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Shahram Sharifi 

In closed job shop, in which a fixed number of products are produced on a repetitive 

basis, when there are significant sequence dependent setup times and costs involved, cell 

formation (CF) problem should consider minimizing the sequence-dependent setup times 

in order to minimize the production cost. Setup time reduction in CMS has gained little to 

modest attention in the literature. This could be attributed to the fact that the fundamental 

problem in cell formation in CMS has been mainly about material handling and machine 

utilization while setup time was presumed to normally decrease as a result of grouping 

similar parts in a manufacturing cell. Despite more than three decades of history of 

CMS’s it has been relatively recent that setup time has been included in cell formation 

problems and found a place in the existing models. Sequence-dependent setup time in the 

literature has been dealt with mostly for scheduling part-families in a single 

manufacturing cell or in allocation of parts to cells in a pure flow shop.  In this thesis, the 

issue of setup time has been extended to the members of a part family and to its lowest 

level which is operation-level and incorporated in general cell formation problem in a 

dynamic CMS.  

In this thesis we have developed a multi-period integer programming CF model to 

address the reduction of the sequence-dependent setup time as well as considering the 

dynamic nature of today’s manufacturing environment in CMS, where the product mix 

demanded would change in different time periods. Due to time complexity of the 

problem, a two stage solution approach has been adopted. First a GA-based heuristic was 

developed that provides near optimal solutions for single-period problems of the global 

model. The performance of the GA-based heuristic was successfully evaluated versus 

optimization software. Second, a dynamic programming (DP)-based heuristic was 

developed that reintegrates the single-period solutions into a multi-period solution. The 

performance of the DP-based heuristic was also evaluated against optimization software.



iv

Acknowledgments

I would like to express my utmost gratitude and appreciation to my co-supervisors Dr. 

Nadia Bhuiyan and Dr. Satyaveer S. Chauhan for their invaluable supervision, technical 

advices and strong support that helped me throughout my research. I am greatly indebted 

to their kindness and support, without which I could not complete my dissertation. Their 

generosity, patience and determination to make me learn, progress and succeed may not 

be put in words.



v

…………………………….............................................................ix

……………………………………………………………………...xi

……………………………………………………...xii

……………………………………………….

1.1 Raison D’etre of CMS:  
 A Macro Analysis through Volume-Variety Curve ………………………2 

1.2 Cellular Manufacturing as a Hybrid Configuration………….....................6

 1.3 The Advantages of CMS…………………………………………………10   

1.4 Design of Cellular Manufacturing Systems……………………………...12 

1.4.1 Shortcoming of the Contemporary CMS Design……...................13 

1.4.2 Objectives of the Thesis………………………………………… 13 

1.4.3 CMS Design Methodology………………………………………14 

1.5 Outline of the Thesis……………………………………………………..14  

……………………………………...

 2.1 Cellular Manufacturing and Cell Formation……………………………..16 

2.2 Taxonomy of Cell Formation Techniques……………………………… 17 

2.3 Setup Time in Manufacturing and CMS…………………………………22 

2.4 Setup Time in Manufacturing Cell Scheduling………………………….24 

2.5 A Critical Review of Setup Time and Cost in CF Problems…………….25 

2.6 Application of Meta-Heuristics to Cellular Manufacturing……………...32 

2.7 Dynamic Cellular Manufacturing………………………………………..33 

2.8 Summary…………………………………………………….. ………….35 



vi

……………………………………………………

3.1 Description of the Research Problem…………………………………...39 

3.1.1 Mathematical Model…………………………………………….40  

3.1.2 Time complexity of the global model…………………………...45 

3.2 Special Case…………………………………………………………… .48 

3.2.1 Formulation of the Simplified Model…………………………...48 

3.2.2 Numerical Example ……………………………………………..51 

3.3 Discussion and Summary………………………………………………..57 

……………………………………..

4.1 Genetic Algorithm……………………………………………………….60 

4.2 Simplified Model: Characteristics of the GA-based Heuristic…………..63 

4.2.1 Chromosomal Encoding…………………………………………64 

4.2.2 Initial Solution…………………………………………………...65 

4.2.3 Constraint Handling……………………………………………..65 

4.2.4 Genetic Operators………………………………………………..66   

4.2.5 Computational Performance……………………………………..69 

4.3 Global model: Characteristics of the GA-based Algorithm…………… .72 

4.3.1 Chromosomal Encoding…………………………………………72 

4.3.2 Initial Solution…………………………………………………...73 

4.3.3 Constraint Handling……………………………………………..74 

4.3.4 Genetic Operators………………………………………………..74  

4.3.5 Numerical Example……………………………………………...78 

4.3.6 Computational Performance……………………………………. 84 

4.4 Discussion and Summary………………………………………………...88 



vii

……..

5.1 Decomposition of the global multi-period model……………………….90 

5.2 Application of dynamic programming to sub-problems………………...92 

5.2.1 Dynamic Programming-based heuristic…………………………94 

 5.3 Illustrative Example …………………………………………………….95  

 5.4 Comparing the two heuristics for multi-period problem………………...97 

5.4.1 Comparing the DP-based heuristic with LINGO……………….....97 

5.4.2  Comparing the DP-based heuristics with multi-period GA……....98 

5.5 Discussion and Summary……………………………………………….101 

…………….

6.1 Conclusions……………………………………………………………..103

 6.2 Contributions……………………………………………………………106  

 6.3 Future Research………………………………………………………...107  

……………………………………………………………………

…………………………………………………………………………….



viii

1.1 Volume-variety curve……………………………………………………………4                  

1.2 Modified volume-variety curve………………………………………………….5 

1.3 Flow line configuration…………………………………………………….. …..7 

1.4 Job shop configuration…………………………………………………………...8 

1.5 Cellular configuration……………………………………………………………9 

Advantages of  GT……………………………………………………………..10

2.1 Classification of CF techniques…………………………………………………18 

2.2 Setup as joint changeover ……………………………………………………....29 

2.3 Attribute matrix (34) …………………………………………………………....37 

3.1 The impact of machine restriction on setup time………………………………..55  

3.2 Setup time vs. machine trade-off………………………………………………..56 

3.3 Setup time vs. machine  and move trade-off……………………………………57 

4.1 Graphical representation of evolutionary process……………………………….62

4.2 Mechanics of a single point crossover…………………………………………...63 

4.3 Chromosomal encoding for simplified model…………………………………...64 

4.4 Discriminatory selection process by frequency bandwidth……………………..72 

4.5  Chromosomal encoding for global model…………………………………….....72 

4.6 Heuristic flow chart……………………………………………………………...77 

4.7 Product basket…………………………………………………………………...80 

4.8 Computation time vs. size index………………………………………………....87 



ix

4.9 Accuracy vs. size index…………………………………………………………..87 

5.1 R best solutions in GA-based heuristic…………………………………………..93 

5.2 Dynamic programming network…………………………………………………93 



x

3.1 The number of integer variables in the global model……………………………47 

3.2 The number of integer variables in the literature………………………………...47

3.3 Machine-part incidence matrix…………………………………………………..52  

3.4 Joint changeover matrix………………………………………………………….53 

3.5  Number of machines available…………………………………………………..54 

3.6 Three cell configuration solution………………………………………………...54 

3.7 Setup time under machine restriction……………………………………………54 

3.8 Trade-off in different scenarios………………………………………………….55 

3.9 Trade-off with part flow…………………………………………………………56 

4.1  Computation performance of simplified GA-based…………………………….71 

4.2 Part data………………………………………………………………………….81 

4.3 Machine data……………………………………………………………………..81  

4.4 Overall cost and its constituents………………………………………………... 82 

4.5  Solution table for period 1 ………………………………………………………83 

4.6 Solution table for period 2 ………………………………………………………84 

5.1 Product mix demand of 25 parts for illustrative example……………………….96 

5.2 Reconfiguration unit costs for illustrative example……………………………...97 

5.3 Robustness table…………………………………………………………………97 

5.4 Comparing DP with LINGO…………………………………………………….98 

5.5 Product mix demand of 12 parts for comparative example…………………… 100 

5.6 Reconfiguration unit costs for comparative example…………………………..100 

5.7 Comparing DP with multi-period GA…………………………………………..100  



xi

A.4.1  MCIM for numerical example………………………………………………122 

A.4.2(1-.4) Operation-level setup times for numerical example……………………..123 

A.4.3 Processing times for numerical example……………………………………..127 

A.4.4 MCIM for 3 machine,3 parts, 4 operations……………………………………128 

A.4.5 Setup time for 3 machine,3 parts, 4 operations………………………………..128 

A.4.6(1-3) Computation performance of GA- based heuristic for global model…….129 

A.5.3 Results for DP numerical example -periods 3 and 2…………………………132 

A.5.4 Results for DP numerical example - periods 2 and 1………………………...133 

A.5.5  Sample MCIM for 12 part problem…………………………………………...134 

A.5.6 Sample setup time for 12 part problem………………………………………...134  

A.5.7 Sample processing time for 12 part problem…………………………………..134 



 
 
 
 

1

CHAPTER 1 

Today’s firms are constantly trying to figure out better ways of exploiting economies of 

scale, while also satisfying the increasing demand for highly customized products 

(Fernandez et al., 2012).This issue gains higher momentum, when manufacturers strive to 

retain their market demand and regain competitive advantage by satisfying their 

customers through increasing product variety (Berry et al, 1999). While higher variety of 

products may appeal to a larger and more diverse range of customers, it also introduces 

complexity in manufacturing (Wan et al., 2012; Wang et al., 2011). Higher variety in 

general slows down the production rate and increases production cost per unit. In fact, 

with increase in product variety, a firm is likely to experience lower performance of its 

internal operations (Anderson, 1993; Child et al, 1993).  

There is a trade off between economies of scale and economies of scope in the market 

and in the industry. In a micro scale this trade-off and counterbalance maps into a 

business entity, e.g. a manufacturing company, between production volume and product 

variety (Vilas and Vandael, 2002).This trade-off is presented through classical volume-

variety curve in the literature. There are several ways to utilize this trade-off, in a way 

that maximizes the gain and minimizes the loss. One way, suggested commonly by 

research and practice, states that “firms may mitigate this trade-off by deliberately 

pursuing modularity in final product design, obtaining final product configuration by 

mixing and matching sets of standard components” (Starr, 1965). Modularity, also 
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referred to as component sharing, is increasingly viewed as a way to offer high product 

variety while retaining low variability in the production system. (Salvador et al, 2002). 

The general purpose of modularity is to decompose the complex system into constituent 

parts (Pandremenos et al. 2009). The basic idea behind modularity is that it increases the 

combination opportunities between two or more component parts (Starr, 1965). 

Modularity has been treated as a means of increasing commonality across different 

product variants within a product family (Evans, 1963). Considering commonality as the 

extreme end of similarity, modularity therefore reduces variation between product 

variants by eliminating variability between some of their component parts. In the 

following section group technology (GT), will be introduced as another way of handling 

the drawbacks of increasing variety. 

 

In this section, CMS and its raison d’etre  have been looked at, from a volume-variety 

standpoint in the hopes of having a better understanding of any fundamental relationships 

that may be involved.  Mass and batch production are two major front ends of the 

volume-variety curve, each fulfilling the requirements of the market condition depending 

on whether the production volume or the product variety is the major issue.  

However, many times the midpoint of this spectrum is the issue, where the market 

demands a moderate amount of production level for a moderate number of product 

variants. Therefore a compromise is needed for this purpose to enjoy the efficiency and 

speed of mass production as well as the flexibility of the batch production system (Al-
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Mubarak et al, 2002; Chen, 2004; Irizarry et al, 2001). This sets cellular manufacturing in 

between the two major production systems. 

In order to make this compromise happen, it has been necessary to find a way to provide 

an environment similar to that of mass production for various products. In other words, to 

reduce the dissimilarity of the production system rather than the dissimilarity of the 

products themselves, by grouping their similar component parts in a temporary family, 

where they undergo more or less the same production procedure (Chang and Lee, 2000; 

Snead, 1989). To be able to elaborate on this concept and draw some conclusions, we try 

to put this into mathematical form. Let’s assume that the volume-variety relationship can 

be graphically represented by a well-behaved mathematical curve. If this assumption 

holds then the simplest mathematical form to represent it would perhaps be a 

homographic curve, expressed by Eq. (1.1). 

 

K=V.
where : 

V: production volume 

 : product variety 

K: constant 

 

A physical interpretation of K could be the constant potential of a system which can 

trade-off between volume and variety factors. We may refer to this constant potential as 

the capacity of the system, in its broadest sense, which would be a resultant of all 

resources such as equipment,  
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manpower, financial resources, etc. In Figure 1.1, different curves offer different trade-

offs between production volume and product variety given different K’s, e.g. K1, K2, K3, 

etc. 

Although Eq. (1.1) may be deemed too simplistic to include the complexities of the so-

called volume-variety relationship, at least it reflects the fact that larger capacity is 

required, in order to maintain higher production volume for the same amount of variety 

and vice versa. On the other hand, a closer consideration of this issue would suggest that, 

given the capacity, the extent to which the product variety might adversely impact the 

production volume, depends significantly on the dissimilarity between the product 

variants too. In other words, the concept of variety per se, may not sufficiently reflect the 

dissimilarity between different product variants, since for example two sets of n products 

have the same index of variety but do not necessarily have the same index of 

dissimilarity. In order to include this consideration, we consider a modified mathematical 

Variety 

Volume 

K1

K2

K3

Figure 1.1-Different trade-off levels in volume-variety relationship: K3> K2> K1
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form that would convey a more detailed picture of the underlying relationships. One such 

mathematical form could look like equation (1.2) which is a modification of Eq. (1.1) 

based on the above discussion. 

 

 

 

 

 

 

 

 

 

 

 

K=V.       0  

where , is representative of dissimilarity. Taking into consideration the above more 

informative relationship, there is a window of opportunity for engineering the trade-off.  

Figure 1.2   

represents this modification where, different volume- variety curves may now represent 

the same capacity K, given different ’s. 

Therefore equation (1.2) communicates the fact that the extent to which two or more 

products are dissimilar, can affect the volume-variety relationship, thence the role of 

dissimilarity. The effect of dissimilarity in the production system as indicated in Figure 

Variety 

Volume 

Figure 1.2-  : dissimilarity in volume-variety trade-off 

K

K

K
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1.2 implies that there is a chance to engineer the trade-off by reducing the dissimilarity in 

the system.  

Group Technology (GT) has been able to successfully engineer the aforementioned trade-

off between volume and variety in a manufacturing system by reducing , the 

dissimilarity index or equivalently increasing the similarity. Cellular manufacturing, an 

application of GT, has achieved this goal by grouping similar components of different 

product variants in families together with their corresponding machines in relatively 

independent cells.  

  

In order to be successful in today’s competitive manufacturing environment, managers 

have had to look for innovative approaches to  facilities planning. Estimates imply that 

over $250 billion is spent annually in the United States alone on layout and machine 

reconfiguration. Further, between 20% and 50% of the total costs within manufacturing 

are related to material handling whereas effective facilities planning can reduce these 

costs by 10–30% (Tompkins et al., 2003; Balakrishnan and Cheng, 2007).  

In a flow line, machines are laid out in line with the processing requirements of each 

component part in the sequence of the corresponding operations as shown in Figure 1.3. 

Since each component part has its own dedicated machine line and the machines are not 

shared among different parts, machine investment is high and the flexibility in terms of 

part variety is minimal.  
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On the other hand, this configuration is highly efficient resulting in faster flow of 

material, high production rate and high throughput as well as low transportation costs. In 

a job shop system, machines are grouped according to their processing characteristics in 

different departments: for example presses group together to form the press shop, where 

every part that has a press operation will have to go to that shop, and the same for lathe 

machines, drills, milling machines and so on. When a part is processed in a department it 

has to travel a rather long distance to enter another department for its next processing 

requirements. Since moving parts in single units is not economical, they are being 

transported in batches. Therefore each part has to wait until other units of that part are 

completed before moving to the next department which in turn leads to longer production 

times, larger work-in–progress, slower flow of material and even congestion and higher 

production costs. In order to complete all processing requirements, a part might need to 

Figure 1.3-Flow line configuration
alkolas3d.tripod.com) 



 
 
 
 

8

travel around the entire facility as shown in Figure 1.4. In such a configuration, high 

flexibility is attained since a variety of parts in relatively small batches can be processed 

and the general  

 

                                            

 (alkolas3d.tripod.com) 

purpose equipment are used to minimize machine investment. However the drawback is 

that the efficiency is low. One innovative approach to the above shortcomings is called 

Group Technology (GT). GT is based on the principle of grouping parts into families 

based on similarities in design or manufacturing processes. Manufacturing cells are 

created by grouping the parts that are produced into families. This is based on the 

operations required by the parts. These cells, consisting of machines or workstations, are 

then physically configured and dedicated to producing part families (Balakrishnan and 

Cheng, 2007).  

Figure 1.4- Job shop configuration 
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Cellular manufacturing, a major application of GT, emerges as a hybrid of flow line and 

job shop, and attempts to benefit from advantages of both aforementioned manufacturing 

systems. Therefore it proves less disadvantageous as compared with the disadvantages of 

either system.  

 

 

 

This implies that cellular manufacturing would provide a flexibility close to that of a job 

shop and simultaneously the efficiency close to that of a flow line. Each manufacturing 

cell provides an environment where similar parts represent a family that would more or 

less represent a single part while the cell would represent a dedicated flow line (Figure 

1.5). On the other hand, the collection of cells process a large variety of parts in relatively 

small batches thus providing an environment which is sufficiently efficient and flexible at 

the same time. The result of this conversion would be indicated in less machines used 

Figure 1.5- Cellular manufacturing configuration 
(alkolas3d.tripod.com) 
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than in flow lines, less distances travelled and less time wasted in non-productive 

activities than in a job shop. Also since similar pars are grouped in families, it is expected 

that the setup time would tend to decrease more or less similarly as is the case in flow 

line configuration.

Cellular manufacturing has been credited for quite a few benefits. Several researchers 

have conducted surveys and or explored literature in order to outline these benefits. 

Burbidge (1996), Wemmerlov and Hyer (1997), Greene & Sadowski (1984), Askin & 

Standridge (1993), Suresh & Meredith (1994), Singh & Rajamani (1996), Mungawattana 

(2000) and Tariq (2010) are among sources where these benefits have been addressed. 

Some of these advantages noted by Burbidge (1996) are indicated in Figure 1.6.  

  

 
Figure 1.6 –Advantages of GT (Burbidge, 1996) 
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A more recent outline of benefits can be found in Tariq (2010) which has been 

summarized as follows:  

: CM design is expected to 

minimize material handling cost during the cell formation process which means 

the cells are more or less independent. In other words the intercellular movements 

are minimized, thence savings on material handling time and cost. 

: Part families in 

each cell are expected to have similarities either in geometry, shape and size or in 

processing requirement. One way or another each cell would be more or less 

similar to a dedicated line in flow shop, which in turn would reduce the number 

and variety of tooling required in the cell. Also the changeover times between 

parts in the same family are expected to be less than that in a job shop for the 

above-mentioned reason. 

Due to efficient and smooth flow of material, smaller 

lot sizes and setup times, the level of inventory both in terms of in-process and 

finished items is reduced. Another aspect of this efficient material flow is the 

possibility of producing parts either Just-In-Time (JIT) or in small lot sizes  

: In CMS, unlike in the job shop, parts do not have 

to wait in long lines since the machines are more or less dedicated to the part 

processing requirements. Subsequently the flow of the material would be 
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smoother and faster. This translates into smaller WIP and shorter flow time in the 

system. 

: Due to reduction of WIP, as a direct result of reduction of 

setup time and lot sizes, this would lead to less space required for carrying out the 

production plan.  

