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ABSTRACT

Machine Learning-based Strategies for Robust Fault Detection and Identification of

Mobile Robots

Farzad Baghernezhad

Nowadays, process monitoring and fault diagnosis techniques are becoming a crit-
ical component of modern automatic control systems. One of the most crucial issues for
the design of automatic control systems is reliability and dependability. Traditional ways
to achieve these goals are through designing adaptive and robust controllers to eliminate
any influence of faults on an output. Using these approaches, faults are managed but they
could ultimately lead to failures; after which no controller could repair such effects. In
order to minimize such damages, it is necessary to diagnose and rectify faults as soon as
possible. In a fault detection system, residual generation is the first step in detecting faults,
but residuals are not the only element of a dependable fault detection system. A fault de-
tection system is reliable when an appropriate residual evaluation method is used along
with a suitable residual generation technique.

The problem of fault detection and identification in a nonlinear system with appli-
cations to mobile robots is addressed in this thesis. For this purpose, first a new simulator
for mobile robots containing kinematic and dynamic equations of a mobile robot and its
actuators is designed. To detect faults in the system, a linear velocity of the mobile robot
is chosen and modeled with computationally intelligent techniques. Locally linear models

(LLM) as a neuro-fuzzy technique and radial basis function (RBF) as a powerful neural

il



network are used to estimate the linear velocity of a mobile robot and generate residuals
by comparing these with the system measurements. Subsequently, residuals are evaluated
by using fixed and adaptive threshold bands. Adaptive threshold bands are generated using
locally model thresholds (LMT) and model error modeling (MEM) technique in order to
reduce the fault detection delay and false alarms. Finally, fault identification of a mobile
robot by using multiple model technique is presented with the two proposed methods of
modeling and threshold generation. The fault identification task consists of determining
the occurrence of the fault as well as its location and magnitude. This is accomplished
on four different types of faults with different magnitudes that are divided in ten different
classes. For each scenario, simulation results are presented to demonstrate and illustrate
the advantages and disadvantages of each methodology.

The main contributions of this thesis can be stated as follows: (a) the development
and design of a new fault diagnosis method and a residual evaluation scheme by using
an adaptive threshold band that is accomplished by using locally linear models of the
system, (b) development of a fault detection approach based on computational intelligent
algorithms for mobile robots using the MEM algorithm to generate adaptive threshold
bands. (c) development of two fault identification approaches based on the concept of
multiple models for a mobile robot, and (d) the resulting improvements of the proposed

adaptive threshold bands are shown through extensive simulation results.
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Chapter 1

Introduction

1.1 Motivation

A fault is an abnormal condition that may cause a reduction in, or loss of, the capability
of a functional unit to perform a required function [1]. Every system in the world is
vulnerable to faults. If faults are not determined and resolved in proper time, they can be
amplified and lead to failures; after which no controller could repair such effects. In order
to minimize such damages, it is necessary to diagnose and rectify faults on time.

Faults typically have a low probability of occurrence, but the costs associated with
them are high. For example, a small crack in the wheel of a train can break the entire wheel
and cause derailing of the train, leading to a potentially big disaster. It could be avoided if
the crack in the wheel could be found on time. This is a critical issue for all systems such
as chemical processes, nuclear plants, power distribution and unmanned systems. Due to
such importance, process monitoring and fault diagnosis are becoming critical components
of modern automatic control systems [2]. For the last two decades, researchers from the
industrial and academic fields have investigated and developed a number of fault diagnosis
methods for different systems such as networking systems [3], building systems [4, 5] and

mechanical systems [6].



In this thesis, the problem of fault detection of mobile robots is addressed. Mobile
robots, in contrast to robot manipulators, are robots with the ability to move. They are
important members of unmanned vehicles. Such vehicles can be smaller and have lower
weight due to the fact that no human is involved directly. Moreover, there is no cost related
to the human involvement, such as teaching, insurance, man-made mistakes, etc. Beyond
these merits, the main advantage that is noted for unmanned vehicles is their performance
in dirty and dangerous missions where humans cannot access easily. The ability of these
vehicles to surpass in hazardous missions has caused them to be adopted in many fields.

One of the major characteristics of autonomous systems, in general, and mobile
robots in particular, is that they should possess the capability of fault diagnosis. In other
words, complex systems need to be equipped with intelligent mechanisms designed for
fast detection and isolation of faults and early detection of performance degradations for
cost effectiveness and time maintenance. As a matter of fact, fault diagnosis procedures
not only contribute to the autonomy of these systems but also change the maintenance
philosophy that has been used for several years.

For instance, when mobile robots are used for planetary explorations in space mis-
sions, they should be able to operate in a long period of time without intervention from
the central command and control station that are based on earth. In other words, commu-
nication with a central station is limited to a short period of time even during fault free
and healthy conditions. Moreover, due to the long roundtrip communication delays, the
capability of a central station to respond to emergencies and stimuli is very limited and
real-time monitoring is almost impossible. Consequently, the major subsystems of a mo-
bile robot, such as power subsystems, the driving subsystems, the steering subsystems,
communication and sensors should be as autonomous as possible. In fact, autonomy plays
a vital role in the accomplishment of the mobile robot missions in such applications. In
recent years there has been intensive research work on fault diagnosis of a variety of com-

ponents and subcomponents of wheeled mobile robots, such as motors [7], gears [8], tires



[9], suspension [10], sensors [11], etc.

1.2 Literature Review on Fault Diagnosis

On-time fault detection and isolation (FDI) of industrial systems reduces productivity loss
and assists prevention of unusual event progress. In an FDI process, the objective is to
have a system which detects faults as quickly as possible with minimum false alarms.
Early detection and isolation of faults allows the application of recovery actions leading to
maintaining the process operation and avoiding system shutdown, breakdowns and even
catastrophes involving human fatalities and material damage. Traditional approaches to
fault diagnosis are based on the hardware redundancy methods which use multiple com-
ponents such as sensors and actuators to measure or control a particular value, which does
impose extra equipment, space and maintenance cost [12]. In past years different alterna-
tive methods have been proposed for this purpose. A complete literature review on various
FDI methods is presented in [13]. As seen in Figure 1.1, which shows a general on-line
FDI system, first phase in detecting faults is residual generation which can be defined
as the difference between the expected variable and the measured one. Generating rich
residual plays an important role in the FDI process and this has attracted a large body of
literature ranging from analytical methods to artificial intelligence approaches [14]. The
residual should be sufficiently large in the presence of faults and small or negligible in the
absence of faults. In fact, noise, disturbances and modeling errors of the system should not
effect the residual [16]. A control system that is able to tackle such a challenging problem
is shown in Figure 1.2.

The main objective of this chapter is to present an overview to the fault diagnosis

and its most popular approaches.
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Figure 1.1: An FDI system [15].

1.2.1 Basic Concepts of Fault Diagnosis Techniques

In order to understand the concept of fault diagnosis, first the most important and general
definitions and nomenclature in this field are introduced. The presented definitions might
not be used identically the same in all references, but it is widely accepted by the ex-
perts in this field. The following definitions are based on the proposed terminology by the
International Federation of Automatic Control (IFAC) published in variety of references

[1,2,13,17, 18], etc.

States and Signals

Fault: Unpermitted deviation of at least one characteristic property or parameter of

the system from the acceptable, usual or standard condition.

4



Information about Faults

A4
Controller re-design

> Fault Diagnosis
Analvtic Redundancy Faults
T e
Yref W \: Y
1
< Controller >| Process —>{ Sensor —9¢—>
]
1
I

Unknown Inputs

Figure 1.2: A closed-loop control system [2].

Failure: A permanent interruption of a system’s ability to perform a required func-
tion under specified operating conditions.

Error: A deviation between a measured or computed value of an output variable and
its true or estimated one.

Disturbance: An unknown and uncontrolled input.

Residual: A fault indicator, based on the deviation between the measurements and
the model equation based computations.

Functions

Fault detection (FD): Determination of the faults that are present in a system and
the time of the detection.

Fault isolation (FI): localization (classification) of faults.

Fault analysis or identification (FAI): determination of the type and magnitude of
the fault.

Fault recovery (FR): refers to the reconfiguration of the system using healthy or the

available components and actuators/sensors.



Monitoring: A continuous real-time task of determining the conditions of a physical
system and recognizing and indicating anomalies of its behavior.

Supervision: Monitoring a physical system and taking appropriate actions to main-
tain the operation in case of faults.

Prognosis: Prognosis focuses on predicting the condition of an engineered system
or equipment at times in the future. As with FAI, prognosis is used along with evaluations
of impacts to make operation and maintenance decisions. Use of prognosis enables transi-
tion from maintenance based on current conditions of engineered systems and equipment
(condition-based maintenance) to predictive maintenance. Predictive maintenance is based
on anticipated future conditions of the equipment, its remaining useful time before failure
(or time before reaching an unacceptable level of performance), the rate of degradation,
and the nature of the failure if it were to occur.

Time Dependency of Faults (Figure 1.3)

Permanent or Abrupt Fault: Faults modeled by a stepwise function. It represents a
bias in the monitored signal.

Incipient Fault: Faults modeled by ramp signals. It represents drift of the monitored
signal.

Intermittent Fault: Faults modeled by a combination of impulses with different
amplitudes.

Fault Detection Parameters

Usually fault detection performance is reported using detection delay and confusion
matrix. Detection delay, also called detection time, is the time from the occurrence of the
fault to the fault alarm time and the confusion matrix reports the features of the classifica-
tion [31]. When only fault detection is considered, generally the following parameters are
calculated, namely
a denotes the number of healthy data correctly identified.

b denotes the number of healthy data incorrectly detected as fault.
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Figure 1.3: Time dependency of a fault [2].

¢ denotes the number of faulty data incorrectly identified as healthy.
d denotes the number of faulty data correctly detected.
Accuracy (AC) is the proportion of the total number of predictions that were correct. It is

determined by using the equation

a+t+d

= " 1.1
a+b+c+d 4.1

Recall or true positive rate (TP) is the proportion of positive cases that were correctly

identified, as calculated by using the equation

TP = d

Cc+d (12)

False positive rate (FP) is the proportion of negatives cases that were incorrectly classified

as positive, as calculated by using the equation

b

FP =
a+b

(1.3)

True negative rate (TN) is defined as the proportion of negative cases that were classified

correctly, as calculated by using the equation

(1.4)



False negative rate (FN) is the proportion of positives cases that were incorrectly classified

as negative, as calculated by using the equation

FN =<
c4d

(1.5)

Precision (P) is the proportion of the predicted positive cases that were correct, as calcu-

lated by using the equation
d

P= b d (1.6)

Another way of reporting the classification performance is by using a table to show
that each data has classified in which class. In fact, confusion matrix shows the predicted
and actual classifications. This matrix is usually used when the performance of fault iso-
lation and identification is needed to be reported. For example, if N classes of healthy
and faulty data have to be classified (identified or isolated), a confusion matrix is a matrix
of N rows which are real classes and N columns which are predicted classes. Each ele-
ment of the matrix shows how many data of the i’” class has been detected in the j'” class
i,j=1,2,....,N).

Fault Detection with Limit Checking

Before taking a precise look at the different methods of diagnosing faults, limit
checking technique is introduced. The most frequent and simple technique for fault de-
tection is the limit checking of a measured variable Y () [1]. In this case, the measured
variables of a process are monitored and checked if their absolute values exceed certain
limit values. Generally, two limit values, called thresholds, are presented: a maximal value

Y,.ux and a minimal value Y,,,;,. A normal state is when

The above implies that there is no fault in the process if the monitored variable stays
within a certain tolerance zone. When Y (¢) exceeds from one of threshold bands, fault is

detected as shown in Figure 1.4. Threshold bands come from the priori information about
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Figure 1.4: Fault detection by using limit checking [1]

the system and measured variables. They should be as small to detect faults as quickly
as possible and large enough to minimize false alarms. As a result, a trade-off between a

tight band and a wide band of thresholds exists.

1.2.2 Fault Detection Methods

As described before, the main idea of detecting faults comes from comparing the informa-
tion gathered from measured components of the system with the prior knowledge about it.
Fault detection methods are categorized typically into two major classes based on how the
priori knowledge is achieved:

Model-based methods which use mathematical model of the system and model free
based (data or signal [ 13 ]/learning/process history[19]-based) methods which do not use
the mathematical model of the system. In fact, model-based approaches are based on an a
priori knowledge developed from an understanding of the process, while model free-based
approaches are designed based on an a priori knowledge extracted from past experiences

of the process.



The two methods can be classified into two subsets with quantitative and qualita-
tive methods as illustrated in Figure 1.5. The quantitative method uses a mathematical
functional relation between inputs and outputs. On the other hand, it is considered as
a qualitative method if the relation between faults and failures is expressed in terms of

qualitative functions using different units of the process [19].

Fault Detection and
Diagnosis Methods

Model-based Methods Data-based Methods
Quantitative methods Qua?ative mell{:ls Quantitative methods  Qualitative methods
State Parameter Simultaneous Parity Causal Abstraction Statistical Neural  Expert Qualitative
Estimation Estimation State/Parameter Space Models Hierarchy Networks System Trend
/ Estimation / / \ J \ Fuszy Analysis
/ / i - LCB'“; Frequency &
Observers LSRLS | Extended State- Slfuctuml Quahtgnve Structural& PCA/PLS Stau?tlcal Pattern Time-
based Kiliain space Graphs | physics i classifiers Recognition frequency
Kalman Functional Analysis
filters Regression filfes e Fault
: Two-stage Input-
based analysis Kalniai output trees
filter based

Note: LS/RLS: Least Squares/Recursive Least Squares; PCA: Principal Component Analysis; PLS: Partial Least Squares.

Figure 1.5: Classification of FD methods [13].

Model-Based Fault Diagnosis Techniques

As described before, if the priori information about the measured variable is generated
using mathematical model of the system, the method is known as model-based fault diag-
nosis technique. It is pointed out in [17] that this method is a relatively young research
field and its development is rapid due to currently receiving considerable attention. Differ-
ent approaches for fault detection using mathematical models have been developed in past
years [17, 20, 21], while the main themes are classified into three methods [12, 13, 17]:
Observer-based methods [17, 22, 23]: In observer or filter-based approaches, the

outputs of the system are estimated from measurements (or subset of measurements) by
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using either Kalman filters in a stochastic setting or Leunberger observers in the deter-
ministic settings. A residual is then defined as the weighted output estimation error. The
observer-based FDI approach has become as one of the most common approaches in this
domain due to the increasing popularity of state-space models as well as the wide usage
of observers in modern control theory and applications [12].

Parity space methods[17, 24, 25]: In this approach residual signals or parity vec-
tors are generated based on consistency checks on system input and output within a time
window. Using this method, the FDI system designer is not required to have rich knowl-
edge of the advanced control theory. In recent years, a great number of FDI methods and
ideas have been first presented in the parity space framework and later extended to the
observer-based framework [17].

Parameter identification based methods [17, 26] : This method is based on system
identification techniques. This approach uses the fact that faults are reflected in the phys-
ical system parameters such as friction, mass, resistance, etc. The basic idea is on-line
parameter estimation of the actual system and comparing result with the parameters of the

reference model that is obtained initially under the fault-free condition [12].

Model-Free Fault Diagnosis Techniques

Model-free fault diagnosis techniques are applied to the system when priori knowledge is
extracted from past experiences of the process without using mathematical model of the
system. Most commonly used techniques are based on statistical methods such as principal
components analysis (PCA) and computational intelligence methods. The methods used in
this thesis are categorized into the computational intelligence methods that are discussed

in more detail below.
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Computational Intelligence Methodologies in FDI

In this domain, faults of the system are detected by using a representation of the model
of the system which is trained by computational intelligence methodologies and without
requiring mathematical equations of the system. Typically, in the detection phase, normal
healthy behavior of the system is modeled. A comparison between the output of the model
and the output of the system is made, in which residual signals are generated. In the
isolation phase, learned models can be utilized to achieve the classification of the residuals
into appropriate categories of faults. Certain fault diagnosis systems utilize learned models
for both detection and isolation, while there are also hybrid systems which utilize them for
either detection or isolation phases only. Below, we take a brief look at three different
kinds of learning-based modeling techniques.

Neural Network Applications: Neural networks have been used extensively in mo-
bile robots as controllers [45] and also as modeling tools for fault diagnosis purposes
[30, 46, 47]. They can be applied for both detection and isolation of faults in systems
[46]. Neural networks model a system after the training process is completed which is
done by learning from the existing data of the systems. At the simplest level, a single
neuron produces an output for a given set of inputs. The neuron’s output plays the role of
input for the next layer’s neurons until the output layer which produces the outputs of the
system. By proper adjusting the network parameters; weights, biases, functions, number
of neurons and layers, it has been shown that the neural networks are general (universal)
function approximator [28, 29, 43].

