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Abstract We describe approaches for positive data
modeling and classification using both finite inverted
Dirichlet mixture models and support vector machines
(SVMs). Inverted Dirichlet mixture models are used to
tackle an outstanding challenge in SVMs namely the
generation of accurate kernels. The kernels generation
approaches, grounded in ideas from information theory,
that we consider allow the incorporation of data struc-
ture and its structural constraints. Inverted Dirichlet
mixture models are learned within a principled Bayesian
framework using both Gibbs sampler and Metropolis-
Hastings for parameter estimation and Bayes factor for
model selection (i.e. determining the number of mix-
ture’s components). Our Bayesian learning approach uses
priors, that we derive by showing that the inverted Dirich-
let distribution belongs to the family of exponential dis-
tributions, over the model parameters, and then com-
bines these priors with information from the data to
build posterior distributions. We illustrate the merits
and the effectiveness of the proposed method with two
real-world challenging applications namely object detec-
tion and visual scenes analysis and classification.

Key words Mixture models, SVM, hybrid models, in-
verted Dirichlet, Bayesian inference, Bayes factor, model
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1 Introduction

The increasing availability of large volumes of data has
caused an urgent demand for the deployment of statis-
tical models for the analysis of these data [1-4]. Several
trends have emerged and there has been a large growth
in the number of statistical methods. A review of many
of these methods and techniques can be found in [5].
Mixture models are among the most widely used sta-
tistical approaches and provide a principled approach

for performing inference on heterogenous data in which
vectors are supposed to be drawn from different dis-
tributions [6]. Indeed, finite mixture models have be-
come arguably among the representations of choice to
model data and uncertainty and have been successfully
applied in many pattern recognition, computer vision
and data mining applications [6-10]. A significant weak-
ness of many learning models that have considered mix-
tures of distributions is their reliance on the Gaussian
assumption. In fact, it is well-known that inference in
statistical models is generally sensitive to modeling as-
sumptions especially the choice of probability density
functions. For instance, we have shown in our previous
works that other distributions namely the Dirichlet and
the generalized Dirichlet offer better modeling capabili-
ties in the case of proportional data [11-13]. In this pa-
per, we tackle another problem, namely positive data
modeling and classification. Indeed, such data arise nat-
urally in many real applications [14,15]. In particular,
we propose the consideration of inverted Dirichlet mix-
ture models which have been largely ignored in the past
despite the fact that they offer both flexibility and ease
of use as we shall show.

One of the hard problems in the case of finite mixture
models is how to effectively learn the mixture model pa-
rameters from incomplete data (i.e. in the presence of
missing variables). Several approaches have been pro-
posed in the past. The maximum likelihood approach,
based on the iterative expectation-maximization (EM)
framework [16], is perhaps the most popular technique.
It is well-known, however, that the maximum likelihood
approach depends on the used initialization algorithm
and does not allow the selection of the appropriate num-
ber of mixture components which is of central impor-
tance [10]. In [17], we introduced an EM-based approach
that combines the standard EM algorithm for parame-
ters optimization and the minimum message length (MML)
criterion for model selection. In recent years, however,
there has been much interest in Bayesian learning of
finite mixture models to resolve inherent problems re-



lated to EM-based approaches. Indeed, several recent re-
searches advocated the use of Bayesian techniques which
have been considered in a variety of applications (see, for
instance, [18-20,13]). This can be justified by the fact
that Bayesian inference handles uncertainty in a natural
manner and embodies Occam’s razor the principle that
favors simple but accurate models. With Bayesian ap-
proaches, we need fundamentally to combine our prior
beliefs about the parameters with the data to obtain
posteriors from which we obtain samples using Markov
Chain Monte Carlo (MCMC) techniques [21]. Thus, the
learning approach that we propose in this paper capi-
talizes on this trend providing a reliable framework for
positive data clustering and a richer inference than the
previously proposed EM-based algorithm [14,17]. An im-
portant problem that we address within the proposed
Bayesian framework is the determination of the number
of mixture components that best describe a given data
set. The problem is challenging and has been the subject
of extensive research in the past (see, for instance, [22]).
In our framework we tackle it using Bayes factors. For
more details about Bayesian learning and Bayes factors
the reader is strongly encouraged to refer to [23].