: In a job shop environment, parts are processed in 

almost the entire facility and thus have to travel through long distances. In 

contrast, in CM each part family is processed more or less inside a particular cell, 

travelling shorter distances thus spending less time in transportation. This would 

result in shorter throughput time. 

: Shorter travelling distances are less likely to cause 

damage to the parts during material handling and focused control and supervision 

in the cells would result in improvement in the quality of the products.  

    

The design methodology of CMS can be divided into two main stages. The first stage is a 

soft design which is the process of forming manufacturing cells. The second stage is hard 

design which is about actual design of the manufacturing cells including the layout of the 

machine and the hardware. The second stage of the design is not the subject of this thesis 

and only the first stage of CMS design is studied in this research. The first stage of the 

design, namely cell formation, consists of the following fundamental steps: 

1-Forming part families based on the similarity of their processing requirements 
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2-Machines are grouped into manufacturing cells 

3-Part families are assigned to the manufacturing cells. 

 Based on the cell formation approach adopted, the above three key steps may or may not 

be sequential. In fact many times part families and grouping of the machines together 

with the assignment of the part families to the cells may all be simultaneous 

(Mungawattana, 2000). 

The contemporary CMS design methodology has addressed quite a few real 

manufacturing attributes. For example, see Defersha and Chen (2006) and (2008) where 

the authors have considered a complete set of real life manufacturing attributes in their 

CMS design while only subsets had been previously considered in other publications. 

However, consideration of sequence-dependent setup time, as the most general form of 

setup time, is missing in the contemporary system design. This consideration would be 

essential especially in closed job shop situations where the repetitive manufacturing of a 

group of parts is needed and in each production cycle, the changeover time from one part 

type to another is relatively significant.  

The objective of this thesis is to: 

-Design a CMS that accounts for the sequence-dependent setup time as the general form 

of changeover time between two parts on a common machine in the in order to enable the 

cost reduction through the order by which they are processed. 
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-Enable multi-period planning of the parts and machine-cell re-configurations in advance 

in a dynamic environment where the part mix may change from period to period during 

the planning horizon, in order to fulfill the contractual obligations of the manufacturing 

company or the market seasonal demand. 

In this thesis, it was determined that the design methodology should consist of developing 

a mathematical model that properly represents the first stage of the CMS design of the 

problem under research. Mathematical modeling has the advantage of providing 

mathematical precision in the design stage as compared with other design methodologies. 

The drawback however, is that the solution would be a challenge due to computational 

burden and the complexity of the problem. In the case of our specific problem, the issue 

is significantly intensified since the presence of the sequence-dependent setup time 

generates massive amounts of integer variables, making the problem one of the most 

computationally challenging among current CMS design problems. Therefore 

approximate methods and heuristics seem inevitable in the solution approach. In this 

thesis mathematical modeling will be considered as the first step in tackling the research 

problem. Despite the inability of the optimization software in solving highly complex 

models as such, limited use of the software will help both in gaining insight about the 

computational intensity of the problem and evaluation of the heuristic performance. Due 

to the novelty of the complex model, a step by step solution approach would be helpful. 
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The rest of this thesis is organized as follows. Chapter 2 presents a brief review 

of the literature on CMS in general and the application of setup time in CMS 

related research. Chapter 3 introduces the research problem and develops a 

mathematical model of the CMS design to address the research problem. 

Chapter 4 discusses the solution methodology based on GA-based heuristic first 

for a static and dynamic version of the model. The performance of the GA-based 

heuristic is evaluated against commercial optimization software package 

available in the market. Chapter 5 develops a dynamic programming based 

heuristic to address the shortcomings of the GA-based heuristic for a multi-

period solution. Chapter 6 concludes this thesis and outlines the path for future 

research.
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CHAPTER 2

Cellular manufacturing, which is an application of group technology (GT) in 

manufacturing, has been recognized as one of the most recent technological innovations 

in job shop or batch-type production to gain economic advantages similar to those of 

mass production (Chang and Lee, 2000), (Singh and Rajamani, 1996), (Chu and Tsai, 

1990). Group technology is a manufacturing philosophy that identifies similarities of 

parts and partitions a manufacturing system to its subsystem based on these similarities 

(Yasuda and Yin, 2002; Caux et al, 2000; Chang and Lee, 2000). For decades, 

researchers have been involved in different aspects of cellular manufacturing, among 

which, cell formation, during the past decade, has been a source of a great attention for 

practitioners as well as academics.  

Cell formation (CF), which involves identification of machine groups and part families, 

has been known to be the first and most fundamental step in designing a cellular 

manufacturing system (Chen, 2004;Yasuda and Yin, 2002; Goncalves and Resende, 

2002). The fundamental step in GT is to identify part families and plan a total division 

into groups and families, in which each group completes all the parts it makes (Burbidge, 

1996; Jeon et al., 1998).  
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Cell formation is considered as a reorganization of an existing job shop into GT shops 

using information given about the processing requirements of parts. This information is 

commonly represented in a matrix called the machine-part incidence or machine-

component incidence matrix (MCIM) with 0 or 1 entries. A 1 indicates that part j requires 

machine i for an operation, and 0 indicates otherwise (Caux et al, 2000; Singh and 

Rajamani, 1996). There are two major categories in a CF problem. A first category 

considers one possible way to produce each component part type i.e. fixed routing. A 

second category assumes several possible ways to manufacture the same component part, 

i.e. multiple routing (Caux et al, 2000). 

Different cell formation approaches can be classified as follows: array based approaches, 

cluster analysis techniques, graph theoretic and mathematical programming methods 

which are among the major categories that have been developed to group parts and 

machines into cellular configurations (LaScola Needy et al, 1998). The common goal of 

all these methods is to maximize the number of operations performed on the part families 

within their corresponding machine cells. A machine cell is a manufacturing unit capable 

of processing a part family, a family of parts with similar manufacturing requirements, 

for its entire set of operations (Seifoddini and Djasemmi, 1995).  

Versions of the taxonomy of cell formation methods can be found in the following: King 

(1980), King and Nakornchai (1982), Chandrasekharan and Rajagopalan (1987), Khator 

and Irani (1987), and Kusiak and Chow (1987), Offodile et al. (1991), Mungwattana 
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(2000), Murugan and Selladurai (2005), Tariq (2010) and Arora et al.( 2011). A 

hierarchical graph of a version of the taxonomy of cell formation techniques is depicted 

in Figure 2.1 

The visual inspection based method of GT arranges parts by studying part geometries and 

grouping similar parts into families. This approach is subject to error and heavily relies 

on the expert opinion and experience of the user, and is rarely used in practice except 

with a fairly small number of parts (Offodile et al., 1991) .  

 

Figure 2.1-Classification of various cell formation techniques 
(Tariq, 2010) 
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Known as part coding and classification analysis (PCA), this approach uses a coding 

system to assign numerical weights to parts characteristics and identifies part families 

using some classification (Offodile et al., 1991).  

Array-based clustering methods perform a series of column and row permutations to form 

product and machine cells simultaneously. In array-based clustering, the processing 

requirements of components on machines can be represented  by an incidence matrix. 

This is referred to as the machine-component incidence matrix (MCIM) or simply 

machine-part matrix. The machine-part matrix has zero and one entries. A "1" entry in 

row i and column j of the matrix indicates that component j has an operation on machine 

i, whereas a "0" entry indicates otherwise. The array-based techniques allocate machines 

and parts to cells by manipulating the order of rows and columns to find a form as close 

as possible to a block diagonal form in the matrix. The following array-based clustering 

algorithms can be found in the literature: Bond Energy Analysis by McCormick et al. 

(1972), Rank Order Clustering by King (1980) and King and Nakoranchi (1982), Cluster 

Identification method by Kusiak and Chow (1987), Modified Rank Order Clustering by 

Chandrasekharan and Rajagopalan (1989), Direct Clustering Analysis by Chan and 

Milner (1989), and the Hamiltonian Path Heuristic by Askin et al. (1990) (Arora  et al. 

2011). 
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Hierarchical classifications may be represented by inverted tree structures or dendograms, 

which are two-dimensional diagrams illustrating the bursts or divisions which have been 

made at each successive stage of the analysis. In hierarchical clustering, the data in the 

machine-part matrix are partitioned into groups or cells in several steps rather than in one 

step. They are first separated into a few large cells, each of which is further divided into 

smaller ones, and each of these further partitioned, and so on until terminal groups are 

generated which cannot be subdivided (Arora  et al. 2011). 

The non-hierarchical procedure was developed by Chandrasekharan and Rajagopalan 

(1989). Non-hierarchical clustering methods are iterative methods and begin with either 

an initial partition of the data set or the choice of a few seed points. In either case, one has 

to decide the number of clusters in advance. The fact that the choice of seed points (or 

initial partition of data) are arbitrary, could lead to unsatisfactory results (Arora  et al. 

2011). 

Vannelli and Kumar (1986) developed graph theoretic models that would lead to a perfect 

block diagonal structure by determining the machines which need to be duplicated in a 

block.  Each block would represent a machine group and part family namely a cell.  

Burbidge (1971) developed production process based analysis. This method has gained 

overwhelming attention by researchers since it was first developed and popularized by its 
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developer.  The goal of the production- based approach is to identify and group parts 

based on the similarity of their processes. Production-oriented systems or production flow 

analysis (PFA) systems use route sheets to record the relationship between parts and the 

machines that process them (Offodile et al., 1991).    

Mathematical programming is a powerful tool for solving complicated production 

planning problems, when product structures with multi-item and multi-level (Defersha 

and Chen, 2008). Mathematical Programming (MP) approaches to formulate the 

Machine-Part grouping problem as an optimization problem. Due to their ability to 

consider and incorporate a number of critical system design information, MP based 

approaches have been extensively used to solve the CF problems. The mathematical 

optimization approaches applied to the cell formation are either linear or nonlinear 

integer programming problems. Kusiak (1987 & 1988) and Boctor (1991) have shown 

that these approaches have the ability to incorporate a lot of production related data, for 

example; processing sequence, routing flexibility, setup and processing time etc. While 

clustering parts and machines, as an optimization technique the objective could be to 

maximize the total sum of similarities between each pair of machine-part (Tariq, 2010). 

The main advantage of MP approaches is that they formulate the problem with 

mathematical precision at the design stage, thus can guarantee an optimal solution if the 

problem would be tractable enough to be optimally solved in a reasonably short amount 

of time.  Whereas other approaches introduce the approximation early in the design stage 

by adopting some sort of heuristic approach. The drawback of MP, however, is that CF 

problems in general are NP-hard and most definitely the application of approximate 
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methods of some kind would be inevitable at the solution stage, in order to obtain a “good 

enough” solution for real life problem instances. 

Karapathi and Suresh (1992) were among the first that proposed an application of 

artificial neural networks to CF problems. Elmaghraby and Gu (1998) presented an 

approach for using domain specific knowledge rules and a prototype feature based 

modeling system that would automate the process of identifying parts attributes and 

assigning the parts to the most appropriate manufacturing cells. The expert assignment 

system is based on the geometric features of the parts, characteristics of formed 

manufacturing cells, parts functional characteristics and attributes, as well as domain 

specific manufacturing knowledge.  Kusiak (1987) developed a pattern recognition based 

parts grouping which is basically similar to the grouping procedure in GT. The basic 

difference between these two, however, is in the degree of automation (Arora et al., 

2011).  

Quite a considerable amount of work has been done in the field of setup reduction and its 

effects in the general scheme of production systems. Setup time reduction in 

manufacturing operations is widely recognized to provide significant benefits in areas 

such as cost, agility and quality (Nye et al, 2001).  Cellular manufacturing is no exception 

to this rule. Introduction of cellular manufacturing systems is expected to result in 

reduced setup time, production lead time, work-in-process, labor, tooling, rework and 
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scrap materials, delivery time, and paper works (Kusiak, 1992; Seifoddini and Djasemmi, 

1995). 

The main improvements that can be expected from cellular manufacturing are reductions 

in throughput time, material handling and setup time as well as part quality (Burbridge, 

1992; Wemmerlov and Hyer, 1989; Hyer 1984). A number of researchers have compared 

job shop layouts to those of CMS and have generally concluded that the latter provides 

shorter setup times, lower machine utilization and shorter travel distances (Agarwal and 

Sarkis, 1998; Al-Mubarak et al., 2002). Some surveys show that setup reduction from GT 

is a key determinant of the relative advantage of CMS over job shop and functional 

layout (FL). In fact there exists a breakeven level of setup reduction which must be 

achieved to make partitioning to cell worthwhile (Shambu and Suresh, 2002).  

On the other hand, a simulation study by Garza et al (1991) shows that the performance 

of cellular manufacturing as measured by mean flow time or work-in-process inventory is 

better than that of a job shop when conversion into CMS results in low intercellular flow, 

even when other operating factors do not improve after the conversion. Morris and 

Tersine (1990) examined the effect of cellular performance of ratio of setup to processing 

time, the time to travel between work centers and some other factors (Goncalves and 

Resende, 2002). Suresh (1992) found in his study that flow time and WIP were sensitive 

to the magnitude of the setup time. The simulation study by Flynn and Jacobs (1986) 

showed that rules designed to minimize setup may have a significant impact on the 

performance of CMS. They stated that CMS would be most beneficial when setup time is 

very small relative to the average processing time. Yang and Deane (1993) studied the 

relationship between setup time reduction and performance improvement in the stochastic 
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closed manufacturing cell and showed that marginal reductions in optimal product batch 

sizes and flow time variance would alleviate as job setup time decreases. 

 

A series of studies that could be considered pertinent to the field of this research proposal 

are discussed in this section. Surveys by Allahverdi et al. (1999) and Cheng et al. (2000), 

involving separable setup times, report that most prior research on manufacturing cell 

scheduling has assumed sequence independent setup times (Schaller et.al., 2000). 

However, Sammadar et al. (1999) developed the mathematical model for resource sharing 

and scheduling for a class of computer-integrated manufacturing cells with sequence-

dependent setup times. A similar work has been done by Schaller et al. (2000), who have 

addressed the problem of scheduling part families and jobs within each part family in a 

flow line manufacturing cell, where the setup times for each family are sequence-

dependent and it is desired to minimize the makespan while processing parts together in 

each family. Franca et al. (2005) proposed six evolutionary heuristic algorithms to 

minimize makespan for permutation schedules in a pure flow shop manufacturing cell 

with sequence-dependent setup times between families of jobs. Lin et al. (2009) 

developed a meta-heuristic for a non-permutation flow line manufacturing cell with 

sequence-dependent family setup time. Hendizadeh et al. (2008) applied various Tabu 

Search  based meta-heuristics to scheduling  of  the part families and jobs within each 

family in a flow line manufacturing cell with sequence dependent family setup times. 
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LaScola Needy et al. (1998) developed a practical yet effective procedure that is basically 

a numeric calculation of material handling cost, setup cost and investment cost for each 

cellular configuration of a series of cellular configurations in order to identify the 

minimum cost alternative. In fact the cell formation procedure, in their work, takes place 

by generating alternative cell configuration through genetic algorithm approach and then 

the setup time is calculated for each alternative. 

Lashkari et al. (2004) developed an operation allocation (OA) model which assigns a set 

of part types to a group of machines considering setup cost and provides information as 

an input to the material handling sub-system (MHSS) model.  Moon and Gen (1999) 

presented a 0-1 integer programming model to design independent manufacturing cells 

with alternative process plans and machine duplication consideration. Atmani (1995) 

developed a mathematical programming model for production planning problem of 

determining optimal machine selection and operation allocation in flexible manufacturing 

systems to minimize transportation and setup costs. 

Despite the fact that setup time has always been quite a major issue in the context of 

CMS, it has rarely been actually incorporated in the cell formation procedure as a criteria. 

There are, however some few exceptions. Damodaran et al. (1992) proposed a mixed-

integer programming model for the OA problem in the context of multi-machine and 

multiple cell operations considering re-fixturing costs. Atmani et al. (1995) proposed a 0-

1 integer programming model that jointly considers OA and cell formation in cellular 

manufacturing with re-fixturing cost. The paper by Ohta et al, (2002) who developed a 
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heuristic algorithm based on a new similarity measure, includes the setup time as one of 

the two criteria in the similarity measure for cell formation. 

Allahverdi and Sorush (2006) emphasized the importance and benefits of reducing setup 

time. The fact that treating setup times separate from processing times improves resource 

utilization. This is particularly important in modern manufacturing management systems 

such as JIT, GT and CMS. 

Setup time is a critical issue in every production system. In fact setup time is literally a 

key factor that can adjust the parameters of a production system such as lead time, WIP, 

batch size, machine utilization, production cost as well as smooth flow, agility, 

responsiveness, etc. Reduction of setup time has always been a major issue as well as 

motive in CMS due to its major contribution to the cost effectiveness and other crucial 

impacts on the production system. The results of a simulation study by Suresh and 

Meredith (1994) indicated that reduction in setup time and processing times have the 

greatest impact on CMS performance (Agarwal and Sarkis, 1998). 

The simulation study by Flynn and Jacobs (1986) showed that rules designed to minimize 

setup may have a significant impact on the performance of CMS. They stated that CMS 

would be most beneficial when setup time is very small relative to the average processing 

time. The study by Suresh (1991) concluded that a certain level of setup reduction has to 

be achieved before a CMS will outperform a functional layout (FL) system. Another case 

study of a small manufacturing company concluded that reduction of setup times and 

trained workers helped the CM system achieve goals like reduction in process time and 

less space due to less WIP (Agarwal and Sarkis, 1998). 
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In the entire context of CMS, similarity has been assumed as the source of reduction in 

material handling costs, reduction of setup times and increase in machine utilization. It 

has been assumed that since parts grouped in a cell need less set up time due to similarity 

among them, the overall setup time is expected to reduce in the entire system. In other 

words the conventional CF approaches attempt to increase similarity or equivalently 

reduce dissimilarity to achieve reduction in setup time. It has been mentioned that since 

parts are assigned to families on tooling and setup requirements, usually a negligible or 

minor setup is required to change from one part to another within a family and hence can 

be included in the processing times of each job (Schaller, 2000).  Although the above 

assumption sounds reasonable, the impact of cellular manufacturing on setup reduction 

should not be exaggerated. In fact, some mixed results from some surveys can exemplify 

the definition of setup reduction in conventional CF approaches based on MCIM.  For 

example, Wemmerlov and Hyer (1989) stated that a well-organized job shop results in 

better flow time and less work-in-process inventories than cellular manufacturing. They 

claim that surveys of firms adopting cellular manufacturing report better queue related 

results mainly because they are comparing their new layout to their previous poorly 

designed and operated job shop. Some literature raises doubts on whether CMS produces 

better performance for queue related criteria (Al-Mubarak et al, 2004).   Roughly 

speaking, the so-called similarity is assumed to be attained by grouping parts with highest 

number of machines in common in each cell. To do so, almost all CF approaches in CMS 

deal with some manipulation of machine-part or machine-component incidence matrix, 

MCIM (Moleman et al, 2002; Ohta and Nakamura, 2002). In essence, the basic 

information required to solve a CM problem is the machine-part incidence matrix (Ohta 
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and Nakamura, 2002). It is a matrix Aij, with machines in rows and component parts in 

columns consisting of elements aij=1 where part j visits machine i and aij=0 otherwise. 

Once we know what machines are required by what parts, we would be able to minimize 

intercellular movements as well as maximize machine utilization through the MCIM with 

the maximum 1’s inside the cells and minimum 1’s outside the cells. Thus we can 

minimize the overall material handling costs and machine cost by proper cell formation.  

Reduction of setup time in CMS is justified by referring to the fact that cells are formed 

on the basis of similarity of processes for the parts in the cell. In the MCIM, parts are 

matched with their pertinent machines in a matrix. This way one can see the commonality 

of machines between different parts and group them accordingly. However, what is 

attained would be an increased commonality of machines between parts in a cell.  