Fuzzy Logic Applications: Zadeh first proposed fuzzy set theory in 1965 [48]. In
1973, he introduced the concept of linguistic variables and proposed the use of If-Then
rules to represent human knowledge [49]. In 1976, Mamdani proposed a linguistic tool
to build the fuzzy model of a system [50]. He proposed to model the system behavior by
using if-then rules connecting linguistic terms that captured the intuitive understanding of

the available signals by human subjects. In recent years, fuzzy logic has been successfully
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applied to different fault detection and diagnosis technical processes [S1]. Also, fuzzy
logic is very often used to perform fault isolation tasks, where the relations between resid-
uals and the faulty states of the monitored systems are expressed by a set of if-then rules
[27, 52].

Neuro-Fuzzy Applications: Neuro-fuzzy networks are fuzzy models that are not
solely designed by expert knowledge (fuzzy models characteristic) but are at least partly
learned from data [43]. A neuro-fuzzy model is a powerful combination of neural networks
and fuzzy logic techniques. This method is used for both fault detection via modeling, and
fault isolation via classification of nonlinear systems [53].

Two categories of combinations between neural networks and fuzzy systems are pro-
posed in [54]. There are systems where the neural networks represent the basic methodol-
ogy and fuzzy logic the secondary one. In other methods, which is also used in this thesis,
fuzzy logic represents the basic methodology and neural networks as the secondary one. In
these systems a set of fuzzy rules are put in the form of a neural network in order to make
use of the learning, adaptation and parallelism capabilities provided by neural networks

[53].

1.2.3 Threshold Generation

As illustrated in Figure 1.1, apart from residual generation through modeling of the sys-
tem in the fault-free condition, another important issue for FDI is residual evaluation or
decision making. The decision-making task in diagnostic problems starts with observation
of behavior recognized as a deviation from which is expected or desired and establishes
some hypothesis about the cause of the fault [53]. In this step, optimal selection of the
threshold band is the most important aspect [33].

Typical logical schemes associated with FDI algorithms depend on a set of constant
or fixed thresholds [34]. If a fixed threshold band is chosen, its value should be sufficiently

small so that faults can be detected at their early stages and also the rate of false alarms
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is minimized. In this case, lower and upper bands are constructed which determine the
minimum and the maximum values that each residual signal can reach under fault free
operating condition [35, 36].

The other methodology that is used for threshold generation is by using adaptive
threshold band. In this approach threshold values change in regards to the data obtained
from the system and the residual generation aspect. Several methods illustrate that adaptive
threshold bands have better performance than fixed ones. In [34] these two methods are
compared on FDI of actuator failures of an aircraft. An adaptive threshold generation
based on support vector machines for fault detection is presented in [37]. Another adaptive
threshold generation technique based on eigen decomposition is discussed in [16]. By
using fuzzy rules, development of adaptive fuzzy thresholds is also an attractive idea [38]-
[40].

In this thesis by using locally linear models (LLM) of the system, which belongs to
the neuro fuzzy modeling method, a new idea of adaptive threshold generation is proposed
to improve the FDI process. An alternative adaptive threshold band is also presented by

using the model error modeling technique [55] to improve the fault detection performance.

1.2.4 Fault Identification

Several methods exist to determine the type and the magnitude of a fault. One of the
most common methods is by using multiple models. In this method, multiple models
are designed or trained to estimate the output of the system under different faulty cases
with different severities. By comparing the measured output with the estimated outputs
different residuals are obtained which can determine the type of the fault and its magnitude.
The study on the residuals leads one to a classifier which can be a simple logic or a neural
network.

Different methods can be used to both model faults and classify them. In [41], a

bank of parallel Kalman filters, each with a different internal fault model, is utilized to
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model different faults in the system and then the faults are identified with a hypothesis
testing computation. A bank of Kalman filters is used in [47] to model various faults in a
mobile robot. A neural network is then used as a classifier to identify the faults. In [42],

neural networks are used as both different fault models and classifiers.

1.3 Problem Statements and Thesis Contributions

In this thesis, a nonholonomic two wheeled mobile robot having nonlinear dynamics is
controlled to follow a predefined trajectory in the absence of obstacles. In the trajectory
plan, certain fault scenarios are implemented in different parts of the system. The faults are
chosen as the most common mobile robot faults that are addressed in previous studies [30,
35, 86, 89, 90] and [97]. The purpose of this thesis is to design a reliable fault diagnosis
system to detect and identify faults as soon as possible with minimum false alarms.

To propose a solution for the stated problem, first a mobile robot simulator is de-
veloped. The simulator contains the kinematic and dynamic equations of a two wheeled
mobile robot controlled by a multi-input multi-output (MIMO) controller. By using the
data that is gathered from the simulator, linear velocity of the system is modeled with two
learning-based methods of system identification; namely the locally linear neuro fuzzy
model trained by a locally linear model tree (LoLiMoT) algorithm and a RBF neural net-
work. Subsequently, various faults that are implemented in the system are detected by
limit checking of the modeled output. In this study, to decrease false alarms and detection
time, adaptive threshold bands are proposed. For the first method, an adaptive threshold
band is generated by using locally linear models of the system by attributing a threshold
value to each model which are named locally model thresholds (LMT). Another adap-
tive threshold band is generated by using model error modeling (MEM) technique. The
adaptive threshold performances on fault detection of mobile robots are compared with

the fixed threshold. Also, for the RBF neural network, the fault detection performance
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of the adaptive threshold bands generated by the MEM algorithm is compared with the
fixed threshold band. In the last part, different faults of the system are identified by using

multiple faulty models of the system and two of best methods for the fault detection.

1.4 Thesis Outline

Chapter 2 describes the developed fault detection schemes. To achieve this goal, two dif-
ferent computational intelligence methodologies are explained to model nonlinear systems
in order to detect and identify system faults.

Chapter 3 presents a complete model for a two wheeled mobile robot. The kinematic
and dynamic equations of a mobile robot and the permanent DC motors as actuators, are
provided to develop a complete model of a mobile robot. This model is controlled by
proportional and derivative control gains.

Chapter 4 first introduces possible faults in the system and reviews previous ef-
forts on fault detection of mobile robots. The implemented faults in the system are listed.
By using modeling methods that are presented in Chapter 2, three robust fault detection
schemes are proposed. Finally, by using simulation results, the strengths and weaknesses
of the proposed fault detection techniques are discussed.

Chapter 5 describes the fault identification of the system by using a multiple model
algorithm. In this chapter, various fault scenarios are simulated and the performance of
the proposed modeling methods on fault identification of the mobile robots are evaluated
and compared.

Chapter 6 contains a brief summary of the main topics and the most important con-
tributions of the thesis. Finally, some suggestions for future studies on the fault diagnosis

of mobile robots are made.
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Chapter 2

Background Information

2.1 Introduction

Modeling and identification of nonlinear systems is a very challenging problem. Propos-
ing a structure able to describe every possible system efficiently is very hard. Therefore,
different modeling approaches have been presented to respond to the needs in each do-
main. Using a suitable method is one of the modeling and identification issues. In this
thesis, to model a mobile robot platform the external dynamics approach with a nonlinear
static approximator is used as an appropriate structure for modeling the system.

This chapter introduces an overview of the background material related to the sys-
tem modeling methods that are used in this study. At first, the proposed fault detection
methodology is briefly introduced to provide the justification on modeling the system (the
details about the detection logic will be explained in Chapter 4). After that, two static non-
linear system identification methods are explained to model the output of the system. The
first method is a locally linear neuro fuzzy model which uses local linear models (LLM)
and the second method uses radial basis function (RBF) neural networks. In this study, to
estimate and represent a dynamic system using static tools, justifications on the external

dynamics approach is used [43].
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Figure 2.1: Simple structure of the proposed method for fault detection.

2.2 Proposed Fault Detection Methodology

The simple scheme that is used as a methodology for detecting faults in this thesis is
illustrated in Figure 2.1. In this figure, a model is designed to estimate y, the output
of a nonlinear dynamical system. Models should be accurate to maintain residuals in a
bounded area under the fault free situations. After training an appropriate model, faults in
the system are detected by using limit checking of the modeled output. By comparing the
measured output of the system y with the estimated one y, the residuals r are generated

according to:
r=y-—y 2.1

When the system is affected by faults, the estimation error or the magnitude of the residual
increases. Hence, it can be interpreted as an appropriate fault signature. Residuals are

evaluated by comparing their values with either adaptive or fixed threshold bands.

2.3 Modeling Approach

As described before, the first step in detecting faults is modeling the system. For this
purpose, two nonlinear static modeling methods are used to estimate linear velocity of the

mobile robot. The training structure of the models is shown in Figure 2.2. The models use
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Figure 2.2: Training process for representing the model.

inputs of the system and their past samples to estimate the output. The inputs and output
of the system at the time instant & are defined as U (k) and y(k), respectively. The objective

of modeling the system leads to approximation of the following function
y(k) = f(x(k)), wherex(k) =[U(k) U(k—1) ... U(k—m)]" (2.2)

In order to determine the appropriate structure of the model in addition to optimizing the
parameters, the dynamic order m has to be estimated. To add dynamics to a static learning
approximator, the external dynamics approach is used [43]. The external dynamics without

output feedback is applied here which will be explained in next subsection.

2.3.1 External Dynamics

The modeling methods used in this study belong to static methods of system identification.
In recent years, several approaches have been proposed [56]-[63] to present dynamics to a
static learning approximator which can be mainly classified into two categories. The first
method, known as the external dynamic, is to feed the network with current and delayed
values of the system inputs and outputs [43]. The external dynamic strategy is the most

commonly used method to model and identify nonlinear dynamical systems [56]-[58].
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Figure 2.3: The external dynamics approach [43].

This method uses the fact that nonlinear dynamic model can be divided into two parts:
a nonlinear static approximator and an external dynamic filter bank as shown in Figure
2.3. The filters are chosen as simple time delays, which are denoted as tapped-delay lines.
Several authors have applied this method to different applications and good references for
this category are [43] and [57].

In contrast to models with external dynamics, an alternative approach uses internal
dynamics. In fact, models with internal dynamics are based on the extension of the static
models with internal memory by utilizing dynamic neurons [43]. Therefore, past inputs
and outputs are not used at the model input which reduces the input space dimensionality.
In past years, several dynamic neuron structures have been reported in the literature [59]-
[63]. In [63], dynamic neural network structures are presented to demonstrate that they
are capable of representing the relevant class of dynamic nonlinear systems.

Due to the existence of several means for choosing the architecture and the train-

ing algorithm of the external and the internal dynamic methods, their comparison is not
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straight forward. However, some major differences between them are obvious. The ex-
ternal dynamic approach is less robust and more sensitive with respect to the information
about the system order m. In other words, the internal dynamics approach does not neces-
sarily require an assumption on the order of the system. The order of feedback delays in
the internal dynamics approach should be determined by using nonlinear parameter opti-
mization methods. This fact imposes a great computational burden in the training phase.
The missing interpretability is another drawback of the internal dynamics, however, inter-
pretability of the external dynamics approach depends on the chosen network architecture
[43]. When a high order and a multivariable system needs to be modeled, the internal
dynamics approach has the advantage of lower curse of dimensionality due to the fact that
the network is fed only with the actual input and outputs.

In conclusion, the external dynamics approach needs more storage while the dy-
namic neurons approach has more computational complexity for training and running the
identifier. In this thesis, the external dynamics is chosen due to the fact that by using
dynamic neurons one needs to estimate the related parameters and a wrong choice of pa-
rameters might cause internal instability. Below, two different methods for the external
dynamics are explained.

Models with Output Feedback. One way is to use output feedback as well as input at
the input of the external dynamics. Regarding the type of the model, either system output
y(k— 1) or model output §(k — 1) can be used as the input of the external dynamics. If
y'(k— 1) in Figure 2.3 is the measured output of the system (y(k — 1)), the configuration is
known as prediction with a series-parallel model. Otherwise, if y/(k — 1) is estimated out-
put of the system (), the configuration is known as simulation with a parallel model. Pre-
diction is typically used when the current state of the system is measurable as in weather
forecasting and stock market predictions. When the system output cannot be measured or
when a sensor is replaced by a model, the simulation is required. Also, for FDI purposes,

usually the system output is compared with the simulated model output [43].
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One issue for models with output feedback is to find the dynamic order m which is
crucial for an acceptable performance of the method. In fact, there is no efficient method
for determining the dynamic order. Another disadvantage that is encountered in output
feedback methods in [43] is the lack of general proof of stability.

Models without Output Feedback. In this case, the nonlinear static model uses only
the previous or the filtered inputs. The price to be paid for the not having feedback is that
the dynamic order » has to be chosen very large to describe the system dynamics properly
which does limit the application of this method. The above drawback can be reduced
largely by incorporating priori knowledge about the system dynamics into the linear filters
[43].

In this thesis, the external dynamics approach without output feedback is used since
the system is found to be a low order dynamical system. The estimators are able to model
the system by using present and past inputs. This method needs less memory than the case

which uses present and past outputs as well as the inputs.

2.3.2 Supervised Learning

Computational intelligence models are complex functions usually composed of the super-
position of simpler functions. Finding the appropriate structure as well as good parameters

for the model is known as training. The most usual method of training is the supervised

k

w—1> €ach con-

learning which assumes that there is a set of (k) training samples { (Uy,yn)}
sisting of an input vector and a measured or desired output or output vector. Learning
involves sweeping through the training set, gradually adjusting the parameters and struc-
ture of the model so that the output of the model gets sufficiently closer to the real output.
In fact, data samples act as teacher or training sets. The detail on training each model is

described separately in the next subsection, but before that the different sets of data that

are used to train and validate models are explained.
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Data Selection for the Supervised Learning

Generally, when there is no limitation on the data generation, three sets of data are used in
the process of training and testing the model. Each set of data should be chosen wisely in
order to contain all of the characteristics of the system. First set is the training data, which
is used to adjust the parameters. Using input and output of the training data and proper
optimization algorithm, weights, biases and function parameters are trained in order to
minimize the sum square error or the cost function.

Second set of data is the test data, which is used to adjust the structure of the net-
work. Besides training the model with training data, test data helps to find its structure.
By comparing the system’s output with the estimated output of the test data, model’s per-
formance is calculated for each parameter.

For example, consider a number of neurons in the hidden layer of an RBF neural
network or in a LLM. An important characteristic of these models is the number of neu-
rons. If an inadequate number of neurons are used, the network will be unable to model
complex data, and the resulting fit will be poor. On the other hand, using too many neurons
might decrease the estimation error in the training data, but it increases the training time
excessively and worse, the network may over fit the data. Overfitted systems, model ran-
dom noise of the data. The result is that the model fits the training data extremely well, but
it generalizes poorly to new and unseen data. In order to avoid these problems, the number
of neurons should be optimized. Therefore, by increasing the number of neurons one by
one (the increasing rate depends on the sensitivity of the network to the parameter), the
estimation sum square error for the test data will start to increase (refer to Figure 2.4). The
last neuron value before increasing the sum square error of the test data is the optimized
number of neurons. This method can be used for obtaining the numerical parameters such
as the number of training, the layers and the neurons. In FDI algorithms, typically residual
of the test data is used to generate the threshold bands.

The third set of data is the validation data which does not play a role in the training
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Figure 2.4: The optimized number of neurons is found when the sum square error of the
test data is minimized.

of the model. This set of data is used to show the performance of the model when new data
is applied. Below the models that are used for the fault detection problem are described in

more detail.

2.4 Locally Linear Models (LLM)

A parallel superposition of partial (local) models by localizing weights is designated as
a local model network [64]. This kind of modeling has been developed under different
names and in different fields [64]. The main idea is based on approximation of the model
of a nonlinear function with piece-wise local models (neurons). In most cases, partial
models are chosen as linear models and a switching algorithm among models is applied
by using fuzzy rules which produces locally linear neuro-fuzzy models or the LLM for
short [43]. The most important factor for the success of local linear models is the division
strategy of the original complex problem [56]. A complex modeling problem is divided
into a number of smaller and therefore simpler subproblems, which are almost solved

independently by identifying simple, e.g., linear models [43].
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The schematic of the LLM structure with M neurons is shown in Figure 2.5. The
objective is to adjust the model parameters and structures to generate y to represent the out-
put estimation of the system having a single output y and multiple inputs u,, (m = 1,..., p).
Mathematically, a parallel superposition of the partial models is just given by summing up
the outputs of these models that are multiplied by the associated validity functions. The
validity functions determine the corresponding neurons’ role in constructing the initial
model, which are typically chosen as normalized Gaussian functions with axis-orthogonal

[43] functions that are given by

(pi(l;l) _ M.ui(l_1> (2.3)
Y wi(w)
j=1
where
o 1 (i —cin)? (”p_cip)2
Ui(u) = exp(— 5 (—G,% +..+ o ) (2.4)

The normalized Gaussian validity function &;(.) depends on two parameters, namely
the center coordinates c;; and the standard deviation o;;. Since validity functions control
the activity of the LLM, they are also called activation functions.

The estimated output as depicted in Figure 2.5 is given by

M
y=Y @ (2.5)
i=1
where ®; is the validity function and y; is the output of each locally linear model. The

larger the ®;, the more is the contribution of J; in the output estimation.

The output of the i LLM is given by

where w;; denotes the LLM parameters for the neuron i and the input j. The parameters
are optimized by using local linear model tree (LoLiMoT) technique which is discussed in

next subsection.
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Figure 2.5: The network structure of an LLM model with M neurons corresponding to p
inputs [43].

