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Abstract 

Accelerating 3D registration using multi-core CPU and GPU cluster 

Shridhar Mohandoss 

Three dimensional models (3D) are becoming popular due to different fields like 3D printing, 

games, graphics and movies. 3D registration is the process of aligning the different range images 

(3D scan data) obtained from the scanner to create the complete model. Due to the large size of 

the 3D scan data, registration is a time consuming process. Today most of the computers have a 

multi-core CPU (Central Processing Unit) and a GPU (Graphical Processing Unit), providing us 

the opportunity to accelerate the 3D registration process using multi-core CPU and GPU. As a 

part of our research we have studied the problem of accelerating 3D registration using CPUs and 

GPUs. While most existing methods focus on using a single GPU to accelerate 3D registration, 

we have proposed a method to accelerate 3D registration using a cluster of multi-core CPUs and 

GPUs. To demonstrate the performance of our method we have implemented the 3D registration 

system on a cluster with 20 CPU cores and 5 GPUs. We observed a speed-up in registration time 

of up-to 15 times when compared to registration on a single CPU core. To the best of our 

knowledge, ours is the first attempt to accelerate 3D registration using a multi-core CPU and 

GPU cluster. Finally, we have compared the performance and the accuracy of our registration 

system with an open source registration system. 
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Chapter 1: Introduction 
 

1.1. 3D registration 

Three dimensional models (3D) are becoming popular due to different fields like 3D printing, 

games, graphics and movies. The low-cost availability of 3D scanners, especially Microsoft 

Kinect
1
, has made it easier to obtain 3D data of various objects. Typically, to obtain the complete 

geometry of an object in 3D, multiple scans are required. So the model will be scanned from 

several different view-points and different facets of the object will be visible from the scanner. 

The raw data obtained from the scanning operation consists primarily of three dimensional point 

clouds called “range-images” [1]. Each of the range images obtained from the scan will be in its 

own co-ordinate system. These range images need to be merged to construct a “3D model” of the 

object. The process of transforming the different coordinates associated with different scans, to 

bring all the range images into a single co-ordinate system is called “registration”. If the scanner 

and object positions for all the scans are recorded using a calibrated scanning set-up, then the 

registration process is simple. But in general calibration is not possible, especially when using a 

hand-held scanner or when scanning large objects. So, aligning the range images to a single co-

ordinate system is based on the content of the range images. The transformation to register two 

range images can be easily determined by matching the common features between the two range 

images. However in most cases noise, scanning resolution and self-occlusion makes it difficult to 

find the common features. So, most registration techniques assume that a rough initial alignment 

is known and try to register by using some numerical optimization technique to minimize the 

                                                           
1
Microsoft Kinect:  Kinect is a motion sensing input device by Microsoft for the Xbox 360 video game 

console and Windows PCs. The kinect includes a depth sensor, RGB camera, a microphone, etc. 

http://en.wikipedia.org/wiki/Motion_sensing
http://en.wikipedia.org/wiki/Input_device
http://en.wikipedia.org/wiki/Microsoft
http://en.wikipedia.org/wiki/Xbox_360
http://en.wikipedia.org/wiki/Video_game_console
http://en.wikipedia.org/wiki/Video_game_console
http://en.wikipedia.org/wiki/Windows
http://en.wikipedia.org/wiki/Personal_computer
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alignment error. As with any numerical optimization technique, the registration process also 

requires a good initial estimate of the transformation to find the final transformation and to 

converge quickly. The registration process also assumes a good common overlap between the 

range images to be registered. 

There are several registration algorithms reported in the literature and they can be classified 

based on multiple factors, like, whether the algorithm assumes an initial approximate 

transformation or not, number of data-sets registered simultaneously, and the error metric used 

etc. In this thesis we consider the classification based on the number of data-sets registered 

simultaneously.  

 “Pair-wise registration” is the process of registering two range images simultaneously. Most 

registration methods reported in the literature concentrate on pair-wise registration. To create a 

complete model, pair-wise registration is chained all over the range images [5]. Figure 1-1 shows 

how a set of range images will be registered in a pair-wise fashion to create a 3D-model.  

 

Figure 1-1: Pair-wise registration 

One of the main problems with pair-wise registration is that small error in registering each pair 

of range images can grow cumulatively and result in a larger total error [5, 6]. 
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 “Multi-view registration” is the process of registering more than two range images at the same 

time. Multi-view registration reduces the accumulation of error by distributing the error among 

all the range images registered simultaneously. To create a complete 3D model, multiple range 

images with a common overlap are first registered. Then the registered range-images are 

combined together using pair-wise registration. Figure1-2 shows an example situation of how a 

set of range images are registered in a multi-view fashion to create a 3D-model. 

 

Figure 1-2: Multi view registration 

1.2. Need for accelerating 3D registration problem:  

“Even though many fast range sensors are available and their computing power is increasing 

nowadays, 3D registration is still a time-expensive task” [2]. One reason for this is the number of 

scans to be merged in the generation of the complete model, typically, is in the order of tens or 

hundreds, and the number of points in each scan could be in the order of thousands to tens of 

thousands. Typical values from the literature [30] are given in Table 1-1 below. Due to the large 

amount of time involved, registration has been an offline process. In offline registration all the 

range images are acquired and saved, then the registration is done as a separate process. One 

drawback of offline registration is that when the data is noisy registration cannot be done. So re-

scanning of the model is needed causing considerable delay in obtaining a model. 
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Model Number of points Number of range images Source 

Bunny 350,000 10 Stanford repository 

Thai statue 19,400,000 36 Stanford repository 

Lucy 14,027,872 47 Stanford repository 

Happy Buddha 543,652 60 Stanford repository 

Dragon  566,098 70 Stanford repository 

Armadillo 3,390,515 114 Stanford repository 

Vase 150,000 10 Scanned in our lab 

Pot 265,000 12 Scanned in our lab 

Table 1-1: List of models and the total number points in each model. 

Due to the continued development of the technology in multi-core processors and low cost 

Graphics Processing Units or GPUs, it has become possible to accelerate the registration process 

by using hardware accelerators. 

1.3. Hardware accelerators for registration 

There are several hardware accelerators like multi-core CPU, GPU, FPGA, and IBM cell 

processor, etc. available in the market. As GPUs and multi-core CPUs provide the highest 

computing power-per dollar, consume less space and power compared to the other hardware 

accelerators [4], we have explored the use of GPUs and multi-core CPUs for accelerating 

registration in this thesis. 

1.3.1. GPU:  

A graphics processing unit (GPU) is a special purpose processor designed to perform graphic 

operations. The emergence of programmable GPUs in early 2000’s made it possible to use GPUs 

for traditional computation handled by the CPUs. The low-cost and specialized computational 
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capabilities of GPUs attracted many researchers to use GPUs to accelerate various 

computationally expensive tasks. The field of using GPUs to accelerate the traditional 

computation is known as general purpose graphics computing (GPGPU). In the early days of 

GPGPU, graphics API’s such as OpenGL and DirectX were the only way to interact with GPUs. 

So, to perform general purpose computations on GPUs, the computations were expressed as 

rendering tasks. In essence, GPU was tricked into performing general purpose computations by 

making those tasks appear as rendering tasks [7]. If anyone wanted to use GPUs for general 

purpose computing they had to express the computations in graphics programming languages. 

This convoluted programming model of GPGPU deterred many developers.   

In early 2007 Nvidia introduced a new parallel programming model called CUDA for GPGPU 

on Nvidia GPUs. The CUDA architecture allowed the developers to give general purpose 

computational tasks to GPUs without the need for expressing the computations as rendering 

tasks. This greatly simplified GPGPU and promoted wide adoption of Nvidia’s CUDA 

architecture. Furthermore, Nvidia released a series of GPUs with tailored execution units to suit 

general purpose computational needs. 

 

Figure 1-3: Architecture of Nvidia GPU [35] 
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GPUs in principle are “stream processors” or process a data stream, so they have large number of 

RISC (Reduced Instruction Set Computer) processing cores. Thus GPUs fall into the SIMD 

(Single instruction multiple data) class. Figure 1-3 show the architecture of an Nvidia GPU. 

Here, a single multiprocessor has 8 thread-processors (RISC processing element), one double-

precision unit; and shared memory with every RISC unit to enable thread to thread 

communication within the same multiprocessor. The general purpose computations executed on 

GPUs are known as “kernels”. CUDA kernels have the following properties: 

1. A CUDA kernel is executed as an array of threads. All the threads run the same code and 

the threads are identified by a thread ID. 

2. A kernel is launched as a grid of thread blocks. Thread blocks are executed on 

multiprocessors, CUDA schedules the thread blocks on the multiprocessors during run-time. 

CUDA supports up to 65535 thread blocks on a single GPU [35].  

A thread is executed in thread processor. CUDA threads are light weight threads and have little 

creation overhead. So, CUDA uses thousands of threads to hide latency [33]. 
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Figure 1-4: Nvidia CUDA’s execution model [35] 

 

1.3.2. Multi-core CPU 

Over the past 40 years the CPU clock speed has continuously gone up. However increasing CPU 

clock speed also increases the power consumption. The graph in Figure 1-5 shows the power 

consumption trend of Intel processors from 1985 to 2000. We can observe the general trend is 

the power consumption increases by a factor of 2X every four years. The graph in figure 1-6 

shows the cost of cooling solutions. The increase in power consumption and the cost of cooling 

(solution for the increased thermal problem) was a bottleneck in increasing the performance of 

the processors. Meanwhile the number of transistors in the processor has also been growing over 

the past years. To make use of the extra transistors and increase the processor performance per 

watt, the chip makers came up with the design of having multiple cores at a lower clock 

frequency, instead of a single core processor with higher clock frequency. This has resulted in 

the emergence of “multi-core processors” 
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Figure 1-5: Processor performance per watt over the years [34] 

 

 

Figure 1-6: Cooling cost VS Thermal dissipation [34] 

The multi-core processors can be classified in to homogeneous and heterogeneous multi-core 

processor. As the name implies, homogeneous multi-core processor’s use one core design 

repeatedly, while heterogeneous multi-core processor’s use a mix of different cores. Figure 1-7 

shows the architecture of a homogeneous multi-core processor. All the cores are embedded in a 

single processor chip, with each core having its own levels of cache memory. Since core is a 

fully functional unit, multi-core processors support MIMD (multiple instruction multiple data) 

type of parallel processing.  
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Figure 1-7: Multi-core architecture [34] 

 

Existing parallel programming libraries like MPICH2 and OpenMP can be used for 

programming any multi-core processors [33, 34]. Intel introduced a new C++ library, known as 

TBB for programming Intel’s multi-core processors. The multi-core processors have the 

following properties:- 

1. Multi-core is a shared memory multiprocessor. 

2. Each core can run multiple threads. Since multi-core processors are of MIMD type, the 

threads can run different code. 

3. The number of cores on the multi-core CPU is typically less than 10. And since, the CPU 

threads have a high thread creation and thread management overhead, to achieve 

efficiency multi-core CPUs run few threads. 
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1.4. Comparison of GPUs and multi-core CPUs 

The Table 1-2 we created shows the main differences between multi-core CPUs and GPUs. 