Actually the MCIM in its utmost can only guarantee the commonality of machines among 

parts in a cell which is not necessarily the same as the similarity of operations. In other 

words, the MCIM does not tell us much about the quantity of the setup times, thus a setup 

reduction is not controlled.  

In this research, it is presumed that part of the ambiguity about setup time reduction in the 

CF procedure can be attributed to the definition of setup time in the literature. Some 

works that deal with introducing parameters or coefficients concerning setup cost or setup 

time are implicitly based on consecutive operations of parts on various machines (as an 

example, see Damodaran et al. 1992 and Ohta and Nakamura 2002). In some others, e.g. 

Atmani et al. (1992) and Lashkari et al. (2004), setup cost has been associated solely with 

one part and the machine. However Cox et al. (1995), defines setup as the work required 

to change a specific machine, work centre, or line from making the last good piece of a 
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unit A to the first good piece of unit B (LaScola Needy et al., 1998). The above definition 

is the closest to real life manufacturing. In general, setup time can be defined as the 

transition time from state A to state B while state A refers to part A and state B refers to 

part B. The significance of this definition is that it implies the important concept of 

changeover between two parts. Besides, common sense and real practice both imply that 

changeover must take place on a common machine. The term ‘common’ should be 

stressed since it is a key factor in the definition that might lead to confusion if neglected 

or understated. In fact, setup time depends on three elements without which part of the 

information for obtaining the changeover time would be missing. These elements are: 

incoming component part i, outgoing component part i’ and the common machine k, as 

shown in Figure 2.2. 

 

 

 

 

 

 

 

Allahverdi and Sorush (2006) note two types of setup times: sequence-dependent and 

sequence-independent. In a sequence-independent setup time, the setup time of the 

incoming part is independent and has nothing to do with what it is going to replace on the 

common machine. In sequence-dependent setup time, the setup time of the incoming part 

may vary based on the part it is going to replace, implying a joint changeover time 

Common 
Machine  

Part Part  S  

Figure 2.2- Setup as joint changeover 
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between the two interchanging parts. This situation could occur in many situations where 

the size, shape, or complexity of the parts would force more or less time for the 

adjustment of the machine and setup of the part than it would if a different part was to be 

replaced. For example, removing a previously installed die on a press processing part A 

could take more or less time than removing that of part A’. Therefore the overall time for 

part B to remove the previous part and get installed would depend on the previous part.  

Sequence-dependent setup times are usually found in the situation where the facility has 

multipurpose machines. Some examples of sequence-dependent setups include chemical 

compounds manufacturing, where the extent of the cleansing depends on both the 

preceding chemical processed and the chemical about to be processed, the printing 

industry, where the cleaning and setting of the press for processing the next job depend 

on its derogation from the color of ink, size of paper and types used in the previous job. 

Sequence-dependent setups can also be found in many other industrial systems, some of 

which include the stamping operation in plastic manufacturing, die changing in metal 

processing shops, and roll slitting in the paper industry, etc. (Yang and Liao, 1999; Eren, 

2007). 

In order to err on the side of caution and maximize the inclusiveness and generality, a 

sequence-dependency condition has to be considered, so that: 

                             0S kii'          for  i  i                                            (2.1) 

                                   S S ik i'k ii'    for  i i                                                      (2.2) 

where: S kii'  is the sequence-dependent setup time between parts i and i’ on machine k.  
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The definition of setup as sequence-dependent changeover is not only clear and 

straightforward, but also is the most inclusive one in the real world which includes 

sequence-independent ones, when the input data for       S k   ii'  and        S ik ' i    are equal; or 

additive type where the sum of the times for removal of part i’ and installing of part i, 

would represent the single joint changeover time       S ik ' i  . In effect it covers all different 

cases of changeover e.g. from uninstalling a previous die, say on a press, and installing a 

new die, to switching from a previous set of adjustments, say on a lathe machine, to a 

new one, etc. 

Consideration of all pairs of parts on different machines leads to a joint changeover 

matrix, including the sequence-dependent setup times between pairs of parts having 

common machines. This information in companies may be obtained from route sheets 

where the MCIM data is also obtained. It is obvious for a sequence-independent setup 

time the corresponding input data for       S k   ii'  and        S ik ' i  will simply be equal. Whenever a 

pair of component parts have a common machine but will definitely not change over due 

to routing or technological reasons, the joint setup time in the matrix would be infinity.  

Regarding the above discussion and conclusions, in Damodaran et al. (1992) and Ohta 

and Nakumara (2004), setup has been considered between consecutive operations k and 

k+1 of part j notwithstanding the common machine. In other words in their consideration 

of setup, the common machine has been tacitly ignored, i.e. the part is common and the 

machines could be different. In Atmani et al. (1995) and Lashkari et al. (2004), however, 

the outgoing part has been ignored.  
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Rajamani et al. (1992) considered a sequence-dependent setup time between pairs of parts 

notwithstanding the machine, in flow shop cells “where various parts tend to use identical 

production processes” (Rajamani et al., 1992). This also implies that MCIM is not 

required, as all elements of such incidence matrix would consist of 1’s only. 

Consequently intercellular movement does not play a role.  

Murugan and Selladurai (2005) applied genetic algorithm to a cell formation problem that 

would reduce the setup time, however they used the group efficacy criteria approach 

rather than mathematical programming and the setup time, which, while not being 

sequence-dependent, were measured on two different machines as opposed to a common 

machine. 

Gosh et al. (2011) conducted a state-of-the- art generic review of application of various 

meta-heuristics in cellular manufacturing. Defersha and Chen (2008) embedded a linear 

programming sub-model in their genetic algorithm based heuristic to solve a multi-period 

mixed integer programming comprehensive cell formation problem. Ahmed et al (2004) 

conveyed a comparison among heuristic methods used for solving cellular manufacturing 

models in a dynamic environment. They considered a generic nonlinear mixed integer 

programming model for designing CMS in a dynamic environment and they solved the 

problem by the three well known meta-heuristics, namely Genetic Algorithm (GA), 

Simulated Annealing (SA) and Tabu search. Ohta and Nakumara (2002) developed a 

genetic algorithm based heuristic to solve a cell formation problem including setup time 

as one of the factors in their similarity coefficient based model. 
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The concept of the dynamic cellular manufacturing system (DCMS) was first introduced 

by Rheault et al. (1995). In the conventional CMS any changes in the product demand 

over time is ignored from product redesign and other factors. It assumes that the product 

mix and part demand is constant for the entire planning horizon. The product mix refers 

to a set of part types to be produced at each period. However, in the dynamic 

environment, a planning horizon can be divided into smaller periods where each period 

has different product mix and demand requirements. Kannan and Gosh (1995) noted that 

cells can evolve and dissolve on a dynamic, real time basis, through applying scheduling 

mechanisms enabling them to respond more effectively to changes in workload and to 

shifts in the locations of bottlenecks. Balakrishnan and Cheng (2007) conducted a 

comprehensive review of the research that had been done to address cellular 

manufacturing under conditions of multi-period planning horizons, with demand and 

resource uncertainties. They noted that in a study of 32 manufacturing cell life cycles at 

15 plants by Marsh et al. (1997), it was found that layout changes could take place as 

soon as within six months of the start of the cell life cycle. Thus when manufacturing 

cells are created, expected changes in products and product mix have to be taken into 

consideration. Harhalakis et al. (1990) introduced a procedure to design robust CMS over 

a range of product demand variation. Chen (1998) was among the first who emphasized 

the importance of cell reconfiguration in a dynamic environment. He used a 

decomposition technique to decompose the original multi-period integer programming 

model into several single-period models which he would solve optimally through a 

commercial optimization software package. He then used dynamic programming (DP) to 
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re-integrate the smaller single-period problem solutions to obtain the best feasible 

solution for the original multi-period problem. Wilhelm et al. (1998) introduced a multi-

period formation of grouping machine cell and part family. Tavakkoli-Moghaddam et al. 

(2005) and Safaei and Tavakkoli-Moghaddam (2009) developed a multi-period cellular 

manufacturing system for dynamic environments. Koren and Shpitalni ( 2011) studied the 

rationale of developing reconfigurable manufacturing systems. They discussed the core 

characteristics and design principles of reconfigurable manufacturing systems (RMS).  

Mungwattana (2000) considered routing flexibility in dynamic environment with 

stochastic demand. Defersha and Chen (2008) suggest that cellular manufacturing system 

would be interrelated with production planning through dynamic system reconfiguration. 

They note that “in most research articles, CF has been considered under static conditions 

in which cells are formed for a single time period with known and constant product mix 

and demand” while, in a more realistic dynamic situation, a multi-period planning 

horizon shall be considered where the product mix and demand in each period may be 

different. Consequently, the cell configuration in one period may not be optimal in 

another period. Defersha and Chen (2006) mention that “As stated in a “US National 

Research Council document (National Research Council, 1998), reconfigurable 

manufacturing is considered by many manufacturing experts as one of the most important 

technologies in advanced manufacturing systems”.  

Jayakumar and Raju (2010) developed a multi-period, multi-objective non-linear 

mathematical CF model together and solved it with  LINGO 11 commercial software for 

small and medium sized problems. For small size problems the problem could be solved 

optimally while for medium size problems solving the problem in a reasonably short 
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period of time was not possible. For example for a numerical example including 12 part 

types, 8 machines and three planning types the number of integer variables has been 504 

and the total number of variables amounts up to 6125. The model incorporates real-life 

parameters like alternate routing, operation sequence, duplicate machines, product mix, 

product demand, varying batch size, processing time, machine capacity, and various cost 

factors. 

Balakrishnan and Cheng (2005) suggested a two-stage procedure based on the 

generalized machine assignment problem and dynamic programming for cell formation 

problem under conditions of varying product demand. The objectives were to minimize 

the material handling and machine reconfiguration costs. They suggested a periodical 

reconfiguration when the cost-benefit analysis favors such a move. This way, the cellular 

layout will better fit the demand in each period and thus be more effective and agile 

during the planning horizon. In addition, they proposed examining multiple layouts when 

considering cell redesign in order to incorporate different qualitative and quantitative 

considerations. Such an analysis can also highlight the need for easily movable machines 

to ensure that cellular manufacturing is effective throughout the planning horizon. 

In this literature review, different aspects related to the current research were reviewed in 

publications. First, a taxonomy of cell formation techniques was presented that provided 

a general review of CMS design and the corresponding cell formation approaches. Then 

the concept of setup time was traced in CMS related literature. More specifically, 
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sequence-dependent setup time was briefly reviewed in scheduling related publication, 

where it has gained significant attention from researchers.  

A critical review of setup time in CMS related literature followed which debated the use 

of setup time in cell formation related works as well as examining the impact of CMS on 

setup reduction. It was argued that in order to achieve a controlled setup time reduction in 

CMS, more information than MCIM is required. The critical review of setup time related 

cell formation publications, revealed that different researchers have had different 

perceptions of setup time when using it in their cell formation process. Therefore a 

standard definition based on Cox et.al (1995) that was found to be conforming to the real 

manufacturing and common sense both, was established. In the continuation, other 

aspects of the subject of this thesis, i.e. application of heuristic methods especially 

genetic algorithm in cellular manufacturing and dynamic CMS were briefly reviewed. 

Finally Figure 2.3 provides a comparative view of the subject of this thesis and the 

closely related works in the literature and concludes the literature review. 
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Author (s) Year
Single Cell
(Scheduling)

Multi Cell General Pure Flow
line

Setup cost Sequence
dependent

Part
Family

Static Dynamic

Part Operation

Damodaran et al. 1992 x x x x x B&B

Rajamani et.al 1992 x x x x x B&B

Atmani 1995 x x x x x B&B

LaScola Needy et al. 1998 x x x x x GA

Samaddar et al. 1999 x x x x
CustomisedB

&B

Schaller et al. 2000 x x x x Heuristic

Ohta &Nakamura 2002 x x x x x GA

Lashkari et al. 2004 x x x x x B&B

Franca et al. 2005 x x x x GA+MA

Murugan&Selladurai 2005 x x x x x GA

Defersha&Chen 2006 x x x x x B&B

Defersha&Chen 2008 x x x x x GA

Lin et al. 2008 x x x x GA+SA+ TABU

Current thesis 2012 x x x x x GA+DP

Solution
Approach

Component Part
Type of Cell Type of ModelType of Set upManufacturing cell Set up level

 

 

 

 

Figure 2.3- Comparing the thesis attributes with relevant the literature 
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CHAPTER 3 

Repetitive manufacturing is one solution for situations where market demand warrants a 

large-scale production but market constraints prohibit continuous production. In a closed 

job shop, in which a fixed number of products are produced on a repetitive basis, when 

there are significant sequence-dependent setup times and costs involved, the cell 

formation problem should consider minimizing the sequence-dependent setup times in 

order to minimize the production cost (Rajamani et. al., 1992). Due to frequent 

changeovers of the machines in repetitive cycles within the planning horizon, the overall 

setup cost incurred could be quite considerable if it is not incorporated in the cost 

minimization process. To the best of our knowledge, the consideration of sequence-

dependent setup time at the operation-level in the process of cost minimization of cellular 

manufacturing systems has not been addressed by other researchers. Furthermore 

Defersha and Chen (2008) suggest that cellular manufacturing systems may be 

interrelated with production planning through dynamic system reconfiguration. They note 

that in most research articles, CF has been considered under static conditions in which 

cells are formed for a single time period with known and constant product mix and 

demand while in a more realistic dynamic situation, a multi-period planning horizon shall 

be considered where the product mix and demand in each period may be different. 

Consequently, the cell configuration in one period may not be optimal in another period.  
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The research problem description can be best described through a real manufacturing 

example. Consider a part supplier to the automobile industry producing various 

component parts. The company has a policy for the first half of the year to provide a large 

number of a few products for the next six months while each of those products shall be 

delivered on a bi-weekly basis. This can be a result of a contractual obligation towards a 

specific car manufacturer or the auto industry as its whole market. This implies that the 

whole demand for the products shall be broken down to baskets of small batches of 

products which would be produced within repetitive cycles. The combination of all the 

repetitive cycles would meet the aggregate demand of the 6-month period. In the next 6-

month period, the demand and the product mix would change, in a deterministic way, 

because of which we may need to reconfigure the manufacturing cells for the next 

planning horizon. Parts may have various operations on different machines and the 

operations of each part shall be processed in a pre-determined sequence, identified by 

their index numbers; thus the sequence of operations matters and shall be observed.  

The processing order of the different parts in each cell and on each machine 

recommended by the solution of the model would minimize the amount of setup time and 

cost in each cycle together with other production related costs. The setup time is 

measured at the operation-level, that is, between every pair of different component parts 

in different operations. Each changeover from one part to another requires changing a set 

of adjustments which depends on not only on the next part but also on the set of 

adjustments done for the previous part as well. The setup time between identical 
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operations of a pair of identical parts is not considered as it is zero. The setup time 

between different operations of parts is obtained from the route sheets where other critical 

manufacturing information, such as sequence of operations, corresponding processing 

times, machine types, etc., is maintained.  

Each machine has a limited capacity expressed in hours during each period. This implies 

that each machine type may have identical duplicates should it surpass its capacity limit 

in order to meet the corresponding demand. The objective is to design a cellular 

manufacturing system that simultaneously groups the machines and the component parts 

into cells so as to minimize the overall production cost including operation-level 

sequence-dependent setup time and cost, machine utilization cost, material handling 

(intercellular movement) cost and cell reconfiguration cost over the span of several time 

periods. 

In achieving the aforementioned objective, there are several constraints and limitations 

that must be noted. Machine capacities cannot be exceeded and physical limitations shall 

be observed: cells can only include a certain range of machine types below or beyond 

which the cell is not viable. Furthermore, the model requires that operation j of any part 

shall precede operation j+1 of the same part on the same machine in the same cell. 

 

Nomenclature 

i: index of the component part 



 
 
 
 

41

j: index of the operation 

p: index of the sequential position of processing the operations of component parts on a 

machine type  

k:index of machine type 

l: index of the cell 

t: index of the time period 

l cell  in allowed  machines of number  minimum  -         MINl

l cell  in allowed  machines of number  maximum  -        MAX l

t period in i part for demand  -            (t)i

k type machine on i part ofj  operation of time  processing  -            ijk

processed be can i part ofj  operation  whichon types machine of setH -  j         i,

k  type  machine of unit  one ofcapacity   -             k

k  type  machine on cost  operation unit  -              k

another to cell one from i part move to cost unit  -               i

k  type  machine removing of cost unit  -           k

k  type  machine installing of cost unit  -           k

  k type machine of unit  one acquiring  of cost  -             E :k

k type machine on  setupof cost unit  -              Ck

t period in  produced baskets part of  number  -            B(t)

k machine on i'  part  of j' operation                     
  withi part ofj  operation  replace to time   setupdependent - sequencejoint -       S kj'iji'
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 otherwise                0

(t)
t period in l cell in k type machine on                                                  

 1)(j  operation ofp' position precedes i part ofj  operation of p position if                1

 otherwise               0                                

 (t) 
 t period in l cell in  k  type  machine on                                                 

  i' part of j' operation  precedesy immediatel i part ofj  operation  if                1                                
      

  

otherwise                0                               

 (t)
t period in l cell in k type machine visits i part ofj  operation if                1

otherwise                0                                

 (t)z
t period in l cell visits i part ofj  operation if               1

t period of  beginnning the in l cell  from removed k  type  machine of No.                  (t)y

t period of  beginnning the in l cell  to added k  type  machine of No.                  (t)y

t period during l cell in k  type  machine of No.                  (t)y

 otherwise               0               

(t)
t period in l cell another in  done is i part ofj  to  nt  subsequeoperation if              1

otherwise             0                                  

 (t)x
t period in l cell in  p position in k  type  machine  visits i part ofj  operation if             1

kl 1)p'ijp(j

1)kl(pj'ijpi'

ijkl
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The objective function, Eq. (3.1), consists of four cost terms. The first term is operation-

level sequence-dependent setup cost. Individual setup costs have been assumed to be a 

linear function of the corresponding setup times as in real manufacturing the cost is 

mainly associated with the time spent by the skilled worker to changeover. The second 

term is machine utilization cost. The third term represents the intercellular/material 

handing cost. The fourth term addresses the relocation (reconfiguration) cost.  

(3.11) 

 

(3.12) 

 
(3.13) 
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Eq. (3.2) forces the auxiliary variable 1)kl(pj'ijpi'  to be positive, if and only if the 

corresponding pair of different operations appear in two consecutive positions p and p+1 

on the same machine. Eq. (3.3) enforces that the model counts a move only when part i 

exits the cell l in order to perform subsequent operation j+1. Eq. (3.4) ensures that two or 

more operations may not take place in the same position in the processing sequence of a 

given machine type in all cells. Eq. (3.5) enforces that each operation j of each part i shall 

choose only one machine type, out of the set of eligible machine types, to be processed 

on, hence no lot splitting. Eq. (3.6) prevents void positions in between the natural 

sequence of positions on each machine. Eqs. (3.7) - (3.9) observe that operation j of 

component part i shall precede operation j+1 of the same component part on the same 

machine in sequence.  

Eq. (3.10) and (3.11) relate the state of part i with respect to visiting cell l whether or not 

any operations of part i takes place on any machine in cell l. Eq. (3.12) relates the number 

of machine types in a cell to its corresponding visiting parts. Eq. (3.13) observes the 

machine type inventory balance in each period. Eq. (3.14) enforces the cell size 

limitations Eq. (3.15) respects the machine type capacity limitations. Integrality 

constraints (3.16) and (3.17) introduce the non-negative binary and general integer 

variables in the model. 

. 

