
A SOAP Web Services-Based Architecture for

Floor Control in Multimedia Conferencing

 Jagdeep Singh

A Thesis

in

The Department

of

Electrical and Computer Engineering

Presented in Partial Fulfillment of the Requirements for the

Degree of Master of Applied Science at Concordia

University

Montréal, Québec, Canada

 October 2012

 © Jagdeep Singh, 2012

CONCORDIA UNIVERSITY

SCHOOL OF GRADUATE STUDIES

This is to certify that the thesis prepared

By: Jagdeep Singh

Entitled: “A SOAP Web Services-Based Architecture for Floor Control in

Multimedia Conferencing” and submitted in partial fulfillment of the

requirements for the degree of

Master of Applied Science

Complies with the regulations of this University and meets the accepted

standards with respect to originality and quality.

Signed by the final examining committee:

___ Chair
 Dr. F. Khendak

___ Examiner, External

 Dr. J. Rilling (Computer Science) To the Program

___ Examiner

 Dr. A. Agarwal

___ Supervisor
 Dr. R. Glitho

Approved by: ___
 Dr. W. E. Lynch, Chair

 Department of Electrical and Computer Engineering

____________20_____ ______________________________

 Dr. Robin A. L. Drew

 Dean, Faculty of Engineering and

 Computer Science

ABSTRACT

A SOAP Web Services-Based Architecture for Floor

Control in Multimedia Conferencing

JAGDEEP SINGH

Multimedia conferencing applications are an important and widely-used category

of Web applications. Floor control is a significant and advanced feature of

multimedia conferencing applications. Floor control mechanisms, when

introduced in audio/video conferencing, control the media streams such as

identifying which participant is allowed to send and who can be seen or heard.

This prevents conflict and ensures an optimized use of resources between the

conference participants. Floor control is composed of three logical entities: a

single floor control server (i.e. entity responsible for managing the floors and their

status), one or more floor chairs (moderators), and any number of regular

conference participants.

This thesis proposes a SOAP Web services based architecture for floor control in

multimedia conferencing. Web services are designed to support interoperable

machine-to-machine interaction over a network. They are attractive because of

their flexibility. There are two types of web services: SOAP Web services and

RESTful Web services. In SOAP Web services, interactions between the entities

are based on XML and use SOAP, which is embedded in HTTP. RESTful web

services are an architectural design style that rely on HTTP, but do not use SOAP.

iii

http://en.wikipedia.org/wiki/Interoperability
http://en.wikipedia.org/wiki/Computer_network

XML is also optional. We propose a set of floor control requirements and use

them to review the related work and pinpoint the weaknesses. The proposed

architecture includes the main components of floor control. It also includes a

comprehensive set of server-side and client-side SOAP web service APIs that

expose the floor control capabilities to application developers. The proposed APIs

are programming language-independent and provide a higher level of abstraction

to the application developers, which enables the interoperability. Furthermore, in

the proposed architecture the floor control clients do not interact directly with the

floor control server (FCS) but through a gateway accessible using SOAP web

services. This opens up the possibility to use different floor control protocols

transparently to the floor control clients. Application portability is no longer a

problem because floor clients access the floor capabilities independently of the

protocol supported by the FCS.

We have built a conferencing application with floor control as a proof of concept

to demonstrate the new interface for floor control and the feasibility of the

proposed architecture. In addition, performance measurements have also been

made to evaluate the viability of the architecture.

iv

Acknowledgments

I wish to express my sincere gratitude and appreciation to all people who

helped me made this master thesis possible. First and foremost, I dedicate

special thanks to my supervisor Dr. Roch Glitho who kept an eye on my

progress and supported me with sound advices and discussions. His words

of wisdom always oriented me in the right direction or showed me different

perspectives and I am very grateful for that.

I also offer my gratitude to Dr. Fatna Belqasmi for all her support, ideas and

comments throughout my work. Her positive attitude and enthusiasm helped me a

lot along the way.

I’m grateful to Dr. F. Khendek, Dr. Agarwal and Dr. Rilling for serving as

members of my thesis committee.

I am grateful to Dr. Roch Glitho and Concordia University for their financial

support.

Last but not least, my personal thanks go to my dearest friends and family who

never ceased to give me moral support and were there when I needed them. You

always understood and supported the choices I made during this long and personal

journey

v

 Table of Contents

 List of Figures ... x

 List of Tables .. xi

 List of Acronyms and Abbreviations ... xii

 Chapter 1

Introduction... ...1

1.1 Research Domain... ...2

1.2 Motivation and Problem Statement …………………………………..... ...3

1.3 Thesis Contribution…………………………………………………….. ...4

1.4 Thesis Organization.. ...5

Chapter 2 Background 6

2.1 Floor control in Multimedia conferencing... ...6

2.1.1 Introduction.. ...6

2.1.2 Floor control model... ...7

2.1.3 Integrating floor control with conferencing..................................... 9

2.1.4 Protocols involved in floor control.. .10

2.2 Web services... .16

2.2.1

Definition... .17

2.2.2 Web service model... 17

2.2.3 SOAP Web services.. 19

 vi

 2.3 Chapter Summary.. 26

Chapter 3 Requirements and State of the Art Evaluation………………………..28

3.1 Requirements for floor control in Multimedia Conferencing…………29

3.1.1 Functional Requirements... 29

3.1.2 Architectural Requirements... 30

3.2 Evaluation of Related work…………………………………………… 31

3.2.1 Related Work on floor control in multimedia conferencing............ 31

 3.2.1.1 Related Work Proposed by Standard Bodies…………………… 32

 3.2.1.2 Related Work Proposed Outside Standard Bodies……………… 38

 3.2.1.3 Evaluation Summary……………………………………………..42

 3.3 Chapter Summary…………………………………………………...…42

Chapter 4 Proposed Architecture ………………………………………………. 44

 4.1 Overall Architecture ………………………………………………...... 44

4.1.1 Functional Entities ... 45

4.1.2 Communication Interfaces .. 49

4.1.3 Requirements met by the architecture... 49

 4.2 Proposed SOAP Web services –based Floor control APIs……………....50

 4.2.1 Proposed server-side Floor control APIs.. 50

4.2.2 Proposed client-side Floor control APIs.. 56

 4.3 Illustrative Scenarios……………………………………..……………....59

 4.3.1 Scenario: Creating a Multimedia Conference with Floor Control... 60

vii

 4.3.2 Scenario: Adding participant to conference and floor....................... 61

 4.3.3 Scenario: Request and Release Floor …………………………….... 63

4.3.4 Scenario: Revoke Floor by application.. 65

 4.3.5 Scenario: Subscribe to Floor Events and Set Up Notifications…....... 67

 4.3.6 Scenario: Request Floor When Floor Control Policy is Chair-controlled

..68

 4.4 Chapter Summary…………………………………………………………..70

Chapter 5 Validation: Prototype and Evaluation ………………………………. 72

 5.1 Implementation Architecture………...……………………….……..........72

5.1.1 System components…………………………………………………..72

5.1.2 Illustrative Scenarios .. 76

 5.2 Prototype…………………………………………………..…………........83

 5.2.1 Implemented Components…………….. 83

5.2.2 Prototype capabilities…………………….. 84

5.2.3 Graphical user interfaces……………..…... 85

 5.3 Performance Measurements…………………………..…………………….86

 5.3.1 Experimental Setup…………………………………………………87

 5.3.2 Performance Metrics………………………………………………..88

 5.3.3 Measurement Analysis………………………………………...……89

 5.4 Chapter Summary………………………………...………………………...91

Chapter 6 Conclusion and Future Work………..………………………………. 92

 6.1 Summary of contributions….………...………………………..………......92

viii

 6.2 Future work………………………………………………………………...94

Bibliography95

ix

List of Figures

Figure 2‎.1‎:Floor‎control‎model……………………………………………‎‎......8

Figure 2‎.2‎:User requesting the floor to obtain the right to talk during a

conference ……………………………………….. 10

Figure 2‎.3‎:Integrating‎floor‎control‎with‎conferencing………………………..11

Figure 2‎.4: BFCP primitives ……………………………………………….…..12

 Figure 2‎.5: User requests a floor, obtains it, and, at a later time, releases it…...13

Figure 2‎.6: TBCP operations …………………………………………………...15

Figure 2‎.7: Web services model………………………..……………………….19

Figure 2‎.8: SOAP Web services conceptual stack and technologies involved….20

Figure 2‎.9: Simplest SOAP Web service stack ………………………………....22

Figure 2‎.10: Parlay-X Web service model ……………………………………...25

Figure 2‎.11: Overall Parlay-X Web service architecture …………………….....26

Figure 3.1: Functionality architecture of floor control…..………………………32

Figure 3.2: Combined procedures to configure a conference and add a floor

control termination…………………………………………………...………….33

Figure 3.3: Conferencing system logical decomposition…………...….………..34

Figure 3.4: Scenario for floor control in conferencing …………...………….…35

Figure 3.5: Basic signaling architecture…………………………….…………...37

Figure 3.6: FCS collocated with application server………..…………………….37

Figure 3.7: FCS collocated with application server………..…………………….38

Figure 3.8: Floor control architecture ………..………………………………….39

Figure 3.9: Overall floor control architecture…… ………..…………………….40

Figure 3.10: An example of conference control signaling……………………….41

Figure 4.1: Overall architecture………………………………………………….45

Figure 4.2: Scenario: Creation of multimedia conference with floor control…....61

x

Figure 4.3: Scenario: Adding participant to conference and floor ……………...62

 Figure 4.4: Scenario: Request Floor and Release Floor ….………………….....64

Figure 4.5: Scenario: Revoke Floor by application………….………………….66

Figure 4.6: Scenario: Subscribe to Floor Events and Set Up Notifications …….68

Figure 4.7: Request floor, when floor policy is Chair-controlled ………………69

Figure 5.1: Implementation Architecture………………………………………..73

Figure 5.2: Scenario: Creating a Multimedia Conference with Floor Control…..78

Figure 5.3: Scenario: Adding a participant to a conference and floor …………..80

Figure 5.4: Scenario: Requesting a floor…….. ………………………………....82

Figure 5.5: A screen shot of the Conferencing Application …….……………....86

Figure 5.6: A screen shot of the Conferencing Application ……………....….....86

Figure5.7: Experimental Setup…………………………………………………..87

 xi

List of Tables

 Table 3.1: Evaluation of relevant state of art……………………………………43

 Table 4‎.1‎: Input message: createConferenceWithFloorControlRequest 51

 Table 4‎.2‎:Output message: createConferenceWithFloorControlResponse 52

 Table 4‎.3‎: Input message: createfloorRequest .. 52

 Table 4‎.4: Output message: createfloorResponse ... 52

 Table 4‎.5: Input message: addPartcipantToConferenceAndFloorRequest 53

 Table 4‎.6: Output message: addPartcipantToConferenceAndFloorResponse…..53

 Table 4‎.7‎: Input message: removeFloorRequest ... 54

 Table 4‎.8‎:Output‎message‎:removeFloorResponse‎.. 54

 Table 4‎.9‎: Input message: revokeFloorRequest………………………………...54

 Table 4‎.10‎:Output‎message‎:revokeFloorResponse‎ ... 54

 Table 4‎.11: Input message: setFloorChairRequest …………………………….55

 Table 4‎.12: Output message: setFloorChairResponse .. 55

 Table 4‎.13: Input message: removePartcipantToFloorRequest 55

 Table 4‎.14: Output message: removePartcipantToFloorRequest 56

 Table 4‎.15: Input message: requestFloorRequest ... 56

 Table 4‎.16: Output message: requestFloorResponse …………..……………….56

 Table 4‎.17: Input message: releaseFloorRequest.. 56

 Table 4‎.18: Output message: releaseFloorResponse .. 56

 Table 4‎.19: Input message: subscribeFloorEventsRequest……………………...57

 Table 4‎.20: Output message: subscribeFloorEventsRequestResponse ………....57

 Table 4‎.21: Input message: revokeFloorRequest .. 58

 Table 4‎.22: Output message: revokeFloorResponse…………………………… 58

xii

 Table 4‎.23: Input message: grantFloorRequest ………………….......................59

 Table 4‎.24: Output message: grantFloorResponse .. 59

 Table 4‎.25: Input message: denyFloorRequest ... 59

 Table 4‎.26: Output message: denyFloorResponse ……………..........................59

 Table 5.1 and 5.2: Performance results …………………………………………90

xiii

List of Acronyms and Abbreviations

3GPP 3rd Generation Partnership Project

API Application Programming Interface

AS Application Server

BFCP Binary Floor Control Protocol

XML Extensible Markup Language

FCS Floor Control Server

FCFS First Come First Serve

FSCML Floor Server Control Mark-up Language

GUI Graphical User Interface

HTTP Hypertext Transfer Protocol

IETF Internet Engineering Task Force

xiv

IMS IP Multimedia Subsystem

IETF Internet Engineering Task Force

IVR Interactive Voice Response

MS Media Server

MSCML Media Server Control Mark-up Language

MRFP Media Resource Function Processor

MRFC Media Resource Function Controller

OSA Open Service Access

OSA GW Open Service Access Gateway

OSA SCS Open Service Access Service Capability Server

OMA Open Mobile Alliance

OEPE Oracle Enterprise Pack for Eclipse

PoC Push to talk over cellular

RTP Real-time Transport Protocol

RTCP RTP Control Protocol

xv

REST Representational State Transfer

RPC Remote Procedure Call

ROA Resource Oriented Architecture

SIP Session Initiation Protocol

SDP Service Delivery Platform

SOAP Simple Object Access Protocol

TBCP Talk Burst Control Protocol

TCP Transport Control Protocol

URI Uniform Resource Identifier

UE User Equipment

UDP User Datagram Protocol

UDDI Universal Description, Discovery and Integration

WLAN Wireless Local Area Network

WSDL Web Services Description Language

xvi

1

Chapter 1

Introduction

This chapter first presents an overview of the research domain, followed by the

motivations and problem statement. Next, it presents the thesis contributions. The

last section presents the thesis organization.

1.1 Research Domain

Multimedia conferencing is an important category of Web applications. It is the

basis of a wide range of applications including audio/video conferencing, gaming

and distance learning. Conference control [2] is a core building block of

multimedia conferencing. It includes conference management, membership

control and floor control. Conference control has been an area of intensive

research over the years. In this thesis we focus on the floor control feature of

conference control and how to expose this feature to multimedia conferencing

application developers.