2.4.1 Local Linear Model Tree (LOLIMOT) Algorithm

As described before, the division strategy for the original complex problem is the most
important factor for the success of a local linear modeling. Therefore, the properties of the
LLM models crucially depend on the applied construction algorithm that implements a cer-
tain division strategy. In this study, the LoLiMoT strategy which is a powerful neuro-fuzzy
algorithm is used to train the LLM model. LoLiMoT is an incremental tree-construction
algorithm that partitions the input space by axis orthogonal splits [43]. In each iteration a
new rule or LLLM is added to the model. The term neuro is used for the LoLiMoT algo-
rithm because it is designed in a network form and it learns from data. It is considered as a
fuzzy network, because it uses local linear models. The fuzzy rules in this method are the
local models which are added to the main model at each iteration [65]. The training algo-
rithm for the LoLiMoT can be divided into internal and external loops which optimizes in

parallel the identification process in each iteration. The external loop adjusts the structure

26



of the system and the internal loop adjusts its parameters.
LoLiMoT Algorithm [43, 58, 65]: The overall objective is to adjust the model param-

eters and its structure in Equation (2.5) and Figure 2.5 to estimate the output of the system

k
n=1°

y by using k samples {(Uy,y,)} where U is the input vector of u,, (m =1,2,...,p)

having a dimension p. The algorithm is devised as follows.
1. Start with an initial model: At first, a neuron with linear gains (w19, w11, ..., wip)

and a validity function (®; = 1) is trained to yield
=@y = P1(wio +wiiug +wipuz + ... +wipup) (2.7)
To adjust the weights the weighted least squares (WLS) method is used which leads to a

particularly simple solution as

w=(UTQU)"'UTQ;Y (2.8)

where Q; = diag(¢i(U(1)), 9:(U(2)),-., 9:(U(N))),

L owi (1) wua(l) ... up(l)
U I oui(2) wa(2) ... up(2)
L owui(k) wua(k) ... up(k)

Y = [y y2 ... y|T denotes the output vector of the training set data and w = [wy w ... wp]T
denotes the vector of weights.
2. Obtain the worst LLM: Calculate a local loss function J; for each of the i =

1,...,M locally linear models using the:

k
Ji=Y En)®i(U(n)) (2.9)
n=1

where £ is the number of the training data points, e is the error between the measured and

the estimated output, and ®;(U) for the first iteration is set to 1 and there after its value is
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set based on the previous iteration as calculated in the third step below. The worst LLM,

which is now obtained corresponding to the below
| = maximum(J;) (2.10)

is obtained.

3. Evaluate all the units or divisions: The LLM / is considered for further re-
finement. The hyper-rectangle of this LLM should be split into two halves with an axis
orthogonal split. Division in all the p dimensional spaces are tried. For each possible
division, the validity functions and the LLLM parameters are calculated by using Equations
(2.3) and (2.8), respectively (choosing the value of the centers c;;s and the standard devia-
tion o;; for Gaussian validity functions will be discussed in subsequently.) The local loss
function is computed by using Equation (2.9).

4. Obtain the best division: The best of the p alternates (the one with the least loss
function) based on the ones constructed in step 3 is chosen and adapted for the LLM.

5. Test the stopping condition: If the stopping condition is satisfied stop the algo-
rithm, otherwise go to Step 2.

Dividing and training the neurons is continued until a stopping condition is satisfied.
This condition can be set based on a sufficiently small sum square estimation error or an
upper bounded on the maximum reachable number of neurons. The flowchart of this
algorithm is shown in Figure 2.6 (a). The dividing method for a two dimensional function
with three iterations is shown in Figure 2.6 (b). This technique provides a powerful tool
for non-parametric analysis and control of nonlinear systems [43, 56, 65, 66].

Choosing the centers c;;s and the standard deviations o;; are not discussed in the
above algorithm steps. Figure 2.7 shows these parameters for three neurons for a two
dimensional function. c;;s show the center of the Gaussian functions which are chosen
as the center of the rectangles and A;; denotes the extension of the hyper rectangle of the

local model i in the dimension ;. The only parameter that has to be specified by the user
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Figure 2.6: (a) The procedure for the LoLiMoT algorithm [67] (M is number of the neu-

rons and the local linear models), (b) Three iterations of the LoLiMoT algorithm for a

two dimensional function; neurons are divided orthogonally in order to result in the least
estimation error.
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is the standard deviation of the Gaussian functions, that is

0;j = QA;j (2.11)

where « is the proportionally factor between the rectangles’ extensions and the standard
. . ! . . . . T . . _ 1 .
deviations. Although each specific application has its optimal value, usually o = 3 is a

good selection [43].
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Figure 2.7: The unique relationship between the input partitioning and the validity func-
tions P;s [43].

The above approach is quite fast and robust. It is especially important to note that
due to the local estimation approach, the computational demand increases only linearly

with the number of the local models [43].

2.5 Neural Networks

In this section, another computational intelligence modeling method, namely the radial

basis function (RBF) neural network is presented. Neural networks are now widely used
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in several fields in industry for automatic process control, medical image analysis, mete-
orology for weather forecast, etc. In fact, they are applicable in almost every situation in
which a relation between the predictor variables (inputs) and predicted variables (outputs)

exists, even when that relationship is complex [68].

Structure of a Neural Network

An artificial neural network (ANN), usually called neural network, is a mathematical
model using combination of many neurons that are inspired by the biological nervous
systems, such as the brain. Figure 2.8 shows a simplified multi-input single-output neuron
which consists of weights wy 1 to wy g, a bias b, an activation function f and a gain a. A
feed forward neural network is made up of several neurons connected into one or more
layers as illustrated in Figure 2.9. For most networks, a layer contains neurons that are not
connected to one another. The input layer is not really a layer of neurons as these units
simply serve to introduce the values of the input variables. The hidden and output layer
neurons are connected to all units in the preceding layer. Again, it is possible to define
networks that are partially-connected to only some units in the preceding layer; however,

for most applications fully-connected networks are used [68].

Inputs Multiple-Input Neuron
' 3

S L W
a=f(Wp+h)

Figure 2.8: A simple neuron [44].

The result of a feed forward neural network as illustrated in Figure 2.9 is a static
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M-1 M
Layer Layer

Figure 2.9: M-layer feed forward neural network [44].

function. In contrast with these networks, feedback networks have loops which allow
signals to travel from output of a neuron to its input. Feedback networks are dynamic and
can become extremely complicated. In this thesis, a feed forward RBF neural network is

used as described next.

2.5.1 Radial Basis Function (RBF) Neural Networks

RBF neural network is a feed forward network with one hidden layer. As the name im-
plies, a radial construction mechanism is used in its hidden layer. Radial functions are a
special class of functions. Their response depends on the input distance from a central
point. Gaussian-like radial basis functions are local and are more commonly used than
multiquadric-type radial basis functions which have a global response. They are also more
biologically plausible due to their finite response.

Hidden neurons of the RBF neural networks are based on the distance between an
input vector and the prototype vector of the neuron. In an RBF neuron, first the distance
of each input to the center of the neuron is calculated. The result then passes the activation

function g(x) which is usually chosen as a Gaussian function
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8(xj) = exp(—=3xj) (2.12)

The distance x; is calculated by using the center ¢; and the norm matrix X;, which

are the hidden layer parameters of the j'” RBF neuron, as follows

xj=llu—cjlls; = \/(u—r_:j)Tﬁ(z—gj) (2.13)
Often the ¥ matrix is diagonal, so that it contains the inverse variances for each input

dimension. Therefore, the distance calculation for the p inputs is simplified to

(2.14)

Superposition of several such neurons creates an RBF neural network. The func-
tional representation of the RBF network which is shown in Figure 2.10 can be written
as

[lr—c)I?

F=Y wj®;(x),P;(x) = exp(— ), ®o(.)=1 (2.15)

j=0 20}
where m is the number of neurons and @; is the activation function of the 7' neuron.

The parameters that have to be determined or optimized during the training of an
RBF neural network are as follows [43]:

-Centers (c;) are nonlinear parameters of the hidden layer neurons. They determine
the positions of the basis functions.

Several methods exist [43] to find the proper centers for an RBF neural network such
as the center selection using the subset of data points, clustering based algorithms, non-
linear optimization center placement, etc. Among these methods, the K-means clustering
algorithm is the most common and simple clustering algorithm [43], and is used to train

the RBF neural network in this thesis.
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Figure 2.10: An RBF neural network [43].

K-means clustering algorithm. Clustering algorithms are used to obtain a set of
centers which reflects the distribution of the data points. Each center c; is supposed to be
representative of a group or set of data points.

Suppose there are p data points x;, (i =1,..., p) in total and where finding m rep-
resentative vectors ¢j, j = 1,...,m is desired. The number of centers (m) is decided in
advance. The algorithm seeks to partition the data points x;,i = 1,...p, into m disjoint
subsets §; containing P; data points, in such a way as to minimize the sum of squares

clustering function as given by

m
I=Y Y lxi—clf (2.16)
j=1x€S8;

Minimization of the above mentioned cost function is accomplished as follows [43]:

1. Choose initial values for the C cluster centers ¢ )= 1,...,C. This can be done
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by picking randomly C different data samples.
2. Assign all data samples to their nearest cluster center.
3. Compute the centroid (mean) of each cluster. Set each center to the centroid of

its cluster, that is

cj== Y X (2.17)

where i runs over those P; data samples that belongs to the cluster j

4. If any cluster center has been moved in the previous step go to step 2; otherwise
stop.

The above mentioned classical k-mean clustering algorithm has been extended to
more complex methods such as the on-line K-means clustering algorithm, Fuzzy K-mean
algorithm, and Gustafson-kessel algorithm, among others [43].

-Standard deviations (c;) are nonlinear parameters of the hidden layer neurons.
They determine the width (and possibly rotations) of the basis functions. In this thesis,
standard deviations of the basis functions are adjusted by using test data and the trial and
error approach which is described in section 2.3.2.

-Output Layer weights (w;) are linear parameters. They determine the heights of
the basis functions and offset value. The relation between the output of the neural network

and its weights as illustrated in Figure 2.10 is given by

m
=Y wjhj(x) (2.18)

j=1
where hjs are the radial basis functions’ outputs and w;s are linear weights. In this case,
applying a supervised learning method, the least squares (LS) principle leads to a partic-
ularly easy optimization. The LS by using the training sets ({(x;,y;)}?_,), minimizes the

sum squared error S as given by
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p
S=Y (vi—5)’ (2.19)

i=1
with respect to the weights of the model. If a weight penalty term is added to the above

sum squared error with a term which penalizes large weights, the cost function S will

become

o~

C=Y (i—9)+A Y w; (2.20)
=1

i=1 j

The above is a ridge regression (weight decay) and the regularization parameter A > 0
controls the balance between the fitting the data and avoiding the penalty. A small value for
A implies the data can be fit tightly without causing a large penalty; and a large value for A
implies a tight fit has to be sacrificed if it requires large weights. In [69] the minimization

of the above cost function is found by using

W= HH+AL,) 'HTY (2.21)

where H, the design matrix, is given by

hl(xl) hg(xl) hm(xl)
Ho hi(x2) ha(x2) ... ‘p(x2)
hi(xp) Ma(xp) o h(xp)

and Y = [y y» ... yp| is the output vector of the training set and W = [0 W, ... wp]” is the

vector of weights which minimizes the cost function C [69].

2.6 LLM vs. RBF, Comparative Study

Neuro-fuzzy models, such as neural networks, are general function approximators [43, 70].

Several studies have demonstrated their performance in nonlinear system identification and
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control [71, 72]. An intuitive way of training and the use of minimum number of adjustable
parameters, that lead to a high generalization performance are two characteristics of the
LLM models.

Using the Gaussian validity functions in the LLLM neurons make this approach quite
similar to a modified version of RBF networks which use normalized radial basis func-
tions (NRBF). Although these methods originate from different modeling families having
different interpretations, their structure is almost the same. A comparison of these meth-
ods in [43] is shown in Figure 2.11. In fact, in the RBF network, normalized Gaussian
basis functions are weighted with a constant coefficient (w;p) while a local linear model
uses different coefficients for each neuron. In other words, LLM degenerates to a NRBF

network if wjp # 0 and w;; =wp = ... = w;;, =0.

Extension

) 4

N

Simplification

Figure 2.11: Relationship between the LLM model and an RBF network [43].

In [56] modeling and identification capability of these methods on catalytic reformer
unit has been compared. Final gasoline products qualities such as research octane number
(RON) and reid vapor pressure (RVP) in catalytic reformer unit are chosen to be identified.
RVP and RON are nonlinear functions of qualities of blend components. As concluded
in [56], modeling the studied system using LLM model leads to a estimation error as

compared to the RBF neural network.
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2.7 Conclusions

In modern applications, devices and systems are increasingly being used in regimes where
they cannot be accurately described by linear models accurately. This has led to a growing
need for models and modeling techniques that are able to adequately describe the behavior
of these systems. Nonlinear system estimation is a very broad problem and it is impos-
sible to propose a structure capable of describing efficiently every possible system. In
this chapter, two intelligent nonlinear system identification methods have been introduced

which will be used for fault detection of a mobile robot in subsequent chapters.
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Chapter 3

Mobile Robot Model and Simulator

3.1 Introduction

This chapter introduces the mobile robot governing equations which are then used to create
a simulator. Among several models for mobile robots, the model presented in [73]-[77]
which is for directional two wheeled mobile robot is used in this thesis. It is the most
appropriate model for fault detection purposes because the model contains dynamics and
kinematics equations of the mobile robot and the available robot in our lab is also a di-
rectional two wheeled mobile robot (Pioneer P3DX). After presenting the equations of
the mobile robot, a controller is designed by using an MIMO PD law. Finally, simulation

results are provided to show various trajectory tracking performance of the mobile robot.

3.2 System Modeling

To model a mobile robot, a few assumptions are needed to be considered;

a) The robot moves in a planar surface.

b) Wheels rotate without any slippage.

¢) The robot is considered as a solid rigid body, and movable parts are the wheels which

are activated to follow a commanded control position.
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Upon these assumptions, equations of a two wheeled mobile robot are derived below.
Figure 3.1 shows a schematic of a mobile robot with its parameters which are used in

modeling.

Figure 3.1: A schematic of a mobile robot [77].

The following notations are used in the modeling procedure of the mobile robot
which are illustrated in Figures 3.1 and 3.6.
P, (x,,Y0) : the intersection of the axis of symmetry with the driving wheel axis;
P, (x¢,yc) : the center of platform’s mass in world coordinate system;
¢ : the heading angle of the platform;
d : the distance from P, to P,;
b : the distance between the driving wheels and the axis of symmetry;

r : the radius of each driving wheel;
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m, : the mass of the platform without the driving wheels and the rotors of the dc motors;
m,, : the mass of each driving wheel plus the rotor of its motor;

I. : the moment of inertia of the platform without the driving wheels and the rotors of the
motors about a vertical axis through Po;

I,, : the moment of inertia of each wheel;

1, - the moment of inertia of each wheel and the motor rotor about the wheel diameter;
0,, 6, : right and left wheels’ angular positions;

v,w : linear and angular velocities of the mobile robot;

,, @y : right and left wheels’ angular velocities;

T, T; . right and left wheels’ torques;

U,,U; : right and left wheel armatures’ voltages;

ir,1; : right and left wheel armatures’ currents;

Lgr, Ly : right and left wheel armatures’ inductances;

Ry, R, : right and left wheel armatures’ resistors;

Kemy : speed constant of motor;

K otor - motor constant

3.2.1 Kinematic Model

Most physical equations consist of constraints. For example, an inverted pendulum as

shown in Figure 3.2 is restricted by Equation (3.1).

X4y —12=0 (3.1)

Similar constrained equations are found in the kinematic equations of mobile robots.
A wheel speed (Figure 3.3) in the direction x is calculated by the radius r and the angle
speed rotation 6 by

x=rb 3.2)
where X is the speed in the x direction which is proportional to the angular velocity of
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Figure 3.2: An inverted pendulum.

Figure 3.3: Speed of wheels.

the wheel. However, other constraints appear in wheels when the movement is in the XY
plane. Assume the mobile robot has the velocity V with angular orientation of ¢ (Figure
3.4). Considering 3 assumptions in Section 3.2, constraints of a mobile robot can be

extracted as

X.sing —y.cos ¢ +dd =0
(3.3)

X.cosQ + Y sing + b = r6,

XecoSQ +yesing —bd = r6;

To derive the first equation, assume that a wheel has the speed V. Due to the symmetry
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of the robot, both wheels can be considered in P, = (x,,y,) with the speed V = )?0 + )70

(Figure 3.4), as follows

Vecosp =x, = Vcos@sing =x,sin¢
(3.4)

Vsing =y, — Vcos@sing = y,cos @

— Xpsing —y,cosd =0

Figure 3.4: Velocity of the mobile robot.