Cell formation problems in general are known to be NP-complete (see for example Shtub, 

1989), therefore exact approaches such as branch and bound algorithm would not be 
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computationally efficient. In LIP models, the number of the integer variables is the 

decisive factor in time complexity and computational burden of the model. If all n integer 

variables in our LIP model were binary, the maximum number of solutions representing 

the worst case complexity of the model, would be 2n, an exponential function of the 

number of variables. To the best of our knowledge one of the most comprehensive 

mathematical programming CF model in CMS appears to be that in Defersha and Chen 

(2006) where the main theme of the paper is to introduce one comprehensive model that 

combines all the real manufacturing features previously introduced in separate models . 

Since the number of integer variables is the decisive factor in computation complexity of 

MIP models, we have counted the maximum number of integer variables in our model in 

Table 3.1 and those in Defersha and Chen (2006) in Table 3.2. As seen, the number of the 

integer variables in our model is significantly larger than those in Defersha and Chen 

(2006). This emphasizes the intense computational burden and time complexity of our 

model with respect to a comprehensive MIP model in the literature. In Tables 3.1 and 3.2, 

OP represents the sum of the number of operations of all parts.
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Table 3.1- The number of integer variables in the global model 

I)-OP1)-P PTLK                    (t)

 OP1)-PTLK                  (t) 

  OPTLK                               (t)

 OPTL                                 (t)z

TLK                                 (t)y

TLK                                 (t)y

TLK                                 (t)y

OPTL                                 (t)

            OPPTLK                              (t)x
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Table 3.2- The number of integer variables  in Defersha and Chen (2006) 

 

Our experimenting with LINGO, one of the available commercial optimization software 

packages which utilizes branch-and-bound and branch-and-cut algorithms, was not 
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encouraging as it failed to provide feasible solutions in a reasonable amount of time for 

most medium scale problem instances of the global model.  

 In order to be able to experiment with LINGO, we first consider a special case of the 

global model which would simplify the model and reduce its complexity. 

Experimentation with LINGO proved to be able to provide feasible solutions in relatively 

short amount of time. The characteristics of the simplified model are as follows: 

-The number of planning periods t = 1. This reduces the model from multi-period to 

single-period making the dynamic environment to turn static. 

-Each part on any machine has at most one operation. This makes the model a BIP one. 

The model has been further simplified by the following assumptions: 

-Infinite capacity has been assumed for the machine types: Each machine type can 

process as many parts as is allocated to. This assumption will reduce the maximum 

number of the machines of each type in each cell to unity and thus will simplify studying 

the trade-off between number of machine types and setup time and drawing conclusions. 

-The sequence of operation does not matter. This assumption simplifies the counting of 

the intercellular moves and subsequently the corresponding material handling cost. 

The formulation of the special case and simplified model is as follows: 
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  systemthe   in  k  type   machine    available        NOM

cell  a  in   allowed   machines  of   number   minimum           MIN

cell  a  in   allowed   machines  of   number   maximum          MAX

cells   between  i  part  of  unit   one  moving  of  cost              D  

  systemthe  in   k    machine  of  unit   one   having  of  cost                E

k    machine  on     setupof  cost  unit                 C

k    machine  on                   
 i'  part    withi  part   replacing  for  time  up    setdependent - ce     sequenjoint              S

1   equal   x and                    

   x  both  IFF  1,  of   value   the    assuming    variable    auxilliarybinary     A
l  cell  in  k   machine  of  No.                y

otherwise              0                

l  cell   visits  i  part  if              1          
z

otherwise              0               
x

l  cell  in   p   position  in  k   machine   visits  i  part  if              1               

k

l

l

  i

k

k

kii'

1)kl(pi'

ipkl1)kl(p ipi'

kl

 il

ipkl

  

 

Given the above variables and parameters, since the objective is to minimize the overall 

setup cost, machine depreciation cost and material handling (intercellular movement) 

cost, then it would be expressed by the following function: 

      '.. ')1(' i i  1)z.(  D yECSxx
l

il
i

i
k l

klkkkiiklji
i p k l

ijkl          (3.18)
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Since the quadratic function in (3.18) includes binary integers, it can be 

transformed to the following linear function by adding binary variable 1)kl(pipi'  and 

adding constraint (5) as follows:  

                                                           ..
l

' i i   1)z.(  D  yECS
l

il
i

i
k

klkkkii1)kl(p ipi'
i p k l

(3.19)   

                                  1)1('xx klpiipkl1)kl(pipi' (3.20)

Since we are dealing with sequence-dependent setup time, the sequence  of  changing 

over batches of  parts on a machine affects the total setup time of the cellular 

configuration. Therefore index p specifies the position of parts in a sequence on each 

machine. Constraint (3.23) ensures that in each cell, on each machine, two or more parts 

cannot take over the same position in the processing sequence of their corresponding 

machine. 

On the other hand, it is assumed that each part occupies one and only one position in the 

processing sequence of its corresponding machine in only one cell. This is restricted by 

constraint (3.24). Since the model seeks a minimum sum of setup times, it tends to break 

the link between pairs of interchanging parts and set them position-wise apart so as to 

further minimize the joint setup times. Constraint (3.25) is in place so as to ensure that we 

will not have such position voids. We should also relate machines and their 

corresponding visiting parts. Constraint (3.26) binds these two. Constraints (3.27) and 

(3.28) ensure that when a part does not visit a cell it will not be assigned to any position 

on any machine in that cell and vice versa. Finally the constraints (3.29) and (3.30) reflect 

limitations on minimum and maximum number of machine types in cells and the 

maximum number of each machine type available in the system respectively.  
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The linear integer programming model is as follows:
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Consider the following problem: Seven parts are selected to be grouped with the four 

different machine types in three different cells. Table 3.3 shows the corresponding 

machine-component matrix(MCIM). The joint changeover matrix of the above mentioned 

case is shown in Table 3.4 Table 3.5 indicates the number of units of machine types 

available in the system. It should be mentioned that for simplicity and without lack of 

generality the unit cost per setup time, Ck  and the cost of machine, Ek  have both 

assumed to be unity. This is just to minimize the effect of external factors such as $ 

values in this example, since our interest in this basic study is to behold the pure trade-off 

results. Furthermore, the part flow feature of the model has been neutralized in the first 

(3.21) 

(3.22) 

(3.23) 

(3.24) 

(3.25) 

(3.26) 

(3.27) 

(3.28) 

(3.29) 

(3.30) 

(3.31) 
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stage of the experimentation, but included later. This implies that the last cost term in Eq. 

(3.21) has been initially excluded while a new constraint  

 
p

lipk'
p

ipkl x  x                               (3.32)

has been included in the formulation in order to prevent the part flow. Therefore the 

results show setup time of the system vs. numbers of machines required. This case is 

solved by LINGO 8 programming (LINDO Systems Incorporation). The experimentation 

by LINGO reveals that branch and bound and or branch and cut algorithms may not 

optimally solve even small problem instances of the simplified model in a reasonably 

short period of time. However, feasible solutions with upper and lower bound would be 

provided after a reasonably short period of time. On the other hand, when dealing with 

problem instances of the same size for the global model, commercial optimization 

software packages such as LINGO may not sometimes provide feasible solutions in a 

reasonably short amount of time. Naturally the primary step towards solving the global 

model was to examine the model in order to learn its characteristics through 

experimenting with commercial software. The result for this case is shown in Table 3.6. 

In Table 3.6 parts and machines are grouped in cells and the position (processing order) 

of parts on machines, from left to right, in each cell is such that the overall setup time of 

the entire cellular configuration/production subsystem is minimized. 

 

 

 

 
1 2 3 4 5 6 7

M1 1 1 1 1 1 1 0
M2 1 1 1 0 0 1 1
M3 0 1 1 0 1 0 0
M4 0 0 1 1 1 1 1

Table 3.3-Machine-part Incidence matrix
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Table 3.5- No. of machines available 

 

Table 3.4- Joint changeover matrix of the numerical example 
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To see the effect of machine restriction on the setup time for a 3-cell configuration, 

different scenarios have been considered as shown in Table 3.7. Figure 3.1 shows the 

impact of machine restriction on increasing the system setup time. In Table 3.7, overall 

setup time in the system decreases as the number of machines available in the 3-cell 

configuration increases. This is due to the fact that adding more machines to the pool of 

available machines increases the degree of freedom of the system in the search of lower 

setup time solutions. Thus, given a certain number of cells, the objective value for 

machine restriction-free scenario (in this case 12 machines) shall provide us with the 

lower bound for that cell configuration.  

 

A series of situations ranging from 1 to 5 cell configurations have been solved for the 

model (Table 3.8). For this series of cell configurations, no preliminary machine 

Table 3.6- Three-cell configuration with minimum 
overall sequence-dependent setup time under 
machine restriction 

Table 3.7- Setup time under machine restriction for a 3-cellconfiguration  
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restriction has been imposed on the system, i.e. constraint (3.30) has been relaxed. This 

allows the model to obtain machine restriction-free results for a free trade-off between the 

number of machines and setup time in different scenarios or cell configurations. As is 

shown in Figure 3.2, as the number of cells increase, the setup time decreases while the 

number of machines required increases.  

 

 

 

 

 

 

Figure 3.1-The impact of machine restriction on setup time in 3-cell 

Table 3.8 - Trade-off between No. of machines, setup time in different scenarios 
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To show the behavior of the three factors together, we have considered the complete 

model which includes the intercellular transfers. Table 3.9 represents the above example 

when solved for the case with intercellular movement. The result of which is shown in 

Figure 3.3.  As expected the objective values in case with part flow are lower than that of 

the case with no part flow, since the model has the option to take advantage of the 

intercellular movement, should it help minimize the overall cost.  

Figure 3.2- Setup time vs. machine trade-off for different cell configurations 
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Table 3.9 -Trade-off between setup time, No .of machines and No. of movements  



 
 
 
 

57

 

In this chapter, an integer programming model was presented that includes sequence-

dependent setup time and cost as part of the overall production cost in manufacturing 

cells over multiple planning horizons in a dynamic environment. The developed model is 

flexible in the following senses: considering a sequence-dependent setup time does not 

restrict the application of the model to a limited number of situations where the setup 

times are sequence-dependent. On the contrary it just ensures that the model can handle 

situations where some or all setup times are sequence-dependent. In situations where 

sequence-independent times are available, S kii' = S iki'  and simply the same time would 

be recorded in the joint changeover input matrix when the incoming and outgoing 

operations switch places. Additive setup times would also easily fit in the input matrix of 

Figure 3.3- Setup time vs. No. of machines and No. of moves for different cells 
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the model since they are another version of sequence independent setup time. This makes 

the presented model a general one and the most inclusive when setup times are deemed 

significant. Another feature of the model is the ability of optimal multi-period production 

planning in a dynamic environment when the product mix would change from one 

planning horizon to another.  

In order to be able to freely study the basic characteristics of the model we further 

considered a special case assumptions of which would simplify the global model. The 

simplified version was experimented with LINGO optimization software and preliminary 

conclusions were drawn. These conclusions provides insight on the characteristics of the 

simplified model, which in turn helps with developing a pilot GA-based heuristic to solve 

the simplified version before the global model is tackled. The above conclusions will be 

helpful especially in generating initial feasible solutions in the GA-based heuristic. 
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CHAPTER 4 

The cell formation problem has been shown to be NP-complete by several researchers. 

One such example could be found in Shtub (1989) where the CF problem was modeled as 

a generalized assignment problem. This suggests that enumerative algorithms such as 

branch and bound (B&B) would not be computationally efficient in solving these 

problems. In a BIP model as in the special case introduced in Chapter 3, exponential 

number of iterations, 2n , would be required in the worst case. As was discussed in 

Chapter 3, the intensity of the computational burden of the global model resulted in the 

inability of the optimization software to provide optimal or in some cases even a feasible 

solution for medium sized problem instances of the global model. Therefore it was 

decided that primarily a special case of the model that would lead to a dimensionality 

collapse in the global model and would alleviate the computational burden be considered 

for the purpose of ease of the driving on the solution approach. The simplified version of 

the model represented by the special case would still be NP-hard, however, it would bring 

about a dimensionality collapse in the global model which makes it less complex in 

comparison to the global model. 

Due to the NP-hard nature of the problem, approximate methods shall be considered if a 

reasonably short amount of computation time is in quest.  A variety of researchers have 

applied GA to CF in CMS (see for example Wua et al., 2007; De Lit et al. 2000, Mahdavi 
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and Mahadevan, 2008, Wub et al. 2007, Defersha and Chen, 2008, Goncalves and 

Resende, 2002, Safaei and Tavakkoli-Moghaddam, 2009, Tavakkoli-Moghaddam et al., 

2005). Murugan, and Selladurai (2005) applied genetic algorithm to a cell formation 

problem that would reduce the setup time, however they used group efficacy criteria 

approach rather than mathematical programming and the setup time, while not being 

sequence-dependent, were measured on two different machines as opposed to a common 

machine. Gosh et al. (2011) conducted a state-of-the- art generic review of application of 

various meta-heuristics in cellular manufacturing. Ahmed and Tavakkoli-Moghaddam 

(2004) compared various heuristic methods including GA in solving cellular 

manufacturing problems in dynamic environment. In this thesis, based on the fact that 

GA has a good record of successful application in the literature in application to CF 

problems, genetic algorithm has been chosen as the platform for developing a tailor-made 

heuristic as part of the solution approach. Due to the novelty of the model itself to the 

best of our knowledge, the GA application to the model would also be novel. 

 

Genetic algorithm (GA) was first developed in 1970s by Holland (1975) and has gained 

ever increasing attention and application in solving many combinatorial optimization 

problems. A number of works are also published indicating the development and use of 

genetic algorithm for various problems in different disciplines. Goldberg (1989) provided 

a good introduction on the fundamentals of genetic algorithms and Gen and Cheng (1996) 

elaborate on the use of genetic algorithm in engineering design problems (Defersha and 

Chen, 2008). 
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Genetic algorithms are intelligent search algorithms inspired by the mechanics of natural 

selection and natural genetics. They combine survival of the fittest among string 

structures, namely chromosomes, with a structured yet randomized information exchange 

to form a search algorithm with some of the innovative flair of human search. In every 

generation, a new set of artificial creatures (strings) is created using bits and pieces of the 

fittest of the old, namely genes. While randomized, genetic algorithms are no simple 

random walk. They efficiently use historical information to speculate on new search 

points with expected improved performance (Goldberg, 1989). GA may be considered as 

a controlled evolutionary stochastic search which follows the principles of natural 

selection and genetics. Genetic algorithms start from an initial solution which is either 

available or may be made up, presumably randomly, then start evolving the initial 

solution to a series of solutions which are consistently fitter with respect to a certain 

measure, thence the term evolutionary algorithms (EA). The general evolutionary 

procedure is shown in Figure 4.1.  
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Each string, namely chromosome, contains various information, namely genes. As an 

example in a linear binary integer programming optimization problem, the genes which 

carry the information consists of 0-1 integers and each chromosome (string) represents a 

solution vector in the n dimensional solution space. During the selection phase, the fitter 

strings - those solutions which better serve the objective function- shall have more chance 

of being selected for recombination. As shown in figure 4.1, string 2 has been selected 

twice most likely due to its being a better fit than strings 2 or 4.   

 

 

 

Fig. 4.1-Graphical representation of evolutionary process in GA 
(www.scribd.com,) 
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The selected strings form the mating pool, where they recombine to generate a population 

of offsprings representing the next generation. Usually this recombination occurs in the 

form of crossover between a pair of chromosomes. Various forms of crossover may be 

considered the simplest of which would be the single point crossover. As depicted in 

Figure 4.2, in a single point crossover, once the crossover point is determined randomly 

for each pair, the genes to the right of each chromosome are swapped with that of the 

mate. 

 As was discussed in the introductory of stage of this Chapter, using a GA platform, first 

a heuristic for the simplified version of the global model will be developed in order to 

Fig. 4.2-Mechanics of a single point crossover  
(www.cs.kent.ac.uk/people/staff/aaf/) 
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assess the complexity of the problem and gain insight in tackling the solution of the 

global model thereafter. Chromosomal encoding is the first step in developing any 

heuristic in a GA platform. The chromosomal structure of the improvised GA-based 

heuristic for the simplified version of the global model is depicted in Figure 4.3. As 

shown, in this specific encoding, machine, encompasses the cell as opposed to the 

physical reality. This specific structure has been tailored in order to facilitate the handling 

of the constraints during the recombination process. The interpretation of the Figure 4.3 

would be as follows: 

 

 Machine 1 Machine 2

Cell 1 Cell 2 Cell 3 Cell 1 Cell 2 Cell 3

Y12 X1112 X1212 X1312

 

 

The 0-1 decision variable, ykl , indicates whether cell l is contained by machine k or as 

in terms of physical reality whether machine type k is in cell l . When cell l is contained 

within machine k, then the binary decision variable, xipkl , indicates whether part i would 

Fig 4.3-Chromosomal encoding for the simplified GA-based heuristic 
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lie in that contained cell in position p. The aforementioned decision variables are read 

directly from the chromosomes. Other variables such as zil are indirectly decoded.

The initial population is being generated as follows briefly: Starting from machine type 1, 

part number 1 is tried for the chance to appear at position 1 in cell 1 on machine 1; then 

part number 2 would be tried for that position and so on. Then for the second position, the 

unallocated parts will be tried again. The assignment of the parts is a process without 

replacement in order to observe the corresponding constraints in the model. This process 

continues until all eligible parts are assigned to the cells on their corresponding machines. 

MCIM is the main tool for constraint handling at this phase. 

Genetic algorithm is a bi-faceted meta-heuristic which relies on a combination of 

stochastic search and evolutionary process. Neither of the above two properties can be 

compromised without adversely affecting the quality of the search. This means that 

forcing deterministic decision variable values could drastically downgrade the GA-based 

heuristic. However maintaining the feasibility of the evolved solution population in each 

generation requires that the constraints of the problem are fully observed. This in turn 

necessitates the use of some repair procedures or repair heuristics that would retain the 

feasibility of the solution when the random numbers cause some constraints to be 

violated. However the extent and the nature of the repair heuristics can adversely affect 

the quality of the intelligent search process in the GA–based heuristic. Due to this, in the 

current GA-based heuristic it has been tried to minimize the extent of the repair 
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procedures. One such example would be consideration of a suitable proper chromosomal 

encoding, that is machine encompassing the cell as opposed to the physical reality,  

which drastically reduces the extent of the repair needed after recombination. Also proper  

genetic operators have been developed to cut the chromosomes at points where minimal 

distortion is caused to the feasibility of the chromosome.

Genetic operators play the main role in evolutionary process of the chromosomal 

population by generating promising solutions. The genetic operators designed for the 

GA- based heuristic are explained as follows. 

The selection process is done through a biased roulette wheel. For the current research 

problem, in order to accommodate a fair selection mechanism that properly would serve 

the purpose, a frequency is defined for each chromosome. This frequency would be the 

percentage of the fitness of the chromosome with respect to the total fitness of all 

chromosomes using Eq.(4.1) where fi is the  reciprocal frequency, and Fi is the Fitness of 

chromosome i, here the objective function value, respectively. 

                                                          F

F

f
i

i
i

i      (4.1) 

The reciprocal frequencies are then normalized to integers Nfi  and the pseudo random 

numbers generated by the C++ random function within the range of minimum and 
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maximum of the cumulative frequencies, 
i

if,0 , would select the parent in each 

generation, with replacement, based in which cumulative frequency bandwidth it would 

fit. When the frequency values of the chromosomes are added up in the order of the 

chromosome numbers, the frequency bandwidth represents the position of the frequency 

value of each chromosome in the cumulative frequencies as shown in Figure 4.4. Since 

the frequency bandwidths are proportional to the fitness of different chromosomes, those 

with higher frequency will have a larger bandwidth, thence a higher chance to be hit by 

the pseudo randomly generated numbers providing the necessary discriminatory selection 

of the chromosomes inspired by the principle of natural selection. In Figure 4.4, the 

frequency of  chromosome 5 has been 3, starting from point 18, which is the cumulative 

frequency of all chromosome before chromosome 5. if the randomly generated number is 

any integer )21,18[ , then chromosome number 5 will be selected. 