1.1.1 Floor Control in Multimedia Conferencing

Floor control [1] is a significant and advanced feature of multimedia conferencing

applications. Resources (e.g. audio/video channels, slide bar presentation) are

usually shared in conferencing. Floor control is used to manage the joint or

2

exclusive access to these shared resources. It prevents conflict, degradation of

quality of service (e.g. ten people talking at the same time) and ensures an

optimized use of resources. The model for floor control is composed of three

logical entities: a single floor control server, one or more floor chairs

(moderators), and any number of regular conference participants. The floor

control messages are conveyed between the floor chairs (moderators) of the

conference, the floor control server (FCS), and the participants of the conference.

A centralized architecture is assumed in which all messages go via one point: the

FCS. Processing (granting or rejecting) floor control requests is done by the one

or more floor chairs or by the server itself, depending on the policy (i.e. Chair-

controlled or Algorithm-based). For example, floor control mechanisms, when

introduced in audio/video conferencing, control the media streams such as

identifying which participant is allowed to send and who can be seen or heard.

The participant having a floor can make the related media available to the other

participants (i.e. audio/video) of the conference.

1.1.2 Web Services

Web services [9] in their simplest definition are programmatic interfaces that

allow application-to-application communication over a network. Web service

interfaces are attractive because they provide a higher level of abstraction as well

as loose coupling between the interacting software components. Web services

have been adopted in many application domains (telecommunications, digital

imaging, e-commerce etc.). The reason to do so has mainly been ease of

integration with other applications or with other business processes.

http://en.wikipedia.org/wiki/Computer_network

3

There are two types of web services: SOAP Web services [11] and RESTful Web

services [17]. In SOAP Web services, interactions between the entities are based

on XML and use SOAP which is embedded in HTTP. RESTful web services are

an architectural design style that rely on HTTP, but do not use SOAP. XML is

also optional. The mentioned advantages of web services make them an attractive

solution to expose the floor control capabilities in multimedia conferencing while

hiding their domain-specific details, enable interoperability and ease application

development.

In this thesis we use SOAP Web services to build an architecture for floor control

in multimedia conferencing.

1.2 Motivation and Problem Statement

Floor control is used in most applications which are based on multimedia

conferencing (e.g. audio/video conferencing, gaming and distance learning). Floor

control avoids chaotic situations when everybody attempts to use the resource (i.e.

audio/video) at the same time. Furthermore, floor control improves the efficiency

when bandwidth restriction is a concern.

Various standard bodies (e.g. 3GPP, IETF, Parlay) have proposed architectures

that integrate floor control with conferencing. However, current mechanisms used

for exposing the floor control capabilities have shortcomings that can hinder

application development. Some of these mechanisms are programming language-

dependent, others require extensive knowledge of network domain and its low

level details, and few of them do not provide the comprehensive functionality

4

required for the floor control. In brief, it is difficult to integrate the floor control

capabilities in applications. Furthermore in the state of art, the floor client

interacts directly with the floor control server (FCS). This constrains the

possibility of using different floor control protocols transparently to the floor

clients. Also, the client application remains no longer portable because if the FCS

is replaced and the new FCS supports different protocols, the client application

would have to be upgraded. .

Consequently, the motivation of the thesis is to provide a framework for floor

control which enables interoperability and portability. This thesis established that

a SOAP Web service based framework is the most promising, as web services

provide a higher level of abstraction and integrate easily with other applications

while being programming language and platform neutral.

1.3 Thesis Contributions

The contributions of the thesis are as follows:

 A set of requirements for floor control in multimedia conferencing.

 A review of the state of the art relevant to our work with an evaluation

summary comparing to our requirements.

 A proposal for a novel SOAP web services based floor control

architecture in multimedia conferencing that meets all our

requirements

 SOAP web services based APIs for floor control that extend the

existing Parlay-X (SOAP-based) multimedia conferencing web service

5

functionality with floor control capabilities, including a comprehensive

set of server-side and client-side APIs that expose the floor control

capabilities to application developers

 An implementation architecture and a proof of concept prototype

 A preliminary performance evaluation of the proposed architecture

1.4 Thesis Organization

The rest of thesis is organized as follows:

Chapter 2 discusses the concepts and definitions related to floor control in

multimedia conferencing and Web services (with a main focus on SOAP-based

web services) that will illustrate to the reader the basic ideas relevant to this

thesis.

Chapter 3 introduces the requirements for floor control in multimedia

conferencing, followed by the state of the art related to floor control in

multimedia conferencing applications and SOAP-based web services.

Furthermore, it presents the evaluation of related works comparing with our

requirements.

Chapter 4 describes the proposed architecture for floor control in multimedia

applications. It includes the main components for floor control, communication

interfaces and the SOAP-based floor control interfaces.

6

Chapter 5 is dedicated to the implementation architecture of the system

components. It presents the implemented proof of concept prototype and includes

some performance measurements.

Chapter 6 concludes the thesis by briefly summarizing the overall contributions

and suggesting some future work.

7

Chapter 2

Background on Floor Control in

Multimedia Conferencing and

Web Services

This chapter introduces the main topics which are relevant to this thesis research

domain. The main topics introduced are floor control in multimedia conferencing

and Web services.

2.1 Floor Control in Multimedia Conferencing

This section discusses floor control in multimedia conferencing. We start with a

brief introduction of floor control in multimedia conferencing. Then we present

the floor control model with some illustrative examples, followed by a sub-section

that discusses integration of floor control with conferencing. Then the existing

protocols involved in the floor control are introduced. Finally, protocols between

the conferencing application server and floor control server (FCS) are explained.

2.1.1 Introduction

Multimedia conferencing applications are an important and widely-used category

of Web applications. It is the basis of a wide range of applications including

audio/video conferencing, gaming and distance learning. Conference control [2] is

a core building block of multimedia conferencing, which includes conference

8

management, membership control and floor control. Resources (e.g. audio/video

channels, slide bar presentation) are usually shared in conferencing.

Floor control [1] is used to manage the joint or exclusive access to these shared

resources (e.g. audio/video) in the conference. It prevents conflict, degradation of

quality of service (i.e. ten people talking at the same time) and ensures an

optimized use of resources.

For example, floor control mechanisms, when introduced in audio/video

conferencing, control the media streams, such as identifying which participant is

allowed to send and who can be seen or heard. This prevents the access conflicts

between the conference participants.

The usage of the resources can also be optimized by setting the number of

participants who can hold the floor (i.e. share the resource) at the same time,

depending on the available bandwidth. Furthermore, the participants make

separate requests to access different resources. For example, if a participant wants

to talk he will request audio floor and if he wants to write he requests for text

floor. Also, if he wants to write and speak simultaneously he can ask for the floor,

which has both the medias associated with it.

2.1.2 Floor Control Model

The floor is an individual temporary access or manipulation permission for a

specific shared resource (or group of resources).

The model for floor control [1] is composed of three logical entities: a single floor

control server, one or more floor chairs (moderators), and any number of regular

conference participants, as illustrated in Figure 2.1.

9

Figure 2.1: Floor control model

Floor Control Server (FCS): This logical entity maintains the floor status which

includes information like who are the floor chairs, who holds the floor and which

floor exists. It can inform the participants about the floor status. It can grant the

floor depending on the floor policy adopted (e.g. if a non-chair policy is adopted).

Floor Participant: A conference participant entitled to request “right to speak” in

form of a floor. Floor participant can request the floor from the FCS and will

receive a grant or denied message back.

Floor Chair: A conference participant or an entity outside the conference who

decides which participant can get the floor and when. It sends the decisions (e.g.

floor accepted, revoked or granted) to the FCS.

Floor control mechanisms depend on the policy adopted for granting the floor.

When the floor control policy is chair-moderated, then the decision to grant the

floor is issued by the designated chairperson of the floor. However, if the floor

policy is FCFS (first come first serve) or any other algorithm based, then the

decision is made by FCS.

10

The following figure 2.2 illustrates a user requesting the floor to obtain the right

to talk during a conference.

Figure 2.2: User requesting the floor to obtain the right to talk during a

conference

2.1.3 Integrating Floor Control with Conferencing

Floor control itself does not support privileges such as creating/removing floors

and appointing floor chairs [1]. Instead, some external mechanism such as

conference management (e.g. internal Web-interface for policy manipulation) is

used for that. The conference policy (and conference owner or creator) defines

whether floor control is in use or not. In general, it is assumed that the conference

policy defines who is allowed to create, change, and remove a floor in a

conference. It is also the conference policy that defines which media streams may

be used in a conference and which ones are floor-controlled. Typically, the

conference owner creates the floor(s) using the conference policy control protocol

(or some other mechanism) and appoints the floor chair.

11

The FCS is a separate logical entity. Therefore it can interact with the

conferencing application server to stay updated with the latest floor information

(e.g. a new floor is created, a new chairperson is designated, a floor is removed,

and a participant is added to /removed from the floor) [16].

Figure 2.3: Integrating floor control with conferencing

In figure 2.3, the conferencing application server manages the FCS by providing

the latest floor information. Additionally, the FCS can notify the conferencing

server if any request related to the existing floor arrives from the floor client or

chair.

2.1.4 Protocols Involved in Floor Control

The existing floor control protocols are Binary Floor Control Protocol (BFCP)

and Talk Burst Control Protocol (TBCP).They are discussed in the following sub-

sections.

2.1.4.1 Binary Floor Control Protocol (BFCP)

Binary Floor Control Protocol (BFCP) [3] is a protocol to coordinate access to

shared resources in a conference. The Requirements for Floor Control Protocol

[1] list a set of requirements that need to be met by floor control protocols. BFCP

meets these requirements. It is used to convey the floor control messages among

12

the floor chairs (moderators) of the conference, the floor control server, and the

participants of the conference. A centralized architecture is assumed in which all

messages go via one point, the floor control server. Processing (granting or

rejecting) floor control requests is done by one or more floor chairs or by the

server itself, depending on the policy. BFCP mainly runs only over TCP, which

makes it a reliable carrier. It uses binary encoding, resulting in smaller message

sizes that helps to cope with incidents of low-bandwidth and transferring the

delay-sensitive messages as opposed to textual protocols.

BFCP provides processes for:

 Floor participants to send floor requests to floor control servers.

 Floor control servers to grant or deny requests access to a given resource

from floor participants.

 Floor chairs to send floor control servers decisions regarding floor

requests.

 Floor control servers to keep floor participants and floor chairs informed

about the status of a given floor or floor request.

Primitives provided by BFCP to support the floor control functionality are

illustrated in figure 2.4

13

Figure 2.4: BFCP primitives [3]

However, the concrete floor creation, obtaining floor resource associations or

information to contact a floor control server and floor control privileges are not in

the scope of BFCP but are essential for the operation of the protocol.

BFCP connection parameters between the floor clients and FCS are negotiated

using SDP offer/answer exchange [6].

Figure 2.5 shows how a floor participant requests a floor, obtains it, and, at a later

time, releases it. This figure illustrates the use, among other things, of the

Transaction ID the FLOOR-REQUEST-ID (i.e. represents a unique floor request)

attribute. The other parameters like User ID identify the user requesting the floor,

while FLOOR- ID identifies the unique floor which is requested.

14

Figure 2.5: User requests a floor, obtains it, and, at a later time, releases it [3]

2.1.4.2 Talk Burst Control Protocol (TBCP)

TBCP (Talk Burst Control Protocol) [5] has been defined as the floor control

mechanism for PoC (push to talk over cellular) services by the Open Mobile

Alliance (OMA).TBCP uses the application extension features of RTCP (RTP

Control Protocol) for the exchange of information.

The basic TBCP messages [4] are as follows:

 Talk Burst Request: This request is issued by the participant willing to

access the floor. The request contains the priority level which the user

can use to notify the server about the importance of the request.

 Talk Burst Granted/Denied: This is used by the server to notify the

requesting client that its request has been either accepted or rejected. In

15

case the Talk Burst was granted, the server may notify a ‘stop talking’

timer in order to limit the length of the Talk Burst.

 Talk Burst Release: This is sent by a client to notify the server that it has

finish sending the talk burst.

 Talk Burst Idle/Taken: This is used by the server to notify the

participants whether the floor is free or not.

 Talk Burst Revoke: This is used by the server to pre-empt an ongoing

Talk-Burst.

TBCP is a fast and secure protocol. The only limitation is that it provides basic

floor control functionalities (e.g. no chair supported). Figure 2.6 illustrates the

dome of TBCP operations. Here the PoC server acts as a floor control server and

is responsible for granting the floor request to the clients.

Figure 2.6: TBCP operations [4]

2.1.5 Protocols between the Conferencing Application

Server and the Floor Control Server

The floor control server (FCS) capabilities are managed by the conferencing

application server using the following protocols:

16

 Megaco/H.248: Used by the standard body 3GPP [7] between the

application server and MRFP (i.e. FCS) to provide the floor-related

capabilities such as creating/removing floors, associating the resources to

the floors and appointing floor chairs.

 SIP Floor Sever Control Markup Language (SIP-FSCML) [8]: Proposed

outside the standard bodies as a communication protocol between the

application server and the FCS. It is less complex and easy to understand

and use by SIP application developers. It follows SIP and XML

paradigms. It enables a peer-to-peer communication model between the

application server and FCS. This allows the FCS to be simultaneously

used by multiple application servers. The characteristics of the protocol

are as follows:

 FSCML requests to the FCS are carried in SIP INFO messages

where each INFO message includes a single FSCML body

 An FSCML body can carry any number of FSCML requests.

 SIP-FSCML responses are transported in a separate INFO

message.

 SIP-FSCML Is a request-response protocol with only final

responses.

 SIP-FSCML based operations:

 Open/close control connection

 Create floor

 Create floor connection

17

 Add/remove floor to/from a conference

 Set/update chair for a floor

 Add/remove floor participant(s)

 Set floor algorithm

 Add/remove media to/from a floor

 Set maximum floor holders

 Set maximum floor holding time

2.2 Web Services

This section discusses the Web services. We start with the definition of Web

services followed by the Web services model. Then we discuss the SOAP Web

services. The last section discusses Parlay-X Web services as one of the

applications of SOAP Web services in the telecommunication domain.

2.2.1 Definition

Web services in their simplest definition are programmatic interfaces that allow

application-to-application communication over a network [9]. Web services have

become an attractive approach of application/service integration over internet

mainly because of the following fundamental principles [10]:

 Coarse grained approach: The Web service technology provides a higher

level of abstraction that allows developers to integrate required

functionalities to their applications easily and rapidly.

 Loose coupling: Applications developed using Web services are loosely

coupled, which makes them independent. For example, application A

http://en.wikipedia.org/wiki/Computer_network

18

which talks to application B should not necessarily be re-written if

application B is modified.

 Synchronous and asynchronous mode of communication: Web service

applications support both synchronous and asynchronous modes of

communication.

