Game Semantics for the Specification and
Analysis of Security Protocols

Mohamed Saleh

A Thesis
in
The Department
of

Electrical and Computer Engineering

Presented in Partial Fulfillinent of the Requirements
for the Degree of Doctor of Philosophy at
Concordia University

Montréal, Québec, Canada

November 2008

© Mohamed Saleh. 2008

i+l

Library and
Archives Canada

Published Heritage
Branch

395 Wellington Street
Ottawa ON K1A ON4
Canada

NOTICE:

The author has granted a non-
exclusive license allowing Library
and Archives Canada to reproduce,

publish, archive, preserve, conserve,

communicate to the public by

telecommunication or on the Internet,

loan, distribute and sell theses
worldwide, for commercial or non-
commercial purposes, in microform,
paper, electronic and/or any other
formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

Bibliothéque et
Archives Canada

Direction du
Patrimoine de I'édition

395, rue Wellington
Ottawa ON K1A ON4
Canada

Your file Votre référence
ISBN: 978-0-494-45677-4
Our file Notre référence
ISBN: 978-0-494-45677-4

AVIS:

L'auteur a accordé une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par télécommunication ou par I'Internet, préter,
distribuer et vendre des theses partout dans

le monde, a des fins commerciales ou autres,
sur support microforme, papier, €lectronique
et/ou autres formats.

L'auteur conserve la propriété du droit d'auteur
et des droits moraux qui protége cette thése.
Ni la thése ni des extraits substantiels de
celle-ci ne doivent étre imprimés ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,

their removal does not represent
any loss of content from the

thesis.

Canad;

Conformément a la loi canadienne
sur la protection de la vie privée,
quelques formulaires secondaires
ont été enlevés de cette thése.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

ABSTRACT

Game Semantics for the Specification and Analysis of

Security Protocols

Mohamed Saleh, Ph. D.

Concordia University, 2008

Security protocols are communication protocols that are used when agents
communicate sensitive information in hostile environments. They are meant to
achieve security goals such as the secrecy of a piece of communicated information or
the authenticity of an agent’s identity. Their two main characteristics are the use of
cryptographic operations such as encryption or digital signatures and the assump-
tion that communication takes place in the presence of a malicious intruder. It is
therefore necessary to make sure that the protocol design is correct and will thus
achieve its security goals even when under attack by the intruder. Design verification
for security protocols is no easy task; a successful attack on the Needham-Shroeder
authentication protocol was discovered 17 years after the protocol had been pub-
lished.

We present a framework for the specification and analysis of security protocols. The
specification language is close to the standard “arrow” notation used by protocol
designers and practitioners, however, we add some constructs to declare persis-
tent and fresh knowledge for agents. The analysis that we conduct consists of two
stages: Modeling and verification. The model we use for protocols is based on game-
semantics. in which the emphasis is put on interaction. The protocol is modeled as

a game between the intruder and agents. Verification amounts to finding successful

strategies for either the agent or the intruder. For instance, if the protocol goal is to
achieve fairness in exchanges between possibly cheating agents, then the verification
algorithm searches the game tree to insure that each non-cheating agent is not put
at a disadvantage with respect to other agents. In order to be able to specify a wide
range of security properties of strategies, we propose a logic having modal, temporal
and linear characteristics. The logic is also equipped with a tableau-based proof
system that serves as a basis for a model checking algorithm. To validate our ap-
proach, we designed and implemented a software environment that verifies protocol
specifications against required properties. We use this environment to conduct case

studies.

111

ACKNOWLEDGEMENTS

I would like to express my gratitude to my supervisor, Dr. Mourad Debbabi,
for introducing me to several research topics and guiding me throughout the prepa-
ration of this thesis. I would also like to thank Dr. Rachida Dssouli for accepting
me to the Ph.D. program and helping me pass its initial steps. The experience and
coding skills of Dr. Rachid Hadjidj were invaluable for the completion of the soft-
ware environment that we jointly implemented. Also, the discussions I had with Dr.
Chamseddine Talhi and his valuable suggestions greatly improved the style and pre-
sentation of the thesis. I deeply appreciate the effort and time all the examination
committee members have sacrificed to review this thesis. The internal committee
members are Dr. Otmane Ait Mohamed, Dr. Walaa Hamouda, and Dr. Juergen
Rilling. 1 am thankful to Dr. Jean Goubault-Larrecq, the external committee mem-
ber, for his effort and comments. My father, mother, and brother are, as they have
always been, my solid base of support. Finally, to all my teachers, I thank you for

your dedication.

v

TABLE OF CONTENTS

LIST OF TABLES
LIST OF FIGURES e
LIST OF ACRONYNMNS

1 Introduction

1.1 Security Protocols
1.2 Specification and Analvsiso
1.3 Security Protocols and Formal Methods
1.4 Security Protocols and Game Semantics
1.5 Problem Statement and Objectives
1.6 Contribution.
1.7 Structure of Dissertation L.
2 Security, Cryptography and Game Semantics

2.1 Security and Cryptography
2.1.1 Security Objectives e
2.1.2 Cryptographic operations
2.1.3 Security Protocols
2.1.4 Analysis of Cryptographic Mechanisms

2.2 Game Semantics L L o
221 Games
2.2.2 Operationson Games
Tensor Product

Duality of Gameso L

Linear Implication

2.2.3 Enabling Relation
2.2.4 Equivalence Relation

2.25 Category of Games 30

3 Specification and Verification of Security Protocols 34
3.1 Modeling Security Protocols 35
3.1.1 Intruder Models L. 35
Original Dolev-Yao Model 36

Extended Dolev-Yao Model 38
Computational Model 38

3.1.2 Behavior Description Models of Protocols. 39
Finite State Machines 39

Strand Spaces 41

Model of the Inductive Approach 43

Process Algebra o 48
Game-Theoretic Model oL 51

3.1.3 Logic-Based Models of Protocols o7
Multiset Rewriting o 57

Modal Logicso 63

3.2 Formal Verification of Security Protocols 65
3.2.1 Classification and Properties of Security Protocols 65
Participant-Based Classification 66
Objective-Based Classification 67

Security Properties L. 69

3.2.2 Attacks on Security Protocols 71
3.2.3 Model-Based Analysis 73
General-Purpose Automata Analysis 74
Securityv-Specific Automnata Analysis00 74

Process Algebra oo 77
Game-Theoretic Verification 77

Infinite State Spaceso 79

Vi

3.24 Proof-Based Analysis L 80

Strand Spaces 80
Modal Logics 80
Inductive Approach 81

4 Protocol Messages 82
4.1 Message Syntax e e e e e e 83
411 Definitions 84
412 Message Algebra Lo 88
4.1.3 Abstract Computation Procedures 93
4.2 Messages and Knowledge 94
4.2.1 Equational Theories 94
4.2.2 Equations for the Message Algebra 97
4.2.3 Building Knowledge 98
4.3 Game Semantics for Messages 99
4.3.1 Atomic Messages 99
4.3.2 Composed Messages 101
4.3.3 Category of Message Games 102
4.3.4 Semantics of Messages 104
5 Model for Security Protocols 106
5.1 Protocol Specificationso 107
5.1.1 Syntax e 107
5.1.2 Frames and Computation 108
Constructing Procedures 112
Real Frames and Agents Responses 118
Intruder Frameso Lo 120
5.2 Games for Security Protocols L. 120
5.2.1 Definition of Games L. 121

Single Protocol Session (Functional View)

Multiple Protocol Sessions (Functional View)

Single Protocol Session (Security View)

Multiple Protocol Sessions (Security View)
Quantification over Strategies

522 Example

5.3 Semantics

5.3.1 Protocol Semantics

Logic for Protocol Verification

6.1 Syntax of Formulas

6.2 Semantics R

6.3 Tableau-Based Proof System
6.3.1 Properties of Tableau System
6.3.2 Examples of Security Properties

6.4 Proofs e
6.4.1 Proof of Finiteness
6.4.2 Proofof Soundness L.
6.4.3 Proof of Completeness

Implementation and Case Studies

7.1 Specification Language
7.1.1 Specifying Protocols
7.1.2 Specifying Logic Formulas

7.2 Generating the Game Tree
7.2.1 Roles, Sessions and Agents
7.2.2 Intruder Actions and Agents Responses
723 GameTree. L

7.3 Model Checking Algorithm

160
160

74 Case Studies e e 170

7.4.1 Needham-Schroeder Protocol 170
742 Wooand Lam Protocol 172
7.4.3 ASW Protocol e 173
8 Conclusion and Future Work 177
Bibliography 179

ix

LIST OF TABLES

4.1 Semantic definitions of messages.

5.1 Construction ofaframe.

5.2 Definitions needed for the semantic interpretation function.

3.1

4.1

5.1
5.2
9.3

7.1
7.2

LIST OF FIGURES

Attack on the Needham-Schroeder protocol. 44
Interaction between startegies. 101
Game for single protocol step. 124
Game representation of one protocol session. 128
Game tree for the RSA three-pass protocol. 135
Screenshot of the software environment. 171
Screenshot of the Woo and Lam protocol.. 174

xi

ATL
ATS
AVISPA

CAPSL

CCC
CSP
CTL
FDR
FSM
HLPSL
ISL
LEM
PCF
PPT
TTP

LIST OF ACRONYMS

Alternating-time Temporal Logic
Alternating Transition System

Automated Validation of Internet Security Protocols and

Applications
Common Authentication Protocol Specification Lan-

guage
Cartesian Closed Category

Communicating Sequential Processes
Computational Tree Logic

Failure Divergence Refinement

Finite State Machine

High Level Protocol Specification Language
Interface Specification Language

Law of Excluded Middle

Programmable Computable Functions
Probabilistic Polynomial Time

Trusted Third Party

Xii

Chapter 1

Introduction

A communication protocol specifies a set of rules that have to be followed by prin-
cipals (agents) wishing to communicate on a certain communication channel or net-
work. More specifically, a protocol is a set of predefined communication steps be-
tween the agents, aiming to ensure a common language between them. A protocol
can also specify a set of internal steps that each agent has to execute in order to
update its internal state. Security protocols, on the other hand, are a subclass of
communication protocols. They are used when agents want to share “secret” in-
formation while communicating over an insecure network. They serve a variety of
security objectives, such as authenticating agents to each other, exchanging crypto-
graphic keys, or ensuring that the data sent is not changed or replicated. Security
objectives are numerous and so are the applications of cryptographic protocols such
as e-commerce, online banking, electronic voting, etc. The following section will

give an overview of security protocols and their properties.

1.1 Security Protocols

In security protocol terminology, principals or agents are the entities wishing to

communicate. in this thesis these two terms are used interchangeably. We also treat

them as hardware/software entities and hence use neuter pronouns when referring
to them. Agents use security protocols in order to achieve certain security objec-
tives when communicating over an insecure channel. These security objectives are
regarded as properties that the security protocol must satisfy in order to successfully

serve its purpose. The security properties of protocols include [2]:

« Authentication: Simply put, authentication means making sure that each
agent is the one it claims to be, i.e. no agent should be able to imperson-

ate another agent.

» Confidentiality: The protection of transmitted data fromn alicious attacks,
which means that the message content should only be disclosed to the intended

receiver of the message.

o Integrity: This means that messages should be received as sent without mod-

ification, duplication, reordering or replav.

» Non-repudiation: This is to ensure that neither the sender (nonrepudiation
of origin) nor the receiver (nonrepudiation of receipt) should be able to deny

sending (or receiving) a message.

Security protocols are distinguished by two factors: The use of cryptographic
functions, and the assumption of the presence of a malicious intruder that tries to
break the protocol security. Cryptographic functions such as encryption, decryption,
or hashing are necessary for the protocol to achieve its security objectives. They are
the basic “tools” that security protocols use. However, even if we assume that the
encryption is unbreakable (the perfect cryptography assumption), there remains a
number of very important issues such as what messages to encrypt and with which
keys, how do we ensure a safe exchange of keys, how to prevent replay attacks,
etc. All of these are issues can compromise security even under the assumption of

perfect cryptography [19, 20]. They are dealt with in the framework of security

protocols, and it is therefore of utmost importance to make sure that they are dealt
with correctly. This turns out to be a difficuls task, even for very simple protocols.
Needham and Shroeder published their cryptographic protocol in 1978 [87]. It was
discovered to be flawed after 17 vears of service, the attack was discovered by Gavin
Lowe first in 1995, and was explained in several papers [70].

As for the malicious intruder, its presence is always assumed and its purpose
is to make the security protocol fail in its intended goals. In this regard, security
protocols can be classified according to which goals theyv aimn to achieve. For instance,
one of the first and most widely used applications of security protocols, as mentioned
above. is authentication. Authentication protocols aim to authenticate users to
each other before beginning to exchange secret data. An example is the Needham-
Shroeder protocol [87] discussed earlier. Another type is the key exchange protocols
whose purpose is to securely and correctly handle the distribution of cryptographic
keys bhetween different agents. An example of these is the Neuman-Stubblebine
protocol [88]. With the rapid growth of electronic commerce, several protocols were
designed to deal with the issues involved. For instance, the ASW protocol [21],
developed by Asokan, Shoup, and Waidner, is designed to ensure the fair exchange
of information between two parties. It is used in contract signing, where each party
sends to the other a non repudiable commitment to a certain contract. Here, fairness
requires that if the protocol was executed successfully, each party will end up with
a copy of the contract including the commitment of the other party. If, on the
other hand. the protocol was ended prematurely, no party should have advantage
over the other given the information already exchanged thus far. Moreover, the
protocol supports non-repudiation of receipt and of origin, while guaranteeing the
tenmination of the informmation exchange in a finite time. A trusted third party is
used during the protocol only in the case of exceptions.

Making sure that a security protocol actually can resist intruder attacks and

achieve its goals is not an easy task since it involves the analysis of distributed

systems with issues of concurrency in addition to security issues. Several methods
have been developed to specify and analyze security protocols. This is the subject

of the next two sections.

1.2 Specification and Analysis

There are various methods [1], that differ in scope and purpose, for specifying and
analyzing security protocols. For exaimnple, some specifications are informal nar-
rations that mix some kind of defined syntax with natural language descriptions.
In fact, many specifications are written in what we call in this thesis “standard

notation”™ or “arrow-notation” of security protocols. An example is given below:

Step1l. A— B: {Nalx.s
Step2. B— A: {Na, Nplkas

The notation above means that, in step 1, agent A sends to agent I3 a nonce
encrypted by the private key between A and B (K 45). A nounce is short for “number
used once”, which is used to guarantee freshuess and hence prevent replay attacks.
In step 2, agent B replies by concatenating its own nonce to the one first received
from A, encrypting the whole with the private key between 4 and I3 and sending it to
A. Of course, the notation above is accompanied by a natural language description
that helps to clarify several issues. For instance, it should be made clear what
information is known to each agent prior to communication —in the case above it
is the encryption key—, what values are freshlv generated, and what are the checks
the agents are supposed to do over the messages they receive. These checks are very
important to mention correctly as they may be the sources of confusion, which may
lead to malicious attacks.

On the other hand, there exist other specifications for security protocols that

are based on formal specification languages [77]. logics [29] and process calculi [5].

They enable more precise and verifiable descriptions of the protocols. Several of
these methods are surveyed in Chapter 3.

The analysis of security protocols aims to provide some level of assurance
that the protocol actually does what it is supposed to do. Methods used for the
analysis generally can be categorized as: Methods used in cryptanalysis [53], the use
of software/hardware testing tools [103], logic-based methods [29], theorem proving
techniques [92] and model checkers {24, 75]. Other methods also do exist, such the
ones based on process calculi [70] and type theory [41]. The approach used in these

methods together with some examples are presented in Chapter 3.

1.3 Security Protocols and Formal Methods

In order to obtain a credible assessment of a security protocol, a rigorous veri-
fication method has to be applied to it. The aim of the verification is to provide
assurance that the protocol actually achieves its intended goals. In this regard, there
are two broad approaches: The computational approach and the formal approach.
Computational approaches [53] are developed by cryptanalysts in the cryptographic
community. They deal with messages as bit strings and with cryptographic op-
erations as functions over these strings. They use probabilistic concepts and deal
with numerical data using ideas from cryptanalysis in order to discover attacks and
evaluate their likelihood. Usually, these ideas involve number theory and known
practices developed over the years. Formal approaches [78], on the other hand,
are developed in the programming languages and forinal verification communities.
They apply experience from these fields to formulate security properties and verify
them on models of security protocols. These models, however, treat cryptographic
operations symbolically; operations are considered black boxes with ideal properties
that we discuss below. Some research work [6] tries to bridge the gap between the

two approaches by introducing more practical models of security protocols that can

express some algebraic properties of cryptographic operations. In this thesis, we
follow this third approach when introducing our model.
When analyzing security protocols in a formal framework [78] several assump-

tions are being made [107]:

» Perfect cryptography: This means that all cryptographic functions are un-
breakable. Usually this assumption is made to concentrate the effort on the
“logic” of the protocol and not the “crvptographic tools” it uses, which can be

studied separately.

o The intruder: As we mentioned earlier, security protocols are characterized
by the presence of a malicious intruder trying to break protocol security. To
express the intruder’s capabilities, the Dolev-Yao model [44] is adopted. Tt

can be summarized as follows:

— The intruder is a legitimate user of the network, which means it can send

messages through the network.

— The intruder can obtain any message sent through the network (eaves-
dropping).
— The intruder can be a receiver to any agent in the network.

— The intruder can prevent any message in the network from reaching its

intended receiver.

The underlying assumption is that the intruder has perfect control over the
network and will carefully design attacks to compromise communication security.
The attacks may include impersonating legitimate users of the networks, replaying
messages, etc.

Formal methods have been successfully used in the specification and verifica-
tion of hardware systems and communication protocols. This constitutes an incen-

tive to their use for security protocols. To be precise. by “forinal inethods™ we mean

6

that the specification and verification processes are based on a mathematical or a
logical model of the system. This model provides the tools necessary to describe the
svstemn and analyze it in order to prove that it satisfies its requirements. One of the
first examples of the use of forinal methods with security protocols was the work
done by Dolev and Yao [44] to analyze public key encryption protocols. Ever since,
new techniques and models have emerged [1, 78], and a survey will be presented in

Chapter 3 of this thesis.

1.4 Security Protocols and Game Semantics

Several forinal methods have been proposed for the specification and verification of
security protocols. Most of these methods do not capture some features of security
protocols in order to simplify the analysis. Game semantics [8, 9, 10, 11, 59, 60]
is an approach to the semantics of programming languages that makes explicit the
interaction of the system with the environment in each computation step. This
interaction is modeled by a game in which the players are the environment (the
opponent) and the system (the proponent). Any computational step done by the
system can be modeled by a possible sequence of moves in the game that describes
the system. In this view, we make the distinction between the program type (e.g.,
function signature) and the algorithan (e.g., function definition) that this program
implements. A program of a certain type is modeled by a certain game, whereas
the algorithm specifies the rules according to which the gane should be played. So,
any particular run of the program (execution of the algorithm) represents a certain
sequence of moves over the game that describes the program. In this case, the game-
semantics specification of the programn is the set of all such sequences, i.e., the set
of all possible runs of the program.

The use game semantics as a model for security protocols is motivated by the

following reasons:

-1

« Game semantics can model the interaction between agents and the intruder in
a natural way. The intruder is the opponent in the protocol game, while honest
agents are the proponents. Each interaction in the protocol can be modeled

as a sequence of moves in the game between the intruder and an honest agent.

« Having the concept of agents in the protocol model, enables us to express
security prbperties that involve exchanging items between many parties such
as in contract signing and fair exchange protocols. These properties cannot
be expressed as trace properties [74], i.e., properties of a single trace in the

execution tree of the protocol.

« Game strategies can be used to express protocol execution among agents, and
verification amounts to finding winning strategies. This approach to verifica-
tion covers a wide range of both trace-based and non-trace-based properties.
Moreover, quantification over traces can then he done existentially, universally

and by agent.

« Rules that govern the play of the game can be easily set to express concepts
of security protocols such as freshness, the growth of knowledge of each agent

with each communication step, etc.

» Games give a dynamic view of how the protocol communication would proceed
under various manipulations by the intruder. They can also model the com-
putational steps that are done by agents to generate messages, this is achieved

bv choosing appropriate definitions for agents strategies.

Similar to the discussion above about game semantics and programs, in order
to build the game that represents the protocol, we have to assign a certain type to
the protocol. This type will determine the game to be played. The specific syntax of
the protocol (protocol steps specifying messages), on the other hand, will determine

how this game should be played. This means that two protocols having the same

type will be represented by the same game, however the game is plaved differentlyv

in case the two specifications differ.

1.5 Problem Statement and Objectives

The research problem we are concerned with is the development of a dedicated
theoretical framework, backed with a software tool for the development of correct

and secure cryptographic protocols. More specifically, we consider:

+ Protocol Specification: We aim to devise a language for the description of

security protocols that is close to the standard notation already used.

» Protocol Analysis: The developed language should have formal syntax and
semantics. The semantic model, can then be used to verify security properties

which should be stated in a suitable logic.

The two general objectives stated above can be further broken down to the

more detailed tasks stated below:

+ Define a syntax for security protocols that is close to the standard notation
and yet is detailed enough to avoid ambiguities. It therefore must have explicit
constructs to declare, for each agent, persistent and fresh knowledge. The
former does not change across sessions and the latter is different for each

session.

« Develop a semantic model for the defined language that should be able to
cover features of security protocols, namely cryptographic operations and an

intruder model.

+ Extend the semantic model with some concepts from the computational ap-
proach to the analysis of security protocols. As an example, it should be able

to handle equational theories that express algebraic properties of messages.

9

+ Define a logic to express a wide range of securitv properties which are both
trace-based and non-trace-based. It should also be able to express message

patterns since we deal with messages as symbolic algebraic terms.

+ Provide a prototype software environment that validates the theoretical ideas
presented in the thesis and enables us to conduct case studies on different
protocols. This software environment should be preferably written in a popular
programming language so that the source code can be easily understood by a

large number of programmers who can then contribute to the tool.

In the following section, we present the work done in this thesis in pursuit of

our goals. We point out our contributions to the state-of-the-art.

1.6 Contribution

In order to reach the goals listed in the previous section, we developed a game
semantics model for security protocols. We also provided a logic to express security
properties over the model. Moreover, in order to be able to consider case studies,
we designed and implemented a prototype software environment that we used to
specify security protocols and verify their properties. In more detail, we can list our

contributions in the following:

« A model for security protocols, based on game semantics, with a syntax close
to the standard notation to facilitate its use by protocol designers and practi-
tioners. The model can handle algebraic properties of messages in the form of

equational theories.

« A logic that expresses security properties of game strategies. The logic enables
the formulation of linear-time and branching-time properties and is equipped
with an agent restriction operator that enables quantification by agent identi-

ties. The logic can also express patterns of messages since messages exchanged

10

in the games have an algebraic structure.

« A software environment written in Java programming language that imple-
ments a model-checking algorithm for the logic and that is used to conduct

case studies on several protocols.

1.7 Structure of Dissertation

This thesis is organized in eight chapters starting by the introduction. In Chapter
2, we introduce some concepts of cryptography that we are going to use in the
following chapters. In Chapter 3, we present the state-of-the-art in the specification
and verification of security protocols. We list major methodologies using a common
notation to make the comparison easier, and we provide examples of the use of each
methodology. Chapter 4 presents our treatment of protocol messages as symbolic
algebraic structures. We also show how to design abstract computation procedures
that operate on symbolic messages to produce new ones. In Chapter 5, we begin by
defining the gaines that we use to represent interactions in a protocol. Games are
then used to give semantics to security protocols in two cases: Functional semantics
and security semantics. In functional semantics, we consider all communicating
parties to be honest and thus describe how the protocol would normally proceed.
In security semantics, we take into account the possible manoeuvres done by the
intruder in order to attack protocol security. We also show how to extract abstract
computation procedures from protocol specifications using the idea of frames. In
Chapter 6, we define a logic for expressing security properties of the model. This
logic is equipped with a tableau-based proof system from which we design a model-
checking algorithm. In Chapter 7. we present our software environment and use it

to conduct case studies. Finally, Chapter 8 concludes the thesis.

11

Chapter 2

Security, Cryptography and Game

Semantics

In this chapter, we present some background material on topics related to the thesis
subject. We start by providing a general overview of information security and the
role that cryptography plays in it. Then, we present general concepts of game seman-
tics and its use in the theory of programming languages. Concepts and terminology

introduced in this chapter will be used throughout this dissertation.

2.1 Security and Cryptography

The secrecy of sensitive information has long been a goal of individuals, governments
and organizations throughout history. Secret information that is communicated or
stored needs to be concealed from any malicious intruders. This concealment is

mainly carried out in three different ways:

« Information hiding [93]: The sensitive information is hidden in other infor-
mation that is easily accessible, for instance, the use of secret ink to conceal
messages in a letter or the use of digital watermarking techniques [49] to hide

data in a digital photograph.

12

+ Signal conversion [52]: Special signal processing techniques are applied to
analog signals to make them unrecognizable such as the scrambling of video

or audio signals.

+ Cryptography [104]: Discrete messages, called the plain text, are converted to
a text having some security features. For instance, in encryption, plain text is
transformed into a cipher text or cryptogram. The algorithm that carries out
this conversion uses a key in order to produce the cipher text which should
not reveal any information about the plain text. Knowing the algorithm and

the key, the cipher text can be converted back to the corresponding plain text.

We are concerned with cryptography as in the last item above. We distin-
guish here between cryptographic operations, cryptographic systems, cryptographic
‘or security protocols and finallv cryptographic mechanisms. Cryptographic opera-
tions are the individual algorithms available to cryptographers in order to operate
on plain text. Often, one or more of these operations are combined to produce a
cryptographic system whose purpose is to achieve a certain security objective. A
cryptographic system is thus an entity that produces information, e.g., cipher text,
that has cryptographic properties. In a networked environment, this information
will often be communicated to other systems or entities. Security protocols are the
communication protocols used whenever two or more systems need to securely ex-
change data. The protocols define computation steps, during which cryptographic
operations are often used, and communication steps that involve sending messages
between systems. A cryptographic mechanism has a larger scope and it involves all
the necessary operations and protocols needed to achieve a certain security objective.
In the next four sections, we will briefly discuss security objectives, cryptographic

operations, security protocols and analysis of cryptographic mechanisms.

13

2.1.1 Security Objectives

Security objectives represent the ultimate goal for which a cryptographic mecha-
nism is developed. In other words, they are propeties that the mechanism should
satisfy. The mechanism may involve more than one security protocol and within
each protocol, cryptographic operations are used to produce messages. Some secu-

rity objectives are listed below along with their descriptions [99, 104]:

« Secrecy: To keep the content of a message secret except for those who are

authorized to know it.

« Data integrity: To ensure that a certain message was not tampered with during

its transmission.
« Authentication: To ensure that no agent is lying about its identity.

» Non-repudiation: To ensure that an agent cannot deny sending or receiving a

message.

 Fairness: To ensure that no agent is put in a disadvantage with respect to

other agents when exchanging one item for another.

o Anonymity: To hide the identity of some agents involved in a transaction in

a certain system.

Usually a security mechanism is designed to achieve one or more of the objec-
tives listed above. Within the mechanism, cryptographic operations and protocols
are the tools used to reach these security goals. Various analysis techniques have
been developed to make sure that security objectives are reached taking into account
the presence of a malicious intruder or attacker trying the break the security of the
mechanism. We discuss these techniques after introducing cryptographic operations

and protocols.

14

2.1.2 Cryptographic operations

Cryptographic operations, which are also called cryptographic tools or primitives,
are the basic building blocks of a cryptographic system. The purpose of such a
system is to produce data or messages that have certain security features. We will
briefly define some operations, a more compreliensive presentation can be found in
almost all standard texts on cryptography such as {79} and [99].

One-way functions: A function f : X — Y is called one way if it is much “eas-
ier” to compute f(z) for an element z € X than it is to compute f~!(y) for most
elements y € Y.

Trapdoor one-way functions: It is a one-way function such that with the knowl-
edge of a piece of information (the trapdoor). it becomes “easy” to compute f~!(y)
for any y € Y.

Cryptographic hash functions: A hash function f : X — Y is one that produces
a fixed length output y € Y for any input x € X. A cryptographic hash function,
informally called one-way hash function, is also one-way and collision-free, i.e., it is
“unlikely” to find two values z and 2’ such that f(z) = f(z').

Random number generation: A number is generated randomly if it is generated
(in binary form) by flipping a fair coin successively and considering the head landing
up as 0 and tails as 1. Any other process similar to flipping a coin can also be used.
Other processes not satisfving the criteria of a fair coin flip generate a pseudorandom
number. Details and statistical characteristics of random numbers and sequences
can be found in [23].

Symmetric cryptographié system: Let K, P and C be the sets of keys, plain text
and cipher text respectively, a symmetric encryption system defines two functions:
c:KxP— Candd: K xC — P. The functions ¢ and d are called encryption and
decryption, respectively. For a certain key K, the functions e(K,.) and d(K,.) are
both bijective. Given a key K € K and a plain text I” € P we have ¢(K. /) = C,

where C is a cipher text in C. The decryption function should have the property

15

that if it is applied to C using the same key K, we get d(K.C) = P, i.e., knowing a
key and a plain text we can get a cipher text and if we decrypt this cipher text using
the same key, we obtain the plain text again. A cryptographic system is considered
secure and hence successful at its goal if it is “difficult” to obtain information about
the plain text using only the cipher text.
Asymmetric cryptographic system: In an asymmetric cryptographic system
keys come in pairs, an encryption or public key K € K and a decryption or private
key K~!. To encrypt the plain text we use the encryption function e¢(K, P) = C
and to obtain the plain text P from C, we have to use K~! where d(K~!,C) = P.
We can therefore regard e as a one way trapdoor function where the trapdoor in-
formation is the decryption key. The public key is called as such since it can be
made public for anyone to use and produce cipher text, however only the person
who has the private key will be able to get the plain text by applying the decryption
function.
Signatures: Signatures are used to associate a certain message or piece of informa-
tion with a certain agent or entity. A digital signature system comprises a method
for signing and another one for the verification of signatures. More formally, let A, M
and S be the sets of agents, messages and signatures respectively. A digital signature
system assigns to each agent A € A a signing function g, : M — S, which is usually
a one-way hash function and a verification function v4 : M x S — {true,false}.
Agent A is the only one knowing g4 so that it can sign any message m and produce
a signature s = g4(m), the verification function v, however is made public so that
anyone can verify if a certain message m whose signature is s was actually signed
by A, i.e., va(m,s) = true.

In the definitions above, the words “easy” and “difficult” were used in the
context of determining how “good” a cryptographic tool is. For instance, a successful
digital signature svstem is one where it is difficult for any agent except A to produce

a signature s from a message m such that s = gs4(m). However. cryptographic

16

operations are often used in hostile situations and it is almost certain that malicious
intruders will trv to “break” their security, i.e., defeat the purpose of their use.
Cryptographers design cryptographic systems in order to achieve a certain security
objective, while cryptanalysts try to develop methods to break these systems and
obtain some information they are not entitled to. In Section 2.1.4, we try to formalize
the notion of how “good™ a crvptographic svstemn is, but first, in the next section,

we introduce security protocols.

2.1.3 Security Protocols

A communication protocol specifies a set, of rules that have to be followed by agents
wishing to communicate on a certain communication channel or network. More
specifically, a protocol is a set. of predefined communication steps between the agents,
aiming to ensure a common language between them. A protocol also specifies a set of
internal computation steps that each agent has to execute in order to update its in-
ternal state. Security protocols, on the other hand, are a subclass of communication
protocols. They are used when agents communicate with the purpose of achieving
some security objectives. For instance, they are used to authenticate agents to each
other, to exchange cryptographic keys, or to guarantee that the data sent is not
changed or replicated. Applications of cryptographic protocols are numerous such
as e-commerce, online banking, electronic voting, etc.

Security protocols specify what operations (cryptographic or not) are used
and by which agents in order to produce messages that agents exchange. Protocol
design is a major issue in network security since that, even if we assume that all the
cryptographic operations are unbreakable, i.e., the perfect cryptography assumption,
there remain a number of very important issues to be considered. For instance, we
need to decide what messages to encrypt and with which keys, how do we ensure
a safe exchange of keys between agents. how to prevent replay attacks, etc. All

of these are issues can compromise security even under the assumption of perfect

17

cryptography.

In security protocol terminology, principals are the actual agents wishing to
communicate. We use these two terms interchangeably. Sometimes, the names Alice
and Bob, abbreviated as 4 and I3, are also used to denote agents. In contrast, roles
are specifications of ageuts. In other words, agents are instantiations of roles, which
means that the same role can be played by more than one agent and one agent can
play more than one role, in parallel or sequentially. As an example, in an actual
network, there could be three agents playing the role R; and two agents playing the
role Rs. Intuitively, to borrow from the object-oriented programming terminology.
a role represents a class while an agent represents an instance of a class. To clarify
the idea, an example is given below, which is taken from the Needham-Schroeder

public key authentication protocol [87]:

Stepl. A— B: {A Nalk,
Step 2. B— A: {Nj, Nplx,

(2.1)

The notation used above is the standard notation used to describe protocols.
It specifies what messages should be produced, by which agent, and to which agent
they should be sent. The protocol specifies two roles: That of an initiator, which
we call init, and the role of a responder, which we call resp. In the protocol de-
scription in (2.1), the role init is played by A and resp is played by B. In order
to instantiate the role init into an agent, we must have the identities of the agents
that will play the roles of initiator and responder, hence we can write the role init
as init(Agent;, Agent,). In (2.1), init is instantiated by the values A4 and B, i.e,
intt(A, B). We did not include the values of N4 and K in the parameter list of
tnit since they depend on the parameters Agent; and Agent, (A and B in (2.1)).
Moreover, N, depends also on the specific session in which Agent; will be involved,
as explained below. The role resp has only one parameter however, which is the

identity of the agent plaving the role of responder. We can therefore write the role

18

as resp(Agent,). We do not include the identity of the agent palying the initiator
role as a prameter in resp since the responder agent can be instantiated without
knowing who the initiator will be. A session of the protocol is an execution of pro-
tocol steps; it is started when both roles init and resp are instantiated such that
Agent, in init is the same as Agent, in resp, e.g., the roles are instantiated as
init(A, B) and resp(B). In one session, communication steps in the protocol speci-
fication are executed sequentially. In step 1, A concatenates its identity to a nonce
N, encrypts the whole with the public key of B and sends it as a message to B,
where the notation {m}; means message m encrypted by key K (this should not
be confused with the set notation). Nonces are produced by pseudorandom number
generators that are implemented in agents and that create a new number whenever
the agent contributes in a new session. They are used to guarantee freshness and
hence prevent replay attacks, since a different value for N4 will be generated for
each session in which agent 4 will contribute. In step 2, B replies by concatenating
its own nonce to the nonce received from A, encrypting the whole message with the
public key of A and sending the result to A.

