quantify the service availability. In short we are giving the configuration designer the 

tools to generate and analyze AMF configurations with a minimum understanding of the 

domain. 

8.2 Future work 

In this dissertation we introduced the automation to the AMF configuration generation 

and presented an approach for the service availability analysis. As a result, this opened 

the door for several research topics that are still not addressed, and they can be 

summarized as follows: 

8.2.1 Mapping Non-Functional User Requirements to the 

Configuration Requirements 

The Configuration Requirement model we introduced in this thesis is meant to be used by 

the configuration designer who is typically the system integrator with a task to integrate a 

system that can satisfy the client requirements. The latter requirements do not necessarily 

come in the form of SIs, CSIs and redundancy models etc. instead they are more likely to 

be higher level requirements where the client names the services needed and the 

minimum availability level which must be guaranteed. The mapping from these high 

level requirements to the Configuration Requirements is still not defined, and it 

constitutes a very interesting, and challenging research question that remains to be 

answered. 
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8.2.2 Designing Configurations that Satisfy the Non-Functional 

Requirements 

The configuration generation approach we presented targets the issue of generating 

configurations that are compliant to the AMF specifications. We handled functional and 

certain non-functional requirements such as satisfying dependency, redundancy model, 

generating configuration that can handle the workload and provide the specified 

protection for the services etc. However generating configurations that, by construction, 

satisfy more generic non-functional requirements such as the availability level is still an 

open research issue. We believe that the availability analysis that we defined paves the 

way towards achieving this task, but further investigation is still needed. We believe that 

the way to proceed is to define configuration design patterns to maximize service 

availability during the design phase of the AMF configuration rather than a brute force 

solution that generates and analyzes all possible configurations. 

8.2.2.1 Configuration Design Patterns  

In Chapter 7 we showed that the availability of an SI that is assigned to a proxied 

component can be improved simply by reversing the assignment of the proxy SI (with 

certain assumptions). This is just a simple example to show that we can identify design 

patterns that under certain conditions can improve to service availability. There are 

several design decisions during the configuration generation (as we have seen in the 

multiple configuration generation) that can be made based on design patterns, such as the 

distribution of the SUs of nodes, and how to define node groups for the SGs etc. The 
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availability analysis approach that we defined can be used to verify these patterns. 

However the definition of these patterns is still a potential future work. 

8.2.3 Defining Ranks that Maintain the Workload Balanced After 

Multiple Failures 

The load balancing solution we presented in this dissertation is based on the ranking 

mechanism that is specified by the AMF specifications. Our solution maintains the load 

balanced after a single failure by anticipating how the load should be redistributed. 

However if the system undergoes several simultaneous failures, maintaining the 

workload balanced through ranking becomes extremely challenging, since we would 

have to consider all possible combinations of simultaneous failures. This leaves room for 

researching alternative techniques for load balancing in the context of AMF managed 

systems. Another direction would be to build on the lessons we learnt from the 

configuration time solution with placement preferences and hybrid solution where the 

preference is defined at configuration time but the assignment is determined at runtime. 

8.3 Closing remark 

The SA Forum middleware specifications focus on specifying an infrastructure for the 

provisioning of highly available services. OpenSAF is a robust (open-source) 

implementation of these specifications that proved the precision and efficacy of the 

specifications through various case studies. The SA forum did not fall into the pitfall of 

over-specification and instead it left some maneuver space for the middleware 

implementers to innovatively distinguish their implementation. This also opened the door 

for further fundamental research issues that can further enhance/complement the existing 
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specifications. Our experience of working with the specifications has exposed us to the 

level of complexity that the industrial companies undertake to implement scalable and 

robust middleware. Our interactions with the practitioners have opened our eyes to real-

world problems which, in order to solve them, require the expertise and knowledge of 

skilled researchers. We believe that matching the valuable real-world experience of 

practitioners from the industry with the knowledge and skills of researchers from the 

academia constitute the perfect setting to achieve successful results that benefit both 

sides. 
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