Feature GPU Multi-core CPU 

Type of processor Stream processor Shared memory multiprocessor 

Architecture SIMD, so GPUs can handle only 

data-parallelism 

MIMD, so multi-core CPUs can 

handle both data-parallelism and 

task parallelism. 

Number of 

processing cores 

Up to 512 processing cores A typical commercially available 

Multi-core CPU has less than 10 

cores. 

Number of threads To achieve high efficiency GPUs 

run 1000’s of threads. 

Multi-core CPUs run few threads. 

Memory bandwidth Up to 148 GB/s  Up to 37.0 GB/s 

Cache memory 8/16 KB per multiprocessor 1MB to 24MB  

Table 1-2: A comparison of GPU and multi-core CPU 

 

1.5. Objectives of this Thesis: 

In [26] a pair-wise and a multi-view registration algorithm called “distance based registration” 

has been proposed.  That algorithm was run on a single core CPU. In this thesis we have 

extended the “distance based registration” algorithm to explore the use of multi-core CPUs and 

GPUs to accelerate the registration process. In particular, we have examined the following four 

aspects: 

a) Devising a functionality distribution scheme for a single computer with one multi-core CPU 

and one GPU, to accelerate registration. To devise the proper functionality distribution, we 

experimentally compared three different distribution schemes. 

b) Thoroughly exploring the use of a cluster of multiple multi-core CPU and multiple GPUs for 

accelerating the registration algorithm. This novel exploration is not done by others, to the best 
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of our knowledge. To distribute the registration process we redundantly create a map of all the 

computations in each node of the cluster. Then based on the map we divide the computations 

equally to all the nodes. We have also compared the accelerated registration with the base line 

registration on single CPU core and measured the speed-up  

c) Experimentally comparing the efficiency and speed-up of pair-wise registration with multi-

view registration using various combinations of multi core CPUs and GPUs.  

d) Experimentally comparing the accuracy and speed-up of our method with a state of the art 

GPU accelerated registration algorithm called KinFu. [35] 

1.6. Outline of the Thesis: 

The remaining Chapters of the thesis are organized as follows:  

In chapter-2, we provide a review of the related work in 3D range image registration and 

accelerating range image registration using hardware accelerators. In chapter-3, we present our 

extensions of distance based registration algorithm to accelerate pair-wise registration and multi-

view registration using a single GPU and a single multi-core CPU. In chapter-4, we present our 

method to accelerate pair-wise registration and multi-view registration, using multiple multi-core 

CPUs and multiple GPUs. In chapter-5 we present our experimental results comparing pair-wise 

and multi-view registration. Finally in chapter-6, we conclude by summarizing the benefits and 

pay-offs and suggest avenues for future work. In summary, this thesis is an experimental and 

implementation oriented study of accelerating pair-wise and multi-view registration using multi-

core CPUs and GPUs. 
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Chapter 2:  A Brief review of registration techniques. 

2.1. Feature Based Registration 

The early attempts to register the range images involved matching common features in the 

overlapping range images to find the transformation between the range images. This type of 

registration is known as feature based registration. Feature based registration generally has two 

steps.  

 First, creating a representation of the surface using some of the “objects features” such as 

surface normal, texture, and curvature etc.  

 Second, matching the selected features to get the transformation parameters.  

The various feature based registration approaches differ mainly in the techniques used to 

represent the surface. Yamany et. al [8] represented an object using a set of surface signatures. 

The signatures computed at each 3D point encode the surface curvature seen from that 3D point. 

The key idea is to use the curvature information and create a reduced representation of the 

surface at certain points. Since the curvature information is an invariant of transformation the 

transformation parameters can be obtained by matching the curvature information. The signature 

image is generated as follows: 

As shown in Figure-2-1, for each point P, denoted by its 3D coordinates and the normal UP, each 

other point Pi on the surface can be related to P by two parameters:  

1. The distance di = || P - Pi ||  

2. The angle 
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Figure 2-1: A sphere showing the 

calculation of surface curvature. [8] 

 

Figure 2-2: 2D representation of 3D points 

and the spin image created from the 2D 

representation. [7] 

  

Hebert [7] represented the surface shape using a dense collection of 3D points and surface 

normals. In addition, each surface point was associated with a descriptive image (called spin 

image) that encodes global properties of the surface. The points, normals and associated images 

together make up the surface representation. Two cylindrical coordinates can be defined with 

respect to a selected 3D point and its normal: the radial coordinate ‘a’, defined as the 

perpendicular distance to the line through the surface normal, and the elevation coordinate ‘b’, 

defined as the signed perpendicular distance to the tangent plane defined by vertex normal and 

position.  

A spin image is created by representing the points around a 3D point using a and  b. This is the 

equivalent of projecting the 3D-points on to a 2D plane. Next, bilinear interpolation is used to 

smooth the projected points. The result can be thought of as an image where dark areas in the 

image correspond to areas that contain many projected points. This procedure is repeated for a 

set of selected 3D points and a set of “spin images” are created. Spin images created for different 

range images are matched to find the matching point pairs, from which the transformation 

parameters are extracted.  



14 

 

 

Figure 2-3: 3D points with surface normal and the spin images extracted from 3D points. [7] 

 

Chua [10] creates a representation of the surface by associating a set of selected 3D-points with 

point signatures. The point signature is created in the following way. For a given 3D point p, a 

sphere of radius r is placed, centered at p. The intersection of the sphere with the object surface is 

a 3Dspace curve, C whose orientation can be defined by the “normal” vector, n1, a “reference” 

vector, n2, and the vector cross-product of n1 and n2. The 3D point, normal and the 3D space 

curve together makeup the point signature. 

 

Figure 2-4: A surface showing point signature calculation. [10] 

Feature based registration requires a very large number of features to be matched to extract a 

good transformation between the range images. Computing and matching of a large set of 

features is a time consuming task. The other main draw-back of feature based registration is that 
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it cannot handle the case when it is not possible to identify adequate number of matching features 

between the range images. Generally there is lot of noise in the range images caused due to 

lighting conditions during scanning process, so in many cases it is not possible to find adjoint 

features between the range images.  

2.2. ICP Based Registration 

An approach named “Iterative closest point (ICP)” was proposed by Besl and McKay [11]. Many 

of the problems of feature-based approaches were overcome by the Iterative Closest Point (ICP) 

approach [5]. ICP assumes a rough initial transformation between the range images, and tries to 

register by iteratively minimizing the alignment error between the range images. By assuming an 

initial transformation is known, ICP considers the registration of the range images as a numerical 

optimization problem. ICP based registrations have three steps. 

1 Finding corresponding points: This step involves finding matching point pairs. ICP assumes 

that for a point Pi in the reference range image, the closest point in the other range images is 

a matching pair.  

2 Error computation: ICP takes the sum of squared distances between the matching point-

pair’s to be the alignment error. 

3 Error minimization: The final step of ICP is to use a numerical optimization technique to 

reduce the alignment error. ICP employed the least squares method to minimize the 

alignment error between the range images. 

Searching the closest point at each iteration is a computationally expensive task. Nishino [12] 

and Schmitt [13] proposed to accelerate the searching (step-1), using some common search 

optimization techniques like kd-tree, z-buffering, or a closest-point caching. 
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Figure 2-5: ICP algorithm shown as a flow chart. 

 

2.2.1. Pair-wise registration (ICP variants): 

Since the introduction of ICP many variations have been proposed to the basic ICP concept. 

These variations differ in the techniques used for finding the corresponding point pairs, error 
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metric, and the procedure for minimizing the error metric. Some of the important variations are 

discussed in this section. 

Blais [14] and Neugebauer [15] proposed a fast variation to the ICP. They established point 

correspondences by projecting the source control point “p” (refer to Figure 2-7) onto a 

destination surface from the point of view of the destination “OQ”. This approach is commonly 

known as Point-to-Projection variation of ICP. Since it eliminates the searching process this 

method is fast. However, the disadvantage is that the result of registration is not as accurate as 

those of the others [3]. 

Medioni [29] proposed a more accurate variation of ICP commonly known as point-to-(tangent)-

plane variation of ICP. The destination control point “    ” (refer to Figure 2-6) is the projection 

of the source control point “p” onto the tangent plane at a destination surface point “q”; the 

destination surface point ”q” is the intersection of the normal vector of the source control point 

“p” and the destination surface. But, finding the intersection on the destination surface is also 

computationally expensive. Rusinkiewicz [3] accelerated searching by first searching the closest 

point, and finding the intersecting surface (or the triangle) from its neighboring triangles. S.Y. 

Park [16], combined the advantages of point-to-plane and point to-projection techniques for fast 

control point searching, and proposed an accurate and fast point-to-plane registration technique.  
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Figure 2-6: Point-to-Plane variation of ICP 

[16] 

 

Figure 2-7: Point-to-Projection variation of 

ICP [16] 

 Holt [17] extended the basic ICP by using color information. He used color and point 

information to find the corresponding point pairs. Johnson [18] goes further with the color ICP 

approach by using the texture information. They assumed that using geometrical information of a 

point along with color and texture information they will be able to establish point 

correspondences. But, since the texture of two range images from two different views may be 

different due to lighting conditions, the corresponding points may have different color and 

texture values, which will make the final result inaccurate during registration. 

Dorai [19] formulated a new error metric to handle noisy data. They proposed a new error metric 

by establishing dependencies between the orientation of a surface, noise in the sensed surface 

data, and the accuracy of surface normal estimation. Their error metric commonly known as” 

minimum variance estimator” can handle the noise case very well. 

2.2.2. Multi-view registration (ICP variants): 

The approaches in the previous section focused on registration of two data range images using 

ICP technique at the core. But the problem with pair-wise registration is that the small error in 

each registration step can accumulate and result in a larger total error [5, 6]. Multi-view 
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registration is the process of aligning more than two range images simultaneously. Multi-view 

registration reduces the accumulation of error by minimizing the error among all the range 

images registered simultaneously. But the problem of multi-view registration is not that widely 

addressed. In this section we present some of the important multi-view registration techniques. 

Neugebauer [15] proposed a method for multi-view registration. They defined an error metric 

and a minimization technique to simultaneously register multiple data sets. But the complexity of 

their error metric increases the processing time. 

Pulli [5] proposed an approach to register the range images using pair-wise registration first. 

Then use the pair-wise alignments as constraints that the multi-view step enforces. By this they 

evenly diffuse the pair-wise registration errors. The main advantages of their method are it has 

less accumulation error and it is less likely to get struck in a local minimum. 

 

Figure 2-8: A model created using pair-wise 

registration showing a large final error. [5] 

 

 

Figure 2-9: A model created using multi-

view registration with a lesser error. [5] 

Gregory [20] also proposed a similar method to register the range images using pair-wise 

registrations first followed by multi-view registration. They defined registration as two sub 

problems:  

1) Local problem of pair-wise registration on neighboring views. 
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2) Global problem of distribution of accumulated errors. 

Their main contribution was that they proposed a framework for distributing the accumulated 

errors. They achieved this by defining the global problem as an optimization over the graph of 

neighboring views registered using pair-wise registrations. They showed how the graph can be 

decomposed into a set of multi-view registrations such that the optimal transformation 

parameters for each range image can be obtained. 

