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Abstract

In this paper, sampled-data control of a set of continuous-time LTI systems is considered. It is assumed that a predefined
guaranteed continuous-time quadratic cost function, which is, in fact, the sum of the performance indices for all systems,
is given. The main objective here is to design a decentralized periodic output feedback controller with a prespecified form,
e.g., polynomial, piecewise constant, exponential, etc., which minimizes the above mentioned guaranteed cost function. This
problem is first formulated as a set of matrix inequalities, and then by using a well-known technique, it is reformulated as a
LMI problem. The set of linear matrix inequalities obtained provides necessary and sufficient conditions for the existence of
a decentralized optimal simultaneous stabilizing controller with the prespecified form (rather than a general form). Moreover,
an algorithm is presented to solve the resultant LMI problem. Finally, the efficiency of the proposed method is demonstrated
in two numerical examples.
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1 Introduction

There has been a considerable amount of interest in
the past several years towards control of continuous-
time systems by means of periodic feedback, or so-called
generalized sampled-data hold functions (GSHF). The
idea of using GSHF instead of a simple zero-order hold
(ZOH) in control systems was first introduced in Cham-
mas and Leondes (1978). Kabamba investigated sev-
eral applications and properties of GSHF in control sys-
tems (Kabamba, 1987; Kabamba and Yang, 1991). He
showed that many of the advantages of state feedback
controllers, without the requirement of using state esti-
mation procedures, can be obtained by using a GSHF. A
comprehensive frequency-domain analysis was presented
by Feuer and Goodwin to examine robustness, sensitiv-
ity, and intersample effect of GSHF (Feuer and Good-
win, 1994).

Simultaneous stabilization of a set of systems, on the
other hand, is of special interest in the control literature
(Fonte, Zasadzinski, and Bernier-Kazantsev, 2001), and
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has applications in the following problems:

• A system which is desired to be stabilized by a fixed
controller in different modes of operations, e.g., failure
mode.

• A nonlinear plant which is linearized at several equi-
libria.

• A system which is desired to be stabilized in presence
of uncertainties in its parameters.

Despite numerous efforts made to solve the simultane-
ous stabilization problem, it still remains an open prob-
lem. In the special case, when there are only two plants,
the problem is completely solved in Youla, Bongiorno,
and Lu (1974); Vidyasagar and Viswanadham (1982),
and for the case of three and four plants, some neces-
sary and sufficient relations in the form of polynomial
are presented in Jia and Ackermann (2001). However, no
necessary and sufficient condition has been obtained for
simultaneous stabilization of more than four plants, so
far. Moreover, it is proved in Blondel and Gevers (1993)
that if the number of plants is more than two, then the
problem is rationally undecidable. It is also shown in
Toker and Ozbay (1995) that the problem is NP-hard.
These results clearly demonstrate complexity level of the
problem. Since there does not exist any LTI simultane-
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ous stabilizing controller in many cases, a time-varying
controller is considered in Miller and Rossi (2001). It
is shown that for any set of stabilizable and observable
plants, there exists a time-varying controller consisting
of a sampler, a ZOH, and a time-varying discrete-time
compensator which not only stabilizes all of the plants,
but also acts as a near-optimal controller for each plant.
This result points to the usefulness of sampling in simul-
taneous stabilization problem. Nevertheless, fast sam-
pling requirement and large control gain are the draw-
backs of this approach.

Stabilizing a set of plants simultaneously by means of a
periodic controller is also investigated in the literature
(Kabamba and Yang, 1991; Tarn and Yang, 1988). A
method is proposed in Kabamba and Yang (1991) to not
only minimize a guaranteed cost function corresponding
to all of the systems, but also accomplish desired pole
placement. The drawback, however, is that the problem
is formulated as a two-boundary point differential equa-
tion whose analytical solution is cumbersome, in general.
Some algorithms are proposed to solve the resultant dif-
ferential equation numerically, in the particular case of
only one LTI system, which is no longer a simultane-
ous stabilization problem (Hyslop, Schattler, and Tarn,
1992; Werner, 1996). Design of a high-performance si-
multaneous stabilizer in the form of a piecewise constant
GSHF is investigated in Cao and Lam (2001).

On the other hand, it is not realistic in many practical
problems to assume that all of the outputs of a system
are available to construct any particular input of the
system. In other words, it is often desired to have some
form of decentralization. Problems of this kind appear,
for example, in electric power systems, communication
networks, large space structures, robotic systems, eco-
nomic systems and traffic networks, to name only a few.