The adoption of finite mixture models can be viewed
also as an approach that strives to generate classification
rules from examples using the well-known Bayes rule.
The main idea is to compare the a posterior:i probabili-
ties of all classes and assign each vector to the class with
the highest probability. Several other approaches have
been proposed for the design of statistical classifiers and
this topic has been the subject of intense study in the
pattern recognition and machine learning communities
[24]. These approaches can be grouped into two families
namely generative and discriminative techniques. Gener-
ative approaches (e.g. finite mixture models) are widely
adopted when the number of training data is small. On
the other hand, if the task to be performed is classi-
fication, and a large number of training examples are
available, then discriminative techniques are generally
deployed to learn classification rules [25]. SVM is per-
haps one of the most important techniques which has
been widely applied in problem solving in several ar-
eas due to their potential to greatly increase classifica-
tion accuracy and generalization capabilities [26,27]. As
a discriminative approach the goal of SVM is to find
surfaces that better separate the different data classes.
The main ingredient of SVM, which was developed based
on the structural risk minimization principle from sta-
tistical learning theory, is the kernel trick which allows
efficient discrimination in non-linearly separable input
feature spaces. Thus, a main problem and one of the
important challenges, when using SVM, is the choice of
the kernel function which has to be suitable for the data
to classify and the general task to solve [28,29]. Classic
kernels include linear, polynomial and radial basis func-
tion (RBF) kernels. Unfortunately, these kernels cannot
be applied in applications where the objects to classify
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are represented by sequences (or bags of vectors) which
may not have the same length. Bags of vectors occur
frequently and naturally in several applications. For in-
stance, an image or a video can be represented by several
feature vectors. The importance of this problem has mo-
tivated intense research and the main natural question
that have arisen is wether we can use the data itself to
build SVM kernels. As a result, approaches, often re-
ferred to as hybrid generative discriminative learning,
have been proposed and have provided a systematic and
a reproducible properly motivated approach to classifi-
cation [30]. Hybrid approaches allow the conversion of
data of non-fixed lengths into fixed length, and seek to
get the best of both approaches and then decrease gen-
eralization and prediction errors. In this work, we also
propose and derive some kernels for the classification
of objects represented by sequences of positive vectors
using a hybrid of inverted Dirichlet mixture models and
SVM. Our approaches build on the recent progress made
in hybrid generative discriminative learning techniques
[31] such as Fisher kernel [30], Kullback-Leibler Diver-
gence Kernels [32], Rényi and Jensen-Shannon Kernels
[33] and product kernels [34]. To illustrate the merits of
our approach we shall consider several challenging appli-
cations. In particular, we show that Bayesian methods,
coupled with MCMC computational techniques can be
successfully applied in the analysis of complex data sets
and the generation of accurate SVMs kernels 1.

The plan of this paper is as follows. In Section 2 we de-
scribe our generative model namely the inverted Dirich-
let mixture and state a fully Bayesian approach for its
learning. In Section 3, SVM kernels generated from the
inverted Dirichlet mixture are proposed for sequences
classification. Then we present our experimental results
in Section 4. Finally, we conclude the paper with a brief
discussion and a summary of the work in Section 5.

2 Bayesian Model Specification

In this section, we first briefly present the inverted Dirich-
let mixture model. An important step that we discuss
next is how to set up appropriate prior structure for the
model and then compute the necessary posteriors for
sampling.

2.1 The Inverted Dirichlet Mixture Model

Let X = {Xy,...,Xxy} denotes N D-dimensional posi-
tive vectors, X;, of measurements on N objects (e.g. im-
ages, documents) to be clustered. We define our model to
be a mixture of inverted Dirichlet distributions. Mixture

! It is noteworthy that some Bayesian interpretations of
SVMs have been proposed in the past (see, for instance, [35—
37)).
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models allow the representation of a probability distribu-

tion as a linear superposition of component distributions
[14]:

p(Xi|0) = Zpap (Xilo;) (1)

where j labels the component, p; denotes the weight of
component j (the weights are positive and sum to one),
M is the number of mixture components that must be
inferred from the data, © = ({p,}, {e;}) denotes the set
of all involved parameters, and o; represents the param-

eters of the inverted Dirichlet distribution representing
cluster j:

D
|aj a; 1 P
D+1F HX . +ZXid) o]
d=1 d=1
(2)
OéjDJrl)l

p(Xilaj) =

where X;q > 0,d=1,2,...,
the vector of parameters and |o;| =
0,d=1,2,...,D+1.

In mixture learning frameworks (both EM-based and
Bayesian), the estimation problem is generally phrased
as a missing data problem, tackled using the EM algo-
rithm, where the complete data are {(X;,Z;)}, where
Z, = (Za,...,Ziu) is called the membership vector.
The hidden variables Z;;,5 = 1,..., M are indicators
representing which inverted Dirichlet generated which
vector such that Z;; = 1 if X; belongs to cluster j and
Z;ij = 0, otherwise. The E- step of the EM computes the

posterior probabilities Zij given by

l)7 Oéj = (OAJB. .
Jr
d=1 %jd; Qjd >

. pipXilay)
iy = M
Zj:l pjp(Xi|aj)

and the M- step then maximizes the expected value of
the complete data likelihood. The main problem of EM-
based algorithms is the dependency on initialization.
Bayesian approaches have been proposed as an alterna-
tive to likelihood-based inference [38,39]. In this work we
shall consider Bayesian inference by considering the pa-
rameters vector © of the model to be random variables.
We are mainly motivated by the success of Bayesian
analysis in handling difficult problems in statistical anal-
ysis in general and the problem of mixtures learning in
particular. The main goal is to determine the conditional
distribution of @ given the training data X (i.e. poste-
rior distribution) and the structure of the model M (i.e.
the number of clusters in this case). We must therefore
select a prior distribution p(©) and then compute the
resulting posterior distribution p(©|X) via the Bayes’
theorem [40]:

(3)

p(X[©)p(O)

rel) = FE

p(X[@)p(0) (4)

where p(X|O©) is the likelihood of the data given the
model parameters. In the following section, we state our

prior distributions and then compute the related poste-
riors from which the mixture model’s parameters will be
generated.

