Interconnection-Based Performance Analysis for a Class of
Decentralized Controllers

Somayeh Sojoudi?, Amir G. Aghdam P

& Department of Control and Dynamical Systems, California Institute of Technology, Pasadena, CA 91125, USA

> Department of Electrical and Computer Engineering, Concordia University, Montréal, QC H3G 1M8, Canada

Abstract

This paper is concerned with decentralized controller design for large-scale interconnected systems of pseudo-hierarchical
structure. Given such a system, one can use existing techniques to design a decentralized controller for the reference hierarchical
model, obtained by eliminating certain weak interconnections of the original system. Although this indirect controller design is
appealing as far as the computational complexity is concerned, it does not necessarily result in satisfactory performance for the
original pseudo-hierarchical system. A LQ cost function is defined in order to evaluate the performance discrepancy between
the pseudo-hierarchical system and its reference hierarchical model under the designed decentralized controller. A discrete
Lyapunov equation is then solved to compute this performance index. However, due to the large-scale nature of the system,
this equation cannot be handled efficiently in many real-world systems. Thus, attaining an upper bound on this cost function
can be more desirable than finding its exact value, in practice. For this purpose, a novel technique is proposed which only
requires solving a simple LMI optimization problem with three variables. The problem is then reduced to a scalar optimization
problem, for which an explicit solution is provided. It is also shown that when the original model is exactly hierarchical, then

the upper bounds obtained from the LMI and scalar optimization problems will both be equal to zero.
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1 Introduction

Many real-world systems can be described by large-scale
interconnected models (Antoulas et al., 2001). There is a
great deal of interest in performance analysis and control
synthesis of large-scale systems. A key practical consid-
eration in designing a controller for this type of system is
to rely on local information as much as possible. Decen-
tralized control theory was introduced in the literature
to address this consideration, and reduce the complex-
ity of the control implementation for large-scale systems.
Distinctive aspects of decentralized control systems have
been well-documented in the last three decades (Siljak,
1991; Jamshidi, 1997). A decentralized controller con-
sists of a number of isolated local controllers correspond-
ing to the subsystems of the large-scale system. For the
sake of simplicity of the control design problem, it is of-
ten desirable that the large-scale system possesses a hi-
erarchical structure (Stankovic et al., 1989; Lavaei et al.,
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2008). Note that a hierarchical model refers to an inter-
connected system whose subsystems can be renumbered
in such a way that the corresponding transfer function
matrix becomes lower block-triangular. The control de-
sign problem for a hierarchical system can be broken
down into a number of parallel design subproblems cor-
responding to different subsystems. The advantage of
such design techniques is twofold: the control design pro-
cedure is far simpler for a number of low-order subsys-
tems compared to that for one high-order system, and
at the same time parallel computation is very fast.

Many important physical cooperative control applica-
tions with a leader-follower configuration such as for-
mation flight, underwater vehicles, automated highway
systems, satellite constellation, etc. have a hierarchical
structure (Tanner et al., 2004; Fax et al., 2004; Stilwell
et al., 2000). Furthermore, it is shown in Aghdam et
al. (2006) that under certain conditions, a continuous-
time non-hierarchical system can have a hierarchical
discrete-time equivalent model (this model represents
the continuous-time system only at the sampling time
instants). It is straightforward to show that a set of
stabilizing local controllers obtained by neglecting all
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the interconnections between the subsystems constitute
a stabilizing decentralized controller for the original hi-
erarchical system. This is quite beneficial in the sense
that it provides a simple control design method for hi-
erarchical systems, as far as stability is concerned. In
addition, a technique is given in Lavaei et al. (2006)
to design a near-optimal decentralized controller for
hierarchical systems. This idea is further developed
in Lavaei et al. (2007) to decentralize any given cen-
tralized controller while its fundamental properties are
preserved. Although decentralized control design for
hierarchical systems has been extensively investigated
in the past several years, there are only a few control
design techniques for general large-scale systems, due to
the complexity of the problem. Furthermore, there is no
efficient performance evaluation method when the con-
troller is designed for the system after some structural
modifications.

On the other hand, there exist numerous non-hierarchical
systems which are ”close” to being hierarchical. Such
systems have a few weak interconnections between their
subsystems, whose elimination would result in an ex-
act hierarchical structure. This type of systems will
be referred to as pseudo-hierarchical systems through-
out the paper, and the hierarchical model obtained
by eliminating minimum number of "weak” intercon-
nections in a pseudo-hierarchical system will be called
the corresponding reference hierarchical model. Given
a pseudo-hierarchical large-scale system, a decentral-
ized controller can be obtained for the corresponding
reference hierarchical model by designing each local
controller separately using available techniques. Even
though this straightforward approach is appealing as
far as the computational complexity is concerned, the
decentralized controller obtained will not necessarily
meet the design specifications for the original pseudo-
hierarchical system. In fact, it may not even stabilize the
original system, although it stabilizes the corresponding
reference hierarchical model. Apart from the stability
issue (which is not a concern if the interconnections
which are removed to obtain the reference hierarchical
model are sufficiently weak), the performance of the
pseudo-hierarchical system under this controller can be
quite poor. Thus, it is important to carry out a proper
performance analysis for the system in order to make
certain that this indirect design technique is suitable for
the given pseudo-hierarchical large-scale system.