This paper deals with the problem of simultaneous sta-
bilization of a set of systems by means of a decentral-
ized periodic controller. It is assumed that a discrete-
time decentralized compensator is given for a set of de-
tectable and stabilizable LTI systems. This compensator
is employed to simplify the simultaneous stabilizer de-
sign problem. In certain cases, however, the problem
may not be solvable without using a proper compensator
(e.g., in presence of unstable fixed modes (Davison and
Chang, 1990)). The objective here is to design a GSHF
which satisfies the following constraints:

i) The GSHF along with the discrete-time compen-
sator simultaneously stabilize the plants.

ii) It has the desired decentralized structure.
iii) It has a prespecified form such as polynomial, piece-

wise constant, etc.
iv) It minimizes a predefined guaranteed cost function,

which is the sum of the performance indices of all
plants.

It is to be noted that condition (iii) given above is mo-
tivated by the following practical issues:

• In many problems involving robustness, noise rejec-
tion, simplicity of implementation, elimination of fixed
modes, etc., it is desired to design GSHFs with a spe-
cific form, e.g. piecewise constant, exponential, etc.
(Wang, 1982; Kabamba, 1987).

• Design of a high performance simultaneously stabi-
lizing piecewise constant GSHF with no compensator
is studied in Cao and Lam (2001) for the centralized
case, which can be simply extended to the decentral-
ized case. However, the present paper solves the prob-
lem in the general case by considering any arbitrary
form for the GSHF, such as exponential, and by in-
cluding a compensator in the control configuration as
well.

• In the case of a sufficiently small sampling period, the
optimal simultaneous stabilizer (whose exact solution,
as pointed out earlier, involves complicated computa-
tions), can be approximated by a polynomial (e.g., the
truncated Taylor series).

This paper is organized as follows. The simultaneous sta-
bilizing periodic feedback problem is formulated in Sec-
tion 2. A necessary and sufficient condition for the exis-
tence of a stabilizing GSHF and compensator with the
desired structure is obtained as a set of matrix inequal-
ities in Section 3. The problem is then converted to a
linear matrix inequality (LMI) problem by using a well-
known technique, and an algorithm is presented to solve
it. The effectiveness of the proposed method is demon-
strated in two numerical examples in Section 4. Finally,
some concluding remarks are given in Section 5.

2 Problem formulation

Consider a set of η continuous-time detectable and sta-
bilizable LTI systems S1,S2, ...,Sη with the following
state-space representations:

ẋi(t) = Aixi(t) + Biui(t) (1a)
yi(t) = Cixi(t) (1b)

where xi ∈ <ni , ui ∈ <m and yi ∈ <l, i ∈ η̄ :=
{1, 2, ..., η}, are the state, the input and the output of Si,
respectively. Assume that the discrete-time compensator
Ki

c, i ∈ η̄, with the following representation is given:

zi[κ + 1] = Ezi[κ] + Fyi[κ]
φi[κ] = Gzi[κ] + Hyi[κ]

(2)

and assume also that zi[0] = 0. It is to be noted that the
discrete argument corresponding to the samples of any
signal is enclosed in brackets (e.g., yi[κ] = yi(κh)). Ki

c
can be either decentralized with block-diagonal trans-
fer function matrix or centralized. Suppose now that the
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system Si, i ∈ η̄ is desired to be controlled by the com-
pensator Ki

c and the hold controller Ki
h represented by:

ui(t) = f(t)φi[κ], κh ≤ t < (κ + 1)h, κ = 0, 1, 2, ...

where h is the sampling period, and f(t) = f(t + h),
t ≥ 0. Note that f(t) is a sampled-data hold function,
which is desired to be described by the following set of
basis functions:

f := {f1(t), f2(t), ..., fk(t)}

where fi(t) ∈ <m×li , i = 1, 2, ..., k. Thus, f(t) can be
written as a linear combination of the basis functions in
f as follows:

f(t) = f1(t)α1 + f2(t)α2 + · · ·+ fk(t)αk (3)

where some of the entries of the variable matrices αi ∈
<li×l, i = 1, 2, ..., k, are set equal to zero and the other
entries are free variables so that the structure of f(t)
complies with the desired control constraint, which is
determined by a given information flow matrix (Davison
and Chang, 1990). This is illustrated later in Example 2.
Furthermore, the set of basis functions f is obtained ac-
cording to the desirable form of GSHF (e.g, exponential,
polynomial, etc.). This will be demonstrated in Exam-
ples 1 and 2. Note that the motivation for considering a
special form for f(t) is discussed in the introduction.

