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ABSTRACT 

Mechanism Design and Game Theoretical Models for Intrusion Detection 

Hadi Otrok, Ph.D. 

Concordia University, 2008 

In this thesis, we study the problems related to intrusion detection systems in Mobile Ad 

hoc Networks (MANETs). Specifically, we are addressing the leader election in the pres­

ence of selfish nodes, the tradeoff between security and IDS's resource consumption, and 

the multi-fragment intrusion detection via sampling. To balance the resource consump­

tion among all the nodes and prolong the lifetime of a MANET, the nodes with the most 

remaining resources should be elected as the leaders. Selfishness is one of the main prob­

lems facing such a model where nodes can behave selfishly during the election or after. To 

address this issue, we present a solution based on the theory of mechanism design. More 

specifically, the solution provides nodes with incentives in the form of reputations to en­

courage nodes in participating honestly in the election process. The amount of incentives 

is based on the Vickrey-Clarke-Groves (VCG) mechanism to ensure that truth-telling is the 

dominant strategy of any node. To catch and punish a misbehaving elected leader, check­

ers are selected randomly to monitor the behavior of a leader. To reduce the false-positive 

rate, a cooperative game-theoretic model is proposed to analyze the contribution of each 

checker on the catch decision. A multi-stage catch mechanism is also introduced to reduce 
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the performance overhead of checkers. Additionally, we propose a series of local elec­

tion algorithms that lead to globally optimal election results. Note that the leader election 

model, which is known as moderate model is only suitable when the probability of attacks 

is low. Once the probability of attacks is high, victims should launch their own IDSs. Such 

a robust model is, however, costly with respect to energy, which leads nodes to die fast. 

Clearly, to reduce the resource consumption of IDSs and yet keep its effectiveness, a crit­

ical issue is: When should we shift from moderate to robust mode? Here, we formalize 

this issue as a nonzero-sum non-cooperative game-theoretical model that takes into con­

sideration the tradeoff between security and IDS resource consumption. Last but not least, 

we consider the problem of detecting multi-fragments intrusions that are launched from a 

MANET targeting another network. To generalize our solution, we consider the intrusion 

to be launched from any type of networks. The detection is accomplished by sampling a 

subset of the transmitted packets over selected network links or router interfaces. Given 

a sampling budget, our framework aims at developing a network packet sampling strategy 

to effectively reduce the success chances of an intruder. Non-cooperative game theory is 

used to express the problem formally. Finally, empirical results are provided to support our 

solutions. 
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Chapter 1 

Introduction 

Mobile Ad hoc Networks (MANETs) are non-infrastructure dynamic networks where mo­

bile nodes within the direct radio range can intercommunicate to form a network [6]. Mo­

bile nodes that are not in the direct radio range can intercommunicate through other inter­

mediate mobile nodes. Thus, the intermediate nodes play the role of both routers and hosts 

at the same time. MANETs have many useful uses in areas with non-infrastructure net­

works such as military operations. Furthermore, MANETs are relevant in situations where 

the wired communications have been destroyed or traditional networks are congested, such 

as in a rescue mission after a natural disaster. Moreover, MANETs could be used in re­

mote areas to deploy telecommunications and internet services, which prompts MANET 

for commercial use. Thus, laptops, Personal Digital Assistants (PDAs), cell phones and 

other devices that are not in the transmission range of an access point can still access the 

internet. MANETs in different geographical areas can be connected with each other and 

with different types of networks over wired infrastructure-based networks [6]. 
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In MANET, decision-making, key-distribution, routing and forwarding packets are usu­

ally decentralized and many of them depend on the cooperative participation of all the 

nodes [41]. This dependency of MANET on a decentralized paradigm allows an adversary 

to exploit new types of attacks to disrupt the normal operation of cooperative algorithms 

used in ad hoc networks [64]. In contrast to wired networks where an attack usually re­

quires physical access to the network, MANET is particularly susceptible to many attacks 

ranging from passive eavesdropping to active interfering due to their open medium. Fig­

ure 1 shows a typical MANET with an external intruder. An intruder that compromises 

a mobile node can destroy the communication by broadcasting false routing information, 

providing incorrect link state information, and overflowing other nodes with unnecessary 

routing traffic. Ultimately, this would lead to a Denial of Service (DoS) attack on the whole 

network. 

Figure 1: Mobile ad hoc network with external intruder 
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As the first line of defense, encryption techniques and firewalls are known to be insuf­

ficient for securing a MANET against all kinds of attacks. Hence, an Intrusion Detection 

System (IDS) must be introduced as a second line of defense for detecting intrusions and 

consequently triggering an appropriate response. Intrusion detection is the process of mon­

itoring the system or network by looking into the occurring events and searching for intru­

sions. According to the type of data sources, IDS is typically categorized as: Host-based 

(HIDS) and Network-based (NIDS). The former aims to detect intrusions targeting the sys­

tem by analyzing system audit data, whereas the latter detects intrusions in the network by 

examining transmitted packets. The IDS techniques for wired infrastructure network that 

have been developed over the years cannot be directly applied to MANET due to some 

major differences between the two networks. The unique characteristics of MANET such 

as mobility and open wireless medium raise the need for new IDS models that can cope up 

with the new security needs. 

1.1 Motivations 

Unlike traditional networks, a MANET has no fixed chokepoints/bottlenecks where an IDS 

can be deployed [6,14]. Hence, a node may need to run its own IDS [4,35] and cooper­

ate with others to ensure security [38,69]. This is very inefficient in terms of resource 

consumption since mobile nodes are energy-limited. To overcome this problem, a common 

approach is to divide the MANET into a set of one-hop clusters where each node belongs to 

at least one cluster. The nodes in each cluster elect a "leader node" (cluster head) to serve 
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as the IDS for the entire cluster. The leader-IDS election process can be either random [41] 

or based on the connectivity [48]. Both approaches aim to reduce the overall resource con­

sumption of IDSs in the network. However, we notice that nodes usually have different 

remaining resources at a given time, which should be taken into account by an election 

scheme. Unfortunately, with the random model, each node is equally likely to be elected 

regardless of its remaining resources. The connectivity index-based approach elects a node 

with a high degree of connectivity even though the node may have little resources left. With 

both election schemes, some nodes will die faster than others, leading to a loss in connec­

tivity and potentially the partition of network. Although it is clearly desirable to balance 

the resource consumption of IDSs among the nodes, this objective is difficult to achieve 

since the resource level is the private information of a node. Unless sufficient incentives 

are provided, nodes might misbehave by acting selfishly and lying about their resource 

level to not consume their resources for serving others while receiving others' services. 

Misbehaving nodes shall deviate from telling the truth about their resources if that could 

maximize their own benefits. Moreover, even when all the nodes can truthfully reveal their 

resources level, it remains a challenging issue to elect an optimal collection of leaders to 

balance the overall resource consumption without flooding the network. This motivated us 

to work on developing a leader election mechanism that will balance the resources among 

nodes, taking into consideration selfishness. Relying on the leaders for providing the IDS 

service by examining a portion of all nodes' packets is suitable whenever the probability of 

attacks is low. This is usually known as a moderate intrusion detection model. However, a 

robust model where the victim nodes launch their own IDSs will be more desirable when 
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the probability of attack is high. This critical issue should be addressed and an answer must 

be given to the following question: When should we shift from moderate to robust mode? 

So far, different solutions were proposed for IDS in MANET [6] that take into consid­

eration the unique characteristics of such a network. Proposed models are able to analyze 

and detect intrusions that are targeting nodes in MANET. Now, the question is: How to 

detect and thwart intrusions launched by a node in a MANET targeting another one or 

another type of networks? Knowing that different MANETs are connected with each other 

using wired infrastructure networks. Detecting an intrusion in the network will be done 

by analyzing the traffic and looking for an unusual activity. Analyzing the traffic could be 

achieved by either considering the entire traffic or sampling a portion of the traffic search­

ing for intrusions. Analyzing the entire traffic is considered costly since it needs time and 

consumes a lot of resources such as memory and CPU. On the other hand, analyzing the 

network using sampling is less costly but it has the problem of missing some intrusions 

due to its sampling budget constraint. Therefore, finding a strategy that is capable of en­

hancing the probability of detection using sampling is considered as a challenging problem, 

especially when we consider the case of smart intruders and cooperative intruders that are 

capable of sending an intrusion through multiple fragments [75]. 

In the following subsections, we motivate our work through two different examples. 

1.1.1 Example 1 

Figure 2 illustrates a MANET composed often nodes labeled from N\ to Nw. These nodes 

are located in 5 one-hop clusters where the nodes N5 and N9 belong to more than one 
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cluster and have a limited energy level. We assume that each node has different energy 

level, which is considered as a private information. At this point, electing the nodes Af5 

and JV9 as the leaders is clearly not desirable since losing them will cause a partition in the 

network and nodes will not be able to communicate with each other. However, with the 

random election model [41], the nodes iV5 and JV9 will have equal probability, compared to 

others, in being elected as leaders. The nodes N*, and JV9 will definitely be elected under 

the connectivity index-based approach due to their connectivity indices [48]. Moreover, 

a naive approach for electing nodes with the most remaining energy will also fail since 

the nodes' energy level is considered as a private information and nodes might reveal fake 

information if that increases their own benefits. Finally, if the nodes N2, Ar
5, and N9 are 

selfish and are elected as leaders using the above models, they will refuse to run their IDS 

for serving others. The consequences of such a refusal will lead the normal nodes to launch 

their IDS and thus die faster. 

Figure 2: Example scenario of leader election in MANET 
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1.1.2 Example 2 

Figure 3 illustrates a wired network where each node is a MANET or any type of networks. 

To evade the IDS located at the nodes and reduce the probability of detection, an attacker 

can follow the following two scenarios. First, an attacker located at node A can launch an 

attack targeting a victim in node / through dividing it into multi-fragments. This scenario is 

illustrated in Figure 3.a. To achieve this goal, an intruder selects a path to inject a fragment 

of the intrusion where another fragment is injected following the same strategy. Second, the 

multi-intruders divide an attack into multi-fragments where each fragment is launched by 

an intruder from different node/area. Figure 3.b illustrates this scenario where the intruders 

A and E inject a fragment of the attack by selecting a path to the victim in node / . 

Figure 3: (a) Attacker in A targeting / (b) Multi-attackers {A and E) targeting / 

To detect such types of intrusions, the IDS at the nodes has to cooperate, monitor and 

analyze all the incoming and forwarded traffic, which is considered costly with respect to 

the resource consumption. Thus, sampling a portion of the traffic would solve this prob­

lem but could lead to a security risk due to the network sampling budget constraint. This 

decreases the probability of detection of the IDS. Therefore, finding a strategy that could 
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help on detecting such intrusion via sampling is a challenging and an interesting problem. 

If the IDS is able to analyze the moves of the intruder and to predict them, then the IDS is 

able to distribute its sampling budget in a way that maximizes the probability of detection. 

1.2 Objectives 

In this thesis, our goal is to propose a game theoretic framework that studies the tradeoff 

between security and resource consumption in IDS. More specifically, the following are the 

objectives that will be addressed throughout this thesis: 

• To reduce the resources consumption and prolong the lifetime of the IDS overall the 

nodes in a MANET by electing optimally a set of leaders in the presence of selfish 

nodes. 

• To consider the tradeoff between the security and the resource consumption by adding 

new monitors according to the security needs. 

• To detect multi-fragment intrusions via sampling. 

• To demonstrate the performance of the proposed solutions through simulation and 

numerical results. 

1.3 Proposed Approach 

In this thesis, we propose a solution for balancing the resource consumption of IDSs among 

all nodes in a MANET while preventing nodes from behaving selfishly. To address the 
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selfishness behavior, we design incentives in the form of reputation to encourage nodes to 

participate honestly in the election scheme by revealing their analysis-cost. The cost of 

analysis is designed to protect the nodes' sensitive information (resources level) and en­

sure the contribution of every node on the election process (fairness). To motivate nodes 

in behaving normally in every election round, we relate the amount of detection service 

that each node is entitled to the nodes' reputation value. Thus, the intrusion detection bud­

get will be distributed over the protected nodes according to node's reputation. Besides, 

this reputation value can also be used to give routing priority and to build a trust environ­

ment. The design of incentives is based on a classical mechanism design model, namely, 

the Vickrey-Clarke-Groves (VCG) [59]. The model guarantees that truth-telling is always 

the dominant strategy for every node during each election phase. Additionally, to prevent 

an elected leader from misbehaving after the election, we design a catch-and-punish mech­

anism to monitor the behavior of a leader with checker nodes. To reduce the false-positive 

rate of checkers, a cooperative decision game is formulated where the checkers are the 

players. We also introduce a multi-stage catch mechanism for reducing the performance 

overhead of checkers. 