From the discussion above we can deduce some of the following notations

commonly used in standard protocol descriptions:

» The symbols A, B, ... are used to denote agent identities and S is reserved for

secure trusted servers.
» The symbol N, is used to denote a nonce produced by A.

o The symbols Kap, Ka, K _;1 are used to denote a secret key between A and B,

the public key of A and the private key of A, respectively.

» The symbol m;.my is used to denote the concatenation of messages m; and

mo.

« The symbol {m} is used to denote the encryption of message m with key K.

19

Of course, the protocol specification above should be accompanied by natural
language descriptions that helps to clarify several issues. For instance, it should be
clear what are the nonces being produced, what is known to each agent prior to
communication —in the case above it is the encryvption keyv.

Making sure that a security protocol actually achieves its objectives is not
an easy task. The analysis of security protocols aims at providing some level of
assurance that the protocol actually does what is supposed to do. A large number
of methods have been developed to this purpose. In the next section, we introduce
the problem of analyzing cryptographic operations and protocols in order to verify

that they are successful at reaching their desired security goals.

2.1.4 Analysis of Cryptographic Mechanisms

Several techniques have been developed in order to verify whether security mech-
anisms achieve their security objectives or not. As a simple example, the secrecy
objective mentioned earlier in Section 2.1.1, may be formulated as “no information
about the plain text should be easily obtained from the corresponding encrypted
text unless the encryption key is known”. Of course, we then have to clarify what
we mean by “inforination” and “easilv” and devise a measure that will indicate how
“successful” a security mechanisin is. We also have to take into account the pres-
ence and capabilities of a malicious attacker whose interest is to break the security
of the cryptographic mechanism by preventing the achievement of its security ob-
jectives. Such issues constitute challenges in the domain of cryptographic analysis
that comprises a number of approaches. They can be broadly classified into the
("omputa‘cioha.l approach [53, 99] and the formal verification approach [78].

In the computational approach, cryptographic operations are seen as functions
operating on numbers or sequences of bits. Their success against attacks is assessed
in probabilistic measures and depends on the computational complexity of the op-

erations needed to mount a successful attack. For instance, using a brute force

20

attack, which tries to decrypt a cipher text with every possible value of the key, it is
computationally more demanding to decrypt a message that was encrypted with a
128-bit key than a message that was encrypted with an 8-bit key. Moreover, in this
approach, it is possible to define partial inforination as a property of a sequence of
bits. As an example, the attacker may not be able to know the value of a message
but the value of one bit or if the message is odd or even.

In the formal verification approach, crvptographic operations are treated sym-
bolically. Messages are just symbols or terms which can be manipulated by crypto-
graphic functions that transform terms to other terms. Properties are also expressed
svinbolically as formulas of logics or formal specifications of systems. Formal meth-
ods are used to prove these properties. This approach has the advantage of abstract-
ing away from the implementation details of complex systems and hence provide the
opportunity for a more global reasoning focusing on the logic behind the design of
mechanisms. Of course, both approaches are complementary and represent two dif-
ferent point of views to the same problem, which helps in discovering different types
of attacks. In this section, we introduce some concepts of cryptanalysis, whereas
formal methods are treated more thoroughly in the next chapter. A thorough pre-
sentation of cryptanalysis and pointers to references can be found in standard texts
such as [79].

Cryptanalysis is the study of eryptographic operations in order to defeat the
purpose of using cryptographic tools. In other words, it is the mathematical study
of cryptographic properties of operations in order to be able to break the security of
systems and/or mechanisms. For instance, a cryptanalyst may try to know the plain
text of a cipher text without having the decryption key, or a malicious intruder may
want to forge an agent’s signature of a certain message. In this setting, there should
be some criteria that a cryptographic system must satisfy for it to be as secure
as possible. Finding such criteria is by no means an easy task. Several attempts

have been made throughout history where the oldest techniques were focused on

21

keeping the details of the cryptographic system secret, a practice that later became
known as “security through obscuritv”. In 1883. Kerckhoff published his paper
“La Cryptographie Militaire” [63] in which he mentions six criteria that became
widely accepted as design principles for cryptographic systems. Perhaps the most
important of which is that system details should not be kept secret, but secrecy
should be reserved only for some system input. The logic behind this is that it is
normally easier to change this secret input if it became known by an intruder as
opposed to changing the whole system. In other words, security should not reside
in the system (e.g., the algorithms) but in a piece of information that can be easily
changed if compromised (e.g., the key). It then became standard to assume that the
cryptanalyst trying to break the system’s security knows all system details and can
easily intercept the system’s output (e.g., the cipher text). This assumption was used
by Shannon [100] when he formulated the notions of perfect secrecy and practical
secrecy. At that time asymmetric cryptographic systems where not invented yet and
so his work focused on symmetric encryption.

Shannon’s work wanted to address the notion of “securitv” of an encryption
system. He formalized the notions of perfect secrecy and practical secrecy. Perfect
secrecy means that intruders that intercept the cipher text should not be able to gain
more knowledge about the plain text than they already had before obtaining the
cipher text, even assuming no limits on their computational powers. This means that
the system is unbreakable. The only system that fits this definition is the one using
one time pads with totally random keys that are at least as long as the plain text
[100]. All other systems are only practically secure, which means it is really “hard”
for an intruder to break them. The degree of “hardness” is assessed using methods
and terminology from the field of computational comnplexity [91]. Another approach
is that of provable security [53] where statements about security are reduced to
statements about known complex problems such as quadratic residuosity modulo

composite integers. In this thesis, however, we focus on the formal analysis of

22

security protocols.

2.2 Game Semantics

The idea of using games in logic specifications dates back to Lorenzen [69] who
viewed the attempt to prove a logic fomula as a game. More specifically, in order
to prove a logical proposition, a game is palyed between two players; one trying
to assert it (the proponent) and the other trying to attack it (the opponent). The
formula is proved if the proponent wins. In this case for instance, a disjunction
is asserted if any of its constituents is asserted, whereas a conjunction is asserted
only if all of its constituents are asserted. In the diagrams below, we show the
games representing the logical OR and logical NOT, and how to prove the Law
of Excluded Middle (LEM) using games. For the logical OR game, the opponent
attacks the proposition, then the proponent chooses the constituent to defend, which
is then attacked by the opponent. The logical NOT game begins by the opponent
attacking the negation, while the proponent responds by attacking the proposition
itself. A game is won by the player (opponent or proponent) who made the last
move as long as the other player has no moves to play. This principle is used to

prove the law of excluded middle as can be shown from the diagrams.

23

Logical OR Logical NOT Law of Excluded Middle

AV B -A A v -A
O 7 O ? 0 ?
> Choose to defend A I Attack A P Choose to defend —A
) Attack A 0 Attack —A
r Attack A
O Assert A
r Assert A

The idea of using games to give semantics to logic propositions was further
developed by Andreas Blass [26], who used it to give semantics to linear logic.
Abramsky, Jagadeesan, and Malacaria [10] and Hyland and Ong {59] then, both
independently, used game semantics to prove the full abstractness of the Program-
ming language for Computable Functions (PCF) [95], which was a long standing
problem in the theory of programming languages. The use of game semantics in
programming languages has ever since been investigated and efforts doue to further
develop it [60]. A lot of work has been done for the use of game semantics in vari-
ous programming languages [8, 9, 68]. The use of games in security protocols was
investigated by Kremer and Raskin [66], where they followed a different approach
than that taken by Abramsky and Hyland. More specificallv they used Alternating
Transition Systems (ATS) [17] as their model for the verification of fair exchange
and non-repudiation protocols. However, to the best of our knowledge, there are not
yet any publications that make full use of the power of game semantics to define a
formal semantics for security protocols. In the next sections, we introduce the main

concepts of game semantics, which will be later used throughout this dissertation.

24

2.2.1 Games

Intuitively. a game is a sequence of plays (moves) between two parties (players): A
proponent I’ and an opponent O. There can also be multi-party games, but these
can be expressed as combined two-party games. So we will focus our interest on two-
party games and operations on these games. In the context of game semantics, the
proponent represents the system, while the opponent represents the environment. A
sequence of moves in the game represents a certain interaction between the system
and its environment. Each move in this interaction takes the form of a question (¢
or an answer A. For instance, the environment can ask for a value (question), and
the system supplies this value (answer) directly, or asks the environment for more
detail (question), and so on. We adopt the convention that the opponent always
makes the first move (i.e. the environment starts the interaction) then the game
proceeds as alternating moves between proponent and opponent. Formally a game

G is a structure (Mg, Mg, I’z) where [9]:

Mg Set of moves of the game.
Ag: Mg — {P,0} x{Q, A} Labeling function for each move

Ao = (AFO. NG

(2.2)
MO Mg — {P,0} Labeling function
A Mg — {Q, A) Labeling function
P Crevred ppelt Non-empty, prefix closed set of sequences

The domain M is the set of moves. The three labeling functions are used
to classify moves as questions () or answers A and as moves of proponent P or

opponent O:

25

Vm € Ma. Aq(m) = x. where z € {PQ, PA, 0Q.0A}
Vm € Mg, AEP(m) = z. where z € {P, O}
VYm € Mg, A& (m) =z, where z € {Q. A}

For instance, I’A means the move is an answer by the proponent. We write
M for the set of finite sequences over Mg. A sequence s = s1.59...8, has length

|s| = n. Then, Mg&"* is defined as follows:

Mgt ={s|se My, Vi.1<i<|s|,(even(i) = Ag(s:) = P)A
(0dd(i) = Aa(s;) = O)}

(2.3)

Informally, M* is the set of finite-length sequences of inoves such that the first

move belongs to the opponent, the second to the proponent, and so on. The domain
Pg is a non-empty, prefix closed set of sequences of moves, each of these sequences
represents a possible interaction during the play of the game. The domains Fg™"
and P2 are the sets of even- and odd- length sequences respectively. Prefix closure
means that Pref(F;) = Pg; Pref(F5) is defined below, where s and t are any two

sequences:

pref(st) = s
Pref(FP;) = {pref(s)|se€ Ps}

It is worth noting that the first equation can also be written, in another nota-
tion, as s C st, meaning that s is a prefix of st. Considering the previous definitions,
the set P can be graphically represented as a tree, where each sequence s € I’
represents a path in the tree. The moves of the sequence will be labels on edges of
the path and, for any two sequences s and s’ in P, if s © &' then the path of s’ will
contain the path of s. We can therefore call I7; the game tree.

A deterministic strategy for the proponent (the system) in a game G is a set

26

oq of sequences of moves, where:

O(; g P((:;"UC'H
€ € 0
(2.4)
sabe o = seo
sab.sace o = b=c¢
Here s,t,u, ... represent sequences, and a, b, c, ... represent single moves. In-

tuitively, a strategy is a subtree of the game tree that has the following properties:

 FEach path in the strategy contains an even number of moves (this is stated by

the third condition in (2.4) above.

« At any position in a path that ends with an opponent move, there at most
one move for the proponent to make (last condition above). This is why the

strategy is called deterministic

2.2.2 Operations on Games

Before defining operations on games, we give the following definitions:
For any two sets X and Y, the set Z = X WY is their disjoint union. If the
sequence s € Z*, then s | X € X*, which means s [X is the sequence obtained by

removing, from s, all the elements not in X.

Tensor Product

For any two games G and H. the tensor product G ® H is defined as:

]‘JGOOH = Af(; i A‘]]]
Aot = [Aa, Anl (2.5)
Pown = {S € ﬂfé';g‘\\” [(5’ [Mg € _P(,') A\ (5 P My € P]])}

27

As previously mentioned, all games start by O making a move. Here O can
decide to make a move in G or H. The third condition above means that O can
decide to make a move in either game (G or H), whereas I’ has to play in the game
that O chose. This means that for any two consecutive moves s; and s;;1 if s,47 is a
move of a subgame different than that of s;, then \29,,(s;) = P and A\29,,(si41) = O.

This is called the switching condition [9]. Intuitively, the tensor products represents

the interleaved play of two games, subject to the switching condition.

Duality of Games
For any game G, its dual G+ is obtained by interchanging the roles of the two players

(P and O). More formally, we can define:

Mg = Mg.
Ym € Mgr . dgi(m) = Ag(m)

(2.6)

where:

Ao = (M52, A8
P when A9 (a)

Owhen \;P(a) = P

I
&)

2E0(a) =

Linear Implication

For any two games G and H, the game G — H is defined as:

Mgy = MgW My
Ao = [E, Al (2.7)
Py = {S S]Wg!io” (S I Mg € PG) FA\ (8 | My € P]])}

This is equivalent to playing the game G* ® H. In this case, since we assume

that the first move is always done by O, then the first move will be in H because

28

in G, the opening move is now labeled with P not O. It is worth noting that the
switching condition in G —o H now means that /” is free to make a move in any of the
subgames (G or H), while O has to play in the subgame chosen by . Equivalently,
for any two consecutive moves s; and s;.; if s;41 is a move of a subgaine different

than that of s;, then A52;,(s;) = O and AEG;(si41) = P

2.2.3 Enabling Relation

An enabling relation is defined over the set Mg U {x}, where * is just a dummy
symbol. The enabling relation means that a move cannot be played unless it was
enabled (justified) by another move. The first move in the game is justified by the

dumnmy svibol. The enabling relation is defined as:

m ~gm m’ cannot be played unless m was played (2.8)

*~mem = Ag(m)=0QA(n~cgmEn=x)

The idea behind the enabling relation is that a move cannot be made unless
it was preceded with another move enabling it. This is what is stated in the first
relation above. The * is special in that it enables the first move of the game, called
the opening or initial move, i.e. a move m such that x ~»5 m. This is what is stated
in the second form of the enabling relation in (2.8) above, which states also that
the initial move of the game is always a question by the opponent. It is important
to note that this relation is not transitive. So, if m; ~»5 my and my ~»5 mgs, this

means that both m; and ms have to be played before m3 can be played.

29

2.2.4 Equivalence Relation

An equivalence relation ~¢ is defined on Py, which satisfies the three conditions

below, where s and ¢ denote sequences of moves, while a and b denote single moves:

s~gt = A(s) = A1)
(s~ AL THAWCCHA(] =) = & ~at 29)
(s~gt)N(sa € Pg) = 3b.sa~gth

The first condition means that if two sequences are equivalent, then each of
their moves will have the same label where a label can be one of the four cases
(PQ,PA,0Q,0A) as previously mentioned. This also implies that the two se-
quences will have the same length. Here we denote the labeling function by A*
instead of A which was defined for single moves and not sequences. The second
condition simply states that if two sequences are equivalent then any two prefixes
of these sequences will also be equivalent, provided they have the same length. The
third condition, on the other hand, implies that it is always possible to extend two

equivalent sequences while maintaining their equivalence.

2.2.5 Category of Games

In the context of game semantics, games are used as the semantic domain when
assigining denotations to programs. A program is interpreted as a strategy over a
game. In order to define a mathematical structure for the domain of games and to
investigate its properties, category theory is used [9]. To define a category, we need

to define the following [94}:
« Objects.

 Arrows (morphisms).

30

+ Relationships of arrows to objects: Each arrow f relates two objects, its do-
main dom f and its codomain cod f. For instance, in f : A — B, dom f = A,

and cod f = B. We can also use the notation A 4 B

+ Composition of morphisms. For any two morphisms f and g, where A LB ,
and B % C, the composed morphism g o f means that A 2ol Composition

should be associative, i.e., ho(go f) =(hog)o f.

» An identity arrow ids, where A “4 A For any arrow A ER B, we have

idpof=fand foids=f.

A category of games is defined where objects are games. A morphism between
two objects (games) G and H is a strategy ¢ on G — H (0 : G — H), which
is sometimes written as G —o H. Th‘e composition of morphisins is defined to
be interaction between strategies; if we have ¢ : G — H, and 7 : H —o I, the
composition of these two strategies is ;7 : G —o I. The composed strategy o; 7 is

formally defined as:

o;7 = (ol|lr)/H ={s1(G.])|seoalr}
olr = {se(Mg+My+M) |s|(G,H)eoAs|(H]I)erT} (2.10)
s | (G, 1) is shorthand for (s [G) | 1

This is similar to the process algebra concept of “parallel composition plus
hiding” [9]. An example is shown below, first by giving the individual strategies
o and ¢/, then ol|o’ and finally deducing the strategy o; ¢’ by hiding moves in the

game H:

31

hl O ’i] O
he P hy P
hs O hy O
g1 P ig r
g2 O i3 O
hy P hs r
¢ % TH TTH' % 1
I i
: : i1 O
i hli P
1
:h'l : O oo’
! i H — 1T
Lhy : P
j I i1 O
! ha | o .
i ! hidiny 9 I
? L R P — 0
. i3
: : 13 O P
| I g
| ha P 1 ;
I 1
o 10 "
} 1
g2 : : O
i I
h 1P

The identity morphism is the copy cat strategy id; over the game G — G
(G fﬁ, G), which is denoted by G — G. Sometimes, the strategy is written G, Ecg: G,
to differentiate between the two instances of gamne G. An example of a copy cat
strategy is given below, where moves of the game G are denoted by a; for moves of
the opponent and b; for moves of the proponent, ¢ = 1,2,3,... Here, we notice that

moves of the opponent in G, are mapped by the proponent in Gj.

32

idg

Gy — Gy
ay O
a P
by 0
by P
as (@)
as r

The formal definition of a copy cat strategy is given in (2.11) below:
idg = {s € PZ%, | Vt even-length prefix of s : ¢ | Gy =t | Gy} (2.11)

It is shown in [9] that the previous definition of the category of games gives
rise to a Cartesian Closed Category (CCC).

In this chapter we have introduced basic concepts of security protocols and
game semantics. These concepts will be used througout this dissertation with the
same notations. In the next chapter, we survey the state-of the-art in the specifica-

tion and verification of security protocols.

33

Chapter 3

Specification and Verification of

Security Protocols

Formal analysis of security protocols starts by choosing, or designing, a model that
formally expresses the main protocol features, namely: Message construction, com-
munication steps and the intruder. In order for the model to be used for actual
analysis of protocols, it should be equipped with a certain language that will enable
the forinal specification of protocols. This language allows the “coding” of a pro-
tocol into model components. At this stage, formal verification can start; it uses
these components in order to reason about protocol behavior and ascertain that it
satisfies its required properties. The properties, of course, should be expressed in a
language related to the model. This general view of the formal analysis of security
protocols encompasses both model checking and logic-based techniques.

This thesis is based on the idea of using game semantics as the underlying
model for the specification and analysis of security protocols. In this chapter, we
survey the state-of-the-art in formal specification and verification methods as ap-
plied to security protocols. First, we discuss different modeling techniques, we then
present, various formal verification methods along with the most prominent software

tools in security protocol analysis.

34

3.1 Modeling Security Protocols

The primary and crucial step in the application of formal methods to the analysis
of security protocols is the choice of an execution model. This choice will determine
the expressive and analytical power with which the protocol can be analyzed. The

protocol model should take into account the following features:

» The computation steps done by communicating agents in order to compute

messages before sending them.
» The communication steps between agents.

+ The presence of a malicious intruder that can manipulate messages sent over

the network.

+ The cryptographic operations used in protocol messages, e.g., encryption,

hashing, generation of random numbers, etc.

Moreover, some protocol models may also consider the possible presence of
dishonest agents or some real-time aspects such as timeouts and timestamps. Dis-
honest communicating agents trv to “cheat”, and in some protocols such as fair
exchange protocols [74], their behavior is considered. Real-time aspects, on the
other hand, can also be analyzed [89] in order to verify some protocols such as the
Wide-Mouthed Frog protocol [29] that uses timestamps.

In the next subsections, we will describe different published models of security
protocols. We begin by introducing intruder models since they are a vital part of
the analysis. Then we present protocol models classified into into two categories:

Behavior description models and logic-based models.

3.1.1 Intruder Models

An intruder model addresses the question of intruder capabilities. Namely, what are

the messages the intruder is able to collect and generate. More specifically. what

35

is the initial knowledge of the intruder before protocol execution, and how does its
knowledge increase during protocol execution. This increase in knowledge is due to
messages that the intruder intercepts and to computations it is able to do. With
respect to computations, two different. approaches exist: The formal approach and
the computational approach. In the formal or Dolev-Yao approach, which originated
in the work of D. Dolev and A.C. Yao [44], messages are formal, i.e., symbolic, terms.
Computations with messages are also symbolic and follow a defined set of rules as will
be explained below. In the computational approach [53], messages are bit-strings
and the intruder is a probabilistic polynomial-time (PPT) Turing machine that
performs computations on messages. The methods and techniques of cryptanalysis
are used, they involve the notions of probability and partial information all of which
are absent in the formal model. It is established that a computational intruder
is more realistic than a formal one since it deals with bit-strings and can carry
out numerical calculations. The formal approach, however, is more suitable for
automatic verification {13, 25, 111}. Some research work was done in order to bridge

the gap between the two approaches [6, 38].

Original Dolev-Yao Model

This Model is due to D. Dolev and A. C. Yao [44] and is the first formulation of a
formal model of the intruder. It has been extensively used ever since. The model
assumes that the intruder has total control over the network and has the following

capabilities:
« It can monitor all messages sent through the network.
+ It can intercept (i.e., block) messages.

It can generate new messages from its initial knowledge before protocol exe-

cution and the messages it collects during the execution.

36

+ It is a legitimate user of the network and therefore has its own public key and
can send messages to agents, receive messages from agents, initiate a protocol

with any other agent, etc.

It is assumed that cryptographic operations are unbreakable, i.e., the perfect cryp-
tography assumption, and that the cipher text reveals no information about its plain
text. The‘intruder kunowledge is defined by a set of formal fules that specify which
messages the intruder can deduce given the set M of messages it already obtained.
The intruder starts out with the set M containing its initial knowledge such as the
public keys of all agents. It then adds to M all messages exchanged on communica-
tion channels, since it has total control over the network. In the original Dolev-Yao
model, the set of rules includes only encrypting, decrypting, pairing and unpairing
of messages. The assumption of perfect cryptography implies that decryption is
impossible without knowing the key. Below, we formalize these rules in a deduc-
tive style where M m means that message m can be deduced from the set M of

messages.

(know) ———— m e M
MEm

MFm MFK MEFmg MFK

(encrypt) (decrypt) (3.1)
M+ myg MEFm
. MFmy MFmy _ Mt my, mo

(pair) (unpair)

M}_m],mg Ml-ml M‘_mg

The advantages of the Dolev-Yao model is that it enables automatic verifica-

tion of protocols. However, we can summarize its limitations to be [83]:

+ The absence of cryptanalysis which means that we cannot incorporate any

known weaknesses of cryptographic operations into the verification process.

« The absence of probabilistic information. for instance the properties of any

37

used pseudorandom number generation or any statistical analysis that can be

made by the intruder.

« The absence of the notion of partial information, for instance the intruder can
know some information about the plain text from its corresponding cipher text

such as parity check.

Extended Dolev-Yao Model

Some research papers [3, 37| investigate increasing the power of the intruder by
expanding its capability to generate messages. This is done by incorporating the
characteristics of the cryptographic system in use into the analysis. In this case,
messages are terms of a term algebra [112] that has a signature ¥ and that is
equipped with a set F of equations. This set expresses the algebraic properties of
the cryptographic system, it also generates a congruence relation =g between the
terms (messages). To determine if two messages m; and m, are congruent, i.e.,
my =g Mg, term rewriting techniques are used. In order to take congruent terms
into account when analyzing protocols, the set of deductive rules of the Dolev-Yao

system in (3.1) above is extended by the rule:

M mq
(equation) —————— my =g M2 (3.2)
M+ mo

The rule above basically means that of the intruder can generate m;, then it

can generate may, if m; and m, are congruent under the set E of equations.

Computational Model

The computational model of the intruder is one that involves cryptanalysis. As
mentioned earlier, the intruder is assumed to have certain computational capabil-

ities. and is generally modeled as a Probabilistic Polynomial Time (PPT) Turing

38

machine having messages as input. These messages are sequences of bits upon which
the Turing machine can perform computations. This model is used in cryptographic
analysis of protocols the most famous of which is the concept of provable security
[53]. In this case. security depends on the computational complexity of a known
problem, such as quadratic residuosity modulo composite integers [65]. This means
that if an intruder is able to break the security of the cryptographic system, then it

is able to develop an efficient algorithin for this problem.

3.1.2 Behavior Description Models of Protocols

Models that describe protocol behavior are basically transition systems in which
each agent possesses a countable set of states and communicates with other agents
through the network. The global state of the system depends on the state of each
agent and the messages in transit in the network. In the following, we present the
main behavior models used for security protocols, namely, finite state machines,
strand spaces, the model of the inductive approach, process algebra, and, finally, a

game-theoretic model.

Finite State Machines

In this model, communicating agents are finite state machines. The intruder is
modeled by the set of messages that it knows and the set of actions that it can take,
which gives rise to a nondeterministic finite state machine. The nondeterminism
stems from the fact that we cannot predict what exact message the intruder will
send, since it can send any message that it can deduce from its knowledge. Message
computation is implicitly modeled by transition rules that specify the structure of
output messages given the reception of expected input messages. Communication
takes place via shared variables or queues. Several examples exist in the literature
[83, 85, 101]. Also, several techniques are presented [102] to reduce the state space

and render the model more efficient to verifv. We give helow an example using the

39

Needham-Schroeder public key protocol [87].

The protocol is described using standard notation as:

Stepl. A— B: {Na, A}k
Step2. B— A: {NA, NB}KA (33)
Step3. A— B: {Np}k,

The system is modeled as three commnunicating finite state machines [85], and com-
munication takes place asynchronously through the global variable net. The first
machine is that of the initiator, playing the role of A above, the second is the respon-
der, playing the role of B and finally the last is the intruder. As an example, the
initiator has three states: I_SLEEP, I_WAIT, and I_COMMIT and two transitions. The
first transition fires from the I_SLEEP state and so the output, i.e., the first message
of the protocol, is assigned to the variable net and the state is changed to I_WAIT.
The second transition fires from the state I_WAIT upon receiving the message of step
2 of the protocol, which means reading the variable net and checking that it has
the right structure and that it is destined to the correct initiator since the system
may have more than one. The state is then changed to I_WAIT. The responder,
on the other hand has two states: R_WAIT and R_COMMIT and one transition. The
tricky part of the system is mmodeling the intruder as a finite state machine. The
intruder model used is that of Dolev-Yao. However, some restrictions are imposed
in order to reduce the state space. For instance, the intruder is not modeled as
a non-deterministic finite state machine that can send any message at any time.
Instead, the messages sent are restricted to only those that a communicating agent
will accept according to the checks it makes on the message format. This does not
undermine the capabilities of the intruder since it makes no sense to allow it to
send messages that will later get refused by other agents. The system can then be
run using various configurations and the reported results [85] show that when hav-

ing two initiators, two responders and an intruder, the number of generated states

40

is 514550. This data exemplifies the well-known problem of state explosion when
specifying systems as finite state machines. To reduce the number of states, several

techniques are used [102], they include:

« The intruder always intercepts all messages and then it can send the same
message it intercepted or another one to the honest agent waiting to receive a

message.

o When there is a choice in the state graph between the intruder sending a
message and an honest agent sending a message, we choose the path where

the agent sends the message.

The soundness of the above techniques is proved by showing that any attack
that is discoverable in the large state space will also be discoverable in the reduced
state space.

Aside from the state explosion problem, a criticism to this approach is that
it is not usually straightforward to model agents, and particularly the intruder as
FSMs. The same applies to the algebraic properties of messages. Finally, there is no
unified approach to the specification of security properties that have to be satisfied

by the system of communicating FSMs.

Strand Spaces

A strand represents a sequence of actions performed by a certain agent in a protocol
session. Each action can be either sending or receiving a message. A strand space
[46, 47) is a set of strands and a mapping between each strand and a sequence
of messages. The mapping need not be injective so that two strands may map
to the same sequence of messages. In this way, a strand can be thought of as an
actual execution of a sequence mj;.my.mg ... of messages by an agent. This sequence
represents one session of the protocol and if the agent is involved in more than one

session at the same time, then each session is represented by its own strand. The

41

messages themselves are signed terms of an algebra where the + sign means that
the message is sent and the — sign means the message is received. Messages are
defined by the following grammar:

Msg ::i=+Trm | — Trm

(3.4)
Trm = Txt | Key | Trmgey | [Trm, Trm]

In (3.4) above, Txt represents atomic terms (i.e., agent names and numbers),
Key represent keys and the last two terms represent encryption of a term with a key
and the concatenation of two terms, respectively. Each encryption key K is assumed
to have a decryption key K. It is also assumed that typing rules will allow agents
to differentiate between different types of terms, for instance, an encrypted term
will not be confused with a key.

Each communicating agent is represented by a certain strand that indicates
which messages this agent receives and which messages it sends and in what order.
The order is imposed by the actual sequence of messages in the strand. In graphical
terms, a strand s that is NV messages long is a graph with N nodes (vertices). Each
node corresponds to a certain message on the strand. For a given strand s and a node
n, term(n) is the message in s that corresponds to n, and index(n) is the index
of this message on the strand, where the index of the first message equals 1. There
are two types of directed edges: Edges that connect two nodes of the same strand
and edges that connect two nodes on different strands. An edge of the first type
is directed from a node n; to a node n, if and only if index(n,) = index(n;) + 1,
whereas an edge of the second type is directed from a node n; to a node n, if and
only if term(n;) = +a and term(ny) = —a. The set of nodes together with the
edges define a graph that represents the strand space. A bundle is an acyclic finite
subgraph of this graph such that if any node in the bundle is at the destination
of an edge, then the bundle also contains the node from which the edge originates.

Intuitively, strands represent communicating agents and bundles represent one or

42

more complete protocol sessions between the agents.

Therefore, message computation is implicitly modeled by the structure of mes-
sages as terms of an algebra and communication steps are modeled by the edges that
counect. two nodes having the same message but with different signs. The intruder,
on the other hand. is Dolev-Yao and is modeled by speéial strands called penetra-
tor strands. They represent the possible manipulations that can be done by the
intruder to messages, namely: (1) creating an atomic message (the strand will have
a single message, i.e., +t) (2) blocking a message (—t), (3) forwarding a message
(the intruder will receive the message then send it without change ,i.e., —t.+1), (4)
concatenating messages (—g. — h. + [g, h]), (5) separating concatenated messages to
their components (—[g, h}. + g. + k), (6) generating keys (+K), (7) encrypting mes-
sages with keys (—K.—t.+1x), and finally (8) decrypting messages with known keys
(—K~1.—tx.+t). We can also combine the previous strands to have longer strands
since the intruder can be engaged in successive interactions with other agents.

Strand spaces are called infiltrated if they contain penetrator strands. Figure
3.1 shows the infiltrated strand space of the Needham-Schroeder protocol. It has
five columnus, the leftinost and the rightmost ones show the strands for agent A and
agent B respectively, whereas the three middle columns represent a bundle in the
infiltrated strand space of the protocol.

It was pointed out [57] that the strand space model does not make a clear
distinction between an agent and a strand. We share this view, and think that this
will limit the ability to analyze multiple runs of one protocol executed by the same

agent, or multiple runs of different protocols for that natter.

Model of the Inductive Approach

In the inductive approach [92], a protocol is a set of traces, where each trace is a
sequence of events. Events represent different operations such as sending a message

from one agent to the other or storing a message. Messages used in an event are terms

43

+{Na. A kg {NaAYkp
{NaA}xp ERLRIPS
{Na.NB}k 4 +{Na,NB}k ,

—{Na,NB}x, ¢ {Na:NB}k 4

+{NB}kp ¢ ¢ {NBl}kp
4 {NBlKp ¥ -{NB}xg

Figure 3.1: Attack on the Needham-Schroeder protocol.

of a term algebra with variables, where variables are used to represent messages
that agents are willing to accept without verification because they do not know the
message beforehand, e.g., the message is encrypted with a key that they do not have.

Messages are defined by the following BNF grammar:

Msg ::= Agt | Key | Nat | Var | [Msg, Msg] | CryptKeyMsg (3.5)

In the production rule above, a message can be an agent name, a key, a natural
number (to répresent nonces), a variable, the concatenation of two messages or the
encryption of a message with a key. The symbol m is used to range over messages,

i.e., sentences derived from Msg. Agents, keys, nonces, and variables are specified

by:

Agt:=A|B| ... Key = K | Kx' | Kap | Kip | -

(3.6)
Nat:=Np | Np| ... Varu=X |Y | ...

It is clear that both symmetric and asymmetric encryption are allowed, the

44

decryption key of a given key K is denoted by K ! where, for symmetric encryption,
Kuh = Kap.

In the paper by Paulson [92], only one type of events is presented and has the
form SaysA B m where A, B are agent names, and m is a message. This event is
meant to represent the transmission of message m from A to B. Traces of events,
which represent possible protocol executions, are defined inductively by a set of rules
that determine how a trace can be extended by an event. For any protocol, there
exist two sets of rules: Those that are protocol-dependent, and those that are valid
for any protocol. Before giving an example, we discuss the intruder model. The
intruder is Dolev-Yao and therefore have access to all messages sent to the network.
Blocking messages is implicitly modeled by the fact that there will be valid traces of
the protocol in which an agent does not receive the message it expects. This is the
case since agents are not required to respond to every message they receive, even if
it is valid. In order to model the intruder capabilities to generate messages, let H
be the set of messages in a certain trace evs, i.e, they appear in the events of the
trace, H also contains the messages that are publicly known such as agent names
and public keys. Two sets of messages are defined inductively from H, these are

analzH and synthH, they are defined by the following rules:

meH = m e analzl
[m1,mz] € analzH = m, € analzH A m. € analzl
CryptK m € analzH A K~! € analzH = m € analzH
meH = m e synthH
my € synthH A my € synthH = [m;, m] € synthH
m € synthH A K € synthH = CryptK m € synthH

(3.7)
An intruder can generate a message m from a trace cvs if and only if m €

synth(analzH). The intruder can then send m, this is modeled by the event

45

SaysSpy A m, where Spy denotes the intruder.

We note here that, in the inductive model, message computation is modeled
by the structure of messages using algebraic ‘operators, and communication steps
are expressed using events of the form SaysA B m. The intruder’s knowledge is
defined using the two operators: synth and analyz that model its capabilities to
analyze and construct messages.

We now give an example using the Needham-Schroeder (NS) protocol defined
in (3.3). The protocol is defined as a set Pyg of traces (i.e., sequences of events)
by the following set of rules, where a, (3, v are traces and for a trace evs and event
v, we denote the concatenation of v to evs by evs.v. The rules define the set Pyg

inductively:

evs € Pyg
evs.SaysA B CryptKp [Na, A] € Pns
Conditions: A # B, N, is a fresh nonce

a.SaysA’ B CryptKp [Na, Al.B €Pns
a.SaysA’ B CryptKp [Na, Al.B.SaysB A CryptK, [Na, Ng] € Pyns

Condition: Np is a fresh nonce

a.SaysA B CryptKp [Na, Al.3.SaysB’ A CryptK s [Na, Npgl.y € Pns
o' .f.SaysB’ A CryptK, [Na, Np].y.SaysA B CryptKg Ng € Pns
o« = a.SaysA B CryptKp [Ng, A

(3.8)

The rules in (3.8) are derived from the protocol, we note the following:

e In the premise of the second and third rule, the use of B’ indicates the fact
that an agent cannot be sure of the origin of the message relying on the source

address since it can be spoofed.