This paper deals with the performance analysis for de-
centralized large-scale systems. It is assumed that a de-
centralized controller is provided for the reference hi-
erarchical model of a pseudo-hierarchical system which
meets certain control objectives. Moreover, it is sup-
posed that the above-mentioned controller stabilizes the
pseudo-hierarchical system, although closed-loop per-
formance can be poor. A proper LQ cost function is
defined to assess the discrepancy between the pseudo-
hierarchical system and the corresponding reference hi-

erarchical model under this decentralized controller. The
smaller this performance index is, the closer the two
closed-loop systems are to each other. Obtaining this
cost function involves solving a discrete Lyapunov equa-
tion. However, due to the large-scale nature of the sys-
tem, this equation might be difficult to handle, in gen-
eral. Alternatively, it would be very useful to attain an
upper bound on this cost function. A novel technique is
proposed to address this objective, and it is subsequently
shown that a LMI optimization problem with only three
variables needs to be solved in order to compute this
bound. This problem is also simplified and an explicit
bound is proposed, without having to solve any opti-
mization problem. One of the distinguishing features of
this work is that it presents a simple technique for perfor-
mance evaluation of pseudo-hierarchical decentralized
systems. To elucidate that the obtained bounds are not
too conservative in general, it is proved that if the dif-
ference between the pseudo-hierarchical system and the
corresponding reference hierarchical model is sufficiently
close to zero, so are these bounds. In particular, if the
original model is exactly hierarchical, then both bounds
will be equal to zero.

Another application of this work is in the control of over-
lapping systems, which has drawn much attention in re-
cent years (Iftar, 1993; Stankovic et al., 2000; Siljak et
al., 2005; Zecevic et al., 2005). Note that an overlap-
ping system refers to a collection of subsystems, some
of which share part of their states. For such a system, it
is known that the most effective control structure is an
overlapping one, in which any pair of local controllers
can share data only if their corresponding subsystems
share their states. The most prevalent method for de-
signing an overlapping controller is to employ the in-
clusion principle to convert the problem to the conven-
tional decentralized framework (Chu et al., 2005). This
is achieved by expanding the system into another system
whose interconnections are all weak. Hence, a set of local
controllers (which will altogether be referred to as a de-
centralized controller) can be designed for the individual
subsystems of the expanded system by neglecting the in-
terconnections. The overall decentralized controller will
eventually be contracted to attain a decentralized over-
lapping controller for the original system. Since all the
interconnections in the expanded system are weak, and
moreover they are disregarded in the controller design,
a proper performance analysis for this design technique
would be very useful. To this end, the expanded system
can be considered as a pseudo-hierarchical model, and
the expanded system with neglected interconnections can
be regarded as the corresponding reference hierarchical
model. Thus, the performance analysis for the expanded
system will fit into the formulation considered here, as
a special case.

The organization of this paper is as follows. In Section
II, some preliminary results are provided and the prob-
lem is formulated. The main results are derived in Sec-



tion III, which are illustrated by three numerical exam-
ples in Section IV. Finally, some concluding remarks are
drawn in Section V.

2 Preliminaries and problem formulation

Consider a large-scale interconnected system S consist-
ing of v subsystems, where its i-th subsystem .S; is rep-
resented by:

xz[k + 1] = Z Aijl‘j []{3] + Bzuz[k]
=1 (1)

yz[k]:(]le[k;}, 1EV = {1,2,--- ,I/}

In the above equation, x;[k] € R™, u;[k] € R™ and

yi[k] € R™ stand for the state, input and output of S,

respectively. Sketch now a digraph G associated with the

system § as follows:

e Assign v vertices, one for each subsystem of S.

e For any i,j € U, i # j, connect vertex ¢ to vertex j
with a directed edge if A;; # 0.

e For any ¢,j € v, if there is an edge between vertex 1
and vertex 7, attribute the weight || A;;|| 7 to that edge,
where || - || denotes the Frobenius norm operator.

The graph G specifies the topology of information trans-
fer between the subsystems. From this perspective, it
plays an important role in the stability and stabilizabil-
ity analysis of the system. If the graph G has no directed
cycles, then the system S is said to be acyclic or hier-
archical (Lavaei et al., 2006). For any ¢ € 7, define the
isolated subsystem S; as:

Tk + 1] = AyuZ;[k] + B k]
Gilk] = Cis[H] (2)

For the case when the graph G is acyclic, a stabilizing
decentralized controller can be obtained by designing
v local controllers separately such that the i-th local
controller stabilizes the isolated subsystem S;, for all
1 € v. This simple fact implies that when the graph G is
acyclic, the decentralized controller design can be quite
straightforward (as far as the stability is concerned).
As noted earlier, several methods are proposed in the
literature to design a LTI decentralized controller for a
hierarchical system in order to achieve any pre-specified
objectives (Lavaei et al., 2006, 2008).