Bhakar et.al [26] proposed a new error metric for multi-view registration. The main advantage of 

their error metric was that they completely avoided the need for establishing point 

correspondence during the iteration’s ICP. Because they avoided the point correspondences step, 

their method is faster than other multi-view registration techniques. They also employed 

Levenberg-Marquardt algorithm for the error minimization step. Since Levenberg-Marquardt 

algorithm is known to have better convergence properties than other algorithms, the resulting 

method requires less number of iterations to register the range images. This method is also 

known as “distance based registration”. 

2.3. Accelerating registration 

There have been several attempts to accelerate or speed up registration using different parallel 

hardware like GPUs, multi-core CPUs and IBM’s Cell Broadband Engine (CBE). Qiu et.al [21] 

proposed a GPU based “nearest neighbor search” (NNS). To evaluate the performance of their 

GPU based NNS they ran the error metric of the ICP algorithm on a GPU. Park et. al [22] 

implemented a Point-to-Plane variation of the ICP algorithm in GPU. Kitaaki et al.[23] presented 

a GPU implementation of a variation of ICP. They used a GPU to compute the point 

correspondence part of the algorithm. Park [2] presented an implementation of Point-to-
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Projection ICP technique. They implemented all the computation of the registration on a GPU. 

S.Rusinkiewicz proposed a real-time model creation process using dual-core CPU [27].    

Scharfe et. al [24] accelerated the registration process using the IBM’s Cell Broadband Engine 

(CBE). They showed how to take advantage of the vector processors by reducing branching 

operations, loop unrolling and use the limited storage available in the processing cores. They 

achieved a speed up of 4 times by using all the six cores in the CBE.  

Recently a group of researchers from Microsoft presented a fast registration of range images 

obtained from Microsoft Kinect. Kinect is a sensor that supplies 30 range images per second. A 

user can create a complete 3D model of an object by moving the Kinect slowly around the 

object. They used a single GPU to accelerate the Point-to-Plane variation of the ICP to register 

the obtained range images [25]. The important part of their ICP is choosing a good initial 

transformation for the range images that is close to the final transformation. Since, Microsoft 

Kinect supplies continuous range images at a high frequency they use the final transformation of 

the previous frame to be the starting transformation of the next frame. This is based on the 

assumption that the camera moves only a small distance between the two frames. 
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Table 2-1 shows an overview of the different attempts to speed up the registration process. 

Work Hardware 

accelerator 

Registration 

technique 

Pair-wise/ 

Multi-view 

Contribution 

Qiu [21] GPU ICP Pair-wise  Registration algorithm using one GPU. 

Qiu [21] Multi-core CPU ICP Pair-wise  Registration algorithm using multi-core 

CPU. 

Park [22] GPU Projection point 

variation of ICP 

Multi-view  Registration algorithm using one GPU. 

Kitaaki [23] GPU HM - ICP Pair-wise  Registration algorithm using one GPU. 

Park [22] GPU Projection point 

variation of ICP 

Pair-wise  Registration algorithm using one GPU. 

Scharfe [24] IBM cell processor Point-to-Plane variation 

of ICP 

Pair-wise  Registration algorithm using one GPU. 

Rusinkiewicz 

[27] 

Multi-core CPU Point-to-Plane variation 

of ICP 

Pair-wise  Model creation process on multi-core 

CPU. 

Microsoft 

KinectFusion 

[25] 

GPU Point-to-Plane variation 

of ICP 

Pair-wise Registration algorithm using one GPU. 

KinFU [35] GPU Point-to-Plane variation 

of ICP 

Pair-wise Registration algorithm using one GPU. 

Our work Multipple GPUs and 

multiple multi-core 

CPU,s 

Distance-field variation 

of ICP 

Pair-wise and 

Multi-view  

Registration algorithm using multiple 

GPUs and multi-core CPUs  

 

Table 2-1: Attempts to speed up the registration process. 

 

2.4 Focus of our research 

All the previous works in accelerating registration has been concentrated in using a single GPU 

or a single multi-core CPU to accelerate the pair-wise registration. Our research has been driven 

by the two following ideas.  
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 Today all the modern computers have both a multi-core CPU and a GPU. Accelerating the 

registration process can benefit by using both the multi-core CPU and GPU. So, we have 

devised a functionality distribution
2
 scheme to accelerate pair-wise and multi-view 

registration “distance based registration” algorithm using both multi-core CPUs and GPUs. 

 It is clear from the literature [5, 6] that multi-view registration is more accurate than pair-

wise registration. Yet, only one attempt has been made to accelerate multi-view registration 

and no research has been done in comparing pair-wise with multi-view registration in the 

context of multi-core CPU and GPU. So, we have made a thorough comparison of 

accelerating pair-wise registration with multi-view registration. 

 

 

 

 

 

 

 

 

 

 

                                                           
2
 Functionality distribution: In the context of scheduling in a heterogeneous environment, it is the process of 

dividing a problem in to a set of smaller problems and scheduling the sub-problem to the most suitable type of 

processor to achieve the best possible performance. 
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Chapter 3: Functionality distribution 

 

3D registration can be viewed as a group of sub-problems that can be solved by different 

algorithms. To accelerate 3D registration using both multi-core CPUs and GPUs, it is important 

to schedule the right sub-problem to the right processor to best exploit the architecture of the 

processor. Functionality distribution can be used to properly schedule the sub-problems of 3D 

registration. 

In the first part (Sections 3.1 and 3.2) of this chapter we introduce pair-wise and multi-view 

distance based registration techniques. In the second part (Section 3.3), we present different 

distribution schemes for accelerating the distance based registration technique using multi-core 

CPU and GPU. Finally we select the best distribution scheme.  

 

3.1. Distance based registration 

For registering the range images, the important step is to create a representation of the range 

images using features that are independent of orientation. The key idea is to define a “distance 

field” around the range images, and create a discrete representation of the range images using 

distance field values, defined on a 3D grid surrounding the range images. This representation of 

the range images can be then matched to extract the transformation parameters and is called 

distance based registration. 

 

3.1.1. Distance value 

To create a distance field, we consider uniform 3D grids within the bounding box enclosing 

the range images. For every grid point, we find the nearest 3D point in the range image, and 

record the distance as the distance field value of the grid point. Let’s call the grid points around 

the reference image model-grid-points and the grid points around other range images as “data-

grid-points”.  
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Figure 3-1: Data-points (orange) and grid-points (blue). 

Even though we store the distance field values, only at the grid points, the distance field values at 

any other point inside the bounding box can be approximated using tri-linear interpolation. Tri-

linear interpolation of distance values is discussed below. 

Given 8 grid-points C000, C001 … C111 and their respective distances values V[x0,y0,z0], 

V[x0,y0,z1] … V[x1,y1,z1]. The distance value of any point C inside the bounds of the 8 grid-

points can be interpolated using the equations below. Where (x,y,z) is the location of point C and 

(x0,y0,z0), (x0,y0,z1) … (x1,y1,z1) are the locations of grid-points C000, C001 … C111 respectively. 
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Figure 3-2: data-point “c” with 8 grid-points. 

 

 

 

 

 

 

 

 

  

Here, IV is the interpolated distance value for the point C shown in figure 3-2. 

 

3.1.2. Error metric 

The key assumption in error computation is if two range images are well registered, then the 

distance values of the data-grid-points should be same as the corresponding model-grid-point
3
.  

To find the corresponding model-grid-point, the data-grid-point is transformed to the reference 

co-ordinate system using the transformation parameters. The distance value of the transformed 

data-grid-point in the reference co-ordinate system can be computed by tri-linear interpolation. 

The difference between the distance value of data-grid-point and the transformed data-grid-point 

gives the alignment error at the particular grid-point. The sum of errors at all the grid points 

gives the alignment error between the two range images. 

  

                                                           
3
 A corresponding model-grid-point is obtained simply by transforming the data-grid-point with the transformation 

parameter T. At the start of registration, T is the supplied initial transformation; T is continuously updated as 

registration proceeds.   
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Figure 3-3: A 2D representation of error calculation. 

3.1.3.Transformation 

We use quaternions to represent the rotational parameters. Quaternion is a 4 dimensional 

vector-space, so it uses four terms: q1, q2, q3 and q4 to represent a rotation. A data-grid-point (x, 

y, z) can be rotated by applying the quaternion rotational matrix R.  

 

     1 - 2*q2
2
 - 2*q3

2
  2*q1*q2 - 2*q3*q4  2*q1*q3 + 2*q2*q4 

R = 2*q1*q2 + 2*q3*q4  1 - 2*q1
2
 - 2*q3

2
  2*q2*q3 - 2*q1*q4 

 2*q1*q3 - 2*q2*q4  2*q2*q3 + 2*q1*q4  1 - 2*q1
2
 - 2*q2

2 

 

If, T is the translation vector, 

 

T =  

  

  

  

 

Then the transformed data-grid-point D (x’, y’, z’) is given by 

(x’, y’, z’) = (x, y, z) * R + T 
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x’ =  x - 2(q2
2
 * x) – 2(q3

2 
*x) + 2(q1 * q2 * y) + 2(q3 * q4 * y) + 2(q1 * q3 * z) - 2(q2 * q4 * z) + Tx 

y’ = 2(q1 * q2 * x) - 2(q3 * q4 * x) + y - 2(q1
2
 * y) - 2(q3

2
 * y) + 2(q2 * q3 * z) + 2(q1 * q4 * z) + Ty 

z’ = 2(q1 * q3 * x) + 2(q2 * q4 * x) + 2(q2 * q3 * y) - 2(q1 * q4 * y) + z - 2(q1
2
z) - 2(q2

2
z) + Tz 

 

3.1.4. Error function 

To interpolate the distance values of transformed data-grid-points in reference co-ordinate 

system, we find 8 grid points surrounding the transformed data-grid-points. Not all the 

transformed data-grid-points will fall inside the bounds of the reference co-ordinate system. The 

transformed data-grid-points that fall outside the bounds of the reference co-ordinate system will 

be ignored during error computation. Let the distance field value at a data-grid-point (x, y, z) be 

D(x, y, z), and the distance field value of transformed data-grid-point (x’, y’, z’) be D (x’, y’, z’). 

Then the alignment error E is given by 

 

E =             –   ’  ’  ’  ’     =    
 

  

Where, ‘i’ is the total number of transformed data-grid-points that fall inside the bounds of the 

reference co-ordinate system. 

 

Figure 3-4: Data-grid point surrounded by the model grid-point. 
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3.1.5.  Error minimization 

Distance based registration uses the Levenberg-Marquardt algorithm [28] to minimize the sum of 

the squared differences in distance field values between the data-gird-point and the transformed 

data-grid-point. The Levenberg-Marquardt algorithm is an iterative algorithm. It minimizes the 

error during iteration by updating the initial transformation parameters. 

 

The update value Δm is calculated by solving the equation: 

Δm = (A + λI)
-1

 B 

Where, ‘B’ is the weighted gradient vector of the error function,  

‘A’ is the Hessian matrix of the error function,  

‘λ’ is a time-varying stabilization parameter, 

And ‘I’ is an identity matrix. 

For each data-grid-point, we calculate the hessian matrix (ai) and the weighted gradient vector 

(bi), and sum all of them together. 