On the other hand, to find the globally optimal cost-efficient leaders, a leader election 

algorithm is devised to handle the election process, taking into consideration the possibility 

of cheating and security flaws, such as replay attack. The algorithm decreases the percent­

age of leaders, single node clusters, maximum cluster size and increases average cluster 

size. Last but not least, we address these issues in two possible settings, namely, Cluster 

Independent Leader Election (CILE) and Cluster Dependent Leader Election (CDLE). In 
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the former, the leaders are elected according to the received votes from the neighbor nodes. 

The latter scheme elects the leaders after the network is formulated into multiple clusters. 

In both schemes, the leaders are elected in an optimal way in the sense that the resource 

consumption for serving as IDSs will be balanced among all nodes overtime. In addition, 

we support the correctness of the proposed methods through analysis and simulation. Em­

pirical results indicate that our scheme can effectively improve the overall lifetime of a 

MANET. 

Running this model in a non-secure environment raises the need for more nodes to 

launch their IDS according to the attack severity. Thus, more nodes should launch their 

own IDS according to the nodes' security risk. This will help to prolong the lifetime of 

nodes and to increase the nodes' security. The question we address here is: What is the 

optimal threshold value needed to inform the victim node to launch its own IDS in order to 

reduce both resource consumption and security risk? To answer this question, we formalize 

the tradeoff between the security and IDS resource consumption as a non-cooperative game 

between a leader-IDS and an attacker with incomplete information about the attacker. This 

game guides a leader-IDS and an intruder to derive their optimal strategy against each other. 

For the leader-IDS, the game solution derives the threshold for informing the victim node to 

launch its own IDS once the probability of attack exceeds the derived threshold. The game 

will be repeated such that in every election round the leader-IDS will be monitoring via 

sampling the protected nodes' incoming traffic and deciding according to the game solution 

whether to inform the victim node to launch its IDS or not. On the other hand, the attacker's 

strategy will be to attack once the probability of stepping into the robust mode (that is, the 
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victim node will be running its own IDS) is low. The empirical results indicate that our 

scheme can effectively reduce the resource consumption of the IDSs without sacrificing 

security. 

To handle the intrusions between different MANETs and other type of networks con­

nected via wired infrastructure networks, we develop a network packet sampling policy 

to effectively reduce the success chances of an intruder by finding the value of the game 

using a min-max strategy [65]. Non-cooperative game theory with complete information 

about the players is used to formally express our problems where the players are: (1) the 

cooperative intruders or a smart intruder (depends on which scenario we are solving) and 

(2) the intrusion detection system. This game theoretic model will guide the IDS to have 

an optimal sampling strategy in order to detect the malicious packets. The strategy for each 

intruder is the probability of choosing each possible path to send its malicious packet to 

the victim node. Consequently, the optimal strategy for the IDS is to assign the sampling 

rates to each link to maximize the probability of detection while not exceeding the total 

predetermined budget. 

1.4 Thesis Contributions 

In this thesis, we propose a game theoretical framework that considers the tradeoff be­

tween the security and resources consumption for an IDS. First, we propose a solution for 

balancing the resource consumption of IDSs among all nodes in MANET in the presence 

of selfish nodes. Our model is able to: 
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• Increase the overall lifetime of an IDS in MANET by truthfully electing the most 

cost-efficient node to handle the detection process on behalf of the whole cluster. 

This is achieved by balancing the resource consumption for the detection service 

among all the nodes in MANET. 

• Motivate the selfish nodes to truthfully reveal their cost of analysis during a leader 

election. This is achieved by a reputation system based on the truth-telling mecha­

nism VCG and by binding the reputation of a node to the amount of services the node 

is entitled to. 

• Encourage an elected leader to carry out its responsibility of intrusion detection. This 

is achieved with a decentralized catch-and-punish mechanism using random checker 

nodes. 

• Reduce false-positives, resources consumption and avoid malicious use of the pun­

ishment system. This is achieved by having an aggregated function based on checker's 

reputation and checker's observation followed by mapping this function to its corre­

sponding security level. Cooperative game theory is used to analyze the contribution 

of each checker on the detection level. 

• Adapt the model by adding more monitor nodes (IDS) according to the security needs 

taking into consideration nodes' resources consumption. This is done by computing 

the security threshold, by the leader-IDS, to inform the victim node to launch its own 

IDS. 
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Second, we propose a traffic sampling strategy based on game theory that considers 

multi-fragment intrusions launched by an intruder or cooperative intruders. The game is 

able to: 

• Increase the probability of detection by reducing the success chances of an intrusion 

by finding the value of the game using a min-max strategy. 

• Find the optimal sampling strategy of each player. 

1.5 Outline of the Thesis 

This thesis is organized as follows: In Chapter 2, we present the traditional IDS with its 

two main components: Data collection and analysis. According to the source of collected 

data, data collection is categorized into two categories: Host-based and network-based. On 

the other hand, data analysis is categorized into two kinds: Anomaly based and signature 

based. IDS can be classified according to the false positive and false negative rates. Af­

ter presenting the traditional IDS, we describe the challenges facing the traditional IDS in 

MANET. This raises the need for new IDS models that can handle the security challenges 

that are unique to a MANET. A list of some of the attacks that are unique to a MANET is 

given. We categorize the IDS models in a MANET into two categories: Non-cooperative 

and cooperative. In the former category, nodes are detecting intrusions without coopera­

tion, which reduces the communication overhead but could miss some intrusion. This is 

because some of the attacks in a MANET requires the cooperation among the nodes. In 
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the cooperative model, nodes are cooperating with each other to detect attacks and misbe­

having nodes. This model is categorized into two kinds: Non-cooperative and cooperative 

enforcement. In the former, IDS models are classified into two categories: Peer-to-peer and 

hierarchical (Cluster head). In these types of models, nodes are able to detect the attacks 

cooperatively without motivating the misbehaving nodes to cooperate. Note that the leader 

election is the key concept for the cooperative IDS model. Thus, we present the problems 

of the current leader election models followed by our proposed one. On the other hand, 

the cooperative enforcement mechanism motivates the misbehaving nodes to cooperate by 

giving them incentives and punishing the misbehaving ones. 

In Chapter 3, we introduce game theory and mechanism design, which is a sub field 

of game theory. We define game theory and present its applications to intrusion detection. 

We present the two categories of games: Non-cooperative and cooperative. In the non-

cooperative game, we show how to define a game and to solve it. Note that the non-

cooperative games are of two types: Non-zero-sum and zero-sum. To solve any type of 

game, the equilibrium point must be calculated, which is done by: Dominant strategy, Nash 

equilibrium, Minimax strategy, or mixed strategy. All these techniques require complete 

information about the players that would not be available in many cases. To overcome this 

limitation, Bayesian games are given to solve games with incomplete information about 

the players. As an example, we illustrate the game between an IDS and an intruder with 

incomplete information about the intruder. Finally, we present mechanism design and its 

application to networks followed by the definition of the social choice function, incentive 

compatible, direct revelation principle, and Vickrey, Clarke and Groves mechanism (VCG). 
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VCG is used to compute the needed payment to motivate the players to reveal truthfully 

their private information. Thus, truth telling is the dominant strategy. 

In chapter 4, we describe our leader election mechanism where the cost of analysis 

function, reputation model and payment design are given. The cost of analysis function 

considers two main properties: Fairness and privacy. Additionally, the reputation model is 

given to show how reputations are used to motivate the nodes. To motivate the nodes, we 

relate the reputation value to an IDS sampling service. Thus, the leader will sample to the 

protected nodes according to their reputation. Moreover, it describes how the misbehaving 

nodes are caught and punished. The payments of CILE and CDLE are designed using the 

VCG where truth telling is the dominant strategy among all the nodes. Last but not least, 

we analyze our mechanisms against selfish and malicious nodes. We provide a "catch and 

punish mechanism" based on checkers to monitor the behavior of the leader after election. 

To reduce the false positive rate by the checkers, we use cooperative game theory to analyze 

the contribution of each checker node on the catch decision. Finally, to reduce the resource 

consumption of the checkers, we design a gradual catch model where checkers are added 

according to the behavior of the leader. 

In Chapter 5, we devise the election algorithm that is needed to handle the election 

process. Moreover, we analyze informally the correctness and security properties of the 

given algorithms along with performance analysis. We show that our leader election model 

is suitable once the security risk is low. Once the security risk is high, nodes have to 

launch their monitors. To solve this problem, we propose a tradeoff model that considers 

the resource consumption and the security. Non-cooperative Bayesian game is used to 
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formulate the game between a leader and an intruder with incomplete information about 

the identity of the intruder. The solution of the game guides the leader to know his optimal 

threshold to inform the victim nodes to launch their monitors. Also, the game guides the 

intruder to find his optimal attack strategy. Finally, simulation results are given to show 

the performance of our model compared to others. Furthermore, we show that according 

to the security needs the victim node launches its own IDS, which reduces the resources 

consumption. 

In Chapter 6, we consider the multi-fragments intrusion detection between a set of 

MANET or any type of networks that are located in a different geographical area. These 

networks are connected using the wired infrastructure-based network where in each net­

work there is an IDS that is sampling the incoming and forwarded traffic and cooperatively 

analyzing these packets searching for intrusions. To evade the IDS, we consider two sce­

narios. First, an intruder divides an intrusion into multi-fragments where each fragment is 

injected into the network by selecting a path to a victim. Second, we consider the case of 

multi-intruders where each intruder injects a fragment of an attack by selecting a path to 

a victim. To maximize the probability of detection, we use the zero-sum non-cooperative 

game with complete information about the players to define the games of the two scenar­

ios and to solve them. The solution of the games guides the IDS to know its own optimal 

sampling strategy and the intruder/multi-intruders to know his/their optimal attack strategy. 

Finally, in Chapter 7 we conclude the thesis by providing a summary of the proposed 

models followed by a discussion of the future work and the list of publications derived from 

and related to the thesis. 
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Chapter 2 

Intrusion Detection Literature Review 

The open nature of a MANET and its dependency on a decentralized paradigm allows an 

adversary to exploit new types of attacks to disrupt the normal operation of cooperative 

algorithms used in ad hoc networks [64]. In contrast with the wired networks where an 

attack usually requires physical access to the network, MANET is particularly susceptible 

to many attacks ranging from passive eavesdropping to active interfering due to their open 

medium. An intruder that compromises a mobile node can destroy the communication 

by broadcasting false routing information, providing incorrect link state information, and 

overflowing other nodes with unnecessary routing traffic. Ultimately, this would lead to a 

Denial of Service (DoS) attack on the whole network. 

Intrusion prevention systems such as firewalls and encryption techniques are known to 

be insufficient for securing MANET against all kinds of intrusions that can compromise the 

confidentiality, integrity or availability of the node or network. Hence, an intrusion detec­

tion system (IDS) must be introduced as a second line of defense for detecting intrusions 
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and consequently triggering an appropriate response. Detecting an intrusion in the network 

will be done by collecting and analyzing the traffic searching for an unusual activity. Col­

lecting and analyzing the traffic could be achieved by either considering the whole traffic or 

by sampling a portion of the traffic. Analyzing the whole traffic is considered costly since 

it needs time and consumes a lot of resources such as memory and CPU. On the other hand, 

analyzing the network using sampling is less costly but it has the problem of missing some 

intrusions due to its sampling budget constraint. 

Despite recent efforts on intrusion detection in a MANET [6], the existing solutions 

suffer from many limitations that are unique to a MANET. Like other services in MANET, 

the intrusion detection also demands cooperation among all the nodes. Such a cooperative 

intrusion detection model can yield an unacceptable performance and communication over­

head, because all the nodes are usually required to analyze network packets. An apparent 

way to address this issue is to elect a leader node for handling the intrusion detection service 

on behalf of the whole cluster. However, the current solutions elect a leader node in a ran­

dom manner [41] or based on the connectivity index [48] without considering the different 

energy level of nodes. Nodes with less resources thus will die faster, reducing the overall 

lifetime of the cluster. Existing solutions also ignore the potential selfish behavior of nodes 

that are not willing to consume their resources for serving others. At the same time, they 

benefit from others' services. The study of non-cooperative behavior (selfishness) under the 

cooperation enforcement discipline for solving routing problems has demonstrated many 

serious consequences of selfishness [61]. Similarly, the presence of misbehaving nodes 

also brings new challenges to IDS in MANET. 
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The rest of this chapter is organized as follows: Section 2.1 illustrates the traditional 

intrusion detection systems. Section 2.2 describes the new challenges of IDS in MANET. 

Section 2.3 lists the possible attacks targeting a MANET. This list shows the need for 

new IDS models, which are proposed in Section 2.4. The models are categorized into 

two categories: Non-cooperative and cooperative. The cooperative models are classified 

into two categories of mechanisms: Non-cooperative and cooperative enforcement. In 

the former, the models are divided into two classifications: Peer-to-peer and hierarchical 

(cluster-head). Moreover, in Section 2.4.3, we present the models that are based on the 

cooperation enforcement mechanism that can encourage selfish nodes to behave normally. 