In the general case, when the graph G is not acyclic,
one can remove certain edges of G to obtain an acyclic
graph, and design the local controllers for the resultant
system, as described before. However, the controller ob-
tained may not perform satisfactorily when applied to
the original system, if the interconnections neglected in
the control design are not sufficiently weak. It is stated in

Krtolica et al. (1980) that there exist numerous systems
for which all the edges of the graph G can be removed
and designs local controllers accordingly. Nevertheless,
in order to convert the graph G to an acyclic one, only a
subset of the edges are required to be removed (such a
subset is not necessarily unique).

Note that the e-decomposition technique developed in
the literature proposes a systematic method for elim-
inating certain interconnections of the system whose
strength is below a specific level (see Sezer et al. (1986,
1991); Zecevic et al. (1994)). One can adopt above tech-
nique to identify the links whose elimination is not detri-
mental, and could lead to a hierarchical model.

Assume now that some of the edges are removed to ob-
tain hierarchical model Sy, and that a LTI decentralized
controller K is designed for the resultant model using the
existing methods. Once this controller is applied to the
original system &, the closed-loop system may perform
poorly, and may even be unstable. Therefore, it is de-
sired to evaluate the performance of the system S under
the controller I, with respect to its hierarchical coun-
terpart (i.e. the hierarchical model under the same con-
troller KC). To this end, it is assumed that the closed-loop
system is stable, which is a requirement for performance
degradation analysis in this work. It is worth mention-
ing that the closed-loop stability is guaranteed if the in-
terconnections neglected in control design procedure are
sufficiently weak.

In the sequel, the hierarchical model S, under the de-
signed LTT decentralized controller K is represented as:

xh[k‘ + 1] = Ahl‘h[k'] (3)
and the original system S under the same controller as:
xclk + 1] = Acz [k] 4)

(it is important to note that both (3) and (4) are closed-
loop equations). Furthermore, set z.[0] = z;[0]. With
no loss of generality, the matrix Ay can be assumed to
be lower-block triangular.

Remark 1 In the case when a decentralized overlapping
controller is to be designed for an overlapping system
by mean of the inclusion principle, the expanded system
(obtained from the original overlapping system) under
the decentralized controller designed after neglecting all
the interconnections is expressed by (4). The expanded
system with nullified interconnections under the above-
mentioned decentralized controller can then be described
by (3), as a special case of a hierarchical model (this point
is clarified in Example 1).

In order to assess the closeness of the systems given in
(3) and (4), one can measure the discrepancy between



the states zp,[k] and z.[k]. This can be evaluated by the
following performance index:

oo

Jo= Y (we[k] — anlk])" (zclk] —xnlk]) (5

k=0

Definition 1: Define the performance indices J. and Jj
as:

Je=3 wolkTzck], Jn = xplk]"zulk]  (6)
k=0 k=0

Definition 2: Given a positive real value u, the controller
K is said to be p-suboptimal, if the inequality J]—: <
holds.

Some works such as Krtolica et al. (1980) define the de-
gree of suboptimality based on the ratio j—;, as opposed

to i—i However, it is manifest that the smallness of %

does not necessarily imply the closeness of z.[k] and
xp[k]. The objective here is to obtain a proper and easy-
to-compute p by which the controller K is suboptimal.
The following practical restrictions are imposed.

Assumption 1: Given the system S, a discretecannot be
solved efficiently due to Lyapunov equation with the or-
der of the system (i.e. n = ¥¥_;n;) the large-scale na-
ture of the system, whereas a discrete Lyapunov equa-
tion with the order of any associated subsystem S;, i € v,
can be handled more efficiently.

Assumption 2: Although solving a Lyapunov equation
of order n is cumbersome, lower and upper bounds on
the eigenvalues of a matrix of order n may be obtained
efficiently.

It is important to note in Assumption 2 that in general
solving a Lyapunov equation of order n is much more
difficult than estimating the eigenvalues of a matrix of
order n. In fact, the former problem involves n? vari-
ables while the latter one includes n + 1 variables only
(regardless of their linearity or bilinearity).

It is evident that Jp, in (6) satisfies the relation:
Jp = x1,[0]T Ppay[0] (7)

where:

AP A, — P, +1=0 (8)
In order to obtain the main results of the paper, one
more assumption is required to be made.

Assumption 3: The closed-loop system given in (4) is
stable with the Lyapunov matrix Pj,.

It is to be noted that Assumption 3 is more restrictive
than just the stability condition for the system (4), and
is met when the removed edges have sufficiently small
weights. Various sufficient conditions are provided in the
literature to ensure the validity of this assumption.