X, X
“| is the point in the middle of the wheels and “ is the position of center

Yo Ye
mass of the mobile robot. Relation between x,,x. and y,, y. is given by

Xo = Xc+dcos®, y, =y, +dsing —

(3.5)
Ko = Xe +d@sing, Y, = V. —ddcos¢(d = 0)
Considering Equation (3.5), Equation (3.4) can be rewritten as
XeSing +dsin®¢ — y.cos¢ +ddcos*p =0 —
(3.6)

XeSing — yecos¢ +dd =0
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Equation (3.6) is the first constraint that is used for modeling the mobile robot.

Figure 3.5: Relation between the hotspots of a mobile robot.

The other constraints are the rolling constraints, i.e., the driving wheels do not slip

X.cosQ + Y sing + b = r6, (3.7)
Xeco8Q + yesing —bd = r6;
where 0, and 6; are the angular positions of the right and the left wheels, respectively.
To derive Equation (3.7), again consider the velocity equations of the mobile robot
in Equation (3.4). As the robot is assumed to be a rigid body, all parts of it move with the

same velocity. The equations for the right wheel can be written as

V.cos¢ =%, — Vrcosng = X,cos¢

(3.8)
V,sing = y, — Visin>¢ = y,sing
V,=r6, = XrcosQ + ypsing 3.9
X
where |~ |is the position of the right wheel. With reference to Figure 3.5, the compo-
Yr

nents of Equation (3.9) can be found as follows
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Xy + bsing +dcos = x. — X, = X+ bdcosp —ddsing —
XrcosQ) = xc.cos¢ + b¢c0s2¢ —ddsingcosd
‘ . (3.10)
yr —bcos@ +dsing =y, — v, =y, +bosing +dpcos¢p —
VrSing = yesing + b¢sin2¢ —ddsingcosd
Hence, considering Equations (3.9) and (3.10), the constraints in Equation (3.7) is derived
as follows
V,=rf, = XrcosQ + v sing
= X.cosQ + bPcos’$ — dPsingcosd + yesing + bdsin’>¢ + ddsindcos¢ (3.11)
— XcCOSQ + yosing + b = r6,

The same procedure can be used to find the constraint for the left wheel as given below
XcCOSQ + Yesing —bd = ré, (3.12)
The three constraints given in Equation (3.3) can be written in the form

A(g)g=0 (3.13)

where the generalized coordinates of the mobile robot are denoted by ¢ = (x,y, 9, 6, GZ)T

and
—sing cos¢p —d 0 O

A(Q)= | —cos¢p —sing —b r 0
—cos¢ —sing b 0O r

3.2.2 Dynamic Model

Lagrange formulation is used to establish equations of motion for the mobile robot. Since
there is no change in the potential energy in the system, the Lagrangian is simply kinetic
energy term (it is assumed that the robot moves in a planar surface). The total kinetic

energy of the mobile base and the two wheels is given by
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m,» .2 . SN\ .. I, .2 ) 1% . 2 (3.14
KZE(X +y )+mccd(9,—61)(ycos¢—xszn¢)+§(9, + 6 )—1—7(9,—91) (3.14)

where

m = me+ 2m,, (3.15)
[=1I.+2m,(d*+b*) +2I,

Using Equation (3.14), the Lagrange equations of motion of the platform and the Lagrange

multipliers A;,A; and A3 are given by

mi, — med(Qsing + ¢2cos¢) — Aysing — (A + Az)cosp =0
my +med(Pcosd — §%sing) + Aicosd — (Az + A3)sing = 0
—med (%.sing — .cos@) +1¢p —dA; +b(Az — Ay) =0 (3.16)
1,0, + Aor =1,
1,6+ 3r=1
where 71 and 7, are the torques that are acting on the wheel axis and generated by the right

and the left motors, respectively. The above five equations of motion can be written in the

compact form as
M(q)§+V(q,4) = E(q)r—A" ()2 (3.17)

The matrix A(g) has been defined in Equation (3.13), T = [, 7;]7 and the matrices M(q),

V(q,q) and E(q) are given by

m 0 —medsing 0 0
0 m medcos¢ 0 0
M= | —m.dcos¢p m.dcos¢ I 0 0
0 0 0 L, 0O
0 0 0 0 I,
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—med§*cosd 00
—med@>sing 00

V= 0 SE=10 0
0 1 0

0 0 1

The dynamic Equation (3.17) and the constraint Equation (3.13) will be presented in
the state space form by properly choosing a state vector. To do so, a 5 x 2-dimensional ma-
trix S(g) is defined such that A(¢)S(¢) = 0. It is straightforward to show that the following

matrix has the required property (the constant ¢ is 57), that is

c(bcosp —dsing) c(bcosp — dsing)
c(bsing —dcos®) c(bsing —dcosd)

S = [s1(q) s2(9)] = ¢ —c
1 0
0 1

According to the constraint Equation (3.13), ¢ is in the null space of A(g). Since
the two columns of S(g) are in the null space of A(q) and are linearly independent, it is

possible to express ¢ as a linear combination of the two columns of S(g), that is

i=S(q)w (3.18)

The logic behind Equation (3.18) is to introduce a set of independent velocity variables

6,.6;,. Owing to the choice of S(g) matrix we have:

@y )
By differentiating Equation (3.18), substituting the expression for ¢ into Equation (3.17)

and premultiplying it by ST, one gets

T=ST(MSw(t) +MSw(t) +V) (3.19)
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The relation between the linear velocity (v) and the angular velocity (w) of the mo-

bile robot with the wheels velocity variables is given by

,
v=s(o+ o), w= (0 —a) (3.20)

which can be expressed as

W =T, (3.21)

where W = [vw|! and T, the transform matrix is given by

cb cb
c —c
Hence, Equation (3.19) with respect to the relation between the current and the

torque created by the motor (T = IKynoror, Wwhere I = [i, il]T), can be written as

IKnotor = STMST, "W (1) + ST MSW (1) + ST MV (3.22)

This results in

W(t) = (STMST; ) K pnoror — (S"TMST,; )~ STMSW (1) — (STMST,; 1)~ s"MV
(3.23)

3.2.3 Actuator Model

Electrical drives are basic components in a multitude of devices, processes, machinery and
vehicles, and in the large areas of mechanical power and process engineering, manufac-
turing, transportation and precision mechanical devices. Permanent-field motors are the
motors that are used in the Pioneer P3DX robots. Modeling of DC motors can be found in
[79]-[81]. Figure 3.6 shows that the equation of the armature for a general Permanent-field

motor is obtained as follows
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.
Lad—; = U — Ryi — Kopy s © (3.24)

Figure 3.6: A DC motor [81].

Therefore, the left and the right motor equations can be written as

. R K U

ir—_ﬂir—i_ emfw+_r

Lar Lar Lar (3 25)
Ra . Kemfw+ ﬂ

Lal Lal Lal

The final equation of the system can be found by combining Equations (3.23) and (3.25):

. /RT . Kem
—diag(7*) diag( Laf12><2)
X4><1: X4x1t+
Kinotor(STMST; 1) ™1 Kiporor(STMST, 1)~ 1STMS s
Pho 02x1
Uos1 +
T —1\—1¢T
— (S MST
02x2 o (S ST, ) StV

4x1
where X = [i, iy vw]T, U = [U, U], Ly = [Lar Lyy]" and R, = [Ryr Ry]” .
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3.2.4 Control Design

Among a variety of control algorithms that are designed for mobile robots [73, 78, 82], the
algorithm presented in [82] is used to control the system. Control signals are the left and
the right motor voltages and outputs are linear and angular velocities. Hence, the system is
an MIMO control problem. As the goal is to control the position of the robot, the relation
between the desired position and the linear and angular velocities should be determined.
Assume that the representative point (x,y) of the mobile robot must follow the Cartesian

trajectory (x4(t),y4(t)). The relation between x4(¢),y,(¢) and 6, can be defined as

6, = ATAN (g +34) + k7t (3.26)

where ATAN? is the four-quadrant inverse tangent function (undefined only if both argu-

ments are zero). Therefore, the nominal feed forward commands are given by [30, 83]

o . (Vaka —X4yaq)
Vg =Xy wy = =4 4 (3.27)
d = -d (2 +52)

As described earlier, the relation between the desired linear (v;) and the angular

velocity (wy) with the desired wheels angular velocity (®,4, @;4) is given by

[(O,d (Old]T = Tq_l [Vd Wd]T (3.28)

Therefore, by controlling the wheels angular velocities (w,, @;), the mobile robot’s linear
and angular velocities, and consequently position of the mobile robot can be controlled.
By controlling @,, @, separately, the performance of the system will deteriorate because
both control variables relate to both outputs (v,w). To handle this issue, @, + @; and
®, — @y should be controlled as they are directly related to the linear and angular speed of

the robot. The MIMO controller that is designed for this system is given by

ki +k ki —k
r,d:—( 1; 2)(a),d—wr)+—( 12 2)(wld—wl)

(ki + o) (ky — ko) (3-29)
Tld:%(wld_wl)—i_%(wrd_wr)

50



which are simply proportional controllers. Derivation of the presented controller can be
found in [82]. Equation (3.29) is the desired right and left s to control the mobile robot,
while in the designed mobile robot, control signals are the right and the left motor voltages
(U,,Uy). Considering Equation (3.24) and t; = IK,;,010r, the relation between U,,U; and

Trd, Tid 1S given by

Lar dTrd Rar
U. = + Trd + kemr @
' kmotor dt kmotor " emf '
Ly dt R
U=—"2" 2 gt ks (3.30)

kmotor dt kmotor

In conclusion, to control the position of the mobile robot, first the desired wheel
angular velocities should be calculated by using Equations (3.26) - (3.28), then the con-
trol signals are generated by using the MIMO proportional derivative (PD) controllers in

Equations (3.29) and (3.30).

3.3 Simulation Results

Using MATLAB, the presented equations are simulated. The simulator diagram is shown
in Figure 3.7. By using the derived equations, the simulator contains the model for all
parts of the system and is capable of implementing typical controller, system, actuator
and sensor faults in different ways. For simulation, robot parameters are derived from the
datasheet of the Pioneer P3DX and the motor parameters are the parameters of a GM9236
motor with 38.3:1 gear ratio which is used as the Pioneer actuator. These parameters with
the controller gains are summarized in Table 3.1.

To simulate the mobile robot, the sampling time is selected as 0.1s. Also, in order
to make the data more realistic, white Gaussian noise is added to all the measurements.
Figures 3.8 - 3.13 show different mobile robot variables in the trajectory tracking of the

cases defined in Table 3.2. As described in Section 3.2.4, the controlled variables are linear
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Mobile Robot

Controller
By =4 x§+y,§ m‘? 5 cosg 0|
L2222 = V.| =|sing 0 [ ]
w, = Jata— %y ‘wv_ P o ™
= < [~
= a -

Figure 3.7: Control diagram of the mobile robot.

Parameter Symbol Value
Radius of each wheel r 0.1m
Wheel base b 0.26m
Forward distance of center of mass from center of rear axle d 0.05m

The length of the robot a 0.5m

Mass of the robot without the driving wheels and motors me 7Kg

Mass of each driving wheel plus its motor My 1Kg
Moment of inertia of the platform without the driving My, 1Kg

wheels and the rotors of the motors about a vertical

Moment of inertia of each wheel and the motor rotor I, 0.005K g.m?
about the wheel axis

Moment of inertia of each wheel and the motor rotor Ly, 0.0025K g.m?
about the wheel diameter

Armature resistance R, 0.71Q
Armature inductance L, 0.66mH
Reference voltage Vs 12V
Electromagnetic force constant Kemy 0.023%
Torque constant Kotor 0.0291%’
Controller gains Ki,K, 20,10

Table 3.1: Parameters of the mobile robot.
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Case Path X Trajectory Y Trajectory

1 8-shaped 3sin(t) 4sin(0.5¢)

2 8-shaped 3sin(t) 4sin(0.5¢)

3  8-shaped 3sin(t) + 1 45in(0.5¢)

4 8-shaped 45in(0.5¢) 3sin(t)

. 0.5cos(1.25t —2.35)cos(0.78)+ 0.5cos(1.25¢t —2.35)sin(0.78)+

> cellipse (1050 — 2.35)(—sin(0.78)  2sin(1.25t —2.35)cos(0.78)
cos(1.75t — 2.35)cos(0.78)+ cos(1.75t —2.35)sin(0.78)+

6 circle

sin(1.75t —2.35)(—sin(0.78)) sin(1.75¢t — 2.35)cos(0.78)

Table 3.2: Different trajectory tracking case studies.

and angular velocities of the mobile robot. Figures 3.8 - 3.13 show that the controller is
capable of controlling the linear and angular velocities with small error. The sum square
error of the velocities in all the cases are shown in Table 3.3. In the provided set of
simulations, the position of the mobile robot is controlled accurately if the initial robot
configuration is assumed to be matched with the desired reference trajectory; in other
words, we have ¢(0) = g4(0). Hence, the feed-forward commands of Equation (3.27)
would acquiesce to precise trajectory tracking in ideal conditions [30]. This is illustrated
in the figures corresponding to the cases 1, 2 and 6.

Also, Figures 3.14 - 3.19 show the mobile robot variables in an 8-shaped trajectory
path with different initial conditions. These figures show that the controller is capable of
controlling the velocities with different initial conditions. These different initial condi-
tions applied to the system and the sum square error of the controlled linear and angular

velocities in all cases are summarized in Table 3.4.
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Figure 3.8: The mobile robot variables following an 8-shaped trajectory of case 1 defined
in Table 3.3.
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in Table 3.3.
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Figure 3.10: The mobile robot variables following an 8-shaped trajectory of case 3 defined
in Table 3.3.
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Figure 3.12: The mobile robot variables following an ellipse trajectory of case 5 defined
in Table 3.3.
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Case VSSE WSSE TNDS
1 02176 x1073 0.9570 x10—° 201
0.1894 x1073 0.4706 x10~3 101
0.1895 x10~2 0.4713 x1073 101
0.2177 x10~3 0.9561 x10~3 201
0.0921 x1073 0.4034 x10~3 101
0.0782 x1073 0.7356 x10~3 201

AN U B~ W

Table 3.3: Controller errors corresponding the defined trajectory cases of Table 3.2, where
vssk 1s the sum square error corresponding to the linear velocity of the mobile robot, wgsg
is the sum square error corresponding to the angular velocity of the mobile robot, and
TNDS denotes the total number of data samples.
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Figure 3.14: The mobile robot variables following an 8-shaped trajectory of case 1 defined
in Table 3.4.
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Figure 3.15: The mobile robot variables following an 8-shaped trajectory of case 2 defined
in Table 3.4.
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Figure 3.16: The mobile robot variables following an 8-shaped trajectory of case 3 defined
in Table 3.4.
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Figure 3.17: The mobile robot variables following an 8-shaped trajectory of case 4 defined
in Table 3.4.
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Figure 3.19: The mobile robot variables following an 8-shaped trajectory of case 6 defined
in Table 3.4.

Case Initial Conditions VSSE WSsSE
1 x(1)=2.5,x2)=0,x(3) =0, x(4) = 1.1664 63.3228
2 x(1) =0, x(2) =0.4,x(3) =0, x(4) = 1.2284 66.703
3 x(1) = 0, x(2) =0,x(3) =5, x(4) =0 0.1890x 1073 0.4709x1073
4 x(l) =0,x(2) =0,x(3) =0,x(4) = —10 0.0001 0.0044
5 x(1)= ( ) = —4,x(3) = —0.5, x(4 ) 3.373 185.609
6 x(l) ,x(2) =1.2,x(3) =3, x(4) = 0.0083 0.5589

Table 3.4: Controller errors corresponding to the 8-shaped trajectory of case 2 defined in
Table 3.2 with different initial conditions, where vgsg is the sum square error correspond-
ing to the linear velocity of the mobile robot, wgsr is the sum square error corresponding
to the angular velocity of the mobile robot, and TNDS denotes the total number of data
samples.
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3.4 Conclusions

In the first section, equations of the robot platform and its actuators are derived. The robot
linear and angular velocities are controlled by using MIMO PD controllers. Simulation
of the mobile robot show that the suggested controller can control the linear and angular
velocities of the mobile robot in different trajectory paths with small error. The simulator
will be used in the next chapters to test the performance of the proposed fault detection

and identification methods.
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Chapter 4

Fault Detection Design of Mobile Robots

4.1 Introduction

In this chapter, by using the data from the simulator described in the previous chapter,
the mobile robot is modeled by using a locally linea model (LLM) and a radial basis
function (RBF) neural network. The importance of fault detection in mobile robots is
presented and different faults that are implemented in the system are introduced. Finally,
the implemented faults in the system are shown to be detected. Two methods of adaptive
threshold band generations are proposed to improve the fault detection performance and
minimize the false alarms. This performance is then compared with a fixed threshold band.
To detect faults enjoying improved performance, a moving average technique developed
by using a window of three samples is used in order to filter high frequency oscillations of

the residual signals.

4.2 Modeling the System

By using the two methods described in Chapter 2, the mobile robot is modeled. To model
the system, the training and testing data are chosen as in the cases 1 and 2 defined in Table

3.2. In this thesis, indirect system identification approach is applied, implying that the
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Figure 4.1: The performance of model representative, case 1 as defined in Table 3.2.

control signals are chosen as the model inputs and the linear velocity of the mobile robot
is chosen as the output of the model.