46

« The premise of the third rule contains two events in the sequence to clearly
indicate which agents are communicating in each step. So, we notice that in
the last event in the conclusion of the rule, agent A sends a message to agent B
although it may have received a message from another agent B’. In fact, this
agent [3 is the same to which agent A sent the first message of the protocol,

i.e., SaysA B CryptKp [Na, Al

In rules (3.8), we did not use variables since all keys are public, however,
we illustrate their use using a toy example, where we have agents A, B and a
trusted server S with which A and B share secret keys K s and Kpg respec-
tively. Consider the following two steps: A — B : {A, Na}k,; and then B —
S :{B, Np,{A, Na}x4s } xps, the rule corresponding to the second step would be:

a.SaysA' B X.p €P
a.SaysA’ B X.3.SaysB S CryptKpg[B,Np, X] €P

(3.9)

Here, we use X since B has no way of knowing the contents of the message since it
does not have the key K s. In this case B can accept any message and just sends
it inside the message that it is sending to the server.

In addition to protocol dependent rules, there are rules that apply to any
protocol. The first rule is that the empty sequence is a valid trace. The other two
rules concern the intruder. Assume evs is a valid trace of any protocol, then evs

can be extended by any of the following events:

» SaysSpy A X, where A is an agent and X € synth(analzH) as mentioned

above.

» SaysA Spy [Na, Np, K], where A is an agent, Nx, N are nonces and K is a
key.

The first rule indicates that the intruder can send anv inessage to an agent. provided

that it can create this message out of its initial knowledge and the messages that

47

have been sent to the network. The second rule models the possible accidental loss
of a key, where the nonces are used to indicate the session in which the key was lost.
Given a certain protocol, rules that are protocol-dependent have to be formulated.
Then, these rules, together with the general rule will define the set of the protocol
traces, which can be used for analysis.

The main characteristic of the inductive approach is the ability to prove prop-
erties about security protocols without enumerating all possible traces. Therefore,
the analysis is not limmited to the finite case. However, coding a protocol as inference
rules is not a straightforward task and requires experience. The same also applies to
the formulation of security properties which are dependent on the particular proto-
col under analysis as can be seen from the work by Paulson [92]. This dependence
of the properties on protocols calls for experience in using the software tools and

reduces the code that can be reused from one protocol to another.

Process Algebra

In this approach, the behavior of each agent is described by process terms that can
have constructs for both computation of messages and communication steps. A
protocol session is expressed as several instances of processes running in parallel.
Examples of research works using these concepts are the papers by Lowe [70] and
Abadi and Gordon [5]. The intruder in some approaches is modeled by the process
algebra notion of “envirommnent” [5]. In other approaches, however, it is modeled as
another process in the system [70]. In both cases, the model used is that of Dolev-
Yao. As for security properties, secrecy of a message m, for instance, is expressed
by the notion of process equivalence [5], so that m is secret if the processes P(m)
and PP(m’) appear equivalent to their environments. This notion of secrecy will be
discussed in more detail in Section 3.2.3 about protocol verification. In the following,
we will discuss the Spi calculus [5] as a prominent one developed specifically for

cryptographic protocols. It is worth mentioning that other process calculi, such as

43

CSP, which were developed for general concurrent processes, were used to analyze
security protocols [70].

The Spi calculus [5] is based on 7-calculus [82]. There are several reasons for
this choice as mentioned in [5]: First, the 7-calculus has an operator that allows
the creation of new names (constants or channels) which can model the generation
of keys or random values, second, this operation allows the “hiding” of the newly
created name in a certain scope where only the processes in the scope can see the
new name, third, the scope of the new name can be extended (scope extrusion)
when the name is sent to a process outside the original scope. All of these features
fit quite well for use with security protocols. However, since the m-calculus was
originally designed for use with mobile concurrent processes it lacks expressions
needed to specify security protocols, such as encrypted terms or the decryption
process. Abadi and Gordon [5] extended the w-calculus with such operations to

produce the Spi calculus, the syntax of which is given below:

Term ::= Name | Var | 0 | suc(Term) | (Term, Term) | {Term}rerm (3.10)

In the syntax above, a term can be a name (usually used for communication chan-
nels), a variable, the character 0 (zero), a successor of another term, a pair of terms,
or a term encrypted by another term. It is clear that terms represent most of the
data that a security protocol may deal with (e.g., there is no mention of hashing or
signatures). We use L, M, N for terms, n for names, z,y,... for variables. Agents,

on the other hand, are specified by processes, for which we use the letters P, Q. R.

49

Their syntax is presented below.

P,Q,R .=

M(N).P Outputs term N on channel M, then behave as P.

M(z).P Receives an input on channel M, then behave as P,
binds z in P.

PlQ Parallel composition of P and Q).

(vn)P Creates a new name n, binds n in P.

P Creates parallel replications of P.

[M is N|P Behaves as P provided that M and N are the same,
otherwise it is stuck.

0 Nil process, does nothing.

let(z,y) = M in P If M = (L, N) it behaves as P[L/z, N/y] (i.e., L and

N replace z and y), otherwise it is stuck.

case M of 0: Psuc(z): Q Behaves as P if M is 0, and as Q[N/z] if M is
suc(N), otherwise it is stuck

case L of {z}n in P Behaves as P[M/z] if L is {M}y, otherwise it is

stuck.
(3.11)

Referring to the discussion in Section 2.1.3 about roles and agents, the Spi
calculus provides the tools to specify roles and agents. This is by defining the notions
of abstraction and concretion which are close to, but different than processes. An
abstraction has the form (z)P, where P is a process and the abstraction binds z
in P. Intuitively, it can be thought of as a process having the form n(z).P where
n is the name of a channel that we omit in the abstraction. A concretion has the
form (vma,...,mg){M)P, it is as the process (vmi)...(vmy)7(M)P, a shorthand

for concretions is (vm){M)P. An interaction between an abstraction F = (z)P and

50

a concretion C = (vm){M)Q is written as F@C and defined to be:
FQC = (vm)(P[M/z] | Q) CQF = (vm)(Q | P[M/z)) (3.12)

As an example, we consider the first step of the Needhamn-Schiroeder protocol:
A — B :{A,Np}k,. We specify the role of initiator in Spi notation to be (7, 7)P,
i.e., an abstraction where 7 and j are variables representing identities of agents
playing the roles of initiator and responder, respectively. We note here that (¢, j)P
is shorthand for (z) let(i, j) = = in P. The process I is (vNa)&5{{(é, Na)} k,)-Q,
where () should specify the next steps that the initiator has to do. We notice here
the creation of the nonce and the use of j to know the key K and the channel ¢;;.
Other roles can be specified similarly and protocol sessions are interactions between
different instauntiation of roles.

Although process calculi successfully model distributed systems, we find that
their use with cryptographic protocols can complicate the analysis with concepts
not directly related to security properties. An example of these concepts is their use
of channels which complicates the treatment of the intruder. It is easier to consider

a single channel under total control of the intruder.

Game-Theoretic Model

A Game theoretic model for security protocols was introduced by Kremer and Raskin
[66, 67) where a protocol is regarded as a game between different agents that aim
at achieving their own benefit even if it means using cheating, e.g., not following
protocol rules. This setting is suitable for fair exchange protocols whose purpose is
to guarantee fair treatment for all players who abide by the rules. Thus, a protocol
is fair if it ensures that an agent playing with an honest strategy will eventually get
their exchanged item.

The model used by Kremer and Raskin to analyze fair exchange protocols is

51

based on the ideas of Alternating Transition Systems (ATS) [17]. An ATS adds the
idea of agents to transition systems. A system of several agents makes a transition
from one state to the other with the participation of all agents. Each agent possesses
a strategy and it is the interaction of these strategies that determines the state of thé
system. Formally an ATS S is a tuple (I, A, Q, 7, d), where Il is a set of propositions,
A is a set of agents, Q is a set of states, 7 : Q — 2! is a function that maps a sate
to the set of propositions that are true in this state, and finally 6 : Q X A — 22(@ is
a transition function that assigns to each agent, at a certain system state, a set of
choices. A choice is a set of states, which means that if the system S is in state g,
and a is an agent, 6(g,a) = {Cy,...,C,}, where each C; is a set of states. Let A be
a string of states, i.e., A € Q*, we call A an S-computation following the notation of
transition systems. We denote by A[¢], A[0, 4], [0, 0o] the i-th state of A, the string
from g to g;, and the infinite string goq; . . . respectively. A strategy f, of an agent
a is a function that maps a non-empty system computation to a single choice. In
other words for a computation A.g and agent a, we have f,().q) € d(q, a).

In order to see how an ATS S proceeds through transitions we assume an
S-computation).g, i.e., the system is currently in state q. To determine the next
state ¢ each agent a will have a set of choices, i.e., d(g,a), and out of this set,
a will pick up one choice C, according to its strategy f,. The next state ¢ is
determined by {¢'} = Ny,ea Ca, or, in other form, {¢'} = Nuea fu(}.¢). An essential
assumption here is that ,c4, C, is a singleton set. As an example, we consider
the famous prisoner’s dilemma [90], where the two players of the game are two
criminals A and B who committed a crime and got arrested by the police. During
investigations, they are interrogated separately and each one of the them can either
confess to the crime or deny doing it. Therefore, the system has four possible states
Q = {A-,-B,AB,——}, where A— means that A confesses while B does not,
— DB is the inverse situation, in AB both A and B coufess and finally —— means

neither of them confess. The set II of propositions contains only two propositions:

92

A confesses and B confesses and we define a function 7 that maps states to
propositions, e.g., 7(A—) = A confesses. We assume here that the interrogation
is done in rounds where, in each round, criminals are allowed to change their plea
according to the following rule: If a player confesses in one round they cannot change
their situation, however if a player denied doing the crime, they can either continue
denying or confess. In each round, the system will thus change state and we can

define the transition function to be:

5(A-, A) = {{A-, AB}) 5(~B,A) = {{AB,A-},{~B.~—})
5(AB, A) = {{AB, A-}} 5(~—, A) = {{A~, AB}, {——, —B}}
5(A-,B) = {{AB,~B}.{A~.~—}} §(~B,B)={{-B,AB}}

5(AB, B) = {{AB,~B}} 6(~—,B) = {{-B, AB},{--, A-}}

(3.13)
To clarify the basic idea, we compare between §(A—, A) and 6(A—, B) and recall
that the two players are interrogated separately. In 6(A—, A), the system is seen
through the eyes of A, in this case A knows that he confessed but he does not
know about B so, according to A, the next state will be either AR, which means
B confesses, or A— in case B does not confess. We can now compare this to the
situation of B in the same state A—. Using the same argument, 3 does not know
about A, yet he knows he has one of two choices: Either to confess or to continue
denying. In the first choice, the next sate, according to B, will either be AB or — DB
and in the second choice it will be either A— or ——. An external observer knows
however that the next state after A— cannot be —B or —— since A is not allowed to
withdraw his confession. In other words, the interaction of all players in the game
cannot move the system from A— to —B or ——.
As argued by Kremer and Raskin [67], modeling a security protocol directly
as an ATS would be unnatural and cumbersome. Instead, each agent is modeled
as a reactive module like the ones used by the model checking tool Mocha [18],

which has its own specification language based on Dijkstra’s guarded command

53

language [43]. A reactive module represents a system with constant interaction with
its environment. It is comprised of a set of guarded commands that manipulate data.

The syntax of guarded commmands is specified hy:

(guarded__command) := (guard) — (assignments)
{assignments) == (assign); ({assign);)* (3.14)
(assign) n= (var) := (expression)

In the grammar above, a guard is a predicate that evaluates to True or False and
an assignment list consists of at least one assignment where each assignment assigns
the value of an expression to a variable, e.g., expressions can be the incremented
value of another variable. Each agent (module) a has control over a set of variables
X, and we define X to be U, . p X.. The interaction between agents (modules) takes
place in successive rounds, where the value of variables z is updated to be 7’ € X/,
z' is understood to be “the value of z in the new state”. For all variables y whose
values are not changed by any command, we have ' = y. Updates for variables are
done according to the following rule: In a guarded command, if the guard evaluates
to True, the assignments are carried out in succession and the values of variables
are updated. An agent can update only those variables over which it has control.
Expressions, however, can involve any variable that the agent can see.

In order to map an ATS S = (II, A, Q, 7, 8) to a set of modules, we follow the

following steps:

« Each agent a € A is represented as a reactive module that has control over a

set of variables X,,.
» The set Il is a set of predicates over the variables in the set X = {J __a X,

» FEach state ¢ € Q is a certain valuation of the variables in X, i.e., a mapping
q: X — V where V is a set of values (symbols or constants). Hence, the state

is determined by the values of all variables, i.e., the state is ¢ if and only if the

54

value of each variable z is equal to ¢(z).

» As a convention, primed states ¢’ are understood to be valuations of variables
in the new state. If the old state is ¢, then ¢ and ¢’ agree on the value of all

variables that were not updated, i.e., Vz.z = 2’ = ¢(z) = ¢/(2').

« The mapping 7 maps a state (valuation) to predicates in Il that are true in

this state.

» Consider a guarded command &, with a guard and assignments, the two predi-
cates grd(g) and asn¢(q, ¢') are defined. The guarded command ¢ is said to be
enabled if the guard grd,(q) evaluates to True. In this case, the assignments
can be executed, which will update the values of variables. The predicate
asng(q, ¢') evaluates to True, in the guarded command ¢, if the value of each
variable z’ in the new state, i.e., after execution of ¢, is equal to ¢'(z’) and the

old value for each variable z is equal to g(z).

» The transition function d : Q x A — 22Q maps a state and an agent into a set
of sets of states such that:
(gota, a) = {{q € Q| Vxu-q(zu) = Gew(®a)} | € € Pungrde(goa) Nasng(qod, Gnew)}
where @, is the set of guarded commands of a. Intuitively, the transition
function means that by updating the value of some variables, the reactive
module (player a) is actually choosing a set of states. These are all the states
g such that the value of each variable z,, after the execution of some enabled
command £, is equal to g(z,). Therefore, changing the values of different

variables chooses a different set of states.

From the previous discussion, we can see that each agent (a reactive module)
contributes to the global state of the system by controlling a subset of variables,
where a state is determined by the values of all variables. To illustrate the general

idea, we assume an agent a has control over the variable z,. a certain guarded

95

command ¢, in ®, may increment or decrement the value of z, by one depending on
some condition (guarded commands may contain conditionals). Now, let’s suppose
under some state ¢, we have ¢(z,) = 1, then d(q,a) = {Qine, Quec}, where Q. =
{g: € Q| gi(z,) = 2} and Qy. = {q: € Q| g:(z,) = 0} the first set corresponds to
a incrementing the value of z, and the second corresponds to a decrementing z,.
The example can be easily generalized to the case where a controls more than one
variable.

An agent A in a security protocol that encrypts a message m, with key K,

to produce cipher text c4 can be modeled by:
A:maANKp—)y :=True (3.15)

All variables in the description above were considered boolean since they indi-
cate the knowledge of A, i.e., if A knew m4 and K, it can know c4. Each agent is
described as a reactive module following the lines explained above and the protocol
proceeds as an interaction between agents.

The previous model, based on game theory, was used for the analysis of fair
exchange protocols. To the best of our knowledge, no attempt has been made to
apply it in the verification of other protocols, e.g.. authentication protocols. It seems
this would not be an easy task since the model has no explicit mention of an intruder
controlling the communication network. Instead, the only malicious behavior is that
of the cheating agents.

Game Semantics and SPC

Loosely based on game theoretic concepts, the idea of using game semantics in
security protocol analysis was investigated in the Security Protocol Calculus known
as SPC [14]. The main characteristic of SPC is its emphasis on the interactions
between communicating parties and the intruder as moves in a game. However,

no verification methodology is developed that makes use of the calculus in order

56

to express security properties and verify protocols. Moreover, no attempt is made
to express algebraic properties of messages. More specifically, the features missing

from SPC are:

» Expressing the notion of freshness in the syntax.

. Having a complete denotational semantics.

» Modeling computational steps in security protocols.

+ Having a dedicated logic to specify properties of the model.
« Expressing branching-time properties.

« Having a software implementation or a model checking algorithm.

3.1.3 Logic-Based Models of Protocols

In Section 3.1.2, we presented several models of security protocols. They rely on
describing protocol behavior as a distributed system using different formalisms, such
as FSMs or process algebra. The described subsystems can then be executed and
their interaction analyzed for certain properties. In this section, a somewhat more
abstract view of protocols is introduced. This view is more concerned about what
happens in protocol interactions than how it happens. More precisely, it is concerned
about what logical properties are satisfied bv protocol participants and how these
properties change during protocol interactions. The advantage of this approach
is to simplify the analysis by disregarding irrelevant details. However, a highly
abstract view of protocols could lead to a coarse analysis that misses some security

weaknesses.

Multiset Rewriting

Although multiset rewriting [30, 45, 84] deals with states and transitions. we chose

to consider it as a logic-based approach and not a behavior description approach.

57

The reason is that a state is expressed by a set of logic formulas and a transition is
a change in the formulas. A state of the system is expressed as a multiset of facts,
where each fact is a formula of first order logic. A state transition, on the other
hand is expressed by a rule of the form [— r, where both I and r are multisets of
facts. The choice of first order logic has two main advantages: First, it can describe
the structure of messages since they are expressed as terms over a signature that
contains the necessary operation symbols such as pairing and encryption, second,
the use of the existential quantifier can be used to model the generation of new
values such as nonces. This becomes apparent if we take a look at the general form

of rules:

F,...,F,—3z,...,31,.G4,...,G, (3.16)

In the rule above, F; to F,,, and G; to G| are facts, where each fact has the form
Pi(t1,...tx), i.e, a k-ary predicate symbol applied to k terms, which is sometimes
written R(?). A rule means that if a state S contains all the facts in the left hand
side of the rule, the firing of a state transition takes place and the state changes to
S’. In the new state S’, all facts of the left hand side of the rule are destroyed and
the facts of the right hand side are created with all variables z; to z,, substituted by
“new” symbols. The “new” symbol condition is necessitated by proof rules of the
existential quantifier, since in order to prove ¢ from 3z . we need to derive ¢ from
¢|y/x] under the condition that y does not appear free anywhere in the derivation,
to avoid conflicts. The destruction and creation of facts is related to linear logic
which introduced the idea of a logic that consumes its resources. In other words, an
atomic formula A cannot be used twice in the same derivation and in case we need

A more than once, then we must have multiple copies of A. This is the idea behind

58

using multisets of facts instead of just sets. An example of a system is given below:

Signature: ¥ = {a,b,¢c, f1(.), fo(.,.,)}

Variables: X = {z,9,2,...}

Predicates: P = {I(.,.), (.), (., .)} (3.17)
Ry — Di(a, f1(b)), Pa(fala, b, c))

Ry: Pia,z) — Ty.Rx(z,y)

Rules:

The systemn specification above can be instantiated to a number of different
traces that represent its transitions from one state to the other. In all traces, we
start in a state Sy = {Pi(a, f1()), Pa(f2(a,b,c))} this is because the left hand side
of R; is empty. Since Sy contains P (a, f1(b)), then the rule Ry can be applied with
z = f1(b), the application of the rule will result in the destruction of Pi(a, f1(b))
and the creation of Ps(z,y), the value of z is already determined to be f;(b) and
the value of y can be substituted by any new term. The term we give for y should
be noted so that we do not use it again for another variable that is bound by an
existential qualifier. Different substitutions of the variable y will lead to different
traces of the system. Let the variable y be substituted by c, the new state will
then be Sy = {P2(f2(a, b, c)), Ps(f1(b),c)}. Let o be a substitution that satisfies this
condition of choosing new symbols, and R = | — r be a rewrite rule, we denote
by or the multiset of facts obtained by applying the substitution o to the right
hand side predicates, the same applies to the left hand side. As an example in rule
Ry =l — ry above, 0 = [z — fi(b),y — ¢, and so oly = {F(a, f1(b))} and
ory = {Ps(f1(b),c)}. We say that a rule R =1 — r enables arule R =1I' — 7" if
there are substitutions o, ¢’ such that or No’l' # 0. A theory is a set of rules and a
theory 7 precedes a theory 7/ if no rule in 7’ enables a rule in 7.

With respect to security protocols, a protocol is modeled by a set of rewrite
rules, i.e., a theory. In general, a protocol theory consists of an initialization theory

and a set of principal theories. The initialization part takes care of the initial

59

knowledge of protocol participants and the principal theories describe the change
of states of the protocol due to communication steps. Moreover, the intruder is
modeled by an intruder theory that is protocol-independent. In order for a theory
to be a valid protocol theory, it must have some properties. This is the subject of
the next discussion.

Let R =1 — 7 be a rule in a theory 7, I’ a predicate and P(?) a fact. We
note here that a fact is determined by the predicate symbol and the arguments so
P(ty,...,t,) and P(sy,...,s,) are the same fact if and only if Vi.¢; = 5;. We say
that R creates (consumes) P facts if some fact P(ty,...,t,) appears more (less)
times in 7 than in I. The rule R preserves P facts if all P(t,...,t,) occur the
same number of times in [and in r. A predicate P is persistent in 7 if no rule in 7
consumes P facts. Principal theories are theories that describe a certain role of the

protocol. They must have the following properties:

» They must have an ordered set of predicates, Ay to A, where Ay is called the

initial roles state.

+ Each rule [— r should contain exactly one A; predicate in [and exactly one

Aj in r where ¢ < j.

A theory with the previous properties is called a well-founded principal theory
and can describe the behavior of a certain protocol role going through the states
Ag to Ax. A theory 7 C 7’ is a bounded subtheory of 7/ if every rule R in 7 that
creates a fact F', then F either (1) contains existential quantifiers, or (2) is an initial
role state in 7/, or (3) is persistent in 7/. A theory 7’ is a well-founded protocol
theory if it is t.he disjoint union of well-founded principal theories and a bounded
subtheory 7 called the initialization theory. To sum up, a protocol theory consists
of an initialization theory and principal theories. Properties of principal theories
make sure that they describe progression through states of a protocol role, while

properties of initialization theories make sure that they create data (this creation is

60

expressed in the form of facts) that initializes the states for protocol roles.

A well-founded protocol theory is protocol-dependent, i.e., rules will depend
on messages and role states. The intruder however is described by a set of rules
called intruder theory, these rules are independent of any protocol and characterize
a Dolev-Yao intruder. They contain three unary predicates, namely the decom-
position, composition and memory predicates, which are denoted D, C, and M
respectively. The decomposition predicate represents the intruder’s capacity to de-
compose terms into smaller ones (smaller here means in terms of number of symbols).
The composition predicate, on the other hand, represents the intruder’s capacity to
construct terms, while the memory predicate is for the storage of terms. Another
predicate N is used where N(z) means the message z is sent to the network and
therefore can be known by the intruder. As an example consider the following

intruder theory:

N(z) — M(z)

D([z,y]) — D(z), D(y) Unpairing of terms (the term [z, y] is a pair)
D(z) — M(z) Storing messages

D(zy), M(K) — D(z), M(K) Decryption with a known key.

C(z),C(y) — C([z,y)) Pairing of terms

C(z), M(K) — C(zk), M(K) Encryption with a known key

(3.18)
As an example, we model just the first step of the Needham-Schroeder protocol
(A — B : {A Nalky), the full detailed specification is given in [30] with slightly

different, notations:

61

!

JK,3K 1. Agent(K, K1), KeyPair(K, K1)
Agent(K, K1), Ap(K)

Agent(K, K1), By(K)

Agent(K, K~1), Made Public(K)

3Ny« Ay (K Ky Na), Sendl({[K a, Nalbka),
MadePublic(Kp)

Agent(K, K1)
Agent(K, K1)
Agent(K, K1)
MadePublic(Kg), Ao(Ka)

Ll

!

(3.19)

The rules in (3.19) represent a part of the protocol theory of the Needham-
Schroeder protocol, it includes an initialization theory (the first four rules) and one
rule from the theory of role A, i.e., the principal theory for A. The initialization
rules state that an agent is characterized by a freshly created pair of keys, and
that the encryption key is made public. The last rule states that agent A creates a
fresh nonce and pairs the nonce with its public key, which represents its identity. It
then encrypts the pair with B’s public key and sends the encrypted message to the
network. In order to analyze a protocol, we combine its theory with the intruder
theory and step through the transitions of the whole system.

Finally, we notice that message computation is modeled implicitly by the sig-
nature of the term algebra. Transmission of messages is implicitly modeled by the
change of knowledge of each agent, i.e., knowledge increases with the reception of
messages and facts express the local state as a function of knowledge. Intruder capa-
bilities are modeled as predicates and transitions, predicates represent the intruder
knowledge and transitions describe the change of this knowledge according to the
intruder capabilities to analyze and synthesize messages.

Multiset rewriting has been used as the underlying model for some research
efforts in security protocol verification [24, 31], and also for studying the complexity
of the verification problem [45]. We believe it has the advantage of being abstract

enough to formalize symbolic computations of security protocols in an intuitive

62

manuner. However, it does not in itself provide a verification methodology or a
formulation of security properties that can be verified using the model. Moreover,
writing a certain protocol’s specification as a set of rewrite rules is not always an

easy task.

Modal Logics

A modal logic, in the context of security protocols, consists of various statements
about an agent’s belief in certain messages or knowledge about these messages.
The logic also specifies inference rules for deriving new beliefs from available beliefs
and/or new knowledge from available knowledge. The most prominent amongst
modal logics is the BAN logic, proposed by Burrows, Abadi, and Needham [29]. It
was devised to specify and reason about authentication protocols. BAN deals with
time by ensuring that beliefs held in the past will not extend to the present. In
this regard, time is split into two epochs: Past and present, where present means
the current run of the protocol. Abadi and Tuttle [7] expand the BAN logic by
increasing its expressiveness and providing syntax and semantics rules. Moreover,
Syverson [105] further extends BAN by adding temporal logic operators, which
enabled the discovery of some attacks related to causal consistency. The GNY logic
[55] developed by Gong, Needham, and Yahalom extends the BAN logic by adding
more concepts like “possession” which allows a principal to send a message in which
it does not believe but that it simply possesses. Another concept in GNY also is
“recognizability” that allows principals to recognize the messages they expect. In
the following, we provide a brief presentation of BAN.

The BAN logic deals with three sorts: Principals (A, B, S, etc.), keys (K4, K",
etc.) and statements (N4, Np, etc.). Statements are also called formulas and are
ranged over by the variables XY, ..., the variables P°,().... range over principals

and K ranges over keys. Any sentence in the logic will have one of the following

63

forms:
P believes X P thinks X is true.

P sees X P received X and can store it.
P said X P once sent X
P controls X P is authorized to see or produce X.

fresh(X) X has not been sent before.

X (3.20)
P P and () share K.
S p K is P’s public key.
P é Q X is a secret between I’ and @)
{X}x X is encrypted by K
(X)y Y is X'’s proof of origin

A protocol is modeled as a set, of logic sentences that follow the syntax above.
These sentences are supposed to express what each agent thinks about other agents
or messages. For instance, some of the beliefs of agents in the Needham-Schroeder

protocol are expressed as:

A believes fresh(/N,)
B believes fresh(Np) (3.21)

A believes A J-Vé B

The full protocol description is given in [29]. Message construction and transmission
are expressed implicitly as parts of the logic sentences. The intruder model is that

of Dolev-Yao, and its capabilities can be expressed by inference rules such as:

P believes ¥ Q P sees {X}x-1
P sees X

(3.22)

The rule above is meant to express decryption capabilities when the key is
known. Given a protocol description as logical statements, and using the proof rules

of BAN, verification is done by formulating security properties and proving them.

64

The main criticism to the BAN logic [27, 110} is that the translation from
protocol specifications to logical statements is an error-prone process. This “ideal-
ization” of protocols may lead to proving the correctness of the ideal version when,

in fact, the actual protocol is flawed.

3.2 Formal Verification of Security Protocols

In Section 3.1, we presented various models of security protocols. A model is usu-
ally developed in order to be able to rigorously study a protocol’s characteristics
and verify that it satisfies its intended properties. Several verification methodolo-
gies can exist that make use of the same model. In this section, we survey the most
prominent methods used for formal verification of security properties. Intuitively,
the main purpose of the verification is to ascertain that a protocol will actually
achieve the objective for which it was designed, even in the existence of a malicious
intruder trying to attack it. Hence, the verification process has two main purposes:
To prove correctness of protocol designs and to unveil possible attacks. Any verifi-
cation method aims to achieve at least one of these two goals. We begin by briefly
presenting a categorization of security protocols according to their participants and
design objectives, followed by a listing of the security properties that they should
satisfy. We then give a classification of protocol attacks that result when a protocol
fails to satisfy a required property. This is followed by an explanation of formal

verification methods which comprise both model-based and proof-based methods.

3.2.1 Classification and Properties of Security Protocols

The properties that a protocol should satisfy depend on the objective that it aims to
achieve. The objective is also related to protocol participants and may necessitate
the presence of special participants such as a trusted server. In this section, we

survey protocols according to their participants, objectives and the properties they

65

should satisfy.

Participant-Based Classification

With respect to protocol participants, security protocols can be classified into [99,
79]: Arbitrated, adjudicated and self-enforcing protocols. Arbitrated protocols are
the ones involving two or more protocol parties and another entity trusted by all
parties, sometimes called Trusted Third Party (TTP). The TTP is assumed to be
immune against intruder attacks and is involved on some protocol steps that require
mutual trust between the TTP and each of the protocol participants. Protocols in
which the TTP distributes cryptographic keys to participants are an example. In
such a case, each participant should trust the TTP not to reveal their key to any
other agent. A somehow similar category of protocols are adjudicated protocols
where protocol execution has a normal path in which the TTP does not interfere
and an exceptional path in which the help of a TTP is needed. An example is fair
exchange protocols in which participants swap items. In a normal protocol run, no
participant tries to cheat and everyone end up having the item they want. In case a
participant does not follow protocol rules and tries for instance to receive the item it
requested without sending an item in exchange, the interference of a TTP is needed
which acts as an arbitrator between complaining participants. Adjudicated proto-
cols represent a compromise when a TTP is needed since in the case of arbitrated
protocols the TTP can become a bottleneck in the communication network. This is
the case since a single TTP is usually involved in several protocol sessions and with
different participants as it is costly to set up multiple TTPs that everyone on the
network would trust. In order to avoid problems associated with TTPs completely,
self-enforcing protocols are designed. They are protocols whose design enforces cor-
rect behavior on all participants. In other words, if some participants try to cheat,
they will be detected and the protocol will stop. Of course it is not always possible

to design self-enforcing protocols as in case of fair exchange protocols for instance.

66

Objective-Based Classification

Another categorization of security protocols can be done according to the objec-
tive they try to achieve such as: Secret messaging protocols, key exchange proto-
cols, authentication protocols, fair exchange protocols, e-commerce protocols, zero-
knowledge proofs protocols, and non-repudiation protocols. Of course, some pro-
tocols may achieve more than one of these objectives such as key exchange and
authentication. In secret sharing, two or more participants share a secret message
and the message cannot be known without participation of all parties or some of
them. For instance, the secret can be an encrypted message and the plain text
cannot be known unless both the cipher text and the key are known. An example

is the Rivest-Shamir-Adleman three pass protocol [99)]:

A— B:{m}k,
B— A:{{m}r,}kz (3.23)
A— B:{m}k,

In this protocol, A wants to send to B an encrypted message without having to
share keys. The encryption system used must have the property that {{m}x,}xy =
{{m} g}k, so that, in the second step, A can decrypt the message that it received
from B and get {m}x,. Of course sending a secret message can be part of a larger
protocol in which A and B begin by exchanging keys. An example of a key exchange

protocol is the Diffie-Hellinan key exchange [99)]:

A and B generate secret nonces N, and Np, both are between 1 and ¢

A-— B:a,qg,a™ mod g l<a<g

B — A:a"B mod g (3.24)
A computes key: K = (a2 mod ¢)V4 = (a’8)N4 mod ¢

B computes key: K’ = (a¥* mod ¢)"® = (aM*)¥8 mod ¢ = K

67

It is obvious that computations are done in a finite field, i.e., the Galois field GF(g)
(where ¢ is a prime power), and the security of the computed key stems from the
fact that it is difficult to compute logarithins in such fields.

Authentication protocols are meant to ascertain agents about the identities of
other agents communicating with them. This is crucial in communication networks
since the source address of a message cannot be relied on as an indication of the
actual message source. An example of a famous authentication protocol is the
public key Needham-Schroeder protocol presented in the standard notation in (2.1).
A hierarchy of authentication definitions is developed by Lowe [71].

Fair exchange protocols are used when agents would like to exchange items
they possess against items in the possession of other agents. The situation can
arise, for instance, when two contracts are exchanged. The “fairness” condition here
means that no agent should be put in a disadvantage with respect to other agents
during any step in the protocol. In other words, an agent that follows the exact
protocol rules should not be vulnerable to cheating from malicious agents. Such a
condition is not satisfiable without the existence of a TTP [74, 114]. However, there
exist designs of “optimistic” fair exchange protocols [21], which are adjudicated and
hence aim to solve communication bottlenecks associated with arbitrated protocols.
A practical and popular example of fair exchange protocols is e-commerce. An e-
commerce protocol such as SET [73, 99] is aimed at securing credit card transactions
via the Internet by providing both customers and merchants with a way to register
with a “payment gate” such that the identity of a customer is verified before their
credit card is charged.

Interactive proofs [54] are proofs in which a prover tries to convince a prover
with the validity of some assertion. The proof proceeds as a series of challenges from
the prover followed by responses from the prover. At the end, the verifier declares
whether or not he is convinced. A question arises here about how much “knowledge”

the prover must convey to the verifier in order to convince him. The minimum

68

knowledge is whether the assertion is valid or not, i.e., one hit. Interactive proofs
are called zero knowledge interactive proofs if the only knowledge that is conveyed
to the verifier is this minimum knowledge. Iuteractive proofs of knowledge (48, 16},
on the other hand, are interactive proofs about the “knowledge™ of the verifier. In
other words, the verifier does not aiin to prove the validitv of the assertion, i.e.,
whether the assertion is true or not, but to prove to the verifier that he knows
whether the assertion is valid or not. In this case, the knowledge that is conveyed
to the verifier has a minimum of zero bits since the verifier is not even told whether
the assertion is true or not. Zero knowledge interactive proofs of knowledge are
the ones that achieve this minimum of conveyed knowledge, i.e., zero bits. Zero
knowledge interactive proofs of identity [48] are a special case in which the prover is
an agent trying to authenticate itself to a server (verifier) by proving to the server
that it knows a password (identity) without actually revealing the password. The
Feige-Fiat-Shamir protocol [48] uses this idea to authenticate agents to each other.