3 Main results

In what follows, the performance deviation J; will be
formulated.

Lemma 1 The performance index Jg is equal to:

[el0]” an0)7 | Pu

21,[0] ]

:L'h[O]
where:
A, O A, O -1
g g — P+ =0 (10)
0 A. 0 A. -1 I

Proof: Augmenting the closed-loop systems (3) and (4)
results in:

Ap O
0 A

(11)

k] ]
x[k]

On the other hand, the performance index J; can be
rewritten as:

Jd — Z [(Eh[k]T xc[k]T] [ I —I] [xh[k}‘| (12)

o -1 I x[k]

It is well-known that the above expression can be written
as (9), where the matrix P, satisfies the equation (10).
This completes the proof.

Due to Assumption 1, the performance deviation J; can-
not be directly computed from Lemma 1 in order to
compute the ratio ;—}d precisely. Hence, the notion of u-
optimality is used here in order to obtain a reasonable
upper bound on this ratio, which is carried out in the
sequel.

Lemma 2 Given a matrix H of proper dimension, as-
sume the following inequality is satisfied:

Ap 0O
0 A

A 0O
0 A

_H+ [II _II] <0 (13)



Then, the inequality given below holds:

(14)

Jg < mh[O]T mh[O}T} o [$h[0]]

Th [0]

Proof: It can be concluded from the relations (10) and
(13) that:

A, 0
0 A,

-y | S —py <0 5)

C

Since both of the matrices A, and A;, are assumed to be
Schur, it results from the above inequality that P; < H.
The proof follows immediately from this result and the
equation (9). [ |

Now, let the following optimization problem be in-
troduced, which will be used later to show the u-
suboptimality of the controller.

Problem 1: Find the infimum of the objective function
k1 + 2ko + k3 for the variables ki, k2 and k3, subject to:

(1= k)T ko(AT Py A, — P) — T
kQ(A;{PhAh — Ph) -1 kd(AZPhAc — Ph) + 1

<0

(16)

Remark 2 Problem 1 is a LMI optimization which can
be efficiently handled using proper software tools such as
YALMIP or SOSTOOLS (Lofberg, 2004; Prajna et al.,
2004).

Theorem 1 The controller K is p-suboptimal, where p
denotes the infimum obtained by solving Problem 1.

Proof: Consider any real scalars k1, ko and k3 satisfying
the inequality (16) given in Problem 1. Using the equa-
tion given in (8), this inequality can be rewritten as:

Ap 0O
0 A

Ap O
0 A

I -

— H+ <0 (17)
—I I

if the matrix H is chosen as:

k1 Py, ko,
ko Py k3P

Therefore, it can be inferred from Lemma 2 that:

Jg < [Ih[O]T Z‘C[O]T] H [$h[0}‘|

x[0]

(19)
(ky + 2ko + k3)xp[0]T Poap[0] =
(k1 + 2k + k3)Jn
(note that x,[0] = x.[0]). Thus:
J
zd < k1 + 2ko + k3 (20)
Jh,

The above inequality implies that the minimum of the
objective function ki + 2ks + k3 is to be minimized, and
this completes the proof. |

Theorem 1 states that the solution of Problem 1 pro-
vides an upper bound on the ratio % It is interesting to
note that the inequality constraint of this optimization
problem is always feasible. To prove this, it suffices to
choose k1 = 2, ko = 0 and let k3 be a very large number.
Note from Assumption 3 that the matrix AT P, A, — P,
is negative definite; hence, the inequality (16) holds.

Due to Assumption 1 and the large-scale nature of the
system S, Problem 1 may not be easily solvable in prac-
tice. This is mainly because of the matrix constraint
(16) which becomes sophisticated for large-scale sys-
tems. Thus, it is desirable to convert the matrix inequal-
ity (16) into a scalar form. This objective will be ad-
dressed in the sequel.

Problem 2: Find the infimum of the objective function
k1 4 2ko + k3 for the variables k1, ko and k3 subject to
the scalar inequalities k; > 1 and:

(kl — 1) (—1 + kgml) —1- k‘%mg — koms >0 (21)
where:
mi=A(—Ra), ma=AX(RiR]),
mg = A(—Ri — RT), (22)
Ry = ATP,A;, — P,, Ry=ATP,A.—- P,
(the notations A(-) and () represent the maximum and

minimum magnitudes of the eigenvalues of a matrix, re-
spectively).

Theorem 2 Denote with p the infimum obtained
by solving Problem 2. Then, the controller I is p-
suboptimal.