   

   

Crossover operators generate offspring of the next generation by recombining the 

selected parents through swapping genes between pairs in the mating pool. Two types of 

crossover operators have been considered for the simplified model: machine-level and 

part-level. 

Cumulative frequency         5  6  7  8  9  10  11  12  13  14  15  16  17  18  19  20  21  22  23  24  25         

Fig. 4.4 – Selecting process discriminated by the frequency bandwidths 

Bandwidth 
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Machine –level crossover: For this operator a single-point crossover has been considered. 

First a machine type number is randomly selected as the single crossover point. Then 

between a pair of selected parental chromosomes in the mating pool, all the content of the 

two chromosomes at the machine level of chromosomal structure will be swapped from 

the selected machine to the right. 

The advantage of the above machine–level crossover is that the feasibility of the 

chromosomal solution will not be compromised or disrupted therefore constraint handling 

controls will not be required. The drawback however is that machine-level crossover is a 

high-level crossover which does not interchange the information of the chromosomes at 

low levels. 

Part-level operator: The part-level operator randomly selects a part in the pair of selected 

parental chromosomes and interchanges all the information relating to this part, including 

the cell and the position on the machine between the two selected parental chromosomes. 

This operator requires constraint handling controls to maintain and or regain the 

feasibility of the chromosomal solution during or after the operator functions. 

 In order to introduce a new gene to the chromosomal population, mutation operator need 

to be developed since it is the only source that can diversify the exploration thus 

preventing the solution procedure from premature convergence to a local optima. If we 

consider the search process as a golf ball, mutation acts as hitting the running ball to 

move the ball past the local optima toward the global optimum. However if the impulse is 

too forceful, it may overshoot the search ball past the global optimum too. For this 

reason, mutation operators shall be used with caution which implies a low probability rate 
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of application in the search process shall be used. For this purpose, the developed 

mutation operator is applied only to a small percentage of the offspring so as to avoid 

overshooting of the search area while preventing premature local optimization either.  

The mutation operator in the GA-based heuristic for the simplified version of the global 

model randomly picks a machine type and randomly alters the information regarding the 

parts in the cells and their positions on the selected machines by randomly regenerating 

the information. This mutation takes place with very small likelihood and affects only 

one of the two mating parental chromosomes that have been drawn for mutation.  

After a certain number of consequent generations, where no improvement is made in the 

best objective value (fitness), we may assume that the population is in the neighbourhood 

of a promising area. In order to focus and reduce the diversity, certain number of 

chromosomes of the current generation will be replaced by some of the best individuals 

found so far. 

The simplified model GA-based heuristic is featuring a full rejuvenation procedure where 

after every gmax generations, the population of the last generation will be replaced with a 

newly generated population and resumes the algorithm R rounds, parameter R being the 

number of the full rejuvenations considered before termination of the search.

In order to test the functionality and evaluate the computational performance of the GA 

based heuristic, 6 problem sizes each with 6 data sets were considered which results in 36 

test problem instances. The 6 problem sizes were chosen to include 6,7,8,9,10,12 and 15 
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parts. The sizes were adopted based on experience, such that they could be handled by 

LINGO in order to make the comparison possible. For each problem size, six different 

types of input data were used. Input data consist mainly of MCIM and corresponding 

setup times which were generated by pseudo random function in C++ programming 

language to maintain a random and unbiased distribution of the input data for the problem 

instances.  

Other parameters are common among all problem sizes: parts are selected to be grouped 

with four different machine types in three different cells so as to minimize the overall 

cost of setup, machine and intercellular movement. Besides, while the cell upper bound 

and lower bound on the number of machines are 4 and 1 respectively, constraint 12 has 

been relaxed. These problem instances were run on LINGO 9 (LINDO Systems 

Incorporation) on a 2 MHZ PC. The setup times were generated pseudo randomly within 

the range of 10 and 40 minutes while the MCIM is formed by randomly picked binary 

variables. As for the GA based heuristic for simplified model, the termination criteria 

were set at 120 generations after which the program would terminate the computation. 

The best objective values from the GA were picked after 10 rounds of full rejuvenation of 

the program and the computation time was measured against the generation in which the 

best objective was achieved for the first time during the run. Table 4.1 shows the results 

from GA based heuristic in comparison with LINGO. 
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Best obj Time Best obj Time Best obj Time Best obj Time
7 parts sec hrs 10 parts sec hrs

50 0.250 50 1 124 0.219 140 1
22 0.250 22 * 83 0.218 92 1
11 0.234 10 * 122 0.203 120 1
22 0.250 21 * 166 0.219 189 1
60 0.156 63 1 96 0.219 111 1
32 0.250 32 1 117 0.218 129 1

8 parts 1 12 parts 1
63 0.782 63 1 214 0.203 236 1
118 0.500 175 1 112 0.297 123 1
76 0.469 76 1 122 0.297 133 1
46 0.500 44 1 156 0.281 152 1
55 0.515 55 1 256 0.281 256 1
75 0.781 74 1 142 0.328 159 1

9 parts 1 15 parts 1
95 0.127 107 1 347 0.764 ** 1
84 0.172 105 1 237 0.503 216 1
97 0.172 116 1 366 0.331 ** 1
108 0.187 114 1 344 0.489 379 1
80 0.172 86 1 298 0.564 336 1
125 0.141 150 1 307 0.437 393 1

GA LINGO GA LINGO

*Optimal solution was found by LINGO       
**LINGO did not provide a feasible solution within 1 hour of computation time  
 
  
The results from the GA based heuristic tailored for the current model deem reasonably 

good delivered in a short period of time as compared with those from LINGO within 1 

hour of computation. On average, over 80% of the time, the GA-base heuristic has either 

outperformed or equalled the best objective values provided by LINGO within 1 hour of 

computation time. The fact that the heuristic has delivered results in a very short amount 

of computation time provides a practical tool to solve different problem instances of the 

presented model. However improvement is needed when developing the GA-based 

heuristic for the global model. 

Table 4.1-Results for GA-based heuristic and LINGO for 36 problem instances in 6 sizes 
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The chromosomal structure of the improvised GA-based algorithm is depicted in Figure 

4.5. Again in this encoding, machine, encompasses the cell as opposed to the physical 

reality. This specific structure has been tailored in order to facilitate the handling of the 

constraints during the recombination process as was explained in 4.1.2. The interpretation 

of Figure 4.5 in physical reality would be as follows: when Machine 1 lies in cell 1 in 

period 1, the binary decision variable, x31 , indicates that operation 1 of part 3 lies in that 

contained cell in position p1 Also decision variable y11, indicates the number of machine 

type 1 in cell 1. 

           

Machine 1 Machine 2 Machine 3 Machine 1 Machine 2 Machine 3

C3
P1 P2

X31 X22 X32 X23 X33

Period 1 Period 2

X41
P1 P2 P3 P1

Y11

C2

Y12 Y13

C1

 

           

  

Fig. 4.5- Chromosomal encoding of the GA-based 
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The initial solution generator in the global GA-based heuristic is fundamentally different 

from that of the simplified model GA-based heuristic. The shortcoming of the simplified 

model GA-based heuristic was found to be the following: While once a part was not 

nominated for a position on a machine in the first cell, the second part was tried and so 

on. When the first position was eventually occupied by a part, the second position was 

tried for all the other parts regardless of whether they had failed their chance for the first 

position. This procedure found to give more chance to the initial cell to contain more 

parts than other cells, consistently leaving other cells with fewer parts or even empty. 

This would lead to a biased allocation of parts to the cells which in turn would deny the 

homogenous distribution of the parts in the cells.  

In the initial population generation function of the global model heuristic, this deficiency 

was remedied as follows: first, it is determined randomly whether a certain machine will 

go to a certain cell. Once that takes place, it will then be determined, randomly, whether a 

certain part and its corresponding operation will be processed in a certain position 

(sequence) on that machine in that cell. The process continues until all parts and their 

corresponding operations are assigned to their corresponding machines in the cells. This 

change in the initial solution generator had quite an impact in diversified solution 

generating that would better explore the solution space of the problem, thus providing 

better chance for more accurate results to generate. The process is continuously 

monitored by MCIM and controlled by relevant constraints feasible initial solutions but 

no repair is required at this phase. 
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Constraint handling in the global model GA-based heuristic is much more complex due to 

the drastic increase in the number of the constraints as well as the number of the indices 

in the global model. These controls will either maintain the feasibility or regain it, as 

applicable, based on the type of the genetic operator affecting the genome of the 

chromosomes. Whenever a genetic operator requires constraint handling mechanism, it 

will be mentioned therein. 

The selection process is done through a biased roulette wheel and in the same way that 

was explained for the simplified model GA-based heuristic. 

 In the global GA-based heuristic, four crossover operators have been designed: period-

level, machine-level, part-level and operation-level crossover operators.  

Period swap operator: The period-swap operator works only when a multi-period 

solution is sought. It randomly picks a period and then interchanges that period portion of 

the chromosomes of a selected pair of parents.  

Machine swap operator  The machine-swap operator randomly selects a machine type 

and interchanges all the cell genes and its corresponding sub genes between the selected 

pair of machines. 

 Part-swap operator: The part-swap operator randomly picks a part and exchanges the 

corresponding information of that part between the two selected parents. 
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Operation-swap operator: Finally the operation-swap operator randomly selects an 

operation of a selected part and interchanges the operation information including the cell 

and position between the selected parental chromosome pair. This operator performs at 

the lowest level and thus plays a critical role in diversifying the search process. 

Part-swap and operation swap are the most challenging genetic operators in terms of 

constraint handling. These operators completely violate quite a few constraints as the 

order of the information observing the constraints will be disrupted. The swap requires 

that parts and their corresponding operations change their cell to find a position in the 

swapping cell. However entering a new cell, the swapped operation may face many 

challenges. One such challenge would be that the sought after position does not exist in 

the host cell. Another one is that the swapped operation shall assume a position that does 

not violate Eq. (3.7)-(3.9). 

For the global model GA-based heuristic, the developed mutation operator is different 

from the one used in the simplified model heuristic. The designed operator alters the 

position of the randomly selected operation of selected parts by stepping up or down the 

position number of the operation by unity. This will lead to interchanging the position 

number of the selected operation with that of a neighbouring operation on the 

corresponding machine in the cell. It should be first checked whether at least one 

neighbour exists, or the operation is a solo one in that cell on the corresponding machine. 

If so, the mutation will not apply to that particular operation. In case the operation has 

both neighbours on its left and right, then one of them will be randomly picked. It is 

important to maintain the randomness of the heuristic as much as possible and not 
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determine the neighbour by a pre-planned procedure. Constraint handling controls have 

been considered to guarantee that the feasibility of the solution chromosome involved 

will be maintained after the mutation. 

Unlike the simplified model heuristic, the global GA-based heuristic is featuring two 

rejuvenation procedures. The two types of rejuvenation consist of partial rejuvenation and 

full rejuvenation. As for partial rejuvenation, after any  successive generation without 

incumbent fitness value being improved, m best chromosome of each of the past n most 

recent generations will replace m.n individuals of the current generation and mix up with 

the rest of the current population so that: nm . where  is the population size and m 

and n are the parameters of the devised GA-based algorithm. This procedure boosts up 

genome and centers the search around a promising solution by refreshing the stalled 

population thence rejuvenation. Also after gmax generations, a full rejuvenation will occur 

which replaces all the population of the last generation with a new population and 

resumes the algorithm, parameter R being the number of the full rejuvenations. Figure 4.6 

depicts the flow chart of the main steps in the global model GA-based heuristic. 
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Figure  4.6 -Main steps in the current GA-based heuristic 
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Consider a part supplier to the automobile industry, producing various automobile 

components. The company has to produce large quantities of a few selected products for 

the next six months where each of those products will be delivered on a bi-weekly basis. 

This can be the result of a contractual obligation towards a specific car manufacturer or 

the auto industry as its whole market. This implies that the whole demand for the 

products will be broken down to baskets of batches of products, as shown in Figure 4.7, 

which would be produced within repetitive cycles. The fixed number of the baskets to be 

produced in each planning horizon is determined by the delivery policy and market 

requirement. For example in a six month planning horizon a bi-weekly delivery of parts 

could imply twelve baskets, given the working calendar. The number  of units of each 

part type in the basket represent the batch size of that part. The relation between the 

number of the product baskets produced in period t, B(t ), and the batch size, h(i), are 

denoted in Eq. (4.2)  and Eq. (4.3).  

B(t )=T/w                                      (4.2) 

B(t) d (i,t)/ h(i) =                 (4.3) 

where T is the length of period t, w is the production cycle or equivalently the production 

lead time based on delivery terms and d(i,t) represent the demand of part i in period t 

respectively.  

The combination of all the repetitive cycles would meet the aggregate demand of 6 month 

planning horizon. In the next 6 months, following the first 6-month period, the demand 

and the product mix may change, because of which we may need to reconfigure the 
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manufacturing cells for the next planning horizon. The processing order recommended by 

the solution of the model would minimize the planned production cost including the 

amount of setup time and cost in each cycle. Twenty-five parts and a maximum of  9 

operations for each part are to be simultaneously grouped with six different machine 

types in three manufacturing cells assigned. All constraints and features of the research 

problem apply to this numerical example. We are seeking the solution of this problem for 

two 6-month periods. Table 4.2 includes the data relating to the parts. Tables A.4.1, 

A.4.2.1-.4 and A.4.3 (Appendix) show the MCIM, setup times and processing times for 

the operations of these parts. The processing times and the setup times, have been pseudo 

randomly generated within the range of 1 to 6 and 10 to 40 minutes respectively. Parts 

have different number of operations on different machines based on the MCIM. In table 

A.4.1, the data regarding MCIM the digits separated by comma form a triplet, each of 

which indicate the machine number, the part number and the operation number 

respectively. For example the first triplet in Table A.4.1, i.e. 1,1,1 implies that on 

machine 1, part 1 has its operation 1 to be processed and so on. In Table A.4.3, however, 

the digits separated by comma, form a quadruplet, each of which indicate the machine 

number, the part number, the operation number and processing time in minutes, 

respectively. Note that in this table, the ordinal numbers of machine types, part types and 

their corresponding operation exceptionally start from 0 rather than 1. Table A.4.2.1- 4, 

show the sequence-dependent setup times between various operations of the parts. This 

table has to be interpreted with respect to MCIM, Table A.4.1.The first triplet on machine 

1 in MCIM (Table A.4.1) will have a changeover time with all other triplets on the same 

machine i.e. with the second one, third one, etc. Then the second triplet on that machine, 
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will have changeover times with the first one, the third one, etc. and so on. Therefore 

number of the possible changeover times for machine 1, would be q(q-1), q being the 

total number of the triplets (operations) on machine 1. 

 Since the parts are being moved around in batches rather than units, intercellular moving 

cost for each unit has been calculated by dividing the cost estimates of handling a batch 

of the part in each cycle by the number of the parts in each batch. 

Table 4.3 indicates the parameters relating to the machine types. Machine capacities are 

in terms of hours of availability in each period. Duplicates of machine types may be 

needed in a cell if the capacity of one unit is not enough to fulfill the planned obligations. 

It has been assumed that the removal of a machine would cost virtually the same amount 

as re-installing it in a cell. Machine cost represents the utilization (depreciation) cost of 

the machine for one period.  

 

 

 

 

 
 
 

Fig. 4.7 -Product basket 
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Table 4.2-Part data 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4.3-Machine data 
Machin   Capacity Utilization cost Reconfiguration Setup
type    (hrs/period   ($ per period)  cost ($)   cost($) 

1 1200 1250 75 40 

2       1200 1180 100 35 

3 1200 1000 140 38 

4 1350 1120 90 35 

5 1250 1720 80 28 

6   1200  1980  120   34 

 

Part   Demand during period t Intercell 
    t=1 t=2 cost

1 1200 0 0.5
2 1000 0 0.5
3 0 1480 0.5
4 0 1800 1
5 3200 2800 0.5
6 1500 0 1
7 1680 0 0.5
8 2200 0 1.5
9 0 1780 1
10 980 0 0.5
11 0 900 0.5
12 740 1350 0.5
13 1800 1400 0.5
14 860 0 1
15 0 2500 1
16 0 960 0.5
17 0 1000 1.5
18 0 1700 1.5
19 1200 2000 1
20 1520 1800 0.5
21 2200 0 0.5
22 0 0 0.5
23 0 0 0.5
24 0 1890 1
25   0 1400 1.5
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Table 4.4- The overall cost of the two period solution and its corresponding cost terms 
Objective 
value ($)   

Reconfiguratio
n. cost($)   

Machine 
cost($)   

Setup 
cost($)   

Intercell 
cost($) 

65460.7   1235   32270   20010.7   11945 

 

 

Table 4.4 shows the amount of overall production cost of an obtained solution by the GA-

based heuristic and its components. Table 4.5 and 4.6 provide the assignments of the 

operations of each part to cells on their corresponding machines. These tables indicate the 

recommended machine-cell configuration and part-operation families in each cell in each 

period. 