For any i ∈ {1, 2, ..., k}, put all of the indices of the ze-
roed entries of αi in the set Ei. Assume now the expected
value of xi(0)xi(0)T , which is referred to as the covari-
ance matrix of the initial state xi(0), is known and de-
noted by Xi

0 for any i ∈ η̄. The objective is to obtain the
constrained matrices α1, ..., αk such that the following
performance index is minimized:

J = E

{ η∑

i=1

∫ ∞

0

(
xi(t)T Qixi(t) + ui(t)T Riui(t)

)
dt

}

(4)
where Ri ∈ <m×m and Qi ∈ <ni×ni are symmetric posi-
tive definite and symmetric positive semi-definite matri-
ces, respectively, and E{·} denotes the expectation op-
erator. Note that by minimizing the cost function given
above, the stability of the system Si under the discrete-
time compensator Ki

c and the hold controller Ki
h, for any

i ∈ η̄, is achieved because the cost function becomes in-
finity otherwise. Note also that since (4) is a continuous-
time performance index, it takes the intersample ripple
effect into account.

The equation (3) can be written as f(t) = g(t)α, where:

g(t) := [f1(t) f2(t) ... fk(t)] , α :=
[
αT

1 αT
2 ... αT

k

]T

(5)

Define a new set E based on the sets E1, ...,Ek, such
that any of the entries of α whose index belongs to E is
equal to zero. On the other hand, it is known that:

xi(t) = e(t−κh)Aixi(κh) +
∫ t

κh

e(t−τ)AiBiui(τ)dτ

for any κh ≤ t ≤ (κ + 1)h, κ ≥ 0. Let the following
matrices be defined for any i ∈ η̄:

Mi(t) := etAi , M̄i(t) :=
∫ t

0

e(t−τ)AiBig(τ)dτ

Therefore:

xi(t) = Mi(t− κh)xi[κ] + M̄i(t− κh)αφi[k] (6)

for any κh ≤ t ≤ (κ + 1)h. It can be easily concluded
from (1b), (2), and (6) by substituting t = (κ + 1)h,
that xi[κ + 1] = M̃i(h, α)xi[κ] for any κ ≥ 0, where

xi[κ] =
[

xi[κ]T zi[κ]T
]T

, and:

M̃i(h, α) :=

[
Mi(h) + M̄i(h)αHCi M̄i(h)αG

FCi E

]
(7)

It is straightforward to show that:

xi[κ] =
(
M̃i(h, α)

)κ

xi[0], κ = 0, 1, 2, ...

3 Optimal Structurally Constrained GSHF

It is desired now to find out when the structurally con-
strained GSHF f(t) exists such that the system Si is sta-
ble under the compensator Ki

c and the hold controller
Ki

h, for any i ∈ η̄.

Lemma 1 There exists a GSHF f(t) with the desired
form (given by the equation (3)) such that the system Si is
stable under the compensator Ki

c and the hold controller
Ki

h for any i ∈ η̄, if and only if there exists an output
feedback with the constant gain α, with the properties that:

1. Each entry of α whose index belongs to the set E is
equal to zero.

2. It simultaneously stabilizes all of the η systems
S̄1, S̄2, ..., S̄η, where the system S̄i, i ∈ η̄, is repre-
sented by:

x̄i[κ + 1] =

[
Mi(h) 0

FCi E

]
x̄i[κ] +

[
M̄i(h)

0

]
ūi[κ]

ȳi[κ] =
[

HCi G
]
x̄i[κ]
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(note that each of the two 0’s in the above equation
represents a zero matrix with proper dimension).

Proof: The proof follows from the fact that the system
Si, i ∈ η̄, is stable under Ki

c and Ki
h if and only if all of

the eigenvalues of the matrix M̃i(h, α) given in (7) are
located inside the unit circle in the complex plane. ¥

Remark 1 Lemma 1 presents a necessary and sufficient
condition for the existence of a structurally constrained
GSHF f(t) with a desired form, which simultaneously
stabilizes all of the systems S1,S2, ...,Sη along with a
given discrete-time compensator. The condition obtained
is usually referred to as ”simultaneous stabilization of a
set of LTI systems via structured static output feedback”,
which has been investigated intensively in the literature.
For instance, one can exploit the LMI algorithm proposed
in Cao and Lam (2001) to solve the simultaneous stabi-
lization problem given in Lemma 1 in order to obtain a
stabilizing matrix α denoted by ᾰ (which is later used as
the initial point in the main algorithm), or conclude the
non-existence of such GSHF, otherwise.