Finally, in Section 2.5, we point out that the leader election is a significant issue for IDS 

in a MANET. It is the key concept of cooperative IDS model. Furthermore, we show the 

limitations of the present solutions followed by our proposed leader election model. 

2.1 Traditional Intrusion Detection Systems 

Intrusions are defined as attempts to compromise the confidentiality, integrity, availability 

or bypass the security of the system or network. Intrusion detection is the process of moni­

toring the system or the network by looking to the events occurring and then analyzes these 

events searching for intrusions. Intrusion Detection System (IDS) is defined as an auto­

mated system, which monitors and analyzes the activities of a computer or network system 

to determine whether there are any abnormal activities that violate the security. In other 

words, the IDS is based on a captured audit data and reasoning about evidence in the data 
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to determine whether the system/network is under attack [64]. Thus, intrusion detection 

system has two main components: Data collection and data analysis. 

2.1.1 Data Collection 

Detecting an unusual activity will be done through monitoring the system/network and 

collecting events. The sources of audit data can be a keyboard input, command-based 

logs, application-based logs, and network traffic. According to the type of the audit data 

collected, we can classify the IDS into two categories [6, 7]: Host-based and Network-

based. 

Host-based IDS (HIDS) 

It depends on the operating system audit data to analyze the events resulting from programs 

or users on the host. It is able to detect abnormal actions such as repeated failed access at­

tempts, changes to system files, and monitoring real-time system usage. Host-based IDS 

does not depend on the network bandwidth, and is usually used in small networks, where 

each host dedicates its processing power to achieve the task of system monitoring. No­

tice that, running such type of intrusion detection can slow down the hosts and decline its 

performance. Host-based IDS is not affected by the use of end-to-end cryptography. 

Network-based IDS (NIDS) 

Generally, it runs at the switches, gateways, or routers in a wired network in order to 

analyze the captured packets that traverse through the network hardware interfaces. On 
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the other hand, a Mobile Ad hoc Network (MANET) does not have such types of network 

elements, where the IDS can collect audit data for the entire network. In the wired network, 

network traffic is monitored on the wired network segment, while in an ad hoc network, 

nodes can only monitor the network within their observable radio range. In contrary to 

the firewall, the network-based intrusion detection can analyze not only the header but 

the entire packet. They are able to look at the payload within a packet, in order to know 

which host application has been accessed, and to raise alerts when an adversary tries to 

compromise such application. Network-based, in wired network, can run as a black box 

to monitor the entire network. Figure 4 illustrates a traditional network IDS with data 

collection and analysis components. The NIDS is placed after the firewall to work as a 

second line of defense by collecting and analyzing the traffic looking for intrusions. 

One of the drawbacks of the NIDS is its inability to detect all types of intrusions espe­

cially those that are launched using the evasion tools [75]. Such intrusions can be designed 

using multiple packet fragments that can be forwarded using multiple routes. This requires 

the NIDS sensors to collect and analyze all the traffic to detect such types of intrusions, 

which consumes a lot of resources. In the following section, we elaborate more about the 

analysis techniques. In this thesis, we will focus on the NIDS. 

2.1.2 Data Analysis 

Once the data is collected, the data analysis component analyzes the data for possible intru­

sions. Detecting an intrusion in the network will be done by analyzing the collected traffic 
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Figure 4: Traditional network intrusion detection system 

looking for an unusual activity. Analyzing the traffic could be achieved by either consider­

ing the whole collected traffic or by sampling a portion of the traffic looking for intrusions. 

Analyzing the whole traffic in real-time is considered costly in terms of resources con­

sumption. On the other hand, analyzing a portion of the traffic (sampling) is considered 

less costly but could lead to security risks by missing some intrusions due to the sampling 

budget constraint. Especially, the intrusions that are formed using multi-fragments could be 

missed since a specific number of fragments are required to detect such types of intrusions. 

In [51], the authors have considered the problem of detecting intruding packets in a net­

work by means of a network packet sampling. Since packet sampling and an examination 

in real-time could be expensive, the network operator has to devise an effective sampling 

scheme to detect the intruding packets injected into the network by an adversary. They take 

into consideration the scenario where the adversary has significant information about the 

network and can either pick paths to minimize chances of detection or could pick suitable 

network ingress-point if only shortest path routing was allowed. They have formulated 

the problem in a game-theoretic framework and the solution to this problem corresponded 
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to a max-flow problem from which the stable operating points were obtained. However, 

their approach is not practical when a practiced intruder or cooperative intruders divide 

the attack over multiple packets and transmits them through possibly different routes. We 

particularly take into account these special problems, and use the same network model as 

in [51]. We then build our game-theoretic models and formulate the sampling problem. We 

solve the games using the min-max approach to find the optimal sampling strategy for the 

IDS in order to detect these intrusion packets that are launched either by a smart intruder 

or by cooperative intruders. 

The techniques that the data analysis component uses to analyze the data can be cate­

gorized into two kinds [4,64]: Anomaly-based and signature-based detection. 

Anomaly-based IDS 

It flags the observed activities that abnormally deviate from the recognized normal usage 

as anomalies. It must first be trained using the normal data before it can be released in 

an operative detection mode. For example, the normal profile of a user may have the 

averaged frequencies of some system commands that are used during login sessions. If for 

a monitored session, the frequency is changed to a higher or a lower value, as compared to 

the average then an alarm will be raised. The main advantage of this model is that it can 

detect the unknown attacks. On the other hand, its disadvantage is that it has high false 

positive alarm rate when the normal user profiles, operating system, or network behavior 

vary widely from their normal behavior. 
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Signature-based or misuse detection IDS 

It compares the activities of a user with patterns of well-known intrusions (signatures) for 

intruders attempting to compromise a system. It contains an internal table of anomalous 

patterns. This table represents the system traces that correspond to known attacks. If an 

activity matches a pattern in the table, an alarm will be raised. For example, a misuse 

rule for guessing a password can be "there are more than three failed login trials within 

one minute". The main advantage is that it can exactly and proficiently detect instances of 

known intrusions. On the other hand, the disadvantage of the misuse detection is that the 

anomalous patterns are based on known attacks; therefore, new attacks cannot be detected. 

Misuse detection needs the maintenance of a large central database of intrusion signatures 

whenever a new intrusion is discovered. Moreover, misuse detection can be fooled by a 

smart intruder. For example, an intrusion can be a mix between a normal activity and a real 

intrusion, which leads to a result that does not match any of the predefined patterns. 

2.1.3 IDS Classification 

Intrusion detection systems can be classified according to the false positive and negative 

rates. False positives (false alarms) are generated whenever the IDS considers normal data 

or traffic as intrusions. On the other hand, false negatives are the ratio of malicious activities 

where the IDS fails to detect. Additionally, resource consumption, such as memory, CPU 

and energy, is considered as one of the problems facing an IDS in the traditional and ad 

hoc networks. Thus, an efficient IDS must have low false positive and negative rates and 

consume less resources. 
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2.2 IDS Challenges in MANET 

The decentralized nature, mobility, open wireless medium and dynamic topology of MANETs 

are unique characteristics that allows an attacker to exploit more vulnerabilities than tra­

ditional network architectures. MANET has no fixed chokepoints/bottlenecks where the 

firewall or IDS can be deployed. Moreover, the potential damages caused by a compro­

mised node can be significantly higher than in traditional networks since all the nodes in a 

MANET are peers. An intruder that compromises a mobile node can destroy the communi­

cation by broadcasting false routing information, providing incorrect link state information, 

and overflowing other nodes with unnecessary routing traffic. Ultimately, this would lead 

to a denial of service attack on the whole network. On the other hand, the detection and 

prevention techniques are seriously constrained by the more stringent resources constraints. 

All these limitations show that the traditional IDS cannot be used to provide the needed se­

curity for a MANET. To understand better the threat in a MANET, we need to identify the 

common attacks, which are presented in Section 2.3. 

2.3 Unique Attacks to MANET 

Attacks in MANET are usually classified into two categories: Passive and active [64]. 

In the former, an adversary can passively eavesdrop on the data without disrupting the 

network. In the latter, an adversary can launch an attack through the replication of data, 

modification of data, deletion of exchanged data, violating confidentiality, integrity, or au­

thentication, inject erroneous messages, denial of service, and broadcasting false routing 
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information. The attackers external to a cluster of nodes in a MANET may launch attacks 

to prevent network services from working properly. The first line of defense, encryption 

and authentication, can usually prevent the attackers who are not members of the MANET 

from disrupting the traffic. However, the encryption and authentication can do very little 

against attacks launched by nodes who are legitimate members of the network. Such ma­

licious nodes can cooperate with each other to compromise the network and prevent their 

attacks from being detected. 

The following is the attack taxonomy for some of the known attacks against MANET [41 ]: 

• Blackhole: A malicious node impersonates a destination node by sending a spoofed 

route reply packet to a source node that initiates a route discovery. In this way, a 

malicious node can withhold the traffic from a source node to a destination. It takes 

place when the intermediate node drops the packets after the agreement to forward 

them [58]. This can be due to several reasons, such as selfishness, packet overload, 

link broken or maliciousness. Watchdog and Pathrater mechanism is introduced to 

defend against such type of attack [58]. Moreover, blackhole attack [42,43,88] can 

be used to attack the routing control traffic. This happens when a source node broad­

casts a Route Request (RREQ) packet searching for a destination. A malicious node, 

without checking its routing table, sends a Route Reply (RREP) packet to the source 

node claiming the fresh route to the destination. If this packet reaches the source 

node before any other RREP packet, a false route is created. In this way, a malicious 

node can drop data packets without forwarding them to the destination. 
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• Sinkhole: It is a more complex version of the blackhole attack [25,53,68]. A mali­

cious node finds out and uses the loopholes in a routing protocol to attract as much 

traffic as it can from a particular area and thus creating a metaphorical sinkhole [49]. 

Moreover, it can be used to initiate other type of attacks [56], such as wormhole 

and eavesdropping. A wormhole attack would become more effective and easier to 

achieve since all the traffic will flow through the compromised node. 

• Speeding up: Some routing messages, in several routing protocols, have the property 

that says "first in first accepted". Here, an attacker can simply send a malicious 

control routing message in order to block legitimate messages that arrive later. 

• Rushing: It is an effective denial of service attack against most routing protocols [39]; 

such as AODV [12], Adriadne [38], ARAN [77] and SAODV [99]. In an on-demand 

routing protocol, a node finds a route to another one by broadcasting a ROUTE R E ­

QUEST packet. In order to limit the performance overhead, existing protocols usually 

forward only one ROUTE REQUEST for a route discovery, which leads to such an at­

tack. A naive attacker can either keep the network interfaces of his neighboring nodes 

busy or forward packets faster than others, which increases the probability of being 

selected by the communicating nodes. 

• Wormhole: It is a severe attack in a MANET that requires at least two intruders 

[21,36,40,57,74,76]. It can take place without compromising any nodes, authenticity 

of communication, or confidentiality. A tunnel is created between two intruders in 

order to disrupt the routing protocol by tunneling the routing control messages, i.e., 
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prevent the discovery of any routes unless through the wormhole. 

It is hard to discover since the path that is used to pass on the information is usually 

not part of the actual network. Interestingly, a wormhole lowers the time taken for a 

packet to reach its destination which in itself is not harmful. However, as wormholes 

fake a route that is shorter than reality, it can confuse routing mechanisms, which 

rely on the knowledge about distances between nodes. The wormhole attack can be 

initiated in two modes [50]. In the hidden mode, the attackers act as two simple 

transceivers without requiring any cryptographic keys to launch the attack. In the 

participation mode, the attackers use valid cryptographic keys to participate in the 

routing as legitimate nodes. 

• Dropping of packets: A malicious node drops packets, conditionally or randomly, 

that are supposed to be forwarded to other nodes. Malicious nodes are classified into 

two categories: Active [35,41,58] and passive (selfish) [61,62,81,96]. The former 

are defined as the compromised nodes that are controlled by an attacker. On the other 

hand, the latter are selfish nodes that wants to save energy by not forwarding others' 

packets. This attack is due to the nature of MANETs where the cooperation between 

nodes is needed to forward their routing packets. 

• Malicious flooding: Rood the whole network or some victim nodes with large amounts 

of data or control packets [35,41,93,97]. It is launched at the network layer in which 

the attacker congests the network by flooding it with Route Request (RREQ) pack­

ets. The attacker could also choose random IP addresses in case he does not know 
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the network topology. After selecting these IP addresses, the attacker launches mas­

sive RREQ messages without taking into consideration the RREQ_RATELIMIT, and 

without waiting for a route reply (RREP). The routing tables of the attacked nodes 

will be exhausted, which deny these nodes from receiving any new route requests. 