2.2.2 Web Service Model

Web Services architecture is based on the interactions between three entities [9]:

 Service provider: From a business perspective, this is the owner of the

service. From an architectural perspective, this is the platform that hosts

access to the service.

 Service registry: This is a searchable registry of service descriptions where

service providers publish their service descriptions. Service requestors

find services and obtain binding information (in the service descriptions)

for services during development for static binding or during execution for

dynamic binding. For statically bound service requestors, the service

registry is an optional role in the architecture because a service provider

can send the description directly to service requestors. Likewise, service

requestors can obtain a service description from other sources besides a

service registry, such as a local file, FTP site, Web site, Advertisement and

Discovery of Services (ADS) or Discovery of Web Services (DISCO).

 Service requestor: From a business perspective, this is the business that

requires certain functions to be satisfied. From an architectural

perspective, this is the application that looks for and invokes or initiates an

19

interaction with a service. The service requestor role can be played by a

browser driven by a person or a program without a user interface (e.g.

another Web service).

The interactions involved between the three entities are publish, find and bind

operations. In a typical scenario, a service provider hosts a network-accessible

software module (i.e. an implementation of a Web service). The service provider

defines a service description for the Web service and publishes it to a service

requestor or service registry. The service requestor uses a find operation to

retrieve the service description locally or from the service registry, and uses the

service description to bind with the service provider and invoke or interact with

the Web service implementation. Service provider and service requestor roles are

logical constructs and a service can exhibit characteristics of both.

 Figure 2.7 illustrates the Web services business model. It includes the interaction

between Web service entities using the defined operations (i.e. publish, find and

bind).

Figure 2.7: Web services business model

20

Types of Web Services

There are two types of Web services: SOAP Web Services and RESTful Web

Services. Since our research interest is in SOAP Web services, it is discussed in

detail in the following sub-section.

2.2.3 SOAP Web Services

This sub-section discusses the SOAP Web services, starting with its definition.

Next, the technologies involved in the SOAP Web services are discussed. Then

the applications of SOAP Web services in telecommunication are provided.

Finally Parlay X Web services are discussed as one of the application of SOAP

Web services.

2.2.3.1 Definition

SOAP Web services [11] are also called Big Web Services or WS-* Web services

in the literature. SOAP Web services interactions between the entities are based

on XML and use SOAP which is embedded in HTTP.

2.2.3.2 Technologies Involved

A SOAP Web services stack exisits that enables the feasibility of the three

operations of publish, find and bind in an interoperable manner [9] [11]. The

conceptual Web services stack is illustrated in figure 2.8.

The upper layers build upon the capabilities provided by the lower layers. The

vertical towers represent requirements that must be addressed at every level of the

stack. The text on the left represents standard technologies that apply to that layer

of the stack.

21

Figure 2.8: SOAP Web services conceptual stack and technologies involved [9]

The foundation of the SOAP Web services stack is the network. Web services

must be network-accessible to be invoked by a service requestor. HTTP is the de

facto standard network protocol for Internet-available Web services. Other

Internet protocols can be supported, including SMTP and FTP.

The next layer, XML-based messaging [12], represents the use of XML as the

basis for the messaging protocol. SOAP is the chosen XML messaging protocol

for many reasons [12]:

 It is the standardized enveloping mechanism for communicating

document-centric messages and remote procedure calls using XML.

 It is simple; it is basically an HTTP POST with an XML envelope as a

payload.

 It is preferred over simple HTTP POST of XML because it defines a

standard mechanism to incorporate orthogonal extensions to the

message using SOAP headers, and uses standard encoding of operation

or function.

22

 SOAP messages support the publish, find and bind operations in the

Web services architecture

The next layer, service description, is actually a stack of description documents.

First, WSDL [12] is the de facto standard for XML-based service description.

This is the minimum standard service description necessary to support

interoperable Web services. WSDL defines the interface and mechanics of service

interaction. An additional description is necessary to specify the business context,

qualities of service and service-to-service relationships. The WSDL document can

be complemented by other service description documents to describe these

higher-level aspects of the Web service. For example, business context is

described using UDDI data structures in addition to the WSDL document.

Because Web services are defined as being network-accessible via SOAP and

represented by a service description, the first three layers of this stack are required

to provide or use any Web service. Considering this, the simplest possible stack

would consist of HTTP for the network layer, the SOAP protocol for the XML

messaging layer and WSDL for the service description layer (Figure 2.9).

Figure 2.9: Simplest SOAP Web service stack [11]

23

This is the interoperable base stack that all inter-enterprise or public Web services

should support. It provides interoperability and enables Web services to leverage

the existing Internet infrastructure.

While the bottom three layers of the stack identify technologies for compliance

and interoperability, the next two layers, service publication and service

discovery, can be implemented with a range of solutions. WSDL can be made

available in several ways, including:

 The service provider sends a WSDL document directly to a service

requestor (i.e. direct publication).

 The service provider can publish the WSDL document describing the

service to a host local WSDL registry, private UDDI registry or the UDDI

operator node.

Similarly, there are varieties of discovery mechanisms to gain access to the

service description and make it available to the application at runtime:

 The service requestor retrieves a WSDL document from a local file

(usually the WSDL document obtained through a direct publish).

 The service can be discovered at design time or runtime using a local

WSDL registry, private UDDI registry or the UDDI operator node.

2.2.3.3 Application of SOAP Web Services in

Telecommunications

SOAP Web service is a key technology for service provisioning in next-

generation networks (NGNs). SOAP Web services can be used to expose the

network capabilities (e.g. multimedia conferencing, call control, presence,

24

messaging) as Web services to the application developers. Web services introduce

loose coupling between applications and keep the communication at a higher level

of abstraction which makes application development easier and faster.

Parlay-X [14] and Open Mobile Alliance (OMA) specifications [16] are based on

SOAP Web services. Parlay-X Web services are the building blocks of

telecommunication capabilities that application developers can quickly

comprehend and use to generate new and innovative applications. Parlay-X

specifications aim to cover all telecommunication capabilities [13]. However,

OMA specifications focus more on mobile services. They aim at providing

solutions to problems incurred when using Web services in OMA environments.

2.2.3.4 Parlay-X Web Services

This sub-section starts with the introduction of Parlay X Web services. Then it

discusses the architecture for Parlay X Web Services.

 2.2.3.4.1 Introduction

The Open Service Access (OSA) [15] defines an architecture that enables service

application developers to make use of network functionality through open

standardized interfaces (e.g. the OSA APIs (Parlay APIs) and Parlay X Web

services). The Parlay APIs are designed to enable the creation of telephony

applications as well as to ‘telecom-enable’ IT applications, but they are quite low-

level APIs, requiring developers to have some understanding of

telecommunications concepts. IT developers, who develop and deploy

applications outside the traditional telecommunications network space and

business model, are viewed as crucial for creating dramatic market growth in

25

next-generation applications, services and networks. On the other hand, Parlay X

Web services intend to offer a higher-level abstraction of the network

infrastructure by providing a set of interfaces where functions are grouped

according to the type of services they enable instead of toward the original

network capabilities to which each function is related.

The Parlay X Web Services [14] are intended to stimulate the development of

next-generation network applications by IT developers who are not necessarily

experts in telephony or telecommunications. The Parlay X specification describes

a number of Web services that will provide a simple interface for telephony and

other systems. They aim to cover all telecommunication capabilities [13] (e.g.

third-party call, multimedia conferencing, calls notification, short messaging etc.)

2.2.3.4.2 Overall Parlay X Web Services Architecture

The Parlay-X Web service deployment model [15] [14] is shown below. The

model illustrates publication of Parlay X Web services through a registry to make

those Web services available for discovery, and application use of the Web

service access methods to interact with the gateway, where the Web service

interfaces are implemented.

26

Figure 2.10: Parlay-X Web service model [15]

Combining this model with the existing OSA/Parlay deployment configurations

gives the overall architecture for the Parlay-X Web services which is illustrated in

the next figure. Parlay X is a subset of the Parlay technology that gives

application developers access to the Parlay gateways using Web services. Parlay

X Web services can be used independently of a Parlay gateway and can also be

used to talk directly to a network (assuming the network implements the Parlay X

specification), which is illustrated in Figure 2.10.

Figure 2.11: Overall Parlay-X Web service architecture [15]

27

2.3 Chapter Summary

This chapter has successfully introduced the background information related to

the thesis. We first introduced the floor control in multimedia conferencing

followed by the model for floor control. Next we discussed the floor control

integration with conferencing. Then we discussed the existing protocols for floor

control, including protocols between the conferencing application server and the

floor control server (FCS) to manage the FCS capabilities. The next section

introduced Web services where we provided the basic definition and business

model of Web services. Then we discussed SOAP Web services in details (i.e.

definition and technologies involved). Next we presented the Parlay X Web

service as one of the applications of SOAP Web services .We also introduced

Parlay Web service architecture.

In the next chapter we will propose a set of requirements for floor control

architecture in multimedia conferencing. Afterward, we will discuss some

existing works most related to our research and evaluate them based on our

requirements.

28

Chapter 3

Requirements and State of the

Art Evaluation

Various standard bodies (e.g., 3GPP, IETF, Parlay) and author have proposed

architectures that integrate floor control with conferencing. However, the

mechanisms used for exposing the floor control capabilities have shortcomings

that can hinder application development. In order to develop an integrated

structure that overcomes the existing shortcomings, a set of requirements should

be derived and use to analyze the shortcomings in a systematic manner.

This chapter is composed of three sections. We first propose a set of requirements

for floor control in multimedia conferencing. Afterwards, we review the state of

art works related to the thesis research and evaluate them based on our

requirements. Finally, we summarize the chapter in the end.

3.1 Requirements for Floor Control in

Multimedia Conferencing

This section contributes two sets of requirements for floor control in multimedia

conferencing: functional requirements and architectural requirements. Functional

29

requirements outline the floor control functionality a system should provide, and

the architectural requirements specify criteria that can be used to judge the

operation of a system.

3.1.1 Functional Requirements

We define the main functional requirements for floor control as follows:

 A participant should be able to request the floor.

 The floor should be granted based on the floor policy. When the floor control

policy is chair-moderated, the decision to grant the floor is issued by the

designated chairperson of the floor. However, if the floor policy is FCFS (first

come first serve) or based on any other algorithm, then the decision is made

by the floor control server (i.e. an entity responsible for managing the floors

and their status).

 A participant should be able to release the floor and make it available to

others.

 The floor chair or moderator should be able to revoke the floor from the

participant holding the floor.

 The participants should be notified about any changes in the floor status.

We believe that these requirements provide a complete set of functional

requirements for floor control and can fulfill any conferencing scenario that needs

a floor control mechanism.

30

3.1.2 Architectural Requirements

This sub-section aims at providing the architectural requirements to integrate floor

control mechanisms in multimedia conferencing. The requirements are given

below:

 The architecture should expose to application developers the floor capabilities

(e.g. create/remove floor, add/remove participant to/from floor, set chair,

request floor, release floor, revoke floor, floor query) along with basic

conferencing capabilities (e.g. create multimedia conferences, add/remove

participants from the conference, delete conference, add/remove media) via

well-defined APIs.. The APIs should be programming language-independent

and should also provide a higher level of abstraction to make the development

of applications relatively easier.

 The architecture should enable any application residing in any application

server to use the conferencing capabilities (including the floor capabilities) via

these APIs.

 The entity responsible for providing the floor capabilities (i.e. FCS) should

not be located inside the server implementing the conferencing capabilities.

Otherwise, the framework is less scalable because the FCS cannot be used by

other conferencing servers.

 Furthermore, the entity responsible for providing the media (i.e. media server)

should not be collocated with the entity providing the floor capabilities (i.e.

31

FCS). Otherwise, the modularity of the framework is descreased because if

one entity requires replacement, the other would have to be upgraded.

 The architecture should support use of different floor control protocols

transparently to the floor clients.

 The architecture should support client portability, such that floor clients

access the floor capabilities independently of the protocol supported by the

framework.

3.2 Evaluation of Related Work

In this section we introduce several related works on floor control in multimedia

conferencing and then evaluate them based on our requirements.

3.2.1 Related Work

In this subsection, we organize the related works into two approaches: work done

by standard bodies and work done outside the standard bodies. Finally, we present

the summary of evaluation.

3.2.1.1 Related Work Proposed by Standard Bodies

The floor control architecture proposed by the 3GPP [7] is depicted in Figure 3.1.

32

Figure 3.1: Functionality architecture of floor control [1]

According to the 3GPP specifications, the conference participants and Media

Resource Function Processor (MRFP) can optionally support the floor control

capabilities. Floor control offers control of shared MRFP conference resources In

the proposed architecture, FCS is collocated with the MRFP.

BFCP protocol is used to convey the floor control messages between the floor

chair of the conference, the FCS, and the floor participant. The other floor control

requirements, such as associating s floor to the resources and BFCP connection

negotiation between UE and FCS, are established using H.248/Megaco protocol

as illustrated in Figure 3.2. MRFC is responsible for negotiating the required

parameters for the BFCP connection between UE and MRFP (i.e. FCS).

33

Figure 3.2: Combined procedures to configure a conference and add a floor

control termination [1]

The architecture proposed has some drawbacks. Firstly, there is no API proposed

for the application development. Secondly, MRFP has to host new functionalities

to provide floor control capabilities. Because there is no interface between the

FCS and MRFP, both have to be bought from the same supplier, which reduces

the modularity of the framework. Thirdly, the floor client directly interacts with

the FCS, so if the FCS is replaced, the client has to be upgraded. Client portability

is a problem. Furthermore, this constrains the possibility of using different floor

control protocols transparently to the floor clients.

The conferencing architecture proposed by IETF [18] exposes the floor control

capabilities to the floor clients. The framework is built around the fundamental

concept of a conference object. The conference object is a data representation of a

conference during each of the various stages of a conference (e.g., creation,

reservation, active, completed, etc.). It is accessed via logical functional elements

with which a conferencing client interfaces, using the various protocols as

illustrated in the Figure 3.3.

34

Figure 3.3: Conferencing system logical decomposition [2]

A floor client accesses the floor capabilities from the FCS using BFCP as the

protocol. The parameters for the BFCP connection termination are negotiated

using the SDP [RFC4566] offer/answer [RFC3264] exchange on the signaling

interface with the focus. Once a connection has been established, a specific floor

control message requires detailed information to uniquely identify a conference, a

user and a floor. However, in the proposed architecture FCS is located inside the

conference server, so it cannot be used by other conferencing application servers,

which reduces the scalability of the framework. Client portability is a problem

because the client interacts directly with the FCS. Furthermore, the architecture

does not include any APIs for application development.