A = ∑ ai 

B = ∑ bi 

 

The weighted gradient vector is given by the equation: 

bi = -2 * e * Jacobian(ei) = -2 *    * 
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The Hessian Matrix 

 

Hessian (  )  =  

    

   
 

    

       

    

       

    

       

    

       

    

       

    

       

    

    

       

    

   
 

    

       

    

       

    

       

    

       

    

       

    

    

       

    

       

    

   
 

    

       

    

       

    

       

    

       

    

    

       

    

       

    

       

    

   
 

    

       

    

       

    

       

    

    

       

    

       

    

       

    

       

    

   
 

    

       

    

       

    

    

       

    

       

    

       

    

       

    

       

    

   
 

    

       

    

    

       

    

       

    

       

    

       

    

       

    

       

    

   
 

   

 

For simplifying the computation, we only compute an approximate Hessian Matrix  
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We calculate all the derivatives in the following way: 
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  2(  * y) + 2(  * z) 

 
    

   
  2(  * y) - 2(  * z) - 4(  * x) 

 
    

   
  2(  * y) + 2(  * z) - 4(  * x) 

 
    

   
  2(  * y) + 2(  * z) 

 
    

   
  2(  * x) + 2(  * z) - 4(  * y) 
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3.1.6. Pair-wise registration algorithm 

In summary, the complete distance based registration algorithm for registering two range images 

consists of the following steps 

Step-1: Start the registration with initial transformation parameters T. 

Step-2: Compute the distance value          for all the data-grid-points. 

Step-3: Compute the alignment error 

a. Transform each data-grid-point         using T, and find its corresponding 

transformed-data-grid-point   ’  ’  ’  in the reference co-ordinate system. 

b. Compute the interpolated distance value  ’  ’  ’  ’   for all the transformed-data-

grid-points. 

c. Compute the error E (T) =           –   ’  ’  ’  ’    . 

Step-4: Compute the update value Δm 

a. Pick a modest value for λ = 0.01. 

b. Solve the system of equation Δm = (A + λI)
-1

 B, and compute the update value Δm. 

c. Compute the error E (T + Δm), 

If E (T + Δm) > E (T), increase λ by a factor of 10 (or any other factor) 
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If E (T + Δm) < E (T), decrease λ by a factor of 10, update the transformation 

parameter T = T + Δm 

Step-5: If the number of iterations is larger than a threshold or if the error E is smaller than a 

certain threshold, stop the registration process. Else go back to step 3. 

For more information the reader is referred to [26]. 

3.1.7.  Multi-view registration 

Multi-view registration registers multiple range images at the same time by minimizing the 

alignment in the common overlapping region between all the range images. So a large common 

overlap is required for multi-view registration to yield good results. Ran Wang extended the 

error function (in section 3.1.4) for multi-view registration.  

Let’s call the grid-points around the reference range image as model-grid-points, and the grid-

points around other range images as data-grid-points. But, this time the reverse transformation is 

applied to transform all the model-grid-points to different data co-ordinate systems
4
, and only if 

the transformed model-grid-points falls inside the bounds of all the data-co-ordinate systems he 

computes the error. By rejecting a model-grid-point that when transformed does not fall inside 

the bounds of all the data co-ordinate systems, he was able to select the model-grid-points that 

fall in the common overlapping region of all the range images. To minimize the error he 

employed the Levenberg-Marquardt algorithm. 

                                                           
4
 Data co-ordinate systems: The co-ordinate systems of all the range images except the reference range image. 
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3.1.7.1. Error metric 

A model-grid-point (x, y, z) can be transformed to data-coordinate system by applying the 

reverse transformation parameters. If, T is the translation vector, 

 

T =  

  

  

  

 

Then the transformed model-grid-point (x’, y’, z’) is given by 

 
  

  
  

 = [(x, y, z) - T] * R
-1

 

 

The distance value for a transformed model-grid-point in the data co-ordinate system can be 

computed using tri-linear interpolation. If,         is the distance-value of a model-grid point in 

reference co-ordinate system and           is the distance-value of model-grid point in the data 

co-ordinate system; then our error function for multi-view registration is defined below: 

E =                –       ’  ’  ’      =      
 

   

Where, ‘k’ is the number of data co-ordinate systems and ‘I’ is the number of model-grid-points 

that fall inside the bounds of all the data co-ordinate systems. 

Similarly, we also calculate ‘k’ update transformations by computing ‘k’ hessian matrices and 

‘k’ weighted gradient vectors. 

Δmk = (Ak + λI)
-1

 Bk 

Ak = ∑ aik 

Bk = ∑ bik 
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3.1.8. Multi-view registration algorithm 

In summary, the complete distance based registration algorithm for registering multiple range 

images simultaneously is below 

Step-1: Start the registration with initial transformation parameters T. 

Step-2: Compute the distance value          for the grid-points in different co-ordinate systems. 

Step-3: Compute the alignment error 

a. Transform each model-grid-point         using T
-1

, and find its corresponding 

transformed-model-grid-point   ’  ’  ’  in all the data co-ordinate systems. 

b. If the model-grid-point when transformed falls inside the bounds of all the data co-

ordinate systems compute the interpolated distance value  ’  ’  ’  ’ in different data 

co-ordinate systems, for the transformed-model-grid-points. 

c. Compute the error E (T) =              –       ’  ’  ’     . 

Step-4: Compute the update value Δmk for each co-ordinate system 

a. Pick a modest value for λ = 0.01. 

b. Solve the system of equation Δmk = (Ak + λI)
-1

 Bk, and compute the update value 

Δmk. 

c. Compute the error E (T
-1

 + Δm), 

If E (T-
1
 + Δm) > E (T

-1
), increase λ by a factor of 10 (or any other factor) 

If E (T
-1

 + Δm) < E (T
-1

), decrease λ by a factor of 10, update the transformation 

parameter T
-1

 = T
-1

 + Δm 

Step-5: If the number of iterations is larger than a threshold or if the error E is smaller than a 

certain threshold, stop the registration process. Else go back to step 3. 
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3.2. Accelerating registration 

The distance value computation involves searching the closest 3D points in the range image for 

every grid point. Generally only the grid points closer to the range image is used in the error 

calculation and error minimization steps. Using the grid-points closer to the range image reduces 

the computation in the error calculation & error minimization steps, and also improves the 

quality of registration by avoiding the unwanted errors introduced by considering grid-point that 

are far from the range image.  The traditional method to choose the grid-points closer to the 

range image is one of the following:  

1. Compute the distance for all the grid-points and choose grid-points with distance values 

below a certain threshold.  

2. Use the texture information to identify some key feature points and select the grid-points 

around the feature points. 

Both the above methods to choose the grid-points are not efficient. In method-1 the distance 

values are unnecessarily calculated for the grid-points that will not be included in the subsequent 

steps. Method-2 demands the use of some image processing technique to identify the key feature 

points. Ran Wang in [26] showed that using image processing techniques for 3D registration 

does not give good results because of the noise introduced by lighting. So, we introduce a new 

distance computation technique that includes selection of the grid-points close to the range 

image.  

 Our distance computation technique is based on the fact that, since, the grid points around the 

range image are uniform; given a 3D point from the range image the grid points surrounding the 

given point can be found without searching. We compute the distance values using the following 

technique. 
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1. For every 3D point ‘Pi’ in the range image, find the surrounding grid-points. 

If (xm, ym, zm) are the lower bound values of the grid, (xd, yd, zd) are the step sizes in x, y 

& z axis, and (px, py, pz) is the 3D point, then one of the surrounding grid points is given by 

{ 
       

  
  

      

  
  

      

  
 } 

The other surrounding grid points can be found from this grid-point. 

2. Compute the Euclidean distance between ‘Pi’ and the surrounding grid-points.  

3. If the distance between ‘Pi’ and any of the surrounding grids point, is smaller than the 

smallest distance computed between that grid point and any other 3D point other than ‘Pi’, 

replace the previously computed smallest distance with the newly computed smallest 

distance. 
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Figure 3-5: Data-points (orange) and grid-

points (blue) 

   

Figure 3-6: Data-points (orange) and grid-

points for which distance value is computed. 

(Green) 

Our distance computation technique selects the grid-points close to the range images without 

computing the distance for all the grid-points or using image processing techniques. Let’s call 

the selected grid points (shown in figure 3-6) for which distance is computed as influenced grid 

points. 

3.3. Distribution schemes 

To formulate a distribution scheme we divide the registration process into two sub-problems 

 Distance value computation (step-2 in Section 3.1.6) 

 Error computation and minimization (step-3 and step-4 in Section 3.1.6) 

Now we present the distribution schemes and our experiments to evaluate the different 

distribution schemes. 
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Figure 3-7: Pair-wise (left) and multi-view (right) registration time using 1 CPU core. 

3.3.1.Registration using one GPU 
In this section, we present our technique to run both the sub-problems on a GPU and the time 

taken for registering the same data-sets used in Section 3.3 using a GPU. 

To run the distance computation on the GPU, we spawn a CUDA thread for each data-point, 

each thread computes the Euclidean distance between the data-point and its surrounding grid-

points, then stores the distance for each grid-point if the current computed distance is smaller 

than the previously computed distance. To store the distance we allocated 1 floating-point space 

for every grid-point. Since, multiple threads can run concurrently on GPUs, each thread has to 

acquire a lock for each grid-point to store the distance.  

To accelerate the error calculation step of pair-wise registration on the GPU, we spawn a CUDA 

thread for every influenced data-grid-point. Each thread transforms one data-grid-point to the 

mode co-ordinate system, interpolates the distance value of the transformed data-grid-point in 

the model co-ordinate system and computes the error (shown in Section 3.2). 

To run the error calculation step of multi-view registration on the GPU, we spawn a CUDA 

thread for every influenced model-grid-point. Each thread transforms one model-grid-point to all 
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the data co-ordinate system. If the transformed-model-grid-point falls inside the bounds of all the 

data co-ordinate systems, then the thread interpolates the distance values in the data co-ordinate 

systems and computes the error (shown in Section 3.2).  

To map the error minimization step of pair-wise registration on the GPU, we spawn a CUDA 

thread for every influenced data-grid-point. Each thread calculates the partial derivatives of E 

with respect to the transformation parameters for one influenced grid point. 

To run the error minimization step of multi-view registration on the GPU, we spawn a CUDA 

thread for every influenced model-grid-point. Each thread calculates the Nr-1 sets of partial 

derivatives (one for each data-co-ordinate systems) of E with respect to the transformation 

parameters for one influenced model-grid-point. 

The graph below shows the total time taken for registering the data-sets in Section 3.1 on Nvidia 

Tesla C010 GPU. The graph shows the time taken for the sub-problems and the time spent 

waiting because of locks.  

  

Figure 3-8: Pair-wise (left) and multi-view (right) registration time using 1 GPU. 
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From the previous graph, we can observe that a significant time is spent waiting for the locks. To 

reduce the time spent waiting for the locks we tried allocating different number of floating-point 

spaces and found allocating 10 spaces to give the best performance. To store the distance for a 

grid point, a thread will randomly acquire the lock to store it in one of the space. By this we 

reduced the thread’s waiting time, but after the threads complete the distance computation, the 

smallest distance of the 10 should be found to get the distance-field-value of a grid-point. 

 

The graph below shows the time taken for registering the same data-sets with the improved 

distance calculation. The graph shows the time taken for the sub-problems and the time spent 

waiting because of locks. 