2.2 Priors and Posteriors

Results can be very sensitive to the choice of the prior. A
number of techniques have been suggested to the prob-
lem of assessing prior distributions (see, for instance, [41,
42]). Generally, however, techniques which are satisfying
in some situations may not work well in other situations.
Thus, we have preferred a formal approach, to develop
a conjugate prior 2, based on the fact that the inverted
Dirichlet belongs to the exponential family of distribu-
tions which has several good mathematical properties
and has been largely studied in the literature [43,44].
Using this formal approach, the prior for the c; is given
by the following (see Appendix 1):

D

p(o;) o< exp [Zpdajd — pp+1]ay] (5)
d=1

D+1
fi(log (Jeg)) Z log I' (4 )}

where (p1,...,pp+1,K) is the set of hyperparameters
governing the prior. Having this prior, the posterior dis-
tribution p(a;|Z, X), where Z = (Z1,...,Zy), associ-
ated with a class j is then

pley|2,X) o pley) [] p(Xileyy) (6)
Zijzl
D

X exp [Z <pd + Z 10gXid> Qjd

d=1 Zij:1

D
+ (PD+1 + Z log(1 + ZXid)) QD41

Zij=1 d=1
D+1
+ (ff—i—nj)(log (Jegj])) Z log(I'(vjq) ]

We can see clearly that the posterior and the prior distri-
butions have the same form, then p(e;) is really a con-
jugate prior on a;. As for the parameters p;, we know
that they are defined on the simplex {P = (p1,...,pnm) :
ijvi;lpj < 1}, then a natural choice, as a prior, is a

Dirichlet distribution with parameters n = (n1,...,1mMm):
M

P) o [[pV (7)
j=1

2 A conjugate prior is a prior that shares the same para-
metric form as the posterior.



We know also that

N N M M
p(2IP)=[]p@P) =] 177" =I1»;>
i=1 j=1

i=1j=1

_ N
where n; =3 ." 17, —;. Thus,

M
p(P|2) o p(Z[P)p(P) o [[ p ™" (9)
j=1

Having our posteriors, it is possible now to give the com-
plete mixture estimation algorithm. Many computation-
ally intensive Bayesian statistical analyzes have became
practical thanks to the recent development of MCMC
techniques such as the Gibbs sampler [45,46] that we
adopt here. The steps of our Gibbs sampler are:
Algorithm 1

1. Initialization
2. Step t: For t=1,...

t) L At—1 5 (t—1)
a) Generate ZZ(- ~ M(1; Zi(1 ). .,Z(M )

( i
(b) Compute ng-t) = Zil ]Izi(;):j

)
(c) Generate P® from Eq. 9
(d) Generate ag-t) (j =1,...,M) from Eq. 6 using
the Metropolis-Hastings (M-H) algorithm [47)

where M(1; ZAl-(ltfl), cee Zl(]t\zl)) denotes a Multinomial
of order one with parameters ZAi(f_l), cee ZAZ(;/I_l)) It is
noteworthy that a M-H algorithm is used here to simu-
late from the a; posterior since it has not a usual known
form. The M-H algorithm is now routinely used in these
kind of situations and has been the topic of extensive
theoretical and experimental studies in the past (see, for
instance, [47]). As all the a;q are positive, we have used
a random walk M-H algorithm with log-normal distribu-
tion, as a proposal, with variance v2. More details about
the M-H algorithm can be found in [48]. A problem of
critical importance when considering MCMC techniques
is the convergence assessment [49-52]. Many techniques
have been proposed and applied with success [53]. In our
case we have assessed convergence to the stationary dis-
tribution using a diagnostic approach, based on a single
long-run of the Gibbs sampler, proposed in [54], that has
been shown to often work well in practice.

2.3 Model Selection

Generally complex models fit well the data, but will
have poor generalization ® capabilities (i.e. overfitting
problem). This is especially true for high-dimensional
real data involving images, videos, speech and text. It is
important then to have a certain compromise between
goodness of fit and the complexity of the learned model.

3 Some researchers have used the adjective “projectabil-
ity”, also (see, for instance, [55,56]).
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Many works have been concerned with the development
of model selection (i.e. the problem of choosing the best
value of M) procedures and have been based generally
on penalized likelihood criteria (see, for instance, [57]).
A model selection approach that have been successful in
several mixture-based applications is the consideration
of the Bayes factor. The Bayes factor has been widely
studied in the past, is efficient and is not sensitive to the
initial values (see, for instance, [58-60]).

Suppose that we have two models My, and My, in our
candidate set. Choosing Mj, instead of My, is deter-
mined by the Bayes factor By, given by the following
equation where all the candidates are supposed to have
the same prior probability:

_ p(X[My,)

=P Pk) (10)

B
8T (X[ My,)

where p(X|Mjy, ) is the marginal likelihood (known also
as the evidence or the partition function in statistical
physics) for model My, given by

(X[ M) = / P(X|6hs, My )p(€1,)dOr, (1)

where p(X|Ok, , Mg, ) is the likelihood function. The pre-
vious marginal is usually approximated by the Laplace
method as [58]:

p(X|M7€1) ~ (27T)Nk1/2|2|1/2p(‘)(|é7€1 s M, )p(ékl)

(12)
where @ is the posterior mode, N %, is the number of free
parameters in the mixture model, and X' is the Hessian
matrix which is actually asymptotically equal to the pos-
terior covariance matrix evaluated at the posterior mode
6. Note that the previous equation could be also approx-
imated by NVk1/2p(X|6y, , My, ) [58], which gives us the
MDL criterion [61]:

log(p(X| My, )) = og(p(X]6),, My,)) — ~2* log(N)
(13)

Having the model selection approach, the complete Bayesian

learning algorithm of the finite inverted Dirichlet mix-
ture is as follows:

Algorithm 2

For each candidate value of My, :

1. Apply Algorithm 1
2. Select the optimal model M* such that:

M* = argmaxyy, logp(X|My,)