35

In [19], Parlay proposed the architecture that provides APIs to expose the basic

floor control capabilities in a multi-party conference (e.g. chair selection, appoint

speaker, floor request, inspect video, inspect video cancel). The scenario proposed

includes a prearranged add-on multimedia conference where the end user, who

initiates the call, communicates with the application via the Web interface. The

end user can do things that normally the chair would be able to do (e.g. determine

who has the floor, whose video is being broadcast to the other participants) or

inspect the video of participants who do not have the floor (e.g. to see how they

react to the current speaker) via the Web interface. The scenario is illustrated in

Figure 3.4, where the end user executes the application to configure the

conference with the selected participant via the Web interface.

Figure 3.4: Scenario for floor control in conferencing

36

The application then renders the service from the gateway and is notified for each

acceptance (Step 1 to 10) [Figure 3.4].Chairperson (A) decides via the Web

interface that party B is the speaker. This means that the video of B is broadcasted

to the rest of the participants (Step 12) [Figure 3.4]. A floor client requests the

floor using H.323 protocol.

It can be concluded that floor APIs provided by the Parlay/OSA are very limited,

because floor capabilities such as release floor, revoke floor and floor query are

not included. Also, video is the only resource that can be shared between the

participants in the assigned floor. The proposed APIs are at a low level, so

development of application is relatively difficult. The client directly requests the

floor from the FCS. The FCS is assumed to be located in the Parlay gateway.

Therefore, client portability is a problem.

In [20], an architectural framework for media server control is described by IETF.

This document presents the core architectural framework to allow application

servers to control media servers. Figure 3.9 illustrates the basic signaling

architecture between the entities involved in the media server control framework.

SIP, being the primary signaling protocol for session signaling, is used for all

media sessions directed toward a media server. SIP is also used for the creation,

management and termination of the dedicated media server control channel.

Application and media servers use the SDP attributes defined in [RFC4145] to

allow SIP negotiation of the control channel. Application servers use the SIP

Third Party Call Control [RFC3725] (3PCC) to establish, maintain and tear down

media streams from those SIP user agents to a media server.

37

Figure 3.5: Basic signaling architecture [7]

The authors describe the media control for conferencing services such as creating

a new conference, adding participant to the conference, media controls and floor

control. The FCS is considered as a separate logical entity that can interact with

the application server and media server as needed. According to the authors, the

FCS can be collocated with either the application server or media server, as long

as both elements are allowed to interact with the FCS by means of some kind of

protocol. They presented both the approaches to better explain the interactions

between the involved components in the Figures 3.10 and 3.11[7].

Figure 3.6: FCS collocated with application server

38

Figure 3.7: FCS collocated with media server

The framework does not consider the approach where the FCS can function as an

independent entity (i.e. neither collocated with the application of media servers).

There is no API proposed for application development. Furthermore, client

portability is a problem since the floor client directly interacts with the FCS.

3.2.1.2 Related Work Proposed Outside the Standard

Bodies

The architecture defined in [21] is outside the standard bodies. They proposed the

floor control architecture for multimedia conferencing which includes a floor

control server, conference server, one or more SIP servers (SIP for Session

Initiation Server), conference owner, one or more floor chairs (moderators) and

any number of regular conference participants as illustrated in Figure 3.5.

39

Figure 3.8: Floor control architecture [4]

Processing (granting or rejecting) of floor control requests are done by one or

more floor chairs or by the server itself, depending on the policy. The conference

server is used to dynamically maintain the conference information. It receives

service requests from the owner, the chairs and the participants. The conference

owner creates the conference and the floors, and assigns/changes floor chairs.

Conference participants can request floors from the FCS, and when the floor is

granted, that they can start sending media. The Simple Conference Control

Protocol (SCCP) entity is used to provide the conference management services

and floor control services.

The proposed architecture does not provide any API for application development.

There is no interface defined between the FCS and conference server which

means that the conference application cannot access the floor capabilities. Clients

are burdened to implement most of floor control capabilities, which reduces the

modularity and makes the client portability a problem.

40

Another work [8] outside the standard bodies proposed a novel floor control

architecture which extends existing IMS multimedia conferencing architecture to

introduce floor control capabilities. In the proposed architecture, the FCS is the

key add-on to the existing IMS conferencing architecture as depicted in Figure

3.6. They provided both the client-side and server-side APIs that expose floor

control capabilities to application developers.

Figure 3.9: Overall floor control architecture [5]

They focused on the dial-out conferences and further assume that conference

application, conference participants, floor participants and floor chairs are all in

the same IMS domain. They provided an implementation architecture including

the prototype built on it. BFCP protocol is used to provide the client floor

capabilities (e.g. request floor, release floor, revoke floor, floor status). They

proposed a SIP Floor Server Control Markup Language (SIP-FSCML) for

controlling the FCS (e.g. add floors to a conference, set/modify a floor chair,

41

add/remove participants to/from an existing floor, subscribe to floor event

notifications, and remove an existing floor from a conference). However, the APIs

proposed are language-dependent. Furthermore, client portability is a problem

because the client has to be upgraded if the FCS is replaced or supports different

protocols.

Reference [2] outlines the requirements for conference control components:
conference management and floor (resource) control. Furthermore, they proposed

a conference control framework using SIP and SOAP protocols. It is shown that

conference control can be implemented with two kinds of operations: commands

and notifications. SOAP is used for commands since it fits well for exchanging

RPC calls. The SIP event framework is used to deliver notifications. An example

illustrating the framework is provided in Figure 3.8.

Figure 3.10: An example of conference control signaling [6]

42

However, the framework does not include any APIs for development. In the

proposed architecture, the FCS is assumed to be collocated with conference

server, which reduces the scalability of the framework because the FCS cannot be

used by other application servers. Client portability is also a problem because the

client interacts directly with the FCS.

3.2.1.3 Evaluation Summary

After presenting the most relevant works related to our research interest, we can

observe that none of them fully satisfy our requirements.

In [7], [18], [19], [2] and [20], no floor control APIs are provided for application

development. Reference [19] provides the APIs but they are not comprehensive

and they also require low-level details for development. Reference [8] provides

comprehensive floor capabilities but the APIs are programming language-

dependent.

43

Table 3.1: Evaluation of relevant state of art

None of the existing works support client portability. In [18], [19], [2] and [20],

the FCS is collocated with the conferencing server, which makes the framework

less scalable. The architectures proposed in [7] and [20] have the FCS collocated

with the media server, which reduces the modularity of the framework.

3.3 Chapter Summary

In this chapter, we first derived a set of requirements which included both the

functional and the architectural requirements for floor control in multimedia

conferencing. In the next section, we presented most relevant state-of-the-art work

related to our research and evaluated it based on our requirements. Finally, we

concluded that none of them completely satisfies our requirements.

In the next chapter, we will present our proposed architecture based on the

requirements presented in this chapter.

 Standard bodies Outside Standard bodies

44

Chapter 4

Proposed Architecture

In this chapter, we propose a SOAP Web services-based architecture for floor

control in multimedia conferencing, which is based on the requirements discussed

in the previous chapter. This chapter is organized into three sections. Firstly, we

present the overall architecture of the floor control in multimedia conferencing

which includes the functional entities and the communication interfaces. We also

summarize how the requirements are met by the architecture. The next section

presents the proposed SOAP Web services-based floor control APIs. Finally, we

present a few illustrative scenarios that show how entities in the system

architecture interact with each other.

4.1 Overall Architecture

In this section, we will first present our proposed overall architecture that shows

the functional entities in the system, followed by a sub-section that describes the

communication interfaces between the system’s entities. Finally we summarize

how the requirements are met by the architecture.

45

4.1.1 Functional Entities

Figure 4.1 depicts the overall architecture for floor control in multimedia

conferencing. It includes a conferencing application, conferencing gateway, floor

control server (FCS), media server (MS) and client user equipments (UEs) as the

main functional components.

Figure 4.1: Overall architecture

In the overall architecture [Figure 4.2], the conferencing gateway offers and

implements conferencing and floor capabilities for the conferencing application

via well defined application programming interfaces (APIs). The offered

functionality includes both, conferencing capabilities, which are provided by the

standard Parlay X multimedia conferencing Web service [22] and floor control

46

capabilities, which include both the server–side (e.g., adding and removing floors

to/from the conference, adding and removing participants to/from the floor,

revoking the floor from the participants and setting the chair for the floor) and

client-side (e.g., requesting a floor, releasing a floor, granting a floor, denying a

floor and getting the floor information) floor control capabilities.

The client application accesses client-side floor control capabilities via well

defined APIs from the conferencing application. The chair and the participant of

the floor can access floor control capabilities depending on their role. For

instance, a chair can grant/deny or revoke a floor from a participant, while other

floor participants are not privileged to these capabilities. The conferencing

application receives the function calls from the client application and maps them

onto the eventual functional calls that are sent to the conferencing gateway, where

they are actually implemented.

The conferencing gateway is responsible for the network implementation of the

services provided by the conferencing application. In the network domain, we

have FCS and MS as the main components. The FCS is the entity that maintains

the floor(s) status (e.g., which floors exists, who the floor chairs are, who holds

the floors). It is controlled using conferencing gateway, to expose the floor

control capabilities to the both conferencing and client applications. The media

communications between the conference participants are managed by a media

server (MS), which is controlled via the conferencing gateway.

The conferencing gateway manages call session management (e.g. set up,

modification, and teardown) of the conference participants in the network. It

47

interacts with the participants located in different domains by inter-domain

signaling.

4.1.2 Communication Interfaces

This sub-section discusses the existing interfaces between the system components

of the architecture.

SOAP Interfaces (Wc and Ws)

Wc is a SOAP Web services-based interface between the client application and

the conferencing application. It offers client-side floor control functionalities

(e.g., requesting a floor, releasing a floor, granting the floor, denying the floor and

getting the floor information).Similarly, Ws is a SOAP Web services-based

interface; it is used for the communication between conferencing application and

conferencing gateway. It offers functionality that includes both the conferencing

capabilities (provided by the standard Parlay X multimedia conferencing Web

service) and the floor control capabilities, which are provided by the proposed

SOAP Web services-based floor control APIs discussed in the next section. We

choose SOAP [11] interface because it is a standardized enveloping mechanism

for communicating document-centric messages and remote procedure calls using

XML. SOAP messages supports the PUBLISH, FIND and BIND operations in the

Web service architecture. Furthermore, it provides language, platform and

transport neutrality.

Floor Control Interfaces (Fc and Fs)

48

The conferencing gateway interacts with the FCS to expose the floor capabilities

using two different interfaces: Fc and Fs.

The Fs interface is used to control the FCS .It can be implemented using SIP

Floor server control mark-up language (SIP-FSCML) [8] or H.248/Megaco [7]

protocols. However, we propose SIP-FSCML over H.248/Megaco because it is

less complex than H.248/Megaco and is easy to understand and use by SIP

application developers.

The Fc interface coordinates access to shared resources by providing all the

client-side floor control functionalities. Binary Floor Control Protocol (BFCP) [3]

and Talk Burst Control Protocol (TBCP) [4] are two standard protocols that can

be used for the Fc interface. BFCP is fast (due to binary encoding), secure,

reliable (uses TCP) and provides all the floor control functionalities. TBCP is also

fast and secure, but it only provides basic floor control functionalities (e.g. no

chair supported). Therefore, we propose to use BFCP for the Fc interface.

Media Interfaces (Ms and Cm)

The Ms Interface is used by the conferencing gateway to control the media server.

It can be implemented using standard protocols such as H.248/Megaco [23] and

SIP Media Server Control Markup Language (MSCML) [24]. H.248 is the

standard for media server control protocol. However, it is complex and there are

few commercial deployments. SIP MSCML on the other hand is an emerging

alternative. It provides SIP-based enhanced conferencing and interactive voice

response (IVR) functions. It is less complex and there are more commercial

deployments.

49

Also, XML-RPC [25] calls can be used to control the media server.

Cm is a media-handling interface based on Real time Transport Protocol (RTP),

between the client UE and media server.

Signaling interface (Cm)

Cm is the signaling interface used between the conferencing gateway and client

UE. It provides the capabilities such as session establishment, modification and

termination. Cm can be implemented using standard signaling protocols like SIP

[26] and H.323 [27]. However, we propose SIP over H.323 because it is the most

widely deployed signaling protocol for multimedia conferencing. SIP supports

inter-domain signaling, so the conferencing gateway can interact with end users in

different domains.

4.1.3 Requirements met by the architecture

The refined architecture satisfies all the requirements derived in the previous

chapter. Firstly, the SOAP Web services–based APIs are used to expose both the

conferencing and floor capabilities, which makes the framework more

interoperable. Secondly, the client does not interact directly with the FCS to

access floor capabilities, which allows the framework to use any floor control

protocol transparently to the clients. Additionally, it provides client portability.

Furthermore, the conferencing gateway responsible for implementation of the

conferencing and floor capabilities is not collocated with the FCS. This makes the

framework more scalable since the FCS can be simultaneously used by other

conferencing gateways. Lastly, both the FCS and the MS are separated in the

architecture, which adds modularity to the framework.

50

4.2 Proposed SOAP Web Services-based Floor control

APIs

The proposed SOAP Web services-based floor control APIs includes

comprehensive set of the server-side and the client-side APIs that exposes the

floor control capabilities to application developers. In the following subsections

we will present the proposed floor control APIs for the conferencing application

(server-side) and the client application (client-side).

4.2.1 Proposed server side Floor Control APIs

SOAP Web services-based floor control APIs are proposed to extend the existing

Parlay-X (SOAP-based) multimedia conferencing Web service functionality with

floor control capabilities. The conferencing application is able to access

conferencing and floor capabilities (e.g., creating conferences with and without

floor control, adding and removing participants from conference and floor, and

setting the floor chair) via these proposed APIs. The following sub-sections

outlines the proposed server-side APIs.

4.2.1.1 Adding Floors

There are two ways to add a floor to a multimedia conference:

- The floor is added when the conference is initialized.

- The floor is added after the conference has been initialized.

This is achieved by the following proposed APIs.

Create_Conference_with_FloorControl()

The standard Create_Conference () API of the Parlay X multimedia conferencing

Web service is extended to provide floor capability. It creates an empty Dial-Out

51

multimedia conference with floor control. The reference to the newly-created

multimedia conference and floor is returned in the output parameter. Tables 4.1

and 4.2 detail the selected parameters for the request and response of the method.