It is worthwhile to noting that the system can be trained on-line if a window of data
is used instead of all the measured data in the training phase. The dynamic order of m =4
is found to be appropriate for modeling the system. Also, 7 neurons for the LLM model
and 40 neurons for the RBF neural networks are used. Figures 4.1 and 4.2 show that the
estimation error is low and bounded by using both modeling methods. Also, the models
performances in cases 3 to 5 of Table 3.2 are shown in Figures 4.3 to 4.5. These figures
show that the output is well modeled and the estimation error is bounded. The sum square
estimation error of all cases are summarized in Table 4.1.

The models performances on the data of 8-shaped trajectory with various initial
conditions are shown in Figures 4.6 to 4.11. The sum square estimation error of all cases

are summarized in Table 4.2.
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Figure 4.3: The performance of model representative, case 3 as defined in Table 3.2.
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Figure 4.4: The performance of model representative, case 4 as defined in Table 3.2.
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Figure 4.5: The performance of model representative, case 5 as defined in Table 3.2.
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Figure 4.6: The performance of model representative, case 1 as defined in Table 4.2.
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Figure 4.7: The performance of model representative, case 2 as defined in Table 4.2.
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Figure 4.8: The performance of model representative, case 3 as defined in Table 4.2.
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Figure 4.10: The performance of model representative, case 5 as defined in Table 4.2.
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Figure 4.11: The performance of model representative, case 6 as defined in Table 4.2.
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Case LLMSSE RBFSSE TNDS
I (Train data) 0.5361 1.24 201
2 (Testdata) 0.2736  0.6221 101

3 0.2908 0.6245 101
4 0.5743  1.319 201
5 0.6711 0.5639 101
6 0.5814 0.0247 201

Table 4.1: LLM and RBF estimation errors in modeling the linear velocity of the mobile
robot as defined in cases of Table 3.2. LLMggg is the sum square error corresponding to
the estimation error of LLM model, RBFssg is the sum square error corresponding to the
estimation error of RBF model, and TNDS denotes the total number of data samples.

4.3 Faults in a Mobile Robot

Due to the importance of reliability and safe operation of mobile robots, especially those
in unknown environments such as in planetary exploration, fault detection and diagnosis
of these systems are becoming more important. An example of a crashed and a failed
system without an FDI module is discussed in [84]. In 1994, Dante II was deployed in
a remote Alaskan volcano to demonstrate remote robotic exploration. While ascending
out of the crater, it encountered steep slope and cross-slope conditions that changed the
system dynamics. Failure to identify the mentioned issue resulted in the robot falling on
its side. Dante II was later saved by a helicopter because it did not have a fault tolerant
system. Several researchers have recently investigated mobile robot’s reliability and fault
tolerance [85]-[88], [94]-[98]. A recent practical example is from the Mars Exploration
Rover, Spirit. The fault was a lubricant leak in one of the wheels which was detected by
a large team of engineers who barely analyzed rover telemetry each night. Using a fully
autonomous rover, this kind of fault would be detected independent of the ground station

operator [85].
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Case Initial Conditions LIMssg RBFssg

1 x(1)=25,x2)=0,x3)=0,x(4) =0 13037 0.7195
2 x(1)=0,x(2) =04, x(3)=0,x(4) =0 14454 0.89
3 x(1)=0,x(2) =0, x(3) =5, x(4) =0 02767 0.6197
4 x(1)=0,x2)=0,x3)=0,x(4)=—10 395191 0616
5 x(1)=0,x(2) =—4,x3)=-05,x4)=0  18.058  3.56
6  x(1)=0,x2)=1.2,x3)=3,x4) =6 23551  0.612

Table 4.2: LLM and RBF estimation errors in modeling the linear velocity of the mobile
robot in the trajectory of case 2 as defined in Table 3.2 with different initial conditions.
LLMggE is the sum square error corresponding to the estimation error of LLM model, and
RBFgsE is the sum square error corresponding to the estimation error of RBF model.

To monitor failures in mobile robots, in 2004, Carlson et al. [46] collected failure
types and frequency data from fifteen mobile robots operating under a variety of environ-
ments. In [46], Carlson et al. present taxonomy of mobile robot failures, according to the
source of failure, including physical and human failures. Physical failures have occurred,
on average, once every 24 hours and human failures have occurred once every 17 minutes
of robot usage time over an additional 1082 hours of robot usage. The authors in [46] sub-
divided physical and human failures into classes based on common systems that are found
in all the robot platforms. Figure 4.12 depicts these classes with probabilities of failure
corresponding to each class. In below, a brief explanation about the potential faults in each
subsystem of the mobile robot and a few studies that are done about them are introduced.

Power Systems and Effectors: Wheeled mobile robots are built with their wheels’
drive machine; motors. Dependent on the robots’ desire design, technicians use DC motors
for motion control. Although the design of DC motors has improved a lot during the past
few years, they can suffer from failures. Especially the overload and the overheating can
damage the coils which result in lower performance of the motor. Figure 10 shows that
40% of physical failures in mobile robots are related to the power systems and effectors.

During the past few years, a number of research have done on fault diagnosis of the DC
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Figure 4.12: A taxonomy of mobile robot faults [46].

motors [89]-[91].

The main fault in the motor of the mobile robot is the change of resistance which
may happen for several reasons [80]. During the process, a coil of the motor might become
interrupted. Usually in this situation, the motor keeps on tuning with lower speed and less
torque and in the closed-loop operation the desired position of the actuator is still reached.
One may not realize that a crucial fault has occurred as the impact may be covered up by
the robust control loop, although this issue needs to be diagnosed as soon as possible [89].
Other possible faults in DC motors are change in the ratio of the inertia [80], change in the
motor inductance [90] and also broken motors and gears [85].

In several studies, actuator faults are implemented as locked in the place of actuator
and loss of effectiveness of actuator signals [30, 35]. Such actuator faults have attracted
great deal of interests not only for mobile robots, but also for other systems [92]. These
are common faults which are usually considered as case studies [93].

Power systems such as battery cells, wires, switches and safety circuits are more
reliable than the other systems since they are least affected by the environmental hazards.

Control System: The most common sources of physical failures in the Carlson’s
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study are the control systems. In most of these cases the robot was unresponsive and
the solution was to cycle the power as the source and cause of these problems remains
unknown. Other examples of the control system failure include a corrupted hard drive and
electrical problems of the controller. To reduce these kinds of failures, design of software-
based controllers is suggested. Also, further attention on the methodology for controller
design is required to reduce such failures.

Communications and Sensors: Using communication systems have become more
common due to the increased use of wireless robots over the past few years. The main
failure in this component is the communication loss. This is due to the fact that the man-
ufacturers purchase massly produced sensors. Conversely, the robot’s effectors, control
systems, and power systems are custom built.

Although faults in sensors have attracted a lot of interest in the FDI of mobile robots
and even other systems [32, 47, 87], according to the Carlson’s study, sensing and power
failures are the least common sources of failure in robots. Sensor faults are implemented
as loss of calibration, bias, and locked in the place faults. Among the sensors used in
mobile robots one can name gyros, encoders, cameras, and sonars, as the most common
failed sensor are the cameras.

Human mistakes: The studies recorded in [46] contain the number and types of fail-
ures in human mistakes that are encountered as well as the duration of the tasks performed.
Through automation of mobile robots the human mistakes can be reduced in some appli-
cation domains as robots are required to operate without human intervention.

Slips: Slips and faults that are related to the wheels are categorized in the domain of
failures related to humans in the Carlson’s study [46]. Faults such as slips and stuck in the
wheels have been studied a lot during the recent years [94]-[98] and as shown in Figure
4.12, they have high percentage of failures. In [97], the analysis of a slip fault is performed

based on the following equation,
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A= (VWV Vr) x 100 4.1)

w

where V,, and V, are the velocities of the wheel and the robot, respectively. A is the wheel
slip ratio which is defined as the percentage of robot linear velocity. Specifically, nonzero
A means wheel slippage has occurred. In the study of the traction control system, this
value is regulated to optimize the robot traction performance. The slip factor can be easily

obtained if the two velocity parameters (V,,, V,) are measurable [97].

disturbances disturbances disturbances
noises| | . faults HOISES| | faults moises] 1 faults
Inputs — o o NN_SZ Qutputs
Controllers .—'\cluﬁi‘;rs ] SSIOTT Sen‘S;pf:s 2
+ Pl P ;
o [%4 [ 24

Figure 4.13: A typical feedback control system with potential faults [15].

Figure 4.13 shows a typical feedback control system with potential faults [15]. For
a mobile robot platform, faults can be enumerated as follows:

Actuator: Faults in the motor of a mobile robot are the most common actuator faults.
Changes in the armature resistance and inductance have been extensively studied. Loss of
effectiveness and locked in place of actuator signals have been studied for mobile robots
in [80], [89]-[91].

System: Faults in the wheels of the system are the most common system faults in
the mobile robots. Wheel slippage, stuck and changes in the radius of the wheel have also
been studied [94]-[98].

Sensors: Faults can occur in all sensors of a mobile robot. Most common sensors
that are used are the encoders, gyros, sonars and cameras. Sensor bias, locked in place and

loss of calibration are the common sensor faults [32, 47, 87].
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4.3.1 Implemented Faults on the Mobile Robot System

In this subsection, implemented faults on the simulator are described. Actuator and system
faults are implemented in different simulation scenarios when the mobile robot is follow-
ing the 8-shaped trajectory. Actuator faults are implemented abruptly after the 5 second.
These faults consist of loss of control signal effectiveness and change in the right motor
resistance.

Loss of control signal effectiveness is the most common actuator fault in case stud-
ies. This can occur due to several problems in the actuator. In this thesis, control signal is
decreased abruptly after the 5 second by 5 (Figure 4.14) and 20 percent. Also, resistor
faults are implemented in the actuator. As described earlier, resistor faults are the most
common faults in DC motors. Resistor might decrease when it is partly or totally short
circuited and also it might increase in value due to skin effects or high temperatures. In
simulations, 0.1Q decrease (Figure 4.15) and 0.1€2 increase of the right motor resistor are
studied.

The other kind of fault that is implemented in the system in the 5" second incipi-
ently is by reducing the left wheel the radius of mobile robot for 0.5¢m/s (Figure 4.38)
and 0.2cm/s. This fault can occur in mobile robots due to deformations, flat tires, broken
spokes, etc. [86]. The final system fault is the slippage fault which is implemented inter-
mittently in the 4 — 5" and 7 — 8" second of the simulation for slip ratios of A = 3 (Figure
4.17) and A = 5. In these faults two wheels are imagined to slip with the same slip ratio.
All the faults considered in this thesis are summarized in Table 4.3.

Figure 4.14 - Figure 4.17 show that the implemented faults on the system do not
affect the position and velocities and their effects are compensated by the passive robust

controller.
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Figure 4.14: Robot state variables when a 5% actuator loss occurs after the 5 second.

4.4 Adaptive Threshold Generation with Local Linear Mod-
els of the System

In this subsection, a new concept for generating a threshold band is presented. This
method, in contrast with standard methods of developing fixed threshold bands is related
to the estimation error under healthy conditions, by suggesting an adaptive threshold band
with respect to the maximum error of the estimated output for each local linear model. In
this algorithm, local threshold values should be determined for each LLM or neuron. For
this purpose,corresponding to the maximum contribution of each LLM (the largest ®; in
Equation (2.3)), maximum and minimum errors will be used to produce upper and lower

local thresholds for the local model. In other words, for each neuron (locally linear model),
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Figure 4.15: Robot state variables when a 0.1 Q of right motor resistor decreases after the
5" second.

specific threshold values can be found instead of a fixed upper and lower thresholds for
the entire model. Specifically, local maximum and minimum errors are used to select the
threshold bands instead of using the maximum and the minimum error of the entire model.
Consider y and § as the system and the LLM output, respectively. The upper and lower
threshold values for the i locally linear models are obtained by using the maximum and
the minimum of the estimation error when the " locally linear model is selected, that is

Ti(upper) = maximum(y — y)
when®; > ®; (j=1,2,....m, j#i) — (4.2)

Ti(lower) = minimum(y — ¥)
The above implies that when a local model’s validity function is larger than the other

validity functions, the maximum and the minimum estimation errors can be considered as
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Figure 4.16: Robot state variables when the left wheel radius decreases at the rate of
0.5cm/s after the 5" second.
the threshold bands of that local linear model. Therefore, 7;s are the thresholds associated
with the local linear models.

After obtaining local thresholds, for the real-time processes, the validity functions
®;s for each model are calculated by using Equation (2.3) to estimate the system output.

The computed ®;s specify the contribution of the locally linear models in the overall output
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Figure 4.17: Robot state variables when the wheels slip at the ratio of A = 3 in the 4 — 5"
and 7 — 8/ seconds.

estimation. Furthermore, they can be used to generate adaptive threshold bands as follows:

M
Ty = Upper Adaptive Threshold Band = Z D, T;(upper)
i=1
W 4.3)
Tp = Lower Adaptive Threshold Band = Z D;T;(lower)
i=1

Consequently, the computed threshold values for each neuron after being multiplied
by the corresponding validity functions produces the local model thresholds (LMT). The
final adaptive threshold band is obtained by summing all the local model thresholds. This

concept is illustrated in Figure 4.18. Hence, instead of using a fixed threshold band, an
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Case Status AL R, T A
0 No fault 0% 0.71Q 10cm 0
1 Actuator Fault 1 (Abrupt)  20% 0.71Q 10cm 0
2 Actuator Fault 2 (Abrupt) 5% 0.71Q 10cm 0
3 Actuator Fault 3 (Abrupt) 0% 0.61Q 10cm 0
4 Actuator Fault 4 (Abrupt) 0% 0.81Q 10cm 0
5 System Fault 5 (Incipient) 0% 071 02cm/s| O
6 System Fault 6 (Incipient) 0% 071 0.5cm/s | O
7 System Fault 7 (Intermittent) 0% 0.71Q 10cm 3
8 System Fault 8 (Intermittent) 0% 0.71Q 10cm 6

Table 4.3: Implemented faults; AL is the Actuator Loss, R, is the Right Motor Resistor, r;
is the Left Wheel Radius and A is the Wheel Slippage Ratio.

adaptive threshold band is obtained for each input corresponding to its validity function.
As illustrated in Figure 4.18, the generated validity functions are used for both the

output estimation as well as for the adaptive threshold generation. Our proposed algorithm

can be summarized as provided follows.

In the learning phase, for each locally linear model or neuron we have:

- Determine the section having the largest contribution to the output estimation (the larger

the validity function, the more contribution a neuron has) ; and

- Save the maximum and the minimum estimation errors when a given validity function is

higher than the others (Equation (4.2)).

In the recall phase, for each input we have:

- Determine the validity functions; and

- Calculate the adaptive thresholds by using Equation (4.3).

The proposed adaptive threshold is obtained so that small faults can be detected at
their early stages and so the rate of false alarms is minimized. The derivation in Equation
(4.4) shows that the proposed adaptive threshold band is always smaller or equal to that

of a fixed threshold (T), if the fixed threshold is chosen as the maximum estimation error
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Figure 4.18: The network structure of an LLM model with an LMT adaptive threshold
generator.

corresponding to the healthy system.

|T| < |T| = |1 Th| < |®1T|, | P2 13| < | DT, ..., | DT < |DiT| =
“blTl | -+ ‘q)sz‘ + ...+ |(13,Tl| < |q)1T| -+ |q)2T‘ + ...+ |q3iT| —
P\ T +Po T+ ...+ 9T < | P Th |+ | PoTa| + ...+ | DT =

|P1 T + D15 + ... + 9T < (|Py|+ | P2+ ... + |Pi])|T| =

M
(|P1]+[D2|+ ...+ |®i]) =1 = |} ®T| < |T| (4.4)
=1
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Figure 4.19 shows the implementation of the proposed model on the system. The
system is modeled by using locally linear models and the LoLiMoT algorithm as described
in Chapter 2. The external dynamics approach without an output feedback is utilized to
construct the dynamics to static approximator. The residual 7 is generated by comparing
the output of the system y with its estimations y. The adaptive threshold bands Tp and Ty
are also generated by using the proposed method. If the residual is outside of the adaptive
threshold bands, a fault is detected in the system. Otherwise, the system is determined to

be healthy. This algorithm can be summarized as follows:

M No Fault if Z?il ®;T;(down) <r < Zﬁ‘il D;T;(up);
r=y—y=y-) ®i—
i=l Fault Alarm  otherwise.
4.5)

To summarize, an adaptive threshold band is generated to improve the FDI perfor-
mance by slightly increasing the computational complexity to the process. To demonstrate
the advantages of the proposed method, its performance will be compared with a fixed

threshold band and another adaptive threshold band which will be explained in the next

part.
Input (UJ) Output ()
l >  System e =
+
W Residual (r)
External C
Dynamics -/
Estimated
Output (V)
. LLMm ¥
e Model Adaptive Threshold
(Ty, Tp)

Figure 4.19: Fault detection strategy by using the LLM model and the LMT algorithm.
The LLM model box is illustrated in Figure 4.18.
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4.5 Adaptive Threshold Generation Using Model Error

Modeling (MEM)

Early detection of faults with few false alarms is the main goal of any FD system. For
this purpose, a new method of threshold generation is suggested in the previous section
which is named LMT. In this section, another method of adaptive threshold band [55] is
introduced which will be compared with the LMT and fixed threshold bands. The method
is named Model Error Modeling (MEM) approach which is inspired from robust identifi-
cation theory [99].