• Location-Related: The location information of the nodes is considered as a sensitive 

matter since it can be used maliciously. Once the location information is discovered, 

it can be used by position-based routing protocols, which are good alternatives of 

topology-based routing protocols [18]. The adversaries will try to mislead the nodes 

in obtaining fake location information about others. This shows the need for secure 

localization techniques [17,28,54,94] that prevent both the internal and external at­

tackers from misinterpreting the location of nodes. On the other hand, these protocols 

are vulnerable to the location information disclosure attack [19,22,30]. Thus, the lo­

cation information should not be available to unauthorized nodes. If an adversary 

has all the location information, then it becomes easier to launch an attack against 

the network. 

• Network partition: An attacker partitions the network into k sub-networks, and nodes 

in different sub-networks cannot communicate with each other due to a route path 

problem introduced by the attacker [6]. 

• Sleep Deprivation: An attacker can exhaust the battery power of other nodes by 

requesting their services over and over again so they cannot go into an idle or power 

preserving the state [6]. 
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• Denial-of-Service (DoS): A large number of route requests, generated by an adver­

sary, could be directed to a node such that the victim cannot send or receive normal 

packets from others [6]. 

• Cache poisoning: An adversary can compromise the information in the routing ta­

ble through modifying its content, deleting information from it, or by injecting fake 

information to it [6]. 

2.4 IDS Models in MANET 

From the list of attacks, we can see that the proactive approaches (i.e., cryptography and 

authentication) and other techniques (i.e., secure routing [37,38,98]) are not sufficient to 

guarantee security in MANETs. Moreover, the traditional IDS cannot be adapted to a 

MANET. Hence, new distributed and cooperative IDS models are designed to handle the 

security needs of MANET. The proposed models are classified into different categories as 

shown in Figure 5. 

2.4.1 Non-Cooperative IDS Model 

In this model, each node runs independently its own IDS without cooperating with the 

others to detect intrusions. Each node decides based on its own collected information. This 

architecture has many problems that effect its spread. This is because many of the attacks 

require a cooperation scheme in order to detect such intrusions. The well-known model 

that belongs to this architecture is the Watchdog-Pathrater, which is described below. This 
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Figure 5: IDS categories in MANET 

model is able to detect the selfish and malicious nodes. 

Non-collaborative Intrusion Detection 

In [84,85], a non-cooperative signature-based intrusion detection model has been proposed. 

The model is designed non-cooperatively since the message exchange between the nodes 

can increase the complexity and resource consumption in a MANET. Misuse technique is 

used since anomaly detection technique results high false positive rate in MANET where 

the network characteristic varies a lot and lacks a normal behavior. To enhance the effi­

ciency of the model, a smaller subset of nodes are required to monitors the traffic which is 
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considered as a more practical solution. 

Watchdog-Pathrater Approach 

Watchdog and pathrater [58] are two techniques used to improve the throughput in MANET 

in the presence of misbehaving nodes. Where such type of nodes agree to forward packets 

but fail to do so for many reasons. A node may misbehave because it is: 

• Overloaded: A node is facing problems; such as, buffer space or network bandwidth 

to forward packets. 

• Selfish: A node is unwilling to consume its resources such as the battery life, CPU or 

bandwidth. Note that a selfish node expects other nodes to forward its traffic. 

• Malicious: It is done by dropping packets. 

• Broken: A node can face a software/network problem that prevents it from forward­

ing packets. 

The watchdog goal is to identify the compromised nodes in the network. When a node 

sends packets to other nodes, the watchdog runs in a promiscuous mode to ensure that 

the next node forwards these packets. If the next node started to drop packets then it is 

considered as a misbehaving node and the watchdog counter will be incremented by one. 

If this counter comes to a value that is greater than a predefined threshold then the node is 

considered as a misbehaving node. On the other hand, the goal of the pathrater is to notify 

the routing protocols from using misbehaving nodes. The pathrater runs on each node in 
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order to choose a reliable route. Each node will rate its neighbor nodes in order to calculate 

a path metric by calculating the average node ratings in the path. One of the advantages of 

the watchdog is it can detect, in the case of Dynamic source Routing (DSR), a misbehavior 

not only at the link level but also on the routing level. The weaknesses of the watchdog can 

be through its inability to detect the misbehaving nodes in the presence of: 

• Ambiguous collision: It is a routing problem that prevents node A from overhearing 

the transmission from node B. 

• Receiver collision: Node A can tell whether the next neighbor node B forwards the 

packet or not. Also, it cannot check whether the next neighbor to B that is C has 

forwarded the packet or not. 

• Limited transmission power: A node transmission power can be strong enough to be 

received by the previous node and weak to the next node. 

• False misbehavior: It occurs when a node falsely notes other nodes as misbehaving. 

• Partial dropping: A node can drop packets in a way, less than a predefined threshold, 

that could not be detected by the watchdog. 

This model does not include any punishment procedure that can enforce nodes to behave 

normally. Hence, the misbehaving nodes can continue operating in the network and benefit 

from other normal nodes' services. Cooperation enforcement mechanism is proposed as a 

solution for such a problem, which is given in Section 2.4.3 
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2.4.2 Cooperative IDS Model 

Cooperative IDS model is the second category of IDS in MANET where the nodes co­

operate with each other in order to detect intrusions. Such a model is more suitable for a 

MANET since some of the attacks require information exchange among the nodes to detect 

efficiently such type of attacks. For example, an attack can be divided into multiple packets 

where each packet can be transmitted through different routes. There are two approaches 

to achieve cooperation: Peer-to-peer and hierarchical (Cluster-head) [6]. In the former, 

each node runs independently its own IDS to detect intrusions. Nodes share messages with 

others and thus cooperation is achieved. In the latter approach, each node has different re­

sponsibilities. Nodes are divided into clusters where normal nodes are mostly responsible 

for local data collection and cluster heads perform the data aggregation, correlation, etc. 

Below we provide some of the examples of both approaches. 

Distributed and Cooperative Intrusion Detection System (DCIDS) 

Zhang and Lee [100] describe a cooperative distributed intrusion detection model, where 

every node in the network participates in detecting and responding for intrusions. More­

over, every mobile node runs an IDS locally to perform local data collection and anomaly 

detection. Cooperative detection and global response can be activated when a node raises 

an anomaly with weak local evidence. This model takes into consideration two types of 

attacks: (1) Abnormal change in routing tables. (2) Intrusion detection in other layers. The 

internal structure of an IDS agent can be structured into six different modules as shown in 

Figure 6. 
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• Local data collection: It collects local audit traces, communication activities and 

other traces that will be transferred to the local detection engine. 

• Local detection engine: It uses the data passed by the local data collection to detect 

the local anomalies. 

Local response: It runs actions locally and performs the tasks such as alerting the 

local mobile node. 

• Global response: It cooperate actions among all the neighbors in order to initiate a 

cooperative response, such as initiating a re-authentication process. 

• Cooperative detection engine: It is triggered whenever there is an inconclusive evi­

dence of an intrusion. 
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• Secure communication: It provides a secure communication channel among all mo­

bile nodes. It is used by the cooperative detection engine and global response. 

The advantage of this model is in its design since it is modeled based on the anomaly 

detection technique, since misuse technique uses a central database, which does not exist 

in an ad hoc network. On the other hand, this model suffers from performance penalties, 

resources consumption and false alarm rates. 

Intrusion Detection and Response Model 

Intrusion Detection and Response Model (IDRM) was proposed in [13] to enhance the 

security of the Ad hoc On Demand Distance Vector (AODV) routing protocol. This model 

is an extension of the above one (i.e., the DCIDS). Each node runs its own IDRM and use 

neighborhood information in order to detect misbehaving nodes. Once the misbehavior 

count exceeds a predefined threshold, it sends this information to other nodes in order to 

take a global response. When the other nodes receive this information, they check their 

local malicious count, for this malicious node, whether it is greater than a threshold value. 

If this happened, it sends a special packet called MAL to the entire network reporting an 

intrusion. If another node suspects that the node is compromised, it sends another special 

packet called REMAL reporting an intrusion node is detected. If two or more nodes report 

the same result, a special packet called PURGE will be transmitted to the entire network 

in order to drop the node from the network. In this case, all the nodes that are using this 

node for routing their packets will find a new routing path. This model describes several 

types of attacks such as: Distributed false route request, DoS and Masquerade. The main 
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disadvantages of this model are: Resources consumption and traffic overhead. 

Local Intrusion Detection System (LIDS) 

The LIDS is distributed in nature that uses mobile agents to collect and process data at 

remote hosts [2]. LIDS uses the data stored in the Management Information Base (MIB) 

as the source audit data. Note that, MIB is the database used by Simple Network Manage­

ment Protocol (SNMP) to collect information of different objects. Mobile agents will be 

used to transfer SNMP requests to remote hosts and to process data at the source to reduce 

communication overheads. LIDS can use either misuse or anomaly for intrusion detection 

process. Moreover, LIDS uses Intrusion Detection Exchange Format (IDMEF) and Intru­

sion Detection Exchange protocol (IDXP) to ensure that the IDS running on a broad range 

of platforms can still interact and exchange intrusion information. LIDS disadvantage is 

that it does not take into consideration the false information broadcasted by compromised 

nodes. The LIDS architecture consists of several components that are shown in Figure 7. 

• Local LIDS Agent: It is responsible for local intrusion detection and response. In 

addition, it responses to intrusion alert sent from other agents to protect itself from 

such an intrusion. 

• Local MIB Agent: It provides a means of collecting MIB variables for local LIDS 

agent or mobile agents. Local MIB agent will be an interface with SNMP agent if 

SNMP runs on the node. Otherwise, a SNMP based agent should be developed to 

permit update and retrieval of the MIB variables used by intrusion detection. 

37 



Figure 7: LIDS model 

• Communication Framework: It is used to facilitate internal and external communica­

tion with LIDS. 

• Mobile Agent (MA): It collects and processes data on other nodes. Then, the collected 

results are sent to LIDS or another node for more investigations. 

• Mobile Agent Place: It is responsible for a security control of mobile agents. 

Intrusion Detection Architecture Based on a Static Stationary Database 

This distributed and cooperative IDS model is proposed in [80] to decide when and how a 

MANET is being compromised. The architecture of this model is divided into two parts: 

• Mobile IDS agent: It resides in each mobile node to cooperatively decide whether 

the network is under attack or not. Each agent has five parts: (1) Local Audit Trail is 

responsible for collecting network traffic and system audit data. (2) Local Intrusion 
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Database (LID) is a local database that stores all necessary information needed by 

the IDS; such as known signature attacks. (3) Anomaly Detection Module (ADM) is 

responsible for detecting a different type of anomaly. (4) Misuse Detection Module 

(MDM) identifies known signature attacks that are defined in the LID. The ADM 

and MDM are connected directly to the LID to determine if an intrusion is taking 

place. (5) Secure Communication module provides a secure channel to exchange 

information between different IDS agents. The ADM and MDM use this channel to 

cooperatively detect and respond for intrusions. 

• Stationary Secure Database (SSD): It contains known signatures and stores patterns 

of each user's normal activity. Moreover, it acts as a trusted party that contains the 

latest misuse signatures and patterns of normal user's activity. The SSD could be 

updated by the administrator of the network. In addition, the LID of the node is 

connected to the SSD in order to update its signatures and patterns. Note that, SSD 

is so difficult to be deployed in an ad hoc network environment with the absence of a 

central management point. 

Dynamic Hierarchical Intrusion Detection System 

Since the nature of MANETs is distributed and dynamic, it raises the need for dynamic 

hierarchical IDS architecture which is proposed by [82]. It divides the network into clusters 

with cluster-heads and different role for each node, as shown in Figure 8. Each node has the 

capability of monitoring, analyzing, responding to detected intrusions (if there is enough 

evidence) and forwarding collected data to cluster-heads. A cluster-head like other nodes 
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• Detected data and for report 
——*>• Aggregated data/results 

• - Directives, signature updates, etc. 

Figure 8: Hierarchical IDS model 

is responsible for local and global detection. Each cluster-head, in this model, has different 

role according to its level. The first level cluster-heads are nodes labeled " 1 " which are 

called leaf nodes while the second level cluster-heads are nodes labeled "2" and so on. 

To form the hierarchy, leader election algorithm is used in each cluster to elect a cluster-

head. The authors did not elaborate the election procedure but suggested some criteria 

for selecting cluster-heads. The selection should be done based on connectivity, proximity 

(one-hop members), resistance to compromise, processing power, storage capacity, energy 

level, etc. This model suffers from selfishness where nodes might not participate to be 

elected as cluster-head. 