3 Deriving SVM Kernels for Positive Sequence
Data

SVMs are among the most successful and well-established
developments within the pattern recognition and ma-
chine learning communities. For more details and dis-
cussions about SVMs, the reader is referred to [62] and
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references therein. A problem of prime importance when
using SVM is the choice of appropriate kernels [63,64].
Generally classic kernels (e.g. RBF, polynomial, linear)
have been widely used to classify objects when each ob-
ject is represented by a single vector. However, many
real world-world problems involve the representation of
objects by non-standard data structures [65] such as se-
quences of vectors which cannot be handled using these
widely used classic kernels. Thus, a crucial problem is to
develop kernel functions defined on these kind of data.
The problem of generating SVM kernels to classify se-
quences has been investigated by many researchers. In
particular, researchers have in recent years intensified
their study of approaches to generate kernels directly
from the tackled data in an effort to surmount this bar-
rier. The most successful techniques have been based on
deriving kernels from probability distributions in order
to extend SVMs ability to handle diverse forms of struc-
tured inputs such as bags of vectors, graphs and strings.
There is a large and interesting literature on these tech-
niques, so-called hybrid generative discriminative, which
has been driven mainly by recent applications, such as
objects categorization using local features [66], which
have necessitated new approaches. The goal of this sec-
tion is to present some techniques confined to generating
SVM kernels to handle the classification of bags (or se-
quences) of positive vectors for which the classic widely
used kernels are not appropriate.

3.1 Fisher Kernel

Suppose we are given a set of multimedia objects O =
{O1,...,07} to classify, where each object O, is de-
scribed by a set of positive vectors Xy = (X1, ..., Xn,)-
It is noteworthy that the number of vectors N; needed
to describe each vector may be different from one object
to another (i.e. each set has its own size). It is clear that
classic kernels cannot be used in this case to classify our
objects. It is possible however to represent adequately
each object as a finite inverted Dirichlet mixture model.
To simplify the notation without loss of generality let
X =(Xq,...,Xn)and X' = (X],..., X)) be two sets,
representing two different multunedia objects O and O’
in O, and modeled by two finite inverted Dirichlet mix-
tures p(X|@) and p/'(X'|@’'), respectively. We can de-
fine the likelihoods of each both obJectS as p(X|0) =

Hl 1 p(X|O) and p'(X'|O") = Hl 1 P'(X'@'), respec-
tively. The Fisher kernel was proposed initially in [30]
and the main idea is to exploit the geometric struc-
ture on the statistical manifold by mapping each in-
dividual sequence into a single feature vector, defined
in the gradient log-likelihood space. The resulted fea-
ture vector is called the Fisher score and defined as
Uy = %, where each component is the deriva-
tive of the log-likelihood with respect to a particular
parameter of the mixture model. The kernel is then de-

fined as K(X,X’) = UxF(©) Uy, where F(O) is the
Fisher information matrix which role is less significant
and then can be approximated by the identity matrix
[30]. Thus, we can develop the Fisher kernel in the case
of inverted Dirichlet mixtures by computing the gradient
of logp(X|©) with respect to the model parameters p;,
by taking into account the fact that the p; sum to one,
and aygq:
dlog p(X |9 al
=3 |2t - #(a0 + rou(xi)

 dag
Jd =1

D
—10g(1+ZXid))} j=1,....M d=1,...,D
d=1
Ologp(X|©) al [
504JD+1 ; o J ( JD+1)
D
—log(1+ > Xid))}

d=1

3.2 Probability Product kernels

Let O and O’ two multimedia objects modeled by two fi-
nite inverted Dirichlet mixtures p(X|©) = Z;Ai1 pip(X]a;)

and p/(X'|@) = ij\ill p;p(X'|a};), respectively, defined
on the space [0, +o0o[. Probability product kernels were
proposed initially in [34] by replacing the kernel com-
putation in the original sequence space by computa-
tion in the probability density function (PDF) space
(i.e. the kernel becomes a measure of similarity between
probability distributions) as the following: (X, X') =
K,(p(X),p (X)) = [, p(X)?p/(X)PdX, where p is a
parameter. The two important special cases of proba-
bility product kernels are the Bhattacharyya kernel ob-
tained with p = 1/2 and the expected likelihood kernel
obtained with p = 1 [34]. Here we take p = 1/2 which
gives us the Bhattacharyya kernel for which it is possi-
ble to find a closed form expression when the mixture
model is reduced to one inverted Dirichlet distribution
(see Appendix 2):

Ky (p(X|er), o' (X]a)) (14)
P P(Saq + Sal) TSR ag) D24 o)

PSP (Baa + 3oy TIZ Do)l

As for a mixture model we can use the following heuristic
[34]:

M M

Z Z p]pJKl

j=1j'=1

(p(X]©),p'(X|6")) (X16;),p"(X1605))

l
2

(15)



It is noteworthy that the Bhattacharyya kernel has a
cubic complexity [66], but has the main advantage in
terms of nonlinear flexibility [34].