A robust learning model should provide a reliable estimate of uncertainties besides
an accurate representation of the system. There are two main ideas to deal with uncer-
tainties associated with a given model [55]. Set membership identification [101] or the
bounded error approach [102], is the first group which relies on the assumption that the
error is unknown but bounded. In this case, robustness is not integrated with the identifica-
tion process. Another approach is to model the process without robustness considerations
first, and then consider robustness as an additional and next step. This usually leads to
the least squares estimation and prediction error methods [55]. MEM employs prediction
error methods to identify a model from input-output data [99]. The original method has
been developed in the frequency-domain [99] which can be simply mapped into the time
domain and utilized in robust FD of dynamic systems [55, 100].

To use MEM algorithm in fault detection, first the system should be modeled with
an intelligent method of modeling (Figure 2.2) as described in Chapter 2. After modeling
the system, the output estimation error should be modeled by using another intelligent
learning model. The procedure of training the error model is illustrated in Figure 4.20.
Figure 4.20 shows that in the first step, the system model estimates the output of the
system. Estimation error r is then calculated by comparing the output of the system y

with output of the system model §. In the next step, parameters and structure of the error
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model is optimized by using data set of {U;;, r,-}fi 1» Where U is the input set and N is the
total number of data. The error model is used to form uncertainty bands in order to avoid
detecting unmodeled dynamics, noise and disturbances as faults. After the error model is
trained, the upper and lower adaptive threshold bands are calculated by using the output

of the estimated error and its standard deviation as follows (Figure 4.21):

Upper Adaptive Threshold band = tg + 7 (4.6)
Lower Adaptive Threshold band = —tg¥ + 7

where 7 is the output of the error model, v is the standard deviation of 7 and g is a constant

number between 0 and 1 to add a confidence level to the threshold bands.

Input (U) Qutput (y)
System 4 >
+ VEstimation
External Error (r)
Dynamics % (A) Residual
> System Model ESHma*ef
Output () + Error of
\p e Estimated X
External L N e
Dynamics
Estimated

>{ Error Model

v

Error ()

Figure 4.20: Training of the error model.

The designed approach for fault detection using MEM algorithm is shown in Figure

4.21. In this case, output of the system is estimated by using the system model. Residual
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Figure 4.21: Implementation of the MEM algorithm for fault detection.

r is defined as the difference between measured output y and estimated one y. The adap-
tive threshold bands Tp and Ty are also generated by using the error model, the constant
number /g and the standard deviation of estimated error v. If the residual is outside of
the adaptive threshold bands (7p — Ty ), a fault is detected in the system. Otherwise, the

system is determined to be healthy. The fault detection logic is as follows:

M No Fault, if—tﬁv—i—?grgtﬁv—i—?;
r=y—y=y-—Y ®yi— 4.7)
i=1 Fault Alarm, otherwise.
The presented algorithm can be summarized as provided below ([55]).
In the learning phase, we have:

- Model the system and compute the error signal r = y — y, where y and y are the system

and the model outputs, respectively.
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- Collect the data {U;;, ri}fvz 1 (U is the the input set) and identify an error model using these
data (Figure 4.20). This model constitutes an estimate of the error 7 and it is called the
error model.

- Calculate v as the standard deviation of the estimated error 7.

In the recall phase, we have:

- Use the topology illustrated in Figure 4.21 and calculate adaptive threshold bands from
Equation (4.6).

- Use Equation (4.7) to detect faults.

4.6 The Performance of Fault Detection on the Mobile

Robot by Using LLM

In this section, simulation results for fault detection of the mobile robot by using LLM
model and the proposed adaptive threshold bands and a fixed ones are presented. Fixed
threshold bands are developed to determine the minimum and maximum values that each
residual signal can reach under a fault free operating condition by using Equations (4.8)

as given below:

T}, = Upper fixed Threshold band = +s(e) +m(e)
(4.8)

T}, = Lower fixed Threshold band = —s(e) +m(e)

where s(e) is the standard deviation of the test data estimation error and m(e) is the average
of the test data estimation error. Test data is chosen the same as the test data for the adaptive
threshold bands.

Process faults are detected by using fixed threshold bands, LMT adaptive threshold
bands (Figure 4.19) and MEM adaptive threshold bands (Figure 4.21). The training proce-

dure of the LLLM model which represents the mobile robot system is described in Chapter
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2 and Section 4.2. The structure of the second LLM model for MEM algorithm which
represents the error model is chosen the same as the first one. The parameters of the error
model is optimized using the input and estimation error of the test data.

As described before, testing and validation data are chosen as cases 2 and 5 of Table
3.2. Figures 4.22 and 4.23 (a) and (b) show that the developed model can follow the testing
and the validation data with small estimation errors and Figures 4.22 and 4.23 (c) show

that the methods have few false alarms corresponding to the healthy data.

[ R A I N

(més)

@)
Linear Welocity

0.15 :

Residual ;
0.1 ——Fixed Threshold | :
“LMT Threshold
— = = MEM Threshald |31

b
Residual

=
[
o

——Fixed Threshold
1k | = LMT Threshold
— = —MEM Threshold

c)
Fault Alarm

2 T .4

0 1 2 2]

=

Figure 4.22: The LLM fault detection performance to the testing data, (a) Real and esti-
mated linear velocity of the mobile robot, (b) Residual and the thresholds, and (c) Fault
alarms generated.

Figure 4.24 shows the actuator fault 1 which is a 20% loss of control effectiveness
applied after the 5 second. This fault is detected without a delay by using all the threshold
bands. This is due to the occurrence of a high severity fault in the system and the accuracy

of the LLM model.
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Figure 4.23: The LLM fault detection performance to the validation data, (a) Real and
estimated linear velocity of the mobile robot, (b) Residual and the thresholds, and (c)
Fault alarms generated.

Figure 4.25 shows an actuator fault 2 which is a 5% loss of control effectiveness
applied after the 5 second. The fault is detected with a 0, a 0.1 and a 0.1 second delay
by using the LMT, MEM and fixed threshold bands, respectively. The MEM and fixed
threshold bands have detected this permanent fault as an intermittent fault which reduces
their reliability.

Figure 4.26 shows an actuator fault 3 which is a 0.1 Q reduction of the right motor
resistance applied after the 5 second. The fault is detected with a 0.3 second delay by
both adaptive threshold bands while the fixed threshold band has detected this permanent
fault as an intermittent fault with a 0.4 second delay.

Figure 4.27 shows an actuator fault 4 which is a 0.1 Q increase of the right motor
resistance applied after the 5 second. The fault is detected with a 0.1, a 0 and a 0.3

second delay by using the fixed, LMT and MEM threshold bands, respectively. The MEM
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Figure 4.24: The LLM fault detection performance for actuator fault 1: A 20% loss of
control effectiveness applied after the 5/ second, (a) Real and estimated linear velocity of
the mobile robot, (b) Residual and the thresholds, and (c) Fault alarms generated.
threshold band has detected this permanent fault as an intermittent fault which reduces its
reliability.

Figure 4.28 shows a system fault 5 which is a decrease of the left robot’s wheel with
the rate of 0.2 cm/s applied after the 5/ second. The fault is detected with a 3.5, a 2.3 and
a 1 second delay by the fixed, LMT and MEM threshold bands, respectively. The MEM
threshold band has detected this permanent fault as an intermittent fault which reduces its
reliability.

Figure 4.29 shows a system fault 6 which is a decrease of the left robot’s wheel with
the rate of 0.5 cm/s applied after the 5 second. The fault is detected with a 0.8, a 1.8
and 0.7 second delay by fixed, LMT and MEM threshold bands, respectively. The fixed
threshold band has detected this permanent fault as an intermittent fault which reduces its

reliability.
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Figure 4.25: The LLM Fault Detection Performance for actuator fault 2: 5% loss of control
signal effectiveness applied after the 5 second, (a) Real and estimated linear velocity of
the mobile robot, (b) Residual and the thresholds, (c) Fault alarms generated.

Figure 4.30 shows a system fault 7 which is a wheel slip intermittently with A = 3 in
the 4 — 5" and 7 — 8" seconds. The faults are detected with a 0.1 and a 0.3 second delay
by using fixed and LMT threshold methods and with a 0.2 and a 0.3 second delay by using
MEM threshold method.

Figure 4.31 shows a system fault 8 which is a wheel slip intermittently with A = 6
in the 4 — 5" and 7 — 8" seconds. The faults are detected with a 0 and a 0.1 second delay
by using fixed and LMT threshold methods and with a 0 and a 0.4 second delay by using
MEM threshold method.

The delay in detection in all of the fault scenarios are summarized in Table 4.4.
Also, the confusion matrix parameters (introduced in Section 1.2.1) corresponding to all

threshold methods is provided in Table 4.5.
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Simulation results and tables summarizing these results show that the adaptive thresh-
old bands performances in faulty cases are significantly improved over the fixed one. In
case 1, due to the accuracy of the LLM model and occurrence of a high severity fault in the
system, the fault is detected without delay with all methods. Under other faulty cases that
contain low severity faults in the system, the advantages of using the adaptive threshold
bands become evident. Corresponding to a total of 340 faulty data, 285 and 283 data are
correctly detected by the LMT and MEM methods respectively, while the fixed threshold
band has has detected 254 data. This is a meaningful benefit of the adaptive threshold
bands. The LMT method has slightly better performance than the MEM method, although

it imposes less computational cost to the process while the MEM needs another model to
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Figure 4.27: The LLM fault detection performance for actuator fault 4: A 0.1 increase
of R, applied after the 5" second, (a) Real and estimated linear velocity of the mobile
robot, (b) Residual and the thresholds, and (c) Fault alarms generated.
generate the threshold bands.

However by using the LLM models and adaptive threshold bands the faults of the
system are well detected; The performance of the fault detection is worth to be compared

with another modeling method. In the next section, the performance of the fault detection

by using the RBF model is analyzed.

4.7 The Performance of Fault Detection on the Mobile

Robot by Using the RBF Network

In this section, an RBF neural network is used to model the mobile robot and its perfor-

mance is tested on the fault detection of the system. The fault detection is performed by
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Figure 4.28: The LLM fault detection performance for system fault 5: A decrease of r;
with the rate of 0.2 cm /s applied after the 5/ second, (a) Real and estimated linear velocity
of the mobile robot, (b) Residual and the thresholds, and (c) Fault alarms generated.
using a fixed threshold band and an adaptive threshold band generated with the MEM al-
gorithm (Figure 4.21). The LMT adaptive threshold generation can be extended to the
RBF neural network by defining local threshold values for each neuron, but this does not
lead to good results. The reason is that LMT uses the variations in the validity functions in
generating adaptive threshold band, while in the trained RBF model the validity functions
do not change enough to give an appropriate adaptive threshold band.

To implement the MEM algorithm by using the RBF neural networks, two neural
networks are trained to detect process faults as described in Section 4.5. The training
procedure of the first RBF neural network which represents the system model is described
in Chapter 2 and Section 4.2. The structure of the second RBF neural network which
represents the error model is chosen the same as the first one. The parameters of the

second the RBF neural network are trained with the input and estimated error of the test
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Figure 4.29: The LLM fault detection performance for system fault 6: A decrease of r;
with the rate of 0.5 cm /s applied after the 5/ second, (a) Real and estimated linear velocity
of the mobile robot, (b) Residual and the thresholds, and (c) Fault alarms generated.

data.

To demonstrate the advantages of the MEM method by using the RBF neural net-
work as the models, its performance will be compared with the fixed threshold band.
Lower and upper fixed threshold bands are developed to determine the minimum and max-
imum values that each residual signal can reach under a fault free operating condition by

using Equation (4.9) as given below:

T/, = Upper fixed Threshold band = +s(e) +m(e)
4.9)

T}, = Lower fixed Threshold band = —s(e) +m(e)

where s(e) is the standard deviation of the estimation error and m(e) is the average of the
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Figure 4.30: The LLM fault detection performance for system fault 7: A A = 3 applied
in the 3 — 4" and the 6 — 7" seconds, (a) Real and estimated linear velocity of the mobile
robot, (b) Residual and the thresholds, and (c) Fault alarms generated.

test data estimation error. Test data is chosen the same as the test data for the adaptive
threshold band.

As described before, testing and validation data are chosen as the cases 2 and 5 of
Table 3.2. Figure 4.32 (a) and (b) show that the developed RBF model can follow the
testing data with small estimation error. Figure 4.32 (c) shows that by using the MEM
adaptive threshold band there is no false alarm in healthy test data while a few false alarms
are detected by the fixed threshold band. Figure 4.33 shows few false alarms with both
threshold bands corresponding to the healthy validation data.

In the remained of this section, faulty scenarios and the fault detection performances
are provided. Figure 4.34 shows the actuator fault 1 which is a 20% loss of control effec-

tiveness applied after the 5 second. This fault is detected without a delay by using both
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Figure 4.31: The LLM fault detection performance for system fault 8: A A = 6 applied
in the 3 — 4" and the 6 — 7" seconds, (a) Real and estimated linear velocity of the mobile
robot, (b) Residual and the thresholds, and (c) Fault alarms generated.

the threshold generation methods. This is due to the occurrence of a high severity fault in
the system and the accuracy of the RBF model.

Figure 4.35 shows an actuator fault 2 which is a 5% loss of control effectiveness after
the 5 second. The fault is detected with no delay by both methods but this permanent
fault is detected as an intermittent fault by the fixed threshold band which reduces its
reliability.

Figure 4.36 shows an actuator fault 3 which is a 0.1 Q reduction of the right motor
resistance and is applied after the 5 second. The fault is detected with a 0.1 second delay
by the adaptive threshold band while the fixed threshold band has detected this permanent
fault with a 0.8 second delay as an intermittent fault which reduces its reliability.

Figure 4.37 shows an actuator fault 4 which is a 0.1 Q increase of the right motor
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Case Fixed Threshold LMT Threshold MEM Threshold

1 (AL =20% Abruptly) 0S 0S 0S

2 (AL = 5% Abruptly) 0.1*S 0S 0.1*S
3(R,:0.1Q | % Abruptly) 0.4*S 0.35 0.3S

4 (R, :0.1Q 1 % Abruptly) 0.18 08 0.3*S
5(r;:0.2cm/s | Incipiently) 3.58 2.38 1*S

6 (r;:0.5cm/s | Incipiently) 0.7*S 1.85 0.78

7 (A = 3% Intermittently) 0.1,0.3*S 0.15%,0.3*S 0.2,0.3*S
8 (A = 6% Intermittently) 0.15,0.38 0.15,0.38 0§,0.48

Table 4.4: Fault detection delays by using the LLM with the fixed, the LMT and the MEM
threshold bands. “*”” denotes that a permanent fault is detected as an intermittent fault.

resistance applied after the 5 second. The fault is detected with no delay by both methods
but this permanent fault is detected as an intermittent fault by fixed threshold band which
reduces its reliability.

Figure 4.38 shows a system fault 5 which is a decrease of the left robot’s wheel
with the rate of 0.2 cm/s applied after the 5/ second. The fault is detected with a 0.7
second delay by the adaptive threshold band while the fixed threshold band has detected
this permanent fault with a 2.9 second delay as an intermittent fault.

Figure 4.39 shows a system fault 6 which is a decrease of the left robot’s wheel with
the rate of 0.5 cm/s applied after the 5 second. The fault is detected with a 0.4 second
and a 0.9 second delay by the adaptive and the fixed threshold bands, respectively.

Figure 4.40 shows system fault 7 which is a wheel slip intermittently with A = 3 in
the 4 — 5" and 7 — 8" seconds. The faults are detected with a 0.1 and a 0 second delay
with the adaptive threshold band and no delay with the fixed threshold band.

Figure 4.41 shows system fault 8 which is a wheel slip intermittently with A = 6
in the 4 — 5" and 7 — 8" seconds. All the faults are detected with no delay with both
methods.