Distributed Intrusion Detection Using Mobile Agents 

The main contribution of this model is the efficient distribution of mobile agents with a 

specific IDS task according to their functionality in the MANET [48]. Moreover, it re­

stricts computation intensive analysis of overall network security state to a few nodes. The 
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election of these nodes is done dynamically in order to do not allow the overall network 

security depends on any particular node. The network is divided to several clusters with an 

elected cluster head for each cluster. The selected cluster heads collect all packets within 

the communication range and analyze the packets for known patterns of attacks. In this 

architecture, the cluster head is selected based on the connectivity of each node. A detailed 

algorithm for electing a cluster-head is given in [48]. The proposed IDS is built on a mobile 

agent framework, which is shown in Figure 9. There are three major agents: 

Packet Level 

Action 

Decision Making 

Monitoring 

User-Activity 
Level System Level 

Figure 9: Multiple-sensor based IDS architecture for MANET 

Monitoring agent: It is categorized into three different sensors: 

- User activity level and system level: They are located at the local detection 

agents, which are located at each node in the network. These agents search for 

malicious activities on the host node, such as unusual process memory alloca­

tion, abnormal CPU activities, or user operations such as invalid login. If an 

anomaly is detected then the monitoring agent reports to the decision agent in 
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order to terminate the suspicious process. 

- Packet monitoring level: If more conclusive evidence is gathered about the ma­

licious node, which is detected by the local detection agent, from the packet 

monitoring level, then an action is undertaken by the network agent on that 

node. To preserve the total computational and battery power of mobile hosts, 

few nodes will run their packet monitoring agent. 

• Decision making agent: It contains a state machine for all the nodes within the cluster 

it belongs to. It is responsible for deciding whether a node is compromised from the 

information gathered by the monitoring agent at each node. 

• Action agent: When an intrusion is detected, the decision agent sends a command 

that an action must be taken. 

Zone Based Intrusion Detection System (ZBIDS) 

ZBIDS divides the whole network into non overlapping zones, where nodes are catego­

rized into two types: Interzone or intrazone [86]. Nodes with physical connections to other 

zone's nodes are known as interzone nodes, whereas zone internal nodes are known as 

intrazone nodes. The formation and the maintenance of the zones need geographic parti­

tioning or clustering algorithms. Global Positioning System (GPS) or other methods are 

needed to find the physical location of each node to determine its zone identity by mapping 

its physical location to the predefined zone map. Each node has an IDS similar to the one 

proposed in Section 2.4.2. The interzone nodes are responsible for global aggregation and 
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correlation while intrazone nodes are responsible for local data analysis. 

Cooperative Intrusion Detection System 

This model [41] is an extension of the model proposed in [100], where a set of intru­

sions can be identified with their corresponding sources. The intrusion detection system 

is anomaly based where nodes compute different features of the network. Since it takes 

significant computational cost to obtain traffic related features, the network is divided into 

clusters with cluster head for each cluster. The cluster head helps to compute the traffic 

related features and the member nodes compute and transmit the non-traffic related fea­

tures to the cluster head. Thus, the overall cluster-wise feature collection cost is reduced 

since a lot of features are traffic related. The authors propose a random election procedure 

for electing cluster heads. An elected cluster head is responsible for detecting intrusions 

for a predefined period of time. In addition, a cluster recovery protocol has been proposed 

to adjust lost nodes (nodes without leader) due to mobility reasons. This model does not 

consider the selfish behavior of nodes, which could significantly reduce the performance of 

the model. 

2.4.3 Cooperation Enforcement Mechanisms 

There are some other IDS models that are based on cooperation enforcement [15,16,61]. 

These techniques mainly focus on the selfish behavior in routing (i.e., forwarding others 

packets). Selfish nodes can degrade the performance of the network by dropping others' 

packet. These proposed techniques motivate selfish nodes through providing incentives and 
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punishing them in case of misbehavior. 

CONFIDANT Mechanism 

Watchdog-Pathrater model, which has been presented before, cannot motivate selfish nodes 

to participate in MANET. Thus, new models are needed to solve such a problem. To mo­

tivate the selfish nodes in routing, CONFIDANT (Cooperation Of Nodes: Fairness In Dy­

namic Ad hoc NeTwork) [15] proposes a reputation system where each node keeps track of 

the misbehaving nodes through the use of watchdog. The reputation is used to evaluate the 

routing and forwarding behavior of the node according to the used network protocol. When 

a node detects a misbehaving node, it sends a warning message, called ALARM, to others. 

Once a node receives such a message, it evaluates how trustworthy the message is based 

on the source's reputation. Thus, the reputation value reflects who to trust. The reputation 

system is built on the negative evaluations rather than positive impression. Whenever a spe­

cific threshold is exceeded, an appropriate action is taken against a misbehaving node such 

as excluding it from the routing paths. Therefore, nodes are motivated to participate by 

punishing the misbehaving ones through giving a negative reputation. As a consequence of 

such a design, a malicious node can broadcast a negative impression (false ALARM) about 

a node in order to be punished. 

CORE Mechanism 

CORE [61] is proposed as a cooperative enforcement mechanism based on monitoring and 

reputation systems. The goal of this model is to detect selfish nodes and enforce them to 
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cooperate. Each node keeps track of other nodes' cooperation using reputation as a met­

ric. CORE ensures that misbehaving nodes are punished by gradually excluding them from 

communication services. In this model, the reputation is calculated based on data moni­

tored by local nodes and information provided by other nodes involved in each operation. 

Negative reputation is not shared with other nodes to overcome the problem of CONFI­

DANT, which leads to DoS attack. Thus, only positive information is shared among nodes. 

CORE has three main components: 

• Monitoring: It uses the watchdog technique to detect a misbehaving node. CORE 

proposes a watchdog sampling frequency whenever the traffic density is heavy. This 

will reduce the rate at which packets are monitored. 

• Reputation Manager. Reputation is calculated and updated through direct observa­

tions provided by the local monitor or indirect observations provided by other entities 

in the network. Once the reputation manager receives a previous direct observations 

from the monitoring component, it saves them in the form of a reputation table. This 

table can be accessed by the punishment system, which uses it to provide or deny ser­

vice to nodes. Repeated game theory is used to evaluate the reputation of the node. 

Each node observes the previous m opponent's move where cooperation is rated as 

+1 and defection as —1. Then the average of the moves is calculated to evaluate the 

reputation. 

• Punishment: The punishment component bases its actions according to the informa­

tion provided by the reputation manager. If the reputation is > 0 then the node will 
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cooperate otherwise defect. 

Nuglets Mechanism 

This model uses virtual currency known as "Nuglet" as incentives to motivate nodes in 

MANET to cooperate and discourage them from overloading the network [16]. Two models 

are proposed: Packet Purse and Packet Trade. In the Packet Purse model, each packet is 

loaded with nuglets by the source and each forwarding node takes some of the cash loaded 

for its forwarding service. The packet will be delivered to the destination, if the source has 

correctly calculated the needed amount of nuglets. The advantage of this model is that it 

discourages nodes from overloading the network. On the other hand, the drawback of this 

model is that it requires the source to know exactly the required number of hops the packet 

needs to be delivered to the destination. To overcome this problem, Packet Trade model 

proposes that each packet does not carry nuglets but is traded by the relay nodes for cash. 

Each relaying node buys the packet from the previous node on the path and sells it to the 

next one for more cash in order to gain some cash. Thus, the destination will pay for the 

packet and not the source, which will be an advantage over the Packet Purse model. On 

the other hand, this will lead to malicious flooding attack since packet generation is not 

charged. 
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2.5 Applications of Leader Election 

Leader election is a significant issue of MANET and the key concept of cooperative IDS 

model. The main difference between the two approaches of cooperative IDS is the organi­

zation of the nodes. In peep-to-peer approach, each node needs to communicate with other 

nodes to achieve the cooperation. This results to higher communication overhead as the 

number of nodes increases. To reduce this overhead, nodes can be organized into hierarchy 

by forming clusters and electing a leader for that cluster to distribute the responsibilities. 

This is the key concept of hierarchy approaches [41,48, 82] of cooperative IDS. Leader 

election is a significant issue of MANET and has been addressed in different research pro­

posals [9,52,87,89]. 

Like Intrusion Detection System (IDS), leader election is needed for routing [10] and 

key distribution [11,27] in MANET. In key management, a central key distributor is needed 

to update the keys of the nodes. In routing, nodes are grouped into small clusters and each 

cluster elects a cluster head (leader) to forward the packets of other nodes. Thus, one node 

can stay alive while others can be in energy saving mode. Hence, the performance of the 

network significantly depends on the efficient clustering and leader election algorithms. 

2.5.1 Problems of Leader Election Techniques 

Many clustering and leader election algorithms have been proposed. These algorithms can 

be classified into two categories [87]: Cluster-first or leader-first. In cluster-first approach 

[52], a cluster is formed then nodes belonging to that cluster elect a leader node. In the 
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leader-first approach [9], a set of leader nodes is elected first then the other nodes are 

assigned to different leader nodes. Whether it is cluster-first or leader-first, the election of 

leader node is done randomly, based on connectivity (node's degree) or based on a node's 

weight. Here, the weight normally refers to the remaining energy of a node [90]. In random 

election [41] model, a node is elected randomly as a leader by a group/cluster of nodes. If 

there are N nodes in a cluster, then the probability of any particular node to be a leader is 

1/iV. Random model does not consider the remaining resources of nodes or the presence 

of selfish nodes for electing leader node. In connectivity model [48], nodes with highest 

node's degree (connection to other nodes) are elected as leader nodes for the network. 

Again, the solution ignores both the difference in remaining resources and the selfishness 

issue. 

We pointed out the problems of random model and connectivity model. We believe that 

weight based leader election should be the proper method for election. But unfortunately, 

the information regarding the remaining energy is private to a node and thus not verifiable. 

Previous methods assume that each node is associated with a weight [10] or there exist 

a trusted authority to certify each node's metric (weight), which is used to elect a leader. 

We consider these assumptions as quite strong for MANET. Nodes might behave selfishly 

by lying about their resources level to avoid being elected as a leader if there is no other 

mechanism to motivate them. Thus, we address the selfish problem and propose a solution 

which is able to balance the resources of nodes considering the selfish behavior of nodes. 
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2.5.2 Proposed Leader Election Model 

Our proposed solution elects leaders based on their energy level by following the coop­

eration enforcement and game theory concepts. Therefore, our model has the following 

features: 

• Motivate selfish nodes to cooperate during the election process. 

• Calculate the reputation of the nodes based on mechanism design. 

• Punish the misbehaving leader through a cooperative decision model based on coop­

erative game theory. 

2.6 Summary 

In this chapter, we discussed the traditional intrusion detection systems and their com­

ponents and classifications. We showed the challenges of traditional model in MANET, 

which raises the need for designing new models that can handle the unique attacks target­

ing MANET. To make the chapter self-contained, we listed the possible attacks targeting 

ad-hoc networks and showing that proactive approaches are not sufficient to prevent such 

attacks. Thus, intrusion detection system is needed as a second line of defense to de­

fend ad-hoc networks. We categorized IDS models in MANET into two main categories: 

Non-cooperative and cooperative. The cooperative models are classified into two classi­

fications: Non-cooperative and cooperative enforcement mechanisms. We illustrated that 

leader election is a key concept for cooperative IDS and for other applications of MANET. 
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We discussed the problems of the current solutions of leader election. Finally, we showed 

the most prominent cooperation enforcement mechanisms that are used to motivate selfish 

nodes to participate in MANET. Our proposed leader election approach calculates the rep­

utation of the nodes based on mechanism design and punishes a misbehaving node through 

a cooperative punishment system based on cooperative game theory. 
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Chapter 3 

Game Theory and Mechanism Design 

Game theory has been successfully applied to many disciplines including economics, polit­

ical science, and computer science [8,65]. It has been used to formally solve some network 

problems, where different players have different strategies for network usage. It is a power­

ful tool in studying the relationships that are established and broken in the course of cooper­

ation and competition. It usually considers a multi-player decision problem where multiple 

players with different objectives can compete and interact with each other by forming a 

coalition or possibly threaten each other taking actions under uncertainty. Finally, players 

will either receive some benefits, payoffs, or loss some rewards or payoffs. 

Mechanism design is a sub-field of microeconomics and game theory [59]. Mechanism 

design uses the game theoretic [65] tools to achieve the desired goals. The main differ­

ence between game theory and mechanism design is that the former can be used to study 

what could happen when independent players act selfishly/maliciously as an example. On 

the other hand, mechanism design allows a game designer to define rules in terms of the 
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Social Choice Function (SCF) such that players will play according to these rules. The ap­

plications of mechanism design are diverse and it has been used successfully in electronic 

market design, resource allocation problems, task scheduling problems, etc. 

To make the thesis self contained, we discuss in this chapter the basics of game theory 

and mechanism design, which are important to better understand our models. A more 

general overview of game theory can be found in [8,65] while for mechanism design can 

be found in [26,45,59,71]. 