3.8 Information Divergence Kernels

Several information divergence-based kernels have been
proposed in [33]. The first one is based on the symmetric
Kullback-Leibler (KL) divergence and is given by:

Kk (p(X]©),p'(X|0)) = exp —AJ(p(Xl@),p’(XIQ’))]

(16)
where A > 0 is a kernel parameter included for numerical
stability, and

J(p(X[©),p'(X|0")) (17)
= KL(p(X|0),p' (X|0")) + KL(p'(X|0"),p(X|0))

is the symmetric KL divergence between p(X|©) and
p’'(X|©’). The KL divergence has a closed-form expres-
sion in the case of the inverted Dirichlet distribution and
is given by (see Appendix 3):

I(Ja) TTe5 T(ad)

KL(p(X|0),p (X|0")) = lo 1
(X1} P XI00) = 108 | 320 o TP T T

D+1

+ D (aa = ag)¥(aa) + (@ar — ag)¥ ()
d=1

(18)

The Rényi kernel is another approach, based on the sym-
metric Rényi divergence [67], that has been proposed in
33]

KX, X7) = Kr(p(XI0).5/(X0)  (19)
— o | - AR(XI0)./ (X10)
where
R(p(X[), ' (X|6")) = (20)

1 Foo
=L / p(X[0)7p (X|6) 7 dX
g — 1 0

+0’—1

+oo
log [ /(X[&/)7p(X[€)" "dX

0
where ¢ > 0 and o # 1 is the order of Rényi diver-
gence. By substituting Eq. 20 into Eq. 19, we obtain the
following
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In the case of an inverted Dirichlet distribution, we can
find a closed-form expression for the Rényi divergence
(See Appendix 4):

+oo
/0 p(X[0)75 (X|9)'~7dX (22)

B [ fi:;l'?'gad)]a[ ﬁlc}/&l)]l_g
[F( i Doy — oaly + oad))]

a2 (o) = o0y + o)

The last kernel is the Jensen-Shannon (JS) Kernel, gen-
erated according to the Jensen-Shannon divergence [68],
and is given by [33]

Kis(X, X') = K(p(X|0),p'(X]6")) (23)

= exp | — AJS,(p(X]O),p'(X]€"))

where

JS.(p(X]0),p'(X|0)) = H [wp(X]O) + (1 - w)p'(X|6)]

— wH [p(X|©)] — (1 —w)H[p'(X|0")]

where w is a parameter and
+oo
HpXe) =~ [ p(X|0)logp(X|O)iX (21
0

is the Shannon entropy and we can show that is given
by the following in the case of the inverted Dirichlet
distribution (See Appendix 5)

D+1

H[p(X|0)] = —log I'(|ey;|) + Y _ log I'(cvja)
d=1

D
=D (aja = D)@ (aq) = ¥(lal)) + o |¥(|ex])

1

(25)

4 Experimental Results

In this section, we investigate our approach using real
life challenging applications. The first goal of these ap-
plications is to verify the capabilities of our Bayesian
learning algorithm as compared to a learning algorithm,
based on maximum likelihood (ML) estimation and min-
imum message length selection (ML+MML), previously
proposed in [17]. The second goal is to compare the per-
formance of our inverted Dirichlet mixture model and
the widely used Gaussian mixture, and to investigate
our hybrid generated kernels. In the first real applica-

—+oo
Kr(p(X|0),p' (X|0")) = [/ p(X|6)7p/(X|O')!~7dX tion, we tackle the problem of object detection. The
0

A

1—0o

+oo
<[ p'<X|9'>°'p<X|@>1-°'dX]

second real application involves the problem of visual
scenes analysis and classification. For the hybrid ap-

( )proaches we use the SVM implementation provided in
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the LIBSVM 4. library and train one-versus-all classi-
fiers. Moreover, following [33], the parameters A and

w were selected from A € {2710 279 .. 24} and w €
{0.1,0.2,...,0.8}, respectively, and the C-SVM formu-
lation, C' € {272,271 ... 2!2} was used. It is notewor-

thy that in the case of finite mixture models closed form
expressions do not exist for the information divergence-
based probabilistic kernels, thus we have used Monte
carlo approximation with 15 000 generated points. Our
practical experiences have indicated that these choices
are appropriate.

4.1 Object Detection

In this section we address the problem of detecting ob-
jects in images which has several interesting applica-
tions such as automatic images semantic annotation and
filtering. In particular, following [69], we consider the
problems of detecting sky and vegetation in images us-
ing color and texture features. The main purpose of
these experiments is to compare the performance of the
widely used Gaussian mixture model with the perfor-
mance of the inverted Dirichlet mixture learned using
both ML+MML and Bayesian learning. It is noteworthy
that a comparison with the numerous generative and
discriminative approaches that have been proposed in
the past is beyond the scope of this paper. The consid-
ered detection framework can be summarized as follows.
First a given image is divided into 16 x 16 sub-blocks
and then each sub-block is classified as containing the
object (vegetation, sky) we are trying to detect or not
(non-vegetation, non-sky). As in [69], each block is de-
scribed by considering: 1) the color extracted by using
6 color moment features namely mean and variance in
LUV color space, 2) the texture extracted by using 56
Gabor features namely mean and variance in 4 orienta-
tions and 7 scale features, and 3) the 2-dimensional block
position described as its center coordinates. Thus, each
sub-block is represented as a 64-dimensional vector.

In order to build a sky detector, we consider sky sub-
blocks, taken as positive examples, extracted manually
from 500 images collected from the web and non-sky
blocks extracted from 1000 images collected also from
the web. Figure 1 displays examples of images from which
sky sub-blocks are extracted. As explained above these
sub-block are described as 64-dimensional feature vec-
tors used then to train an inverted Dirichlet mixture
model representing sky and another mixture model rep-
resenting non-sky blocks. Given these two mixture mod-
els and a test image, the well-known Bayes’ rule can
be used to assign the test image to the sky or non-sky
classes. The vegetation detector is build in the same way

4 C-C. Chang and C-J. Lin,
brary for Support Vector Machines.
http://www.csie.ntu.edu.tw/~cjlin/libsvm.

LIBSVM: A Li-
Available at

using both vegetation sub-blocks, extracted from 500 im-
ages, and non-vegetation sub-blocks extracted from 1000
images. However, it is noteworthy that, as recommended
in [69], we do not use the position features for vegeta-
tion detection (i.e. each sub-block is described by a 62-
dimensional vector of only color and texture features)
since generally there are not restrictions on where vege-
tation may occur in a given image. Figure 2 displays ex-
amples of images from which vegetation sub-blocks are
extracted. Figure 3 shows the number of components

Fig. 1 Examples of images from which sky blocks are ex-
tracted.