Non-repudiation protocols are used in cases such as certified e-mail [99]. The
objective of these protocols is that the sender of a message cannot deny sending
it (non-repudiation of origin) and that the receiver cannot deny receiving it (non-

repudiation of receipt).

Security Properties

A security protocol satisfies a security property if the protocol is successful in achiev-
ing its design goal. Security properties are therefore related to design objectives and
are listed below:

Secrecy: A message m is secret in a protocol, if the intruder is not able to deduce
m from its knowledge. The previous definition implicitly assumes that the intruder
is either capable of knowing m or cannot know any information about m. Therefore

a more strict, definition of this propertv is that the intruder should not be able to

69

distinguish between a protocol run (session) containing m and another run contain-
ing a different message m’

Authentication: Informally speaking, authentication of agent A to agent B means
that agent B is certain that A is not lying about its identity. It is not straightfor-
ward to formalize a definition of authentication and in [71], several definitions are
given that vary in their strictness. The definition of “agreement” is that two agents
are authenticated to each other if, at the end of a protocol run, they both agree
on some facts. The simplest fact is that they were both running the protocol one
agent as an initiator and the other as a responder, this is called weak agreement.
In addition to this fact, full agreement requires that both agents A and B agree on
the value of a set of data and each run of A corresponds to a unique run of B.
Integrity: In the case of message secrecy, an intruder may not be able to gain any
knowledge about a message m, however it can corrupt some protocol messages in a
way that will prevent an honest agent from receiving the correct value of m. Message
integrity means that the intruder is not even capable of corrupting the message. If
it were corrupted, then an honest agent should be able to know this.
Non-repudiation: As mentioned earlier, non-repudiation means the incapability
of an agent to deny sending or receiving a message.

Fairness: This property is related to fair exchange protocols and means that no
agent is put in disadvantage with respect to other agents when exchanging items.
In [67], this property is formalized in a game-theoretic setting since adversarial be-
havior between agents is assummed. Fairness is then defined as the existence of a
strategy for each agent A that guarantees the possibility of safe termination for A
regardless of the strategies of other agents. Safe termination here means that A will
either possess its own item or the item it wanted from the exchange.

Anonymity: Anonymity is a property allowing to hide the identity of some agents
while allowing them to send certain messages. A good example is a voting protocol,

where it is necessary that agents are allowed to vote without knowing the actual

70

vote of a certain agent.

3.2.2 Attacks on Security Protocols

In the previous section, we provided various examples of security protocols design
objectives. An attack on a protocol executed by a malicious intruder aims at making
the protocol fail to achieve its objective(s). For instance, an attack on a protocol
that is designed to convey a secret message is successful if the intruder is able to
know some information about the message or the whole message. With respect to
intruder actions, attacks can be active or passive. Active attacks (man-in-the-middle
attacks) are the ones where the intruder interrupts the flow of information in the
network by intercepting, modifying, sending or receiving messages. In passive at-
tacks (eavesdropping) the intruder just monitors the flow of messages in the network
without trying to intervene in the protocol steps. In such case, the intruder tries to
deduce knowledge to which it is not entitled from the collected messages.

Attacks on security protocols may be in one of the following categories de-
pending on the way they are executed:
Guessing attacks: These are attacks where the intruder is able to guess the value
of supposedly randomly created information such as nonces and some keys. Guess-
ing attacks are usually based on exploiting weaknesses of pseudorandom number
generators. Moreover, the intruder maybe able to monitor several protocol runs and
compare them for similarities.
Replay attacks: Replay attacks are common in the literature and in [106] a taxon-
omy is given for them. The intruder records messages and replays them later with
or without modification to some 1nessage components. In order to counter such
attacks, nonces are used to guarantee freshness of messages. This method is not
always successful as in the case of the attack [70] on the Needham-Schroeder (NS)
protocol shown below. It is important to mention here that the replay of messages

can take place in the same protocol run during which the messages were recorded

71

or in different protocol runs where the runs can happen concurrently (in an inter-
leaved manner) or not. The following attack on the NS protocol takes place in two

interleaved runs « and G:

a.l A—T:{Ns A}g,

B1 I(A) = B:{Nx Ak,

B.2 B — I(A):{Ns,Np}k,
.2 I — A:{Na, Np}tx,
a.3 A—1T:{Np}k,

B.3 I(A)— B:{Ng}x,

(3.25)

We notice that by the end of the § run, I impersonating A was able to authenticate
itself to B as A. It did this by replaying messages between A and B.

Type flaw attacks: Type flaw attacks are usually due to implementation where
an agent can accept a value of a certain type as being of another type. For instance
an agent can accept a key as a nonce or vice versa since both are numbers. At
the bit level all messages are similar, i.e., a string of bits, and the worst type flaw
attacks are where an agent can accept any message instead of any other. Another
situation is where an agent can distinguish compound messages (pairs and encrypted
messages) from basic messages (agent names, nonces, keys, etc.) but can confuse
basic messages. In all cases, type flaw attacks are avoidable with careful protocol
implementations.

Dictionary attacks: These attacks are brute force attacks in which the intruder
tries every value of a secret until it gets a successful protocol run. Attacks like this
are known against passwords or keys and can be made increasingly difficult by using.
longer passwords or keys.

Multi-protocol attacks: Two or more protocols may have similar structure of
messages and an intruder monitoring protocol runs of these protocols may be able

to replay messages between them. In [40], a survey is given about a number of

72

protocols and the possible attacks that can be mounted against them.

Cryptographic system attacks: These are attacks that stem from vulnerabilities
in the cryptographic systems used by the protocols and are studied in the field
of cryptanalysis. It is possible that a protocol, that is secure under the perfect
cryptography assumption, be vulnerable to a number of attacks once the properties

of its cryptographic operations are taken into consideration.

3.2.3 Model-Based Analysis

Cryptographic protocols are distributed systems with the added characteristic that
they use cryptographic operations and that an intruder is present. Therefore, general
methods and software tools of formal verification can be used to analyze them,
provided that careful thought is given to the modeling of their special characteristics.
The most prominent automatic formal verification techmique for distributed systems
is model checking [75]. It is basically an exhaustive search of the state space of a
system in order to make sure that a certain property is satisfied. Of course, when
the state space is very large or even infinite, efficient search algorithms have to
be developed. Some of these algorithms may even be semi-decidable, this will be
discussed further in the following.

Several general-purpose verification tools use model checking and are based on
various models. The models include, for instance, Petri nets, finite state machines,
and the calculus of Communicating Sequential Processes (CSP). The verification
process is automated or semi-automated using various tools such as Ina test [61],
Mury [85], Failure Divergences Refinement (FDR) checker [70], etc. Moreover, sev-
eral other verification techniques are specifically developed for security protocols.
Their advantage is that they provide an “easier” and more natural way of specifying
protocols and verifying them since, for instance, a model of the intruder is already
defined. In the following, we present both the general-purpose and the security-

specific methods based on automata analvsis, process algebra. and game theory.

73

Moreover, we explain methods used to deal with infinite state spaces of models.

General-Purpose Automata Analysis

Kemmerer [61] was one of the first to use tools developed for the verification of FSMs
in order to verify security protocols. The InaJo language and Inatest tool were used
to model and analyze protocols. The protocol is modeled as a FSM where states are
sets of state variables and state constants. State constants do not change from one
state to the other, whereas state variables do. A transition from one state to the
other represents some protocol operation that manipulates variables. The intruder
knowledge is modeled as a state variable that tabulates all the information the
intruder has access to. State invariants are expressed in the form of criteria which
are first order logic formulas. A reachability analysis determines if all invariants
are satisfied. Another attempt was done in [85], where the general purpose model
checker Mury was used to analyze some security protocols. We already described
the modeling process in Section 3.1.2. Invariants can then be expressed and, when
running the tool, a reachability analysis is done.

In the Multiset rewriting model described in 3.1.3, a trace is a sequence of
logic formulas where existentially quantified variables are replaced by new values.
The general-purpose LLF tool of linear logic was used for verification [30]. The
translation of transition rules from first order formulas to formulas of linear logic is
straightforward and shown in [30]. The verification algorithm searches through all
possible traces to check if a formula is true. Formulas can be written to represent

security flaws, examples are given in [30].

Security-Specific Automata Analysis

In this section, we present some state-analysis software tools that were developed
specifically for the verification of security protocols. Some of the earliest tools are

the NRL protocol analyzer [76] and the Interrogator [81]. NRL is written in Prolog

74

for the analysis of authentication and key distribution protocols. It uses a Dolev-
Yao model of the intruder and the protocol is specified as a set of FSMs, each
representing a communicating agent. Each FSM has a set of local variables and
can receive input. When a condition defined over the input and the local state
variables is satisfied, a transition fires which produces an output and changes the
state. The input and output are words over an alphabet and the global state of the
protocol is determined by the words known by the intruder and the values of all local
state variables. The intruder states and transitions are not specified explicitly but
are constructed from the description of intruder abilities, and hence it is possible
to query the analyzer about the possibility that the intruder performs a certain
transition. Moreover, algebraic properties of messages (exchanged words) can be
expressed like for instance the fact that encryption followed by a decryption with
the same key will cancel out. The intruder, trying to know specific words, is actually
trying to solve a word problem in a termn rewrite system. Verification is done by
backward reachability analysis starting from an unsafe state described as a set of
words known by the intruder and values for local state variables.

The Interrogator is also written in Prolog and described in [81]. A protocol
is a set of FSMs where each machine P represents a protocol role and exchanges
messages with other machines. A message m € X* is a sequence of elements from
the set X of symbols and given a message m, |m| denotes the components of m, i.e.,
|m| € X. The state g of each FSM is a set of messages ¢ C X* and the transition
relation of a machine P is defined to be tp : Q x X* — Q x X*, where Q is the
set of states. The global state of the system is a triple (N, m, K), where N is a
function such that N(p) is the local state of machine P, m is a transient message
(in the network) and K is a set of messages that represents the intruder knowledge,
A network transition (N, m, K) — (N’.m/, K') can result from a transition done by
a FSM or from an operation done by the intruder. Verification is done by defining

a predicate that is true in an unsafe situation, for instance that a secret message

75

m is in K, and then querying the tool about the truth value of such a predicate.
The tools then performs a backward reachability analysis in order to provide the
answer. It is worth noting that a study [62] was performed to compare NRL and
the Interrogator along with the general-purpose tool Inatest.

In addition to using Prolog, there exist several formal specification languages
dedicated to security protocols, one of the first languages was the Interface Spec-
ification Language (ISL) developed by Brackin [28]. ISL specifies the protocol by
listing a set of definitions, initial conditions, coimnunication steps (of the protocol),
and finally the goals that are required to be reached by the execution of the pro-
tocol. Definitions contain for instance the identifiers of the communicating parties
and the exchanged keys, while initial conditions state the initial knowledge (e.g.,
encryption keys) and beliefs of each principal in the protocol. The protocol part of
the description just lists the communication steps in standard notation, while the
“goals” part contains the final result required when the protocol is executed (e.g.,
which principal gets which key). The language is simple, intuitive and represents
the steps of evolution of the knowledge and beliefs of each principal in the protocol.

Another specification language is the Common Authentication Protocol Spec-
ification Language (CAPSL) developed by Millen [80] and based on ISL. This lan-
guage was further expanded (MuCAPSL) to be able to specify group multicast
protocols.

The CASPER language [72] was developed in order to transform a protocol
description into the corresponding specification in the calculus of Communicating
Sequential Processes (CSP). This is done for the purpose of using the Failure Diver-
gences Refinement (FDR) checker, which is a general purpose tool that can be used
to determine whether an implementation refines a specification.

In the course of the project for the Automated Validation of Internet Security

Protocols and Applications (AVISPA) [96], the High Level Protocol Specification

76

Language (HLPSL) was created to describe security protocols and formalize secu-
rity properties. The AVISPA software tool then translates this language into an
intermediate format based on the model of multiset rewriting [30]. The new format
serves as an input for several model checkers which analyze the protocol [108]. Since
AVISPA is based on multiset rewriting, it suffers from the same drawbacks, namely
the lack of a forinally defined language for the specification of security properties.
Only some statements of security objectives can be written and, at the time of

writing of this thesis, they are limited to secrecy and authentication [108].

Process Algebra

As previously presented in Section 3.1.2, the process algebra approach models the
protocol as a number of processes running in parallel in a hostile environment. We
presented the SPI calculus which, for verification, relies on the notion of process
equivalence. More specifically, a message m is kept secret if the processes F(m)
and F(m') appear indistinguishable to any other process they run in parallel with.
In [70], verification of security protocols was also done using C'SP and the Failure
Divergences Refinement (FDR) tool. In this case the notion of refinement was used
instead of equivalence. The security property was formulated as a specification pro-
cess and verification in this case consisted of checking whether the protocol process

refined the specification process.

Game-Theoretic Verification

The game-theoretic model, used for the verification of fair exchange protocols was
presented in Section 3.1.2 and the Alternating Transition System (ATS) explained.
Verification in this case is done by model checking an ATS representing the protocol
against formulas of the Alternating-time Temporal Logic (ATL). ATL formulas ¢

are interpreted over an ATS and have the following syntax, where p is a proposition

7

and A is a set of agent names:

pu=p| |1V | (A) O vl (A)eilles (3.26)

In order to interpret a formula of ATL we assume a set A of agents, where A C A
and a function T1, where II(q) is the set of propositions that are true in ¢g. A state

g in an ATS satisfies a formula ¢ of ATL, written g F ¢, in the following cases:
« gFpiff peTl(g)
« gF piff ~(gF y)

s gF iV iffgE ¢y or gF o

g F {(A) O p iff there exists a set of strategies, one strategy f, per player
a € A, such that if each player a followed f,, then (for all strategies of other
palyers that are not in A) in all computations out of g, the next state ¢’ will

be such that ¢ F .

g F {(A)pildps iff there exists a set of strategies, one strategy f, per player
a € A, such that if each player a followed f,, then for all computations out of
q, after i transitions, we will encounter a state ¢’ such that ¢ F ¢, and for all

states q¢” between ¢ and ¢’ (including q) we have ¢" F ;.

We notice that ATL is a generalization of CTL by adding the concept of agents. The
idea is that in order to get the system to do a certain computation, the interaction
between agents is necessary. Fairness for a single agent a can thus be formulated as
the existence of a strategy for a that can force the computation of the system in a
direction that will guarantee that a gets what it wants, regardless of the strategies

of other agents.

78

Infinite State Spaces

As mentioned earlier, in model-based approaches, agents are modeled as transition
systems that communicate through a network totally controlled by the intruder.
Each agent at a certain state, upon receiving a message, will change its state and
send a message to the network. All messages in the network are added to the

intruder’s knowledge. In this setting, sources of infiniteness can be [58]:

« Some agents have an infinite nunber of states.
» The number of agents is infinite.

» The intruder, which is also the network, can send an infinite number of mes-

sages to an agent.

The first two conditions are not usually considered since they do not apply
to most situations [58]. The third condition however is dealt with using two main
approaches [34]: Limiting the set of messages the intruder generates, and using
abstractions to represent (possibly infinite) sets of messages that the intruder can
generate. The first approach limnits the intruder deductive capabilities [34] or limits
the messages that it produces to only those that can pass checks done by the agent
receiving the message [85]. The second approach involves several techniques, for
instance, one technique [58] replaces parts of the messages produced by the intruder
by variables and then solves a set of constraints to find values for these variables
whenever a value is needed. The set of constraints represents the knowledge of
the intruder at the time it generated the message. This approach is also used
in the AVISPA tool [24]. Another technique [86] uses an abstract interpretation
[39] framework by representing the set of messages that the intruder can generate
as a tree automaton. An abstract state space is built and analyzed for security
properties. This model was further expanded [56] to include the analysis of multi-
session protocol agents. A survey is presented in [36] about approaches to deal with

infinite state spaces.

79

3.2.4 Proof-Based Analysis

As opposed to model-based analysis, proof based analysis formalizes protocol de-
scriptions in a manner suitable for the application of proof methods. Proof can be
done for instance by induction or by using the proof system of a certain logic. This
method of analysis has the advantage that verification can be potentially done over
infinite domains since we do not need to enumerate states as in the case of model-
based analysis. The drawback, however, is the lack of fully automatic tools that can
carry out the proofs autonomously. In the following, we briefly present the inain
ideas behind proofs carried out using three approaches that we already introduced,

namely, strand spaces, modal logics, and the inductive approach.

Strand Spaces

Properties are formulated as theorems that have to be proved using the properties
of strands and bundles. For instance in order to specify that a certain message m is
secret in a bundle C we have to prove that for all nodes n in the bundle, m is not a
clear term of n, i.e., we have to prove the theorem Vn € C.term(n) # m. Steps of

the proof vary according to protocol since each protocol will have its own strands.

Modal Logics

The general idea here is that the protocol is described by a set of formulas, and
the logic itself has a proof system. Verification amounts to the following: Given the
protocol formulas as premises and using the proof system of the logic, can we prove a
certain formula ¢ that represents a desired property of the protocol? In other words,
verification means proving that starting from an initial set of beliefs, communicating
parties will reach a certain belief (the logical description of the desired property).

As an example, consider the following inference rule, where meanings of terms were

80

explained in Section 3.1.3:

P believes P & QP sees {X}x
P believes () said X

(3.27)

The rule above simply states that if /° shares a secret key with (2 and then sees a
message encrypted by this key, he can assume that the sender of the message was
(2. A number of rules are given in [29], and they are used to prove conclusions out

of premises that are protocol dependent.

Inductive Approach

In this approach, the set of traces of a protocol was defined inductively. Therefore,
properties of traces can be proved by induction. To prove a property P(evs) over

the trace evs, we have to prove that:
» P([]) holds, where [] is the empty trace.

« For all rules of the protocol that extend the trace evs with an event ev if

P(evs) holds then P(evs.ev) holds.

The first item above is the base case and the second is the induction step. Since it is
possible to extend a protocol trace using any one of a number of rules as indicated
in Section 3.1.2, so in order to prove a property P, it is necessary to prove that all

rules preserve the property /°.

81

Chapter 4

Protocol Messages

Messages are the data structures exchanged between communicating agents during
protocol runs. A protocol specification defines what messages should be exchanged,
in what order, and between which agents. In order to be able to analyze security
protocols, a computation model for messages has to be provided. In this chapter,
we present our model of protocol messages which treats messages symbolically. The

model deals with the following issues:
» The representation of messages such as keys, nonces and encrypted messages.

» The representation of computations on messages such as the encryption or

decryption operations.

The model follows an algebraic framework, in other words, messages are not
considered as numbers or sequences of bits but as symbols manipulated algebraically.
We thus provide a general approach that distinguishes between messages syntax and
semantics. Syntactically, messages are presented as terms of a term algebra, where
atomic messages are the constants, and composed messages are formed from con-
stants and variables using function symbols. Semantically, using concepts of game

semantics, the generation of a message by an agent is an interaction between the

82

agent and its environment in which the agent applies an algorithm to a set of mes-
sages it already knows in order to obtain the message requested by the environment.
Such an approach has its roots in the Dolev-Yao model for the analysis of security
protocols [44]. However, we make use of equational theories to extend the model
capabilities by generating congruences over terms. In this case, we deal with classes
of terms which are computationally equivalent yet syntactically different. We also
present a model of abstract computation [109] in order to be able to define algo-
rithms over messages. These algorithms are written in a language that makes use
of the operator symbols of the algebra to represent computational steps.

We begin by introducing our message syntax, message algebra and abstract
computation procedures. Then we present our treatment of the addition of equa-
tional theories to the algebra. Finally we give a game semantics interpretation to

message terms.

4.1 Message Syntax

In the standard notation of security protocols, messages are written in a way to
specify the structure of each message. For instance, a message could be atomic such
as an agent’s name or a nonce, or it can be composed from other messages using
concatenation or encryption. Moreover, the notation also specifies which messages,
or parts of messages, are encrypted and with which keys. We give below the BNF

grammar that is used when specifying messages:

83

c
| n
| k
| m,m’
| {m}
| mopm
Where op € {+, —, %, /}

In the grammar above, a ranges over agent names, similarly ¢ represents con-
stant (text) messages, n represents natural numbers or nonces, and k represents
cryptographic keys. The term m,m’ represents concatenated messages. In some
cases, however, concatenation is written m.m’ when it might be confused with el-
ements in a set. The term {m}; denotes encrypted messages, where k is the en-
cryption key. Finally, the last expression above, i.e., m op m/, denotes arithmetic
operations. We treat messages whose syntax follows the grammar above as a subset
M of the set of terms of a term algebra [112]. We first need some definitions, which

we list in the next subsection.

4.1.1 Definitions

We use the usual notation for sequences over sets such that, for a set S, we have
S* ={e}U{S51.5:...5 |l e N\ {0} AVie {1,...,1}.S; €S}, where N is the set
of natural numbers. The set S” is the set of all sequences of elements of S that have
finite length [, including the empty sequence ¢ of length 0. For any sequence w € S,
len(w) is a natural number that is the length of w. Also, given a set I, a family of
sets indexed by the elements of I is a collection of sets, one for each element of I, it
is written as {A; | ¢ € I}, each set A; is called a member of the family.

A nlti-sorted signature £ [51] is a pair (S, F), where S is a set of sorts and

F={F,s|weS AS €S} isa family whose members F, s are sets that are

84

indexed by elements of S* x S and that contain operator symbols. For an operator
symbol f € F, s, the sequence w is called the arity of £ while S is called the coarity
of £, the rank of f is the pair (w, S). Operator symbols having rank (¢, S) are called
constants of sort .S. Moreover, we define the famnily {Xs | S € S}, where an element
r € X is called a variable of sort S and the set X = |JgcsXs is the set of all
variables. Variables differ froimn constants of the same sort by the fact that they can
be mapped by substitutions as will be defined below. We can now inductively define

the set of well-sorted terms of sort .S, which contains:

o All variables of sort S.
o All constants of sort S.

» All strings of the form "f(¢,,...,t,)", for each operator symbol £ € F, s
whose arity w is Si...S,, coarity is S, and t,,...,t, are terms of sorts

S1,. .., S, respectively.

The set Ty s(X) of terms of sort S over the signature X is the smallest set that
contains all the elements listed above. The set Tx(X) of terms over the signature £
is just the union of all sets of terms of different sorts, i.e., Tx(X) = Uges Tx s(X).
Terms that do not contain any variables are called ground terms. The set of all
ground terms of sort S is denoted by Ty s, and the set of all gound terms over X is
denoted by Ts. It is important to note that terms are just syntactic entities, i.e.,
words, formed from operator symbols, variables, the symbol "(", the symbol ")"
and the symbol "," we do not attach any meaning to them. The double quotes and
the use of typewriter font in "f({;, .. .A‘,-tn) " are used to emphasize this fact.

An Algebra A with signature & = (S,F), called a $-Algebra, is a pair (A, F4),
such that:

« A ={As| S €S} is a family of sets where, for each sort S € S, the set Ag
is called the carrier of sort S and for each constant of sort S, there exists a

corresponding element a € Ag.

85

. FA= {]F;,‘fc} is a family of sets of functions such that for each operator symbol
f € Fys, with arity w = S;...S, and coarity S, there exists a function

fAe ijc, with domain d = Ag X ... X Ag, and codomain c = Ag.

From the definition of the Y-algebra above, we note that the algebra assigns,
to each sort, a set called the carrier of the sort, to each constant an element of the
carrier of its sort, and to each operator symbol a function (sometimes also called
operator) whose domain and codomain contain carrier sets of the arity and coarity
of the operator symbol, respectively. In algebraic denotational semantics [51], a
Y-algebra A with a family of carriers Ag, together with a family of substitutions
0s : Xg — Ag are used to assign semantics to terms over a certain signature X,
i.e., terms t € Tx(X). The interpretation of a term ¢ of sort S is an element of the
carrier set Ag of the Y-algebra. If the term £ is a variable z, then the interpretation is
Os(z), if it is a constant, then the interpretation is the element in Ag assigned to the
constant by the algebra A. If the term is of the form £ (¢,, ... ,¢,), the interpretation
is the element fA(Z(t1),...,Z(t,)), where for each i, Z(t;) is the interpretation of

the term ¢;. A special kind of ¥-algebras is the X-term algebra 7, in which:

» The family T of carrier sets is {Tx s(X)}, i.e., the carrier set of sort S is the
set of terms of sort S. We omit the subscript ¥ when the signature is obvious

from the context.

« For each function f7 : Tg(X) x ... x Tg,(X) — Ts(X) in F], and terms
t € Ts,(X),...,t, € Ts,(X), we have f7(t1,...,t,) = "£(t1,...,t,)", ie,
functions just map a tuple of terms to a term, where f7 is the function that

corresponds to the operator symbol f.

In other words, a X-term algebra is an algebra that interprets terms by them-
selves. A E-homomorphism is a function between ¥-Algebras that preserves their

structure. If A and B are two X-Algebras, i.e., having the same signature ¥,

86

h: A — B is a called a Z-homomorphisim iff:
VE € F.h(fA(ay,...,a,)) = fB(h{a1), ..., h(ay))

A substitution ¢ : X — Tg(X) is a mapping from variables to terms of the
same sort. A ground substitution maps variables to ground terms. A substitution

is generally extended to a homomorphism in the following way:

DD

: X — Tg(X) is extended to
: Te(X) — Tx(X)

(c) =c for all constants c

Dr Dy ™

(z) =z for all variables z

O(£(ty, ... ,t0)) =£(0(t), ... ,0(t,))

Usually, we write 6 for 8. As a conventional notation, a substitution 6 that
maps a variable = to a term ¢ is written [z — t].

To illustrate the previous concepts, we consider an example where the signature
¥ contains a set of sorts S = {bool, int} and a family F whose members are F poor =
{true,false}, Fpoolboot = {not}, Fo i = {zero}, Finim = {succ}. We write
zi,...,x, for variables of sort bool and %,...,y, for variables of sort int. The
following are all terms of sort bool: false,not(not(true)),not(z;). Examples of
terms of sort int are: zero, succ(succ(succ(y;))). The term algebra 7 of this
signature has carrier sets Thoor and Ti, that contain all terms of sort bool and int,
respectively. The algebra assigns the constants true, false, zero to themselves and
has two functions: not and succ, where each function corresponds to the respective
operator symbol.v For instance, for a term t; € T of sort bool, we have: not(t;) =
not(#;). We distinguish here between not(t;) which means the application of the
function not to the term ¢; and not (¢;), which is the literal formed from the symbols

"not", "(", "t;", and ")". It is worth noting that the set of terms is countably

87

infinite and that we do not have any rule for equating terms, so not (true) # false,
this is due to the purely syntactic nature of terms.
Using the same signature ¥ defined in the example of the previous paragraph,

we may define the following Z-algebra:

« Carrier of sort bool is {T, L}.
» Carrier of sort int is the set N of natural numbers.

+ Operator symbols are assigned the following functions and constants:
The symbol true is assigned T
The symbol false is assigned L
The symbol not is assigned the function -, where +(T) = L and ~(L) =T
The symbol zero is assigned the number 0 € N
The symbol succ is assigned the functioni: N — N, where i = {(ni,ns) | no =

(51 + 1}

In the framework of algebraic semantics, each ground term of a signature 3
is interpreted as a member of the carrier set of a X-algebra. For instance, in the
example above, false is interpreted as L and not(not(true)) is interpreted as
—(—(T)) = T. Similarly, succ(succ(succ(zero))) is interpreted as the number
3. If the X-Algebra is the term algebra 7, then each ground term is interpreted
as itself, i.e., just a syntactic sequence of symbols. Interpretations of terms that
contain variables will depend on the substitution applied to variables. For instance,
in the example above, the interpretation of the term ¢t = succ(succ(succ(y;)))
will depend on the value assigned to y; by a certain substitution, e.g., if we have a

substitution #[y; > 0], then the term ¢ will be interpreted as the number 3.

4.1.2 Message Algebra

We define protocol messages as a set M of ground terms of a ¥-termn algebra. In

other words, the set M of messages is a subset of the set Ty of well-sorted ground

88

terms. The signature ¥ is order-sorted [50, 98], which means that the set of sorts is
a partially ordered set (S, <g). The same order relation can be extended to arities,
where for any two arities w = S;...5, and w' = S;...5),, we write w <g v’ if
Vi € {1,...,n}.S; <s S!. We also order ranks (w, S) in a similar manner. The
definitions are the saine as in the case of multi-sorted signatures, except for the

following restrictions [50):

» For any two sorts S and 5’, S <g S’ means that As C Ay, i.e., the carrier of

sort S is a subset of the carrier of sort S’.
« For any operator symbol f € F,, s NF,y o if w <g w’ then § <g 5"

The second condition above is called the monotonicity condition. To clarify it,
assume two arities: w=S5;...5, and w' = §7... 5. In an algebra A, the operator
symbol £ € F,, ¢ will be assigned a function f4 : Ag x ... x Ag, — Ag and the
operator symbol £ € F,s ¢ will be assigned a function f# : A sy X X Agr — AL If
we have w <g w’, the domains of both functions will be related by a subset relation,
le, Ag, x ... x Ag, € Ag X ... x Ag,. The monotonicity conditions means that
functions related this way will have As C A’. This is because the functions should

have the same value for the same argument, which implies that S <g S'.

89

We now define the order-sorted signature 3 of our message algebra:

Sorts: S = {Msg, Sig, Agt, Txt, Nat, Key, Pair, Cphr}
Subsorting: Agt <5 Msg, Txt <g Msg, Nat <g Msg,

Key <g Msg, Pair <g Msg, Cphr <5 Msg
Constants: A number of disjoint sets, one set per sort.

Sig has only two constants: start and terminate.

Operator Symbols:

arity (w) |coarity (S) |Fus (4.1)
Msg.Msg Pair {conc}

Msg.Key Cphr {encrypt}

Cphr.Key Msg {decrypt}

Pair Msg {fst}

Pair Msg {snd}

Key Key {inverse}

The sorts Msg, Sig, Agt, Txt, Nat, Key, Pair, Cphr, represent messages, start and
terminate signals, agent names, text, natural numbers (nonces), cryptographic keys,
paired messages and encrypted messages (cipher text), respectively. The subsorting
relation <g is the reflexive and transitive closure of the relation <g defined in (4.1).
We assuine each sort has a countably infinite set of constants, except for the sort
Sig which has only the two constants defined in (4.1). Operator symbols, in the
order they are listed in (4.1), represent pairing of messages, encryption, decryption,
pair-selectors to select the first or second element of a pair, and, finally, the inverse
operation for keys that assigns a decryption key for a certain encryption key. More-
over, we assume a set X of sorted variables, where X = [JgcgXg. The definition of
well-sorted termns for an order-sorted signature differs from the one mentioned for
the multi-sorted case. This is because a term with sort S can take the place of a

term with sort S’ if S <g &', the inverse is not true however. We formalize this idea

90

by defining the set Ty, 5(X) of well-sorted terms of sort S over the signature X to be

the least set that contains:
« All constants and variables of sort S.
o All terms in all sets Ty ¢/(X), where S’ <5 S.

+ All strings of the form "f(¢;,...,%¢,)", for each operator symbol f € F, s
whose arity is w = S; ... S, # ¢, coarity is S, and 14, ...,1, are terms of sorts

S, ..., Sy, respectively.

The definition above means that if a substitution maps variables of sort S to
terms of the same sort, then it is valid to have a substitution 8]z — t|, where z is
of sort S, t is of sort S’ and §' <g S. The X-tern algebra T associated with the

order-sorted signature ¥ is defined as:
« For each sort S € S, the carrier of S is Ty 5(X), i.e., the set of terms of sort S.

+ For each operator symbol f € F,, ¢ with arity w = S;...5, # € and coarity
S, there exists a function f7 : T (X) x ... x Tgs,(X) — Ty s(X), where
FT(ty,. o tp) = "y, ..ot ™

Again, we distinguish between f7(t,,...t,) where the parentheses represent
the application of the function f7 to its arguments and the string "£ (¢, ... ,t,)"
which is just a sequence of symbols, hence the use of the double quotes and the
different font.

The X-term algebra of the order-sorted signature X defined in 4.1 is our mes-

sage algebra in the following manner:

« The set M of messages that are exchanged between communicating agents is
defined as M C Uges Ty s, 1-€., a subset of the set of all ground terms of the

algebra.

91

« The functions defined by the algebra will be used to perforin abstract com-
putations on messages. In our algebra, functions have the same names as
operator symbols but written in an italic font, e.g., the function encrypt is

assigned to the operator symbol encrypt.

The reason for which we defined the set M as a subset of the set of ground
terms is that there are terms that are not messages, e.g., decrypt (encrypt(m,k) ,k)
or decrypt (encrypt (m,k),k’), since, if we take into account the semantics of op-
erators, the first term should transform to m and the second term is a meaningless
message. Cases like the first one would be solved by using a term rewriting system
and this is what we are going to deal with when we discuss equational theories.
Cases like the second omne, howevér, will be avoided by defining a grammar that
specifies message syntax, this way these terms will not be considered syntactically

valid messages. This is why we define the following grammar for messages:

mu=alc|n|k|k| (mm)]|{m}, | start | terminate (4.2)

The grammar rule in (4.2) indicates that a message can be an agent name “a”,
text (a sr,ring) “c” a nonce “n”, the svinbol start, or the symbol terminate. All
these messages are called atomic. The symbols start and terminate will be used
in the protocol model to indicate the beginning and the end of protocol sessions.
Moreover, a message can be the inverse of a key “k71”, the pairing of two messages
“({my,my)” or a message encrypted by a key “{m};”. The notations _~*, (_,)
and {_} are used instead of inverse(_), conc(_,_), encrypt(_,_) which were
defined in the signature ¥ to comply with the standard notation used in security
protocols. Also, sometimes we write my, my for (m;, mo), when no confusion could

arise.

92

4.1.3 Abstract Computation Procedures

During the execution of protocol steps, communicating agents often need to compute
new messages in order to send them to other agents or to update their knowledge. In
our model, the basic tools used to perform computations on messages are the func-
tions defined in the message algebra, i.e., the X-term algebra. In general, however,
the computations required to be performed on messages can seldom be expressed
as one single function of the algebra. Instead, we need to describe algorithms that
combine a finite number of the algebraic functions in order to compute more com-
plex ones. A language to describe such algorithms was developed in the framework
of abstract computation [109] whose concern is to investigate computable functions
on algebras. We will denote this language by W as it is called the “while” language
in [109]. The language constructs are: Basic functions of the algebra, sequencing of
functions, conditional branching and iteration. An algorithm description written in
W will be called a W-procedure. The syntax and semantics of VW are detailed in
[109], we briefly recall the syutax:

procedure ::= proc in [out l; aux /3 begin S end (4.3)

S =skip |z :=1t| S;;S2 | while bdo S od | if b then S; else S; fi

In (4.3) above, [y, Iy, and 3 are lists of variables that represent inputs, outputs
and local variables respectively. The syntactic category S represents statements,
which can be (in the order they are listed in (4.3)): No action, an assignment of a
term ¢ of the algebra to a variable of the same sort, the sequencing of two statements,
while loops with a condition b, and, finally, conditional branching with condition b.
It is assumed that the algebra either contains the boolean sort or can be extended
to include it. In either case the condition b is a boolean term of the algebra which
is also assumed to be equipped with an equality predicate between pairs of terms.