 

 
 

Figure 3-9: Pair-wise (left) and multi-view (right) registration time of the improved method 

using 1 GPU.

By comparing the graphs in figure 3-8 with the figure 3-9 we can observe, the improvement 

reduces the waiting time of the threads. 
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3.3.2. Registration using one multicore CPU 

In this section, we present our technique to run both the sub-problems on the multi-core CPU and 

discuss the time taken for registering the same data-sets used in section 1 using the multi-core 

CPU.  

To run the distance calculation on the multi-core CPU, we created a logical thread (using TBB) 

for each data-point; the logical thread computes the Euclidean distance between the data-point 

and its surrounding grid-points, and stores the distance for each grid-point if the current 

computed distance is smaller than the previously computed distance.  

To run the error calculation step of pair-wise registration on the multi-core CPU, we created a 

logical thread (using TBB) for every influenced data-grid-point. Each thread transforms one 

data-grid-point to the mode co-ordinate system, interpolates the distance value of the 

transformed data-grid-point in the model co-ordinate system and computes the error (shown in 

Section 3.2). 

To run the error calculation step of multi-view registration on the multi-core CPU, we created a 

logical thread (using TBB) for every influenced model-grid-point. Each thread transforms one 

model-grid-point to all the data co-ordinate system, If the transformed-model-grid-point falls 

inside the bounds of all the data co-ordinate systems, then the thread interpolates the distance 

values in the data co-ordinate systems and computes the error (shown in Section 3.2).  

To run the error minimization step of pair-wise registration on the four CPU cores, we created a 

logical thread (using TBB) for every influenced data-grid-point. Each thread calculates the 

partial derivatives of E with respect to the transformation parameters for one influenced grid 

point. 
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To run the error minimization step of multi-view registration on the multi-core CPU, we created 

a logical thread (using TBB) for every influenced model-grid-point. Each thread calculates the 

Nr-1 sets of partial derivatives (one for each data-co-ordinate systems) of E with respect to the 

transformation parameters for one influenced model-grid-point. 

To reduce the number of physical threads we grouped 1000 logical threads to one physical thread 

for all the sub-problems. 

The graph below shows the time taken for registering the same data-sets used in the section on 

the multi-core Intel Xenon (E5540) CPU. The graph shows the time taken for the two sub-

problems in different colors. 

    

Figure 3-10: Pair-wise (left) and multi-view (right) registration time using 4 CPU core. 

3.3.3.Accelerating registration using one GPU and one multicore 

CPU 

From the experiments shown in sections 3.3.3 and 3.3.2, we can observe distance calculation is 
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GPUs have 100’s of light-weight cores this makes a GPU suitable for running large number 

(thousands or tens of thousands) of threads concurrently. But while accelerating distance 

computation, running large number of threads concurrently leads to thread locks  and thread 

waits, our experiments have showed that the threads waits were a significant bottleneck to speed 

up the distance computation. On the other hand multi-core CPUs have fewer number (2 to 8) of 

more powerful cores, which makes it suitable to run fewer threads concurrently. Running fewer 

threads results in lesser thread waits. This makes the multi-core CPUs suitable for accelerating 

the distance computation part of registration. 

 

Error computation and minimization are data-parallel in nature. As GPUs are specially designed 

to handle data-parallel problems, GPUs are suitable for accelerating the error computation and 

minimization part of registration.  

The figure 3-11 shows the algorithm for registration using one GPU and one multi-core CPU. 

Multi-core CPU GPU 

Step 1: Create Nm + Np1 + Np2 + ... + Npn 

logical threads, each thread will compute the 

distance between the data-point & surrounding 

grid-points, and stores the distance for each 

grid-point if the current computed value is 

smaller than the previously computed value. 

 

 Step 2: Create Nm threads on the GPU; each 

thread projects one model grid-point on to the 

data field and computes the alignment error for 

one grid-point. 

 

 Step 3: Create Nm threads on the GPU; each 

thread calculates the partial derivatives of E 

with respect to the transformation parameters 

for one influenced grid-point. 

Figure 3-11: Hybrid distribution scheme using GPU and multi-core CPU. 
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The graph below shows the time taken for registering the same data-sets used in the Section 3.3.1 

using the Intel Xenon (E5540) CPU and Nvidia Tesla C010 GPU. The graph shows the time 

taken for the two sub-problems in different colors. 

  

Figure 3-12: Pair-wise (left) and multi-view (right) registration time using 4 CPU cores and 1 

GPU.

3.4. Comparison of the distribution schemes 
 

The graph below presents a comparison of the speed-up achieved by the different distribution 

schemes. The speed up was measured by comparing with the baseline performance obtained on a 

single core CPU (discussed in Section-3.3.1). From the graphs we can observe that the hybrid 

multi-core CPU and GPU functionality distribution scheme (discussed in Section-3.3.4) gives the 

highest speed-up.  

362 396 
264 

179 

228 
244 

182 

133 

0 

100 

200 

300 

400 

500 

600 

700 

Armadillo  Bunny  Pot Vase  

Ti
m

e
 in

 m
s 

Distance computation with locks in CPU 

Error computation & minimization 

511 565 517 
324 

403 
518 

492 

296 

0 

200 

400 

600 

800 

1000 

1200 

Armadillo  Bunny  Pot vase 

Ti
m

e
 in

 m
s 

Distance computation with locks in CPU 

Error computation & minimization 



47 

 

  

Figure 3-13: Comparison of speed-up of the distribution schemes. Pair-wise is shown in left and 

multi-view registration is shown in right.

3.5. Conclusion 

In this chapter, we devised a functionality distribution scheme (discussed in Section 3.3.4) for a 

single computer with one multi-core CPU and one GPU to accelerate the distance based 

registration. To devise the proper functionality distribution, we experimentally compared three 

methods to accelerate distance based registration. Experiments conducted using four different 

data sets (two obtained from Stanford and two scanned in our lab) have shown 3.6 times speed-

up for pair-wise registration and 4.2 times speed-up for multi-view registration is possible with 

the hybrid functionality distribution. While a speed up of only 1.9 for pair-wise registration and 

2.3 for multi-view registration is possible with 1 GPU. 
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Chapter 4: Accelerating registration using a multi-core CPU and 

GPU cluster. 

 

In the previous chapter we presented our functionality distribution scheme to accelerate 

registration. In this chapter, we present our method to further accelerate the registration process 

using a cluster of GPUs and multi-core CPUs. Distributing the registration process across 

multiple GPUs and multiple multi-core CPU cluster can be split into two steps: 

1. Dividing the registration process between a GPU and multi-core CPU in a single node: 

Since the GPU and multi-core CPU based acceleration discussed in the previous chapter 

(section-3.3.3.) gave us the best results, we adopted the same method to divide the 

registration process between the GPU and multi-core CPU in a single node. 

2. Dividing the registration process between the nodes in the cluster: We developed two 

methods for dividing the registration process between the nodes. In both the methods, one 

node is used as a master-node for co-ordination and the slave-nodes does the actual 

computation. The methods are described in Sections 4.2 and 4.3. 

 

Figure 4-1 shows the architecture of our cluster. While nodes with more than one GPUs are 

possible our experiments were limited by the hardware set-up in our lab. However, we do not see 

any major obstacle in extending our algorithms to clusters with multi-GPU nodes. 
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Figure 4-1: Architecture of our cluster. 

4.1. Selection of grid-points 

To improve the performance of our algorithm, instead of using all the grid-points for error 

computation and minimizing the error, we select a random subset of the grid-points and carry out 

error computation and minimization. Our experiments showed that a subset of approximately 

40% of the grid-points are required to achieve good results. 

Since only a subset of grid-points will be used for error minimization and computation, it will be 

a waste to compute the distance-values for all the grid points. So we delay the distance 

computation until we know all the grid-points that will participate in error computation and 

minimization. This is done as shown below. 

1. For every model-point ‘Pi’ in the range image, find and record the surrounding grid-points as 

discussed in the previous chapter (Section-3.2). 

2. Randomly select 40% of the recorded model-grid-points and compute the distance values. 

3. Transform the model-grid-point to data co-ordinate systems and find the data-grid-points 

surrounding the transformed model-grid-points.  

4. Compute the distance values for the data-grid points, as discussed in the previous chapter 

(Section-3.1.1). 



50 

 

 

Figure 4 -2: Model-points (shown in orange 

color) and all the surrounding model-grid-

points (shown in green) 

 

Figure 4-3: Model-points (shown in orange 

color) and 40% of the surrounding model-

grid-points (shown in green) 

4.2. Spatial partitioning 

In this method to divide the registration process between the nodes, the overlapping-region
5
 

between the range images is divided in to ‘K’ tiles and each node is assigned K/N tiles, where N 

is the total number of slave-nodes. Firstly each slave-node computes the distance values of the 

grid-points inside the allocated tiles. Secondly, each slave-node computes the error and 

derivatives within the bounds of the allocated tiles and sends it to the master-node during each 

iteration. The master-node will compute the total error, and if the end condition is not met, the 

                                                           
5
 Overlapping-region can be computed from the bounding boxes of the two range images. 
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master will compute the new transformation parameters and send it to the slave-nodes. The 

algorithm is presented below. 

Master node Slave node 
Step 1: Divide the overlapping region in to 'K' 

tiles. Broadcast the initial transformation 

parameters and send the bounds of the tiles 

assigned to each slave. 

 

 
Step 2: For each model point, find the 

surrounding model-grid-points. Record the  

Model-grid-points if it falls inside the assigned 

tile. Select a random 40% of the recorded 

points from chunk 'I' where ‘I’ is the ID of the 

slave node and compute the distance values. 

 Step 3: Project the selected model-grid-points 

to the different data co-ordinate system, and 

find the data-grid-points close to the projected 

model-grid-points. 

 
 

Step 4: Compute the distance for the model 

and data grid-points.  

 
 

Step 5: Compute the error for the selected grid-

points within the tile and send the sum to the 

master-node. 

 

Step 6: Compute the total average error by 

summing up all the errors received from the 

slave-nodes. Broadcasts the total average error 

to the slaves. 

 

 Step 7: Compute the partial derivatives for the 

selected grid-points and send the sum to the 

master. 

 

Step 8: Compute the new transformation and 

broadcast it to the slaves. 

  

 

Step 9: Repeat steps 5 to 8 till the end 

condition a satisfied. 

 

 

Figure 4-4: Spatial partitioning algorithm to distribute the registration process.  
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The graphs in Figure 4-5 and Figure 4-6 show the time taken for registration on a cluster of five 

nodes (one master and four slave node) with 16 Intel Xenon E5540 CPU cores and 4 Tesla C010 

GPU.

 

Figure 4-5: Time taken for pair-wise 

registration accelerated on our cluster using 

spatial partitioning 

 

Figure 4 -6: Time taken for multi-view 

registration accelerated on our cluster using 

spatial partitioning 

  

 

 

Figure 4-7: Model grid-points close to    

model-points 

 

Figure 4-8: Model-grid-points chosen by 

Slave-1 
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Figure 4-9: Model-grid-points chosen by 

Slave-2 

 

Figure 4-10: Model-grid-points chosen by 

Slave-3

 

 

Figure 4-11: Model-grid-points chosen by Slave-4 
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4.3. Influence based partitioning 

In this method, we redundantly compute the influenced data-grid points in all the slave-nodes. 