Fig. 2 Examples of images from which vegetation blocks are
extracted.

selected, using our inverted Dirichlet mixture learned in
a Bayesian way (IDM-B) and when using EM and MML
(IDM-EM), to model sky, non-sky, vegetation and non-
vegetation sub-blocks.

Table 1 shows the classification accuracies when using
IDM-B, IDM-EM, Bayesian Gaussian mixture (GM-B)
and Gaussian mixture with EM and MML (GM-EM).
According to this table, it is clear that the inverted
Dirichlet mixture outperforms significantly, according to
a student’s t-test, the Gaussian mixture. We can notice
also that Bayesian learning provides better results than
ML+MML approach for both the inverted Dirichlet and
Gaussian mixtures.

4.2 Visual Scenes Analysis and Classification
4.2.1 Problem Statement The proliferation of images

requests their accurate organization and management to
enable increased efficiency of retrieval and browsing to
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Table 1 Accuracies (%) for the sky and vegetation detection problems using different methods.

Method IDM-B  IDM-EM GM-B GM-EM
Vegetation vs. Non-vegetation  95.61%  93.98%  90.32%  88.57%
Sky vs. Non-sky 96.16%  94.79%  92.94%  90.05%
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Fig. 3 Number of components selected using IDM-B
(a,c,e,g) and IDM-EM (b,d,f,h) to represent sky (row 1), non-
sky (row 2), vegetation (row 3) and non-vegetation (row 4)
sub-blocks.

meet the needs of the end user. The problem of scenes
classification entails the assignment of an unknown scene
to one of several classes of scenes based on a set of vi-
sual features extracted from the scene. Scenes classifica-
tion provide important contextual information and cues
which can be used later for objects detection and recog-
nition for instance [70] and in many other applications
ranging from content-based image retrieval to tracking.
Kernel-based methods [71,72] and in particular SVMs
have been widely used for this problem. One crucial in-
gredient for image classification is the extraction of ac-

curate features, that describes accurately a given scene
[73], to represent the images. A very wide range of re-
cent approaches have proposed the use of local patches
(or image subregions) from which local features are ex-
tracted to represent images (see, for instance, [74-76]).
The main motivation was the fact that local features pro-
vide a compact representation of objects that is robust
to the large variation, because of illumination conditions
and viewpoints, changes in scale, translation and affine
deformations for instance [77], that can be seen between
images belonging to the same class. In particular these
local features have been used to construct visual vocab-
ularies. A visual vocabulary can be viewed as an inter-
mediate level representation for visual objects obtained
through the quantization of a set of local features such
as SIFT features which have been developed with an eye
toward their use to provide accurate local presentation
of objects [78]. Unfortunately, this approach causes the
loss of important information about the image or object
since it is based on the quantization of the features to
obtain a fixed-length representation of the image or ob-
ject [66]. A better approach is to consider all the set of
features representing each scenes which can be handled
using the hybrid kernels that we have developed in sec-
tion 3 [31]. The main goal of this section is to investigate
our generated kernels via the description of a given vi-
sual scene as a bag of vectors rather than as one vector
of features.

4.2.2 Data Set and Results We have considered the pub-
licly available ETH-80 data set [79] which is composed
of 3280 images grouped into eight object classes with
10 unique objects and 41 views of each (see figure 4).
Interest points in these images have been detected us-
ing the Harris detector and then represented using SIFT
features [78]. Each image was represented then as a bag
of orderless SIFT feature vectors extracted at detected
interest points (these feature vectors describe the local
image properties for a given particular small area in the
image) that can be modeled as a finite inverted Dirichlet
mixture model, using the algorithm in section 2, from
which our kernels can be generated. As in [66] a one-
versus-all SVM classifier is trained for each generated
kernel by measuring the performance via cross-validation
where all five views of an object are held out at one. The
generated kernels that we have investigated and com-
pared in our experiments were those generated from the
inverted Dirichlet mixture namely Fisher kernel (FK-
IDM), KL divergence kernel (KL-IDM), Rényi Kernel
(R-IDM), Bhattacharyya kernel (B-IDM) and Jensen-
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Fig. 8 Sample images from each group in the first data set. (a) Highway, (b) Inside of cities, (¢) Tall buildings, (d) Streets,
(e) Forest, (f) Coast, (g) Mountain, (h) Open country, (i) Suburb residence, (j) Bedroom, (k) Kitchen, (1) Livingroom, (m)

Office..
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Fig. 4 Examples of images from each of the eight classes in
the ETH-80 data set (apple, pear, tomato, cow, dog, horse,
cup and car).