In the next chapter, procedures will be used to specify computations performed by

93

communicating agents to produce messages.

4.2 Messages and Knowledge

In this section, we investigate how agents can deduce knowledge from a set of mes-
sages they already possess. We begin by introducing equation systems to the message

algebra, then we present a system of deductive rules for equational theories.

4.2.1 Equational Theories

A term t = £(ty,...,t,) in the set Tx(X) of terms can be regarded as an ordered
tree whose nodes are labeled by operator symbols (including constants) or variables

in the following manner:

 If the term is a constant or a variable, the term tree is just a node without

children, i.e., a leaf.

o If the term has the form f(¢;, ... ,%,), the term tree has a root labeled by £

and n children that are subtrees which represent the terms ¢; to ¢, in order.

A term t’ is a subterm of ¢t = f(¢;,...,t,) if ' =t or t’ is a subterm of any
t;,i € {1,...,n}. We use the Dewey decimal notation [64] to order nodes in trees.
A position 7 in a term ¢ is the Dewey number of a certain node in the tree of {. The
subtree whose root is 7 represents a subterm of ¢, which we denote by ¢|,. A context
is a term ¢ over the signature YU{0}, i.e., t € Tguo(X), such that ¢ has exactly one
appearance of O at a certain position 7, contexts are denoted by t[],. The symbol
O in a context may be replaced by a term t’ in which case we write t[t'],, the same
notation is also used for replacing the subterm at position 7 with t’.

An equation over the set Tx(X) of terms, is a pair (u, v) such that v and v are

both in Tx(X) and have the same sort. We write u = v to designate the equation

94

(u,v). A set E of equations over Tg(X) is called an equation system. Moreover, £

induces a relation —gC Tg(X) x Ts(X), defined inductively as follows:
e (u=veFE)=(u—gpv)
e (u=ve€E)= V0, t,m.t|, =0(uw) = t[0(u)l. =k t[8(v)])

We note here that the definition of the relation — g is based on the fact that, in
a context t[];, we can replace an instantiation 6(u) of the left-hand side u of an
equation by an instantiation 6(v) of the right-hand side. In this case, we say that the
the term ¢[6(v)], is derived from t[f(u)],. However, equations also mean that we can
replace right-hand side instantiations by left-hand side ones. We therefore define the
relation <> to be the symmetric closure of — . Moreover, using the usual notation,
—7 and <7, are the transitive closures of —r and « g, respectively, while —% and
7, are their reflexive and transitive closures. A term s is said to be derived from a
term t if t =% s. We also say that s is a syntactic or equational consequence of ¢ if
t <% s. The definition of the relation <% implies that it is an equivalence relation
(reflexive, transitive, and symmnetric) and that it is closed under substitutions and
term formation with function symbols, i.e., t; <% t2 implies V0. 0(t1) = 0(t2) and
t1 <R) A ... At, ©F t, implies VE € Fy 5.5y, ... ,t,) <) £Q;,...,1),
respectively. Therefore, the relation <7} is a congruence. To determine if s is a
syntactic consequence of t, we have to check if (¢, s) is in <. As another option,
we may also use deductive proof rules of equational logic to prove whether s is a
syntactic consequence of ¢ under the equation system FE, written £ ¢t = s. The

rules are:

t=sec FE Ert=s

EFt=s EF6(t) =0(s)

FrHt=s Erti=t, EFty=t; (4.4)
EFFrs=t Ert =t3

Ebty=t, Ebty=t, ... EFt, =1,
EF (1, ..) = £,0)

95

The set of all equations t = s such that F F t = s is called the equational
theory of E, where the equations u = v in the set E are considered the axioms of
the theory. The role of the proof rules of equational logic is then to decide if an
equation ¢ = s is in the equational theory of E.

A term rewrite system R, defined over the set Tx(X) of terms, is a set of rules
of the form [— r, under the conditions that [22]: (1) [is not a single variable and
(2) all variables of r appear in . Each rule ! — r in R can be regarded as an oriented
equation, i.e., left-hand side instantiations can be replaced by right-hand side ones
and not the other way around. As with an equational system F, R induces a relation
— r over Ty (X), called the rewrite relation, whose definition is the same as — g, the
only difference is that we have to replace the condition u =v € Fbyu — v € R
and —p by —p. We say that a term ¢ rewrites to t’ if ¢ —5% t/. A relationship
between an equational system E and a rewrite system R can be established if R
is sound and adequate for E [42]. Soundness means that all the rules I — r of R
are in <%, i.e., | — r € R implies | <} r and adequacy means that u = v € E
implies u <}, v, in such a case we have «};=7%. Hence, a term rewrite system R
that is sound and adequate for a certain equation system E, can be used to decide
the syntactic consequence relationship. In order to do so this, however, R has to
satisfv some properties, namely termination and confluence [22]. A terminating and
confluent term rewrite system R is called convergent or complete and in this case
each term has a unique normal form, which is a term that cannot be rewritten
any further. With such a system it is possible to determine whether a term s is a
syntactic consequence of ¢, i.e., whether ¢ <}, s, by rewriting both ¢ and s to their
normal forms and then comparing them.

Proof rules of equational logic and term rewrite systems both deal with syn-
tactic terms, i.e.. strings of symbols, which may be operator symbols or variables.
Therefore, equality was called syntactic consequence or equational consequence, and

relates two terms that may have different svntactic forins. As described in Section

96

4.1.1, algebras are the semantic models for terms in the sense that an algebra A,
with a family of substitutions 05 : Xg — Ag assigns to each term ¢, of sort S, an
element a in Ag. the carrier of sort S. An equation u = v (where both terms u and
v are of sort S) is valid in an algebra A if for all substitutions fg, the terms u and
v are assigned the same element in the carrier Ag of the algebra. In this case, we
write A = u = v, meaning that .4 models the equation u = v. On the other hand,
an equation u = v is satisfiable in A, if there exists a substitution 5 such that u
and v are assigned the same element in Ag. An algebra A is called a model for an
equational system FE if all equations u = v in E are valid in .A. Moreover, we define
the relation =g on Tx(X) such that u =g v means that the equation u = v is valid
in all models of E.

Assume an equational system E and an algebra .4 that models it, we would
like to know all the equations (other than those in E) that are valid in A, i.e., all
pairs (Z,s) of terms such that ¢ =g s. By Birkhoff’'s Theorem [22], we only need
to construct the relation <7, since the theorem states that ¢ =g s if and oniy
if ¢ <% s, it therefore links the relation <7 defined syntactically to =g which is
defined semantically with respect to models. This theorem basically states that the

proof system of equational logic is sound and complete.

4.2.2 Equations for the Message Algebra

In this section. we expand the capabilities of the Dolev-Yao model by adding an
equational theory to the algebra of messages. Adding the equational theory has

several advantages:

« The ability of the intruder to deduce and recognize messages can be expanded.

o Bv providing an equational theory tailored for a specific protocol, which will
depend on the cryptographic system that the protocol uses, the security anal-

vsis is more rigorous and the abilitv to find securitv flaws is increased.

97

We equip the algebra of messages with an equational system FE that is chosen
according to the specific properties of the protocol and its underlying cryptosystem.
In this case, the congruence induced by FE is used to define equivalence classes
between messages. We write m =g n to say that m is congruent to n under E.
We focus our attention to equational theories for which there exists a convergent
(complete) term rewriting system. For these systems, each term has a unique normal
form. Therefore, the problem of determining whether m =g n for any two closed
terms m and n is decidable by rewriting both m and n and checking if they have
the same normal form. As an example, in the original Dolev Yao model [44], E will

contain:
decrypt({z},,y) = =
tst((z,y)) =z

snd((z,y)) =y

4.2.3 Building Knowledge

During the communication steps of a certain protocol, principals exchange messages
that are meant to communicate knowledge between them. Each message can con-
tain components that are already known to the recipient of the message and other
components that represent new knowledge. Upon the reception of a message, the
agent knowledge is increased in two ways: The message itself is added to the set of
messages that the agent knows, and the message enables the deduction of further
messages. For instance, if an agent receives an encrypted message while it knows
the encryption key, then it can deduce the plain-text message. To express this, we
define the function know that maps an agent’s name into the set of messages known
to the agent. For any agent A, know(A) is the smallest set M, which satisfies yt,he

following conditions:

98

(me MAN(m' =g M) = m'eM Equational deduction.
(me M)A(m'e M) = mopm' € M Arithmetic operation.
(meM)A(keM) = {m}peM Encryption.
(meM)A(m e M) = mm' e M Concatenation.
{mr e M)A e M)ANK =k71) = {m}eM Decryption.
=

m.m’ € M {m,m'} € M Deconcatenation.

The set M initially contains all messages known to the agent prior to executing
any communication steps such as names of other agents. their public key and the
agent’s own public and private keys. Whenever, the agent produces a fresh message
during a protocol run or receives a message in a protocol step, these messages are
added to M whose size increases by the number of messages that can be deduced

after the addition of m.

4.3 Game Semantics for Messages

We focussed thus far on the algebraic semantics of messages, in which each message
is interpreted as an element of a carrier set of an algebra. In this section, we assign
game semantics to messages in the set M which we defined by a grammar as a
subset of the terms of the algebra. Our purpose is to provide a unified approach to
the semantics of protocols, in which both messages and communications steps are

expressed as strategies over games.

4.3.1 Atomic Messages

As explained earlier, atomic messages are messages that are either agent names,
cryptographic keys, natural numbers, or constants (text or symbols). In algebraic
semantics these were the basic sorts of the algebra. in game semantics however, thev

are regarded as types. Each one of these types is represented by a game, so the

99

types A, K, N, T are represented by the games Agt, Key, Nat, Txt respectively. In
addition, we define the game Msg to represent the type M, which corresponds to the
sort Msg of the algebra. From the subsort relation in the rules of (4.1), we deduce
that all the types are subtypes of M. In game semantics, this means that any valid
strategy over any of the games Agt, Key, Nat, Txt is also a valid strategy over the
game Msg [33]. The idea is that games represent types, whereas strategies represent
algorithms. An example is given below on how to represent constants and variables

of the type N:

Nat — Nat
Nat qg O
g O q P
n P n’ 0
n P

The game to the left represents constants of natural numbers, a certain strat-
egy over this game represents a particular constant, for instance the constant 3 is
represented by the strategy ¢ = ¢.3. This means that the environment (O) asks for
a constant and the system (P) replies with the number 3. The game to the right
represents variables of natural numbers, i.e., the lambda term Az : N.z, which has
type N — N (corresponding to the game Nat — Nat). Any strategy 7 over this
game represents a variable and has the form 7 = q.q.n'.n/, where n’ is any natural
number. If we apply the value 3 to the lambda term above we get (Az : N.z)3 = 3,
the equivalence of this operation in game semantics is interaction between strategies
(parallel composition plus hiding) defined in (2.10). In order to conform with the
definition of interaction between strategies, we redefine the game of constant natu-
rals to be Emp —o Nat, where Emp is the empty game (has no moves). We do this so
that we can compose the two strategies o : Emp —o Nat (¢ = ¢.3) and 7 : Nat — Nat
(1 = g.g.n’.n’). Now, hiding the common Nat game will leave us with a Emp — Nat

game which represents the constant 3 as expected, i.e., o: 7 = ¢.3. This is shown in

100

Emp Zo 1 Nat Nat 1—o Nat

l]

i I g O
: g r
K i 0
) 3 : P
: 3 0
; : 3 P

Figure 4.1: Interaction between startegies.

Figure 4.1. We notice here how the copy cat strategy between the two Nat games
served as a link between ¢ and 7. Of course, hiding is done by removing whatever
is included in the dashed rectangle. The same example could be generalized to all

types of atomic messages mentioned above.

4.3.2 Composed Messages

The composed messages that we define here result from the outcome of two opera-
tions: Concatenation, and encryption. It is worth noting that composed messages
are also of type M. The game used to express the operation of concatenation is the
game Msg — Msg — Msg (representing type M — M — M). We note that this
is the representation of a function type, the return type of the function is M (rep-
resented by the game Msg) as we mentioned above. The game used to represent
the encryption operation is the game Msg — Key — Msg. The specific opera-
tions of concatenation and encryption are expressed by strategies over the respec-
tive games. For instance the concatenation operation is represented by the strategy
g.g.mj.q.ma.conc(mi, my). The encryption operation, on the other hand. is repre-
sented by the strategy ¢.g.m.q.K .encrypt(m, k). The functions conc: M — M — M
and encr : M — K — M represent the concatenation and encryption operations

respectively. An example is given below for the encryption operation:

101

Msg — (Key —o Msg)

m;

v O v C

K 0

encr(m;, K) P
The last move by the player in the game above is encr(m;, K'), which means
that we assume the existence of a predefined function encr : M — K — M that the
player is able to compute. In genral, we assume that players are able to compute

any function that can be expressed as a procedure of the “while”-language presented

in 4.1.3.

4.3.3 Category of Message Games

We define the categorv MGC that coutains the games defined for messages above.

In this category:
» Objects are games, e.g., Agt, Key, Nat, Txt, and Emp.

« A morphism between any pair of games G and H (f : G — H) is a strategy o

over the game G — H.

» The identity morphism for any game G is the copy cat strategy over the game

G —G.
« Composition of morphisms is interaction between strategies.

To prove that MGC is a category we have to prove the associativity law of
morphism composition, i.e.. for any three morphisms f, f’, and f”, we have (f o
fof” = fo(f'of"). We also have to prove the identity law, i.e., for any morphism

f and an identity morphism id¢; over any game G, we have foidg = idgo f = f.

102

Proof of Associativity of Composition. This amounts to proving that
interaction of strategies is associative.
For any 4 games G, H, I, and J, suppose we have the strategies: ¢ : G — H,

T:H — I, and ¢: I — J. We have the following definitions:

(o:7)ie = ((ollm)/H)ll)/T
GlIn/H = {s1G.I|s €|}
olr = {se Mg+ My+M)|sIGHeoAs|HIerT}
From the definitions above we can write:
(0;7);0 = ((elMllo)/H, 1
= (oll(ll)/H, T
= (oll((=ll)/ 1))/ H

= o;(r;¢) which proves associativity.

Proof of Identity law. This amounts to proving that the interaction of any
strategy with the copy cat strategy yields the same strategy.
Assume any two games G and H such that we have the strategy o : G — H; and

the copy cat strategy idy : H; —o H,. Here the subscripts 1 and 2 are just used to

103

denote different copies of the game H.

idy = {s € Py, | Vteven-length prefix of s.t | Hy =t [Hy}
(0:idy) = (ollidy)/H1)
(ollidy)/Hy = {s|G,Hy|s € olidy}
ollidy = {s€ Mg+ My, + My,) |s1 G H €oAs| Hy, Hy €idy}

i

From the definitions above and assuming even-length sequences (strategies):
s| Hy, = s| H;
In o||edy;:
s|G,Hy = s|G,Hy€o
By hiding moves in H; to obtain o;idy we end up with:

s|G,Hy€o

Therefore, all sequences of o;¢dj; are sequences of ¢, which proves the identity law.

4.3.4 Semantics of Messages

Before defining a semantic function for messages we need a few definitions:
If o is a strategy over the game Msg — Msg — Msg, we define the operator
$4(.) such that {(o) is the strategy over the game Msg® Msg — Msg. This is similar

to the operation of un-currying in functional programming [11].

For any three Games G, H and F' such that we have two strategies: The
strategy o : G —o H, and the strategy 7 : G —o F, we define the strategy (o, 7) [12]

as the strategy over the game G — H ® F, where:

(o.7) = {s€Pywnor|s| G HEAs] F=¢}U
{s € Pootior | s |G, FE€ETAs| H=¢}

For any three Games G.H and F such that we have two strategies: The

104

strategy ¢ : G —o H, and the strategy 7 : H — F. We define interaction between
strategies as o; 7 which yields the strategy over the game G — F. This was defined
in Section 2.2.5 and related to the concept of parallel composition plus hiding in

CSP.

The semantic function for messages is defined in Table 4.1:

Table 4.1: Semantic definitions of nessages.

A, K,N, T are types for agent names, keys, natural numbers and constant
messages (text) respectively.

All above types are subtypes of M; the type of messages.

encr:M — K—M Encryption function

conc: M— M — M Concatenation function

EM=]JlreT .S,

S[a](A) = o : Emp —o Agt, where 0 = {¢,q.a}
S[c(T) = o :Emp — Txt, where o = {e, q.c}
Sk])(K) = o : Emp —o Key, where 0 = {¢,q.k}
S[r](N) = o : Emp — Nat, where 0 = {¢,q.n}

S[mi, ma](M) = : Msg, where o = (6]m;], 6][m2]); U(a’)

o’ is a strategy over Msg — Msg — Msg such that:
o' ={e,q.q}U

{g.gm.q | m: M}U

{g.g.m.q.m/.conc(m,m') | m,m’ : M}

q

SHmIIM) = o : Msg, where o = (S[m], S[k]); (")
o’ is a strategy over Msg —o Key —o Msg such that:
o' = {e,q.q}U

{g.gm.q | m:M}U
{g.q.m.q.k.encr(m,k) | m: M,k : K}

105

Chapter 5

Model for Security Protocols

In the previous chapter, we demonstrated our basic ideas about messages, in which
we use an algebraic framework to model the structure of messages and the compu-
tations we can perform on them. In this chapter, we incorporate those ideas into
our model of security protocols. In this model, protocols are games played between
communicating agents, where the game tree represents all possible interactions that
can take place between agents according to protocol specifications. In order to be
able to specify protocols, we present a simple specification language that is close
to the standard arrow-notation used in practice. Then, starting from a protocol
specification, we show how to build the gaime semantics model of the protocol. The
model that we adopt for the intruder is the extended Dolev-Yao model discussed in
Chapter 3.

In the following sections, we begin by presenting the syntax that we propose
for specifying security protocols, we then demonstrate how we derive computation
procedures on messages from protocol specifications. This involves introducing the
notion of frames. We follow this by definitions of gaine semantics for protocol
specifications. This is necessary in order to construct the game tree. In other
words, given a protocol specification written according to our defined syntax, we

define a semantic interpretation function that will map the specification to a game

106

tree which is the model we are going to use for the analysis in the next chapter.

5.1 Protocol Specifications

Intuitively, a security protocol specification describes a number of steps in which
agents are exchanging messages. We regard the syntactic structure of a message
as an indication of the computation that must be done by the agent sending the
message. We therefore develop an algorithm that, given a certain message in a
protocol specification, produces a procedure whose output is the required message
and which is written in the W language presented in Section 4.1.3. The input
to the procedure will be a collection of messages that represents the knowledge
used to produce the output. In this section, we first present the syntax we use for
protocol specifications, then we show how to develop algorithms for the computation

of messages.

5.1.1 Syntax

The syntax that we propose for protocol specifications is close to the arrow notation
(the Alice and Bob notation) traditionally used in cryptography to describe security
protocols. We add more constructs that are aimed to resolve some of the ambiguities
in this notation, which were usually dealt with by providing natural language de-
scriptions of the protocol specifications. We therefore divide a protocol specification
into a declaration part and a communication part. The communication part con-
tains the arrow notation that specifies message exchanges, whereas the declaration

part is composed of:

» Knowledge declaration: To declare messages that are stored in the agent knowl-

edge and are persistent in all protocol executions.

» Freshness declaration: To declare messages that are freshly created by the

agent in each protocol run, e.g., nonces or secrets.

The grammar for protocol specifications is shown below:

Prot = Decl.Comm | ¢
Decl = rabm.Decl | vapm.Decl | ¢ (5.1)
Comm = stepivA— B: m.Comm | ¢

In the grammar above, A and B range over a set of names that are the protocol
roles, m ranges over the set M of possible messages discussed in Section 4.1.2, and
¢ is a natural number greater than zero. The declaration k4 > m means that m is
part of the initial persistent knowledge of A, and v, > m means that m is freshly
produced by A for each protocol session. As for step i>A — B : m, it means that
message m is sent to the network by agent A at the i-th communication step and
that it is intended to be received by agent B.

As mentioned in Chapter 2, protocol specifications of knowledge, freshness and
behavior describe roles, whereas the actual implementations of these specifications
are incorporated into agents that will interact to execute the protocol. For instance,
a protocol p with two roles A and B implies that a session (a run) of the protocol
involves two agents, one playing the role of A and the other the role of B. In an
actual environment, we may have all sorts of combinations where an agent may play

multiple roles and a role may be played by many agents.

5.1.2 Frames and Computation

We mentioned in Chapter 3 that any model for security protocols tries to answer
three questions: How to model computation, how to model communication and what
are the intruder capabilities. As mentioned earlier, we adopt a Dolev-Yao intruder
with extended capabilities. We deal with message communication when we begin

defining games for protocols. In this section, we deal with nessage computation,

108

namely, how to represent the generation of a message by an agent, knowing that
this message may depend on previously known or received messages. Moreover, we
need to differentiate between fresh messages that are generated for each new session
and messages that constitute the persistent knowledge of an agent. To handle these
issues we define frames and procedures.

During one session of a protocol, an agent A receives a number of messages,
we follow the same notation as in [3. 4] (with different interpretation. however) and
organize these messages into a frame vC. 6, where C is a set of names (constants),
v binds the names in C to the frame, and 60; is a partial mapping from a finite
set {0,..., N} to sets of messages. In the frame, 6,(0) is a set containing atomic
messages that are initially known to A and 6;(7) such that 0 < ¢ < N is the set
containing the message expected to be received by A at step i of the protocol. A
frame of a certain agent A encapsulates three pieces of information: (1) The set C
which contains names that are newly generated for each protocol session such as
nonces, (2) the order in which messages are received in the protocol, and (3) the
syntactic structure of these messages. We define a function ¢ (of type Frm) that
maps agents names to frames, i.e., #(A) is the frame of messages of agent A. For
a frame ¢(A4) = vC. 0, the function size(¢(A4)) is defined to be |dom(f;)]; the
cardinality of the domain of the substitution §;. Moreover for any positive integer
i, such that ¢ < size(¢(A)), trunc(¢(A4),4),i € dom(§,) is the new frame obtained
by restricting the domain of 6, to the set {0,...,¢}, ie., it is the frame of A just
after the i-th step of the protocol. The function frame that parses the protocol and
constructs the frames is defined in Table 5.1.

Intuitively, the frame ¢(A) = vC.§; is constructed as follows:(1) The set of all
fresh names for an agent A is added to C, (2) all atomic terms that are initially known
to agent A are added to the set 6,(0), and (3) for a message m; received at step i of
the protocol run, 6, is augmented by the mapping ¢ — {m,}. As a consequence, the

sets C and 6;(0) are finite, whereas the sets 0,(¢), ¢ > 0 are all singleton. We note

109

frame : Prot — Frm — Frm

frame[vA>m.D.C|(¢) = frame[D.C ({4 — vCUm.0])

frame[kA m.D.C]](d)) = frame[D.C [(¢[A — vC.6;{0 — 6;(0) U {m}]])
frame[€.C](¢) = frame[C |(¢)

frame{@[[step ¢ > B — A: m.C](¢) =frame[C |(¢[A — vC.0i — {m}]])

I(0) =

frame

Table 5.1: Construction of a frame.

here that the function frame constructs frames from the protocol specification, i.e.,
we assume that at step 7 of the protocol the message m; travels through the network
unaltered. This is why we call these frames specification frames. To simplify the
notation, the message received by an agent A at step ! of the protocol is denoted
by 74(l). So, if we assume that messages are unaltered in the network, then, for
a frame ¢(A) = vC.0;, we have VI € dom(ff) .1 > 0 = r4(l) € 04(l). This is
generally not the case, since messages may be altered by the intruder and we may
have r4(1) ¢ 05(1).

We use the Rivest-Shamir-Adleman three pass protocol [99], which we will
henceforth call RSA3P, as a running example to illustrate the introduced concepts.

The specification of this protocol, in our svutax, is written as:

Kab K,
vabm
kb K
PETE (5.2)
step 104 — B: {m}g,
step 20 B — A {{m}KA}KB
step 30 A — B: {m}y,
This protocol uses the commutative property of RSA encryption, which implies
that {{m}x,}xs = {{m}xs}x, Asitis shown from the knowledge of each agent,

A and B share no information about their kevs. The signature ¥ coutains the

operation symbols we defined in the previous chapter. i.e., {_} . decrypt(_,_)

110

and (_)~! which represent encryption, decryption and key inverses, respectively.
To express properties of the used cryptographic operations, we add the equations:

{{z},}. = {{z}.}, and decrypt({z},,y™!) = z. The frames of both agents are:

$(A) = v{m}.[0 = {Ka}.2 = {{{m}x,}K5}]
¢(B) = 0. [0~ {Kp}, 1= {{m}x,},3 = {{m}xs}]
trunc(¢(A),0) = v{m}.[0— {KA}]
trunc(¢(B),1) = ¢(B) = v0. [0 = {Kp}, 1= {{m}«,}]
Using the simplified notation introduced above, we can write r5(3) = {m} ;.
A term m € Ty is deducible by agent A from a frame ¢(A) = vC. 0y, written
#(A) F m, if it can be obtained by the application of one or more of the following

rules:

(rev) S i € dom(ff) . m € 64(7)
¢(A) Fm

(new) S meC
o(A)Fm

(5.3)
(A Fmy...¢(A) Fm,

H(A) F f(ma,...mn)
(A Fm m=gm
d(A) Fm/

(apl)

(eqn)

We define the set deduce(¢(A4)) = {m € M | ¢(A) F m}, this definition is nec-
essary to avoid terms that are not messages, e.g., decrypt(encrypt(m, K;),K2).
Moreover, the set deduce(¢(A)) can be expressed as Uz deduce’(¢(A4)), where
deduce’(¢(A)) will contain all messages in the frame ¢(A). For d > 0, the set
deduce?(¢(A)) is obtained by applying the rules (apl) and (eqn) only once to the
messages of deduce? !(¢(4)) and adding the generated messages to those already

in deduce’ " 1(¢(A)). A formal definition is given in (5.4).

111

deduceo(é(‘!})) = U'iE(lmn(()f) ef(l) ucC
deduce’(¢(A)) = deduce’(¢(4)) UX? UXZ

apl egn
X4, = {f(tr-- 1) | F €S ALy, ... 1, € deduce’ (¢(A))}
Xtn = {m|m=pm Am € deduce’ ' (¢(4)}
(5.4)

Constructing Procedures

Now that we have defined frames that represent the history of messages as seen by
a certain agent, we can investigate their use in the computation of new messages.
For a protocol step “step :> A — B :m;”, and given a frame ¢(A) = vC. 0 that
belongs to an agent A, we would like to find the abstract computation procedure
that describes how A should compute m; from the frame. In other words, we would
like to know the operations that agent A should perform on messages of the frame in
order to get m;. We call this procedure comp,, and it is written in the JV language
described in Section 4.1.3. So, we define comp, to be proc in o out § aux . As
described in the syntax of W, «, (3, and ~ are three sequences of variables that are
the input, output, and auxiliary sequences, respectively. In our case, o depends
on the number of messages received by agent A from the network, § contains a
single variable o that represents the message to be produced, and y will generally
be the empty sequence ¢. The reason why a depends on received messages and
not on the whole frame (the frame contains fresh messages and initial knowledge in
addition to received messages) is that we treat fresh messages and initial knowledge
as constants, since they are not manipulated by the intruder like received messages.

Assuming a protocol step “step i> A — B :m;” and a frame ¢(A) = vC. 0y,

the sequences a. 3, and ~ of the procedure comp, are constructed as follows:

s a = a7.a9...0y, each a; is a variable of sort Msg (defined in equation (4.1))

112

and the sequence length n = size(¢(A)) — 1, i.e., the number of received
messages in the frame. We recall that size(vC.6;) = |dom(f;)|, and that 6,(0)
contains the initial knowledge of the agent. When the procedure is executed

each variable a; will be replaced by the corresponding received message.
« (=0, 0is a variable of sort Msg.
. ")(= €

The sequence vy is generally empty except in the case where the definition of
the procedure comp, contains while statements that need temporary storage. The

procedure comp, will have the general form:

proc in « out o aux ¢

begin

o0:=1;

if(not(¢t € M)) then o:= terminate else skip;

end

In the procedure above, the statements between begin and end are called the
body of the procedure and they may include variables from the sequences a, 3, and
7. A procedure call for comp, is denoted by comp,(d), where ¢ is a sequence of
messages 0.0z . ..0, that has the same length as «. Calling the procedure means
that each variable o; in the procedure body (in the term t) will be replaced by
a message 0; € M and the term { assigned to o will be taken as the output of
the procedure. When calling the procedure comp, the sequence ¢ of messages is
constructed such that 9, is the i-th message received by A. In other words, ¢; will
be the first message received by A and so on until we have 9, which is the last
message received by A. This is why the number of variables in the sequence « was

set to size(¢(A)) — 1, which is the number of messages received by A, since 6;(0)

represents initial knowledge and not a received message.

113

Consider a certain frame ¢(B) = v .[0 — {Kp, Ka}.1 — {{m}x,},3 —
{{m}kz}], we have &; = {m}x,, and &y = {m}x,, and when calling a procedure
where agent B produces a message, each variable «; in the procedure body, e.g., in
the term ¢, will be replaced by ¢;, and the term t will then be the output of the
procedure. Formally, we define the sequence 4 to be § = rcvd(¢(B)), where the
function revd maps a frame to a sequence of messages r pllh).rR(l2) ... r5(l,), where
ri(l;) is the message received by B at step I;. Also for any sequence d, we define d|;
to be the symbol at position 7 of the sequence, e.g., a.b.c|y = b.

As mentioned earlier, having a protocol step “step i A — B :m;” and a
frame ¢(A) = vC.0;, we need to construct the procedure comp; that the agent A
will use to compute m;. More specifically, we need to know how to construct the
term t. Moreover, in the last statement of the procedure body we check whether o
is a valid message or not. The fact that o may not be a message is explained in the
next section, when we discuss real frames. In (5.5) below, we provide an algorithm,
which we call prc, that constructs the term t € Tx(X) of the procedure from the
protocol specification of a message m;.

We assume that the message m; in the specification step i> A — B :m; isin
the set deduce”’(4(A)), the algorithm prc that constructs the term ¢ is then defined

in pseudocode as:

114

case d>1

prc(o(A), a,m;,d) =

d

case m; € X5

return 7 (pre(é(A), a,t;,d —1),...,pre(d(A), t,, d — 1))

where m;=f{;, ... ,t,;)
casé m; € ngn
return prc(¢(A),a,m',d —1)
where m' =p m;
case m; € deduce’ ! (¢(A))
return prc(¢(A4),a,m;,d — 1)
prc(¢(A), a,m;,0) =
case m; =n,n € 6;(0)
return n
case m; € 6;(1),1 >0
return q;
where m; = revd(¢(A4))|;
case m; =¢c,c€C

return c

(5.5)

The algorithm has four inputs: The frame ¢(A), the sequence « of variables of

comp,, the message m; that we would like to compute, and the index d. It is defined
recursively where we have three base cases (the bottom three case statements) and
three recursive calls (the top three case statements). We notice that in the recursive
cases the value of d is decreased by 1 in the recursive calls, and if the value of d is
0, we will be in one of the base cases, which ensures termination. Hereafter, we list

the cases with the same order in which they appear in the algorithm definition:

« In the first case, the message m; that we would like to compute has the form

115

f(ty,...,t,). So, in order to compute it, we have to know how to compute
each message (term) t; from the frame and then apply the function f7 of the
term algebra. We note here the difference between f as an operation symbol,

i.e., syntax, and f7 which is the function assigned to f in the term algebra 7.

In the second case, we cannot find a mmessage with the exact syntax of m;, but
we find another one m’ such that m’ =g m;. So now we have to know how to

compute m’, which justifies the recursive call.

In the third case, we discover that m, € deduce’ ', where deduce’(¢(A)) =
deduce’ " (¢(4)) UXL,, UXZ, . So the message in the argument of the recur-

sive call will still be m;, whereas the value of d is decreased by 1.

In the fourth case, the value of d has reached 0, where deduce’(¢(A)) =
Uiedom(o,) 07(7) U C, which means that the message we are looking for is a
fresh message, a message in the initial knowledge of the agent, or a received
message. In this particular case, the message is in the initial knowledge, i.e,

the set 6;(0), so we just return the message.

In the fifth case, like the fourth, the message is in the frame. However, it
has been received at step [, i.e., it is in the singleton set 6;(I). So we return
the variable «;, where the message m; is the j-th message received by the
agent. The variable a; is returned instead of the message itself because this
is a received message which could have been altered by the intruder. When
we call the procedure comp;, this variable will be replaced by the message
rcvd(@(A))|;, which depends on the frame. We will discuss this point further

in the next section, when we discuss real frames.

In the sixth case, the message is in the frame and it is a member in the set C

of fresh messages so we just return it.

116

For a frame ¢(A) = vC. 0y, we say that the output m; = comp,(¢(A4)) is
feasible if Ym < m; . trunc(¢, ¢) - m, where < is the subtermn relation defined over
Te(X), e,z xyifz=yory= f(t1,...t,) AJi.z < t;. In other words, the
algorithm constructing the output message is feasible if it constructs the message
that is supposed to be sent by A at step ¢ of the protocol using only the initial
knowledge of A and the messages received by A up to step 7. This condition of
feasibility is a simple and preliminary check on the well-formedness of protocol
specifications.

As an example, we use the RSA3P protocol introduced in Equation (5.2). We

recall the protocol steps below.

step 1> A — B: {m}xk,
step 20 B — A: {{m}k,}x;
step 30 A — B : {m}x,

We would like to construct the abstract computation procedure that agent A follows
at step 3 of the protocol in order to produce the message {m}x, that is then sent to
the network to be delivered to B. We begin by constructing the sets deduce’(¢(A)):
deduce’(¢(A)) = {m, Ka, {{m}x,}xys}
deduce’ (¢(A)) = deduce®(¢(A)) U {K;", decrypt({{m}k,}kn, KA),...}
Ui{{m}xs}tra}
deduce’(¢(A)) = deduce'(¢(A)) U {decrypt({{m}xs}x., K1), ...}
u{...}

deduce®(¢(A)) = deduce?(¢(A)) U {{m}ky,...JU{. ..}

We note that the set deduce®(¢(A4)) contains all messages in the frame. The
set deduce’ (¢(A)) contains all messages of deduce®(¢(A)) in addition to two sets
of messages. The first one is X;; and the second one is X{,, as defined in (5.4).
We construct the rest of the sets similarly.