The delay in detection in all the fault scenarios are summarized in Table 4.6. Also,
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Case Threshold a b c¢ d AC TP FP TN FN P
Fixed 565 4 86 254 91 76 1 99 25 098
All LMT 560 9 55 285 93 &4 1 99 16 97
MEM 561 8 57 283 93 83 1 98 17 97
Fixed 98 3 O 0 97 - 3 97 - 0
0 LMT 93 8 O 0 92 - 8 92 - 0
MEM 94 7 0 0 93 - 7 93 - 0
Fixed 51 0 0 50 100 100 O 100 O 100
1 LMT 51 0 0 50 100 100 O 100 O 100
MEM 51 0 0 50 100 100 O 100 O 100
Fixed 51 0 4 46 96 92 0 100 8 100
2 LMT 51 0 1 49 9 98 0 100 2 100
MEM 51 0 3 47 97 94 0 100 6 100
Fixed 51 0 16 34 84 68 0 100 32 100
3 LMT 51 0 3 47 97 94 0 100 6 100
MEM 51 0 3 47 97 94 0 100 6 100
Fixed 51 0 1 49 99 98 0 100 2 100
4 LMT 51 0 0 50 100 100 O 100 O 100
MEM 51 0 4 46 9% 92 0 100 8 100
Fixed 51 0 36 14 64 28 0 100 72 100
5 LMT 51 0 24 26 762 52 0 100 48 100
MEM 51 0 21 29 792 58 0 100 42 100
Fixed 51 0 12 38 88 76 0 100 24 100
6 LMT 51 0 18 32 82.1 64 0 100 36 100
MEM 51 0 7 43 93 8 0 100 14 100
Fixed 81 0 15 5 8 25 0 100 75 100
7 LMT 80 1 8 12 91 60 1 99 40 92
MEM 81 0 15 5 8 25 0 100 75 100
Fixed 80 1 2 18 97 90 12 98 10 95
8 LMT 81 0 1 19 9 95 0 100 5 100
MEM 80 1 4 16 95 80 12 99 20 94

Table 4.5: The confusion matrix corresponding to the LLM fixed, LMT and MEM thresh-
old bands.
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Figure 4.32: The RBF fault detection performance for the testing data, (a) Real and esti-
mated linear velocity of the mobile robot, (b) Residual and the thresholds, and (c) Fault
alarms generated.
the confusion matrix corresponding to both threshold methods is provided in Table 4.7.
Simulation results and tables summarizing these results show that the MEM adaptive
threshold band performances in faulty cases are much better than the fixed one. In case
1, due to the accuracy of the RBF model and occurrence of a high severity fault in the
system, the fault is detected without delay with all methods. Under other faulty cases that
contain low severity faults in the system, the advantages of using the adaptive threshold
bands become evident. Corresponding to a total of 340 faulty data, 313 data are correctly
detected by the MEM adaptive threshold band, while the fixed threshold band detected 224
data. This is a significant benefit of the adaptive threshold bands, although calculating the
threshold bands in this case needs to perform the second neural network which imposes

computational complexity to the process.
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Case Fixed Threshold Adaptive Threshold

1 (AL = 20% Abruptly) 0S 0S

2 (AL = 5% Abruptly) 0*S 08
3(R,:0.1Q | % Abruptly) 0.8*S 0.18

4 (R, :0.1Q 1 % Abruptly) 0*S 0S
5(r;:0.2¢cm/s | Incipiently) 2.8*S 0.6S

6 (r;:0.5cm/s | Incipiently) 0.95 0.4S

7 (A = 3% Intermittently) 0S,0S8 0.1*S,08
8 (A = 6% Intermittently) 0*S,08 0S,0S

Table 4.6: Fault detection delays by using the RBF neural network with the fixed and the
MEM threshold bands. “*” denotes that a permanent fault is detected as an intermittent
Fault.

Case Threshold a b C d AC TP FP TN FN P
All Fixed 555 14 106 234 8 69 2 98 31 94
Adaptive 554 15 27 313 95 92 3 97 8 96
0 Fixed 91 10 O 0 90 - 10 90 - 0
Adaptive 97 4 0 0 96 - 4 96 - 0
| Fixed 51 O 0 50 100 100 O 100 O 100
Adaptive 50 1 0 50 99 100 2 98 0 98
’ Fixed 51 O 4 46 9 92 0 100 8 100
Adaptive 50 1 0 50 99 100 2 98 0 98
3 Fixed 51 0 37 13 63 26 0 100 74 100
Adaptive 50 1 1 49 98 98 2 98 2 98
4 Fixed 51 O 4 46 9% 92 0 100 8 100
Adaptive 50 1 0 50 99 100 2 98 0 98
5 Fixed 51 0 35 15 65 30 O 100 70 100
Adaptive 50 1 6 44 93 88 2 98 12 98
6 Fixed 51 O 9 41 91 & 0 100 18 100
Adaptive 50 1 4 46 95 92 2 98 8 98
7 Fixed 79 2 10 10 8 50 2 98 50 83
Adaptive 79 2 5 15 93 75 2 98 25 88
3 Fixed 79 2 7 13 91 65 2 98 35 87
Adaptive 78 3 1 19 9% 95 4 96 5 86

Table 4.7: The confusion matrix corresponding to the RBF fixed and the MEM threshold
bands.
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Figure 4.33: The RBF fault detection performance for the validation data, (a) Real and
estimated linear velocity of the mobile robot, (b) Residual and the thresholds, and (c)
Fault alarms generated.

4.8 Conclusions

Fault detection of mobile robots by using the LLM models and RBF neural network is
addressed in this chapter. The LLM fault detection performance is improved by using LMT
and MEM adaptive threshold bands. Also, MEM algorithm is used to improve the RBF
fault detection performance. The results are shown in simulation figures and summarized
tables.

Tables 4.4 - 4.7 show both methods of adaptive threshold bands detected fault with
good accuracy while RBF with MEM algorithm has a better performance in most cases.
However, due to designing the second neural network in MEM algorithm, the computa-
tional complexity of this method is much more than computational complexity of the LMT

method.
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Figure 4.34: The RBF fault detection performance for actuator fault 1: A 20% loss of
control effectiveness applied after the 5/ second, (a) Real and estimated linear velocity of
the mobile robot, (b) Residual and the thresholds, and (c) Fault alarms generated.
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Figure 4.35: The RBF fault detection performance for actuator fault 2: A 5% loss of
control effectiveness applied after the 5/ second, (a) Real and estimated linear velocity of
the mobile robot, (b) Residual and the thresholds, and (c) Fault alarms generated.
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Figure 4.36: The RBF Fault detection performance for actuator fault 3: A 0.1 Q decrease
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Figure 4.37: The RBF Fault detection performance for actuator fault 4: A 0.1 increase
of R, applied after the 5" second, (a) Real and estimated linear velocity of the mobile
robot, (b) Residual and the thresholds, and (c) Fault alarms generated.
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Figure 4.38: The RBF Fault detection performance for system fault 5: A decrease of r;
with the rate of 0.2 cm /s applied after the 5" second, (a) Real and estimated linear velocity
of the mobile robot, (b) Residual and the thresholds, and (c) Fault alarms generated.
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Figure 4.39: The RBF Fault detection performance for system fault 6: A decrease of r;
with the rate of 0.5 cm /s applied after the 5" second, (a) Real and estimated linear velocity
of the mobile robot, (b) Residual and the thresholds, and (c) Fault alarms generated.
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Chapter 5

Fault Identification Design of Mobile

Robots

5.1 Introduction

This chapter addresses fault identification of mobile robots by using a multiple model
technique. For this purpose, different system faults are considered to develop a bank of
models to identify faults. First, different faults having various severities are detected by
using the best two different modeling techniques with adaptive threshold bands that are
explained in Chapters 2 and 4 namely radial basis function (RBF) neural networks with
model error modeling (MEM) adaptive threshold bands and locally linear models (LLM)
with local model threshold (LMT) bands. By using the multiple model fault identification
logic, faults of the system are identified. Simulation results consisting of testing the meth-
ods on 50 different cases are summarized in two confusion matrices to validate and verify

the capabilities and comparisons of the proposed methods.
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5.2 Fault Identification Design for Mobile Robots

In this section, the fault detection methodology is considered to be the same as in the
previous chapter. The two best methods in fault detection of mobile robots are used,
namely the LLM model with the LMT adaptive threshold bands and the RBF with the
MEM adaptive threshold bands. In order to identify faults, for each severity range an LLM
and an RBF model is trained by using the data of that severity. This implies that multiple
models corresponding to the severity ranges are designed separately by each modeling
method. The severity ranges are adjusted in order to design the least fault classes to cover
all the studied fault ranges. The fault classes are defined corresponding to different severity
ranges as described below (the fault types are explained in Section 4.3.1):

Class 0: This class contains healthy data. To detect faults in the system, the LLM
model with the LMT adaptive threshold bands (Figure 4.19) and the RBF model with the
MEM adaptive threshold bands (Figure 4.21) are used which are described in the previous
chapter.

Class I: This class contains loss of control effectiveness faults from 8% to 12%. To
identify this class of faults, an LLM fault model with the LMT adaptive threshold bands
and an RBF fault model with the MEM adaptive threshold bands are developed by using
data corresponding to the 10% loss of control effectiveness fault. Adaptive threshold bands
are constructed by using another data set corresponding to this fault.

Class 2: This class contains loss of control effectiveness faults from 13% to 17%. To
identify this class of faults, an LLM fault model with the LMT adaptive threshold bands
and an RBF fault model with the MEM adaptive threshold bands are developed by using
data corresponding to the 15% loss of control effectiveness fault. Adaptive threshold bands
are constructed by using another data set corresponding to this fault.

Class 3: This class contains loss of control effectiveness faults from 18% to 23%. To
identify this class of faults, an LLM fault model with the LMT adaptive threshold bands

and an RBF fault model with the MEM adaptive threshold bands are developed by using
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data corresponding to the 20% loss of control effectiveness fault. Adaptive threshold bands
are constructed by using another data set corresponding to this fault.

Class 4: This class contains left wheel radius decrease faults from 0.2 cm/s to 0.5
cm/s. To identify this class of faults, an LLM fault model with the LMT adaptive threshold
bands and an RBF fault model with the MEM adaptive threshold bands are developed
by using data corresponding to the wheel radius decrease fault with the rate of 3 cm/s.
Adaptive threshold bands are constructed by using another data set corresponding to this
fault.

Class 5: This class contains left wheel radius decrease faults from 0.6 cm/s to 0.9
cm/s. To identify this class of faults, an LLM fault model with the LM T adaptive threshold
bands and an RBF fault model with the MEM adaptive threshold bands are developed by
using data corresponding to the wheel radius decrease fault with the rate of 0.7 cm/s.
Adaptive threshold bands are constructed by using another data set corresponding to this
fault.

Class 6: This class contains slippage faults from A =2 to A = 5. To identify this
class of faults, an LLM fault model with the LMT adaptive threshold bands and an RBF
fault model with the MEM adaptive threshold bands are developed by using data corre-
sponding the slippage fault with A = 3. Adaptive threshold bands are constructed by using
another data set corresponding to this fault.

Class 7: This class contains slippage faults from A = 6 to A = 10. To identify
this class of faults, an LLM fault model with the LMT adaptive threshold bands and an
RBF fault model with the MEM adaptive threshold bands are developed by using data
corresponding to the slippage fault with A = 8. Adaptive threshold bands are constructed
by using another data set corresponding to this fault.

Class 8: This class contains right motor resistor faults from 0.53 Q to 0.57 Q. To
identify this class of faults, an LLM fault model with the LMT adaptive threshold bands

and an RBF fault model with the MEM adaptive threshold bands are developed by using
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data corresponding to the resistor fault with R, = 55€Q. Adaptive threshold bands are
constructed by using another data set corresponding to this fault.

Class 9: This class contains right motor resistor faults from 0.58 Q to 0.62 Q. To
identify this class of faults, an LLM fault model with the LMT adaptive threshold bands
and an RBF fault model with the MEM adaptive threshold bands are developed by using
data corresponding to the resistor fault with R, = 60 Q. Adaptive threshold bands are
constructed by using another data set corresponding to this fault.

Class 10: This class contains right motor resistor faults from 0.63 Q to 0.67 Q. To
identify this class of faults, an LLM fault model with the LMT adaptive threshold bands
and an RBF fault model with the MEM adaptive threshold bands are developed by using
data corresponding to the resistor fault with R, = 65 €. Adaptive threshold bands are
constructed by using another data set corresponding to this fault.

Figure 5.1 shows the proposed methodology to identify faults. In Figure 5.1, using
the current and previous inputs, output of the system and adaptive threshold bands are
generated by using the methods that are explained in the previous chapter (refer to Figures
5.1 (b) and (c)). A small constant k is added to each threshold’s value to increase the con-
fidence level of the fault identification. The healthy model estimates the system’s output
when there is no fault in the system. Model fault 1 to model fault 10 (10 fault classes are
defined, n = 10), estimate the output of the system when faults related to the fault class
1 to fault class of 10 occur in the system. The residuals (rg, ry, ...., r19) are generated by
comparing the estimated outputs (Yo, V1, -.., ¥10) With the measured output of the system
(). For each fault, the fault decisions (fy, f1, ..., f10) are generated by comparing the cor-
responding residuals with the adaptive threshold bands (Tyo — Tpo, Ty1 — Ip1, ---, Tu1o0 —
Tp1o). If the residual signal is inside the threshold band, the fault decision is set to zero,
otherwise, the fault decision is set to 1. When all the fault decisions are evaluated, decision

making block decides which fault (faults) has (have) occurred by using the following logic:
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Figure 5.1: (a) Fault identification methodology, (b) Model block in the subfigure (a) if
the RBF method is used, (c) Model block in the subfigure (a) if the LLM method is used.
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Fault i has occured if fo =1 and f; =0;
fori=1,2,...,n

No fault otherwise.

The above logic is used to minimize false alarms. The reason for using the decision
of the healthy model (fp) prior to the decision of the faulty models (f;) is due to the more
reliability of the healthy model. Also, the simulations show that some models that are
corresponding to the low severity faults, detect normal data as their own class of fault.
As a result, by using this logic, their false alarms and neglected unless the healthy model

confirms this.

5.3 Simulation Results

Using the described methodology in the previous section, faults of the system are then
identified. This section provides the results for 50 different simulations on the system.
These contain 3 healthy scenarios on the mobile robot when it passes through different
trajectories and 47 different faulty scenarios when it passes through an eight-shaped tra-
jectory which was described in Chapter 4. Faults consist of 15 loss of control effectiveness
ranging from 8% to 22% with the resolution of 1%, 8 left wheel radius decrease faults
ranging from 0.2 cm/s to 0.5 ¢cm/s resolution of 1 cm/s, 9 slippage faults, ranging from
A =2to A = 10 with the resolution of 1 A and 15 right motor resistor faults ranging from
0.04 Q to 0.18 Q with the resolution of 0.01 Q.

The performance of the fault identification on all the 50 scenarios by using the LLM
models are illustrated in Figures 5.2 - 5.12. Each figure shows the corresponding model’s
performance on all the 50 cases by depicting the residuals and the adaptive threshold
bands. The number on the top of each figure relates to the label of each case which is
defined as follows:

1-3 (Class 0): No fault.
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4-8 (Class 1): The control loss of effectiveness of 8, 9, 10, 11, 12% applied abruptly after
the 5 second.

9-13 (Class 2): The control loss of effectiveness of 13, 14, 15, 16, 17% applied abruptly
after the 5 second.

14-18 (Class 3): The control loss of effectiveness of 18, 19, 20, 21, 22% applied abruptly
after the 5 second.

19-22 (Class 4): Left wheel radius decrease faults with the rates of 0.2, 0.3, 0.4, 0.5 cm/s
applied incipiently after the 5/ second.

23-26 (Class 5): Left wheel radius decrease faults with the rates of 0.6, 0.7, 0.8, 0.9, cm/s
applied incipiently after the 5 second.

27-30 (Class 6): Slippage faults of A = 2, 3, 4, 5 applied intermittently at the 4 — 5 and
the 6 — 7"* seconds.

31-35 (Class 7): Slippage faults of A = 6, 7, 8, 9, 10 applied intermittently at the 4 — 5"
and the 6 — 7" seconds.

36-40 (Class 8): Right motor resistor faults of R, = 53, 54, 55, 56, 57 Q applied abruptly
after the 5" seconds.

41-45 (Class 9): Right motor resistor faults of R, = 58, 59, 60, 61, 62 Q applied abruptly
after the 5 second.

46-50 (Class 10): Right motor resistor faults of R, = 63, 64, 65, 66, 67 Q applied abruptly

after the 5" second.

Figure 5.2 shows the performance of the model labeled zero, representing the healthy
system, in detecting faults. It shows that by using the LLM models, healthy data are very
well distinguished. Also, faults related to the first, second, third, seventh, eighth and ninth
faulty classes are very well detected, and faults related to the fifth faulty class are well
detected and faults related to the fourth, sixth and tenth faulty classes are barely detected

due to the low severity of the faults.
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Figure 5.2: Fault detection of all the 50 cases by using the LLM models corresponding to
the healthy system
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Figure 5.3 shows the performance of the first LLM model, representing the fault
class 1, in identifying different faults in the system. It shows that faults of this class are
identified with a good performance. A few data points in the second and the third classes
of faults are identified as the first class of fault. The worst performance of this model is in
detecting faults of the seventh fault class in the first fault class. Figures 5.4 and 5.5 show
the performance of the second and the third LLM models, representing the for fault classes
of 2 and 3, in identifying different faults in the system. The good performance of these
models in identifying the corresponding fault classes can be clearly concluded.

Figures 5.6 and 5.7 show the performance of the fourth and the fifth LLM models,
representing fault classes of 4 and 5, in identifying different faults in the system. As far
as Figure 5.6 and Figure 5.2 are concerned faults of the fourth class are poorly identified.
The main reason is that the low severity faults of this class are not detected well with the
healthy model. Also, the fifth class faults are barely identified. As far as these figures are
concerned, certain data are misclassified using these models.