This chapter is organized as follows: Section 3.1 gives a definition for game theory 

and its classifications. Section 3.1.1 provides the related work for applying Game theory 

to IDS. Section 3.1.2 shows how games are defined followed by, in Section 3.1.3, how to 

solve the game in the case of non-cooperative for both categories: Non-zero sum and zero-

sum. Moreover, dominant strategy, Nash equilibrium and minimax strategy with illustrative 

examples are given followed by an example of how to model the IDS game. Additionally, 

we solve the IDS game for the case of incomplete information about the intruder using 

Bayesian game. Section 3.1.4 presents cooperative game theory. Section 3.2 illustrates the 

basics of mechanism design, where the quasi-linear utility function, incentive compatible 

mechanism and revelation principle are given. Finally, the VCG mechanism, which is an 

incentive compatible direct revelation mechanism, is presented with an example. 
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3.1 Game Theory 

Game theory is a formal way to analyze interactions among a group of rational players that 

behave strategically. Where, 

• Group: The decision makers in any game are known as players and the set of players 

is referred to as a group. 

• Interaction: The decision each player makes in a group has an effect on at least one 

other player. 

• Strategy: Each player has a set of actions to choose from, which is referred to as the 

strategy of the player. A strategy is a complete decision rule that defines the action 

an agent will take in each case of the game. Each strategy the player chooses affects 

the game's result. 

• Rational: A rational player always wants to maximize his/her own benefits. Thus, 

each player chooses his/her best action, considering the other players decision. 

Game theory classifies games into two categorizes: Non-cooperative and cooperative. 

Non-cooperative games are games with two or more players who are competing with each 

other. On the other hand, cooperative games are games with multi-players cooperating with 

each other in order to achieve the greatest possible total benefits. 

Non-cooperative games are classified into two categories: Zero-sum and non-zero-sum. 

The zero-sum game, in the case of two players, is what one player wins, the other losses. 

53 



Whereas, non-zero-sum game is a game where the players' interests are not always in direct 

conflict so that there are opportunities for both to gain. 

3.1.1 Game Theory Applications to IDS 

To predict the optimal strategy used by the intruders to attack a network, the authors of [51 ] 

model a non-cooperative game-theoretic model to analyze the interaction between an in­

truder and IDS in a wired infrastructure network. They solve the problem using a zero-sum 

non-cooperative game with complete information about the intruder. In the complete in­

formation game, the type, strategy spaces, and payoff functions of both players are known. 

In [3], the authors aim at demonstrating the suitability of game theory for development 

of various decision, analysis, and control algorithms in intrusion detection. They address 

some of the fundamental network security tradeoffs, and give illustrative examples in dif­

ferent platforms. They propose two different schemes based on game theoretic techniques 

and consider a generic model of distributed IDSs equipped with a network of sensors. 

Bayesian Nash game is used in [55] to analyze the interaction between the intruder and 

defender in static and dynamic scenarios. The authors provide a hybrid detection approach 

with lightweight and heavyweight monitoring systems. 

3.1.2 How to Define a Game? 

A game must contain the following: 

1. A list of players P = l , 2 , . . . , / . Here, we consider the game of two players where the 

the players, for example, want to meet each other in Montreal. 
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2. Each player can select his/her strategy from a strategy set S. For example, the strat­

egy set for each player for meeting each other is Si = 5 2 = {Coffee shop, Restau­

rant}. Strategies are classified into two types: Pure and mixed. Pure strategies are 

deterministic while a mixed strategy is the probability distribution over the set of 

pure strategies so that a strategy is selected with a certain probability. 

3. Strategy profile is the outcome of the game. It is the set of all the strategies chosen 

by the players. For example, the possible outcomes of the game of meeting are 

(Coffee shop, Coffee shop), (Coffee shop, Restaurant), (Restaurant, Coffee shop), 

and (Restaurant, Restaurant). Formally, the set of strategy profiles or outcomes of 

the game is defined as S — Si x S2-

4. Each player has preferences over the outcomes of the game. Knowing that, players 

cannot have preferences over the strategies. Utility function of a player i can be 

considered as a transformation of the outcome to a real number. A player prefers 

outcome, 01 over outcome, o2 if Uj(oi) > tXj(o2). A rational player always wants to 

maximize its utility. Thus, it chooses a strategy that will increase its expected utility 

given the preferences of the outcomes, the structure of the game and the belief of 

others strategies. 

In the meeting example, players care for meeting each other, which is the output of 

the game ignoring where they will meet each other, which is the strategy chosen by 

the players. Preferences over outcomes are represented through a utility function u. 

Therefore, ti,- = 1 if both players meet each other and zero otherwise. 
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The two players and their corresponding strategies could be represented by the fol­

lowing table, where the columns represent the strategies of player 1 and the rows 

represent the strategies of player 2. The intersection between the row and the column 

represents the payoff of player 1 and 2. 

Strategy 

Coffee shop 

Restaurant 

Coffee shop 

1,1 

0,0 

Restaurant 

0,0 

1,1 

Formally, a normal game consists of: 

• A finite set of players P = {1 ,2 , . . . } . 

• Strategy sets Si, S2,..., Si. 

• Payoff function ut. 

3.1.3 Non-Cooperative Game Theory 

Non-cooperative games [65] are games with two or more players that are competing with 

each other. A two players game where one player wins what the other losses is called two-

person zero-sum game. Matching pennies is the best example for a zero-sum game. It is 

a two players game where player 1 wins a dollar from player 2, if both choose the same 

action, otherwise player 1 loses a Dollar. 

After we have defined a game, the question that we shall address here is: How to solve 

a game and find the optimal strategy of each player? In other words, how to play a game 
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and find its solution? In the following sections, we shall use examples to illustrate how a 

game is solved. 

Zero-Sum Non-Cooperative Game with Dominant Strategy 

Zero-sum game with two players is a game in which the player one looses what the player 

two wins. We prefer to explain the concept of two-person zero-sum game through an 

example. The following table presents the payoffs and strategies of two players where the 

intersection between the rows and columns present the payoff gained by player 1, if the 

payoff is positive and a loss otherwise. Knowing that, the rows present the strategies of 

player 1 and the columns present the strategies of player 2. 

Player 2 

Strategy 

Player 1 

Si 

s2 

s3 

Si 

1 

1 

0 

s2 

2 

0 

1 

Sz 

4 

5 

-1 

Before starting to solve the above example, we have to note that both players in the 

game are rational. Solving the game will lead the players to know their corresponding 

optimal strategy that will be used by each player. Here, we apply the concept of dominant-

strategy to rule out a succession of inferior strategies until one choice remains. A strategy 

is dominated by another strategy if the second strategy is at least as good as the other one 

regardless of what the other player does. Therefore, the dominated strategy is eliminated 

directly from the table. Knowing that, players are rational and therefore they will not play 
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the dominated strategy. Formally, it is expressed as follows: 

where, S* is the dominant strategy, Si is any other strategy and 5_j is the selected strategy 

by other players. 

In our example, strategy 3 of player 1 is dominated by strategy 1 since the latter has 

larger payoffs regardless of what player 2 does. The table will be as follows: 

Strategy 

Si 

S2 

Si 

1 

1 

s2 

2 

0 

S3 

4 

5 

Since player two is rational, he will know that player 1 has only the two strategies 1 and 2. 

For player 2, strategy 3 is dominated by both strategies 1 and 2 since the loss by these two 

strategies are less. The table will be as follows: 

Strategy 

Si 

s2 

Si 

1 

1 

s2 

2 

0 

Now, player 1 deduce that strategy 2 is dominated by 1 and therefore the table will be as 

follows: 

Strategy 

Si 

Si 

1 

s2 

2 

Strategy 2 of player 2 is dominated by 1, therefore strategy 2 must be eliminated. Finally, 

the two players will use strategy 1 and the payoff for player 1 is one. This payoff is referred 
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to as the value of the game. A game with 0 value is called fair game. The concept of 

dominated strategy is useful on reducing the size of the table and therefore identify the 

optimal solution for the game. 

Non-Zero-Sum Non-Cooperative Game with Dominant Strategy 

A game is non-zero-sum, if players interests are not always in direct conflict, so that there is 

an opportunity for both to gain. A well known example of this type of games is Prisoners' 

dilemma. In this game, a policeman arrested two persons with incomplete evidence about 

their crime. To make the arrested persons confess about their crime, he puts them in two 

separated prisons. Then, he formulated the game in such a way that both players will 

confess. The game is formulated in the following table: 

Player 1 

Strategy 

Player 2 
Confess (Defect) 

Do not Confess (Cooperate) 

Confess (Defect) 

-5,-5 

-10,0 

Do not Confess (Cooperate) 

0,-10 

-1,-1 

In the above table, if player one and two confess then both are sentenced to 5 years 

and 1 year otherwise. On the other hand, if player one confesses while player two did not 

then player one (who confessed) will be released and player two will be sentenced to 10 

years and vise versa otherwise. Applying dominant strategy to this game will lead the two 

players to confess since it is the dominant strategy against each other. 

The other form of this game which has been used in routing in MANET to enforce co­

operation [61] is stated in the above table with "cooperate" and "defect" as the strategies of 

the players. It is clear from the solution of the game that "defect" is the optimal strategy of 

59 



each player, which contradicts the characteristics of MANET. Since every player can record 

the move of his opponent, a strategy can be predefined and the game can be played itera-

tively, which is known as repeated game. If Prisoners' dilemma game is played iteratively 

then the solution will be changed to "cooperate" as the dominant strategy which MANET 

requires [66]. Tit-for-tat is one of the strategies that can be used in repeated games where 

a player plays "cooperate" as first move, then he/she plays as his/her opponent played in 

the previous iteration. In [61], the authors designed their own strategy where the players 

(nodes) cooperate on the first round of the game then cooperate according to opponent's 

reputation. The objective of this strategy is to make cooperation as the dominant strategy 

among all players. The authors design the strategy in this way to make the strategy more 

generous than Tit-for-tat since player moves will not depend on an opponent's previous 

move but it depends on the average of the previous B moves. This is because in MANET 

some nodes might not cooperate due to un-control problems; such as, channel collision 

which prevents nodes from relaying others' traffic. 

Nash Equilibrium 

Now, let us try to solve the following non-zero sum game using dominant strategy. 

Player 2 

Strategy 

Player 1 

Si 

s2 

S3 

Si 

0, 4 

4, 0 

3, 5 

s2 

4, 0 

0 ,4 

3, 5 

s3 

5, 3 

5, 3 

6, 6 

60 



After checking the strategy of each player, we find that this game cannot be solved using 

dominant strategy. Thus, a new solution is proposed by John Nash [67] to find the solution 

of such a game which is known as Nash equilibrium. A Nash equilibrium in pure strategies 

is a pair (r*, c*); such that Ui(r*, c*) > U\{r, c*) for all row strategies r of player 1, 

and u2(r*, c*) = u2(r*, c) for all column strategies c of player 2. This means that neither 

player can take advantage of the other player's strategy to improve his own benefits. Thus, 

selecting a strategy other than r* by player 1 will never make him happier than selecting r* 

against his opponent which already selected c*. 

Now, let us solve the above game using Nash equilibrium. For each player, and for 

each strategy for that player, we have to determine the other player's best response to that 

strategy. If player 2, were to play strategy SV Then, player 1 best response would be 52 

since 4 exceeds 3 and 0. Therefore, payoff 4 will be underlined as shown in the following 

table. If player 2, were to play strategy 52 . Then, player 1 best response would be Si since 

4 exceeds 3 and 0. Thus, payoff 4 will be underlined. Now, if player 2, were to play strategy 

S3. Then, player 1 best response would be S3 since 6 exceeds 5. Therefore, payoff 6 will 

be underlined. Similarly, player 2 will do in order to find his best response with respect 

to player 1 strategies which will be Si, S2 and S3 respectively. The respective payoffs are 

over-lined as shown in the following table. The entry which is the intersection between 

the strategies (row and column) is called a saddle point or Nash equilibrium point. Thus, 

players 1 and 2 best strategy would be S3. Finally, we note that a pair of strategies satisfies 

Nash Equilibrium if each player's strategy is the best response to other's strategy. 
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Player 2 

Strategy 

Player 1 

5! 

s2 

s3 

Si 

0, 4 

4, 0 

3, 5 

s2 

4, 0 

0 ,4 

3, 5 

s3 

5, 3 

5, 3 

6, 6 

Minimax strategy 

Another way to find the Nash equilibrium for the following game is to apply the minimax 

or minmax concept which is illustrated through the following example. 