Parameter Name Parameter

Type

Optional Description

conferenceType String No Type of conference (e.g. audio, video,

messaging).

conferenceDescrip

tion

String Yes Description of the conference.

charging String Yes If present, defines the charge per unit

of time consumed on the conference

call.

maximumDuration Integer Yes If present, defines the maximum

duration of the multimedia conference

in seconds.

maximumNumber

OfParticipants

Integer No Defines the maximum number of

participants allowed in a conference.

conferenceOwner String Yes Address of the multimedia conference

owner. If present, and the

maximumDuration is not present, the

conference is terminated when this user

disconnects, otherwise this information

can be used for billing or other

purposes.

FloorControlAlg-

orithm

String Yes If present, defines the floor policy to be

used (e.g. chair-controlled, algorithm-

based).

If not present, FCFS is used by default.

MaxNoOfFloorHl

drs

Integer Yes Defines how many users can hold the

floor simultaneously.

If not present, the default value is 1.

MaxHldTime Integer Yes Defines the maximum time a

participant can hold a floor.

Table 4.1: Input message: createConferenceWithFloorControlRequest

52

Parameter Name Parameter

Type

Optional Description

ConferenceIdentifier String No Identifies the initiated conference.

FloorIdentifier String No Identifies the floor in the conference.

Table 4.2: Output message: createConferenceWithFloorControlResponse

Create_Floor()

This API is used to create and add a floor to an already-initiated multimedia

conference. The floor is associated with a set of resources that are used in the

conference. The reference to the new floor created in the existing multimedia

conference is returned in the output parameter. Tables 4.3 and 4.4 detail the

selected parameters for the request and response of the method.

Parameter Name Parameter

Type

Optional Description

ConferenceIdentifier String No Identifies the conference to which the

floor is to be added.

FloorControlAlg-

orithm

String Yes If present, defines the floor policy to be

used (e.g. chair-controlled, algorithm-

based.

If not present, FCFS is used by default.

MaxNoOfFloorHldrs Integer Yes Defines how many users can hold the

floor simultaneously.

If not present, the default value is 1.

MaxHldTime Integer Yes Defines the maximum time a

participant can hold a floor.

Table 4.3: Input message: createfloorRequest

Parameter name Parameter

type

Optional Description

FloorIdentifier String No It is used to identify the floor in the

existing conference.

Table 4.4: Output message: createfloorResponse

4.2.1.2 Adding Participants to a Floor

Similarly, participants can be added to floor in the following two ways:

- A participant is added to the floor and the conference simultaneously.

53

- A participant is added to the floor after he/she has joined the conference.

This is achieved by the following proposed APIs:-

Add_Participant_To_Conference_and_Floor()

The existing Invite_Partcipant() API of Parlay X multimedia conferencing is

extended to add the participant to the existing conference and floor

simultaneously. Only conference participants added to the floor can request the

floor. Tables 4.5 and 4.6 detail the selected parameters for the request and

response of the method.

Parameter Name Parameter

Type

Optional Description

ConferenceIdentifier String No Identifies the conference to which the

participant is to be added.

FloorIdentifier String No Identifies the floor to which the

participant is to be added.

UserIdentifier String No Identifies the participant.

Table 4.5: Input message: addPartcipantToConferenceAndFloorRequest

Parameter name Parameter

type

Optional Description

None n/a n/a n/a

Table 4.6: Output message: addPartcipantToConferenceAndFloorResponse

4.2.1.3 Floor Management APIs

The following APIs are used to remove the floor, revoke the floor, set the floor

chair and remove participant from the floor.

Remove_Floor()

This request is used to remove the existing floor from the conference, so that a

media resource associated to the floor is not floor-controlled anymore.

54

Tables 4.11 and 4.12 detail the selected parameters for this method.

Parameter Name Parameter

Type

Optional Description

ConferenceIdentifier String No Identifies the conference from which

floor is to be removed.

FloorIdentifier String No Identifies the floor to be removed, as

multiple floors can exist in same

conference.

 Table 4.7: Input message: removeFloorRequest

Parameter Name Parameter

Type

Optional Description

None n/a n/a n/a

 Table 4.8: Output message: removeFloorResponse

Revoke_Floor()

This request is used by the application to revoke the floor from the floor

participant. However, the floor gets auto-revoked if the participant has exceeded

the holding time limit (specified in the create floor request). Tables 4.13 and 4.14

detail the selected parameters for this method.

Parameter Name Parameter

Type

Option

al

Description

ConferenceIdentifier String No Identifies the conference to which the

floor is associated.

FloorIdentifier String No Identifies the floor to be revoked.

UserIdentifier String No Identifies the participant.

 Table 4.9: Input message: revokeFloorRequest

Parameter

Name

Parameter

Type

Optional Description

None n/a n/a n/a

 Table 4.10: Output message: revokeFloorResponse

55

Set_FloorChair()

This request is to set the chairperson who will manage the floor (i.e. grant, deny

or revoke a floor). Tables 4.15 and 4.16 detail the selected parameters for this

method.

Parameter

Name

Parameter

Type

Optional Description

ConferenceIdenti

fier

String No Identifies the conference to which the

floor is associated.

FloorIdentifier String No Identifies the floor whose chair is being

set.

ChairIdentifier String No Identifies the chair of the floor.

 Table 4.11: Input message: setFloorChairRequest

Parameter

Name

Parameter

Type

Optional Description

None n/a n/a n/a

Table 4.12: Output message: setFloorChairResponse

Remove_Parcticipant_From_Floor()

This request is used to remove the conference participants from the existing floor

in the conference. Tables 4.17 and 4.18 detail the selected parameters for this

method.

Parameter Name Parameter

Type

Optional Description

ConferenceIdentifi

er

String No Identifies the conference from which the

participant is to be removed from the

floor.

FloorIdentifier String No Identifies the floor from which the

participant is to be removed.

UserIdentifier String No Identifies the participant.

 Table 4.13: Input message: removePartcipantToFloorRequest

56

Parameter

Name

Parameter

Type

Optional Description

None n/a n/a n/a

 Table 4.14: Output message: removePartcipantToFloorRequest

4.2.2 Proposed Client-side Floor Control APIs

The client applications access the floor capabilities (e.g., requesting a floor,

releasing a floor, granting a floor, denying a floor and getting floor information)

via these APIs depending on their roles (i.e. chair or a regular floor participant).

 Request_Floor()

This request is used by the floor participant to request the floor. Participants with

the floor can share their data in the conference. Tables 4.19 and 4.20 detail the

selected parameters for this method.

Parameter

Name

Parameter

Type

Optional Description

ConferenceIdenti

fier

String No Identifies the conference to which the

floor is associated

FloorIdentifier String No Identifies the floor being requested.

UserIdentifier String No Identifies the participant requesting the

floor.

 Table 4.15: Input message: requestFloorRequest

Parameter

Name

Parameter

Type

Optional Description

None n/a n/a n/a

 Table 4.16: Output message: requestFloorResponse

57

Release_Floor()

It is used by the participant to release the floor and make it available to other

users. Tables 4.21 and 4.22 detail the selected parameters for this method.

Parameter

Name

Parameter

Type

Optional Description

ConferenceIdenti

fier

String No Identifies the conference to which the

floor is associated.

FloorIdentifier String No Identifies the floor to be released.

UserIdentifier String No Identifies the participant requesting the

floor.

Table 4.17: Input message: releaseFloorRequest

Parameter

Name

Parameter

Type

Optional Description

None n/a n/a n/a

 Table 4.18: Output message: releaseFloorResponse

Subcribe_Floor_events() This request is used by floor participants to subscribe

to floor control events in order to be notified of the changes in the floor status.

Tables 4.23 and 4.24 detail the selected parameters for this method.

Parameter

Name

Parameter

Type

Optional Description

ConferenceIdenti

fier

String No Identifies the conference to which the

floor is associated.

FloorIdentifier String No Identifies the floor whose events are

subscribed.

UserIdentifier String No Identifies the participant.

 Table 4.19: Input message: subscribeFloorEventsRequest

Parameter

Name

Parameter

Type

Optional Description

None n/a n/a n/a

 Table 4.20: Output message:subscribeFloorEventsRequestResponse

58

Revoke_Floor

This request is used by the floor chair to revoke the floor from the floor

participant. However, the floor gets auto-revoked if the participant has exceeded

the holding time limit. Tables 4.25 and 4.26 detail the selected parameters for this

method.

Parameter

Name

Parameter

Type

Optional Description

ConferenceIdenti

fier

String No Identifies the conference to which the

floor is associated.

FloorIdentifier String No Identifies the floor to be revoked.

UserIdentifier String No Identifies the participant.

ChairIdentifier String No Identifies the floor chair.

Table 4.21: Input message: revokeFloorRequest

Parameter

Name

Parameter

Type

Optional Description

None n/a n/a n/a

 Table 4.22: Output message: revokeFloorResponse

Grant_Floor()

This request is used by the floor chair to grant the floor to the floor participant

who has requested the floor. Tables 4.25 and 4.26 detail the selected parameters

for this method.

Parameter

Name

Parameter

Type

Optional Description

ConferenceIdenti

fier

String No Identifies the conference to which the

floor is associated.

FloorIdentifier String No Identifies the floor to be granted.

UserIdentifier String No Identifies the participant.

59

ChairIdentifier String No Identifies the floor chair.

 Table 4.23: Input message: grantFloorRequest

Parameter

Name

Parameter

Type

Optional Description

None n/a n/a n/a

Table 4.24: Output message: grantFloorResponse

Deny_Floor()

This request is used by the floor chair if he decides to reject the floor request.

Tables 4.25 and 4.26 detail the selected parameters for this method.

Parameter

Name

Parameter

Type

Optional Description

ConferenceIdenti

fier

String No Identifies the conference to which the

floor is associated.

FloorIdentifier String No Identifies the floor.

UserIdentifier String No Identifies the participant.

ChairIdentifier String No Identifies the floor chair.

Table 4.25: Input message: denyFloorRequest

Parameter

Name

Parameter

Type

Optional Description

None n/a n/a n/a

Table 4.26: Output message: denyFloorResponse

4.3 Illustrative Scenarios

This section studies a few scenarios to show how the floor control service in

multimedia conferencing can be realized using the proposed architecture.

60

4.3.1 Scenario: Creating a Multimedia Conference with

Floor Control

Figure 4.3 shows the sequence diagram to create an empty dial-out multimedia

conference with floor control using the SOAP interface. The conferencing

application sends a SOAP request to the conferencing gateway, along with the

conference and floor information (e.g. maximum number of participants

,conference duration, floor policy, and maximum number of floor holders)

required to create a new conference configured with floor control (step 1).The

request is received and validated by the conferencing gateway. The request is then

processed by the gateway which creates a new conference object with the

provided conference information, that is stored locally (step 2). Then it sends the

SIP INVITE in conjunction with MSCML message to the media server to

reserve resources for the new conference (steps 3, 4 and 5). Next, the gateway

creates and stores the floor object, and associates the resources to the floor (step

6). It then opens a floor control connection with the FCS using SIP Invite (steps

7, 8 and 9). Next, the conferencing gateway forwards the request to the FCS in

order to create a floor with the provided floor information using SIP-INFO in

conjunction with FSCML messages (steps 10, 11, 12 and 13). Finally, the

gateway provides the both the conference and floor identifiers to the conferencing

application in the response (step 14).

61

Conferencing
Application

Conferencing
Gateway Media Server

Floor Control
Server

Client UE

1 : Create_Conference_with_FloorControl (audio, Health issue,4,
50,js@gmail.com,10,FCFS,4,10)

SOAP/HTTP

Configure_conference

14: Create_conferenceResponse(conf_id=1, floor_id=1)

SOAP/HTTP

2 : Creates and stores the
conference object

6: Create and stores the floor
object, and associate the

resource to the floor

11 : 200 OK

7 : SIP Invite

8 : 200k

9 : ACK

10 : SIP INFO/FSCML(Floor Id
=1,Conf ID=1,FCFS,4,10)

12 : SIP INFO(response : floor created)

13: 200 OK

 Reserve resources with
Media server

Open Floor control
connection

Create Floor

3.SIP Invite/
MSCML(Conf.ID=1,audio,4)

4: 200 OK

5: ACK

 Create_Floor()

Figure 4.2 : Scenario: Creation of multimedia conference with floor control

4.3.2 Scenario: Adding participant to conference and

floor

Figure 4.4 illustrates a sequence diagram to add a new participant to an existing

multimedia conference and floor. Using the SOAP interface, the conferencing

62

Conferencing
Application

Conferencing
Gateway Media Server

Floor Control
Server

Alice UE

1: Add_Partcipant_to_ConferenceAndFloor(Conf
ID=1,Floor_ID=1,Alice@sip.com)

2 : Find the appropriate conference
object and floor object, add the

participant to them
3: SIP Invite

4 : 200 ok (Alice SDP)

8 : ACK (MS SDP+ Floor related info)

13 : Add_Partcipant_to_ConferenceAndFloorResponse

SOAP/HTTP

SOAP/HTTP

Conference 1 is created and, Floor 1 is created and added to it.

Invite participant to
the confernce

Add participant to
Floor

Add participant to
Media Sever

RTP

10 : 200 OK

9 : SIP INFO/FSCML(Floor Id=1, Conf
ID=1,Alice@sip.com)

Add_Partcipant_To_Floor()

11 : SIP INFO(response : participantaddedToFloor)

12: 200 OK

Participant can only
receive from Media

server

Configure_leg

5 : SIP Invite/
MSCML(Conf.ID=1,Alice SDP)

6 : 200 OK(MS SDP)

7 : ACK

Figure 4.3: Scenario: Adding participant to conference and floor

application sends the request to the conferencing gateway with the URI of the

participant and the identifiers of the conference and floor to which the participant

should be added (step 1). The request is received by the conferencing gateway

which verifies that the target conference and floor exists. The request is rejected if

the target conference does not exist .It is also rejected if the conference has

reached the maximum number of participants specified in the conference creation

request (step 2). The participant is only added to the floor, if the specified floor

already exists in the conference. The conferencing gateway invites the participant

to the conference by sending an SIP INVITE message (step 3). It moderates the

63

negotiation of the session description information (e.g. IP address, media codec

and port number) between the participant and the media server (steps 4, 5, 6 and

8). It also provides the floor information (e.g., floor identifier, floor resource

associations) to the participant along with media server SDP (step 8). The

participant is added to the conference with the receive_only RTP mode (i.e.,

participant can only receive from media server). Next, the conferencing gateway

sends the request to FCS, to add participant to the floor using the SIP FSCML

messages (steps 9, 10, 11 and 12). Finally, the conference application is notified

that the participant has been added to the conference and the floor (step 13).

4.3.3 Request Floor and Release Floor (scenario)

Figure 4.5 shows how a floor participant requests a floor, obtains it, and, at a later

time, releases it. The conference is assumed to be configured with FCFS (First

come first serve) floor policy, such that floor is granted by the FCS itself

following FCFS algorithm.