The influenced data-grid-points can be computed as discussed in 3.3.1. Then each node selects a 

non-overlapping sub-set of the influenced model grid points and computes the distance values, 

error, partial derivatives, and sends it to the master-node. The master-node computes the total 

error, and if iteration is needed computes the new transformation parameters and broadcasts it to 

the slaves. The algorithm is presented below. 

Master node Slave node 
Step 1: Broadcast the initial transformation 

parameters to all the slaves.  

 
Step 2: For each model point, find and record 

the surrounding model-grid-points. Divide the 

recorded model-grid-points in to 'N' chunks 

where N is the number of slave nodes. Select a 

random 40% of the recorded points from chunk 

'I' where I is the ID of the slave node and 

compute the distance values. 

  

Step 3: Project the selected model-grid-points 

to the different data co-ordinate system, and 

find the data-grid-points close to the projected 

model-grid-points. 

 
 

Step 4: Compute the distance for the model 

and data grid-points.  

 
 

Step 5: Compute the error for the selected grid-

points and send the sum to the master-node. 

 

Step 6: Compute the total average error by 

summing up all the errors received from the 

slave-nodes. Broadcasts the total average error 

to the slaves. 
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 Step 7: Compute the partial derivatives for the 

selected grid-points and send the sum to the 

master. 

Step 8: Compute the new transformation and 

broadcast it to the slaves. 

 

Step 9: Repeat steps 5 to 8 till the end 

condition a satisfied. 

 

 

Figure 4-12: Influence based partitioning algorithm to distribute the registration process. 

 

The graphs in Figure 4-13 and 4-14 show the time taken for registration on a cluster of five 

nodes (one master and four slave node) with 16 Intel Xenon E5540 CPU cores and 4 Tesla C010 

GPU.

 

Figure 4-13: Time taken for pair-wise 

registration accelerated on our cluster using 

influence based partitioning. 

 

Figure 4-14: Time taken for multi-view 

registration accelerated on our cluster using 

influence based partitioning.
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Figure 4-15: Model-grid-points chosen by 

Slave-1 

 

 

Figure 4-167: Model-grid-points chosen by 

Slave-3 

 

Figure 4-176: Model-grid-points chosen by 

Slave-2 

  

 

Figure 4-18: Model-grid-points chosen by 

Slave-4
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The graphs in the figure 4-19 and figure 4-20 compare the speed-up achieved for both the 

methods. The speed-up is measured by comparing the time taken for registration on the cluster 

with the base-line time taken using a single CPU core (presented in section 3.3.1). 

 

Figure 4-19: Speed-up comparison of spatial 

and influence based partitioning for pair-

wise registration 

 

Figure 4 -20: Speed-up comparison of 

spatial and influence based partitioning for 

multi-view registration 

 

From the graph we can observe that influence based partitioning of the registration process gives 

better speed than spatial partitioning of the registration process. So, we conclude that influence 

based partitioning is more efficient than spatial partitioning. 
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4.4. Conclusion 

In this chapter, we extended the single multi-core CPU and single GPU based functionality 

distribution scheme for accelerating the distance based registration to a cluster of multiple multi-

core CPUs and multiple GPUs. We presented two methods to distribute the registration process 

on the cluster: 1) based on spatial partitioning and 2) based on partitioning the influenced grid 

points. Our experiments showed 9.8 times to 13 times speed-up are possible for influence based 

partitioning of registration, while only 6 times to 10 times speed-up are possible spatial based 

partitioning of registration. 
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Chapter 5: Experimental comparison of pair-wise, multi-view, and 

KinFu registrations. 
 

In this chapter, we present the following experiments:  

 Study the scalability of our influence based partitioning algorithm (discussed in section 

4.3) for accelerating the registration process using a cluster of multi-core CPUs and 

GPUs. 

 Compare the efficiency and speed-up of pair-wise registration with multi-view 

registration.  

 Compare the accuracy and time taken for registration, for multi-view registration with 

KinFu (an open-source pair-wise registration system) [35]. 

5.1. Scalability test 

In parallel computing there are two types of scalability: 1) Scalability with increase in problem 

size 2) Scalability with increase in number of processors. To evaluate the scalability of influence 

based partitioning algorithm with increase in problem size, we registered the range images from 

the model “pot” using different combinations of multi-core CPUs and GPUs for different 

problem sizes. In order to vary the problem size we varied the number of selected grid points. 

Tables-5.1 and 5.2 show the time taken to register 2 and 4 range images for different problem 

sizes using different CPU, GPU combinations. 

. 
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 40 % grid points 75% grid points 100 % grid points 

1 CPU core 1714 ms 2564 ms 3286 ms 

4 CPU – core’s &  

1-GPU 

446 ms 694 ms 877 ms 

8 CPU – core’s &  

2-GPUs 

291 ms 439 ms 537 ms 

12 CPU – core’ & 

3- GPUs 

228 ms 327 ms 424 ms 

16 CPU – core’s  &   

4- GPUs 

188 ms 273 ms 348 ms 

Table 5-1: Time taken to register 2 range images for different problem sizes. 

 40 % grid points 75% grid points 100 % grid points 

1 CPU core 4796 ms 7233 ms 8508 ms 

4 CPU – core’s &  

1-GPU 

1120 ms 1658 ms 1927 ms 

8 CPU – core’s &  

2-GPUs 

656 ms 941 ms 1081 ms 

12 CPU – core’ & 3- 

GPUs 

502 ms 716 ms 816 ms 

16 CPU – core’s  &   

4- GPUs 

421 ms 627 ms 714 ms 

Table 5-2: Time taken to register 4 range images for different problem sizes. 

 

The efficiency of each test can be calculated using the standard formula. 

Efficiency = Ts / PTp 
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Where Ts is time taken for registration using 1 CPU-core, P is the number of processors used to 

speed up registration and Tp is the time taken for registration using P processors. The graph in 

Figure 5-1 shows the efficiency of pair-wise and multi-view registrations. 

From the graphs in Figure 5-1 we can observe that, as the problem size increases efficiency 

achieved is stable. This shows that our algorithm to accelerate the registration process using a 

cluster of GPUs and multi-core CPUs is scalable with increase in problem size. From the graphs 

we can also observe that as the number of GPUs and CPU-core’s used increases the efficiency 

decreases. This is in agreement with Amdahl’s law
6
. 

                                                           
6
 Amdahl's law states that if P is the proportion of a program that can be made parallel, and (1 − P) is the proportion 

that cannot be parallelized, then the maximum speedup that can be achieved by using N-processors is

. 
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Figure 5-1: Efficiency of pair-wise registration (left) and multi-view registration (right). 

To evaluate the scalability of influence based partitioning algorithm with increase in number of 

processors, we registered 2, 3, and 4 range images from models “pot” and “vase” using different 

CPU and GPU combinations. The graph in figures 5-2 shows the speed-up achieved for pair-

wise and multi-view registrations. The speed-up is calculated by comparing the registration time 

to the base-line registration time using 1 CPU core (presented in Section 3.3.1).  
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Figure 5-2: Speed-up achieved for pair-wise and multi-view registrations. Model pot (left) and 

vase (right). 

From the graphs in Figure 5-2 we can observe that, as the number of processors increases the 

speed-up achieved also increases. This shows that our algorithm to accelerate the registration 

process using a cluster of GPUs and multi-core CPUs is scalable with increase in number of 

processors used.  

5.2. Efficiency of pair-wise and multi-view registration 

From Figure 5-2 we can also observe that multi-view registration consistently achieves better 

speed-up than pair-wise registration. This shows that multi-view registration is more efficient 

than pair-wise registration in a CPU, GPU cluster. To make a proper comparison of the 
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efficiency of pair-wise registration with multi-view registration we registered 4 range images 

using both pair-wise and multi-view using different CPU, GPU combinations. For pair-wise 

registration, the 4 range images were registered in 3 registration steps as shown in the Figure 5-4. 

For multi-view registration, the 4 range images were registered simultaneously in one step. The 

graph in Figure 5-4 compares the efficiency of pair-wise registration with multi-view 

registration. From the graph we can observe that multi-view registration is more efficient than 

pair-wise. There are two reasons for this.  

Firstly, Multi-view registration registers all the 4 range-images simultaneously, while on the 

other hand, pair-wise registration requires 3 registration steps to register 4 range images. As 

distributing each registration step on the cluster has an overhead, pair-wise registration has more 

overhead than multi-view registration.  

 

Figure 5-3: Three pair-wise registrations to register 4 range images. 
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Figure 5-4: Comparison of the efficiency of pair-wise registration with multi-view registration. 

Secondly, multi-view registration has a higher GPU utilization than pair-wise registration. Table 

5-3 compares the GPU utilization parameters measured using the Nvidia CUDA toolkit during 

pair-wise and multi-view registrations. Higher GPU utilization of multi-view registration is 

because the GPU kernel of multi-view registration does more work than the GPU kernels of pair-

wise registration. This enables CUDA to hide the memory latencies during multi-view 

registration more efficiently than pair-wise registration. Figure 5-5 shows the pseudo-code of 

pair-wise and multi-view GPU kernels. 
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GPU occupancy per multiprocessor Multi-view registration Pair-wise registration 

Occupancy 83 % 67 % 

Active threads 1280 1024 

Active warps 40 32 

Active thread blocks 5 4 

 

Table 5-3: GPU utilization parameters for multi-view and pair-wise registration. 

The less overhead and higher utilization of the GPU makes multi-view registration more efficient 

than pair-wise registration for accelerating the registration process in a CPU – GPU cluster 

environment. 

Pair-wise GPU kernel Multi-view GPU kernel 

Error calculation kernel Error calculation kernel 

Step 1: Read a data grid-point. Step 1: Read a model grid-point. 

Step 2: Transform the data grid-point to model 

co-ordinate system. 

Step 2: Transform the model grid-point to "N-

1" data co-ordinate systems where 

N is the number of range images to be 

registered. 

Step 3: Interpolate the distance value of 

transformed data grid-point in model co-

ordinate system. 

Step 3: Interpolate the distance value of 

transformed model grid-point in "N-1" data co-

ordinate systems. 

Step 4: Calculate the distance value of data 

grid-point and interpolated distance value of 

transformed data grid-point. 

Step 4: Calculate the distance value of model 

grid-point and "N-1" interpolated distance 

values of transformed model grid-point. 

Error minimization kernel Error minimization kernel 

Step 1: Read a data grid-point. Step 1: Read a model grid-point. 

Step 2: Calculate the partial derivatives for the 

data grid-point in model co-ordinate system. 

Step 2: Calculate the partial derivatives for the 

model grid-point in "N-1" data co-ordinate 

systems. 

           Figure 5-5: Pair-wise (left) and multi-view registrations (right) GPU kernel. 
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To create a complete 3D model, the range images with a common overlap are first registered in 

pair-wise or multi-view fashion. Then the registered range-images are combined together using 

pair-wise registration. To compare the model creation process using pair-wise registration with 

multi-view registration, we registered continuous sequences of range images from four different 

models using pair-wise and multi-view registration. Figure 5-6 shows grouping of a sequence of 

12 range images during model creation using pair-wise and multi-view registration. Each block 

in the figure represents one registration where Rn is the range images registered. 