 The number of the duplicates of each machine type in each cell have been indicated 

under “Qty” column. The triplet inside each parenthesis indicates the part number, the 

operation number and its processing order (position) on its corresponding machine in the 

assigned cell. Note that the numbering of the positions only start from 0 rather than 1. For 

example in Table 4.5, in cell number 3 (C3), only one unit of machine type number 3 

(M3), is required, which processes operations number six of part 13, three of part 5, seven 

of part 13, three of part 1 and eight of part 5 in the above order while observing the 

constraints of the global model. In the same period in cell number 2, however, we have 

one unit of machine types 2 and 4 each, processing operation one of part 12 and operation 

two of part 2 respectively. 
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Table 4.5- Part-cell assignment for period 1 
Cell (Part, Operation, Position)

Type Qty

C1 M1 0
M2 0
M3 1 (12,2,0)
M4 1 (19,3,0) (7,1,1)
M5 1 (2,5,0)
M6 0

C2 M1 0
M2 1 (12,1,0)
M3 0
M4 1 (2,2,0)
M5 0
M6 0

C3 M1 2 (10,2,0) (2,3,1) (1,1,2) (2,4,3) (5,2,4) (1,2,5) (13,1,6) (1,4,7) (14,2,8) (2,6,9)
(13,4,10) (14,3,11) (14,4,12) (14,5,13) (14,6,14) (2,7,15) (13,5,16) (1,5,17) (7,3,18) (2,8,19)

M2 1 (19,1,0) (13,2,1) (5,1,2) (5,5,3) (19,2,4) (2,1,5) (6,1,6) (14,1,7) (5,7,8) (7,2,9)
M3 1 (13,6,0) (5,3,1) (13,7,2) (1,3,3) (5,8,4)
M4 1 (5,4,0)
M5 1 (5,6,0)
M6 1 (10,1,0) (13,3,1)

Machine
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Table 4.6- Part-cell assignment for period 2 
Cell (Part, Operation, Position)

Type Qty

C1 M1 3 (25,1,0) (16,1,1) (13,1,2) (11,1,3) (13,4,4) (17,1,5) (17,2,6) (4,1,7) (15,4,8) (9,2,9) (18,2,10)
(15,6,11) (18,4,12) (9,6,13) (25,2,14) (25,3,15) (18,5,16) (5,2,17) (9,7,18) (4,2,19) (3,2,20) (4,3,21)
(13,5,22) (16,2,23) (3,5,24) (3,6,25) (18,6,26) (17,3,27) (3,7,28) (17,4,29) (25,4,30) (18,8,31) (11,8,32)

M2 2 (9,3,0) (15,2,1) (12,1,2) (18,1,3) (9,4,4) (5,1,5) (16,5,6) (17,5,7) (9,5,8) (5,5,9) (18,7,10)
(19,1,11) (13,2,12) (11,3,13) (19,2,14) (17,6,15) (15,3,16) (5,7,17)

M3 1 (11,2,0) (11,4,1) (4,4,2) (15,1,3) (13,6,4) (5,3,5) (11,6,6) (11,7,7) (5,8,8) (13,7,9) (15,7,10)
(3,1,11) (3,3,12)

M4 1 (5,4,0) (19,3,1) (3,4,2) (17,7,3) (9,1,4)
M5 1 (5,6,0)
M6 1 (16,4,0) (13,3,1) (18,3,2)

C2 M1 0
M2 0
M3 0
M4 0
M5 1 (15,5,0)
M6 0

C3 M1 0
M2 0
M3 1 (12,2,0)
M4 0
M5 0
M6 1 (16,3,0) (11,5,1)

Machine

 

In order to test the functionality and evaluate the computational performance of the GA 

based heuristic, different problem sizes were chosen to include 3, 4, 5, 6, 7, 8 parts with 3 

and 4 and 5 operations, the total number of the problem instances being 90. Since the 

only two varying factors in our test problems are the number of parts and number of the 

corresponding operations and since a combination of the two would affect the 

computation effort, we have considered a size index as follows: Size index= No. of parts 

 No of operations. 
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We therefore categorized test problems as 9 categories in terms of their size indices 

namely 9, 12, 15, 16, 18, 20, 21, 24 and 25 as shown in Figure 1.Test problems with 

higher size indices proved to be too complex for LINGO to provide a feasible solution in 

reasonable amount of time and therefore had to be excluded from experimentation. Input 

data consisting MCIM and corresponding setup times which were generated by pseudo 

random function in C++ programming language to maintain a random and unbiased 

distribution of the input data for the problem instances. Table A.4.4 and A.4.5 

(Appendix), show a sample of the input data for MCIM and sequence-dependent setup 

times for one of the test problems. For the sake of simplicity and without loss of 

generality, cost coefficients and all other parameters are all set to unity. Moreover, the 

cell upper bound and lower bound on the number of machines i.e. constraint (16) has 

been relaxed. In all test problems, parts are selected to be grouped with three machine 

types in three cells to minimize the overall cost of setup, machine utilization and 

intercellular movement. These problem instances were run on LINGO 9 (LINDO 

Systems Incorporation) on a 2 MHZ PC. The setup times were generated pseudo 

randomly within the range of 10 and 40 minutes while the MCIM is formed by randomly 

picked binary variables. As for the GA based heuristic, the termination criteria was set at 

a total of 12000 generations. The best objective values from the GA were picked after 

forty consecutive rounds of full rejuvenation of the program and the computation time 

was measured against the generation in which the best objective was achieved for the first 

time since the start. Tables A4.6.1, A4.6.2 and A4.6.3 (Appendix) show the results from 

GA based heuristic in comparison with LINGO. The average relative gap shown in Table 

4.6 as Ave. Gap has been calculated as follows: 
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Ave. Gap = [(GA Value – LINGO Value)/LINGO Value]/ number of datasets 

In all instances where an optimal solution was found by LINGO within an hour or more 

of computation time, GA-based heuristic also hit the optimum in a short amount of time, 

thence relative gap being zero. In over 95% of instances where feasible solution was 

found by LINGO within an hour of computation time, the GA-based heuristic has 

equalled or outperformed LINGO. The average relative gap, however, has always been in 

favour of the GA-based heuristic as it is either zero or negative. Wherever LINGO could 

not provide a feasible solution even within an hour of computation time, the 

corresponding GA value has also been excluded from the calculation of average gap.  

Figure 4.8 depicts the average computation time of each test problem via GA-based 

heuristic, versus the size index of the test problems. As shown, there is a sudden jump in 

the average computation time from size index 9 to 12. This is due to the fact that size 

index 9 represents 3 parts and 3 operations which together with 3 machines and 3 cells, 

provides fast finding of the optimum solutions. The optimum value of the objective 

function in this unique size index is also much lower than the neighbouring size indices 

since for example trivial solutions could happen when each operation of each part is 

assigned to one machine in each cell, which in turn eliminates the setup time effect and 

reduces the objective value drastically. The rest of the data points indicate an upward 

trend with slight fluctuations stemming from the sets and the inherent randomness 

associated with genetic algorithm as well as with the randomly generated data sets. 
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In Figure 4.9, the objective values of all data sets for all size indices from GA-based 

heuristic and LINGO have been plotted. Since LINGO did not provide feasible solutions 

for some instances and as a result its line graph would be discontinuous, it has been 

shown as scatter chart. As shown in the graph, in smaller sizes both LINGO and GA-

based heuristic perform equally good, hitting the optimum values whenever obtained. 

While for higher size indices GA-based heuristic has mostly provided lower average 

objective values for each size index.   

Figure 4.8- Computation time vs. size index 

Figure 4.9 -Accuracy vs. size index 
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The  contrast  between economic order quantity (EOQ), and the current model is worth to 

be noted. In EOQ, the (economic) batch size for each part is calculated independent of 

those of the others, based on its setup time and cost. The current model though has a 

fundamental difference with EOQ condition since it corresponds to repetitive 

manufacturing in closed job shop, therefore the batch size for each part is calculated in 

conjunction with those of other parts on a common basis namely the product basket. 

While in EOQ, the number of times that each part batch is processed could be different 

from those of other parts, in our model, batches of all parts would be processed by a 

common number of times which is the number of the product baskets in the planning 

period. 

Since the LIP model turns to be NP-hard in its strong sense, branch and bound or branch 

and cut algorithm is not an efficient algorithm when the problem instances grow in size. 

Our experimentation with commercial software packages, LINGO in our case, also 

confirms the above statement. Therefore a problem specific heuristic based on GA was 

improvised to obtain near optimal solution for real size problems in a reasonably short 

amount of time. A numerical example of real life scale for 25 parts and maximum of nine 

operations per part was solved to test the functionality of the GA- based heuristic. The 

computation performance of the heuristic was successful as examined versus LINGO. 
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CHAPTER 5 

In Chapter 4 a GA-based heuristic was improvised that would solve the single period 

mathematical model and provide solutions with acceptable accuracy in reasonably short 

amount of time. In transition from single period to multi-period problems, however, the 

solution space drastically increases which makes it difficult for the GA-based heuristic to 

explore the solution space in reasonably short amount of time and find near optimal 

multi-period solutions with acceptable accuracy. In order to address this shortcoming of 

the GA- based heuristic, we introduce a dynamic programming based heuristic that would 

use the single period results from GA-based heuristic at different stages of the solution 

process and recombine them into one multi-period solution. 

The inspiration for our multi-period heuristic originates in Chen (1992) in which the 

author uses demands for parts of one period with machine configurations of other periods 

provided that this arrangement is feasible (Chen, 1992). The author solves a secondary 

problem which is a result of decomposition of the main multi-period planning to n single 

period problems, n being the total number of planning periods. With the assumption that 

the machine configuration of one period might be feasible for another period, the author 

then determines the best combination of demand structure and machine configuration of 

single–period solutions which would serve as the best multi-period solution among all 

considered combinations.  
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There are two major differences however, between our problem and that solved in Chen 

(1992). First is that in Chen (1992), the author uses a branch and bound algorithm to 

obtain optimal solutions for the LIP sub problems, while computation burden of our 

model is too intense to be solved for optimal solutions by branch and bound approach. 

Second is that the assumption that the machine configuration of one period may prove 

feasible for other periods as in Chen (1992), deems unlikely in a real manufacturing 

situation. Besides, checking the relative feasibility of the solutions between the periods 

may be quite a tedious and time consuming job when the number of the parts and 

operations are rather large. These two major differences between the two problems would 

propose a different heuristic that will be discussed in detail in the following section. 

 Consider the main multi-period integer programming model introduced in Chapter 3. 

Careful examination of the global model suggests that the multi-period model can be 

totally decomposed to secondary single period sub-problems by removing the transitional 

elements which interact between periods. Mathematical formulation of the sub-problem 

SP(t), for each period it would therefore be as follows: 
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For a description of the cost terms in the objective function and the constraints in the 

above single-period problem please refer to those provided in Chapter 3 for the multi-

period global model. 

SP(t) is then solved using the GA-based heuristic introduced in Chapter 4, to provide near 

optimal single-period solutions for different periods. Recalling the GA-based heuristic 

introduced in Chapter 4, after every certain number of generations gmax, a full 

rejuvenation will take place which we call it a round. In each round r=1,..,R,  the best 

solution G*(r) of that round is recorded. After R rounds, the heuristic terminates and a set 

of R best solutions will be formed. The total number of generations involved will be 

R gmax. Figure 5.1 clarifies the above procedure. Different near optimal solutions in each 

period obtained at different generations by GA-based heuristic, can combine with those 

of neighbouring periods to form a multi-period solution while there is a reconfiguration 

cost associated with each match up of the solution of the neighbouring periods. Searching 

for the best combination of feasible solutions of different periods would be equivalent to 

solving a dynamic programming problem exemplified in Figure 5.2. In Figure 5.2 the R 

best solutions recorded for each sub-problem have been supplemented by a second index 

t, to account for the period which the sub-problem is representing. Therefore the notation 

G*(r,t) represents rth best feasible solution  recorded for period t.  
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Figure 5.2 -Dynamic programming network representing the heuristic 
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Figure 5.1-  R best solutions in GA-based heuristic 
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The graph of the network corresponding to any pair of immediately linked stages t and 

t+1 is fully connected. )r'r, F(t, is the machine reconfiguration cost associated with 

transition from the best solution in round r in period t to the best solution in round r’ in 

period t+1. k  and k  are the machine installation and removal unit costs, respectively 

and ykl (t), is the number of the machine type k in cell l in the beginning of period t all as 

explained in the mathematical model in Chapter 3. Eq. (5.1) represents the corresponding 

cost involved in transition from period t to period t+1: 

 0  1),(ty(t)y max k 0  (t),y1)(ty max kt) ,r'r, F( kl

K

1k

L

1l
klkl

K

1k

L

1l
kl (  (5.1) 

Let U*(r,t-1)  be the best policy corresponding to node (r, t-1) of the network, then the 

mathematical form of the corresponding dynamic programming problem can be 

expressed by the  backward recursive function (Eq.5.2). This equation affirms that the 

best policy U*(r,t-1),  is calculated by finding the minimum of the summation of the best 

policy of each state (solution) at stage (period) t, U*(r’, t), the  corresponding  single-

period overall cost of each state (solution), G*(r, t-1), and the cost associated with 

transition from state (solution) r at t-1  to state (solution) r’ at stage(period) t, 

1)-t ,r'r, F( .  

1)-t ,(r'*G1)-t ,r'F(r,t),(r'U*min1)-t(r,U*
{1...R}r

(5.2)

-Solve the secondary problems for each planning period t by the GA-based 

heuristic 
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-Get R best feasible solutions for each period from GA-base heuristic 

-Form the corresponding network consisting of T stages and R states in each stage 

-Associate transition cost to each arrow in the network 

-Solve the dynamic programming problem represented by network in Step 3 

-Consider the optimal policy determined by dynamic programming as the solution 

for the multi-period global problem. 

 

 

The original problem for this example is the one initially introduced in Chapter 4. 

However the part demand and reconfiguration unit costs have been changed and three 

periods have been considered as shown in Tables 5.1 and 5.2. First the corresponding 

secondary single period problems for 3 time periods are solved by the GA-based 

heuristic, the results of which have been shown in Tables 5.3 and 5. 4.   In order to find 

the best solution for the three-period planning horizon, the dynamic programming-based 

heuristic is applied as explained in section 1 and 2 above. For each sub-problem solved 

by GA-based heuristic, the best feasible solutions in each round in terms of objective 

function value is chosen. In this example twenty best feasible solutions for each of the 

three periods were selected. These feasible solutions form the states of each stage or 

period. There will be a cost associated with transiting from any solution in period t to any 

solution in period t+1.These transition costs are basically the costs incurred in 

reconfiguring the machine configuration of the corresponding cells of each period to 

those of the immediate next period. Finding the best solution for a three period planning 
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horizon, among the existing feasible solutions, is then equivalent to finding the best 

policy for a dynamic programming network. 

Following the heuristic discussed in section 2 above, the best multi-period solution for 

three periods is obtained by the combination of solution number 2 in period 1 followed 

by solution number 19 in period 2, followed by solution number 5 in period 3 as 

highlighted in Tables A.5.3 and A.5.4 (Appendix). It is worth noting that the elected  

solution for each period  by the DP-based heuristic, is not necessarily the lowest objective 

function value found by GA-based heuristic in that period. For example, as can be seen in 

Table A.45.3, the objective function value for solution number 2 for the first period, i.e.

19211, does not have the lowest objective value among all 20 values obtained by GA-

based heuristic solved for a single period solution for the first period, as for example node 

or solution 12, has the lowest overall single –period cost i.e.19085.8, however the best 

policy starts with solution 2 in period 1 and not solution 12. It goes without saying that 

although the selected solutions in each period are just suboptimal with regard to LIP sub 

problems, the obtained multi-period solution however, is an optimal solution of the 

dynamic programming procedure, hence the optimal policy.  

 

Table 5.1-Product mix demand of 25 parts for three periods: t=1, t=2, t=3

t=1:   1200,1000,0,0,3200,1500,1680,2200,0,980,0,740,1800,860,0,0,0,0,1200,1520,2200,0,0,0,0 
 
t=2:   
0,0,1480,1800,2800,0,0,0,1780,0,900,1350,1400,0,2500,960,1000,1700,2000,1800,0,0,0,1890,14
00 
 
t=3:   
0,1200,1600,2200,1700,0,0,960,0,900,1350,0,0,2500,0,1000,1700,1000,1800,0,0,580,0,1320,0 
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Table 5.2-Reconfiguration unit costs in all three periods  

M1    M2    M3     M4     M5     M6 
   

 

 

Robustness of the result for the illustrative example 5.3 is examined through statistics 

regarding the best objective values, shown in Tables A.5.3 and A.5.4 in the Appendix, 

obtained by the single period GA-based heuristic for periods 1 and 2, as indicated in  

Table 5.3. 

 

Average Max Min Std
(Best objectives)

Period 1 22170.38 26893.6 19085 2202.89 0.099
Period 2 26862.9 26862.9 26862.9 0 0  

In this section we have considered  12  problem instances with 3 parts and 3 and 4 

operation for each part.For simplicity, except for setup times,  all other parameters are 

considered unity.Setup times are random numbers of a uniform function from the closed 

interval  [10,40], generated pseudo randomly by C++ srand function . The data for MCIM 

for different test problems are also generated pseudo randomly from [0,1]. The demand 

for the periods one, two and three for each part are 1, 2 and 3 respectively.First each test 

problem has been solved for the three periods.Then the dynamic programming based 

Table 5.3-Robustness table for the numerical example results 
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heuristic introduced in section 4, has applied to the solutions of three periods to obtain the 

multi-period solution.Finally the multi-period solution has been comared to that provided 

by LINGO.As shown in Table 5.4, the Multi-period solution by DP outperforms those of 

the LINGO in terms of objective value and the computation time. In one case where both 

DP and LINGo have the same Objective vlaue (84*) the result is in fact optimal. 

Table 5.4- Comparing the DP-based heuritic with LINGO

Best obj. Time(sec) Best obj. Time(sec) Best obj. Time(sec) Best obj. Time(sec) Best obj. Time(sec)
39 52 51 56.25 63 56.953 171 165.223 190 3600
37 56.859 49 54.313 61 60.359 165 171.555 168 3600
11 51.015 22 51.235 33 51.593 84 165.218 84* 202
36 54.297 47 56.984 58 60.578 159 171.982 180 3600
32 52.297 43 49.907 54 51.972 147 154.307 161 3600
35 52.844 46 54.625 57 54.297 156 161.841 161 3600
68 59.665 85 59.578 102 65.766 279 185.126 548 3600
49 57.516 65 52.141 81 63.485 220 173.25 394 3600
72 56.39 87 62.203 102 61 285 179.717 375 3600
62 58.922 79 58.922 96 60.5 261 178.471 379 3600
79 59.984 96 60.984 112 60.062 311 181.133 566 3600
68 58.343 83 58.297 98 59.125 273 175.861 382 3600

Period 1 GA Period 2 GA Period 3 GA Multi period DP Multi period LINGO

3
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s,

4
op

er
at
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3
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s,

3
op

er
at
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ns

 Optimal result by LINGO

 

In this section a series of thirteen problems of different scales have been solved by a 

multi-period feature  of  GA-based heuristic and by dynamic programming-based 

approach where  the multi-peiod problem is decomposed to single period problems first, 

then solved by single-period GA-based heuristic where its best feasible solutions are then 

recombined into multi-period through a dynamic programming setting.The experiment 

covers a range of problems from 7 parts to 16. A two period problem has been considered 
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for the comparison between the two heuristics. Since the multi-period solution found by 

DP-based heuristic is merely dependent on the value of the best feasible single-period 

solutions and the reconfiguration cost between the two solutions of consecutive periods, it 

will not be adversely affected by the number of the periods involved and maintains its 

robustness. In case of multiple GA-based heuristic however, the number of the periods 

will drastically enlarge the solution space and therefore affect the solutions obtained. 

Because of this, if the multi-period GA-based solution performs poorly with respect to 

DP-based heuristic in a two-period setting, adding more periods will not help the GA-

based heuristic either.  

 Table 5.5and 5.6 show a sample of main parameters for one of the problems with 12 

parts. As a sample,Tables A.5.5, A.5.6 and A.5.7 in the Appendix, indicate the MCIM, 

processing times and setup times for problem with 12 parts, 3 operations and 6 machines 

in Table 5.7. 

The dynamic programming is an efficient algorithm that provides an optimal solution 

based on the input data. This heuristic uses sub-optimal solutions from different periods 

and combine them by charging the due transition costs that would inevitably incurr in a 

multi-period setting.

The dynamic programming based heuristic consistenly provides better results in terms of 

overall cost and computation time when compared with the multi-period feature of the 

GA-based heuristic. As indicated in Table 5.7, the multi-period GA-based heuristic is at 

par with DP-based for a medium scale problem with 7 parts and 4 operations but for 

larger problems it lagged behind the DP-based heuristic in terms of cost and 

corresponding computation time during which the cost value was achieved.  
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Table 5.5-Product mix/demand of twelve parts for two periods  
 
t=1:   1200,1000,0,0,3200,1500,1680,2200,0,980,0,740  
t=2:   0,0,1480,1800,2800,0,0,0,1780,0,900,1350 
 

Table 5.6-Reconfiguration unit costs in all periods for twelve part problem  

M1           M2         M3          M4      

 
 

Table 5 .7 - Comparing DP-based with Multi-Period GA-based

Part,
operation,
machine

Period 1
cost($)

Period 2
cost($)

Re
configuration
cost($)

Dynamic
programming
cost ($)

Period 1
time (sec)

Period 2
time (sec)

Transition
DP
time(sec)

Dynamic
prog.
time(sec)

GA multi
period
cost ($)

GA multi
period
time(sec)

7,4,6 7631.33 3550 200 11381.3 73.032 73.547 0.016 146.595 11381.3 178
7,5,6 11164.7 7751.33 275 19191 92.157 78.641 0.031 170.829 23959.7 243.18
8,5,6 11350.4 7811.83 275 19437.2 58.727 82.109 0.016 140.852 24249.8 269.171
9,4,6 11080 8864.52 245 20189.5 56.314 80.234 0.015 136.563 22180.7 250.922
10,3,6 4313.3 5676.67 35 10340 49.162 73.656 0.016 122.834 10461.9 200.297
10,4,6 11471 7236 165 18872 59.268 70.75 0.015 130.033 22181.8 263.532
11,3,6 9051.35 7760.5 0 16811.8 55.923 67.734 0.016 123.673 19170.3 238.157
12,3,6 9500 5413.67 365 15278.7 56.497 69.859 0.015 126.371 20267.7 249.438
13,2,6 10124.4 4847.72 290 15262.1 49.563 74.281 0.015 123.859 17659.9 220.891
15,2,6 8923.42 8221.25 0 17144.7 54.889 74.813 0.016 129.718 19299.8 233
15,3,6 13066.5 11197.4 305 24568.9 65.65 73.125 0.031 138.806 29611.9 319.859
15,4,6 13810.2 16169.3 260 30239.5 71.905 77.219 0.016 149.14 36451.4 409.578
16,2,6 10741.5 7074.63 210 18026.1 56.599 70.093 0.015 126.707 20443.2 240.641  



 
 
 
 

101

In this Chapter, a dynamic programming based heuristic was introduced for transition 

from single-period solutions to multi-period solution. The decomposition of the global 

model of the current research problem provides an opportunity to divide the main 

problem to single-period problems. Given the fact that for transition from the machine-

cell configuration in one period to that in another period a reconfiguration cost is 

incurred, based on the current configuration of the concerning periods, any chain of 

feasible solutions in different periods can be considered to represent a feasible multi-

period solution. Finding the best multi-period solution would then turn to be one of 

finding the optimal policy in a dynamic programming problem.  