Define now the following matrices for any i ∈ η̄:

P i
0 :=

∫ h

0

(
Mi(t)T QiMi(t)

)
dt

P i
1 :=

∫ h

0

(
Mi(t)T QiM̄i(t)

)
dt

P i
2 :=

∫ h

0

(
M̄i(t)T QiM̄i(t) + g(t)T Rig(t)

)
dt

qi
0(α) := P i

0 + P i
1αHCi + (P i

1αHCi)T

+ (αHCi)T P i
2(αHCi)

qi
1(α) := P i

1αG + (αHC)T P i
2αG

Ni(α) :=

[
qi
0(α) qi

1(α)

qi
1(α)T GT αT P i

2αG

]

Theorem 1 The optimal GSHF f(t) can be obtained by
minimizing J given below:

J = trace

(
η∑

i=1

Ki

[
Xi

0 0

0 0

])
(8)

where K1,K2, ..., Kη satisfy the following inequalities:

[
−Ki + Ni(α) M̃T

i (h, α)Ki

KiM̃i(h, α) −Ki

]
< 0, i = 1, 2, ..., η (9)

Proof: The proof is in line with that given in Lavaei and
Aghdam (2006), and is omitted here. ¥

Lemma 2 The matrix P i
2 is positive definite if and only

if there does not exist a constant nonzero vector x such
that g(t)x = 0 for all t ∈ [0, h].

Proof: The proof is given in Lavaei and Aghdam
(2006). ¥

Lemma 2 presents a necessary and sufficient condition
for the positive definiteness of the matrix P i

2, which ”al-
most always” holds in practice. It is assumed in the re-
mainder of the paper that the matrix P i

2 is positive defi-
nite, as this assumption is required for the development
of the main result.

Theorem 2 The matrix inequality (9) is equivalent to
the following matrix inequality:




Φi
1 (Φi

2)
T (Φi

4)
T

Φi
2 Φi

3 (Φi
5)

T

Φi
4 Φi

5 −I


 < 0 (10)

where

Φi
1 := −Ki +

[
P i

0 + P i
1αHCi +

(
P i

1αHCi

)T
P i

1αG

(P i
1αG)T 0

]
,

Φi
2 := Ki

[
Mi(h) 0

FCi E

]
,

Φi
3 := −Ki −Ki

[
M̄i(h)(P i

2)
−1M̄i(h)T 0

0 0

]
Ki,

Φi
4 := (P i

2)
1
2 α

[
HCi G

]
,

Φi
5 :=

[
(P i

2)
− 1

2 M̄i(h)T 0
]
Ki

Proof: One can write the inequality (9) as follows:

[
Φi

1 (Φi
2)

T

Φi
2 Φi

3

]
−

[
(Φi

4)
T

(Φi
5)

T

]
(−I)

[
Φi

4 Φi
5

]
< 0

The matrix inequality (10) yields by applying the Schur
complement formula to the above inequality. ¥

It can be easily verified that in the absence of the block
entry Φi

3, the matrix given in the left side of (10) is
in the form of LMI. Moreover, this block entry can-
not be converted to the LMI form due to the negative
quadratic term inside it. Thus, the technique introduced
in Cao, Sun, and Lam (1999) will now be used to rem-
edy this drawback. Consider the arbitrary positive def-
inite matrices Γ1, Γ2, ...., Γη with the same dimensions
as K1, K2, ...., Kη, respectively. Since P i

2 is assumed to
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be positive definite, one can write (Ki − Γi)Ωi(Ki −
Γi) ≥ 0, i ∈ η̄, where:

Ωi :=

[
M̄i(h)(P i

2)
−1M̄i(h)T 0

0 0

]

Therefore:
−KiΩiKi ≤ Πi, i ∈ η̄ (11)

where Πi := ΓiΩiΓi −KiΩiΓi − ΓiΩiKi, i ∈ η̄.