Shannon (JS-IDM). In the same way probabilistic ker-
nels were generated from Gaussian mixture (FK-GM,
KL-GM,R-GM, B-GM and JS-GM) learned on the im-
ages data set. Figure 5 summarizes the obtained classifi-
cation results when considering these different generated
kernels. It is noteworthy that the results shown in this
figure have been obtained by selecting automatically the
number of components representing each image using the
Bayes factor (i.e. the number of components M repre-
senting different images may be different). Classification
results when we constrain the number of components to
be the same for all the mixture models (we take M as the
smallest number of components selected when modeling

WFK-IDM
BKL-IDM
uR-IDM
HB-IDM
uJ5-IDM
FK-GM
BKL-GM
"R-GM
B-GM
15-GM

\’///

Fig. 5 Average classification performance (%) for the ETH-
80 data set obtained using different generated kernels by con-
sidering inverted Dirichlet and Gaussian mixtures with dif-
ferent number of components obtained automatically using
Bayesian learning.

the different images) are shown in figure 6. We have also
conducted another experiment where we assumed that
each image may be represented by a single distribution
(i.e. M = 1). Figure 7 summarizes the classification re-
sults in this case. In these three set of experiments (with
different M, with same M, and with M = 1), the best
results were obtained by considering the KL-IDM ker-
nel (73.11%=+ 0.28, 72.94 % =+ 0.34, and 70.71% =+ 0.21,
respectively). We can note that these results are close
to the 73% accuracy obtained for instance in [66]. We
can note also that the results when M is determined au-
tomatically and when it is fixed to be the same for all
mixture models are comparable (i.e. the differences are
not statistically significant) which shows that, when in-
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Fig. 6 Average classification performance (%) for the ETH-
80 data set obtained using different generated kernels by as-
suming that the different mixture models representing the
different images have the same number of components.
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Fig. 7 Average classification performance (%) for the ETH-
80 data set obtained using different generated kernels by as-
suming that each image may be represented by a single dis-
tribution (i.e. M =1).

tegrated with SVM, the mixture models do not need to
be complex to reach good classification results. However,
reducing the mixture models to single distribution by as-
suming that M = 1 has caused a small deterioration of
the classification accuracy.

We have considered two other well-known data sets, also.
The first data set contains 13 categories of natural scenes
[80] and consists of 13 categories: coasts (360 images),
forest (328 images), mountain (374 images), open coun-
try (410 images), highway (260 images), inside of cities
(308 images), tall buildings (356 images), streets (292
images), suburb residence (241 images), bedroom (174
images), kitchen (151 images), livingroom (289 images),
and office (216 images). Figure 8 shows examples of im-
ages from this data set. The second data set contains 15
categories [81] and consists of the 13 categories of the
second data set plus 626 other images divided into two
categories (see figure 9): store (315 images) and indus-
trial (311 images). We divided each of these data sets
10 times randomly into two separate halves, half for
training and half for testing. Classification results for

Taoufik Bdiri and Nizar Bouguila

the 13 categories data set are summarized in figure 10.
The best result was obtained using the KL-IDM ker-
nel (76.03 % 4 0.29). The results in the case of the 15
categories data set are shown in figure 10 and the best
performance was reached again using the KL-IDM ker-
nel (71.19 % =+ 0.33). The obtained classification results
are better than the results obtained in the past using
the well-known bag-of-visual words approach. This can
be explained and interpreted by the fact that the con-
structed generative kernels respect local image structure
in contrast with quantization which does not take into
account the spatial information [82].

EFK-ADM
BKLIDM
FRiom
HpI0M
HsioM
N FK-GM
TKLGM
FRGM
" B-GM

J56M

Fig. 10 Average classification performance (%) for the 13
categories data set obtained using different generated kernels
by considering inverted Dirichlet and Gaussian mixtures with
different number of components obtained automatically using
Bayesian learning.

L1 HERI0M
SKLDM
RN
5N
HSi0M
ARG
KGN
“REM
1BGM
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Fig. 11 Average classification performance (%) for the 15
categories data set obtained using different generated kernels
by considering inverted Dirichlet and Gaussian mixtures with
different number of components obtained automatically using
Bayesian learning.
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5 Conclusion

In this paper we have tackled the problems of modeling
and clustering of positive data, defined in multidimen-
sional space, into homogeneous groups. Unlike other ap-
proaches that have relied on the heavy assumption that
the data are Gaussian, which is not true in may real-
world applications, the data in this work are represented
using finite mixtures of inverted Dirichlet distributions
which provide plausible explanations. The consideration
of finite mixture models is motivated by the central role
they play in many data mining problems which has led
to a variety of techniques for dealing with incomplete
data. Several challenging problems have been investi-
gated within the developed statistical framework. In par-
ticular, we have proposed a principled purely Bayesian
algorithm for the learning of inverted Dirichlet mixtures.
Our Bayesian model is based on representing the uncer-
tainty in the inverted Dirichlet parameters via a formal
prior that we derive by showing that the inverted Dirich-
let belongs to the exponential family of distributions.
The Bayesian machinery provides consistent inference
where the plausibility of each model within a possible
set of models, given the extracted data, is summarized
by the joint posterior distribution of the model param-
eters and evaluated using Bayes factors. As exact infer-
ence in purely Bayesian approaches is not tractable to
compute, we have used approximation MCMC methods
namely Gibbs and Metropolis-Hastings sampling. Us-
ing the developed Bayesian learning framework, we have
also considered elegant approaches for kernels generation
that are theoretically and experimentally well-founded.
Indeed, real data generated from challenging real life
applications have been used for experimental purposes
and the results, discussed in details, suggest that the
proposed approaches are practical and unambiguously
demonstrate the utility of the developed kernels. A num-
ber of possible avenues for future work suggest itself.
Future works could be devoted, for instance, to the in-
vestigation of learning approaches that have tried to pro-
vide compromises between Bayesian and EM-based ap-
proaches such as [83]. Moreover, in many complicated
problems, the slow convergence of MCMC approaches
still posts the great challenge. To overcome this problem,
variational techniques could be investigated. Another fu-
ture work could be devoted to feature selection which is
actually a fundamental problem in machine learning and
pattern recognition. Indeed, in several situations some
of the variables may be more relevant than others, some
variables may be totally irrelevant for the task at hand
and some variables may be just linear combinations of
other variables. Finally, it is possible to investigate on-
line learning within the developed framework.