Now we want to know how agent A is able to compute the message he is

117

sending in step ¢ = 3 as a function from the knowledge he gathered thus far. In
other words, we want to get comp; = proc in @; out o aux ¢, where the sequence «
is composed of only one variable a; since A receives only one message before step 3.
The body of the procedure comp, will contain the statement o := ¢ as mentioned
earlier and to know how to compute ¢ we apply the algorithm pre. The message
sent by A at step 3 is {m}k,, and {m}, € deduce3(¢(‘4)), i.e., d = 3, so we have:
pre(¢(A), ar, {m}x;, 3)

= pre(¢(A), ar. dec({{m}xp}ra, K17, 2)

= decrypt(prc(é(4), a1, {{m}xs } x., 1), pre(¢(4), ay, K31, 1))

= decrypt(prc(¢(A), a1, {{m} k., } ks, 0), (Pre(d(A), a1, K4,0))7 1)

= decrypt(a1, K3')
The last line means that in order to obtain the message that should be sent

at step 3 by agent A, then A must decrypt the message he received at step 2 by
the inverse of his key K 4. Therefore, the intruder can intercept the message {m}x,
at step 1, send it back to A at step 3 (masquerading as B) and obtain the secret
message m. The intruder may skip the execution of step 2 by not sending {m}x,
to D since it does not contribute to the success of the attack.

The algorithm prc enables us to automatically deduce, from the protocol
syntax, the computation procedure that should be performed to compute each sent
message. This enables us to have a simple syntax that is familiar to cryptographers.
Moreover, since the procedure uses abstract computation in an algebraic framework,

it is easily integrated with the algebraic model of messages that we adopt.

Real Frames and Agents Responses

The intruder’s behavior is considered non-deterministic in the sense that, at any
point in time, we cannot tell exactly which message it is going to send. Agents on
the other hand have a deterministic behavior; the message an agent 4 sends at any

step 7 is determined by comp,(rcvd¢(A4)). i.e.. the message is dependent on the

118

frame of messages seen by A and the step number. The specification frame ¢(A)
is constructed based on the protocol specification, and the underlying assumption
is that the protocol is executed exactly as specified. This is not the actual case
however, since we assume the presence of an intruder and/or dishonest agents. We,
therefore, define a real frame p(s, A) = vC.0; of type RFrm, where s is the sequence
of messages that were exchanged over the network up to current time. The set C,
as in ¢(A), contains all fresh values generated by A, whereas 6y describes s as seen
by A. For instance, assuming m appears in s then 6;(i) = {m} means that agent
A received message m at step 7 of the protocol session in which A is participating.
We write this as p(s, A) = vC. 8¢ — {m}], we may also abbreviate it by writing
rA(s,2) = m. It is worth noting that, for agents, each protocol session has its own
real frame.

The difference between the real frame p(s, A) and the specification fraine ¢(A)
of an agent A lies in the substitution 6;. Both frames agree at 6;(0) since it contains
the initial knowledge. At any other ¢ > 0, 07(¢) of the specification frame is the
singleton set that contains the message specified to be received by the agent at step
i. However, for an actual frame, the set §;(7) contains the message that was actually
received from the network at step 7 during an actual session of the protocol execution.
This message could have been manipulated by the intruder. Consequently, for a
protocol step specification step i A — B : m;, the output of a procedure call
comp,(rcvd(¢(A)) will be the message m;. However, the output of the procedure
call comp,(rcvd(p(s, A)), will be either the message m;, another message m, or
the special message terminate. We note here that although the procedure comp,
was derived using ¢(A4) (through the use of the algorithm prc), we were able to use
p(s, A) in the place of ¢(A) since both of them have the same structure vC. 6;.
The case where the output of the procedure comp, is terminate, i.e., the output
is not a valid message, represents situations where the received message is corrupt

or where the intruder is mounting an unsuccessful attack. Furthermore. our model

119

can handle the case of a dishonest agent D who does not follow protocol rules and

the messages it sends can then be any message in deduce(p(s, D)).

Intruder Frames

An intruder frame is always an actual frame, where p(s, /) = vC. ;. In this case,
C is a set containing fresh values created by the intruder up to the current moment.
The substitution 6; in this case maps the set {0,1,..., N} to messages in M, where
6;(0) contains all messages initially known to J such as public keys. Moreover, the
statement m € 0;(¢) means that message m was received by the intruder at step i of
a certain protocol session. Since we consider multi-session attacks, the intruder has
only one frame which spans over multiple sessions and therefore can represent the
whole knowledge of the intruder. Inference rules for the intruder are similar to those
defined in (5.3) above for agents, the difference is that ¢(A) should be replaced by
p(s, I). Also, we write p(s, I) - m to indicate that message m can be deduced from

the frame p(s, I).

5.2 Games for Security Protocols

In this section, we present game definitions for security protocols. A protocol is
represented as a game between the intruder and agents, where the type of the game
depends on the number of sessions and the assumption about intruder behavior
which can be passive or active. A passive intruder just forwards messages between
agents, whereas an active one may alter or block messages. A play of the game
is a sequence of moves that begins by a move of the intruder then an agent and
then moves alternate between the intruder and agents. All possible plays of the
game form the game tree. When defining games, we define the set of moves, the
labeling functions, the enabling relation and finallv the game tree. We begin by

defining simple games, and show how to compose themn into more complicated ones.

120

Namely, we define four games:
e A one-session game with a passive intruder.

A multiple-session game with a passive intruder.

» A one-session game with an active intruder.

A multiple-session game with an active intruder.

We call the first two cases the functional view of protocols and the latter two

the security view.

5.2.1 Definition of Games

When defining games for security protocols, each move m in the game represents a
message sent from an agent to another. As mentioned earlier the set of messages is
M C Ty. The generation of a single message by an honest agent is represented as a

strategy over the game Msg which is defined as follows:

Muse = {q}UM

Mg) = 0Q * g

A(m) = PA meM g ~ mméeM
Pusg = {gm|m e M}

Here, we assume that any m € M can be played at any time. This is not an
accurate assumption, as any principal in the protocol can play only those messages
m that they are able to construct, i.e., #(A4) - m. A single communication step, on
the other hand, is represented by a strategy over the game Csg = Msg — Msg. The

formal definition of the game is given hereafter:

121

Mesg = {¢'}uf{gtu{m’ [meM.ie{1.2}}

_ PQ i=1
)\ng(ql) = OQ . 9
1 =
) OA meMA:=1
)‘ng(mI) =

PA meMAi=2

The following enabling relation is defined over AMc,:

* MCsg (

<

q M Csg
g ey m' meM

m! ~ g n? m,neM (5.6)

The enabling relation affects the game tree:

Peg = {e}U{¢?. P.¢* YU {P.¢*m! | me M} U {¢*.¢* m'.n? | m,n € M}

We notice here that we used a superscript to differentiate between moves in
each game, since the set of moves is the disjoint union of the sets of the individual
games. We used the superscript 1 to denote moves of the game to the left of —o,
and the superscript 2 for the other game. This is equivalent to denoting the games
as Msg! —o Msg®. The definition of the enabling relation in (5.6) makes sure that
n? cannot be played unless m! is played first (any sequence in the game tree will
be the prefix of a sequence in the form ¢2.g'.m!.n?). This results from the fact that

we assumed that in any communication step (Csg game) an agent (the proponent)

only sends a message in response to a message that it received from the intruder

122

(the opponent). We clarify these ideas by taking, as example, the RSA3P protocol:

stepl. A— B : {m}x,

step2. B—A : {{m}x,}ks
step 3. A= DB : {m}k,

Examining step 1, we notice that A initiates the protocol. Since, in game
semantics, O (the channel) always plays first, we assume A gets a start message
“start” from the channel and replies with {m}x,. The “start” message serves as
an action to begin the execution of the protocol. In step 2, B receives the message
{m} Kk, from the channel and replies with {{m}k,}x,, and the last step follows.

We rewrite the steps as:

stepl. I— A . start
A—1T : {m}k,
step2. I — B : {m}x,
B—1 : {{m}x,}xs
step3. I — A : {{m}r,} ks
A—1T @ {m}x,
stepd. 1 — B : {m}x,

(5.7)

B —] : terminate

The protocol description in (5.7) makes clear the interaction with the intruder
I; an agent sends a message only in response to a message received from the intruder.
Each communication step has the form: J — X : m; followed by X — I : m; where
X is an honest agent. To respect the notation, a protocol will always end by an
agent X sending a terminate message to the intruder. The terminate message
marks the end of the execution of one protocol session. A certain communication
step in a protocol can then be captured as a strategy o over the game Csg. In this

strategy. O starts by asking for a message. I” replies by asking for another message.

123

Then, once P receives a message from O it will reply by its own message, which will
depend on P’s frame.

An example is given below in Figure 5.1, for a communication step ¢, where
the intruder sends message m to an agent 4. The agent then executes the procedure
comp;(rcvd(p(s, A))) and sends its output to the intruder (the channel). So, the
semantics of communication step ¢ of a protocol is a strategy o over the game Csg.
The sequences of ¢ all have the form ¢%.¢'.m!.n?. The intruder message m is any
message such that p(s,) F m, and the agent’s message n = comp,(rcvd(p(s, A4))),
where s is the sequence of messages exchanged during protocol execution up to the
current moment. More formally, we write the strategy as o = {¢%.¢g.m*.n? | m,n €
MA p(s, I} F m An = comp,(rcvd(p(s, A)))}. We note again that the superscripts
are 1ot meant as exponents but as a identifiers to know the game in which the move

is played.

q 0]
q' A
m! 9]
n? A

.M/

~

w—':

cC = O© = O

Figure 5.1: Game for single protocol step.

The execution of a number of steps in succession can be represented by a

strategy over the tensor product of a number of Csg games. As an example, Step

124

1 and Step 2 in (5.7) can be represented as a strategy over the game (Msg'! —o
Msgh?) & (Msg®! — Msg®?). Here, we modified the superscripts to identify different
copies of the Msg game. The superscript is now a tuple (j, k), where j indicates
the step and k indicates a specific Msg game within a step. The tensor product,
however, does not specify which game is played first (i.e., we can start by playing
the game of Step 2). This is why we need the enabling relation to specify the order
of moves. Actually, this is what we are going to use when we begin the discussion

about Protocol Session Games (Psg games).

Single Protocol Session (Functional View)

The functional view of a security protocol describes how the protocol executes with
the existence of a passive intruder. For any protocol with N — 1 communication
steps, the Protocol Session Game Psgyy; is defined by: Psgy, ey ~Csg, which is the
tensor product of N copies of the Csg game under the condition that no play can
take place in the i** copy unless a play was made in the (i — 1)** copy. This insures
that the protocol steps are executed in order. We have N copies of the Csg game
for a protocol with IV — 1 steps because of the addition of the start and terminate
messages as shown in (5.7). The previous discussion is summarized by the following

equations:

PSg[N] = !NCSg
InCsg = Csg! ®Csg?...®Csg® Vi >i.Csg is started after Csg’

= (Msgh! — Msg"?) @ (Msg®! — Msg??) ... ® (Msg""! — Msg™+?)
(5.8)

The symbol P in game semantics represents the system, while O represents the
environment. In the Csg game, P represents an honest agent, while O represents the
intruder (the network). When multiple Csg games are being played such as in a Psg

game. O is the same in all of these games, whereas P is a certain agent. To clarify

125

this ambiguity we define the mapping Id : copy — P. where P is a countable set of

svinbols representing agents identities and “copv’” is an index. e.g., a tuple of natural
A g ag ; :)

numbers, that is the superscript identifying the copy of the Csg game being played.

For instance in the RSA3P protocol in (5.7) above, Id(2) = B since the game Csg?

is played between J and B. By abuse of notation, we will write m*” € Msg"" instead

of m"" € My,,-to indicate that the move m is played in copy i, r of Msg. Moreover,
Msg

we define 9(m"") to be the move without the “copy“superscript; ¥(m®?) = m. The

definitions for the Psg, game are shown in (5.9)

Mpsgy

APSg[N) (mi’T)

/\PSQ[N] (qivr)

I

{¢g*|ie{l,...,N}}IU
{¢?|ie{l,...,N}}U
{m**|meM,ie{1,...,N}}U

{m*?|meM,ie{l,...,N}}
PQ r=1
o r=2

O4 meMAr=1
PA meMAr=2

The enabling relation is defined in (5.10).

"""Psg[N}
"~ Psgpy
"7 Psgpng
3 Psg[N]
7 Psg)

isg{N]

WPsg[N]

1,2
g
1.2

q
q

start

i1

terminate meM

i.1

n-

i€ {2,...N}A
m € MAm = 9(n'~1?)
m.neMAie{l..... N -1}

126

(5.10)

The game tree Ppsg[m is the set of sequences, that is a subset of]\/[,;‘i’ém] (defined
in Section 2.2.1), each sequence satisfies the switching condition, and the enabling
relation. In the enabling relation, the first rule states that the game opens with a
~ move by the opponent in Csg'. Since Csg ends with a move by the proponent in
Msg® (m*?), the second rule results in that the Csg games are played one after the
other (according to the order of the communication steps). The third rule implies
the switching conditions between Msg? and Msg!, while the fourth and fifth rules are
special for the start and terminate messages respectively. The sixth rule states
that questions enable answers in Msg”!, in any step, and that the message in these

intruder answers, i.e., m equals the message received by the intruder in the previous

i-1.2). This is because in the functional

communication step, i.e., the message J(n
description of the protocol, we assume a passive intruder that just forwards messages
between different agents. The seventh rule states that n*? cannot be played unless
mb! was played first (an agent does not send a message to the intruder unless it
received a message from the intruder in return).

The way the Psgy; game is defined means that the play proceeds in Csg’,
followed by Csg® and so on till we reach Csg" where the play ends with the termi-
nating move. An illustration of the Psg;n) game is shown in Figure 5.2 to clarify the
notation. In this figure, the intruder forwards the message my (that he obtained in
Step 1) to the player in Step 2, and the game continues. We notice that the move
is the same, the change in the superscript is to denote that this move is played in
two different copies of the the Msg game.

A protocol, as we describe it, is a number of interactions between the intruder
(opponent) and honest entities (proponents). For instance, the RSA3P protocol in
(5.7) shows two honest entities A, and B. Each of these honest entities describes
a certain role. An agent is an instance of a certain role. For example, role A

can be played by agents A and @ running on any computers in the network. To

differentiate between roles and agents, roles are written as A, B, S, etc. while agents

127

Step 1 Step 2
(Msgl,l — MSgI.Q) ® (MSgQ,l 5 M5g2‘2)
1.2

ql\l

start!!

as:
2.2
m

3

WO WO OWOWO

terminate’V-?

Figure 5.2: Game representation of one protocol session.

are given subscripts A;, Ao, etc. and By, Bs, etc. For any communication step Csg’,

the opponent O is always the intruder, while the player P is an agent playing a

certain role.

Multiple Protocol Sessions (Functional View)

Running multiple sessions of the protocol can be represented by the game !Psgy;,

which is the tensor product of an unbounded number of Psg)y; games. In this case,

a certain run of a protocol p can be represented by a sequence of moves over the

game Prtyy), where Prtyy is defined as follows:

Prijy = Psgyy;
2

Psgpyy = Psg[lN] ® Psginy--- V3 > 7. Psg{r;] is started after Psg{N}

= Csg'... ®CsghV ® Csg?!..

— (Msg'? —o Msgh'?) .
(Msg®1! — Msg?12)

@ Csg? ..

1.N1 1,N.2 (5.11)
®(Msg —o Msg")&

®(Msg2,N,1 —0 MSgQ,N,2)®

th

The symbols are read as follows: Psng} is the i"" copy of the Psgyy; game (played

128

in the i"" session of the protocol), Csg™’ is the game played in the j** communication

“th th

step of the i session, Msg"”" is the r** copy of Msg played in the j"* communication
step of the ™ session, and finally m*" is a certain move m played in Msg™/”. For a
certain protocol of N — 1 communication steps, running M sessions of this protocol
will result in the variables ¢, 7, and 7 ranging over the values {1,..., M}, {1,..., N},

and {1, 2} respectively.

Mpry, = {g7" [¢eN\{0},j e{L,..., N}}U
{¢"? | ieN\{0},j e {1,..., N}}U
{m* | meM,ieN\{0},je{1,..., N}JU
{m*32 | meM,i € N\{0},j € {1,...,N}}
PQ r=1
oQR r=2
OA meMAr=1
PA meMAr=2

(5.12)

)‘Prt[N] (qi,j,T) =

>‘Prt1N] (mi,j,r) =

In the definition above, N\ {0} is the set of positive integers. The enabling relation

is defined as follows:

129

* pry g

mii=1).2 ~Pry g2 m €M
g% pry g i€ N\ {0} Aje{l,...N}
g"'! e, start i € N\ {0}
mtMl wspy terminate m € MAize N\ {0}
Gl oy, M i€ N\ {0} Aj€{2,...N}IA
m e MAm = J(n12)
M py ntI2 m,n€MAie N\{0}Aje{l,...N -1}
S meMAie€{2,...M}

(5.13)

In the enabling relation above, the first rule states that the initial move of the

Prtjyj game is by the opponent in Csg' (communication step 1) of session 1. The
second to the seventh rules control moves within a certain protocol session 7 and
were explained for the game Psg)y;. The eighth rule states that finishing the first
communication step of a certain session enables the first commmunication step of the
next session. The game tree Pp,—t[N] is defined similarly to the gaime tree of the Psg[N}

game.

Single Protocol Session (Security View)

In the security view of protocols, we consider different manipulations that can be
done by the intruder to messages in order to execute an attack. To describe the
security semantics of a protocol we define the the game Ssgyy, which describes a
single session of a protocol with N — 1 communication steps assuming intruder

manipulations.

130

Ssgiyy = ®nCsg
= Csg' ®Csg®... 5% Csg”

= (Msgl.l o Msg1,2> & (Msgz,l — Msgz.?) L® (MSgN’l o MSgN’2)
(5.14)

The difference between @xnCsg and !yCsg is that in the former we drop the
condition that the play in Csg’ has to be started directly after Csg""'. This is because
the intruder might skip steps of the protocol while executing an attack. The only
restriction in the order of the moves of the intruder is that communication steps
played between the intruder and a certain agent have to be in the order expected by
that agent. In (5.15), the enabling relation is changed to reflect these facts about

the order of moves. The game Ssgyy; has the following enabling relation:

b sy 0 Ve {1 N} Td(0) = () > 1 <
g sy 0 ie{l,... N}
gt ~ssgy Start
M2 g g2 meMAi < jATd(i) = Id(j) (5.15)
mM:1 ~ssgy terminate m € M
gl —_— mi-l meMAie{2,...N}
R m,neMAie{l,...N -1}

The modifications to the enabling relation affects the gane tree of Ssgp;.
Another major difference from the definition of the enabling relation of Psgy, is
that we drop the condition that the intruder is restricted to forwarding messages
between agents. The only restriction will be that messages sent by the intruder can
be accepted by the honest agent at step ¢ of the protocol. This is protocol-specific

and should be determined by the semantic functions examining the protocol.

131

Multiple Protocol Sessions (Security View)

In this case, the game that represents protocol interactions is denoted by Spriy:

Spryy = Psgpy

!Psg[N] = PSg%N] & Psg[QN] e Y >g. Psg{,:,] is started after Psg{N]
= Csg'... @ Csg"" @ Csg? ... Csg®™ ... 5.16)

— (Msg"™! —o Msg'1?) ... @(Msg™! —o MsghV?)g

(Msg®hl —o Msg®1:2) .. ®(Msg>M! —o Msg?V?)

Definitions of moves and labeling functions of Spry; are the same as those of

Prt(y), but the enabling relation is changed to be:

* ospry ¢ vi'e{l,...,N}.Id(1,5) =1d(1,j") = j < §
mimM2 e g2 meMAie{2,... M}
k. Id(,) = 1d(i, k) = 7/ < k

gt ~Spry Start
miNl g, terminate m e MAjeN\{0}

g% oy ¢ e N\{0}nje{l,...N}

ghil ~Spry M meMAie{l,.. M}AjE{2,...N}

miJ ~Spri nd-? mmneMAie{l,...M}Aje{l,...N}
M2 sy 075 j < kATd(i,j) = 1d(i, k)

(5.17)
The first condition above states that the play begins in Session 1 in any step
where an agent expects to receive his first message in the protocol. Notice that

2

the first move of this step has to be a question by the opponent, i.e., ¢*/2. Once

the game has started in a step in a certain session, and the intruder has received a

132

message in this step (m"“l‘”), he can start the play in any step in the next session
(¢7"2) provided this is also the first step in the interaction with a certain agent.
This is stated by the second condition. The third condition is special for the start
message, i.e., the start message is always enabled in communication step 1 in any
session. The fourth condition states the condition for the termination of one session
of the protocol, i.e.. the reception of m*M! (N — 1 is the number of communication
steps of the protocol). The fifth, sixth and seventh rules put a condition on the
sequence of moves in any communication step in a certain session. They simply
state that in any communication step we cannot have a sequence g/2.m%72 this
sequence means that an agent sends a message to the intruder without first getting a
message form the intruder. This is to emphasize the rule that we established before
that each communication step is an exchange between the intruder and an agent,
where the intruder has to supply a message in order to get a message in return.
The eighth rule imposes order on the messages of the intruder in the same session.
Basically, when playing with a certain agent, the intruder has to supply messages
in the order expected by this agent. It is worth noting that games defined this way
give rise to a category where objects are games and a morphism between any two
games G and H is a strategy over the game G — H, details about the structure of

the category can be found in [9].

Quantification over Strategies

The game Spr represents an interleaving of actions from different Csg games. Each
Csg game is played between an agent and the intruder. A strategy over Spr may
involve several agents. The set of all strategies over Spr is denoted Ss,,. For any

strategy o € Ss, and a set A of honest agents identities, we define o* as:

ot ={s| M|s€oc)

133

where M is defined as:
M = {m € Csg*? | Id(copy) € A}

Intuitively, o# is obtained from o by eliminating all moves from any copy of the
Csg game whose player I” is not a member of A. The set of all strategies involving

a set A of players is denoted S&,, and is defined as:
Sé\pr = {UA l OIS SSPF}

5.2.2 Example

We take the example of the RSA3P protocol:

A—-D : {m}KA
B— A : {{m}KA}KB (518)
A—- B : {m}](B

A single session tree is depicted in Figure 5.3, where for each sequence of
moves the game in which these moves were played is shown. Since a game Csg'”
1.2

is defined to be Msg! — Msg'?? sequences of moves should have been written

g2 g1 miJl nti? to indicate the game to which the move belongs. In Figure 5.3,

we omitted superscripts from moves to improve readability.

5.3 Semantics

A strategy, for a certain agent, is its response to messages received from the network,

g) geIL, P g ;
and it is extracted from protocol specifications. Given a certain game, the set of all
possible sequences of moves during the play of the game is the game tree. However,

some of these sequences will be invalid according to agents strategies. e.g., a sequence

134

lq

.. A

;

.. 9] game ngl,l
lstart

.. A

l{mm

.. O
lq
.. B
I
... O game ng1’2
l{m}KA
.. B
l{{m}x,,}KB
... O

3

{myky |m {m}x,

game Csg'+*

lq
... A
q
{{m}x 1k l{{n’}K4}K1 .. 9] game CSgL
./lm. .. A

Figure 5.3: Game tree for the RSA three-pass protocol.

135

where agent A sends message m where his strategy is to send m/. All sequences
where each agent follow their strategy are valid sequences according to the protocol
specification and are taken to be the protocol semantics. In this section, we give the
semantics of security protocols over the game of multiple sessions and a malicious
intruder (the security view). First we recall the grammar rules that we use to specify

protocols:

Prot = Decl.Comm | e
Decl == kavpm.Decl | varm.Decl | ¢
Comm := stepi>A— B: m.Comm | ¢

As we mentioned earlier, the game tree of the game Spryy, represents all possible
interactions of agents in any protocol with N — 1 steps. A certain protocol g (with
N—1 steps) is represented by a set of strategies over the game tree of Spryy. This set
of strategies forms a subtree of the game tree of Spry which represents all possible
interactions of agents according to the rules of p, with the assumption of a malicious

intruder.

5.3.1 Protocol Semantics

We begin by defining a well-forimedness condition for protocol specifications. A
protocol specification is well-formed if steps are numbered consecutively starting
at 1 and no message is sent by an agent A at step ¢ unless it can be deduced from
trunc(¢(A), 7) (the specification frame). Hereafter, we define the predicate Wf_Prot
that checks a protocol for well-formedness, given a sequence of communication steps,
a natural number and a function of type Frm mapping agent names to frames. First
we need to define the function J : 7 — Nat that maps the syntactic symbol 7 to its

corresponding natural number.

136

Table 5.2: Definitions needed for the seinantic interpretation function.

name:

Type

Description

Frm

A function that maps agents to their specification framnes,
i.e., #(A) is the specification frame of A.

RFrm

A function that maps agents and the intruder to their
real frames, i.e., p(s, A) is the real frame of A.

comp :

Output

A procedure such that comp(i,rcvd(¢(A4))) is the
message that is sent to the network by agent A
at step ¢ according to the specification. Similarly,
comp(i, revd(p(s, A))) is the message that is actually
sent to the network by agent A at step ¢ where p(s, 4) is
the actual frame seen by A during a protocol run.

sub .
P

GameTree

P& C P; a subset of the game tree of the game G
(subtree).

In security semantics, we
formed by the intruder in order to break the protocol’s security. The security se-
mantics of a security protocol with N — 1 communication steps is a set of strategies
over the game Spry;. In order to be able to define these strategies we need the defini-
tions in Table 5.2, where the first three definitions were introduced in Section 5.1.2.

The ounly difference is that the procedure comp was written comp,(revd(é(A))).

Wf_Prot : Comm — Frm — Bool
Wf_Prot[C](¢)

C is the communication part of the protocol

¢ is constructed by the function frame (Section 5.1.2)

= Wf_Prot[stepi> A — B: m.C'|(4)
= (trunc(¢(4),I[]) F m)A
Wi_Prot[C'](¢)

Wf_Prot[e](¢) = true

with ¢ as a subscript not a parameter.

investigate possible manoeuvres that can be per-

The semantic interpretation function P assigns a set of strategies over the
game Spryy; to a protocol specification. In order to do this. we must first construct
a specification frame ¢(A) for each agent A and define the procedure comp(z) for
each communication step 7. Both of these tasks were demonstrated in Section 5.1.2
using the functions frame and prc, respectively. In the following, we define the
semantic interpretation function P that scans protocol specifications and returns a

set of strategies over the game Spryy. We assume that the frames and the comp

procedures are already constructed.

B : Prot — RFrm — Output — [Tnenat Pg*;‘,’;m (5.19)
Pl e l(p)(comp)(N) = S

where,
S= {smi"mi*? € Poyy | 1€NAG < NA
p(s, I) Fmy A comp(j, revd(p(s, Id(z, 5)))) = ma}

In (5.19), N is the set of natural numbers and N — 1 is the number of com-
munication steps of the protocol. The semantic function P collects, in the set S,
all those sequences of the game tree PSpr;N} that “conform”™ to the specification of
the protocol p. A sequence s.m!/!1.miJ? “conforms” to the specification of g if: (1)
the intruder can deduce the message m’7! from its previous communication history

2 sent by an agent A = Id(i,j) in a step j equals

s and (2) every message m"%
the output of the computation procedure of A at step j. This output is equal to
comp(j,rcvd(p(s, A))) as described in Section 5.1.2, in the discussion about real

and specification frames.

138

Chapter 6

Logic for Protocol Verification

In Chapter 5, we presented our game-based model for security protocols and defined
the semantic function that maps a protocol specification to a game tree. We now
need to express properties of this tree, these properties should be interesting from
the security point of view. Moreover, we should be able to verify these properties
against the game tree. In this chapter, we present a new logic for the expression and
verification of security protocols. It can be used to specify and verify the security
properties that should be satisfied by the protocol. Verification is carried out using
a tableau-based proof system which is implemented as a model checking algorithm.
The model is the game tree that represents protocol interactions. The logic is
based two previous logics [15] and [17]. The main differences are that in [17], there
is no explicit mention of the intruder, only adversarial behavior between players is
considered. The logic was not specifically designed to be used for security properties,
although its ideas were used later in [66] to verify non-repudiation protocols. Also,
interaction between players is not explicitly modeled, i.e., no messages are exchanged
between players. This complicates the specification of properties based on traces of
messages. As for the logic presented in [15], the model considered is a single trace,
verification of a protocol amounts to verification of a property over all traces which

limits the analysis. Also. the logic considers only traces with atomic actions. it

139

cannot specify a certain structure for the exchanged messages. In our model. the
logic is based on the idea of interaction, where the game tree is built from possible
interactions between players and intruder. Logic formulas specify properties over the
game tree. Moves of the game are actual messages that are exchanged in a protocol
run. We can therefore specify properties on the structure of messages, and on traces
of messages. We can quantify existentially, universally or by players strategies, i.e.,
all traces in which certain players are interacting.

We begin by introducing the syntax of the logic and its semantics. We then
present the tableau-based proof system and give examples for a number of security
properties. Finally, we prove the properties of the proof tableaux, namely, finiteness,

soundness, and completeness.

6.1 Syntax of Formulas

Before presenting the syntax of formulas, we present the concept of a sequence pat-
tern 7. A sequence pattern represents a set of game strategies; namely, all those
strategies that “satisfy” the pattern. The definition of a strategy satisfying a pat-
tern will be presented below. The syntax of patterns is specified by the following
grammatical rules:

i:j.-"

ro=c¢|a?r |z ax=m]| [m] (6.1)

The description of each syntactic symbol is as follows:

» The symbol z, is called a pattern variable and is used to represent a sequence
of game moves of zero or any finite length, the subscript r is added to avoid

confusion with variables in moves a*7:".

« The symbol @'/ is used to represent moves in the game tree I’y Where “a”

has the form m or [m], ¢ and j can be variables or positive numerals and n

140

can be a variable or one of the constants 1 and 2.

» The symbol m represents a term in Tx(X), the message algebra with variables,
and is used to represent messages. Variables in m are given the symbols

z,v,z,... with no subscripts.

« The symbol [m]| means a term ¢t € Tx(X) that contains m, ie., t = m or
t = f(ti,ta,...,ty) A 3t; o t; = [m]. We can express the same meaning using

the subterm relation defined in Section 5.1.2, in this case we have m < [m].

Intuitively, “a»™” represents a move played in the gaine Spryy) in one copy of the

i?.j?”

Msg game, i.e., the game Msg"?™. This explains the limitations we have on i, j,
and n since the superscript i, 7, n should be a valid one according to the definition
of the game Spryy; presented in (5.16). It is important to note here that a move is
a message with a superscript that designates the game in which the message was
exchanged.

The sets of variables and moves in a pattern r are written var(r) and mov(r)
respectively. Moreover, for any pattern r, the symbol r|; represents the variable or
move at position 7 of 7. We define the same operation for sequences of moves such
that for a sequence s, s|; is the move at position ¢ in s. As an example, we con-
sider the pattern 7 = z,.[K41*%2.y,.({z}x,), in this case we have: mov(r) =
{TKAT1Y%2, ({z})10}, var(r) = {z,,9,}, Th = 7., 7|3 = ¥, and we note the use
of the subscript r in pattern variables (z, and y, in the example) to differentiate
between them and move variables (z and v in the example). We define the substi-
tution 6, : var(r) — Ms*pr[N] that maps pattern variables in a sequence pattern to
sequences of moves of the game Spry; and the substitution 6,, that maps variables
in terms of the form m*¥™ to messages. The substitution #, maps patterns variables
to sequences of moves in a straightforward manner, the situation is a little more
complex with ,,, since both m and the superscript 4, j, n may contain variables. We

overload the substitution 6,, to deal with both cases. Thus, 6,,(m) will be a ground

141

term ¢ in the message algebra, i.e., t € Ty, and 6,,(¢, 7, n) will be a tuple of numbers
indicating a certain copy of the Msg game.

We also define the predicate satisfy(o. 7, 8,,,0,), which is true when a strategy
o in the game tree satisfics a pattern r. Intuitively, a strategy o satisfies a pattern

r if there is a sequence s € o such that s matches r. Formally:
satisfy(o.7,0,,,6,) = 3s € o .match(s,r,0,,,6,)

Let s = s1s;5...5 be a sequence of moves in the game tree Psp,[N], where each

move in s has the form ¢t*#7. The predicate match(s, 7, 0,,,0,), is defined as follows:

match(e,¢,6,,,6,) = true
match(s, €, 6,,,0,) = false if s#e
match(t*#7.s', m* " r 0,,.60,) = (Bn(m)=1)AOn(i,j,n)=a,B,7)

Amatch(s', 7, 0,,,6,)
match(t*?.s [m]/"™r,0,,,0,) = (0(m) <t)A(0,,(5,in) = a, By)
Amatch(s',r,0,,,0.)
match(s, z,.r, 0,,,0,) = 2 <l.0(z,)=81...5

Amatch(s,1...5,7,0m,,0,)

In order to simplify the notation, we combine 6, and 6,, into a single substi-

tution @ that acts on patterns in the following way:

0(¢) = ¢
O(a™"r) = 8,(a"").0(r)
(z,.r) = 6,(x,).0(r)

We follow the usual notation for substitutions and write 78 for 6(r). From the
definitions of the predicate match and the substitution 8 above. we notice that the

condition for a match between a pattern and a sequence is the existence of one or

142

more substitutions 6, we can therefore write the predicates above as satisfy(o. 7. 0)

and match(s,r, #). As an example, we consider the following:
o The pattern r = z,.[KA1V 2y ({x} i,)12

« The sequence s = g2t start?h ({m}x,)H12

222 ({m)2 ({{mby))22

The sequence s can match r using the substitution ¢ where:
o 0, = [z, — g12 g0 startl o g122. g2 ({m) ke,)2
o O =[z— {m}xg,v— 2

It is easy to check that the predicate match(s,r,) will evaluate to “true”
taking into account that K4 < {m}x,.

Having defined patterns, and the conditions that make a pattern match a
strategy, we need to be able to reason about patterns. In other words, we need to
express properties of strategies through the use of patterns. These properties should
be relevant as security features of protocols. We, therefore, define a logic that is
able to express modalities such as “possible” and “necessary”, it can also express
temporal properties through the use of a recursion operator. Furthermore, a defining
feature of our logic is its ability to modify the model, i.e., the game tree, by removing
moves and replacing them by dummy symbols. This feature, along with the use of
the recursion operator, allows us to express some counting properties, such as “for
every message m there is a corresponding m'”.

A formula in our logic can be:
» A variable, for use with the recursion operator.
« The negation on another formula.