Theorem 3 There exist positive definite matrices
K1,K2, ..., Kη satisfying the matrix inequality (10)
if and only if there exist positive definite matrices
K1,K2, ..., Kη and Γ1, Γ2, ..., Γη satisfying the following
matrix inequalities:




Φi
1 (Φi

2)
T (Φi

4)
T

Φi
2 −Ki + Πi (Φi

5)
T

Φi
4 Φi

5 −I


 < 0, i ∈ η̄ (12)

Proof: If there exist positive definite matrices K1,K2, ...,
Kη and Γ1, Γ2, ..., Γη satisfying (12), then according
to (11), the matrices K1,K2, ..., Kη satisfy (10) as well.
On the other hand, suppose that there exist positive
definite matrices K1,K2, ..., Kη satisfying the matrix
inequality (10). Choosing Γi = Ki for i = 1, 2, ..., η, one
can easily verify that Φi

3 = −Ki + Πi. Hence, the in-
equality (10) is equivalent to the inequality (12) in this
case. ¥

It is to be noted that the matrix inequality (12) is LMI
for the variables Ki, i ∈ η̄, and α, if the matrices Γi,
i ∈ η̄, are set to be fixed. The following algorithm is
proposed based on Theorems 1, 2 and 3, to compute the
coefficients α1, α2, ..., αη in order to obtain the desired
GSHF f(t).

Algorithm 1:

Step 1) Set α = ᾰ (where ᾰ is defined in Remark 1)
and solve the (linear matrix) inequality (9) in order
to obtain K1, K2, ..., Kη.
Step 2) Set Γi = Ki for all i ∈ η̄, where the matrices
Ki, i ∈ η̄, are obtained in Step 1.
Step 3) Minimize J given by (8) for K1,K2, ...,Kη and
α subject to
· The LMI constraint (12)
· Ki > 0 for all i ∈ η̄
· The constraint that each entry of α whose index

belongs to the set E must be zero.
Step 4) If

∑η
i=1 ‖Ki − Γi‖ < δ, where δ is a predeter-

mined error margin, go to Step 6.
Step 5) Set Γi = Ki for i = 1, 2, ..., η, where the matri-
ces Ki, i ∈ η̄, are obtained by solving the optimization
problem in Step 3. Go to Step 3.

Step 6) The value obtained for α is sufficiently close
to the optimal value, and substituting the resultant
matrices Ki, i ∈ η̄, into (8) gives the minimum value
of J . Note that the coefficients α1, α2, ..., αk can be
obtained from (5).

Remark 2 It can be easily verified that the value of J de-
creases each time that the optimization problem of Step 3
is solved, which indicates that the algorithm is monotone
decreasing. On the other hand, since the inequality (11)
will be converted to the equality if Γi = Ki, Algorithm 1
should ideally stop when

∑η
i=1 ‖Ki−Γi‖ = 0 in order to

obtain the exact result. However, since it is desirable that
the algorithm be halted in a finite time, Step 4 is added. It
is to be noted that δ determines (indirectly) the closeness
of the performance index obtained to its minimum value.

4 Numerical examples

Example 1: This example can be found in Howitt et al.
(1993), and represents the ship-steering system with two
distinct modes. Consider two systems with the following
parameters:

A1 =



−0.298 −0.279 0

−4.370 −0.773 0

0 1 0


 , B1 =




0.116

−0.773

0




A2 =



−0.428 −0.339 0

−2.939 −1.011 0

0 1 0


 , B2 =




0.150

−1.011

0




and C1 = C2 = I. Assume that the initial state of each
of these systems is a random variable whose covariance
matrix is equal to the identity matrix, and that h =
0.1sec. Assume also that it is desired to find a GSHF
which minimizes the performance index J given by (4)
with Ri = Qi = I, i = 1, 2, while it has the following
structure:

f(t) =
[
∗+ ∗ sin(t) ∗ ∗+ ∗ e−t

]
(13)

where the symbol ”*” represents constant values which
are to be found. Note that no compensator is considered
in this example. The following basis functions and coef-
ficient matrices can therefore be defined for (13):

f1(t) = sin(t), f2(t) = 1, f3(t) = e−t

α1 =
[
∗ 0 0

]
, α2 =

[
∗ ∗ ∗

]
, α3 =

[
0 0 ∗

]

It is to be noted that the ”*” elements used above imply
that these entries of the vectors α1, α2 and α3 are the
ones that are not set equal to zero. The optimal GSHF
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obtained from Algorithm 1 (by using the initial point ᾰ
given in Lavaei and Aghdam (2006)) will be:

[
−3.925 + 2.805 sin(t) 2.117 −0.188 + 1.480 e−t

]

The corresponding performance index is 31.581.