Proof: The inequality constraint of Problem 1 can be
rearranged as:



(/{33R2 + I) (k2R1 — I)
(kgR? — I) (1—Fk)I

Applying the Schur complement formula to the above
inequality results in:

(23)

(k1 = 1) (ksRa + 1) + (kaRy — I) (koR{ — 1) <0 (24)
It is easy to verify that the matrix inequality (24) is
guaranteed to hold, provided the scalar inequality given

below is satisfied:

A((k1 —1) (=ksRo — 1)) > M((I — koRy) (I — k2RT) )

(25)

Choose some scalars kq, ko, k3 satisfying the inequality

(21). It can be deduced from the above discussion and the

result of Theorem 1 that in order to prove Theorem 2 it

suffices to substantiate the validity of the inequality (25).
To this end, one can use the following equation:

A((k1 = 1) (=k3Ry = 1)) = (k1 — 1) (=1 4 k3ma)
(26)
Moreover, it results from Lemma 2.1 in Lee (2004) that:

M= kaRy) (I = koRY) ) =

1+ X(k2 (=R1 — RY) + k3R RY)
<1+kA(— Ry — RY) + K3A(RRY)
< 14 koms + kamo

(27)

The relations (21), (26) and (27) altogether lead to the
inequality (25). ]

Remark 3 Similar to the previous case, it can be shown
that the constraints of Problem 2 are always feasible (by
considering k1 = 2, ko = 0 and a sufficiently large num-
ber for ks ). It is to be noted that my is positive by defini-
tion.

Remark 4 Since the statement of Problem 2 is obtained
by reducing the matrixz constraint in Problem 1 to some
scalar constraints, the upper bound proposed for pv in The-
orem 2 is more conservative than the one given in The-
orem 1.

To solve any of the two problems introduced in this pa-
per, the Lyapunov matrix P}, needs to be obtained first.
As a consequence of Assumption 1, this matrix cannot
be computed efficiently using the conventional meth-
ods. However, since the matrix Ay, (which is required for
obtaining Py) is assumed to be lower block-triangular,
P, can be found by solving a number of Lyapunov and
Sylvester equations of subsystems’ orders (as opposed to
the system’s order), successively. This fact is elaborated
in detail in the appendix.

Theorem 3 Denote the optimal values of the wvari-
ables ki, ko, ks in Problem 2 with ki, k5, k5. The triple
(k1. K5, k3) satisfies either the set of equations:

kr=1 (28a)
I-kR =0 (28b)
1
k= — 2
3 My (28c)

or the following ones:

(4m§ - 4m1m2)(k§)2 + (dmomg — dmyms)k;

+(m3 —4my) =0 (29a)
o 2mabitms 1 (29D)
3 2m1 mi
k%)? ky—+1
gy = malk) Tmeks +1 (29¢)
k3m1 -1

Proof: Since there is a strict inequality constraint in
Problem 2 (namely k; > 1), the Karush-Kuhn-Tucker
(KKT) method cannot be employed here (in fact, if this
constraint is replaced by k1 > 1 to enable the exploita-
tion of the KKT method, a wrong result may be ob-
tained in which k3 = —o0). Therefore, let all different
possibilities be investigated below:

o Case 1: The equation ki —1 = 0 holds. In this case,
the underlying optimization problem reduces to find-
ing the infimum of 1 + 2ks + k3 under the constraint
—1 — k3mgy — kams > 0. Since the resultant objective
function has no local minimum as noted above, the
optimal solution occurs at some point on the remain-
ing boundary, i.e. —1 — (k3)?mg — k3ms = 0. On the
other hand, it follows from (27) that:

0<
< (30)

A((I = k3Ry) (I - K3RT))
1+ k3ms + (k3)%mo

The above relation along with the equation —1 —
(k3)*ma —k3ms = 0 signifies that the matrix I —k} Ry
is equal to zero. Taking this result into account, it can
be concluded from the constraint of Problem 2 and
the equation k} = 17 that k3m; — 1 is nonnegative.
This implies that in order for the objective functlon
to be minimized, k5 should be chosen as 77 The
relations obtained above satisfy the set of equations
given in (28).

e Case 2: The equation (ki —1)(—-1+kimi) — 1 —
(k3)?mg — k3mg = 0 holds. It can be inferred in this
case that:

mg(kg)z + m3k‘§ +1

kp =
! kimg — 1

+1 (31)

If ki — 1 is equal to zero, this case turns out to be
the same as case 1. Hence, with no loss of generality,



assume that k7 —1 is strictly positive. This yields that
solving Problem 2 is equivalent to finding the lowest
minimum point of the function:

mgk‘% + msko + 1

1+ 2k k 32
kgml—l Tl 2+ 3 ( )

for which kT obtained in (31) is greater than or equal
to 1. Taking the gradient of the above function and
equating it to zero will lead to the equations:

mg(k§)2 + ’Ingk‘;K +1
(k3my —1)?
2m2k§ + ms

X (—mi)+1=0  (33a)

2+ =0 (33b)

m1k§ -1

One can combine these two equations to arrive at the
relation (29a). The proof follows from the fact that
the equations (33b) and (31) are identical to (29b) and
(29¢), respectively.

e Case 3: The strict inequalities (ki — 1) (=1 + k3mq) —
1 — (k3)%*mg — kimg > 0 and Ki > 1 both hold. As
shown in case 1, the relation £3m; —1 > 0 must hold.
This implies that there exists a sufficiently small pos-
itive number 7 such that the triple (k7 — n, k3, k%)
satisfies the constraints of Problem 2, while the value
of the objective function at this triple is smaller than
its minimum value. This contradiction rules out this
case. ]

Theorem 3 presents a solution to Problem 2, which in
turn (according to Theorem 2) provides a value for u
(i.e., the suboptimality degree of the controller K). Re-
garding the set of equations (29) in this theorem, one
should note that the quadratic equation (29a) needs to
be solved first. The solution should then be substituted
into the equations (29b) and (29c) to find all other pa-
rameters.