« The conjunction of two formulas.

143

» A pattern matching formula where we match a pattern to a strategy in the
game tree, modify the strategy (by replacing some moves with dummy sym-

bols) and try to match another pattern to the mnodified strategy.

+ A recursive formula that is the greatest fixed point of a function over sets of

strategies.
A formula that checks only those strategies that belong to certain agents.

The syntax of a formula ¢ is expressed by the following grammar:

o= Z | ¢ | o Aga | I ol | w2 | (Ao (6.2)
We require the following two syntactic conditions:

e In [T’] S '1”2]._, var(rl) = VaI(T'Q) and Y. (rlli & Var(rl) = 7'1{7; = Tg‘,j) A\ (T'llq' c

mov(ry) < il = 1ol Vrpls = ®).

 In vZ.p, any free Z in ¢ appears under the scope of an even number of

negations.

The first condition above means that 7, is obtained from 71 by replacing some
of the moves of r; by the dummy symbol ®, where V6 .0(®) = &, and changing
nothing else, i.e., all the pattern and move variables of ry are those of r;. This
is to ensure that, in a strategy o, if o contains a sequence s and there exists a
substitution # such that match(s,r;,0) = true, then we can obtain a sequence ¢
from s such that match(t, 7o, 8) = true. We were able to use the same substitution
6 with 7o since 7o does not introduce any new variables, hence 7,0 contains only
ground terms. The sequence t has the same length as s (len(t) = len(s)) and it is
constructed such that (re6|; = &) = (t|; = ®), and in all other positions t|; = s};.
It is then possible to replace s by t in o, and get a new strategy ¢’, which we denote
by writing ¢’ = o[t/s]. The second condition is necessary for the monoticity of the

semantic interpretation function as will be explained in the semantics section.

144

Intuitively, the formula [r; % 7o) is true, for a strategy o, if for all substitu-
tions 6 such that satisfy(o,r,,0) = true, then ¢’ satisfies , where ¢’ is obtained
from o such that satisfy (o', ry, 6) = true. In other words, 3s € o .match(s,r,6) =
true and ¢’ = o[t/s] where t is obtained from s as mentioned earlier (by substituting
some moves in s with ®). The quantifier {A)) chooses the subtree of the game tree
where only the agents in the set A interact together (and the intruder) through their
strategies. The formula to the right of ((A)) operates on this subtree. The rest of

the formulas have their usual meaning in modal u-calculus [35].

6.2 Semantics

A formula in the logic is interpreted over a game tree. Given a certain game tree
g, eg. PSP'[N]’ and an environment e that maps formulae variables to strategies in
G, the semantic function [¢]]g maps a formula ¢ to a set of strategies S C Sg that
satisfy ¢, where S¢ is the set of all strategies in G. The semantic function is defined

by the following rules:

[Z2]] = e(2)
[-¢1 = So\[el]
Hsolf\iﬂzllf = ﬂ%]]gﬂh?z]]g

6.3
[rael] = {o€Sg|Vo.satisfy(o,m,0) = 0" €[0]} .

[vZe]? = UISCSs|SClelfsg)
[(AYe] = Stnlelf

In the semantic rules above, the first three concern forinula variables, negation
and conjunction, respectively. The fourth rule is for formulas matching strategies
to patterns, where, in o’ € [¢ 17, ¢ = G[t/s] and ¢’ = o[t/s]. The sequence s is in
o and matches 1, i.e., s € 0 A match(s,ry,0) = true. The sequence ¢ is obtained

from s by the following rules:

145

i ® T29 =®
len(t) = len(s),Vi < len(t).t|; =
s|; otherwise

The fifth rule describes the meaning of the recursive forinula vZ.¢ to be the
greatest fixpoint of a function f : 256 — 259 where f(S) = [¢]](g[7.5 The function
f is defined over the lattice (25, C U, N), the syntactic condition on ¢ (X appears
under the scope of an even number of negations) ensures that f(S) is monotone [35]
and hence has a greatest fixpoint (by Knaster-Tarski fixed point theorem). The last
rule is for quantification by agent identities, where Sé was defined in Section 5.2.1
to be the set of all strategies of the game G which involve a set A of players.

We use the following shorthand notations:

S(mp1 Ap) = 1 Vs
o1 Vigr = 01= @ (6.4)
Alr e = (r)y
wZ.-p[-Z]Z) = pZp

Moreover, we use the following two notations tt = vZ.Z and ff = puz.7.
Examples of logic formulas and the properties they express are given in Section

6.3.2. Here, we just give a simple example where we have:

1,12
g1L1 5, LL

o A strategy o = {gh1? ¢! . star my

1.1.2

q1,1,2.ql,},l‘start1,1,1.ml 122

2.1 1.2,1 1.2.2}

1, v s
ght2ghttmy ™ mg

j,i,'n.

» The property (z.mI*"y & z. ® y)(z.m}* .y z. ® .y)tt, where z, ¥y, 7, 4

and n are variables.

This property states that, in o, there exists a sequence s that contains m; with
any superscript (hence the variables j ¢,n). Then, in s, if we replace my™™ by
®, the resulting sequence t will satisfy the rest of the formula which is the part
(z.my*" .y % z. % y)tt. This part says that. in the new sequence ¢, we can find

a move with message ms and this move was played in any session j in step 2. i.e.,

146

j.2.1 j.2.2

in the game Csg’?, this can be in the game Msg’?! or Msg/?2. Then. in ¢. if we

replace m’é’Q’” by ®, the resulting sequence t' will satisfy tt, which is satisfied by

any sequence. Therefore, the strategy o satisfies the property:

YRR

o For the part: (x.m{"".y + z. ® .y), we have:

1,12 1,11

1,1,2 12,1 122
s = ql12 gbll grarthll pmbl? 4122 412

my gt 2R b my ™ mg ™" and

§ = [z — gt12 gt starthll g ql’z*z.ql*m.m%‘z‘l.mé'w,j 1t 1,n—
2]
_ 112 1,1,1 1,22 120 122
O(z. ® .y) = ¢*12.qV1 start? . @ g1 22 g1 2 my and thus we get t:
121 122

$ = q“’z.ql’l’l.startlfl’l. ® ‘q1,2,2'q1,2,1.m2. mg

.2,

o The part: (z.m}*".y % z. ® .y)tt can be checked similarly startmg by the

sequence {.

From the previous example we note that the operators (. & .) and [. + ||
bind variables. Therefore, the variables z,y, ... of the first part of the formula are
not the same as those of the second part. Moreover, the ability to remove moves
from sequences combined with the recursive formulas allows us to specify properties
such as “for every message m there is a corresponding n”, which provides a sort
of “counting” In the following, we investigate some properties of the the recursion

operator.

Lemma 6.2.1 [¢[y/Z]] = [[So]lgz [+19

The proof is done by structural induction over .

Base case: ¢ =2

[v/2) =[v];

But: [Z]% =e(Z),s0 [v/Z2]°=[2]° ol o]f

We demonstrate the case ¢ = [r; % 72]¢’ and the other cases can be easily proved:
[lv/2) 1 = {0 € Sg | V0. satisfy(o,m1,0) = o’ € [¢[v/Z] 17}

By induction hypothesis:

147

ol/2]]° = {0 € Sg | V0. satisfy(a,71,0) = o’ € []

[[1/]]9}
Lelw/2)1] =101, 1,y
O

(’[7»—->|I

As a result, we have [vZ.9 19 = [¢[vZ.¢/Z]]°. This follows from the fact
that [vZ.¢ [= [¢ 1§ zmy where T=U{S C Sg | SC [0l g} =[vZ0]7.
We can now prove that the semantics of the expression uZ.p defined earlier

as ~wZ.~p[~Z/Z] is the least fixpoint of the function f(S) =[¢]](’[7v——>5]’

[~vZ-p[-2/2) 10
=S \U{S € Sg | SC[~w[~Z/2]1s5}
~5g\U{5C59I5C59\Hs0]]Z [-2]° }

e[Zr— 9']

=S \U{SCS;|SCSs\[op]]e{z.—»Sg\S)}

For any set of strategies S C Sg, let S¢ = Sg \ S. By De Morgan laws, for any two

sets A and B, we have:

(ANB)*= A°U B, (AU B)* = A°N B, AC B = B°C A°.

[~vZ~yp-2/2) 1]

= (U{Se\ S° € Sg | S € ([¢ Tdzms) D"
= (U{Sa\ 5° € Sg | [¢ 15259 € SD)°
=N({Se \ 5 C Sg | [z C SV
=S CSe |y Bg{szc} C 5%

Moreover, we investigate the semantics of the the expression (r; & ry)p as

defined above:

148

[%)] = [l % o) IF

= {0 € 8 | V0 .satisfy(o,r1,0) = 0’ € Sg\ [¢ ﬂf/}
= {0 € 85 | V0. satisfy(o,71,0) = o' € [¢]7)}
= {0 €8 | V0 . ~(satisfy(a.r1,0) Ao’ € [0])}
= {0 € Sg | 3. (satisfy(a,m,0) Ao’ € [9]9)}

In the derivation above, we used the fact that) = -y implies =(¢) A), and
the fact that for any set of strategies S, SN (Sg \ S) = 0.

6.3 Tableau-Based Proof System

In general terms, a tableau-based proof system [97] starts by the formula to be
proved and works its way backwards by trying to prove the formula’s components.
For instance, in order to prove a conjunction, we have to prove all its conjuncts. A
proof for a formula is therefore a tree with the formula at the root, and a branch
is created for each component of the formula, e.g., a branch for each conjunct.
A formula is true if it has a “successful” tree, the definition of a successful tree
will be presented below. Defining a tableau-based proof system for a logic means
defining a method to construct proof trees starting by the formula to be proved.
This definition, therefore, directly produces an algorithm to prove formulas. In our
case, this will be our model checking algorithm.

Before we present the rules of the tableau, we define the immediate subformula

relation [35] <; as:

v =<5 Ty

v =<1 [r1 Py

©; <1 w1 Ngs 1 €{1,2}
v =5 vZy

We define the proper subformula relation < to be the transitive closure of <; and

149

the subformula relation < to be its trausitive and reflexive closure. A tableau based
proof system starts from the formula to be proved as the root of a proof tree and
proceeds in a top down fashion. In every rule of the tableau, the conclusion is above
the premises. Each conclusion of a certain rule represents a node in the proof tree,
whereas the premises represent the children to this node. In our case, the proof
system provés sequents of the form H,b+ o € p, which means that under a set H of
hypotheses and the symbol b € {¢, =}, the strategy o satisfies the property . The
set H contains elements of the form o : ¥Z.¢ and is needed for recursive formulas.
Generally speaking, the use of H means that in order to prove that a strategy o
satisfies a recursive formula ,.., we must prove the following: Under the hypothesis
that o satisfies ,.., then o also satisfies the unfolding of ,... We also define the
set H 'vZ.p={0¢€ Sg|o:vZyp € H}. The use of H, and b will be apparent
after we state the rules of the proof system:

Hbk gy
(R.) H-bFoc€oy

HielFo € o1 Nps

(Ry) H, el o€y H,elF o € ¢y
H,—-Fo € pi Ags .
1,2
(R—-/\i) H,ﬁ'_O-E(fCH ZE{ }
HblFoevZy
R vl ¢ H
(R,) H' U{o:vZ.ye},bFo€plvZ.p/Z] o ivie g

Hebo€lr %y

R - i=H,E}_0'i€'
H,—~Fo€lr e)
R ted{l,.... _
(ﬁﬂf') H-Fo €y ce i n)
) Hobkoe (A)y
O HbEoheyp

150

where,
in(R,):

H =H\{o":T|vZy=<T}
in (Ry)

o; = olt;/s], t; and s satisfy the formula:

V0. ((3s € o . match(s,r,0) = true) = 3, . t|; = rafly b=

s|; otherwise

in and (R‘*[h) :

o; = olt;/s], t; and s satisfy the formula:

20|, T80 =&

36 . ((3s € 0 . match(s,rq, 0) = true) = 3t; . ¢;}; =
s|; otherwise

The first rule (R-) concerns negation of formulas where b € {¢,~} serves
as a “memory” to remember negations, in this case ep = . We define ce = e,
¢m = —¢ = 1, and -~ = e. The second rule (R,) states that in order to prove a
conjunction, we have to prove both conjuncts. The third rules is actually two rules:
(R_,,) and (R_,,). It states that in order to prove the negation of a conjunction,
we have to prove the negation of the first conjunct or the negation of the second
conjunct. This is due to the identity —(w; A w2) = = V —p,. The fourth rule (R,)
concerns proving a recursive formulas, where the construction of the set H, via H’,
ensures that the validity of the sequent H,b F ¢ € vZ.p is determined only by
subformulas of ¢ [35]. The fifth rule (Ry) takes care of formulas matching strategies
to patterns. Intuitively, it states that in order to prove that a strategy o satisfies the
formula [r; & 73], we have to prove that for all substitutions #; to 6, that make o
match the pattern ry, if we replace the sequence s = r;6; (which is one of sequences
of o) by rq0; to obtain o; then o; satisfies . This is why this rule will produce n
branches in the tableau, i.e., one branch for each substitution ;. The sixth rule deals
with the formula —[r; & 72, it is actually a collection of n rules: (Rﬁ”]) to (Rﬁ“n).

It is based on the identity: —[r; % 73] = (r; % 1)y, which was introduced

151

in (6.4). So, considering that =@ = @, we have —[]g = =[]-—¢ = (.)=p. So,
proving —[r; &)¢ amounts to proving (r; & 73)—. The semantics of (r; & 7o)
was investigated in Section 6.2 on Page 149. According to the semantics, in order to
prove that a strategy o satisfies (r; % 19)p, we have to find at least one substitution
6; that makes ¢ match 7, and if we replace r16; by 7.6; to obtain g;, then o; will
satisfy ¢. This is why this rule is a collection of n rules since if we can find a single
substitution out of any n possible substitutions, the formula is proved. Finally, the
seventh rule (Ryy) is for formulas dealing with subtrees of the game tree.

Starting from the formula to be proved at the root of the proof tree, the tree
grows downwards until we hit a node where the tree cannot be extended anymore,
i.e., aleaf node. A formula is proved if it has a successful tableau, where a successful
tableau is one whose all leaves are successful. A successful leaf meets one of the

following conditions:
1. HeFoeZandoe[Z]°
2. H,—»l—oEZandogE[[Z]]f
3. HetoevZypando:vZ.p€e H

4. Hyek o € [ry & e and {0 € Sg | 30 . match(o,ry,6)} = 0.

6.3.1 Properties of Tableau System

We would like to prove three main properties, namely the finiteness of the tableau
for finite models, the soundness, and the completeness. Soundness and completeness
are proved with respect to a relativized semantics, in which the semantic function
considers the set of hypotheses (the set H) as a parameter. The new semantics is
the same as the one provided in Section 6.2 for all formulas except for recursive

formulas where it is defined as:

152

G.1 .1
[[VZS‘O]](g = (VH SO]]e[ZHSUS'}) USI
where, S’ = H vZ.p
In the equation, the greatest fixpoint operator is applied to a function f(S) =
[f[}’; s) Whose argument is SUSS". Since the function is monotone over a complete
lattice, as mentioned earlier, then the existence of a greatest fixpoint is guaranteed.
We now list the theorems regarding the properties of the proof system. These

properties are: Finiteness, soundness, and completeness, the detailed proofs are in

Section 6.4.

Theorem 6.3.1 Finiteness. For any sequent H,b b o € ¢ there exists a finite

number of finite tableauz.

The idea of the proof is that for any formula at the root of the proof tree we begin

applying the rules R, R, R-x,, g, IR Ryy, and R,. The application of the first

[l
six rules results in shorter formulas, while the application of the R, rule results in
larger hypothesis sets H. The proof shows that shortening a formula and increasing
the size of H cannot continue infinitely. Hence no path in the tree will have infinite
length. Branching happens in the proof tree whenever we have an expression of the

form @1 A @2 or [r; & ro]p. Finite branching is guaranteed in the first case by the

finite length of any expression and in the second case by the finiteness of the model.

Theorem 6.3.2 Soundness. For any sequent H,b + ¢ € ¢ with a successful

tableau, o € [¢ J77.

The idea behind the proof is to show that all the successful leaves described above
are valid and that the application of the rules of the tableau preserves semantic

validity.

Theorem 6.3.3 Completeness. If for a strategy 0 € Sg, 0 € [¢]]g’”, then the

sequent H.b+ o € v has a successful tableau.

153

The proof relies on showing that we cannot have two successful tableaux for the

sequents H,bFo € p and H bt o € —p.

6.3.2 Examples of Security Properties

The following are some security properties expressed in our logic:

+ Fairness: A protocol is fair for a player L if:
HLY) (. [m]2y & 2. ® y)tt) = ((z.[n]"') g 2. @ .g)tt)
where player L exchanges item m for item n. This formula means that player
L will always have a strategy to obtain item n whenever he sent item m, in

the same session j. This matches the definition in [32].

« Authentication: We use the definition called “agreement” in [71]:
({4, BYyvX.[z.[m]"2.y.[m] 2z % 1. ® .y. ® 2] X
Here we assume agents A and B authenticate each other over one single mes-
sage m, this could be easily extended to the case where authentication takes
place over a series of messages. We note that one session of A corresponds to
one session of B (the variable j) and that the message m is exchanged between

A and B without being changed.

6.4 Proofs

6.4.1 Proof of Finiteness

The following definitions are needed for the proofs:

Definition 6.4.1 Size. The size |¢| of a formula is a positive integer. which can

be computed using the following rules:

1Z] =1

154

le1 Aol = 14 Jior| + |2
[[r1 & rolel = 1+]
vZ.pl =1+ |¢|

Definition 6.4.2 Fischer-Ladner Closure. The Fischer-Ladner closure CL(y)
of a formula ¢ is a set of formulas that is defined as:

CL(Z)={Z}

CL{=¢) = {~¢} UCL(p)

CL(p1 A pa) = {1 A2} UCL{p1) UCL(2)

CL([ry % rofie = {[r1 % o]} U CL(y)

CL(vZ.p) ={vZ.o} UCL(p[vZ.p/Z))

In other words the closure of a formula ¢ is a set that contains ¢ and all
of its subformulas ¢4, ..., ,, where formula variables are replaced by the smallest

formula in which they are bound. Formally:

CL(p) = {¢} U{rep(s1)} U... U {rep(,)}
where,
Vie{l,....n}.p; 2 p

vZ.y =2

@i otherwise

Since all formula variables Z; appear in @, so e(Z;) = vZ;.¢' will be some

formula ¢; < . Hence, CL(i¢) will be finite and bounded by |¢|.

Definition 6.4.3 H-Ordering. Between hypothesis sets, we define some ordering
relations relative to a formula », where H is the set of all hypothesis sets:
Cz=HxH

Lo=Cy

cC

=vi/Ng2

=L, NEy

E[‘r‘] q—vr?]g:’:g‘,c'

155

Cozo={(H1, Hy) €Cy | (Hy, Hy) €Cp= HiTvZ.¢' C HyPvZ.¢'}
Hy=, Hy& Hy C, Hy A\Hy C, H,

HyC, Hy & Hy T, Ho A Hy £, Hy

(V¢ € CL(p) . Hy Ty Hy) = Hy <, Hy

H,=, Hy e H, <, HyAHy 9, Hy

Hy <, Hy & Hy <, Hy A Hy 4, H,

From the definitions above, it is clear that Vi, ¢’ ¢ <; ¢ =C,CC. The following

results about C,, are proved in [35]:
« L, is reflexive and trausitive, i.e., a preorder.
e HCyz, HU{o :vZ @}, where H' = H\{o': T'|vZ.p <T}ando : vZ.o ¢ H.
s [, has no infinite ascending chains.

Definition 6.4.4 Sequent ordering For any two sequents my = Hy,b; F 01 € 3
and 7o = Hp,by b 02 € o, such that wo € CL(yy). the relation 71 < 19 holds,
whenever one of the following holds:

- Hy <, Hy

- Hy =y, Ha N 2] < 1]

Lemma 6.4.1 The sequent ordering relation < has no infinite ascending chain.

Proof. Suppose we start by 70 = Hg, by F 0 € g, the chain 79 < 73 < 75... cannot
ascend infinitely, the proof follows from the facts that |C'L(ypg)| is finite, <, has no

imfinite ascending chains, and Vi’ € CL(p) . |¢'| < |ol. O

Theorem 6.4.1 Finiteness. For any sequent 7 = H.b = o € ¢ there exists a

finite number of finite tableauw.

156

Proof. The proof is by well-founded induction on the inverse of the sequent or-
dering relation, since < has no infinite ascending chain, then <~! has no infinite
descending chain.

Induction hypothesis: for all 7" such that 7 < 7/, 7/ has a finite number of finite
tableaux.

Required: for any 7, the applicable rule of the tableau will produce a finite number
of 7/, where 7 < 7.

We consider here the cases of matching and recursive formulas, i.e., 7= H,bkF o €
[r1 & 3] and 7 = H, bl o € vZ.¢, since the other cases are straightforward.
Case 1: 7= H,blF o €[r; %+ rp

The only applicable rules are R and R-j.. The rule R generates sequents of the
form 7, = H;,e - 0; € ¢, where ¢ € I C N, N is the set of natural numbers. For all
i, H; = H, moreover ¢ € CL([r; % 1)) and |¢| < |[r1 & r2]p|. hence 7 < 7;. The
set I is determined by the set © = {6; | satisfy(o,r,6;) = true}, where |I| = |O].
Therefore we need to prove that © is finite, which follows from the fact that o is
finite since we are dealing with finite models. So we can write ¢ € {0,1,...n}. The
same argument is valid for the collection of rules 2, since each rule generates only
one sequent H - F o; € p. However, the nuinber of rules is finite, since each rule
picks one substituion from the finite set ©.

Case 2: T=H,bFvZ.yp

The only applicable rule is R,, which produces only one sequent 7/ = H',b +
¢lvZ.p/Z], using the results about C, above and the definition of the sequent order

relation, it is easy to prove that 7 < 7. O

6.4.2 Proof of Soundness

To prove the soundness, we have to prove that all successful leaves are semantically
sound and that all rules of the tableau preserve soundness. We consider two cases

here and the rest of the cases can be easily proved.

157

Theorem 6.4.2 Soundness. For any sequent H.b + o € ¢ with a successful

tableau. o € [¢ 19".

Proof. We consider the two following cases of successful leaves and rules:
Case 1: The sequent H,e b o € [r; & ro]g. is a successful leaf when V6 .

61 _ (g e

satisfy(o,71,0) = false. This agrees with the semantics [[r1 % m2)p]
Sg | V8. satisfy(o,r1,0) = d’ € [¢]]f””}, since the implication (=) will evaluate
to “true”. Moreover, the rule R} preserves soundness since it is just an expression
of the semantics of V from first order logic.

Case 2: The sequent H,¢ - 0 € vZ.p is a successful leaf when 0 : vZ.p € H. We

recall the definition of R, and the relativized semantics of vZ.¢:

HbroevZy
H U{o:vZp},bto e plvZyp/Z]

G. Ni !
[vZ.o] T=Wly }]S[Z»—»SUS’]) us

oc:vZy ¢ H

where, H' = H\{o’: T | vZ.o <T} and S’ = H P"vZ.¢. So, what we would like to
prove is that [pluZ.p/2] X" 4%79) = (o] T84 gyy) U). The proot reles

on lemma 6.2.1 and on the properties of fixpoints. It is detailed in [35].

6.4.3 Proof of Completeness

The proof depends on the following theorem:

Theorem 6.4.3 The sequent T = H, bt o € ¢ has a successful tableau if and only

if 7= H,bF o € =¢ has no successful tableau.

Proof.

Step 1: =
Suppose that both 7 and 7/ have successful tableaux, then by the soundness theorem
]]g.n

o€ [bp]9 and 0 € [b=]9, which implies ¢ € [—by From the

definition of the semantics, we will have o € [bz]9" and o ¢ [b]9, which is a

158

contradiction.

Step 2: <

We would like to prove that if 7 has no successful tableau then 7' has a successful
tableau. We do this by induction on the height of the proof tree, starting from
the leaves, i.e., prove that unsuccessful leaves imply ¢ € —¢ and whenever a node
in the proof tree implies ¢ € —p its parent implies the same thing. We consider
here the case of the unsuccessful leaf H.= F ¢ € [r; % oy and {0 € Sg | 30.
satisfy(o,71,60)} = 0. By definition, we have H,~F o € [r; & m)p = H.e
o € —[r; 7o) which is a successful leaf proving that o € =[r; 3). Now, we

consider the rules 7 and Rﬁ”i:

Hiel o €r 9 ry H.—Fo€r % re
» and
& & . H-Fo;€p

By the rule Ry, if at least one §& = H, ¢ - 0; € ¢ does not have a successful tableau,
then 7 = H, e o € [r; & 1o}y does not have a successful tableau. In this case, by
induction hypothesis, £, = H,e - o] € —p has a successful tableau. By definition,
we have that H,— I 0; € p has a successful tableau. By the rule R, this means
that H,—~ F ¢ € [r; % 1], will have a successful tableau, or in other words

H, et o € [r; $ 7o) will have a successful tableau. 0

Theorem 6.4.4 Completeness. If for a strategy 0 € Sg, 0 € [¢ |97, then the

sequent H, bt o € p has a successful tableau.

Proof. The proof follows from theorems 6.4.2 and 6.4.3 by contradiction. O

159

Chapter 7

Implementation and Case Studies

In this chapter, we present a software tool that we developed, in Java, to validate
our approach by experimenting with test cases. The tool allows the specification
of security protocols using the notation that we presented in Chapter 5 and that
is very close to the standard notation used by protocol designers and practitioners.
Once a protocol is specified, its game tree model is constructed. Security properties
can then be specified as logic formulas of the logic that we developed and verified
against the protocol model. In the following sections, we describe the tool and
provide details on its innerworkings and the design choices that we made. We begin
by presenting the syntax of protocol specifications and logic formulas, followed by
a description of the algorithms used to generate game tree models of protocols. We
then provide the model checking algorithm used to verify security properties over
the game tree. Finally, we consider several test cases that were analyzed using the

tool.

7.1 Specification Language

In this section, we describe the specification languages for both protocols and logic

formulas. We give the syntax of the specification languages in Extended Backus

160

Naur Form (EBNF) accompanied by natural language clarifications.

7.1.1 Specifying Protocols

The syntax for the specification language in EBNF is:

<Program> ::= ("Declaration" <Declaration>

| "Communication" <Communication>)+
<Declaration>::= (<Agent> "Knows" <Message> ";"

| <Agent> "Produces" <Message> ";")*

<Communication>::= (<Step>)+ | "if" " (" <Condition> ")" (<Step>)+ "endif"
<Condition>::= <Agent> "Receives" <Message>
<Step> ::= (<Agent> "->" <Agent> ":" <Message> ";")*
<Message>::= <3impleMessage>("." <SimpleMessage>)*
<SimpleMessage>::= <PrimitveMessage> | <Nonce> | <Key> | <AgentID> | <Encrypted>
<Encrypted>::= "{" <Message> "}" <Key>
<PrimitveMessage>::= <Message> <Rest>
Nonce::= "Nonce" <Rest>

Key::="SmKey" <Rest> | "PrKey" <Rest> | "PbKey" <Rest>

AgentID::= "IDofAgent" <Anything>
Agent::= "Agent" <Rest>
Rest::= "_" <Anything>

<Anything> ::= <AnyValidJavaldentifier>

A protocol specification consists mainly of two parts: Declaration and com-
munication, they start by the keywords "Declaration" and "Communication" re-
spectively. The declaration part consists of a number of statements, each ending
by a semicolon, that declare persistent knowledge and fresh knowledge. Persistent
knowledge of an agent is any data that the agent possesses in all protocol sessions
without change, e.g., the agent’s public key. Fresh knowledge, on the other hand, is
any data that an agent freshly generates for each protocol session, e.g., session keys.
A persistent knowledge statement contains the keyword "Knows", whereas a fresh

knowledge statement contains the keyword "Produces" as listed in the grammar.

161

Both statements must specify the intended agent and the message that it knows or
freshly produces. In all cases, "Agent_Intruder" is reserved for the intruder.

The communication part of the protocol consists of a number of communica-
tion steps specifications. Steps can also be grouped into a conditional block that
starts with the keyword "if" and ends with "endif". The conditional block is ex-
ecuted only if its condition is true, where the condition states that a certain agent
receives a specific message. Each step specifies the agent that sends the message,
the agent that is supposed to receive it and the message itself. The message can be
a concatenation, a text message (<PrimitiveMessage> in the grammar), a nonce,
a key, an agent’s identification, or an encryvpted message. Identifiers for text mes-
sages, nonces, and agent names start with the keywords "Message_ ", "Nonce_",
and "Agent_" followed by any valid Java identifier. We can also specify symmetric
keys, private keys and public keys, which start by "SmKey_", "PrKey_", "PbKey_",
respectively followed by any valid Java identifier. Concatenated messages are de-
noted by a sequence of messages separated by dots and encrypted messages have
the form "{" <Message> "}" <Key> which designates the message to be encrypted
and the encryption key. As an example we give the specification of the public key

Needham-Scroeder protocol [87] below:

Declaration

Agent_A Knows PrKey_ A.PbKey_A.PbKey B.IDofAgent_ A;
Agent B Knows PbKey_A.PrKey_B.PbKey_B;

Agent_A Produces Nonce_NA;

Agent B Produces Nonce_NB;

Communication

Agent_A -> Agent B : {Nonce_NA.IDofAgent_A}PbKey_B;
Agent B -> Agent A : {Nonce_NA.Nonce NB}PbKey_ A;
Agent_A -> Agent_B : {Nonce_NB}PbKey_B;

162

The tool analyvzes the protocol specification statically, first by checking the
protocol syntax for any errors, then by doing a static semantic analysis. The static

semantic analysis ensures the following:

« No message is specified to be sent by an agent unless it is possible for the
agent to deduce it at this point of the protocol. In order to be able to deduce
a message, the agent either knows or produces it in a declaration or can deduce
it from its knowledge by applying either decryption or deconcatenation or a
combination thereof, e.g., the agent knows the message encrypted by a key
and knows the key. Rules for deducing messages were explained in Chapter 4,

Section 4.2.

» For each private key there corresponds a public key and vice versa. This
correspondence is syntactically specified by having both keys end with the
same string after the prefixes "PrKey" and "PbKey". For instance, in the

specification above, "PrKey_A" and "PbKey_A" are a private-public key pair.

o Each agent ID corresponds to an agent that ends with the same suffix af-
ter the underscore. For instance, in the specification above, "IDofAgent A"

corresponds to "Agent_A".

If the protocol specification passes the static analvsis successfully, the game

tree is generated as will be discussed below.

7.1.2 Specifying Logic Formulas

The syntax for specifying logic formulas is close to the one used in Chapter 6, Section

6.1: grammar rules are given below in EBNF:

<Formula>::= <Basicformula> | <Conjunctionformula> | <Transformationformula> |
<Agentrestrictionformula> | <Recursiveformula>

<Basic> ::= <Primitiveboolean> | <Formulavariable>

163

| <Negationformula> | "(" <Formula> ")"

<Primitiveboolean> ::= "True" | "False"
<Formulavariable> ::= ":" <AnyValidJavaldentifier> ":"
<Negationformula> ::= "!" <Basic> | "!" <Transformationformula> |

"IY <Agentrestrictionformula> | "!" <Recursiveformula>
<Conjunctionformula> ::= <Basicformula> ("&&" <Formula>)+
<Transformationformula> ::= "["<Sequencepattern>"->"<Sequencepattern>"]" <Formula>
<Sequencepattern> ::= (<Sequencepatterunit>)+
<Sequencepatternunit> ::= <Sequencevariable> | "’" <Messagepattern> "’"
<Sequencevariable> ::= "SeqVar_" <AnyValidJavaldentifier>
<Messagepattern> ::= <Simplemessagepattern> ("." <Simplemessagepatttern>)x*
<Simplemessagepattern> ::= <Messagevariable> | <Primitvemessage> | <Nonce> |

<Key> | <Agent> | <Encryptedmessagepattern>

<Messagevariable> ::= "MesVar_" <AnyValidJavaldentifier>
<Encryptedmessagepattern> ::= "{" <messagepattern> "}" (<key> | <variable>)
<agentrestriction> ::= "<<" <Agent> (, <Agemnt>)* ">>" <Formula>
<Recursive> ::= """ <Formulavariable> "." <Formula>

The grammar ensures the following operator precedence rules: "!" binds most

tightly, then "&&", then "[..]", then "<<..>>" and finally "~" which is the greatest
fixpoint operator. For instance 'A && B means (!A) && B and “X. A && B means
~“X. (A && B)

Before starting the model checking algorithm, formulas are analyzed to be
sure they follow the syntactic rules explained in Chapter 6. To be more precise, the

following rules will be checked:
o All formula variables are bound to fixpoint operators.

« All formula variables, inside formulas, appear under the scope of an even

number of negation operators.

« In transformation formulas of the form [r_1 -> r_2]¢y, the patterns r_1 and

r_2 have the same length, all sequence variables of r_2 are those of r_1 and,

164

finally, all message patterns that appear in r_1 appear in r_2 or are replaced

by the special message Message_*.

For instance, under the rules above, the formula ~:X:.:X:&&:Y: is rejected be-
cause the formula variable Y appears freely. Similarly, the formula [x.y -> x.z]True
is also rejected because the sequence variable z does not appear to the left of the ar-
row. The formulas [x.'x'.y -> x.*.y]True and !":x:.:x: on the other hand are
all well-formed. We note the use of single quotes for message patterns and colons for
formula variables. As an example, 'x' denotes a message pattern whereas x denotes

a sequence variable and :x: denotes a formula variable.

7.2 Generating the Game Tree

In order to generate the game tree, we need to create roles, sessions, agents, and
the intruder. The information necessary to create each of them is collected when
protocol specifications are scauned according to the gramminar rules described above.

In the following sections, we discuss our implementation of each of these entities.

7.2.1 Roles, Sessions and Agents

Messages are implemented as abstract data types; each message type is a class. We
deal with messages as symbolic terms that are manipulated by operations defined
for each class of messages. This corresponds to the formal or symbolic analysis of
security protocols. Roles are the most fundamental units in our tool, whereas a
session links roles together since a session is composed of two or more roles that
agents fill when they cominunicate in a session. A finite number of sessions is
created and, in each session, agents participate in the communication, where each
agent plays one of the session roles. Each role is implemented as a class that has a
specification frame and a real frame as described in Chapter 5, Section 5.1.2. The

specification frame is built from protocol declarations and communication steps. and

165

differs from the real frame only in the vector of received messages. Furthermore,
for each message that is sent in a certain role, the specification frame contains the
procedure that should be followed by the agent playing the role in order to construct
this message. Details about agents procedures are explained in Section 7.2.2.