Player 2 

Strategy 

Player 1 

Si 

s2 

s3 

Si 

- 3 , 3 

2, - -2 

5 , - 5 

s2 

- 2 , 2 

0, 0 

- 2 , 2 

S3 

6 , - 6 

2 , - 2 

- 4 , 4 

It is clear that dominant strategy does not work here so we have to use different tech­

nique which is each player should play in a way to minimize his maximum losses whenever 

the resulting selection of strategy cannot be exploited by the other player to then improve 

his selection. This concept is known as Minimax [8] strategy selection. Minimax says that 

player 1 selects a strategy that would be the best even if the chosen strategy was known 

by the opponent. According to the above table, player 1 should select the strategy whose 

minimum payoff is the largest which is strategy S2. On the other hand, player 2 should 

select the strategy whose maximum payoff to player 1 is the smallest. Therefore, strategy 2 

is the maxmin strategy for player 1 and strategy 2 is the minmax strategy for player 2. The 
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result of the game is zero and therefore the game is a fair game. This entry which is the 

intersection between the minimum and maximum is the Nash equilibrium, which is neither 

player can take advantage of the other player's strategy to improve his own position. Given 

the above example, if player 2 predicts that player 1 will choose strategy 2 then choosing a 

strategy other than strategy 2 will lead to a loss for player 2. 

We have to note that some games might not have a Nash equilibrium using pure strate­

gies. In this case, game theory advises each player to assign probability distribution over 

his set of strategies which is known as mixed strategy. 

Mixed Strategy 

Whenever a game is not solved using pure strategy, mixed strategy is used. This concept 

was introduced by von Neumann and Morgenstern in their book [92]. However, they only 

considered the case of zero-sum game where they showed that for any zero-sum game with 

finite set of strategies there is a mixed-strategy Nash equilibrium. This result was later 

improved by Nash in [67] to cover all types of games with finite number of players and 

strategies. He proved that there is at least one Nash equilibrium (mixed-strategy) in any 

game with finite number of players and strategies. 

Mixed strategy can be defined mathematically as follows: 

• Xj= is the probability of strategy i by player 1, where i = 1,2,..., m and m is the 

number of available strategies. 

• yj= is the probability of strategy j by player 2, where i = 1, 2, ...,n and n is the 

number of available strategies. 
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This probability distribution of the pure strategies is called mixed strategies. Expected 

payoff theorem could be used for evaluating mixed strategies. The expected value for 

player 1 is equal to YT=\ S?=i uiixtVv w r i e r e uij ' s t n e payoff. 

Game theory extended the concept of minmax to games with mixed strategies. 

Minmax theorem states : If mixed strategies are used, the pair of mixed strategies that 

is optimal with respect to minmax provides Nash equilibrium with minmax equals maxmin 

equals the value of the game, so that neither player can take advantage by changing his 

strategy. 

To make the idea of mixed strategy clear, let us consider the following game. 

Player 2 

Strategy 

Player 1 
Si 

s2 

Si 

2, - 2 

- 3 , 3 

s2 

- 3 , 3 

4, - 4 

After applying all the above concepts, it is clear that non of the above concepts is 

able to solve this game. Thus, mixed strategies are used by player 2 through assigning a 

probability x\ to strategy S\ and x2 to 52 with x2 = 1 — X\. On the other hand, player l's 

mixed strategies will be yx and y2 with y2 - 1 - y\. Then, the expected payoff (U) of player 

1 will be equal to the following: 

2yixi + ( - 3 ) ^ ( 1 - xO + (-3)(1 - yi)Xl + 4(1 - yi)(l - Xl) = \2ylXl - lVl - lxx + 4 

Player 2 objective is to minimize the expected payoff of player 1. Therefore, player 2 
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calculates the first derivative to find the values of x\ and x2 respectively which is: T̂—r = 

12xi — 7 = 0 —+ xi — 7/12 and £2 = 5/12. Following the same concept, player 1 can 

compute his mixed strategy y\ and y2. 

Note that finding the optimal mixed strategy for more complex cases will be done 

through transforming the problem to a linear programming problem. Simplex method or 

any other appropriate method can be used to solve such a problem [8]. 

Defender/Attacker Game Example 

Now, let us see how game theory can be used for intrusion detection. We will play a 

game between IDS and intruder where the intruder strategy is selected from his strategy 

space S~{Attack, Not Attack}. On the other hand, the IDS (defender) strategy is selected 

from the strategy space S={Monitor, Not Monitor}. As an example, we will consider the 

following payoff table where we will solve the game using mixed strategy to find the Nash 

equilibrium. Knowing that there is no Nash equilibrium using pure strategy for such a 

game. 

IDS 

Strategy 

Attacker 
Attack (yi) 

Not Attack (y2) 

Monitor (xi) 

AL = - 4 , DG = 4 

0, DF = - 3 

Not Monitor (x2) 

AG = 5, DL = - 5 

0, 0 

We define AL as the loss of the attacker once it is detected by the IDS. The DG is the 

gain of the IDS once the attack is detected. The AQ is the gain of the attacker once it is not 

detected by the IDS. The DL is the loss of the IDS once an attack is not detected (i.e., false 
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negative). Finally, the Dp is the false positive rate by the IDS. 

To solve the game, the attacker calculates his expected utility (UA) which is: 

UA = - 4 x i y i + 5 t / i ( l - £ i ) 

The objective of the attacker is to maximize the above function which is done by finding 

the first derivative with respect to y\ and equating it to zero: 4 ^ j = —4a;! + 5 - 5a: i = 

0 =» xi = 5/9. This means that the defender will monitor with probability 5/9 and not 

monitor with probability 4/9. 

On the other hand, the defender calculates his expected utility (UD) to know the optimal 

strategy. This is done as follows: 

UD = 4x1yi - 5^(1 - xx) - 3xi(l - yx) 

The defender goal is to maximize the above expected utility by finding the first deriva­

tive with respect to x\ and equating it to zero. This leads y\ to be equal to 3/12, which 

means that the attacker will attack with probability 3/12 and not attack with probability 

9/12 to avoid being detected by the IDS. 

Here, we have to note that both players have complete information about each other. 

Thus, both are able to solve the game and find the Nash equilibrium. The question that 

we need to address later on is: What if the identity of the attacker is not known? In other 

words, players have incomplete information about each other. So, how the game is played? 

The answer is given in the Bayesian games section. 
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Bayesian Games 

Bayesian games are games with incomplete information about the players. Each player has 

a type 9 which is drawn from the set space 6 , where for example 0 = {Malicious, Selfish, 

Normal}. Additionally, players have initial beliefs about the type of each player. A belief 

is defined as a probability distribution over the possible types of a player. Players update 

their beliefs, according to the Bayes' rule given below, as a play takes place in a game [8]. 

where ^tk+1 is the posterior belief probability, which means: What is the probability of 

being of type 9^ given the observed strategy s? Moreover, \xik > 0 is the prior belief and 

Ptk(si\9i) is the probability that strategy s is observed at this stage of the game given the 

type 9i of the player. The belief a player holds about another player's type might change 

on the basis of the strategies the player has played. 

In the defender/attacker game, the defender identity is known by the attacker while the 

identity of the attacker is not known and is selected from the type set 0 = {Malicious (M), 

Normal (N)}. If the attacker chooses to select the normal type then the only strategy is not 

to attack. This leads the defender (IDS) to use the Bayes' rule to find the posterior belief 

of the opponent. Then the defender calculates his expected utility, which is equal to: 

UD = (4xlVl - 5^(1 - an) - 3xi(l - yi))/i(0 = M) + ( - 3 x 0 ( 1 - /x(0 = M)) 

To maximize the above function, the defender will find the first derivative with respect 
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to X] and equate it to zero. The result leads that the attacker will attack with probability 

3 
12/x(M) -

On the other hand, the attacker calculates his utility function as shown in the previous 

section which leads the defender to monitor with probability 5/9. 

Here, we need to note that all the above solution concepts; such as, dominant, Nash and 

Bayesian can be used to solve games in static and dynamic form. In static games, players 

select their strategies simultaneously without knowing the strategy selected by other play­

ers. Payoff tables are used to represent static games. On the other hand, in dynamic games, 

players play their strategies over a series of steps or stages. In such games, players are able 

to capture the move of other players and can learn information about the preferences. Such 

games are usually represented by a tree structure. Note that tree structure games can be 

interpreted to payoff tables in order to solve such type of games. 

3.1.4 Cooperative Game Theory 

Cooperative games [8] are games with multi-players cooperating with each other in order 

to achieve the greatest possible total benefits. Cooperative games consist of: (1) a set 

of players N = {1,2,... ,n} and (2) a characteristic function v(S) specifying the value 

produced by different group of players S. As an example, let us consider a game with 3 

players N = {1, 2, 3} where player 1 is a seller for one item where the cost of the item is $5. 

Players 2 and 3 are two potential buyers. Player 2 is willing to buy the item with $10 while 

player 3 is willing to buy the item with $12. Therefore, the characteristic functions v of the 

game are as follows: v({l}) = v({2}) = v({3}) = 0,V{{1, 2}) = 1 0 - 5 = 5,t»({l,3}) = 
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12 - 5 = 7, v({2,3}) = 0, and v({l, 2,3}) = 12 - 5 = 7 (because player 1 has only one 

item and it will be sold to the player with highest value). After calculating the characteristic 

functions of the different groups, we have to investigate the marginal contribution of each 

player in the formulated groups. Shapley [29] has studied the contribution of each player in 

a coalition. His study is known as Shapley value [24]. Mathematically, the Shapley value 

is defined as follows: 

, n v - ((|S|-l)!(n-|S|)!) fc,. (q ™ 
scN,ies 

This formula means the following: Assume there is a coalition with n players arriving one 

after the other in a conference room. Consider all the permutations of the n players. Now, 

if player i arrives in the room and finds the coalition S — {i} already there, his contribution 

to the coalition is v(S) — v(S — {i}). Therefore, the Shapley value is the expected value of 

the contribution of the player i. 

3.2 Mechanism Design 

Mechanism design is used to implement an optimal system-wide solution for a distributed 

optimization problem with self-interested players where the input of the mechanism is play­

ers' private information. Mechanism design allows a game designer to define the rules of 

the game in terms of the social choice function such that players will play according to 

these rules. This requires that the equilibrium point leads to the social choice function. 

Thus, games should be designed in such a way players' dominant strategy is the one that 
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leads to the objective function (SCF). In the following, we present how mechanisms are 

designed followed by the well known mechanism VCG which is the mechanism we use in 

this thesis. 

3.2.1 Mechanism Design Applications 

Mechanism design has been extensively used in microeconomics for modeling solutions 

for various economical problems such as auctions. It has been used in computer science by 

Nisan and Ronen [70] for solving least cost path and task scheduling problems using algo­

rithmic mechanism design. Distributed mechanism design based on VCG is first introduced 

in [31] to compute the lowest cost routes for all source-destination pairs and payments for 

transit nodes on all the routes. An extension of this work is given in [79] where the au­

thors considered the consequences that may appear after the computation phase is finished. 

Currently in MANET, mechanism design is mainly used for routing purposes, such as a 

truthful adhoc-VCG mechanism for finding the most cost-efficient route in the presence of 

selfish nodes [5]. In [20], the authors provide an incentive compatible auction scheme to 

enable packet forwarding services in MANETs using VCG; a continuous auction process 

is used to determine the distribution of bandwidth and incentives are given as monetary 

rewards. Leader-election in IDS is significantly different from the above problems. We ad­

dress selfishness in IDS leader election, which is a real problem that has not been addressed 

by previous approaches. 
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3.2.2 How to Design a Mechanism? 

A standard mechanism design model is defined by a set of n agents where each agent i G 

{ 1 , . . . , n} has a private information about his preferences, 9t G 0 j , known as the agent's 

type. Moreover, it defines a set of strategies Si for each agent i. The agent can choose any 

strategy Sj e Si to input to the mechanism based on agent's type which is represented by 

Si(9i). We refer to Sj(^t) a s si- According to the inputs (st, . . . , s„) of all the agents, the 

mechanism calculates an output o = o(ax,..., an) € O where O is the set of all possible 

outputs. For simplicity, we refer to o = o(ai,..., an) as o(.). The objective of mechanism 

design is to define rules that make the agents select their corresponding strategy, which 

leads to the social choice function / ( . ) . The question now is how to make the output o(.) 

equals to the social choice function /( .)? This what we shall address in this section. 

We say that a mechanism M implements the social choice function / ( . ) , if the outcome 

of the mechanism at equilibrium is the solution of the social choice function and thus, 

/ ( . ) = o(.). To achieve this goal, game theory tools are needed to analyze the outcome 

of a mechanism in order to find the equilibrium. In other words, a mechanism, M = 

(Si,..., Sn, o(.)) implements a social choice function, / ( . ) if o((S^(9i),..., S£(0n)) = 

/ ( . ) , where the strategy profile, s* = (si,..., s*) is the equilibrium of a game. 