6 Appendix

In this Appendix, we give more details about the calcu-
lations made. We do not spell out every calculation step
explicitly, since the main goal is to present the most im-
portant issues.

6.1 Appendiz 1: Proof of Eq. 5

if a S-parameter density p belongs to the exponential
family, then we can write it as the following [84,48]

p(X[0) = H(X)exp (G(0)"T(X) + (0))  (26)

where G(0) = (G1(0),...,Gs(9)), T(X) = (T1(X), ..., Ts(X))
and tr denotes the transpose. In this case a conjugate
prior on @ is given by [48]

S

p(6) o< exp(Y_ piGi(6)
=1

+ kP(9)) (27)

where p = (p1,...,ps) € R¥ and k > 0 are referred
as hyperparameters. The inverted Dirichlet distribution
can be written as an exponential density. In fact, we can
easily show that

D
|a ajqg—1 — s
P(Xiloy) = —pm—2— HX T+ Y Xig) Tl
i—1 L'(a d=1
D41
= exp [1og (F(|ozj Z log I'(ajq) + Z ajq log Xiq
d=1 d=1
D D
- Zlog Xia — || log(1 + ZXid)]
d=1 d=1
Then by letting
S=D+1
D+1
®(aj) = log (I'(|ay])) Z log I'(@vjq)
Gd(aj):ajd, d= 1,...,D GD+1(Oéj):—|Oéj|
D
To(X) =logXig, d=1,....,D Tpi1(X)=log(l+)  Xia)

d=1

H(X —exp( ZIOngd)

The prior is

D

p(a;) o exp [Zpdajd — pot1lay]
d=1

D+1
fi(log () Z log I' (4 )}
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6.2 Appendiz 2: Proof of Eq. 1/

It is possible to compute the Bhattacharyya kernel in a
closed form for densities that belong to the exponential
family of distributions, i.e densities that can be writ-
ten in the form given by Eq. 26. In this case the Bhat-
tacharyya kernel is given by

Kylp

(28)

In the case of the inverted Dirichlet distribution, we have

0 = o = (a1,...,apq1) and B(a) = log (I'(|al)) —
D+1 1 log I'(aq) Thus, according to Eq. 28

1 1

K (0(X16), 5/ (XI8) = exp | ~ o (I(5lal + 5la’])

D+1 1 1 D+1
—i—;logf( ad+2ad) §log( (Je])) ——Zlogfad

1 D+1
+§log ——ZlogF ad]
2 M(au+ 3ol %F Pl an DS o)

PSP (baa+ Lal) mf’“ )T (o))

6.3 Appendixz 3: Proof of Eq. 18

The K-L divergence between two exponential distribu-
tions (See Eq. 26) is given by [85]

K L(p(X|0).p/ (X|6')) = $(6)~B(8')+[G(0)~G(6))" | T(X)] [Hf_l F(Oéd)} [

(29)
where Ejp is the expectation with respect to p(X|6).
Moreover, we have the following [85]

Ep[T(X)] = —9'(0) (30)
Thus,
Ep[log Xua] = —‘95059 Ulag)-F(lal) d=1,....D
(31)
Ep[log(1+ ZXM aaf(@l =¥(laf)  (32)

(p(X[60), §/ (X[6)) = exp (%@(9)%@(9')—@(%9%9'))
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By substituting the previous two equations into Eq. 29,
we obtain

D+1

KL(p(X[0),p'(X|0)) = log (I'(|a;])) Zlograd

D+1

Z log I'(a})

D
+ 3 (g — o) (@ (aq) — ¥(lal) + (o — o/ ¥ ()
d=1
Do)

I(ja))
=1lo
g {ma/w DT ()

+ (a1 — ag)¥(Jaf)

—log (I'(le']))

+ ) (- ag)¥(aq)

:| D+1
d=1

6.4 Appendix 4: Proof of Eq. 22

In the case of the inverted Dirichlet distribution, we can
show that

—+oo
[ sxiory e ax
0

I'(|e’])

l1—0o
D+1
d:+1 F(a&)}

l1—0o
D
d:+11 F(O‘Id):|

D

toor D,
> / [HXc‘lldUaderadl(l +2Xid)—ola\+ola'\—\a
0 d=1
l1—0o
( I'(|la’]) }
1 D+1
d:+1 I'(ag)
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6.5 Appendiz 4: Proof of Eq. 25

+oo
H{p(X6)] / p(X]6) log p(X|6)dX
0
D+1

—+oo
= —/ p(X16) [1ogf loj]) — Z log I'(avjq)
0 -

D
+ Z ajq — 1) log Xgq — || log(1 + Xd)} dX
=1

D+1
[logl" (lej]) — Z log I'(avjq) +

M i

I
Il

1

D
~ oy | Eollog(1 + Zxdﬂ]
d=1

By substituting Egs. 31 and 32 into the previous equa-
tion, we obtain the following

D+1

H[p(X|6)] = ~log I'(|ej]) + ) _ log I'(ja) (34)
d=1

D
= (aja— D@ () — (|a])) + |y |P(|a)
d=1
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