   

Figure 5-6: Grouping of range image during model creation using multi-view (left) and pair-wise 

registration (right). 

Table 5-4 shows the time taken for model creation using pair-wise and multi-view registration 

with 16 CPU cores – 4 GPUs. We observed that model creation using multi-view registration 

was 25% - 30% faster than model creation using pair-wise registration. 

Model Number of 

range images 

Multi-view 

registration 

Pair-wise 

registration 

Armadillo (515,000 points) 14 2287ms 2972ms 

Bunny (350,000 points) 10 1614ms 2026ms 

Pot (265,000 points) 12 1433ms 1781ms 
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Vase (150,000 points) 10 956 ms 1219 ms 

Table 5-4: Time taken for model creation using pair-wise and multi-view registration. 

The following pictures show the sequence of range images from the model “vase” registered 

using pair-wise registration to create a complete 3D-model.  

 

Figure 5-7: 1 and 2 range images. 

 

Figure 5-8: 1 to 3 range images. 

 

Figure 5-9: 1 to 4 range images. 

 

 

Figure 5-10: 1 to 6 range images. 

 

 

Figure 5-11: 1 to 7 range images. 

 

 

 

Figure 5-12: 1 to 5 range images. 
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Figure 5-13: 1 to 8 range images. 

                  

 

Figure 5-14: 1 to 9 range images. 

 

 

Figure 5-15: 1 to 10 range images. 

 

The following pictures show the sequence of range images from the model “vase” registered 

using multi-view registration to create a complete 3D-model.  

 

 

 

Figure 5-16: 1 to 4 range images. 

       

 

  

Figure 5-17: 9 to 12 range images. 
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Figure 5-18: 5 to 8 range images. 

  

 

Figure 5-19: 1 to 8 range images. 

 

 

 

Figure 5-20: 1 to 12 range images. 

 

5.3. Comparing multi-view registration with KinFu. 

In August 2011, a group of researchers from Microsoft presented a system called KinectFusion 

for fast registration of range images obtained from Microsoft Kinect
7
. A user can create a 

complete 3-D model of an object by moving the Kinect slowly around the object. KinectFusion 

uses a single GPU to accelerate the Point-to-Plane variation of the ICP, and registers the obtained 

range images. The important part of ICP is choosing a good initial transformation for the range 

images that is close to the final transformation. KinectFusion solves this problem by assuming 

that the camera moves only a small distance between the two frames. So it uses the final 

transformation of the previous frame as the initial transformation of the next frame.  

                                                           
7
 Kinect is a sensor that supplies 30 range images per second. 
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After KinectFusion was demoed at SIGRAPH 2011, an open-source project called KinFu (a 

clone of KinectFusion) was started by Point Cloud Library (PCL). The beta version of KinFu 

was released in January 2012. In this section, we present our tests comparing multi-view 

registration with KinFu. 

5.3.1. Comparing the accuracy  

In this test, we compare the accuracy of our distance based multi-view registration
8
 with KinFu 

by comparing the registration error. The registration error is measured by comparing the range 

images registered using multi-view and KinFu, with the baseline registration result from ICP.  

KinFu requires a large overlap between the range images, as the range images used previously do 

not have sufficient overlap we scanned 15 range images each from three models (chair, computer 

table, and tripod). The graphs in Figure 5-21 and Figure 5-22 present the error for model-creation 

pair-wise and multi-view registrations while registering 15, 13, 10 and 8 range images for the 

three different models. The sub-sets of 13, 10 and 8 range images were randomly chosen for the 

three models to eliminate any bias. 

                                                           
8
 Note: Throughout this chapter we have used the term “multi-view registration” in place of “distance based multi-

view registration” for brevity.  
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Figure 5-21: Final error for model chair (left) model computer table (right). 

 

Figure 5-22: Final error for model tripod. 

From the graphs in Figure 5-21 and Figure 5-22 we can observe that multi-view registration is 

consistently more accurate than KinFu. We can also observe that registering 10 range images 

using multi-view registration results in a more accurate model than registering 15 range images 

using KinFu.  

The graphs in the Figure 5-23 and Figure 5-24 compare the error convergence of registering 10 

range images (a random subset chosen from the total 15 range-images) using multi-view 

registration with the error convergence of registering 15 range images using KinFu. From the 
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graphs we can observe that multi-view registration converges to a smaller error than KinFu, this 

shows that during model creation multi-view registration requires only a sub-set of the range 

images required by KinFu to produce the same quality 3D model. 

    

Figure 5-23: Error convergence model chair (left) model computer table (right). 

 

 

Figure 5-24: Error convergence model tripod. 
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Figures 5-25 to 5-31 show 15, 13, 10 and 8 range images registered (from the model chair) using 

multi-view registration and KinFu. The transformation parameters for the registered range 

images are presented in Appendix-B. 

 

Figure 5-25: 15 range images distance 

registration. 

 

Figure 5-26: 13 range images distance 

registration. 

 

Figure 5-276: 15 range images KinFu. 

 

Figure 5-28: 13 range images KinFu. 
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Figure 5-289: 10 range images distance 

registration. 

 

Figure 5-29: 10 range images KinFu. 

 

 

Figure 5-31: 8 range images distance registration. 
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5.3.2. Comparing the speed 

The graphs below compares the time taken for registering 10 range images using multi-view 

registration and 15 range images using KinFu. We can observe that KinFu is faster than multi-

view registration using 1 GPU-1 CPU combination. But while using 1 GPU – 4 CPU core 

combination multi-view registration is faster than KinFu. 

 

Figure 5-30: Registration time for multi-view registration and KinFu. 

 

5.3.3. Comparing the speed on the cluster 

To compare the time taken for model creation on the CPU - GPU cluster, we registered 10 range 

images using multi-view registration and 15 range images using KinFu on a 3 node cluster with 

12 CPU cores and 3 GPUs (each node has 4 CPU cores – 1 GPU). Figure 5-33 shows the 

grouping of range images during model creation using KinFu and multi-view registration.  
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Each block in the figure represents one registration process, Rn is the ID of the registration and 

the numbers inside the block gives the range images registered in that particular registration. 

    

Figure 5-31: Grouping of range images during model creation using KinFu (left) and multi-view 

registration (right). 

 

Figure 5-34 shows the scheduling of the registration process during model creation on the 3 node 

cluster. The available KinFu implementation only uses 1 CPU core – 1 GPU, so we created a 

wrapper to run multiple instances of KinFu on the cluster to distribute the registration process. 

But, as there is no algorithm to distribute a single KinFU registration process on multiple nodes, 

Nodes 2 and 3 are idle towards the end of the model creation when the number of available 

registration process falls below the number of nodes. 
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Figure 5-32: Scheduling KinFu (left) and multi-view registration (right) process on the cluster. 

The graph in Figure 5-35 shows the time taken for model creation on the CPU - GPU cluster 

using multi-view registration and KinFu. From the graph we can observe that multi-view 

registration is 35% to 40% faster than KinFu on the CPU, GPU cluster. 

 

Figure 5-33: Time taken for model creation on the CPU - GPU cluster. 

The graph in Figure 5-36 shows the measured % of CPU- GPU idle time of the cluster for 

different models. On an average 45% and 63% of CPU and GPU respectively is idle during out 

method, but 95% and 42% of the CPU and GPU respectively is idle during KniFu. This shows 

that multi-view registration uses the resources more efficiently than KinFu on the CPU and GPU. 
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Figure 5-34: % of CPU- GPU idle time in the cluster. 

5.4. Conclusion 

In the first part of this chapter we presented our experiments with the following CPU and GPU 

combinations: < 4-CPU, 1-GPU >, < 8-CPU, 2-GPU >, < 12-CPU, 3-GPU > and < 16-CPU, 4-

GPU >. Experimental studies have shown that, 1) influence based partitioning of registration is 

scalable as both problem size and the processors increase. 2) as the number of processors 

increase, the speed up achieved by multi-view registration consistently increases at a faster rate 

when compared to the pair-wise registration, showing that multi-view registration is more 

efficient than pair-wise registration in a multi-core CPU and GPU cluster environment. 

In the second part of this chapter we presented our experiments comparing multi-view 

registration with KinFu. Our experiments comparing the accuracy have shown that registering 10 

range images using multi-view method produces more accurate 3D models than registering 15 

range images using KinFu. Our experiments to compare the registration time have shown, KinFu 

is faster than multi-view registration for the combination < 1-CPU,1-GPU >, while registration is 

faster than KniFu for the combinations < 4-CPU,1-GPU >, and < 12-CPU,3-GPU >. To 
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summarize our experiments presented in the second part of the chapter, multi-view registration 

only needs a sub-sample of the range images required by KinFu and multi-view registration is 

faster than KniFu in a multi-core CPU and GPU environment.  
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Chapter 6: Conclusion and future work 

Multi-core CPUs and GPUs have become part of virtually every computer. The programmability 

of the multicore CPUs and GPUs now make it possible to accelerate applications. The focus of 

our research has been to study the use of multi-core CPUs and GPUs to accelerate 3D 

registration. While there have been few attempts to accelerate 3D registration using GPUs, ours 

is the first research investigation to use functionality distribution in accelerating 3D registration 

using both multi-core CPUs and GPUs. Based on this investigation we formulated a first of its 

kind method to accelerate 3D registration using a cluster of multi-core CPUs and GPUs. It is 

these investigations that led us to formulate our thesis that multi-view registration is more 

efficient than pair-wise registration to accelerate 3D registration using a multi-core CPU and 

GPU cluster. 

6.1. Conclusions and Contributions 

In chapter 3, we proposed our functionality distribution scheme for a single computer with one 

multi-core CPU and one GPU to accelerate the distance based registration. To devise the proper 

functionality distribution, we experimentally compared three different methods to accelerate 

distance based registration. The speed-up was measured by comparing with the baseline 

performance obtained on a single core CPU with no GPU. Experiments conducted using four 

different data sets (two obtained from Stanford and two scanned in our lab), showed 3.6 times 

speed-up for pair-wise registration and 4.2 times speed-up for multi-view registration is possible 

while using a Tesla C010 GPU and Intel E5510, with functionality distribution. But without 

functionality distribution only 1.9 for times speed-up for pair-wise and 2.1 times for multi-view 

registration is possible.  
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In chapter 4, we extended the functionality distribution scheme for accelerating the distance 

based registration, to a cluster of multiple multi-core CPUs and multiple GPUs. We devised two 

methods 1) spatial based partitioning and 2) influenced grid points based partitioning. Our 

experiments showed 10.4 times speed-up for pair-wise registration and 12.36 times speed-up for 

multi-view registration is possible with method-2, while only 7.3 times speed-up for pair-wise 

registration and 8.7 times speed-up for multi-view registration is possible with method-1. 