The client application uses a SOAP interface to send the floor request to the

conferencing application with floor information (floor identifier, conference

identifier and user identifier) (step 1).The conferencing application maps the

request on the appropriate API and forwards it to the conferencing gateway (step

2). The conferencing gateway verifies the request and finds the appropriate floor

object. The request is rejected if the target floor does not exist in the conference.

The conferencing gateway requests the floor from the FCS using a BFCP

message with the provided floor information. The FCS is responsible for granting

the floor following the first come first serve (FCFS) floor policy (steps 4, 5 and

64

6). The conferencing gateway then sends an SIP re-invite to the participant and

communicates with the media server using SIP Info messages to update the media

properties for the participant based on the floor request decision.

Conferencing
Application

Web service
Gateway Media Server

Floor Control
Server

Alice UE

1 : Request_Floor(Cofig_ID=1,Floor_ID=1,User_ID=Alice@sip.com)

SOAP/HTTP
2 : Request_Floor(Cofig_ID=1,Floor_ID=1,User_Id=Alice@sip.com)

4 : BFCP Request_Floor(Cofig_ID=1,Floor_ID=1,User_Id=Alice@sip.com)

3 :Find the appropriate floor
object

5. Since the floor policy is
FCFS(not chair-based),

Decision is taken by the FCS

6. FloorRequestStatus (Granted)

14 : Request_FloorResponse

15 : Request_FloorResponseSOAP/HTTP

SOAP/HTTP

SOAP/HTTP

Conference 1 is created and Floor 1 is created and added to it. Participant is added to conference and floor

RTP

RTP

Participant can send /
receive from Media

server

Participant can only
receive from Media

server

19 : BFCP Release_Floor(Cofig_ID=1,Floor_ID=1,User_ID=Alice@sip.com)

18 : Find the appropriate floor object

20 : FCS will discard the info
related to that floor request21 : FloorRequeststatus(Released)

29 : Release_FloorReponse

SOAP/HTTP

SOAP/HTTP

Ask the Media Server to update
the media for the

participant(i.e. to change the
mode to SEND only)

16 : Release_Floor(Cofig_ID=1,Floor_ID=1,Alice@sip.com)

SOAP/HTTP

17 : Release_Floor(Cofig_ID=1,Floor_ID=1,Alice@sip.com)

RTP

Participant can only
receive from Media

server

30 : Release_FloorReponse

SOAP/HTTP

8 : 200 ok (Alice SDP)

13 : ACK (MS SDP)

Re-Invite participant
to the conference

Configure_leg

9: SIP Info/
MSCML(Conf.ID=1,Alice SDP)

10 : 200 OK

11 : SIP Info (Response: MS SDP)

7: SIP Re-Invite

Ask the Media Server to update
the media for the

participant(i.e. to change the
mode to SEND/ RECV)

12 : 200 OK

23 : 200 ok (Alice SDP)

28 : ACK (MS SDP)

Re-Invite participant
to the conference

Configure_leg

24 : SIP Info/
MSCML(Conf.ID=1,Alice SDP)

25 : 200 OK

26 : SIP Info (Response: MS SDP)

27 : 200 OK

22: SIP Re-Invite

 Figure 4.4: Scenario: Request Floor and Release Floor

65

(steps 7-to-13). A new RTP connection is established between the participant and

the media server, such that the participant can now send/receive to/from the media

sever. The client application is notified that the participant has been granted the

floor (steps 14 and 15).

Later on, the participant sends the request to the conferencing application to

release the floor using the SOAP interface (step 16). The request is forwarded to

the conferencing gateway which verifies that the target floor exists (steps 17 and

18). The conferencing gateway communicates with FCS to release the floor using

BFCP messages (steps 19, 20 and 21). The conferencing gateway then sends an

SIP re-invite to the participant and communicates with the media server using SIP

Info messages to update the media properties for the participant based on the floor

request decision (steps 22-to-28). A new RTP connection is established between

the participant and media server, where the participant can only receive from the

media server. The client application is notified that floor is released (steps 29 and

30).

4.3.4 Scenario: Revoke Floor by application

The conferencing application can revoke the floor from a participant in order to

make it available for other users. Figure 4.6 illustrates a scenario where the

application revokes the floor from the current floor holder.

The conferencing application uses the SOAP interface to send request to the

conferencing gateway with floor information (floor identifier, conference

identifier and user identifier) (step 1). The conferencing gateway verifies the

request and finds the appropriate floor object (step 2). The conferencing gateway

66

communicates with the FCS to revoke the floor using BFCP messages (step 3, 4

and 5). Then based on the decision, the conferencing gateway then sends an SIP

re-invite to the participant and communicates with the media server using SIP

Info messages to update the media properties for the participant based on the floor

Conferencing
Application

Web service
Gateway Media Server

Floor Control
Server

Alice UE

1 : Revoke_Floor(Cofig_ID=1,Floor_ID=1,User_Id=Alice@sip.com)

3 : BFCP Revoke_Floor (Cofig_ID=1,Floor_ID=1,User_Id=Alice@sip.com)

2 :Find the appropriate floor
object

5. FloorRequestStatus (Revoked)

13 : Revoke_FloorResponse

SOAP/HTTP

SOAP/HTTP

Conference 1 is created and Floor 1 is created and added to it. Participant is added to conference and has the floor.

RTP

RTP

Participant can only
receive from Media

server

7 : 200 ok (Alice SDP)

12 : ACK (MS SDP)

Re-Invite participant
to the conference

Configure_leg

8 : SIP Info/
MSCML(Conf.ID=1,Alice SDP)

9 : 200 OK

10 : SIP Info (Response: MS SDP)

6: SIP Re-Invite

Ask the Media Server to update
the media for the

participant(i.e. to change the
mode to SEND only)

11 : 200 OK

Participant can send /
receive from Media

server

4 : FCS will discard the info
related to that floor request

Figure 4.5: Scenario: Revoke floor by application

request decision (steps 6-to-12). A new RTP connection is established between

the participant and media server where the participant can only receive from the

media server. The conferencing application is notified that the floor is revoked

(step 13).

67

4.3.5 Scenario: Subscribe to Floor Events and Set Up

Notifications

Figure 4.6 illustrates a scenario where a participant subscribes to floor events, is

assigned as the chair of the floor and is then notified by the application.

The client application uses the SOAP interface with the conferencing application

to subscribe for floor events (step 1). The request includes floor information (floor

identifier, conference identifier and user identifier). The conferencing application

forwards the request to the conferencing gateway, which is responsible for

processing the request (steps 2 and 3). The response is sent back to the client

(steps 4 and 5). Next, using the SOAP interface, the conferencing application

sends the request with information (e.g., floor identifier, conference identifier,

identifier for participant to be selected as chair) to the conferencing gateway to set

the chair for the floor (step 6 and 7). The conferencing gateway verifies the

request and updates the FCS with the provided floor information using SIP-

FSCML messages (step 9, 10, 11 and 12).The conferencing gateway then notifies

the selected floor chair using an SIP Notify message (step 14 and 15).

68

Conferencing
Application

Web service
Gateway Media Server

Floor Control
Server

Chair UE

1 : Subcribe_To_Floor_Events(Cofig_ID=1,Floor_ID=1,Chair@sip.com)

SOAP/HTTP

4:Subcribe_To_Floor_EventsResponse

5: Subcribe_To_Floor_EventsResponse

SOAP/HTTP

SOAP/HTTP

2 : Subcribe_To_Floor_Events(Cofig_ID=1,Floor_ID=1,Chair@sip.com)

SOAP/HTTP

Conference 1 is created and Floor 1 is created and added to it

6 : Set_Chair(Cofig_ID=1,Floor_ID=1,chair@sip.com)

7 :Find the appropriate floor
object

SOAP/HTTP

Set Chair
10 : 200 OK

9 : SIP INFO/FSCML(Floor Id=1, Conf
ID=1,chair@sip.com)

Set_Chair()

11 : SIP INFO(response : participantaddedToFloor)

12: 200 OK
13: Set_ChairResponse

14: SIP NOTIFY

15: 200 OK

Participant is notified
for its chair selection

SOAP/HTTP

3 : Find the appropriate floor object
and subscribe the participant to the

floor events

Figure 4.6: Scenario: Subscribe to Floor Events and Set Up Notifications

4.3.6 Scenario: Request Floor When Floor Control Policy

is Chair-controlled

For the scenario [Figure 4.7], it is assumed that the conference is configured with

chair moderated floor control policy .Therefore, the floor is granted by the

designated chair of the floor. Furthermore, it is also assumed that the chair of the

floor is set and the selected chair has also subscribed for the floor event

notifications.

69

Conferencing
Application

Web service
Gateway Media Server

Floor Control
Server

Alice UE

1 : Request_Floor(Cofig_ID=1,Floor_ID=1,User_ID=Alice@sip.com)

SOAP/HTTP

2 : Request_Floor(Cofig_ID=1,Floor_ID=1,User_Id=Alice@sip.com)

4 : BFCP Request_Floor(Cofig_ID=1,Floor_ID=1,User_Id=Alice@sip.com)

3 :Find the appropriate floor
object

6 : FloorRequestStatus

20 : Request_FloorResponse

21 : Request_FloorResponse

SOAP/HTTP

SOAP/HTTP

SOAP/HTTP

Conference 1 is created and Floor 1 is created and added to it. Participant is added to conference and floor

RTP

RTP

Participant can send /
receive from Media

server

Participant can only
receive from Media

server

12 : 200 ok (Alice SDP)

17 : ACK (MS SDP)

Re-Invite participant
to the conference

Configure_leg

13 : SIP Info/MSCML(Conf.ID=1,Alice SDP)

14 : 200 OK

15 : SIP Info (Response: MS SDP)

11 : SIP Re-Invite

Ask the Media Server to update
the media for the

participant(i.e. to change the
mode to SEND/ RECV)

 16: 200 OK

Chair UE

7 : SIP Notify

8 : 200 OK

9 : Grant_Floor(Cofig_ID=1,Floor_ID=1,User_ID=Alice@sip.com, chair@sip.com)

10 : Grant_Floor(Cofig_ID=1,Floor_ID=1,User_ID=Alice@sip.com, chair@sip.com)

18 : Grant_FloorResponse

SOAP/HTTP

19 : Grant_FloorResponse

5 : Since Floor control policy
is chair -controlled, it

forwards the request to the
chair

SOAP/HTTP

SOAP/HTTP

Figure 4.7: Scenario: Request floor, when floor policy is Chair-controlled

The client application uses the SOAP interface to send floor request to the

conferencing application with floor information (floor identifier, conference

identifier and user identifier) (step 1). The conferencing application forwards the

request to the conferencing gateway (step 2). The conferencing gateway verifies

the request and finds the appropriate floor object (step 3). The request is rejected

if the target floor does not exist in the conference. The conferencing gateway

requests the floor from the FCS using a BFCP message with the provided floor

70

information (steps 4, 5 and 6). The FCS forwards the request to the designated

chair of the floor because the floor policy adopted for the floor is chair-controlled.

The conferencing gateway then notifies the chairperson using SIP Notify (steps 7

and 8). The chair uses the SOAP interface to grant the floor by forwarding the

request to the conferencing application (step 9). The request is forwarded to

conferencing gateway (step 10). Next, the conferencing gateway sends an SIP re-

invite to the participant and communicates with the media server using SIP Info

messages to update the media properties for the participant based on the floor

request decision (steps 11-to-17). A new RTP connection is established between

the participant and the media server, where participant can send/receive to/from

the media server. The floor client and the chair are notified that the floor is

granted (steps 18-to-21).

4.4 Chapter Summary

In this chapter, we presented the overall architecture for floor control, which

included the main functional components such as conferencing application,

conferencing gateway, floor control server (FCS), media server (MS) and client

user equipments (UEs). The communication interfaces between the system

entities are categorized as: SOAP interfaces, floor control interfaces, media

interfaces and signaling interface. The SOAP interface is the main interface

between the system entities. It is used to establish the communication between the

client application and the conferencing application, and the conferencing

application and the conferencing gateway. We also concluded that the architecture

71

satisfies all the requirements derived in the previous chapter. We then discussed

the proposed SOAP Web service-based floor APIs for the client side and the

server side. Finally, we demonstrated the interaction between the entities by

presenting few illustrative scenarios.

 In the next chapter, we will present the implementation architecture of the system

components. It will be followed by the implemented proof of concept prototype

and includes some performance measurements

72

Chapter 5

Validation: Prototype and

Evaluation

This chapter is broken down into three sections. In the first section we present the

implementation architecture followed by the illustrative scenarios that show how

entities interact. The next section presents the proof of concept prototype that we

have implemented. Lastly, we discuss some performance measurements in order

to validate our architecture.

5.1 Implementation Architecture

Figure 5.1 depicts the implementation architecture for SOAP Web services-based

floor control in multimedia conferencing. The key components implemented are

conferencing gateway, conferencing application, floor control server, media

server and client UE. They are discussed below:

Conferencing Gateway

The conferencing gateway architecture is composed of three layers: API layer,

processing layer and communication layer. The API layer exposes the network

conferencing and floor capabilities toward the application server. It includes a

SOAP request handler module that receives SOAP conferencing and floor request

73

Figure 5.1: Implementation architecture

from the applications, analyses them, and then passes their content (e.g. the

method to be executed and its parameters) to the conference/floor manager

module in the processing layer. The SOAP request handler is responsible for

creating and sending SOAP responses to the conferencing application.

The processing layer contains the conference/floor manager, which is responsible

for the creation and management of the different multimedia conferences and

floors associated with them. The conference/floor manager is composed of four

74

modules: request dispatcher, conference management agent, floor management

agent and a database. The request dispatcher gets conference creation requests

from the SOAP request handler and creates a new conference management agent,

which creates new conferences. Each conference is managed by a separate

conference management agent. The request dispatcher dispatches subsequent

requests related to a given conference to the agent that created the conference.

The relationships between conferences and their agents are preserved when the

conferences are created.

Similarly, floor creation requests associated with a particular conference are

forwarded to the appropriate conference management agent, which then creates a

new floor management agent. A separate floor management agent creates the

floor and manages the requests related to that floor. Both conference and floor

management agents stores the conference and floor information respectively in a

local database. Such information includes, for instance, the unique conference

identifier, the conference type (i.e., audio, video, chat etc.), the conference status

(i.e., initiated, active and terminated), as well as the participants’ information (e.g.

number of participants, participants’ URIs, and type of media for each

participant), the unique floor identifiers, the floor policy (i.e., FCFS or chair

moderated), the floor status, and the floor holders.