The question arises, how conservative are the values of u
obtained in Theorems 1 and 27 To answer this question,
an elegant result on the tightness of this bound will be
presented next.

Theorem 4 In the case where Ay, and A, are identical,
Theorems 1 and 2 both arrive at the exact solution p = 0.

Proof: If A, = A,, then it can be easily verified that
Ri = Ry = —I, and consequently m; = mo = 1 and
ms3 = 2. Now, Theorem 2 states (after some simplifica-
tions) that p is equal to the infimum of ky + 2ko + k3
under the inequality constraints k; > 1 and:

kiks — k1 — ks — 2ko —k‘g >0 (34)
The latter inequality is equivalent to:

(ky = 1)(ks — 1) > (kg + 1)? (35)

Hence, p is equal to 0, and is attained when k; = k3 —
1t and ky = —1. [ |

Remark 5 It can be inferred from Theorem 4 and the
continuity, that if A. is sufficiently close to Ay, then the
upper bounds proposed in this paper will be arbitrarily
close to zero. As can be noticed from the proof of this
theorem, the result is not trivial at all. In other words, it
is not straightforward to conclude from Theorems 1 and
2 that if A. = Ay, then the corresponding upper bounds
will be equal to the exact value, implying p = 0.

Remark 6 The results obtained in this work can be anal-
ogously developed to tackle the following problem:
Assume that the system S (which is not necessarily hier-
archical) is subject to perturbation. Design a LTI decen-
tralized controller for the nominal model of the system.
Now, the matrices Ap, and A. correspond to the closed-
loop nominal and the closed-loop perturbed A-matrices in
the state space representation, respectively. In this case,
the ratio ‘5—‘2 describes the closeness of the nominal closed-
loop system and its perturbed counterpart. As in the pre-
vious problem, this ratio would be very useful in evalu-
ating the performance of a physical system under a con-
troller designed for the nominal model of the system.

4 Numerical Example

Ezxample 1: Consider an overlapping system S given by:

xlk + 1] = Az[k] + Bulk] (36)
where:
1 0 0 0.5] 0
A=101[03|-01|, B=|0]|0 (37)
01 0 0 10.5

with the overlapping part Ass. The objective is to design
an overlapping controller for this system with the con-
trol law u[k] = Kx[k], which minimizes the performance
index J = > 07 z[k]Tz[k] + u[k]Tu[k]. Notice that the
matrix K to be designed must have the following struc-

ture:
0
* %k ] (38)

0 % %

K=

A prevailing approach to achieve this objective is to
exploit the expansion-contraction method (Chu et al.,



2005). Using a transformation matrix V' given by:

100
010
010
001

an expanded system S, can be obtained as follows
(Bakule et al., 2004, 2001):

xelk + 1] = Acxe[k] + Beuelk] (40)
where:
1 0 0 O 05 0
0103 0 0.1 0 O
A = , Be.= (41)
0.1 0 0.3 -0.1 0 0
0 01 O 0 0.5
A controller u.[k] = K.x.[k] is now to be designed

for the system S, to minimize the performance index
Je = 30" we[k])T we[k] + ue [k]) T ue [k], where, according to
the overlapping technique, the matrix C, must have the
following form:

’Ce = (42)

* % 00
00 % %

To simplify the control design problem, one can use the
overlapping technique to replace the matrix A, with the
following:

1 00 0
o103 0 0
A, = (43)
0 0 03-01
00 1 0

Consequently, the optimal decentralized controller for
the expanded system S, (using the above matrix) is given
by:

o _ [~0.7867 —0.0037 0 0
‘ 0 0 —0.3997 —0.0022

It is worth mentioning that since A, is a block-diagonal
matrix, it represents two decoupled subsystems, and
hence designing K. is reduced to finding two separate
controllers, which is easier in general. The correspond-

ing near-optimal controller for the original system § is:

—0.7867 —0.0037 0
K= (45)
0 —0.3997 —0.0022

Since the matrix . is designed for the system S, with
the parameters (A, B.) instead of (A., B.), it is de-
sired to verify how this would affect the performance of
the closed-loop system. For this purpose, consider the
matrices Ay, and A, as Ae. + B.K. and A, + B.K,,
respectively. Using Theorem 1, one can easily obtain
k1 = 1.1909,ks = —1.1955 and k3 = 1.2240, which
leads to a suboptimal controller with the performance
index 0.024. The smallness of this number confirms that
neglecting the interconnections in the proposed design
procedure does not result in a noticeable performance
degradation. It is to be noted that the exact value of j—i
in this example is equal to 0.0116. The result of this ex-
ample is in accordance with the discussion in Remark 1.