While the devised problem specific GA-based heuristic has proven satisfactory in 

comparison with commercial software package based on B&B algorithm, namely LINGO 

9, the multi-period solution is not as satisfactory, especially when the problem size 

increases. The introduced DP heuristic can remedy this shortcoming by decomposing the 

model into smaller single period problems to be solved by GA-based heuristic and then 

combine them using dynamic programming approach to find the best chain of solutions 

that would represent the multi-period solution. The DP-based heuristic has been 

compared with both LINGO and multi-period GA as depicted in Tables 5.4 and 5.7 

respectively, where DP-based approach consistently shows better results in terms of both 

best objective value and computation time. 

The solution found by DP-based heuristic is more robust in terms of sensitivity to the size 

of the problem and outperforms the multi-period solutions provided by both LINGO and 
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GA-based heuristic. In the DP-based heuristic, the sub-optimal solutions of the GA-based 

heuristic are combined by adding the cost of reconfiguring the machine-cell from one 

period to the next period to the overall single-period cost of the two periods. Since, the 

GA-based heuristic has performed satisfactorily enough in providing sub-optimal single-

period solutions, DP-based heuristic utilizes a set of  best feasible solutions for each 

period to combine with those of the next period in the manner explained above. The best 

optimal policy is represented by the chain of certain best feasible solutions of each period 

that collectively represent the lowest overall cost including reconfiguration costs. It is 

worth noting that if the solutions in each period are optimal or the same, then this 

approach would not be needed, as any combination of solutions of each period will 

provide the optimal or the same multi-period solution. 
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CHAPTER 6 

While research in cellular manufacturing has been abundant, there are very few 

publications in which sequence-dependent setup time has been involved in the process of 

cell formation and design of the cellular manufacturing system. Another aspect which has 

just recently gained some attention is the multi-period planning in a dynamic cellular 

manufacturing system. 

The primary goal of this research was to develop a design methodology that takes into 

consideration the changeover time between different parts processed in the manufacturing 

cells. Since sequence-dependent setup time is the general form of setup time from which 

other forms can be derived as special cases, the design was based on sequence-dependent 

setup time. This in turn leads to the design methodology contributing to the production 

planning process, since the order in which the parts are processed is also recommended 

through the design process.  

In every cellular manufacturing system, when the product mix changes, there is always 

chance that a redesign of the system might prove necessary, since the grouping of parts in 

the machine cells might not be optimal anymore. In these cases, given the conditions, a 

reconfiguration of the machine-cells might be necessary in order to maintain an optimal 

status in terms of the relevant production costs. Of course it goes without saying that the 

cost of system reconfiguration shall also be taken into consideration when calculating the 
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relevant production costs. In a dynamic environment where the product mix might change 

several times during the year, a flexible design system should anticipate and take the 

changes into consideration in advance, so that optimization of the system design is 

considered over the entire span of planning horizon rather than a myopic approach. This 

constitutes the secondary goal of the current design methodology which is a multi-period 

system design optimization. In response to the above requirements, an integer 

programming mathematical global model was developed. The model however is NP-hard 

in its strong sense due to the presence of sequence-dependent term which generates a 

massive amount of integer variables even for moderately sized problem instances. 

Obviously the routine optimization software packages available in the market which are 

deploying branch and bound and or branch and cut algorithms may not solve real life 

problems in a reasonably short of amount of time when these algorithms are proven not to 

be efficient ones. 

This led to the development of heuristics to handle real life manufacturing problems in a 

reasonably short amount of time. In order to address this issue, a step by step approach 

towards tackling the multi-period global was considered. First the heuristic was 

developed based on GA platform for a special case of the global mathematical model 

which simplified the model to a less complex one. The purpose of this heuristic was to 

gain insight in solving the global model and to see whether the adopted approach was 

promising. The performance of this simplified heuristic was evaluated against 

commercial software. In 80% of the 36 test problems, the heuristic was equally or more 

successful than the software. In the next phase a comprehensive GA-based heuristic was 

developed for which shortcomings and deficiencies of the simplified heuristic were 
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remedied. The principal goal of the comprehensive GA-based heuristic was to handle the 

single-period global model. However, the heuristic was developed in a way that could 

tackle multi-period as well. The performance of the comprehensive GA-based heuristic 

was evaluated against commercial optimization software package by solving 90 single 

period test problems where the GA-based heuristic was equally or more successful than 

the software in 95% of the tests.  

Finally the last step was to tackle the multi-period global model. A decomposition of the 

global model was considered which would decompose the original model to single-period 

sub-problems. The single-period problems were then solved through comprehensive GA-

based heuristic and the best feasible solutions obtained will be prospective solutions for 

the final multi-period solution. To obtain the multi-period solution however, the 

candidate solutions are recombined in a dynamic programming setting where the 

objective is to find that best combination of single-period solutions of different periods 

that represent the minimum overall cost including that of reconfiguration. The dynamic 

programming based heuristic consists of six steps as follows: 

1-Solve the secondary problems for each planning period t by the GA-based heuristic 

2-Get R best feasible solutions for each period from GA-base heuristic 

3-Form the corresponding dynamic programming network consisting of T stages and R 

states in each stage 

4-Associate transition cost with each arrow in the network 

5-Solve the dynamic programming problem represented by network in Step 3 

6-Consider the optimal policy determined by dynamic programming as the solution for 

the multi-period global problem. 
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The performance of the heuristic was evaluated via the multi-period feature of the 

comprehensive GA-based heuristic. The experimentation indicates that dynamic 

programming based heuristic consistently lower overall cost and computation time when 

compared with those of a multi-period GA-based heuristic in a series of randomly 

generated test problems. 

  

 

The contributions of the current thesis have been outlined as follows: 

1.   A macro analysis of cellular manufacturing was presented that explained the raison 

d’etre of  CM through of volume-variety curve  and dissimilarity index of a system  

2.  The presumption of setup time reduction in cellular manufacturing was debated and 

the impact of MCIM or lack thereof in that regard was discussed. 

3.  The setup time definition was elaborated on and standard definition was suggested and 

various set up time reduction approaches were assessed against the standardized 

definition. 

4.  A multi-period mathematical model was developed that incorporates sequence-

dependent setup time in the cell formation process of the design of dynamic cellular 

manufacturing system 

5.  A problem specific heuristic was tailor made to solve static sequence-dependent 

related CMS design problems in a reasonable amount of time.  

6.  A dynamic programming based heuristic was developed for the purpose of transition 

from single-period solutions regarding different periods to one overall multi-period 

solution for the entire planning horizon. The DP- based heuristic was then compared with 
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multi-period featured GA-based heuristic where it consistently provided better results in 

terms of the cost and computation time. 

Due to the complexity of the current novel topic, the following research was considered 

to be out of the scope and time limitations of the current thesis, therefore considered for 

future research. 

1-It would be a good practice to examine the impact of the sequence-dependent setup 

time in the production cost.  The cost of an ad hoc order of processing parts in the 

manufacturing cells can be compared with the optimised order recommended by the 

model introduced in this thesis to see the corresponding impact and how the difference 

would vary with respect to various parameters of the model.  

2-One natural implication of this thesis is its relationship with scheduling. The order or 

sequence of parts recommended by the introduced model, would have impact on 

scheduling criteria. The study of those parameters is out of the scope of this thesis and 

will be studied later. The scheduling will also affect the amount of the WIP in the system 

which has to be taken into account in the production planning of the manufacturing 

systems. 

3-Considering meta-heuristics and heuristics other than those introduced and applied in 

this thesis may prove effective in solving more complex versions of the current model 

featured by further real manufacturing attributes, as well as providing the opportunity for 

comparing the performance of the new solution approaches with those used in this thesis. 
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1,1,1 1,1,2 1,1,4 1,1,5 1,2,3 1,2,4 1,2,6 1,2,7 1,2,8 1,3,2 1,3,5 1,3,6 1,3,7 1,4,1 1,4,2 1,4,3 1,5,2 
1,7,3 1,9,2 1,9,6 1,9,7 1,10,2 1,11,1 1,11,8 1,13,1 1,13,4 1,13,5 1,14,2 1,14,3 1,14,4 1,14,5 1,14,6 
1,15,4 1,15,6 1,16,1 1,16,2 1,17,1 1,17,2 1,17,3 1,17,4 1,18,2 1,18,4 1,18,5 1,18,6 1,18,8 1,22,1 
1,22,5 1,22,6 1,23,1 1,23,2 1,23,3 1,23,4 1,23,5 1,25,1 1,25,2 1,25,3 1,25,4  

2,2,1 2,5,1 2,5,5 2,5,7 2,6,1 2,7,2 2,9,3 2,9,4 2,9,5 2,11,3 2,12,1 2,13,2 2,14,1 2,15,2 2,15,3 2,16,5 
2,17,5 2,17,6 2,18,1 2,18,7 2,19,1 2,19,2 2,22,2 2,22,3  

3,1,3 3,3,1 3,3,3 3,4,4 3,5,3 3,5,8 3,11,2 3,11,4 3,11,6 3,11,7 3,12,2 3,13,6 3,13,7 3,15,1 3,15,7  

4,2,2 4,3,4 4,5,4 4,7,1 4,9,1 4,17,7 4,19,3  

5,2,5 5,5,6 5,15,5 5,22,4  

6,10,1 6,11,5 6,13,3 6,16,3 6,16,4 6,18,3 

Table A.4.1- MCIM for numerical example in Chapter 4 [machine, part, operation] 
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15 19 26 13 14 12 18 18 17 15 28 21 12 35 27 14 24 34 34 24 22 39 23 30 27 17 28 27 23 30 33 
38 12 15 22 30 33 17 12 29 27 25 23 14 23 12 21 31 23 22 25 33 25 21 12 32 12 36 24 20 27 30 
13 24 30 20 35 33 11 30 36 27 35 20 30 24 35 34 39 35 36 14 18 32 11 36 38 13 11 24 38 34 39 
32 20 37 20 16 20 27 20 15 16 27 23 28 34 19 32 26 25 17 37 24 25 17 29 18 23 30 12 32 13 36 
27 11 35 15 14 20 32 26 30 26 11 31 31 27 13 20 10 24 18 23 30 11 12 39 10 23 38 38 35 27 27 
10 28 29 33 20 17 24 37 18 33 17 11 30 10 28 13 34 35 10 11 34 35 26 22 20 23 35 16 36 16 37 
16 17 37 31 29 31 36 12 17 12 37 16 15 21 13 19 29 15 29 32 16 15 33 22 24 14 34 32 17 39 12 
33 37 33 21 35 27 28 35 18 13 12 34 11 11 25 19 15 21 30 16 24 35 23 10 38 29 31 23 24 27 24 
16 23 16 35 12 28 21 10 23 31 35 25 12 12 21 17 34 18 22 33 16 23 30 23 15 12 18 20 37 32 12 
15 39 21 10 38 15 20 37 19 20 35 13 34 31 20 34 18 15 39 12 25 14 11 13 29 25 38 22 37 39 16 
11 17 27 31 39 20 13 24 31 27 35 23 33 32 34 31 32 19 10 38 17 14 35 16 28 20 27 37 34 33 21 
23 16 33 20 11 19 10 24 22 39 13 11 24 28 32 10 15 35 19 13 32 18 37 34 38 11 24 33 15 15 12 
36 28 39 32 39 15 39 24 25 10 35 18 38 10 11 13 22 32 12 17 20 13 31 13 33 27 30 39 15 25 38 
13 37 28 13 17 39 13 19 11 38 12 18 30 21 28 24 18 26 10 39 13 20 10 38 17 16 33 15 16 15 28 
23 19 14 38 13 39 17 26 34 25 18 36 11 35 25 21 29 26 24 15 34 12 15 13 12 36 28 32 36 36 23 
19 14 25 26 32 35 13 15 26 16 21 14 34 16 32 36 38 32 15 25 31 30 31 25 11 37 26 20 10 32 14 
13 13 36 22 38 12 13 34 23 24 33 16 38 34 27 23 29 38 20 30 28 38 30 15 21 34 33 26 13 39 32 
31 29 28 32 13 24 10 12 33 31 29 18 19 28 39 11 13 25 11 24 12 25 33 18 19 12 38 27 30 31 34 
38 11 39 23 25 19 17 19 38 10 31 24 37 25 25 25 10 19 12 18 12 14 15 20 14 34 20 35 11 11 35 
39 20 18 13 18 17 22 26 19 23 28 21 20 23 13 38 24 38 10 11 35 24 31 33 17 33 25 18 15 26 39 
10 28 19 23 16 30 16 19 37 38 19 14 31 15 16 16 26 16 26 27 31 24 30 26 31 32 31 14 39 25 32 
33 34 11 25 32 23 31 16 38 28 32 27 17 31 32 26 30 34 29 14 16 30 33 36 32 14 35 18 18 31 12 
11 34 39 18 12 14 15 12 19 19 38 33 28 16 29 18 26 26 32 33 18 32 16 12 27 35 37 38 12 37 28 
30 22 30 28 19 32 28 32 10 35 25 12 37 26 17 18 17 38 31 36 30 19 15 38 29 20 30 20 37 32 15 
15 22 21 24 28 26 24 16 18 19 38 13 25 15 11 35 25 18 14 10 15 24 37 22 11 24 19 19 10 13 10 
33 15 30 37 26 17 28 13 26 34 34 11 39 35 25 27 24 27 23 24 20 28 38 31 15 12 23 12 14 16 16 
26 22 19 10 24 19 23 11 31 19 29 25 35 35 26 20 35 39 34 26 13 34 19 10 25 13 29 31 12 38 38 
31 28 26 20 22 34 29 20 12 22 21 25 14 14 24 32 35 30 34 22 11 32 27 17 19 25 25 34 10 33 14 
31 32 12 19 28 12 22 37 28 15 28 13 39 14 24 36 39 38 15 26 16 20 37 32 17 12 26 24 37 21 23 
12 31 16 33 18 13 22 38 26 20 11 32 16 30 25 14 16 37 19 13 14 27 28 28 11 16 23 38 27 36 11 
27 12 23 27 18 35 38 25 38 37 23 23 11 10 28 21 20 19 12 24 39 31 25 27 23 33 14 12 12 10 11 
12 27 27 10 22 34 11 10 13 27 23 29 15 19 27 22 30 22 28 16 17 30 18 21 18 23 30 23 26 22 10 
12 28 24 31 28 33 27 35 28 31 27 20 34 38 28 31 33 36 27 38 29 35 15 15 36 16 13 30 20 18 28 
12 23 30 26 35 20 29 27 32 12 18 22 39 24 24 18 22 17 12 35 18 34 27 33 29 35 31 19 30 22 28 
23 31 34 23 21 30 34 10 27 39 30 28 11 34 20 27 39 35 33 28 32 23 32 31 10 34 20 37 35 29 20 
35 31 22 20 29 18 19 21 17 23 13 10 27 36 26 30 22 28 39 28 39 19 39 34 22 10 18 17 18 37 33 
20 37 16 24 22 21 39 31 26 30 33 13 16 22 22 21 14 13 22 26 20 15 24 29 16 10 28 12 27 14 20  

 

 

Table A.4.2.1- Operation-level setup times for numerical example in Chapter 4 



 
 
 
 

124

 

 

 
17 36 10 11 22 29 23 28 25 21 35 16 26 28 18 29 18 17 10 37 39 31 35 18 26 13 29 34 35 13 28  
32 33 29 24 38 25 11 13 22 38 21 16 24 16 27 37 29 16 34 21 29 32 26 13 11 15 19 17 10 22 36 
11 17 36 32 15 33 34 10 27 15 15 33 31 18 28 28 20 31 37 25 30 15 29 10 39 13 15 24 12 17 22 
26 27 32 32 20 11 11 37 25 39 31 38 11 17 38 26 26 29 19 12 16 36 15 28 14 10 13 27 38 33 11 
31 22 15 17 36 32 21 26 11 21 15 27 14 28 25 16 14 19 18 24 23 32 25 33 38 33 12 17 10 16 38 
10 21 11 19 15 33 26 23 11 35 33 24 30 33 21 37 39 30 23 15 12 19 31 22 16 11 37 20 31 25 12 
12 39 30 15 21 38 23 26 38 38 26 31 26 16 27 10 34 29 38 29 24 39 38 27 35 16 34 28 36 18 17 
18 10 29 35 36 39 10 20 11 13 35 35 28 20 21 17 27 14 36 27 20 17 34 11 22 11 18 23 35 17 31 
34 27 26 38 22 13 30 12 27 18 38 15 39 37 11 23 34 17 31 13 37 31 32 27 15 23 34 34 25 35 21 
14 11 22 16 36 23 13 30 10 28 31 13 38 21 16 29 38 10 11 13 29 33 29 23 16 35 15 34 20 25 10 
16 15 35 31 38 39 16 32 22 25 10 35 32 35 12 30 16 37 12 18 10 10 26 38 33 10 36 24 33 27 10 
35 12 10 27 15 36 11 18 11 18 35 26 35 29 32 26 35 22 33 32 31 22 12 18 18 18 27 34 20 10 15 
19 29 35 33 30 29 29 15 21 11 21 32 33 13 29 37 32 13 23 30 14 28 14 23 39 22 34 39 30 15 27 
14 17 36 16 33 10 39 30 18 30 31 15 11 10 33 19 25 38 39 36 12 15 37 26 33 28 15 19 13 10 12 
15 31 35 27 37 39 24 11 27 18 15 17 38 28 34 32 23 38 24 11 33 30 24 21 27 17 32 11 33 31 23 
21 35 31 25 20 25 11 32 22 31 15 25 13 18 19 32 28 34 22 17 15 28 34 10 29 34 14 13 35 18 14 
11 30 13 33 24 10 16 17 25 35 16 30 39 18 13 35 37 29 10 14 28 17 34 10 22 13 25 24 31 16 16 
34 35 12 29 31 22 34 39 19 23 37 36 15 38 27 38 29 37 37 31 16 35 20 11 13 22 16 30 35 37 14 
34 29 10 26 21 31 29 10 34 12 31 19 17 30 39 23 33 33 11 23 15 36 39 25 29 18 28 33 39 35 31 
33 26 12 28 28 21 19 18 21 13 13 34 33 39 12 17 22 11 17 16 31 17 33 10 26 20 32 35 36 10 27 
22 20 19 15 24 33 32 15 16 20 18 28 21 25 27 35 27 29 22 23 17 32 17 19 13 16 13 28 31 20 36 
18 27 36 25 21 32 39 35 36 11 35 14 31 23 38 25 20 29 12 31 23 33 15 22 29 10 24 28 25 17 23 
33 30 33 20 23 22 11 31 10 18 21 18 37 22 38 39 22 23 10 22 38 22 15 25 18 11 12 34 39 38 28 
32 17 11 27 39 35 10 33 34 10 31 15 13 34 22 13 32 39 34 29 32 14 19 20 34 24 39 28 15 33 32 
13 30 11 37 21 29 38 38 33 32 39 13 33 12 18 13 14 20 22 20 21 22 21 30 37 26 36 18 10 15 38 
18 29 25 37 13 22 12 12 20 10 12 13 21 36 38 27 17 12 28 27 29 15 19 12 39 11 33 10 18 11 19 
32 10 12 14 27 35 28 21 20 10 27 31 16 19 13 20 13 17 23 20 34 13 22 23 11 20 22 27 37 21 13 
20 17 20 33 26 33 31 19 15 26 21 15 21 20 29 37 23 10 38 31 35 21 37 11 37 19 34 29 18 30 30 
11 38 35 20 28 19 22 38 20 18 15 21 24 17 23 16 31 16 18 30 28 36 25 27 31 30 32 28 23 15 35 
16 11 14 19 23 18 13 22 33 13 27 13 10 21 24 18 27 38 39 18 19 17 29 11 19 15 18 19 36 39 33 
13 31 14 11 34 35 37 26 33 34 26 33 18 33 34 22 27 38 19 20 11 24 20 37 23 24 19 14 35 36 38 
19 28 39 19 27 20 18 14 15 36 19 23 16 22 10 10 16 25 31 26 21 29 37 23 35 30 30 36 25 21 28 
12 17 32 34 35 12 32 25 38 26 19 38 33 35 35 10 15 28 11 35 10 37 33 34 21 35 26 24 11 17 20 
14 10 26 31 20 25 25 12 35 38 23 12 27 28 15 32 17 32 19 37 36 33 31 35 39 38 19 15 14 19 35 
32 25 32 12 13 30 28 27 12 38 13 37 15 14 31 28 32 19 16 38 39 28 11 26 23 37 15 14 11 20 21  
12 22 38 25 34 26 27 37 23 24 14 29 21 18 23 38 37 39 17 11 21 14 13 25 12 29 11 15 15 36 27 
19 20 22 33 11 19 38 17 18 34 14 14 23 35 18 30 32 29 24 39 38 33 35 10 24 13 15 32 25 17 27  