The communication layer includes a communicating agent module that handles

the message exchanges between the conferencing gateway and the other entities

in the network (e.g. media server, floor control server and the end-users). The

75

communicating agent is supported by four types of APIs: signaling API, media

API, FCS control API and floor client API.

We have used the JSR 289[28] standard for the SIP-based signaling APIs. XML-

RPC [25] APIs are used for the media APIs to control the media server.

The floor control APIs, which include floor control server (FCS) control API and

floor client API, are used to communicate with the FCS to expose its capabilities.

The FCS control API, based on SIP-FSCML [8], is used to control the FCS. The

floor client API is used to communicate with the FCS to expose the client-side

floor capabilities (e.g. request floor, release floor, revoke floor, grant floor, deny

floor and floor query) via BFCP [3] protocol.

Client UE

The client UE relies on the SOAP API to access the floor capabilities from the

conferencing application. SIP is used as the signaling protocol and Real-Time

Transport Protocol (RTP) is used for media handling of the client.

Conferencing Application

The conferencing application uses SOAP APIs to access the conferencing and

floor capabilities from the conferencing gateway. It includes a SOAP request

handler module that receives SOAP floor requests from the client applications,

analyzes and maps them to the appropriate SOAP API, and then sends them to the

conferencing gateway.

76

Floor Control Server

We have reused the FCS implementation architecture from one of the previous

work done by our research team [8]. It supports both BFCP and SIP-FSCML.

Media Server

Any commercially-available media server on the market (e.g. Medooze, SIP

Express Media Sever) that provides multimedia conferencing capabilities can be

used to support the media mixing of the clients.

5.1.1 Illustrative Scenarios

This sub-section studies a few scenarios to show how the floor control service in

multimedia conferencing can be realized using our implementation architecture.

5.1.1.1 Scenario: Creating a Multimedia Conference with

Floor Control

Figure 4.3 shows the sequence diagram to create an empty dial-out multimedia

conference with floor control via a SOAP interface. The conferencing application

sends a SOAP request to the conferencing gateway, along with the conference and

floor information (e.g. maximum number of participants, conference duration,

floor policy, and maximum number of floor holders) required to create a new

conference configured with floor control. The request is first received and

validated by the SOAP request handler (step 1). Next, the request handler passes

the request content to the request dispatcher (step 2). The request dispatcher

creates a new conference management agent, and assigns it the task to create a

77

new conference (steps 3, 4 and 5). The conference management agent stores the

conference object (with conference information) in a local database and then uses

the communication agent to send an XML-RPC message to the media server to

reserve resources for the new conference (steps 6, 7, 8 and 9). Next, the

conference management agent creates a new floor management agent and assigns

it the task to create a new floor with the provided floor information (steps 11, 12

and 13). The floor management agent creates the floor object and stores it in the

database (step 14). Then, it passes the request content to the communicating agent

by calling the appropriate API (step 15). The communicating agent opens the

floor control signaling session with the FCS through an SIP INVITE message

(steps 16, 17 and 18). Next, it forwards the request to the FCS in order to create

the floor (with the provided floor information) using SIP-FSCML (i.e. SIP INFO

messages) (steps 19, 20, 21 and 22). The responses are then sent back to the

conferencing application with respective identifiers of the created conference and

floor (steps 23, 24, 25, 26 and 27).

78

1 : Create_Conference_with_FloorControl
(audio, Health issue,4,

50,js@gmail.com,10,FCFS,4,10)

2: Create_Conference_with_FloorControl
(audio, Health issue,4,

50,js@gmail.com,10,FCFS,4,10)

3: <<Create new conference agent>>

4: conference agent created

5: confmanagAgent.CreateConferenecwithFloorcontrol(audio, Health
issue,4, 50,js@gmail.com,10,FCFS,4,10)

6: Store conference object

7: commAgent.reserveresources(audio,
Health issue,4, 50)

8: XML-RPC
<Configure_conference>
<Conf_ID>1</Conf_ID>

<Conf_type>audio</Conf_type>
<NoOfpartcipants>4</NoOfpartcipants>

</Configure_conference>

9: Configure_conferenceResponse10: resourcesReserved

11: <<Create new floor agent>>

12: floor agent created

13 : floormanagAgent.Createfloor(10,FCFS,4,10)

14: Store floor object
15: commAgent.createFloor(10,FCFS,4,10)

16: SIP INVITE

17: 200 OK

18: ACK

19 : SIP INFO/FSCML(Floor Id
=1,Conf ID=1,FCFS,4,10)

20 : 200 OK

21 : SIP INFO(response : floor created)

22 : 200 OK23 : Floor created
24 : Floor created25 : Conference and floor created

26 : Conference and floor created

 27 :
Create_Conference_with_FloorCont

rolResponse(confID=1, floorID=1)

 Reserve resources with
Media server

Open Floor control
connection

Create Floor

Figure 5.2: Creating a Multimedia Conference with Floor Control

79

5.1.1.2 Scenario: Adding a Participant to a Conference

and Floor

Figure 5.4 illustrates a sequence diagram to add a new participant to an existing

multimedia conference and floor. Using the SOAP interface, the conferencing

application sends the request to the conferencing gateway with the URI of the

participant and the identifiers of the conference and floor to which the participant

should be added (step 1). The request is received by the SOAP request handler,

which validates the request and then passes the request content to the request

dispatcher (step 2).The request is rejected if the conference does not exist or if it

has already reached the maximum number of participants (specified in the

conference creation request). The request dispatcher searches for the appropriate

conference management agent and forwards the request to it (steps 3, 4 and 5).

The conference management agent then uses the communicating agent to send an

SIP INVITE to the participant (steps 6 and 7). The communicating agent

moderates the negotiation of the session description information (e.g. IP address,

media codec and port number) between the participant and the media server. The

RTP connection established between the participant and the media server is

unidirectional (i.e. the participant can only receive from the media server) (steps

8, 9, 10 and 11). The conference management agent updates the database with the

information (step 13). Next, it searches for the appropriate floor management

agent and forwards it the request to add a participant to the floor (steps 14, 15 and

16). The floor management agent calls the appropriate API on the communication

80

Figure 5.3: Adding a participant to a conference and floor

3: <<Search Agent (Config Id=1)>>

4: Agent found

5: confmanagAgent.addpartcipanttocoferenceAndFloor(Conf
ID=1,Floor_ID=1,Alice@sip.com)

12 : Participant added to conference

6 : commAgent.addParticipanttoconference(Conf
ID=1,Alice@sip.com)

9: XML-RPC
<AddPartcipantRequest>
<Conf_ID>1</Conf_ID>

<PartcipantURI>Alice@sip.com</PartcipantURI>
</AddPartcipantRequest>

10 :<AddPartcipantResponse>
<MediaServerURI>MS SDP</MediaServerURI>

<AddPartcipantResponse>

16 : floormanagAgent.AddpartcipantToFloor(Alice@sip.com, Floor Id=1)

19 : 200 OK

20 : SIP INFO(response : floor created)

21 : 200 OK

Conference 1 is created and, Floor 1 is created and added to it.

1: Add_Partcipant_to_ConferenceAndFloor(Conf
ID=1,Floor_ID=1,Alice@sip.com)

SOAP/HTTP 2: Add_Partcipant_to_ConferenceAndFloor(Conf
ID=1,Floor_ID=1,Alice@sip.com)

7: SIP Invite

8: 200 OK(Alice SDP)

11 : ACK (MS SDP +Floor Info)

14 :<< Search Floor agent(Floor ID=1) >>

15 : Agent found

13 : Update database

17 : commAgent.addParticipanttofloor(Floor
ID=1,Alice@sip.com)

18 : SIP INFO/FSCML(Floor Id=1, Conf
ID=1,Alice@sip.com)

22 : Participant added to floor

24 : Participant added to floor

25 : Participant added to conference and floor

26 : Participant added to conference and floor

27 : Add_Partcipant_to_ConferenceAndFloorResponse

23 : Update database

Add participant to
Media Sever

Invite participant to
the confernce

Add participant to
Floor

RTP

Participant can only
receive from Media

server

SOAP/HTTP

81

agent, which sends the request to the FCS to add the participant to the floor using

SIP-FSCML messages (steps 17-21). The floor management agent updates the

database when the participant is added to the floor (steps 22 and 23). Finally, the

conference application is notified that the participant has been added to the

conference and the floor (steps 24-27).

5.1.1.3 Scenario: Requesting the Floor

Initially, all the participants are added to the conference with a “receive_only”

RTP mode, so they can only receive from the media server. Participants must

request the floor in order to share their data in the conference.

Figure 4.5 shows how a floor participant requests a floor and obtains it. The client

application uses a SOAP API to send a floor request with floor information (e.g.

floor identifier, conference identifier and user identifier) to the conferencing

application (step 1). The request is first received and validated by the SOAP

request handler module in the conferencing application. It is then mapped to the

appropriate SOAP Web service based API and sent to the conferencing gateway.

The SOAP request handler validates the request once it is received at the

conferencing gateway, and then passes the request content to the request

dispatcher. The request dispatcher searches the appropriate conference

management agent and then forwards the request to it. The conference

management agent then searches for the appropriate floor management agent and

forwards the request to it. The floor management agent uses the communicating

agent to send the floor request to the FCS via BFCP messages. Once the floor is

granted by the FCS (assuming that the floor control policy is FCFS), the

82

Figure 5.4: Requesting the floor

Conference 1 is created and Floor 1 is created and added to it. Participant is added to conference and floor

1 : Request_Floor(Cofig_ID=1,Floor_ID=1,User_ID=Alice@sip.com)

SOAP/HTTP2: Request_Floor(Cofig_ID=1,Floor_ID=1,User_Id=Alice@sip.com)

SOAP/HTTP

RTP
Participant can only
receive from Media

server

2: Request_Floor(Cofig_ID=1,Floor_ID=1,
User_Id=Alice@sip.com)

4: Agent found

3: <<Search Agent (Config Id=1)>>

5: confmanagAgent.RequestFloor(Conf ID=1,Floor_ID=1,Alice@sip.com)

6: <<Search Floor agent(Floor ID=1)>>

7 : Agent found

8 : floormanagAgent.RequestFloorAlice@sip.com, Floor Id=1)

9 : commAgent.RequestFloorAlice@sip.com,
 Floor Id=1)

10 : BFCP Request_Floor(Cofig_ID=1,Floor_ID=1,
User_Id=Alice@sip.com)

11. Since the floor policy is
FCFS(not chair-based),

Decision is taken by the FCS
12. FloorRequestStatus (Granted)

14 : 200 ok (Alice SDP)

13 : SIP Re-Invite

15: XML-RPC
<UpdatePartcipantRequest>

<Conf_ID>1</Conf_ID>
<PartcipantURI>Alice@sip.com</PartcipantURI>

</UpdatePartcipantRequest>

16 :<AddPartcipantResponse>
<MediaServerURI>MS SDP</MediaServerURI>

<AddPartcipantResponse>

17 : ACK (MS SDP)

Re-Invite participant
to the conference

18: Floor granted

20 : Floor granted

21: Floor granted

19: Update Database

22: Floor granted
23 :Request_FloorResponse

RTP

Participant can send /
receive from Media

server

SOAP/HTTP

Ask the Media Server to
update the media for the

participant(i.e. to change the
mode to SEND/ RECV)

83

communicating agent then updates the media properties of the client requesting

the floor. The communicating agent then sends an SIP RE-INVITE to the

participant and communicates with the media server using XML-RPC messages

to update the media connection between the media server and the participant, so

that the participant can send and receive from the media server. The floor

management agent then updates the database on receiving the response from the

communicating agent, and the client application is notified that the requested floor

has been granted.

5.2 Prototype

This sub-section discusses the implemented components, the prototype

capabilities and the graphical user interfaces (GUIs) involved in the prototype.

5.2.1 Implemented Components

A proof-of-concept prototype is based on the implementation architecture [Figure

5.1] and tested using various scenarios. The prototype includes the SOAP-based

conferencing application, a set of client UEs, a conferencing gateway, a media

server and a floor control server.

The conferencing application is developed as a Web application using an Eclipse

environment and Oracle Enterprise Pack for Eclipse (OEPE), a set of Eclipse

plug-ins designed to support application development for Oracle WebLogic

application server [29]. The SOAP request handler module and conferencing and

floor APIs are based on a SOAP API provided by OEPE, The application is

84

deployed on Oracle WebLogic Server 11gR1 [29], which natively supports SOAP

applications.

Similarly, the client application is developed and deployed the in same

environment as the conferencing application. Floor control APIs use the SOAP

API provided by OEPE. X-Lite soft phones [30] are used as media participants in

the client UE, which provide the SIP-based signaling and RTP-based media APIs.

Medooze [31] is the media server used for the media mixing of the participants in

the conference. It is controlled by the conferencing gateway using XML-RPC

APIs.

The conferencing gateway is fully implemented and is deployed on Oracle

WebLogic Server 11gR1. The SOAP request handler is based on the SOAP API

provided by OEPE. We have used JSR 289 APIs [32] to provide SIP signaling

between the conferencing gateway and end users, as Oracle WebLogic Server

11gR1 supports the full implementation of JSR 289.

The floor control server is fully implemented as an independent box that supports

both BFCP [3] and SIP FCSML [8] protocols.

5.2.2 Prototype Capabilities

The prototype starts with an empty dial-out multimedia conferences with/without

floor control and then participants are added one by one to the conferences and

floors, following the Parlay-X conferencing service specifications. Initially, all

participants are added to the conference in “receive-only” RTP mode (i.e. they

85

can only receive from the media server). Participants must request the floor in

order share their data in the conference. According to the implemented prototype,

the floor is always granted by the FCS itself using the FCFS algorithm.

A rich set of applications can be easily developed using our prototype. The

prototype can create both simple conferences (i.e. a conference without policy and

floor control) and floor-enabled conferences. Different conferencing and floor

operations are tested including, add participant to floor and conference, remove

participant from floor and conference, get conference participants, get participant

information, get conference information, create floor, remove floor, revoke floor,

request floor, release floor and floor query.

5.2.3 Graphical User Interfaces

A graphical user interface is developed to support the conferencing application

operations as depicted in Figure 5.5. The required operation is executed when the

appropriate button is clicked. For example, when users click

CreateConferenceWithFloorControl operation, a form as shown in Figure 5.5

appears in a new window; users provide the required values and click Submit, and

then receive a response with the conference and floor identifiers. Other operations

can be invoked from the application in the same way.

Similarly, a GUI is created for the client-side operations [Figure 5.6]. Users click

the required operation, fill in the required information in the pop-up form, and

then submit the request.