Example 2: Consider an interconnected system S with
nine SISO subsystems of order 1, and assume that the
interconnections from subsystem ¢ to subsystem j, for
i,j € {1,2,...,9}, i < j, are in general "weaker” than
the ones in the opposite direction. Hence, to design a de-
centralized controller for the system with nine local con-
trollers, one can eliminate these weak interconnections
and design a decentralized controller for the obtained
hierarchical model using any existing method. For sim-
plicity, assume that a static decentralized controller has
been designed for the hierarchical model. To carry out
performance analysis for the pseudo-hierarchical system
under the designed controller, two different choices will
be considered for the closed-loop matrix A, in the se-
quel.

Consider first a matrix A, of the following form:

0.1 0506 0.3 0.3 0.1 |

1 05 2
0 1 15 05 1 0 1 02025
1 03 1 0 02 1 02 05031
0 0 03 1 3 1 0.050.10.01
r135 03 0 O 11 2 0 0 02
o 0 0 0 1 1 08 0 1
0 00040506 0 05 1 1
001 0 O 01010 05 1 2
i 0.4 09004003 0 03005 1 O |

It can be observed that the lower-diagonal entries of this
matrix have smaller magnitudes compared to the upper-
diagonal ones in general (which translate to ”weak” in-
terconnections in the digraph of the system). The hier-
archical matrix (Ay) obtained by neglecting the lower-
diagonal entries of the above matrix is given by:



1 05 2 010506 03 03 0.1 |
011505 1 0 1 02025
00 1 0021 0205031
00 0O 1 3 1 0050.10.01
& 00 0 0 1 2 0 0 02 (46)
00 0 0 0 1 08 0 1
00 0 0 0 0 05 1 1
00 o0 0 0 o o0 1 2
oo o0 o0 o0 0 o0 0 O

In can be verified that J; and J,, for this example are
equal to 67.9336 and 38.6145, respectively, and hence
Ji = 1.7593. On the other hand an upper bound on ¢
can be obtained from Theorem 1 by solving Problem 1
which results in:

k1 =2.131, ko =—1.7529, k3 =5.7894

From the relation p = min(k1 + 2ko + k3), the upper
bound g on the ratio —;’ is equal to 4.4145. Note that
although the resultant upper bound is approximately
2.5 times greater than the exact value, it is attained
through a quite simple procedure, which is very desirable
for large- scale systems. This relatively large difference
between 2 7 < and the corresponding upper bound p is due
to the fact that the neglected interconnections are not

”?weak” enough to be ignored. For instance, there are
some large lower-triangular entries (such as (%), which
are comparable to and even greater than some of the
upper-triangular entries.

Since Problem 1 involves matrix variables, it may not
be easily handled for large-scale systems. Thus, let The-
orems 2 and 3 be utilized here to find an upper bound
on Jg/Jy. In this case, k1, ko and k3 are equal to 1.5206,
-0.9144 and 5.2813, respectively, which lead to the up-
per bound p = 4.973. Although the matrix constraint
in Problem 1 may seem to be oversimplified in obtain-
ing Problem 2, the results of Example 2 show that this
is not necessarily the case. In other words, the bound

= 4.973 obtained by using Theorem 3 is relatively
close to the bound p = 4.4145 resulted from Theorem 1.

Ezxample 3: Consider the matrix A, as follows:

[ 1 05 2 010506 03 0.3 0.1 |

0 115051 0 1 02025

0O 0 1 0021 0205031

0 0 0 1 3 1 00501001

ﬁ O 000 1 2 0 0 02
005 0 0 0 0 1 08 0 1

0O 0000 005 1 1

0O 0 0 0 0 0 1 2

(0000 0 0 0 0 0 0 0

Here, the ”weak” interconnections of the previous sys-
tem have been further weakened in order for the pseudo-
hierarchical system to become closer to its reference hi-
erarchical model. Notice that the reference hierarchical
model of this system is the same as the one in the previ-
ous example, i.e. (46). It can be verified that J; and Jj,
in this case are equal to 0.0117 and 38.6145, respectively.
The substantial drop in the magnitude of J; compared to
the previous case, manifestly confirms that the closeness
of the pseudo-hierarchical and the corresponding refer-
ence hierarchical models would have a significant impact
on the effectiveness of the proposed performance evalu-
ation. The upper bound p obtained by using Theorems
1 and 2 are equal to 0.0041 and 0.0671, respectively.