 

Table A.4.2.2- Operation-level Setup times for numerical example in Chapter 4 (continued) 
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37 24 24 10 34 11 31 35 24 30 32 38 16 18 31 14 17 26 24 39 28 37 23 38 16 22 18 10 29 18 20 
24 29 16 18 22 38 34 27 19 34 10 37 14 18 11 38 32 22 11 24 36 16 39 23 18 31 33 26 24 25 12 
12 20 31 10 33 18 27 33 23 11 34 25 36 11 32 11 29 31 28 30 34 27 37 14 11 11 39 38 31 30 13 
32 15 10 23 22 32 16 23 33 36 31 15 28 32 31 19 23 39 17 32 31 23 22 20 29 12 17 34 35 10 23 
22 29 27 18 20 21 21 24 17 34 13 29 19 26 17 36 32 10 39 36 12 33 10 13 25 11 39 16 17 19 22 
37 35 36 18 22 14 26 23 20 19 21 28 37 16 18 24 10 13 17 39 16 12 22 37 23 20 27 33 20 37 13 
36 34 16 27 24 20 21 12 34 24 36 33 14 25 20 12 20 31 16 29 33 37 19 11 25 32 14 34 21 13 24 
26 18 38 17 30 33 24 34 36 17 11 38 11 12 21 32 13 21 21 31 10 38 39 21 10 29 37 17 34 15 11 
36 37 18 23 19 33 21 23 29 16 33 27 25 32 20 37 11 37 10 16 37 11 37 25 14 38 21 17 25 12 21 
27 35 33 11 10 10 10 35 30 30 37 28 36 14 29 21 24 28 10 38 19 29 27 39 19 39 16 10 16 33 38 
20 33 36 39 14 12 10 34 34 33 36 39 11 28 39 21 31 18 26 13 25 30 19 21 10 28 22 32 26 18 19 
17 37 38 19 13 30 35 16 13 19 27 17 14 23 25 28 23 33 13 36 11 30 34 17 24 32 17 21 35 17 12 
32 27 30 23 16 30 29 28 29 26 14 10 32 19 10 13 32 32 34 27 27 34 15 23 31 23 13 24 23 25 12 
21 16 39 38 28 24 21 14 15 27 33 20 12 17 17 37 10 12 20 30 28 36 14 25 30 21 35 37 33 22 27 
19 11 21 34 10 23 33 31 35 18 13 20 35 21 10 22 25 31 30 34 20 16 14 38 19 35 26 32 12 12 21 
27 24 17 38 16 20 30 12 21 13 19 32 34 31 25 24 10 36 36 18 11 13 23 31 30 25 38 39 23 38 39 
18 34 13 29 39 16 39 17 37 22 25 22 23 32 28 33 33 28 15 37 18 28 21 23 25 31 32 10 28 26 25 
35 33 19 25 13 15 24 28 25 10 33 35 30 28 34 23 35 28 21 12 36 10 22 22 31 16 25 20 21 17 37 
13 28 13 15 21 23 32 21 29 24 32 33 30 11 24 38 36 36 11 23 18 27 29 34 14 23 25 34 24 22 27 
27 25 26 26 39 30 37 30 19 18 16 17 13 32 10 11 15 33 35 26 15 14 16 28 31 15 18 15 33 13 32 
28 17 16 39 36 34 26 23 32 21 30 35 28 37 20 10 13 17 33 14 16 32 10 31 31 16 15 23 34 29 35 
33 34 23 37 27 30 39 31 15 34 10 30 27 21 12 13 27 17 13 23 23 29 11 25 38 38 18 10 12 24 14 
23 33 16 27 26 26 21 14 18 31 16 35 29 16 38 17 11 19 21 26 27 26 33 17 21 32 37 19 24 27 11 
38 22 34 38 18 11 16 22 20 14 28 35 19 14 34 14 29 19 14 35 33 32 31 17 34 33 11 29 30 37 33 
38 14 22 26 19 38 27 37 14 18 27 18 23 12 31 19 33 37 34 34 14 13 15 31 13 12 28 20 29 20 13 
14 29 14 24 23 19 38 25 13 38 31 32 23 38 19 28 15 31 10 36 21 18 11 28 27 27 12 38 12 33 16 
26 29 36 25 31 33 18 30 37 26 11 36 20 23 21 30 14 33 11 35 38 39 25 14 25 27 24 24 16 17 27 
25 32 16 38 38 19 31 19 28 30 35 10 12 39 36 20 22 32 29 32 16 17 13 36 30 35 22 21 17 21 31 
25 23 22 16 36 18 21 35 28 36 19 34 16 26 12 38 28 31 36 18 27 38 29 17 19 30 25 28 32 26 19 
37 31 37 25 21 36 24 34 39 19 36 21 25 35 36 30 37 15 10 17 39 15 36 28 25 13 17 30 27 15 22 
33 10 14 29 38 25 18 30 20 29 37 27 34 14 27 25 29 22 13 12 32 33 31 29 17 33 20 14 23 17 38 
10 18 38 11 22 27 24 19 11 29 33 16 22 30 37 22 20 10 25 23 35 17 27 24 34 23 13 28 16 14 14 
25 29 32 24 34 22 34 32 15 23 22 33 24 20 22 23 27 12 20 17  
37 26 21 37 35 26 17 39 10 18 35 37 14 32 15 36 15 28 18 12 38 15 32 17 26 27 23 23 15 36 19 
14 34 15 39 26 39 22 39 35 26 31 37 28 33 37 32 36 19 11 10 10 14 35 26 23 36 34 16 27 26 23 
39 21 24 17 35 20 20 35 15 28 28 26 19 18 31 25 36 20 36 30 34 17 28 16 34 30 33 34 11 30 20  

Table A.4.2.3- Operation-level Setup times for numerical example in Chapter 4 (continued) 
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24 33 26 11 10 25 16 38 16 37 26 17 38 19 24 35 31 30 22 28 26 17 10 17 37 24 26 12 32 29 16 
25 16 14 10 36 39 26 32 19 31 12 16 24 17 30 18 22 14 11 20 30 23 26 11 17 39 18 30 32 29 18 
39 17 34 17 17 25 23 29 31 32 29 16 21 31 34 19 38 36 39 17 14 38 12 15 18 12 35 16 31 19 33 
27 11 33 12 30 16 28 29 19 33 29 11 31 13 24 18 22 14 19 21 14 33 29 34 29 35 32 11 26 27 12 
35 11 28 30 37 35 27 24 22 39 31 28 24 34 28 11 32 38 34 16 17 33 11 25 28 35 34 32 16 26 34 
16 21 24 30 34 36 36 17 15 18 11 31 35 31 11 29 10 37 16 33 24 34 15 27 12 26 15 16 32 39 26 
25 13 22 21 26 33 14 39 30 35 26 15 30 36 35 23 23 22 36 36 10 26 32 10 30 35 32 20 15 26 31 
20 34 39 24 30 12 16 26 34 30 27 32 26 26 38 15 31 10 10 12 11 13 18 24 13 25 10 38 37 30 35 
33 25 16 33 20 22 39 29 33 27 29 13 39 23 20 12 35 11 31 38 23 23 37 14 16 27 31 29 24 16 11 
12 28 32 25 27 27 38 34 32 30 26 25 20 35 16 20 37 12 14 14 24 20 25 20 16 16 22 16 23 31 27 
35 25 35 34 28 29 39 38 21 12 17 37 19 22 21 38 32 19 27 29 19 20 10 36 14 32 35 23 25 21 39 
27 18 14 29 21 29 28 27 19 36 39 25 16 34 17 24 14 38 16 35 31 24 29 28 28 37 13 24 35 27 17 
35 31 13 13 37 29 16 35 23 14 10 32 24 39 18 10 24 12 26 11 35 36 11 30 35 30 34 38 17 30 38 
11 37 32 28 30 21 11 19 21 30 33 12 13 12 32 28 11 38 17 35 36 12 26 14 37 14 33 17 20 15 34 
23 37 13 28 30 25 36 38 22 26 28 11 32 16 16 12 14 33 10 12 10 15 11 10 35  

38 10 11 33 28 32 18 14 15 17 12 33 28 39 31 16 22 12 31 23 18 35 36 16 38 19 33 35 27 26 19 
15 27 37 30 10 22 25 29 13 10 23 17 16 21 25 22 25 19 15 33 15 35 23 36 26 18 25 32 21 30 32 
16 18 39 26 12 15 28 38 36 26 21 36 27 11 22 25 22 14 19 32 17 10 30 14 19 20 18 31 30 10 21 
17 23 35 26 29 25 30 16 36 32 13 26 37 15 32 15 36 16 36 17 38 36 14 15 25 18 10 20 34 14 22 
22 18 16 25 10 39 29 29 13 18 37 31 25 31 29 39 18 15 12 13 21 20 27 33 38 38 15 29 26 39 33 
21 31 39 11 32 34 26 18 30 38 39 35 20 14 16 28 36 37 33 33 11 27 13 11 23 14 32 37 17 33 13 
36 25 35 33 16 20 19 35 36 33 23 32 39 19 16 33 35 25 31 34 17 31 37 29 29 26 25 12 32 33 17 
30 39 17 36 19 25 16 19 29 33 15 18 31 38 19 16 21 28 14 35 13 24 36  

34 11 25 32 11 17 35 24 38 33 28 25 22 13 31 23 22 10 30 10 18 35 12 38 18 37 31 10 28 26 13 
12 32 32 17 20 18 24 37 14 13 14  

34 14 26 10 25 15 33 37 12 21 39 10 18 28 38 20 29 31 26 27  

28 16 15 29 38 20 25 34 26 37 36 24 10 11 18 18 14 29 14 36 14 20 39 12 19 11 22 14 13 29 

Table A.4.2.4- Operation-level Setup times for numerical example in Chapter 4 (continued) 
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0,0,0,6 0,0,1,2 0,0,3,1 0,0,4,1 0,1,2,1 0,1,3,6 0,1,5,1 0,1,6,3 0,1,7,4 0,2,1,2 0,2,4,6 0,2,5,6 0,2,6,1 
0,3,0,5 0,3,1,6 0,3,2,6 0,4,1,3 0,6,2,3 0,8,1,3 0,8,5,4 0,8,6,2 0,9,1,6 0,10,0,1 0,10,7,4 0,12,0,4 
0,12,3,4 0,12,4,2 0,13,1,5 0,13,2,2 0,13,3,3 0,13,4,2 0,13,5,5 0,14,3,5 0,14,5,4 0,15,0,4 0,15,1,5 
0,16,0,3 0,16,1,6 0,16,2,1 0,16,3,6 0,17,1,6 0,17,3,3 0,17,4,4 0,17,5,5 0,17,7,1 0,21,0,6 0,21,4,2 
0,21,5,3 0,22,0,2 0,22,1,2 0,22,2,3 0,22,3,2 0,22,4,1 0,24,0,5 0,24,1,4 0,24,2,6 0,24,3,4  

1,1,0,2 1,4,0,5 1,4,4,2 1,4,6,2 1,5,0,2 1,6,1,2 1,8,2,1 1,8,3,2 1,8,4,2 1,10,2,6 1,11,0,4 1,12,1,5 
1,13,0,3 1,14,1,2 1,14,2,3 1,15,4,5 1,16,4,6 1,16,5,1 1,17,0,1 1,17,6,2 1,18,0,3 1,18,1,2 1,21,1,3 
1,21,2,6  

2,0,2,6 2,2,0,2 2,2,2,4 2,3,3,2 2,4,2,1 2,4,7,3 2,10,1,3 2,10,3,6 2,10,5,6 2,10,6,1 2,11,1,2 2,12,5,5 
2,12,6,1 2,14,0,5 2,14,6,2  

3,1,1,5 3,2,3,1 3,4,3,3 3,6,0,2 3,8,0,2 3,16,6,4 3,18,2,3  

4,1,4,2 4,4,5,3 4,14,4,3 4,21,3,6  

5,9,0,1 5,10,4,4 5,12,2,4 5,15,2,3 5,15,3,1 5,17,2,3 

Table A.4.3-Processing times for the operations of numerical example  in Chapter 4 

[machine, part, operation, time] 
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1,2,2 1,2,3 1,2,4 1,3,2 1,3,3 1,3,4  

2,1,1 2,1,2 2,1,4 2,2,1  

3,1,3 3,3,1 

 

 

 

 

31 34 12 13 32 32 31 36 18 15 27 16 21 28 19 32 27 29 35 34 33 31 12 13 13 24 31 11 33 38  

27 24 32 37 37 29 33 31 29 38 26 15  

30 22 

Table A.4.5- Setup time for 3 machine, 3 parts, 4 operations- computational performance 

Table A.4.4- MCIM for 3 machine, 3 parts, 4 operations- computational performance 
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Best obj Time(sec) Best.obj Time(sec) Best obj Time(sec) Best.obj Time(sec)

3 parts 4 parts

* 39 53.422 39 95 123 155.731 174 3600

* 37 48.687 37 20 145 154.345 ** 3600

* 11 48.531 11 1 119 152.224 214 3600

* 36 48.484 36 24 113 151.965 152 3600

* 32 52.906 32 52 105 152.710 143 3600

* 35 52.703 35 32 150 152..622 160 3600

Ave 50.789 Ave.Gap 0.00 Ave 153.395 Ave.Gap -0.26

3 parts 3 parts

68 142.459 68 3600 150 167.279 160 3600

48 141.368 49 3600 181 168.229 ** 3600

72 142.705 72 3600 160 170.145 190 3600

62 145.457 62 3600 158 166.634 184 3600

78 150.536 78 3600 146 166.339 159 3600

68 145.055 68 3600 145 163.795 186 3600

Ave 144.597 Ave.Gap 0.00 Ave 167.070 Ave.Gap -0.13

4 parts 6 parts

* 67 139.906 67 7218 161 159.810 190 3600

* 63 138.773 63 18034 164 160.691 196 3600

85 138.951 85 3600 170 156.988 ** 3600

81 136.877 82 3600 141 156.837 175 3600

68 133.581 67 3600 154 161.577 183 3600

* 58 133.326 58 1782 147 157.527 ** 3600

Ave 136.902 Ave.Gap 0.00 Ave 158.905 Ave.Gap -0.55

3 operations

GA

4 opertions

LINGO

4 operations

6 operations

GA LINGO

3 operations

3 operations

Table A.4.6.1 Comparison of objective values and computation times between GA-

based and LINGO for 90 data sets 

*Optimal solution was found by LINGO     

**LINGO did not provide a feasible solution within 1 hour of computation 
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GA LINGO GA LINGO

Best obj Time(sec) Best.obj Time(sec) Best obj Time(sec) Best.obj Time(sec)

3 parts 5 operations 5 parts 4 operations

112 155.815 106 3600 220 175.283 305 3600

128 155.982 150 3600 205 169.309 250 3600

102 153.716 107 3600 198 168.138 328 3600

115 154.225 146 3600 180 167.281 198 3600

108 151.414 121 3600 184 168.437 ** 3600

104 150.432 107 3600 193 166.137 354 3600

Ave 153.597 Ave.Gap -0.08 Ave 169.098 Ave.Gap -0.28

5 part 3 operations 3 parts 7 operations

127 149.027 122 3600 207 181.312 267 3600

114 148.191 133 3600 212 180.451 236 3600

103 145.001 119 3600 209 181.979 222 3600

107 146.082 105 3600 199 188.153 ** 3600

119 146.170 127 3600 198 181.941 285 3600

110 147.152 151 3600 195 179.070 506 3600

Ave 146.937 Ave.Gap -0.09 Ave 182.151 Ave.Gap -0.26

7 parts 3 operations 6 parts 4 operations

220 197.477 275 3600 269 183.678 292 3600

232 173.412 233 3600 276 184.134 376 3600

212 180.901 193 3600 246 179.688 399 3600

206 177.366 ** 3600 265 187.370 ** 3600

199 172.240 225 3600 262 181.198 434 3600

212 170.283 327 3600 267 182.177 267 3600

Ave 178.613 Ave.Gap -0.11 Ave 183.041 Ave.Gap -0.22

 

 

 

          

        

 

 

 

Table A.4.6.2 Comparison of objective values and computation times between GA-

based and LINGO for 90 data sets 
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GA LINGO

Best obj Time(sec) Best.obj Time(sec)

3 parts 8 operations

261 199.777 339 3600

281 199.369 342 3600

267 199.051 ** 3600

268 201.626 ** 3600

268 197.129 418 3600

279 196.948 ** 3600

Ave 198.983 Ave.Gap -0.13

8 parts 3 operations

267 189.219 248 3600

276 189.119 ** 3600

286 190.806 285 3600

255 190.148 ** 3600

270 184.773 339 3600

269 188.202 292 3600

Ave 188.711 Ave.Gap -0.05

5 parts 5 operations

297 193.051 340 3600

299 193.325 ** 3600

279 190.818 289 3600

276 190.696 ** 3600

305 187.949 317 3600

310 183.953 323 3600

Ave 189.965 Ave.Gap -0.06       

 

 

 

 

  

Table A.4.6.3 Comparison of objective values and computation times between GA-based 

and LINGO for 90 data sets (continued)
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Table A.5.3-Results of dynamic programming based heuristic (period 3 and 2) 
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Table A.5.4-Results of dynamic programming based heuristic (period 2 and 1) 
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Table A.5.6 - Processing times for 12 part, 3operations, 3 machines 
[machine, part, operation, time] 

Table A.5.5 -MCIM   for 12 parts , 3 operations 
[machine, part, operation] 

Table A.5.7 - setup times for 12 part, 3operations, 3 machines 