86

Figure 5.5: A screen shot of the Conferencing Application

Figure 5.6: A screen shot of the Floor Client Application

5.3 Performance Measurements

In this sub-section, we first describe the experiment setup, and then present the

performance metrics used. The performance results are presented and discussed at

the end.

87

5.3.1 Experimental Setup

The experiment is set up with one SOAP conferencing application, one

conferencing gateway, one media server, one floor control server and some client

UEs.

-Floor control server(FCS)

-SOAP Conferecing application

-Conferencing Gateway

- Media Server

-Client UE

-Client UE

-Client UE

Figure 5.7: Experimental setup

The SOAP conferencing application runs on a laptop with an i3 processor and 3

GB RAM. The conferencing gateway is deployed on a second laptop, equipped

with a dual-core processor and 4GB RAM. Both the FCS and media server run on

a third laptop with a dual-core processor, 2 GB RAM and an Ubuntu virtual

machine installed. Ubuntu is installed as a virtual machine because the media

server (Medooze) is Ubuntu-deployable. This same laptop also runs the client UE.

88

There are two additional laptops used to support two other client UEs; one is

configured with a dual-core processor and, 2 GB RAM and the other is configured

with a dual-core processor and 1 GB RAM. All the laptops run on Windows 7 and

are equipped with 802.11 (WLAN) and Ethernet cards.

5.3.2 Performance Metrics

The performance of the prototype is evaluated in terms of the end-to-end time

delay when executing different conferencing and client application operations.

The delays are measured as the difference between the time when the

conferencing application sends a request and the time it receives a response from

the conferencing gateway. Similarly, the delays for the client application are

measured as the difference between the time the request was sent and then

received from the conferencing application.

The time for creating an empty dial-out conference with floor control includes:

- Time to send a SOAP request to the gateway

- Time to send message to media server to reserve resources and to get its

acceptance

- Time to send request to the FCS to create floor and to get its response

- Time to send the corresponding SOAP response back to the conferencing

application

Similarly for the client application, the execution time for the request floor

operation is the difference between the time when the client sends a floor request

89

to the conferencing application and the time when the client receives the response

from the conferencing application. This includes:

- Time to send SOAP request to the conferencing application

- Time to forward the request to the conferencing gateway

- Time to process the request by the conferencing gateway (i.e. send a floor

request to the FCS, and then establish the media properties between the

participant and media sever depending on the FCS response)

- Time to send the SOAP response back to the client application via the

conferencing application.

 We have eliminated the human delays, which get introduced while responding to

the invitation requests from the conferencing application.

5.3.3 Measurements Analysis

Tables 5.1 and 5.2 show the respective conferencing and client application

evaluation results for the indicated operations. The delays are measured in

milliseconds, and each result is calculated as the average of 10 experiments.

For the server-side operations, the delay incurred for the

Create_conference_with_floor_control operation is 1638.25 ms on average, where

more than 60% of the delay is due to the SOAP messages exchanged between the

conferencing application and the conferencing gateway. There are basically two

reasons that cause the additional delay induced by SOAP messages: Firstly, the

SOAP message processing includes opening the envelope and extracting the name

of the target service as well as the name and parameters of the method to be

executed. Secondly, the mandatory SOAP body adds extra information (e.g.

90

SOAP envelope) to the message, resulting in larger network delays. The findings

are well supported by our recent case study paper [33], which included

performance measurements for SOAP-based and REST-based application

operations.

Similarly, on the client-side, the Request_floor operation is executed in 2351 ms

on average. The reason for the significant delay is the use of SOAP messages

between the client application and conferencing application, and then between the

Table 5.1 and 5.2: Performance results

conferencing application and conferencing gateway. The SOAP messages

contribute 72% of the total delay. However, the delay for the execution of the

floor request is quite acceptable (i.e. from 2.1 to 2.4 seconds).

91

Furthermore, it can be observed that creating a conference with floor control

(1638.2 ms) is more efficient than creating a conference first and then adding a

floor to it (1221 + 1370 ms), comparing the delays and operations required.

Similarly, for adding a participant to a conference and floor simultaneously is

more efficient than doing it separately. However, it sometimes depends on the

requirements. For example, a conference without a floor is needed or a participant

only needs to be added to a conference.

5.4 Chapter Summary

In this chapter, we have first presented the implementation architecture that

follows the overall system architecture described in the previous chapter. Next,

we provided illustrative scenarios that show how the entities interact for specific

operations based on the implementation architecture. We have presented the

prototype implemented as a proof of concept, using an OEPE environment for the

development of conferencing and client applications, and Oracle WebLogic server

11gR1 to deploy the applications. Medooze media sever was used for media

mixing of the SIP clients (X-Lite softphones).

To validate our proposed architecture, various conferencing and floor scenarios

were tested and performance measurements were collected. The measurements

show that the proposed architecture is feasible as delays incurred were quite

acceptable. We analyzed that the reason behind the additional delays was due the

use of SOAP messages. In the next chapter, we will summarize the contribution

of the thesis and propose some additional future works.

92

Chapter 6

Conclusion and Future Work

In this chapter, we will first summarize the contributions of the thesis and then we

will give some ideas for future work.

6.1 Summary of Contributions

Multimedia conferencing applications are an important and widely-used category

of Web applications. Floor control is a significant conference control feature; it

prevents conflict and ensures an optimized use of resources between the

conference participants. However, current mechanisms used for exposing the

floor control capabilities have shortcomings that can hinder application

development.

As one of the contributions of this thesis, we have first identified a set of

requirements that included both the functional and the architectural requirements

for floor control in multimedia conferencing. The functional requirements outline

the floor control functionality a system should provide, and the architectural

requirements specify criteria that can be used to judge the operation of a system.

Next, we have reviewed the most relevant related works and evaluated them

based on our requirements; we have observed that none of them meet all our

requirements.

93

Then, we proposed a novel SOAP Web service based floor control architecture in

multimedia conferencing that meets all our requirements. The proposed

architecture includes the main components of floor control and the interfaces

between them. It also includes a comprehensive set of server-side and client-side

SOAP Web service APIs that expose the floor control capabilities to application

developers. We have provided illustrative scenarios that show how various

components in the architecture interact. Next, we presented the implementation

architecture for the components involved in the overall system architecture and

discussed the operational procedures.

A proof-of-concept prototype is implemented based on the implementation

architecture and tested using various scenarios. The prototype includes the SOAP-

based conferencing application, a set of client UEs, a conferencing gateway, a

media server and a floor control server. A rich set of applications can easily be

developed using our prototype. The prototype can create both simple conferences

(i.e. without floor control) and floor-enabled conferences. Different conferencing

and floor operations are tested, including: add a participant to a floor and

conference, remove a participant from a floor and conference, get conference

participants, get participant information, get conference information, create a

floor, remove a floor, revoke a floor, request a floor, release a floor and floor

query. Finally, to validate our prototype, a preliminary performance evaluation of

the proposed architecture has been made. Based on the results, we conclude that

our architecture is a valid and promising approach for floor-controlled multimedia

94

applications. However, due to the nature of SOAP messages, we also observed

that they are responsible for introducing additional delays that cannot be avoided.

6.2 Future Work

One of the biggest drawbacks of SOAP Web services is performance in terms of

response time and in some cases, network load. Knowing that the bottleneck

resides in the SOAP serialization and deserialization, one possible future work is

to investigate the different mechanisms to accelerate or to avoid the

serialization/deserialization of SOAP. Using RESTful Web services for exposing

the floor control functionality in multimedia conferencing can be considered as an

alternative. Because the use of RESTful Web services results in improved

performance results as compared to SOAP Web services, due to the nature of

REST. This was achieved in our recent case study [33] where a conferencing

application was developed using both SOAP Web services and RESTful Web

services, and their performance was evaluated.

Furthermore, to the best of our knowledge, the existing works follow the

centralized conferencing model for floor control mechanism. We also have

considered the centralized approach. Therefore, an interesting work item could be

carried out in future works addressing the floor control issue in a non-centralized

conferencing model.

95

Bibliography

 [1] Koskelainen, P., Ott, J., Schulzrinne, H., and X. Wu, “Requirements for Floor

Control Protocols”, IETF RFC 4376, February 2006.

[2] Petri Koskelainen, Henning Schulzrinne and Xiaotao Wu ,Dept. of Computer

Science Columbia University New York, NY 10027, USA“ A SIP-based

Conference Control Framework” , NOSSDAV '02.

[3] G.Camarillo, G., Ott, J., and K. Drage, "The Binary Floor Control Protocol

(BFCP)", IETF RFC 4582, November 2006.

[4] Andrew Rebeiro-Hargrave and David Viamonte Solé, “Multimedia Group

Communication: Push-To-Talk Over Cellular, Presence and list management

concept and application” , WILEY publication, April 2008.

[5] LIU Hai-peng, LIAO Jian-xin and ZHU Xiao-min, “Decentralized

improvement on floor control mechanism for PoC”, Journal on Communications,

2012.

[6] G. Camarillo, “Session Description Protocol (SDP) Format for Binary Floor

Control Protocol (BFCP) Streams”, IETF RFC 4583 ,November 2006.

[7] “Multimedia Resource Function Controller (MRFC)- Multimedia Resource

Function Processor (MRFP)Mp interface: Procedures descriptions”, 3GPP TS

23.333 version 10.3.0 Release 10, January 2012.

96

[8] Mohammed Al Rubaye, Fatna Belqasmi, Chunyan Fu, Roch Glitho-” A Novel

Architecture for Floor Control in the IP Multimedia Subsystem of 3G Networks”,

Vehicular Technology Conference, IEEE 69th, April 2009.

[9] W3C, "Web Services Architecture", W3c Working Group Note 11 February

2004. [Online]. Available: http://www.w3.org/TR/ws-arch/

[10] Adam Bobsworth in ACM Queue, Voll, No1.

[11] F. Curbera et al., Unraveling the Web services Web: An Introduction to

SOAP, WSDL and UDDI, IEEE Internet Computing, Vol. 6, No2, March-April

2002, pp. 86-93.

[12] E. Newcomer, Understanding Web Services: XML, WSDL, and UDDI,

Addison Wesley, 2002

[13] “Parlay X Web services”. [Online]. Available: http://www.parlayx.com

[14] H Lofthouse, M J Yates and R Stretch, “Parlay X Web Services”,BT

Technology Journal, Volume 22 Issue 1, 2004 , Pages 81-86.

[15] “3rd Generation Partnership Project; Technical Specification Group Core

Network and Terminals; Open Service Access (OSA); Stage 2 (Release 7)” ,

3GPP TS 23.198 V7.2.0 (2007-03).

[16] Belqasmi, F. , Alrubaye, M. ,Glitho, R. and Chunyan Fu, “Design and

implementation of advanced multimedia conferencing applications in the 3GPP IP

multimedia subsystem”, Communications Magazine, IEEE, November 2009.

http://www.w3.org/tr/ws-arch/
http://www.parlayx.com/
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Belqasmi,%20F..QT.&newsearch=partialPref
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Alrubaye,%20M..QT.&newsearch=partialPref
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Glitho,%20R..QT.&newsearch=partialPref
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Chunyan%20Fu.QT.&newsearch=partialPref
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=35

97

 [17] Belqasmi, F. ,Glitho, R. ; Chunyan Fu, “RESTful web services for service

provisioning in next-generation networks: a survey”, Communications Magazine,

IEEE , December 2011.

[18] M. Barnes Nortel, C. Boulton Avaya, O. Levin Microsoft Corporation , “A

Framework for Centralized Conferencing”, IETF RFC 5239, June 2008.

[19] Parlay 5.1 specifications: Conference Call Control SCF , ETSI ES 203

915-4-5 V1.2.1, January 2007.

[20] T. Melanchuk, Ed, “An Architectural Framework for Media Server

Control”, IETF RFC 5567,June 2009.

[21] Mohammed Ouzzifa, Mohammed Erradia, Hassan Mountassir, “Description

of a teleconferencing floor control protocol and its implementation”, ELSEVIER,

2008.

[22] ETSI ES 202 391-12 V1.3.1 (2008-05) Open Service Access (OSA);

Parlay X Web Services; Part 12: Multimedia Conference, 3GPP TS 29.199-12 v.

9.0.0, Rel. 9, Jan. 2010.

[23] H.248.1, “Gateway Control Protocol: Version 3”, ITU-T, Sep., 2005.

[24] J. Van Dyke et al., “Media Server Control Markup Language (MSCML) and

Protocol,” RFC 5022, Nov. 2007.

[25] “XML-RPC APIs.” [Online] . Available: http://en.wikipedia.org/wiki/XML-

RPC,http://www.medooze.com/products/media-mixer-server.aspx,

http://ftp.iptel.org/pub/sems/doc/current/Readme.html.

[26] Rosenberg et al, “SIP: Session Initiation Protocol”, RFC3261, June 2002.

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Belqasmi,%20F..QT.&newsearch=partialPref
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Glitho,%20R..QT.&newsearch=partialPref
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Chunyan%20Fu.QT.&newsearch=partialPref
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=35
http://en.wikipedia.org/wiki/XML-RPC
http://en.wikipedia.org/wiki/XML-RPC
http://ftp.iptel.org/pub/sems/doc/current/Readme.html

98

[27] “H.323.” [Online] . Available: http://www.itu.int/rec/T-REC-H.323.

[28] M. Kulkarni et al; SIP Servlet Specification, version 1.1; JSR 289 Expert

Group ; August 2008.

[29] “OEPE”.[Online]. Available: http://www.oracle.com/technetwork/developer-

tools/ eclipse/ downloads/ oepe-1116-161753.html.

[30] “X-lite softphones”. [Online]. Available: http://www.counterpath.com/x-

lite.html.

[31] “Medooze media server”, [Online]. Available: http://www.medooze.com/.

[32] M. Kulkarni et al; SIP Servlet Specification, version 1.1; JSR 289 Expert

Group ; August 2008.

[33] Belqasmi, F. ,Singh, J. , Bani Melhem, S.Y. , Glitho, R.H. ,” SOAP-Based

Web Services vs. RESTful Web Services for Multimedia Conferencing

Applications: A Case Study”, IEEE Internet Computing , Jul-Aug.2012.

http://www.itu.int/rec/T-REC-H.323
http://www.oracle.com/technetwork/developer-tools/
http://www.oracle.com/technetwork/developer-tools/
http://www.counterpath.com/x-lite.html
http://www.counterpath.com/x-lite.html
http://www.medooze.com/
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Belqasmi,%20F..QT.&newsearch=partialPref
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Singh,%20J..QT.&newsearch=partialPref
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Bani%20Melhem,%20S.Y..QT.&newsearch=partialPref
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Glitho,%20R.H..QT.&newsearch=partialPref