From protocol specifications. we create instances of the class RoleSpecification,
which are the roles. Each role contains a specification frame that is created with
the role and to which we add role messages as initial knowledge, sent messages, or
received messages. Whenever we add a sent message, we create a list of message
construction actions and also specify the number of messages that the role receives
before sending this message. This number is important since we can use it to know
which messages, in the vector of received messages, the role receives before being
ready to send a certain message. A role contains also a real frame, which is used
only when the role is being played by an agent at a certain session as we will explain
later.

A session relates roles together; it contains roles necessary to start protocol
execution. Execution on the other hand starts when all session roles are filled by
agents. In our implementation, the agents, as instances of the class Agent, are the
software entities carrying out the actual execution of the protocol. In other words,
roles are behavioral descriptions and agents are the communicating entities that
behave according to one or more roles in one or more sessions. The class Session
contains references to the roles of the session and the agents playing these roles,
whereas the class Agent contains references to the roles played by the agent and
the sessions in which the agent contributes. When an agent joins a session as a
certain role, all references are updated accordingly, taking into account that the real
frame of a role is unique to a certain session and a certain agent as it collects all the

messages received by an agent at a specific session.

166

7.2.2 Intruder Actions and Agents Responses

Agent Responses, are specified by protocol steps, which implicitly describe proce-
dures taken by agents upon receiving messages. We model these procedures as ab-
stract computations in Chapter 4, Section 4.1.3. In our implementation, a procedure
is a vector of actions and a temporary storage, where each action represents a com-
putation step, message retrieval or message storage. Computation steps manipulate
messages symbolically as in message encryption, for instance. Message retrieval and
message storage actions retrieve or store messages in the temporary storage, the list
of initially known messages, and the list of received messages. This way, in order to
construct a message, we go through its corresponding vector of actions performing
one action at a time until the vector ends and we obtain the final result. For instance,
if the specification frame contains messages {Message_m}Key_k1 as a received mes-
sage and Key_k1 as initial knowledge, in order to compute the message Message_m
we have to retrieve {Message_m}Key_k1, retrieve Key_k1, and then decrypt the for-
mer by the latter. Of course, we have to take into account that we may need to
store intermediate results of the computation in case we need them later, for this
reason a message construction list of actions is equipped with temporary storage.
As a follow up on the last example, if we intend to construct {Message_m}Key_k2,
we first need to compute Message_m, store it, compute Key_k2, and then perform

the encryption.

7.2.3 Game Tree

The main unit of building the game tree is the tree block, which represents possible
interactibns between the intruder and an agent at a certain protocol step in a certain
session. In other words, a tree block is like a tree of the Csg game, in which the
intruder sends one of possible messages and the agent replies. The non-determinism

of intruder actions is modeled as branching of the tree, whereas the concurrent

167

execution of two or more protocol sessions is modeled as interleaving of tree blocks.
Unlike the Csg game tree, the tree block does not contain edges labeled by questions
which serve to relate messages to message requests. This does not affect the analysis
since we always keep track of the origin of messages and their intended destination.
Each path in the tree block contains two edges; the first of which represents the
message sent by the intruder to an agent and the second represents the agent’s
response. The first tree block in the game tree contains only one path; the intruder
sends the start message of the first protocol session and the agent that plavs the
initiator role in this session responds with its first message. At the leaf node of the
root tree block we attach other tree blocks each of which represents the execution of
a protocol step at a certain session. Moreover, several tree blocks having the same
root can be considered as a larger tree block as long as we keep track of the protocol
step and session number for each message. Then, at leaf nodes of each tree block,
we try to extend the path that ends at the leaf by adding more tree blocks. We
continue the process recursively until no more tree blocks can be added, which is the
case when no more protocol steps at any session can be executed along the path. In

our tool, the game tree is built using this method in a depth-first manner.

7.3 Model Checking Algorithm

The model checking algorithm is an implementation of the tableau-based proof sys-
tem of Chapter 6, Section 6.3. The tableau is implemented as a tree whose root
node contains the formula to be proved. The tree grows until we reach leaf nodes,
which determine the success or failure of the tableau. The formula is declared to
be true if it has at least one successful tableau. In the following we discuss some
methods that we implemented in order to increase the efficiency of the algorithm.
We build the tableau tree in a depth-first manner; starting at a certain node,

we construct a path in the tree till we reach a leaf before considering other paths.

168

If we reach an unsuccessful leaf, the property is declared false and we don’t need to
continue building the tableau. The property is declared to be true if all the leafs
of the tableau are successful. However, there are more considerations, since in our
formulation a formula may have more than one tableau. This is the case of an “or”-
branching for instance, and only one tableau needs to be successful for the formula
to be true. Instead of constructing a new tableau for each “or”-branch, we try out
each possible path out of the “or”-node, and if one path ends by a successful node,
we continue to build the rest of the tableau. If, on the other haud, we cannot find
a successful path, we declare the property as false and abort building the tableau.
The same rule applies for properties that are existentially quantified. Of course, for
“and”-branching and universally quantified properties, all of the paths out of the
branching node should be successful.

The model checking algorithm is shown in pseudocode below as a function
named "check". The function has as inputs a game tree, a hypothesis set and a
logic formula and it returns true or false. It is first called by the game tree, the
empty hypothesis set and the formula ¢ to be checked. The formula must pass the

syntactic restrictions described above before being given to the function.

fun check: game tree, hypothesis set, formula — {true,false}
check(G, H, p)
case —¢' of :
return —check(G, H, ')
case 1 N\ o of p:
case true of check(G, H,p;):
return check(G, H, p2)
case false of check(G, H,¢;):
return false
endvcase

case [r] & 1)’ of ¢

169

for each o in {o | rj0 € G}
case false of check(Glrqo/r0], H,¢'):
return false
case true of check(Glrqo/r0], H,¢'):
skip
end case
end for
return true
case vZ.¢' of ¢:
case true of(G,vZ.¢') € H:
return true
case false of(G,vZ.¢') € H:
return check(G, HU(G,vZ.¢),¢'[vZ.¢' | Z})

end case

7.4 Case Studies

In this section, we analyze several well-known protocols and present the result of the
analysis. We report on the construction of the game tree and present the properties
we checked. A screenshot is shown in Figure 7.1, it depicts the main window of
the tool where we can see a protocol specification and the tree visualization window
where we can see the game tree generated from the protocol. The game tree window

has different levels of magnification so more details of the tree can be revealed.

7.4.1 Needham-Schroeder Protocol

The Needham-Schroeder protocol public key protocol is specified as follows [87]:

170

v& Sewn"fy . '3-\, oy

S e o T A

P wda View dralpsr Helg

[B E Qe BB | o (2 ok @b & Satespxe

Declaration

Agent_A¥rows Key A
Agert_A ¥nows Key B
Agent,_B ¥nows Key,_&;
Agent_B ¥nows Key_8;

Agaek A ¥nows Message A,

.3} Agent_# Produces Morca _N&;
Agent B Produces Nornce _NE;

Comminicgtion
Agerk A ~> Agent_B : {Nonce_MA Messad

Bigant_B-> Agent_A ; {Nonca_NA Nonce]
Agent_A -> Agent_§ : {Nonce_NBjKey_B;

3 Parging protocol, ..
1 Parsing successill,
i Generating state spaca,
: |
i

<

Figure 7.1: Screenshot of the software environment.

171

In the protocol specification above, N, K4, Np, and Kp are nonces and

public keys of agents A and B respectively. The specification written in the syntax

of our tool is:

Declaration

Stepl. A— B: {Na, A}k,
Step2. B— A: {Na, Np}k,
Step 3. B— A: {Np}k,

Agent_A Knows Key_A;

Agent_A Knows Key_B;

Agent B Knows Key_A;

Agent_B Knows Key_B;

Agent_A Knows Message_A;

Agent_A Produces Nonce_NA;

Agent_B Produces Nonce_NB;

Communication

Agent_A -> Agent B :
Agent B -> Agent_A :
Agent_A -> Agent B :

{Nonce_NA.Message_A}Key_B;
{Nonce_NA.Nonce_NB}Key_A;
{Nonce_NB}Key_B;

7.4.2 Woo and Lam Protocol

The Woo and Lam authentication protocol is specified as follows [113]:

Step 1.
Step 2.
Step 3.
Step 4.
Step 5.
Step 6.
Step 7.

P—Q:
Q— P:
P—qQ:
Q—5:
S—Q:
Q—-r:

P—Q

P, N,

Q. Ny

{P,Q. N1, Na} kps

{P, Q. N1, NaYips, {7 Q. N1, Na}rgs

{Q. Ny, Noy Ko} pe: AP Ny, No. Ko}
{Q. N1, N2, Kpotkps: { N1, Nt kpg
{N?}l\'m

172

In the protocol specification above, Keyxy is the shared symmetric key be-
tween agents X and Y. Also, N; and N, are the nonces produced by agents I° and

@, respectively. The specification in the syntax of our tool is:

Declaration Agent_P Knows
Message_P.Key_PS.Message_Q.Message_S; Agent_{Q Knows
Message_{.Key_QS.Message_P.Message_S; Agent_S Knows
Message_Q.Message_P.Key_PS.Key_QS; Agent_P Produces Nonce_N1;
Agent_Q Produces Nonce_N2; Agent_S Produces Key_PQ; Communication
Agent_P -> Agent_Q : Message_P.Nonce_N1; Agent_Q -> Agent_P :
Message_Q.Nonce_N2; Agent_P -> Agent_Q :
{Message_P.Message_{}.Nonce_N1.Nonce_N2}Key_PS; Agent_Q -> Agent_S :
{Message_P.Message_Q.Nonce_N1.Nonce_N2}Key_PS.
{Message_P.Message_{.Nonce_N1.Nonce_N2}Key_QS ;
Agent_S -> Agent_Q : {Message_Q.Nonce_Ni.Nonce_N2.Key_PQ}Key_PS.
{Message_P.Nonce_Nl.Nonce_NQ.Key_PQ}Key_QS 5
Agent_Q -> Agent_P : {Message_Q.Nonce_N1.Nonce_N2.Key_PQ}Key_PS.
{Nonce_N1.Nonce_N2}Key_PQ;
Agent P -> Agent_Q : {Nonce_N2}Key_PQ;

Figure 7.2 shows a screenshot of the tool with the lower half of the window

containing one of the verified properties.

7.4.3 ASW Protocol

The ASW protocol [21] is a fair exchange protocol. We give below its specification
in our tool. In the specification, in order to save space here we have the following

denotations:

mel = {PbKey_0. PbKey_R.
IDofAgent_T. Message_Text. Nonce_NO}PrKey_0 me2 = {{PbKey_O.
PbKey_R. IDofAgent_T. Message_Text.
Nonce_NO}PrKey_0. Nonce_NR}PrKey_R
mal = {Message_Abort. {PbKey_0. PbKey_R. IDofAgent_T. Message_Text.
Nonce_NO}PrKey_0 }PrKey_O

173

Security model-chacker
Fite Edit View Ansfyse Help

Heb 8, state spxce

Syntax Y2 Modal Check

foamopy$ 0 e

X [WootndLam.txt |

Davlaration i

Agent_P Xnows Message_P.Yey_P5.Messaga_Q.Message S;
Agemt_Q Knoms Message_RQ.Kay_05 . Massage _P.Message_S;
Agent % Knows Message_Q.Message _P.Key_PS.Kev_Q5;

Agent_P Prothuces Blonte_NI;
Agenk_Q Produces Norce N2
i Agert S Produces Key P,

Cammurication

Agent P> Agent_3: Message P.Norwe Hi;

Agent_Q->» Agent_P: Message Q.Noncz NZ;

Agent_P-> Agert G {Messagz P Message {.Monce Ni.Nonge NZH ey PS;

Agerk_G-D Agent S {Message_P.Massage Q.Nonce_HiNonce NZMey FS.{Messape P Message_Q.Nonce _Ni.Nomce M2)key QS ;
Agert S-> Agent 3 : {Message_Q.Monce Ni.Nonca Ne.Key Py PS.{Massage P.Nonte N1.Monce_M2.Xey PQiay QS
Agert_Q-> fgent P {Message_Q.Monce_N1.Nonte_N2Xev PO ey PS.{Monce N1.Nonte_NHey PG

Agert P-> Agent Q@ {fonce _NZjKey PQ

.y Lo i s

X 52

Modeichecker-1 ¢

Formds Outpet

;

<<Ag¢m_j’,ﬂwvt,,i»ﬂx;'h’ie%%é}‘& :> x;Message PoviTrue Parsing fored. ... « i
Parsing siccessful, 4

formula ts wel-formed, s 1

, |jproperty trus, i |

e PR - W » E

Figure 7.2: Screenshot of the Woo and Lam protocol.

174

Declaration
Agent_0 Knows PrKey_0. PbKey_0. PbKey_R. PbKey_T. IDofAgent_0. IDofAgent_R.
IDofAgent _T. Message_Text. Message_Abort. Message_Resolve. Message_Timeout;
Agent_R Knows PbKey_0. PrKey_R. PbKey_R. PbKey_T. IDofAgent_0. IDofAgent_R.
IDofAgent _T. Message_Resolve. Message_Timeout;
Agent_T Knows PbKey_0. PbKey_R. PbKey_T. PrKey_T. IDofAgent_0. IDofAgent R.
IDofAgent_T. Message_Abort. Message_Resolve. Message_Timeout;
Agent_0 Produces Nonce_NO;
Agent_R Produces Nonce_NR;
Communication
Agent_D -> Agent_R : ;
if (Agent_0 Receives Message_Timeout)
Agent_0 -> Agent_T : mal;
Agent_T -> Agent_0 :{Message_Abort. mal}PrKey_T;
if (Agent_T Receives mel.me2)
Agent_T -> Agent_0: {Message_Abort. mel}PrKey_T;
endif
endif
Agent R -> Agent_0 : me2;
if (Agent_R Receives Message_Timeout)
Agent R -> Agent T : mel.me2;
Agent_T -> Agent_R : {mel.me2}PrKey_T;
if (Agent_T Receives mal)
Agent_T -> Agent_0: {mel.me2}PrKey_T;
endif
endif
Agent_0 -> Agent_R : Nonce_NO;
if (Agent_0 Receives Message_Timeout)
Agent 0 -> Agent_T : mel.me2;
Agent_T -> Agent 0 : {mel.me2}PrKey_T;
if (Agent_T Receives mal)
Agent T -> Agent_0: {mel.me2}PrKey_T;
endif

endif

175

Agent_R -> Agent_0 : Nonce_NR;

176

Chapter 8

Conclusion and Future Work

In this thesis, we presented a dedicated framework for the specification and ver-
ification of security protocols. The problem that we tackled was the design of a
new security protocol verification methodology that would cover traditional security
properties such as secrecy and authentication in addition to properties such as fair-
ness and money atomicity that have not been fully formalized. We began the thesis
by discussing issues regarding security protocols, cryptography and game semantics.
Then, the topics of specification and verification of security protocols using formal
methods were surveyed. We also discussed game semantics as a novel technique that
gives an operational aspect to denotational semantics. We presented a model of se-
curity protocols that expresses both communication and computation steps of the
protocol using a game semantics framework. This model was then used to ascribe
functional and security semantics to protocols. The syntax we developed in order
to specify the model is an enhanced version of the currently used standard notation
for security protocols. We made the choice of keeping the syntax as close as possible
to the standard notation so that it can be easily used by protocol designers and
practitioners. Having defined the model, we introduced our logic to specify security
properties of the model. Finally, we considered test cases for a number of protocols.

To sum up. we list below the contributions of this thesis:

177

A game-theoretic model for security protocols based on game semantics.

« Semantic interpretation of security protocols as strategies over certain defined

games.

« Syntactic and semantic definition of a logic to express a wide variety of security

properties.

o Development of a software environment to validate research ideas and consider

case studies.
As a future work, we propose the following:

» Adding the concept of time into our model to be able to express timestamps

and timeouts.

+ Enhancing the syntax and the semantics by adding more constructs such as

conditionals for the actions of agents.

» Adding probabilistic concepts to the model such as the probability of attacks

or the strength of encryption keys.

To summarize, our contribution to the state-of-the-art by this thesis is a for-
mal frammework that supports the verification of a wide range of security properties
along with a software tool that serves as a testbed for the theoretical ideas that we

presented.

178

Bibliography

1]

M. Abadi. Security protocols and specifications. In Foundations of Software
Science and Computation Structures: Second International Conference, FOS-

SACS 99, volune 1578, pages 1-13. Springer-Verlag. Berlin Germany, 1999.

M. Abadi. Security protocols and their properties. In F.L. Bauer and R. Stein-
brueggen, editors, Foundations of Secure Computation, 20th Int. Summer

School, Marktoberdorf, Germany, pages 39-60. I0S Press, 2000.

M. Abadi and V. Cortier. Deciding knowledge in security protocols under
(many more) equational theories. In Proceedings of the 18th IEEE Computer
Security Foundations Workshop, 2005.

M. Abadi and C. Fournet. Mobile values, new names, and secure communica-

tion. In POPL, pages 104-115, 2001,

M. Abadi and A. Gordon. A calculus for cryptographic protocols: The SPI
calculus. In Proceedings of the 4th ACM Conference on Computer and Com-

munications Security, 1997.

M. Abadi and P. Rogaway. Reconciling two views of cryptography (The com-
putational soundeness of formal encryption). Journal of cryptology, 15(2):103—

127, 2002.

179

[7]

12

[13]

[14]

[15]

[16]

M. Abadi and M. R. Tuttle. A semantics for a logic of authentication. In
Proceedings of the 10th Annual ACM Symposium on Principles of Distributed
Computing, pages 201-216, 1991.

S. Abramsky. Algorithmic game semantics. citeseer.ist.psu.edu/505714.html.

S. Abramsky. Semantics of interaction: An introduction to game semantics.
In Proceedings of the 1996 CLiCS Summer School. Isaac Newton Institute, P.
Dybjer and A. Pitts, eds. (Cambridge University Press), 1997.

S. Abramsky, P. Malacaria, and R. Jagadeesan. Full abstraction for PCF. In
Theoretical Aspects of Computer Software, pages 1-15, 1994.

S. Abramsky and G. McCusker. Game semantics. cite-
seer.ist.psu.edu/abramsky99game.html, 1997. Lecture notes accompanying

Samson Abramsky’s lectures at the 1997 Marktoberdorf summer school.

S. Abramsky and G. McCusker. Linearity, sharing and state: a fully abstract
game semantics for idealized Algol with active expressions. Theoretical Com-

puter Science, 197(1-2), 1998.

P. Adao, G. Bana, and A. Scedrov. Computational and information-theoretic
soundness and completeness of formal encryption. In Proceedings of 18th IEEE

Computer Security Foundations Workshop, 2005.

K. Adi. Formal Specification and Analysis of Security Protocols. PhD thesis,
Universite Laval, 2002.

K. Adi, M. Debbabi, and M. Mejri. A new logic for electronic commerce

protocols. Theor. Comput. Sci, 291(3):223-283. 2003.

S. Almuhammadi and C. Neuman. Security and privacy using one-round zero-
knowledge proofs. In IEEE International Conference on E-Commerce Tech-

nology. pages 435-438. IEEE Computer Society. 2005.

180

[17]

[18]

22]

23]

[24]

R. Alur, T. Henzinger, and O. Kupferman. Alternating-time temporal logic.
JACM: Journal of the ACM, 49, 2002.

R. Alur. T. A. Henzinger, F. Y. C. Mang, S. Qadeer, S. K. Rajamani, and
S. Tasiran. MOCHA: Modularity in model checking. In Proc. 10th Interna-

tional Computer Aided Verification Conference, pages 521-525, 1998.

R. Anderson. Why cryptosystems fail. CACM: Communications of the ACM,
37, 1994.

R. Anderson and R. Needham. Programming Satan’s computer. Lecture Notes

in Computer Science, 1000, 1995.

N. Asokan, V. Shoup, and M. Waidner. Asynchronous protocols for optimistic
fair exchange. In Proceedings of the IEEE Symposium on Research in Security

and Privacy, pages 86-99, 1998.

F. Baader and T. Nipkow. Term Rewriting and all that. Cambridge University
Press, Cambridge, 1998.

E. Barker and J. Kelsey. Recommendation for random number generation
using deterministic random bit generators. Technical Report 800-900, NIST,
March 2007.

D. Basin, S. Modersheim, and L. Vigano. OFMC: A symbolic model checker
for security protocols. International Journal of Information Security, 4(3):181-

208, 2005.

M. Baudet, V. Cortier, and S. Kremer. Computationally sound implementa-
tions of equational theories against passive adversaries. In Proceedings of the
32nd International Colloguium on Automata, Languages and Programming

(ICALP). volume 3580 of Lecture Notes in Computer Science, 2005.

181

[26] A. Blass. A game semantics for linear logic. Annals of Pure and Applied Logic,

56:183-220, 1992,

[27] C. Boyd and W. Mao. On a limitation of BAN logic. In EUROCRYPT:
Advances in Cryptology, 1993.

[28] S. Brackin. An interface specification language for automatically analyzing
cryptographic protocols. In Internet Society Symposium on Network and Dis-

tributed System Security, 1997.

[29] M. Burrows, M. Abadi, and R. Needham. A logic of authentication. Technical
report, Digital Systems Research Center, 1989.

[30] 1. Cervesato, N. Durgin, P. Lincoln, J. Mitchell, and A. Scedrov. A meta-
notation for protocol analysis. In CSFW: Proceedings of The 12th Computer
Security Foundations Workshop. IEEE Computer Society Press, 1999.

[31] R. Chadha, M. Kanovich, and A. Scedrov. Inductive methods and contract-
signing protocols. In SIGSAC: 8th ACM Conference on Computer and Com-
munications Security. ACM SIGSAC, 2001.

[32] R. Chadha, S. kremer, and A. Scedrov. Formal analysis of multiparty contract
signing. Journal of Automated Reasoning, 36:39 — 83, 2006.

[33] J. Chroboczek. Game Semantics and Subtyping. PhD thesis, University of
Edinburgh, 2003.

[34] E. Clarke, S. Jha, and W. Marrero. Using state space exploration and a
natural deduction style message derivation engine to verify security protocols.
In International Conference on Programming Concepts and Methods, pages

87-106, 1998.

[35] R. Cleaveland. Tableau-based model checking in the propositional mu-

calculus. Acta Informatica, 27(8):725-748. 1990.

182

136] H. Comon and V. Shmatikov. Is it possible to decide whether a cryptographic
protocol is secure or not? Journal of Telecommunications and Information

Technology, 4:5-15, 2002.

[37] V. Cortier, S. Delaune, and P. Lafourcade. A survey of algebraic properties
used in cryptographic protocols. Journal of Computer Security, 14(1):1-43,
2006.

[38] V. Cortier and B. Warinschi. Computationally sound automated proofs for se-

curity protocols. In Proceedings of 14th European Symposium on Programming

(ESOP’05), Lecture Notes in Computer Science, 2005.

[39] P. Cousot and R. Cousot. Abstract interpretation and application to logic
programs. Journal of Logic Programming, 13(2-3):103-179, 1992.

[40] C. Cremers. Feasibility of multi-protocol attacks. In Availability Reliability
and Security, pages 287-294. IEEE Computer Society, 2006.

[41] M. Debbabi, N. A. Durgin, M. Mejri, and J. C. Mitchell. Security by typing.
STTT, 4(4):472-495, 2003.

[42] N. Dershowitz and J. Jouannaud. Rewrite systems. In Handbook of Theoretical

Computer Science. Elsevier Science Publishers, 1990.

[43] E. Dijkstra. Guarded commands, nondeterminacy and formal derivation of

programs. Communications of the ACM, 18(8):453-457. 1975.

[44] D. Dolev and A. Yao. On the security of public key protocols. IEEE Trans-
actions on Information Theory, 29(2):198-208. 1983.

[45] N. Durgin, P. Lincoln, and J. Mitchell. Multiset rewriting and the complexity
of bounded security protocols. Journal of Computer Security, 12(2):247-311.
2004.

183

[46] J. Fabrega, J. Herzog, and J. Guttman. Honest ideals on strand spaces. In
Proceedings of the 11th IEEE Computer Security Foundations Workshop. IEEE
Computer Society Press, 1998.

[47] J. Fabrega, J. Herzog, and J. Guttman. Strand spaces: Proving security
protocols correct. Journal of Computer Security, pages 191-230, 1999.

[48] U. Feige, A. Fiat, and A. Shamir. Zero-knowledge proofs of identity. JCRYP-
TOL: Journal of Cryptology, 1, 1988.

[49] T. Furon. A survey of watermarking security. In International Workshop on

Digital Watermarking (IWDW), LNCS, volume 3710, 2005.

[50] J. Goguen and R. Diaconescu. An Oxford survey of order sorted algebra.

Mathematical Structures in Computer Science, 4:363-392, 1994.

[51] J. Goguen and G. Malcolm. Algebraic Semantics of Imperative Programs.

Foundations of Computing Series. The MIT Press, Cambridge, MA, 1996.

[52] B. Goldburg, S. Sridharan, and E. Dawson. Design and cryptanalysis of
transform-based analog speechscramblers. IEFEE Journal on Selected Areas

in Communications, 11(5):735-744, 1993.

[53] S. Goldwasser and S. Micali. Probabilistic encryption. Journal of Computer
and Systems Sciences, 28(2):270-299, 1984.

[54] S. Goldwasser, S. Micali, and C. Rackoff. The knowledge complexity of inter-

active systems. SIAM Journal of Computing, 18(1):186-208, 1989.

[55] L. Gohg, R. Needham, and R. Yahalom. Reasoning about belief in crypto-
graphic protocols. In Proceedings of the 1990 IEEE Symposium on Research
in Security and Privacy, pages 234-248, 1990.

184

[56] J. Goubault-Larrecq. A method for automatic cryptographic protocol ver-
ification (extended abstract). In Proceedings of the Workshops of the 15th
International Parallel and Distributed Processing Symposium, volume 1800 of

Lecture Notes in Computer Science, Cancun, Mexico, 2000.

[57] J. Halpern and R. Pucella. On the relationship between strand spaces and
multi-agent systems. ACM Trans. Inf. Syst. Secur., 6(1):43-70, 2003.

[58] A. Huima. Efficient infinite-state analysis of security protocols. In Workshop

on Formal Methods and Security Protocols (FLOC '99), August 1999.

[59] J. M. E. Hyland and C.-H. L. Ong. On full abstraction for PCF: I, 11, III.
Info. and Comp., 163:285-408, 2000.

[60] J. Jirjens. Games in the semantics of programming languages. Synthese

(Elsevier), 133(1-2), October/November 2002.

[61] R. Kemmerer. Analyzing encryption protocols using formal verification tech-

niques. IEEFE Journal on Selected Areas in Communications, 7, 1989.

[62] R. Kemmerer, C. Meadows, and J. Millen. Three systems for cryptographic
protocol analysis. JCRYPTOL: Journal of Cryptology, 7, 1994.

[63] A. Kerckhoffs. La cryptographie inilitaire. Journal des Sciences Militaires,

IX, 1883.

[64] D. E. Knuth. Fundamental Algorithms, volume 1 of The Art of Computer
Programming. Addison-Wesley, Reading, Massachusetts, 1975.

[65] N. Koblitz. A Course in Number Theory and Cryptography. Springer-Verlag,
second edition, 1994.

185

[66] S. Kremer and J. Raskin. A game approach to the verification of exchange

protocols - application to non-repudiation protocols. In Proceedings of the

Workshop on Issues in the Theory of Security (WITS *00), 2000.

[67] S. Kremer and J. Raskin. Game analysis of abuse-free contract signing.
In Proceedings of the 15th IEEE Computer Security Foundations Workshop
(CSFW’02). IEEE Computer Society Press, 2002.

[68] J. Laird. Full abstraction for functional languages with control. In Logic in

Computer Science, pages 5867, 1997.

[69] K. Lorenz. Basic objectives of dialogue logic in historical perspective. Synthese

(Elsevier), 127(1-2), April/May 2001.

[70] G. Lowe. Breaking and fixing the Needham-Schroeder public-key protocol
using FDR. Software - Concepts and Tools, 17(3):93-102, 1996.

[71] G. Lowe. A hierarchy of authentication specification. In CSFW, pages 31-44.
IEEE Computer Society, 1997.

[72] G. Lowe. Casper: A compiler for the analysis of security protocols. In Pro-

ceedings of the 10th IEEE Computer Security Foundations Workshop, 1998.

[73] S. Lu and S. Smolka. Model checking the secure electronic transaction (SET)
protocol. In Modeling, Analysis and Simulation of Computer and Telecommu-

nication Systems. IEEE Computer Society, 1999.

[74] O. Markowitch, D. Gollmann, and S. Kremer. On fairness in exchange proto-
cols. In ICISC: International Conference on Information Security and Cryp-

tology. LNCS, 2002.

[75] W. Marrero, E. Clarke, and S. Jha. Model checking for security protocols.

Technical report. Carnegie Mellon University, 1997.

186

[76]

[77]

78]

[81]

[82]

[83]

[84]

[85]

C. Meadows. Language generation and verification in the NRL protocol an-
alyzer. In Proceedings of the 9th Computer Security Foundations Workshop,
1996.

C. Meadows. Languages for formal specification of security protocols. In
CSFW °97: Proceedings of the 10th Computer Security Foundations Workshop
(CSFW °97), page 96. IEEE Computer Society, 1997.

C. Meadows. Formal methods for cryptographic protocol analysis: Emerg-
ing issues and trends. IEFEE Journal on Selected Areas in Communication,

21(1):44-54, 2003.

A. Menezes, P. van Oorschot, and S. Vanston, editors. Handbook of Applied
Cryptography. CRC Press, 1996.

J. Millen. CAPSL: Common authentication protocol specification language.

In Proceedings of the Workshop on New Security Paradigms, 1997.

J. Millen, S. Clark, and S. Freedman. The interrogator: Protocol security

analysis. IEEF transactions on software engineering, SE-13(2), 1987.

Robin Milner. Communicating and Mobile Systems: The w-calculus. Cam-

bridge University Press, 1999.

J. Mitchell. Finite-state analysis of security protocols. In International Con-

ference on Computer Aided Verification, 1998.

J. Mitchell. Multiset rewriting and security protocol analysis. In Rewriting

Techniques and Applications, LNCS 2378, pages 101-120, 2002.

J. Mitchell, M. Mitchell, and U. Stern. Automated analysis of cryptographic
protocols using murphi. In IEEE Symposium on Security and Privacy, 1997.

187

[86] D. Monniaux. Abstracting cryptographic protocols with tree automata. In
Sixth International Static Analysis Symposium (SAS’99), number 1694 in Lec-
ture Notes in Computer Science, pages 149-163. Springer Verlag, 1999.

187] R. Needham and M. Schroeder. Using encryption for authentication in large
networks of computers. Communications of the ACM, 21(12), 1978.

[88] B. Neuman and S. Stubblebine. A note on the use of timestamps as nonces.

ACM Operating Systems Reviews, 27(2), 1993.

[89] Peter Csaba Olveczky and Martin Grimeland. Formal analysis of time-
dependent cryptographic protocols in real-time Maude. In IEEFE International
Parallel and Distributed Processing Symposium, pages 1-8. IEEE, 2007.

[90] M. J. Osborne and A. Rubenstein. A Course in Game Theory. The MIT
Press, 1994.

[91] C. Papadimitriou. Computational Complexity. Addison-Wesley, 1994.

192] L. C. Paulson. The inductive approach to verifying cryptographic protocols.
Journal of Computer Security, pages 85-128, 1998.

[93] F. Petitcolas, R. Anderson, and M. Kuhn. Information hiding — a survey.

Proceedings of the IEEE (USA), 87(7):1062-1078, July 1999.

194] B. Pierce. Basic category theory for computer scientists. The MIT Press,
Cambridge, US, 1991.

[95] G. Plotkin. LCF considered as a programming language. Theoretical Computer
Science, 5(3):223-256, December 1977.

196] AVISPA Project. Automated validation of internet security protocols and

applications. http://www.avispa-project.org/.

188

[97]

[98]

[99]

100]

101]

102

[103]

[104]

105]

[106]

[107]

R. Smullyan. First Order Logic. Springer-Verlag, 1968.

M. Schmidt-Schaui. Computational Aspects of an Order-Sorted Logic with
Term Declarations, volume 395 of LNCS. Springer-Verlag, 1989.

B. Schneier. Applied Cryptography. John Wiley, 2 edition, 2001.

C. Shannon. Communication theory of secrecy systems. Bell Systems Technical

Journal, 28:657-715, 1949,

V. Shmatikov and J. Mitchell. Finite-state analysis of two contract signing

protocols. Theoretical Computer Science, 283, 2002.

V. Shmatikov and U. Stern. Efficient finite-state analysis for large security
protocols. In CSFW: Proceedings of The 11th Computer Security Foundations
Workshop. IEEE Computer Society Press, 1998.

G. Shu and D. Lee. Testing security properties of protocol implementations -
a machine learning based approach. In Proceedings of the 27th International

Conference on Distributed Computing Systems ICDCS 07, 2007.

W. Stallings. Cryptography And Network Security Principles and Practice.
Prentice Hall, Inc., third edition, 2003.

P. Syverson. Adding time to a logic of authentication. In CCS’93: Proceedings
of the First ACM Conference on Computer and Communications Security,

pages 97-101, 1993.

P. Syverson. A taxonomy of replay attacks. In Computer Security Foundations

Workshop, pages 187-191, 1994.

A. Tarigan. A survey in formal analysis of security properties of cryptographic
protocol. Technical report. AG Rechnernetze und Verteilte Systeme, Univer-

sitaet Bielefeld. 2002.

189

(108]

[109]

[110)

111]

[112]

[113]

[114)

The AVISPA Team. HLPSL tutorial, a beginner’s guide to modelling and

analysing security protcols. http://www.avispa-project.org/, 2006.

J.V. Tucker and J.I. Zucker. Computable functions and semicomputable sets
on many-sorted algebras. In S. Abramsky, D. Gabbay, and T. Maibaum,
|24

editors, Handbook of Logic in Computer Science, volume 5, pages 317-523.

Oxford University Press, 2000.

P. van Oorschot. An alternate explanation of two BAN-logic "failures’. In

FUROCRYPT: Advances in Cryptology, 1993.

B. Warinschi. A computational analysis of the Needham-Schroeder-(Lowe)
protocol. In Proceedings of the 16th IEEE Computer Security Foundations
Workshop (CSFW’03), 2003.

W. Wechler. Universal Algebra for Computer Scientists. Springer, Berlin,
1992.

T.Y.C. Woo and S.S. Lam. A lesson on authentication protocol design. Op-
erating Systems Review, pages 24-37, 1994.

J. Zhou, R. Deng, , and F. Bao. Some remarks on a fair exchange protocol. In
Lecture Notes in Computer Science 1751, Proceedings of 2000 International
Workshop on Practice and Theory in Public Key Cryptography, pages 46-57,
2000.

190