Example 2: Consider a two-input two-output system S
consisting of two single-input single-output (SISO)
agents with the following state-space matrices:

A = diag([0.5 − 2.5 − 5.5])

B =

[
0 −2 −4

−2 2 0

]T

, C =

[
−2 0 2

0 −2 2

]

It is desired to design a high-performance decentralized
controller with the diagonal information flow structure
for this system. It can be easily concluded from Davi-
son and Chang (1990) that λ = 0.5 is a decentralized
fixed mode (DFM) of the system. Thus, there is no LTI
controller to stabilize the system. As a result, the avail-
able methods to design a continuous-time LTI controller
(e.g., see Cao et al. (1999)) are incapable of handling this
problem. Choose now h = 1sec, and denote the discrete-
time equivalent model of the system S with Sd. If the
algorithm presented in Cao and Lam (2001) is exploited
to design a discrete-time static stabilizing controller for
the system Sd, it will fail. This signifies that in order
to design a decentralized controller for the system S,
two different types of controllers can be used: a dynamic
discrete-time controller or a periodic controller. These
two possibilities are explained in the following:

i) Let a deadbeat dynamic stabilizing controller Kc

for the system Sd be designed by using the method
given in Davison and Chang (1990). Assume that
Q = R = I, and that the initial state of the sys-
tem S is a random variable with the identity covari-
ance matrix. In this case, the corresponding per-
formance index will be equal to 83439.49, which is
inadmissibly large. To improve the performance, a
hold controller Kh is desired to be added to the con-
trol system. Assume that the hold function f(t) is
desirable to have the following form:

diag([∗+ ∗ cos(850t) ∗+ ∗ cos(850t)])

Using Algorithm 1 with several iterations re-
sults in the hold function f(t) = diag([1.003 −
0.071cos(850t) , 0.958 + 0.754cos(850t)]), and the
corresponding performance index turns out to be
81517.97. This indicates an improvement of about
2.36% by using the hold controller Kh. However,
this enhancement is not noticeable.

ii) It is desired to find out whether there exists a hold
controller Kh to stabilize the system S by itself

(i.e., without any compensator Kc). Consider the
following basis functions for the hold function f(t):

fi(t) = ue

(
t− i− 1

2

)
− ue

(
t− i

2

)
, i = 1, 2

where ue(·) denotes the unit-step function. It is to
be noted that this GSHF is equivalent to a piecewise
constant function with two different levels. Apply-
ing the result of Cao and Lam (2001) to Lemma 1
leads to the controller Kh with the hold function:

diag([−1.4f1(t)− 0.185f2(t) 0.5f1(t) + f2(t)])
(14)

The resulting performance index is equal to
2121.18. Hence, Algorithm 1 can now be utilized to
adjust the coefficients of this hold function prop-
erly. The optimal f(t) obtained will be equal to:

diag([−2.71f1(t)+1.08f2(t) 0.97f1(t)−0.30f2(t)])
(15)

and the performance index of the closed-loop
system will be 301.73. This implies that a high-
performance stabilizing controller is designed for
the ill-controllable system S. The outputs of the
first and the second agents of S under the hold
functions (14) and (15) are illustrated in Fig-
ures 1(a) and 1(b) for x(0) = [0.5 0.5 0.5]T . In
addition, the inputs of the first and the second
agents of S are depicted in Figures 2(a) and 2(b).
The value of the cost function J is plotted for the
first 150 iterations in Figure 3.

0 5 10
−15

−10

−5

0

5

10

(a)
0 5 10 15

−3

−2

−1

0

1

2

(b)

Fig. 1. The outputs of the first agent and the second agent
are depicted in (a) and (b), respectively, under the GSHFs
(14) (dotted curves), and (15) (solid curves).
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Fig. 2. The inputs of the first agent and the second agent
are depicted in (a) and (b), respectively, under the GSHFs
(14) (dotted curves), and (15) (solid curves).
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Fig. 3. The value of J for the first 150 iterations.

5 Conclusions

In this paper, a method is proposed to design a de-
centralized periodic output feedback with a prescribed
form, e.g. polynomial, piecewise constant, sinusoidal,
etc., to simultaneously stabilize a set of continuous-time
LTI systems and minimize a predefined guaranteed
continuous-time quadratic performance index, which
is, in fact, the sum of the performance indices of all of
the systems. The design procedure is accomplished in
three phases: First, the problem is formulated as a set
of matrix inequalities. Next, it is converted to a set of
linear matrix inequalities, which represent necessary
and sufficient conditions for the existence of such a
structurally constrained controller with the prespecified
form. An algorithm is then presented to solve the resul-
tant LMI problem. Simulation results demonstrate the
effectiveness of the proposed method.
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