In first part of chapter 5, we demonstrate the scalability of the influenced grid points based 

partitioning method with the following CPU and GPU combinations: <4-CPU, 1-GPU >, <8-

CPU, 2-GPU >, <12-CPU, 3-GPU > and <16-CPU, 4-GPU>. The experimental studies showed a 

minimum of 3.5 times for pair-wise registration and 4 times for multi-view for the combination 

<4,1>;  and a maximum of 9 times speed up for pair-wise registration and 11.5 times for multi-

view registration for the combination <16,4> are possible with method-2. This demonstrates that 

in a multi-core CPU and GPU cluster, as the number of processors increase, the speed up 

achieved by multi-view registration consistently increases at a faster rate when compared to the 

pair-wise registration, showing the multi-view registration is more efficient than pair-wise 

registration. 

In the second part of chapter 5, we compared the accuracy and registration time of multi-view 

registration with KinFu. Experiments comparing the accuracy have shown that, registering 10 

range images using multi-view method produces more accurate 3D models than registering 15 

range images using KinFu. Experiments comparing the registration time have shown that KinFu 

is 1.2 times faster than multi-view registration for the combination <1-CPU,1-GPU>. But as 

KinFu does not use all the CPU cores, multi-view registration is 1.1 times and 1.4 times faster 
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than KniFu for the combinations <4-CPU,1-GPU>, and <12-CPU,3-GPU> respectively. This 

shows that multi-view registration only needs a sub-sample of the range images required by 

KinFu and multi-view registration is faster than KniFu in a multi-core CPU and GPU 

environment.  

6.2. Future work 

There are still several areas to explore further in this work. A few of the possible areas are listed 

below. 

 During our research we assumed a homogeneous cluster i.e. all the multi-core CPUs and 

GPUs are of the same type. In future we would like to extend our algorithm to 

heterogeneous clusters with different types of multi-core CPUs, GPUs and also other 

kinds of processors. 

 Both multi-core CPUs and GPUs are not active at the same time. To further improve the 

speed-up we would like to introduce pipelining so that when GPUs are in the error 

calculation and minimization phase for one group of range-images the multi-core CPUs 

can compute the distance values for the next group of range-images. 

 The grouping of range-images during registration is manual. We could develop an 

approach to automate the grouping of range images. 
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Appendix A 

This section presents the models scanned in our lab. 

 

Figure A-1: Chair. 

 

Figure A-2: Tripod. 
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Figure A-3: Computer table. 

 

 

 

 

 

 

 

 

 

 

 

 



86 

 

Appendix B 

Tables A-1 to A-6 give the difference in transformations
9
 (transformation error) of nine range 

images when compared to the base line ICP transformation for the models chair, computer table 

and tripod. The transformation error values of ‘Distance based registration’ that are greater than 

the transformation error values of ‘KinFu’ is highlighted. From the tables we can observe that the 

transformation error values of ‘Distance based registration’ are less than ‘Kinfu’ this shows that 

‘Distance based registration’ is more accurate than ‘Kinfu’. 

Model chair 

Distance based registration. 

Q1 Q2 Q3 Q4 tx ty tz 

0.054677 0.00039 0.00277 0.00012 0.22323 0.21139 0.03684 

0.061884 0.00277 0.00835 0.00079 0.26485 0.237494 0.03273 

0.096615 0.003462 0.01882 0.00193 0.24624 0.21572 0.02538 

0.048158 0.004301 0.0169 0.00259 0.27019 0.230802 0.0202 

0.118041 0.01708 0.05841 0.00136 0.23428 0.19244 0.01006 

0.023007 0.002278 0.01253 0.00092 0.20039 0.16294 0.00764 

0.169401 0.024064 0.10858 0.01338 0.28278 0.22797 0.0097 

0.085751 0.013396 0.05902 0.00706 0.23143 0.18423 0.00553 

0.078129 0.02075 0.05542 0.00646 0.40969 0.323567 0.00675 

Table A-1: Transformation error values of distance based registration 

KinFu. 

Q1 Q2 Q3 Q4 tx ty tz 

0.105888 0.0002069 0.0036 0.0004 0.40231 0.40937 0.0135 

0.135611 0.0012664 0.013 0.0073 0.58038 0.520424 0.0172 

0.13557 0.004858 0.0201 0.0027 0.4878 0.36686 0.04316 

0.124295 0.011101 0.00362 0.00669 0.3187 0.411632 0.0303 

                                                           
9
 The transformation parameters give the alignment between the reference range image and another range image. 

The transformation parameters have a rotational component represented in quaternion (Q1, Q2, Q3, and Q4) and a 

translational component (tx, ty and tz). 
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0.228034 0.0088445 0.07284 0.00064 0.4259 0.37176 0.00244 

0.087546 0.008668 0.04768 0.0035 0.2363 0.32006 0.01501 

0.155446 0.022081 0.09963 0.01228 0.2525 0.32671 0.01389 

0.142406 0.022247 0.09802 0.0173 0.5558 0.44244 0.00139 

0.125812 0.012897 0.08925 0.0104 0.69205 0.556567 0.01141 

Table A-2: Transformation error values of kinfu 

Model computer table 

Distance based registration. 

Q1 Q2 Q3 Q4 tx ty tz 

0.031844 0.000119906 0.00161 7.2E-05 0.130007 0.123109 0.02146 

0.032929 0.00167359 0.01044 0.0042 0.140928 0.361367 0.01741 

0.029375 0.0015252 0.01572 0.0059 0.336021 0.119158 0.01402 

0.026747 0.00837882 0.00939 0.00144 0.150069 0.128193 0.01122 

0.077532 0.00580899 0.03837 0.0009 0.353881 0.126396 0.00661 

0.058963 0.00583787 0.03211 0.00236 0.360492 0.130498 0.00612 

0.055709 0.01791356 0.09571 0.0044 0.159759 0.297194 0.0548 

0.058202 0.00909253 0.04006 0.0479 0.157083 0.125045 0.00376 

0.024653 0.00406739 0.01749 0.0204 0.152621 0.120537 0.0252 

Table A-3: Transformation error values of distance based registration 

KinFu. 

Q1 Q2 Q3 Q4 tx ty tz 

0.069225 0.000260665 0.0035 0.00016 0.282624 0.267628 0.04665 

0.071584 0.001464326 0.00966 0.00092 0.306365 0.274711 0.03786 

0.063858 0.002288087 0.01244 0.00127 0.295698 0.259039 0.03048 

0.058146 0.005193087 0.02041 0.00313 0.326237 0.27868 0.02439 

0.168547 0.012628239 0.08341 0.00195 0.334524 0.274774 0.01437 

0.128181 0.012691022 0.06981 0.00513 0.348896 0.283691 0.0133 

0.121107 0.017203391 0.07762 0.00956 0.347302 0.279987 0.01191 

0.126527 0.01976637 0.08709 0.01042 0.341485 0.271837 0.00816 

0.053593 0.008842152 0.03802 0.00443 0.331785 0.262037 0.00547 

Table A-4: Transformation error values of kinfu 
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Model tripod 

Distance based registration. 

 

Q1 Q2 Q3 Q4 tx ty tz 

0.022745 8.56471E-05 0.00115 5.1E-05 0.192862 0.087935 0.01533 

0.02352 0.00098136 0.00917 0.0013 0.100663 0.090262 0.01244 

0.020982 0.0027518 0.00409 0.00042 0.097158 0.085113 0.02001 

0.019105 0.0017063 0.00671 0.00103 0.107192 0.091566 0.00802 

0.05538 0.008149279 0.07141 0.0064 0.109915 0.090283 0.00472 

0.042117 0.00969907 0.04294 0.00169 0.114637 0.093213 0.00437 

0.039792 0.005652543 0.0255 0.00314 0.114114 0.091996 0.03191 

0.041573 0.04294664 0.02862 0.01342 0.242202 0.089318 0.00528 

0.017609 0.022905279 0.01249 0.00426 0.229015 0.086098 0.0118 

Table A-5: Transformation error values of distance based registration 

 

KinFu. 

Q1 Q2 Q3 Q4 tx ty tz 

0.039804 0.000149883 0.00201 9E-05 0.162509 0.153886 0.02682 

0.041161 0.000841988 0.00555 0.00053 0.17616 0.157959 0.02177 

0.036718 0.00131565 0.00715 0.00073 0.170026 0.148948 0.01752 

0.033434 0.002986025 0.01173 0.0018 0.187586 0.160241 0.01403 

0.096914 0.007261238 0.04796 0.00112 0.192351 0.157995 0.00826 

0.073704 0.007297338 0.04014 0.00295 0.200615 0.163123 0.00765 

0.069637 0.00989195 0.04463 0.0055 0.199699 0.160993 0.00685 

0.072753 0.011365663 0.05008 0.00599 0.196354 0.156306 0.00469 

0.030816 0.005084238 0.02186 0.00255 0.190776 0.150671 0.00315 

Table A-6: Transformation error values of kinfu 
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Glossary of terms 

1. Range Image 

The raw data obtained from a scanner consists primarily of 3d point cloud called range-images. 

Typically a modern scanner can produce 30 range images per second.  

2. 3D Registration 

These range images obtained from the 3d scanner needs to be merged to construct a complete 3d 

model. The process of merging the range images is called 3d registration. 

3. Texture 

Along with the 3d points in the range image the color at each 3d point can also be recorded. The 

color is usually represented in RGB format. The colors at all the 3d points are together known as 

texture map. 

4. Transformation parameters / Transformation matrix 

Transformation parameters are a function between two vector spaces. Transformation parameters 

have a rotation and a translation component. The registration problem can be defined as a 

process of determining the transformation parameters to be associated with each range image, to 

merge all the range images. 

5. Initial transformation parameters 

The registration algorithm requires an approximate transformation parameter as an input, we call 

this initial transformation parameters.   

6. Final transformation parameters 

The transformation parameters returned after registration is the final transformation parameters. 
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7. Heterogeneous cluster 

A computer cluster consists of several computers that are connected to each other through 

fast local area networks. The computers in a heterogeneous cluster have different types of 

processors like single/multi core CPU, GPU, Cell processors. The heterogeneous cluster used for 

this thesis had a multi-core CPUs and GPUs.  

8. Node 

A node refers to a single computer in a cluster. Each node must have a processor, memory, 

network card, and an operating system. A node may or may not have secondary storage. The 

nodes used for this thesis had a secondary storage.  

9. Master node  

A master node is a node that co-ordinates all the other nodes in the cluster. A cluster may have 

one or more master nodes. In this thesis we used a single master node. The master node send’s 

instructions, receives intermediate results and combines the results received from all the other 

nodes. 

10. Slave node 

A slave node is a node that receives instructions from the master node, processes the instructions 

and sends the results back to the master node. 

11. Microsoft Kinect 

Kinect is a motion sensing input device by Microsoft for the Xbox 360 video game 

console and Windows PCs. The kinect has a depth sensor, RGB camera and a microphone. The 

depth senor in kinect can be used as a 3d scanner. The low-cost of kinect compared to the 

traditional 3d scanners has made it a popular chose among the researchers. 

http://en.wikipedia.org/wiki/Local_area_network
http://en.wikipedia.org/wiki/Motion_sensing
http://en.wikipedia.org/wiki/Input_device
http://en.wikipedia.org/wiki/Microsoft
http://en.wikipedia.org/wiki/Xbox_360
http://en.wikipedia.org/wiki/Video_game_console
http://en.wikipedia.org/wiki/Video_game_console
http://en.wikipedia.org/wiki/Windows
http://en.wikipedia.org/wiki/Personal_computer
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