Figures 5.8 and 5.9 show the performance of the sixth and the seventh LLM models,
representing fault classes of 6 and 7, in identifying different faults in the system. As far
as Figures 5.8 and 5.9 and Figure 5.2 are concerned, faults of these classes are barely
identified. The worst performance of the seventh model is in detecting certain first class
faults as the seventh class.

Figures 5.10, 5.11 and 5.12 show the performance of the eighth, the ninth and the
tenth LLM models, representing fault classes of 8, 9 and 10, in identifying different faults
in the system. As far as Figures 5.10, 5.11, 5.12 and Figure 5.2 are concerned, faults of
the eighth and the ninth classes are well identified and faults of the tenth class are barely
identified. The main reason for the identifying the tenth class barely is that the low severity
faults of this class are not detected well with the healthy model.

The fault identification results using the LLM models are summarized in Tables 5.1

and 5.2 which show the confusion matrix using the number and the percentage of the
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Figure 5.3: Fault identification of the mobile robot by using LLM models: First faulty
model performance for all the 50 cases.
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Figure 5.4: Fault identification of the mobile robot by using LLM models: Second faulty

Fesidual

model performance for all the 50 cases.
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Figure 5.6: Fault identification of the mobile robot by using LLM models: Fourth faulty
model performance for all the 50 cases.
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Figure 5.7: Fault identification of the mobile robot by using LLM models: Fifth faulty
model performance for all the 50 cases.
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Figure 5.8: Fault identification of the mobile robot by using LLM models: Sixth faulty

model performance for all the 50 cases.
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Figure 5.9: Fault identification of the mobile robot by using LLM models: Seventh faulty

model performance for all the 50 cases.
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Figure 5.10: Fault identification of the mobile robot by using LLLM models: Eighth faulty

model performance for all 50 cases.
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Figure 5.11: Fault identification of the mobile robot by using LLM models: Ninth faulty
model performance for all the 50 cases.
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Figure 5.12: Fault identification of the mobile robot by using LLM models: Tenth faulty
model performance for all the 50 cases.
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Class O 1 2 3 4 5 6 7 8 9 10 TNFD
0 2929 2 1 0 18 100 5 1 11 13 4 0

1 0 224 26 0 17 5 63 5 0 250
2 0 27 219 39 1 0 3 5 0 250
3 0 5 34 235 1 0 4 5 0 250
4 81 0 0 0 6 18 0 0 41 31 11 200
5 47 0 0 0O 5 13380 0 2 12 0 200
6 27 0 0 0 40 0 42 0 O 0 0 80
7 5 78 0 0 53 4 11 61 O 0 0 100
8 7 0 0O 71 63 0O O 230 28 O 250
9 20 0 0 0 9 41 0 O 23 225 20 250
10 105 0 0O 8 15 0 0 12 42 137 250

Table 5.1: The confusion matrix corresponding to the fault identification by using the
LLM models and multiple model algorithm. The columns represent the actual classes and
the rows represent the estimated classes. TNFD denotes the total number of faulty data in
each class.

identified data in each class. The overall fault detection and identification results by using
the LLLM models are also illustrated in Tables 5.4 and 5.5. The notations for the symbols
used in these tables are summarized in Table 5.3.

The performance of the fault identification on all the 50 faults by using the RBF
neural networks with adaptive threshold generated by the MEM algorithm are illustrated
in Figures 5.13 - 5.23. Each figure shows one model’s performance on all the 50 cases by
depicting the residuals and the adaptive thresholds.

Figure 5.13 shows the performance corresponding to the label zero, the healthy sys-
tem in detecting faults. It shows that using the RBF models, data without faults are very
well distinguished. Also, faults of the first, the second, the third, the fifth, the seventh, the
eighth, the ninth and the tenth classes are very well detected, and faults related to other
classes are well detected.

Figure 5.14 shows the performance of the first RBF model, representing the fault

class 1, in identifying different faults in the system. It shows that faults of this class are
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Class O 1 2 3 4 5 6 7 8 9 10
0 98.6 0.1 0 0 06 03 02 0 04 04 0.1
1 0 896 104 O 6.8 0 2 252 0 2

2 0 108 87.6 156 04 0 0 1.2 0 2 0

3 0 2 136 94 04 0 0 1.6 0 2 0

4 405 O 0 0 345 9 0 0 205 155 55
5 235 0 0 0 2 69 0 0 1 6 0

6 337 0 0 0 50 0 525 O 0 0 0

7 2 78 0 0 53 4 11 61 0 0 0

8 2.8 0 0 284 252 O 0 92 112 O

9 8 0 0 36 164 O 0 92 90 8

10 42 0 0 328 6 0 0 48 168 54.8

Table 5.2: The confusion matrix shown in percentages corresponding to the fault identi-
fication by using the LLM models and multiple model algorithm. The columns represent
the actual classes and the rows represent the estimated classes.

Symbol Percentage Performance Interpretation
V 90-100 %  Very Good  Well Detected/Identified
+ 70-90 % Good Detected/Identified
X 50-70 % Acceptable  Barely Detected/Identified
- <50 % Poor Poorly Detected/Identified
Table 5.3: Legend.

Class O 1 2 3 4 5 6 7 8 9 10
Performance / +/ v v X 4+ X / / V X
Table 5.4: The LLM models detectability.

Class 0 1 2 3 4 5 6 7 8 9 10
Performance +/ + + / - X x x +/ / X

Table 5.5: The LLM models identifiability.
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Figure 5.13: Fault detection of all the 50 cases by using the RBF neural networks corre-

sponding to the healthy system
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identified with a good performance. A few data points in the second and the third classes
are classified in the first class. The worst performance of this model is in detecting faults
of the seventh class in the first class. Figures 5.15 and 5.16 show the performance of the
second and the third RBF models, representing the fault classes of 2 and 3, in identifying
different faults in the system. The good performance of these models in identifying the
corresponding fault classes can be clearly concluded.

Figures 5.17 and 5.18 show the performance of the fourth and the fifth RBF models,
representing the fault classes of 4 and 5, in identifying different faults in the system. As
far as Figures 5.17 and 5.18 and Figure 5.13 are concerned, faults of the fourth class are
barely and faults of the fifth class are well identified. Also, certain data of other classes
are misclassified by using these models.

Figures 5.19 and 5.20 show the performance of the sixth and the seventh RBF mod-
els, representing fault classes of 6 and 7, in identifying different faults in the system. As
far as Figures 5.19 and 5.20 and Figure 5.13 are concerned, faults of the sixth class are
well and faults of the seventh class are barely identified.

Figures 5.21, 5.22 and 5.23 show the performance of the eighth, the ninth and the
tenth RBF models, representing fault classes of 8, 9 and 10, in identifying different faults
in the system. As far as Figures 5.21, 5.22 and 5.23 and Figure 5.13 are concerned, faults
of theses classes are very well identified. Using these models, some data of the fourth and
the fifth faulty classes are misclassified.

The fault identification results by using the RBF models are summarized in Tables
5.6 and 5.7 which show the confusion matrix by using the number and the percentage of
the identified data in each class. The overall fault detection and identification results by

using the RBF models are also illustrated in Tables 5.8 and 5.9.
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Figure 5.14: Fault identification of the mobile robot by using RBF Neural Networks: First
faulty model performance for all the 50 cases.
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Second faulty model performance for all the 50 cases
129



Residual

Threshold
1 2 3 4 a
1 3 1 : 0.5 1 ; 1 ;
o Bl GRECER] obes oD
-1 : 1 : -0.5 : 1 : -1 ;
] 5 10 0 5 1 1] 5 10 ] 5 10 0 5 10
5] i a g 10

21 22 23 24 25
1 1 1 - 2 2
[ frmmmmeeeo [ frEr—remns ] % ] Eﬁ:ﬁ 0 g@ﬁ
-1 1 1 : -2 -2
] g 10 0 a 10 ] a 10 ] a 10 0 o] 10
2B 27 28 29 a0

45 47 45 49 a0
1 : 1 1 - 1 1
e e ey 0 % ] M ] % M

: 1 : 4 A : ;

e & 8 "B &5 I8 W o§ W M ¥ M YR w4l
Time (s Time (s Time (s) Time (s Time (s
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Figure 5.17: Fault identification of the mobile robot by using RBF Neural Networks:
Fourth faulty model performance for all the 50 cases
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Figure 5.19: Fault identification of the mobile robot by using RBF Neural Networks: Sixth

faulty model performance for all the 50 cases
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Figure 5.20: Fault identification of the mobile robot by using RBF Neural Networks:
Seventh faulty model performance for all the 50 cases
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Figure 5.21: Fault identification of the mobile robot by using RBF Neural Networks:

Eighth faulty model performance for all the 50 cases.
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Figure 5.22: Fault identification of the mobile robot by using RBF Neural Networks: Ninth
faulty model performance for all the 50 cases
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Figure 5.23: Fault identification of the mobile robot by using RBF Neural Networks: Tenth

faulty model performance for all the 50 cases.
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Class O 1 2 3 4 5 6 7 8 9 10 TNFD
0 2937 0 0 1 0 1 I 1 3 2 0
1 0 222 21 0 0 0 2 33 0 0 0 250
2 0 20 231 34 O 0O o0 2 0 0 250
3 0 324 2388 0 O O o0 ©O 0 250
4 20 0 0 0O 131 11 0 0 32 48 53 200
5 10 0 0 0 36 152 0 0 28 15 12 200
6 19 0 0 0 18 18 56 2 O 0 0 80
7 79 0 0 9 I 12 69 O 0 0 100
8 0 0 0O 48 30 0 0 232 17 1 250
9 0 0O 41 38 0 0 19 242 12 250
10 10 0 0O 39 8 0 0 O 15 229 250

Table 5.6: Confusion Matrix corresponding to the fault identification by using the RBF
neural networks and multiple model algorithm. The columns represent the actual classes
and the rows represent the estimated classes. TNFD denotes the total number of faulty
data in each class.

Class 0 1 2 3 4 5 6 7 8 9 10
0 989 0 0 0 0 0 0 0 0.1 01 02
1 0 838 84 0 0 0 08 132 0 0 0

2 0 8 924 136 O 0 0 038 0

3 0 1.2 96 952 O 0 0 0 0 0 0

4 10 0 0 655 55 O 16 24 265
5 5 0 0 0 18 76 O 14 75 6

6 237 0 0 0 225 225 70 25 0

7 1 79 0 0 9 1 12 69 0

8 0 0 0 0 192 12 O 0 928 68 04
9 0.4 0 0 164 152 O 0 76 968 4.8
10 4 0 0 0 156 352 O 0 0 6 916

Table 5.7: The confusion matrix shown in percentage corresponding to the fault identifi-
cation by using the RBF neural networks and multiple model. The columns represent the
actual classes and the rows represent the estimated classes.
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Class 0o 1 2 3 4 5 6 7 8 9 10
Performance / v v Vv + vV + VvV VvV V V

Table 5.8: The RBF neural networks detectability.

Class 0O 1 2 3 4 5 6 7 8 9 10
Performance +/ + +/ v X + + x  V

Table 5.9: The RBF neural networks identifiability.

5.4 Conclusions

In this chapter, multiple models of the LLM models and RBF neural networks are used
to detect and identify different faults having various severities in the mobile robot plat-
form. Four different fault severities with different sizes are divided into 10 classes. The
performance of each method is illustrated by using figures and tables.

To detect and identify faults, linear velocity of the mobile robot is used for repre-
sentation and modeling the system in different cases. The overall proposed methodology
scheme is illustrated in Figure 5.1. Using only one variable to classify the 10 faults can
lead to misclassifications, which is mostly visible in the fourth and the fifth classes. Mod-
els of these classes are misclassified to other faults and the eighth to the tenth models are
misclassified as the fourth and the fifth faulty data.

In conclusion, the RBF models have overall detected and identified faults more ef-
fectively. This improved performance is evident in all the faulty classes except the first,

the second and the seventh ones.
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Chapter 6

Conclusions and Suggestions For Future

Work

6.1 Conclusions

This thesis has investigated different methods for representing a mobile robot for the pur-
pose of fault detection and identification. For each method, an adaptive threshold band is
proposed to decrease false alarms and improve the fault detection and identification per-
formance. In the considered application, a two wheeled mobile robot is used to track a
predefined trajectory in an obstacle free environment.

As the first step, a simulator is developed by using kinematic and dynamic equations
of the mobile robot and its actuators. The mobile robot is controlled with an MIMO PD
controller to guarantee that the mobile robot is capable of tracking desired trajectories.
Four different types of fault containing two actuators and two system faults are imple-
mented in the system abruptly, intermittently and incipiently to be detected and identified
by the proposed fault detection and identification scheme.

In order to detect the occurrence of faults in the mobile robot subsystems, two differ-

ent methods have been proposed. The first method is based on identification of the system
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using the local linear models (LLM). In this study, the locally linear model with locally
linear model tree (LoLiMoT) learning algorithm is considered because of their ease of in-
terpretability. This property helps to generate adaptive threshold bands by using each local
linear model’s error which creates locally model thresholds (LMT). The performance of
fault detection (FD) by using LMT adaptive threshold bands is compared with the per-
formance of FD using fixed threshold bands and another method of adaptive threshold
generation, which uses model error modeling (MEM) technique to identify the residuals.
The second approach is based on identification of the system by using radial basis function
(RBF) neural networks. In this case, to improve the FD performance and its robustness,
the MEM algorithm is used to identify the residuals. Its performance is then compared
with the fault detection by using fixed threshold bands.

As described in Chapter 4, the overall performance of the FD scheme by using adap-
tive threshold bands are much better than the associated fixed ones. It shows that the FD
process is more robust when we use adaptive threshold bands. Also, the RBF neural net-
works with the MEM technique can be considered slightly better than the FD by using
the LLM models and corresponding adaptive threshold bands. However, the MEM tech-
nique needs another model which can impose certain computational complexity to the FD
process.

In Chapter 5, the concept of multiple models is utilized to identify system faults. One
healthy and 10 faulty models are constructed to identify 4 different types of faults which
are included in 10 fault classes. The best two constructed methods are used to identify the
system faults namely the LLM models by using the LMT adaptive threshold bands and the
RBF neural networks by using the MEM adaptive threshold bands. The fault identification
results are provided in chapter 5 by using the confusion matrices of both methods. Using
the confusion matrices, it can be concluded that the fault identification by using the RBF
neural networks and the MEM technique has slightly a better performance. However, the

number of the trained models in this method is double the number of the trained models
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using the LLM models and this fact imposes certain computational burden although better
performance is obtained.

To summarize, the main contributions of this thesis can be outlined as follows:

(1) Development of a new simulator for mobile robots containing both the kinematic
and the dynamic equations of mobile robot and its actuators. The simulator is capable of
implementing different faults in the system.

(2) Development of a new method for residual evaluation by using an adaptive
threshold band that is generated by using locally linear models of the system named LMT
adaptive threshold band. The improvements of the proposed adaptive threshold bands are
shown in simulation results.

(3) Development of two fault detection approaches based on the RBF neural net-
works and the LLM models for mobile robots using the MEM algorithm to generate adap-
tive threshold bands.

(4) Development of two fault identification approaches based on the concept of mul-

tiple models for a mobile robot.

6.2 Suggestions for Future Studies

Fault diagnosis of nonlinear systems and mobile robots is still an open problem of research.
Although this issue has been studied extensively for linear systems, it has remained less
investigated for nonlinear systems such as mobile robots.

For future research directions in this field, improving the fault identification perfor-
mance should be obtained. It would be interesting to determine the cause of overlapping
in identification of certain faults and to obtain means to rectify it.

Our proposed methods are tested on a mobile robot simulator. Performing and apply-
ing the methods on a real mobile robot is recommended. However, the presented simulator

uses the equations of a real robot and the parameters are obtained from a real mobile robot
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(Pioneer P3DX) that is available in the lab.

To detect and identify faults in this thesis, only linear velocity of the mobile robot is
used to be represented. Modeling other outputs of the system such as the angular velocity
should also be studied. Using two outputs, and an appropriate FD technique, the fault
detection and identification performance will most likely be improved.

Furthermore, using an on-line gain optimization scheme can improve the modeling
performance. In this thesis, model gains are adjusted by using a set of training data so that
the model output can follow the system output in a limited range of trajectories with low
noise levels. This barrier can be relaxed if an on-line gain optimization scheme is used and
developed.

Additionally, a study on fault recovery of mobile robots is suggested. In a complete
fault diagnosis system, the fault identification step should lead to further investigations on
handling a fault which is known as the recovery phase.

Another issue of interest is fault prognosis. This step which can be added in the over-
all strategy for handling faults would lead to condition-based maintenance. Consequently,
it would be of great practical and economic interest to develop such schemes.

As a matter of fact, there are a large number of open problems in the area of fault
diagnosis of nonlinear systems in general and for mobile robots in particular. In this thesis,

we have tried to discuss some of the most undeveloped issues and challenges.
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