5 Conclusions

This paper deals with the performance analysis of large-
scale systems with pseudo-hierarchical structures; i.e.,
those systems whose transfer function matrix is ” close”
to being hierarchical, due to some weak elements (inter-
connections) in it. It is assumed that a stabilizing de-
centralized controller is available for the system. This
controller is basically designed for a reference hierarchi-
cal model; i.e., a hierarchical model which is obtained by
eliminating some weak interconnections in the original
system. The controller obtained by using this indirect
design technique may not perform well when applied to
the original pseudo-hierarchical system. A proper LQ
cost function is defined to measure the discrepancy be-
tween the performance of the original system and its hi-
erarchical counterpart, under the above controller. Since
computing the exact value of this cost function involves
a large-scale Lyapunov equation, in practice it is prefer-
able to obtain an upper bound on it. Hence, a simple
LMI optimization problem with only three variables is
proposed to attain this upper bound. To further sim-
plify the procedure, the matrix optimization problem is
reduced to a scalar one for which an explicit solution
is obtained. In addition, it is shown that the closer the
pseudo-hierarchical system to the reference hierarchical
model is, the smaller these bounds are. In the special
case when the two models are identical, these bounds are



both equal to zero. This demonstrates that the bounds
obtained by using the simplified optimization problems
are not too conservative. The usefulness of the proposed
techniques is illustrated by three numerical examples.
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APPENDIX

It is desired to show that since the matrix P, is the so-
lution of a Lyapunov equation involving a hierarchical
matrix (Ayp), it can alternatively be found by solving a
number of Lyapunov and Sylvester equations of subsys-
tems’ orders (as opposed to the system’s order), succes-
sively. To streamline the argument, assume that there
are only two subsystems (i.e. ¥ = 2). In this case, the
equation AgPhAh — P, + I = 0 can be equivalently de-
composed as:

AL P3Ayy — P34+ 1T=0

A?1P2A22 + AglpsAQQ - Pg =0
AT Pi A + AT Py Aoy + AL Py A
+ A51P3A21 —P+1=0

where:
PP
P, P

P, =

Since the hierarchical closed-loop system is stable, the
matrices Aj; and Ago are both Schur. Thus, the Lya-
punov equation (.1a) which is of subsystem’s order, can
be solved to find the matrix P;. Substitution of Ps in the
equation (.1b) will yield a Sylvester equation, which has
a unique solution P, (because the eigenvalues of A1; and
Agg are all inside the unit circle). Finally, the Lyapunov
equation (.1c) can be solved for the matrix variable Py
after substituting P> and P3 obtained above into this
equation. This illustrates that due to the special struc-
ture of Ay, Assumption 1 is not essential for hierarchical
systems. An analogous method can be adopted in the
general case (i.e. v > 2), in order to obtain the Lyapunov
matrix corresponding to the large-scale system through
a series of Sylvester and Lyapunov equations of smaller
sizes.

One may think that the above-mentioned back substi-
tution method is potentially problematic, because solv-
ing a hierarchy of equations could lead to the propaga-
tion of the round-off error and eventually a numerical
instability. However, the Gaussian elimination method
for solving a linear upper-triangular system (which is a
certain type of back substitution technique), is known to
be numerically stable (Trefethen et al., 1997). It can be
similarly shown that the aforementioned method is nu-
merically efficient too. To clarify this, let the (i, j) block
entry of P, be denoted by P;;, and assume that solving
the Sylvester equation associated with the variable P;;,
i,j € v, © < j, yields the solution P;;, which is subject
to round-off error. It can be verified that:

ATPA, —P=—-T+ATAA; - A (.3)

where:
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e P is a matrix whose (4, 7) block entry is P;;, for all
1,] €V.

e A, isablock diagonal matrix with the (4, 7) block entry
A, for alli € v.

e A is a matrix with the (4, j) block entry A;;, for all
i,7 € U, where A;; is a matrix of the same dimension
as Pj;, representing the round-off error produced in
the course of solving the Sylvester equation associated

The equation (.3) somehow indicates that there does not
exist any error propagation phenomenon, and as long as
A is small, P would be close to Pj,. More precisely, one
can write:

AL(P — Po)Ay — (P~ Py) = ATAAG A (4)
Since all entries of A are small (say, of order O(e)) and A4
is block diagonal, one would expect to obtain a solution
P — P, of small norm (see Tippett et al. (1999) and
references therein for relating the norm of P — Py, to the
norm of A). This confirms that the proposed method is
not prone to the propagation error, i.e. Pis normally
close to Py,.

The other issue about the proposed back substitution
method is that it significantly reduces the computational
burden, provided the orders of the subsystems are suf-
ficiently smaller than the order of the system. For in-
stance, assume that all subsystems have roughly the
same dimension, say = (n :=nj + ---+n,). Then, the
computational complexity of the Lyapunov solution Py
using the existing efficient methods is O(n?) (Benner,
2008). In contrast, by taking the particular structure of
A}, into account, the present method requires that w
Sylvester equations be solved, whose overall complexity
order is v? x O((2)?). This implies that the proposed
algorithm reduces the computational complexity by a
factor of %