Here, the equilibrium strategy can be based on any equilibrium concept, such as domi­

nant, Nash, Bayesian, etc. Generally, dominant strategy is preferred over other techniques 

since it has less assumption than other concepts regarding players information. Mecha­

nisms implemented using dominant strategy are known as strategy-proof. Vickrey-Clarke-

Groves (VCG) is the only strategy-proof mechanism which is given in Section 3.2.3. 
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Quasi-Linear Utility Function 

The utility function ui(si(6i),o) is used to calculate agents preference over different out­

come. In mechanism design, it is assumed that this function is defined using the quasi-linear 

utility function. The general form of the quasi-linear function for an agent i with type #; 

and strategy Si is: 

^(si(#i)-°) = vi{si(9i),x) -pi 

where outcome o defines a choice x, which is an element in the discrete choice set X and 

Pi is the payment of an agent. The preference of each player from the output is calculated 

by a valuation function, Vi(x), which is a quantification to evaluate the value of x in real 

number. Thus, the utility of a node is calculated as a combination of output measured by 

the valuation function and payment defined by the mechanism. Agent's utility function 

is maximized only when agent's receives x with less payment. Thus, agents can reveal 

fake information about their valuation function v in order to have the choice x with less 

payment. 

As an example, we consider an auction of a single item. The outcome of the auction 

which is, in our case, the SCF is to determine the best winner that can valuate item x the 

most among all the agents. If the value of the item by the winner is $15 then the agent has 

a positive utility as long as the payment is less than $15. 

The question is: How to design the payments in a way that makes agents reveal their 

truthful valuation function? 
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Incentive Compatible Mechanism 

Incentives must be given to motivate agents on revealing truthfully their private informa­

tion. This leads to a social choice function. Let us consider an example about incentives 

where we have two children squabbling over a piece of cake. So, we need a mechanism to 

divide the piece of cake fairly. The best solution that usually the parents follow is to ask 

one children to cut the piece and the second to choose. This mechanism will motivate the 

first child to cut the piece equally as possible since the second child will choose the larger 

half. This mechanism, first cut and second choose, is a simple example of incentive com­

patible mechanism. Recently in 2007, L. Hurwicz, E. Maskin, and R. Myerson received 

the Nobel prize in economics for their study of incentive compatible mechanisms [44]. An­

other example for incentive compatible mechanism is the second-price sealed bid auction 

for allocating a single item which is created by Vickrey. Vickrey has awarded in 1996 a 

Nobel prize for his work in mechanism design [63]. The general case of Vickrey is given 

in Section 3.2.3. 

A mechanism is called as dominant-strategy incentive compatible or strategy-proof if 

the dominant strategy of each agent is to report his private information truthfully. Note that 

VCG is the only well known strategy-proof mechanism. 

Revelation Principle 

The Revelation Principle is a way that simplifies the analysis of mechanism design prob­

lems. Direct revelation mechanism is a mechanism that the only actions available to agents 
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are to reveal directly their preferences to the mechanism. If agents report their truthful in­

formation about their preferences in equilibrium then an incentive compatible mechanism 

is a direct-revelation mechanism. 

An incentive compatible direct revelation mechanism implements a social choice func­

tion, / ( . ) , if the mechanism M — (Q\,.... 9 n , #(.)) has an equilibrium (s\,..., s*), where 

«x(^) = ^»foral l^ € 0 , . 

In other words, the incentive compatible direct revelation mechanism has an equilib­

rium in which each player reports his strategy/type truthfully. If the concept of equilibrium 

is dominant strategy, then this mechanism is said to be strategy-proof. Thus, the revelation 

principle restricts the attention to only incentive compatible direct mechanism to determine 

which social choice function are possible to implement and which are not. 

3.2.3 Vickrey-Clarke-Groves (VCG) Mechanism 

Vickrey-Clarke-Groves (VCG) is a strategy-proof mechanism that has been proposed by 

Vickrey [91], Clarke [23] and Groves [33]. VCG is the only allocation-efficient and strategy-

proof mechanism amongst all direct revelation mechanisms. It is used to solve problems 

with a set of possible alternatives, X, and players have quasi-linear preferences. 

In VCG mechanism, each player i E N calculates his valuation function v for alterna­

tive x E X given his type 6. Based on the collected valuations, the goal of the mechanism 

is to find the outcome o = (x*, p) where p is the set of payments that will be given to/by 

the players. Thus, the goal is to maximize the total valuation over all the players which is 

as follows: 
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SCF = x* = max \_] vt(x, (?,•) 
i 

The payment in VCG takes the following form: 

Pi = Vi{x*,di) - {VN - VN-i} 

where VN = max l € x Y^i viixi 6i) 1S t n e to ta^ reported value of x*. On the other hand, 

V/v-i = maxx ex Ylj^i vAxi &j) ̂ s t n e best total reported value of the choice without con­

sidering i. Note that the payment of a player is not influenced by its reported valuation. 

VCG Example 

Let us consider the shortest path problem where the mechanism goal is to find the shortest 

path between a given source A and destination E as shown in Figure 10. 

Figure 10: Shortest path example using VCG 

We assume that each link has a private cost. If the information is revealed truthfully then 

the shortest path from A to E is 17 which is path AHCDE. The mechanism will output the 

shortest path AHCDE which is the SCF and the payment of each link according to VCG. 
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Assuming that the sender will pay for the links, the payment of link CD, for example, is 

the link's cost 3 — (the total cost of the path which is 17 — the total cost of the shortest path 

excluding link CD which is 18 since path AHGE is the shortest path). This leads that the 

payment of link CD = 4. 

3.3 Summary 

From the above discussions, it is clear that game theory and mechanism design are strong 

candidates for providing the much-needed mathematical framework for analyzing the in­

teraction between IDSs and intruders. Moreover, to motivate the selfish users to participate 

through revealing their truthful information. To make the thesis self contained, we provided 

the basics of game theory and mechanism design. We showed how games are defined and 

how they are solved through illustrative examples. We provided a simple example to show 

how game theory can be used to model a game between intruder and IDS. Then we showed, 

through an example, how to solve the games with incomplete information about the play­

ers. Last but not least, we can conclude that game theory can help us to find the optimal 

threshold for adding more monitors according to the security needs. Moreover, it can be 

used to formulate our sampling problem and guide the IDS to find the optimal sampling 

strategy against its opponent (intruder/intruders). 

After illustrating game theory, we explained the basics of mechanism design that we 

have used through out this thesis. Finally, we can conclude that the balance of IDS resource 

consumption problem can be modeled using mechanism design theory with an objective 

76 



function that depends on the private information of the players. In our case, the private 

information of the player is the cost of analysis, which depends on the player's energy 

level. Here, rational players select to deliver untruthful information about their preferences, 

if that leads to individually better outcome. The main goal of using mechanism design [26] 

is to address this problem by designing incentives for players (nodes) to provide truthful 

information about their preferences over different outcomes. 
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Chapter 4 

Leader Election Mechanisms 

In this chapter, we propose a solution for balancing the resource consumption of IDSs 

among all nodes while preventing nodes from behaving selfishly. To address the selfish­

ness behavior, we design incentives in the form of reputation to encourage nodes to honestly 

participate in the election scheme by revealing their cost of analysis. The cost of analysis 

is designed to protect nodes' sensitive information (resources level) and ensure the con­

tribution of every node on the election process (fairness). To motivate nodes in behaving 

normally in every election round, we relate the amount of detection service that each node 

is entitled to the nodes' reputation value. Besides, this reputation value can also be used to 

give routing priority and to build a trust environment. The design of incentives is based on a 

classical mechanism design model, namely, Vickrey, Clarke, and Groves (VCG) [59]. The 

model guarantees that truth-telling is always the dominant strategy for every node during 

each election phase. Last but not least, we address these issues in two possible settings, 
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namely, Cluster Independent Leader Election (CILE) and Cluster Dependent Leader Elec­

tion (CDLE). In the former, the leaders are elected according to the received votes from the 

neighbor nodes. The latter scheme elects leaders after the network is formulated into mul­

tiple clusters. In both schemes, the leaders are elected in an optimal way in the sense that 

the resource consumption for serving as IDSs will be balanced among all nodes overtime. 

To catch and punish the misbehaving leader after election, we propose a catch and 

punish mechanism where a set of checkers are elected randomly to monitor the behavior of 

the leader. To reduce the resource consumption by the checkers we assume that checkers 

are mirroring a portion of the work handled by the leader to verify its behavior. Checkers 

are added gradually according to detection threshold. To reduce the false positive by the 

checkers, a cooperative decision model based on cooperative game theory is proposed. 

Finally, our proposed model is a hybrid approach that combines the advantages of random 

selection and mechanism design-based selection. 

The rest of this chapter is organized as follows: Section 4.1 formulates the problem. 

Section 4.2 describes our leader election mechanism where the cost of analysis function, 

reputation model and payment design are given. Section 4.3 analyzes our mechanisms 

against selfish and malicious nodes. Section 4.4 describes the catch and punish mechanism 

where checkers are added gradually according to the behavior of the leader. To reduce 

the false positive of the checkers, we analyze the contribution of the checkers on the final 

decision. This is done using cooperative game theory. 
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4.1 Problem Statement 

We consider a MANET where each node has an IDS and a unique identity. To achieve 

the goal of electing the most cost efficient nodes as leaders in the presence of selfish and 

malicious nodes, the following challenges arise: First, the resource level that reflects the 

cost of analysis is considered as a private information. As a result, the nodes can reveal 

fake information about their resources if that could increase their own benefits. Second, the 

nodes might behave normally during the election but then deviate from normal behavior by 

not offering the IDS service to their voted nodes. 

In our model, we consider MANET as an undirected graph G = (N, L) where iV is 

the set of nodes and L is the set of bidirectional links. We assume that nodes belong to 

different users/organizations and thus there will be no collusion among the nodes to disrupt 

our leader election. We denote the cost of analysis vector as C = {ci, c 2 , . . . , c„} where n 

is the number of nodes in N. We denote the election process as a function vtk(C, i) where 

vtk(C,i) = 1 if a node i votes for a node k; vtk{C,i) = 0, otherwise. We assume that 

each elected leader allocates the same budget B (number of packets) for each node that has 

voted for it. Knowing that, the total budget will be distributed among all the voting nodes 

according to their reputation. This will motivate the nodes to cooperate in every election 

round that will be held on every time TELECT- Thus, the model will be repeatable. For 

example, if B = 25 packet/sec and the leader gets 3 votes, then the leader's total sampling 

budget is 75 packet /sec. This value is divided among the 3 nodes based on their reputation 

value. The objective of minimizing the global cost of analysis while serving all the nodes 
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can be expressed by the following Social Choice Function (SCF): 

SCF = S{C) = min ] T ck • ( ] T vtk(C, i) • B) (1) 
keN ieN 

Clearly, in order to minimize this SCF, the following must be achieved. First, we need 

to design incentives for encouraging each node in revealing its true cost of analysis value 

c, which will be addressed in this chapter. Second, we need to design an election algorithm 

that can provably minimize the above SCF while not incurring too much of performance 

overhead. This is addressed in chapter 5. 

4.2 Mechanism Model 

We treat the IDS resource consumption problem as a game where the N mobile nodes are 

the agents/players. Each node plays by revealing its own private information (cost of analy­

sis) which is based on the node's type 0j. The type 9t is drawn from each player's available 

type set Qi={ Normal, Selfish}. Each player selects his own strategy/type according to how 

much the node values the outcome (reputation). If the player's strategy is normal then the 

node reveals the true cost of analysis. In Section 4.3 a detailed analysis is given. We assume 

that each player i has a utility function [59]: 

«.•(&) =pi-vi(Oi,o(0i,0_i)) (2) 

where, 0_j is the type of all the other nodes except i. vt is the valuation of player i of 

the output o € O, knowing that O is the set of possible outcomes. In our case, if the node 
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is elected then u,- is the cost of analysis ct. Otherwise vt is 0 since the node will not be the 

leader and hence there will be no cost to run the IDS. pi G 5R is the payment given by the 

mechanism to the elected node. Payment is given in the form of reputation. Nodes that are 

not elected receive no payment. 

Note that, u^Oi) is what the player usually seeks to maximize. It reflects the amount 

of benefits gained by player i if he follows a specific type 0*. Players might deviate from 

revealing the truthful valuation for the cost of analysis if that could lead to a better payoff. 

Therefore, our mechanism must be strategy-proof where truth-telling is the dominant strat­

egy. To play the game, every node declares its corresponding cost of analysis where the 

cost vector C is the input of our mechanism. For each input vector, the mechanism calcu­

lates its corresponding output o = o(0\,..., 9n) and a payment vector p = (p i , . . . ,pn)-

Payments are used to motivate players to behave in accordance with the mechanism goals. 

In the following subsections, we will formulate the following components: 

1. Cost of analysis function: It is needed by the nodes to compute the valuation function. 

2. Reputation system: It is needed to show how: 

(a) Incentives are used once they are granted. 

(b) Misbehaving nodes are catched and punished. 

3. Payment design: It is needed to design the amount of incentives that will be given to 

the nodes based on VCG. 
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4.2.1 Cost of Analysis Function 

During the design of the cost of analysis function, the following two problems arise: First, 

the energy level is considered as private and sensitive information and should not be dis­

closed publicly. Such a disclosure of information can be used maliciously for attacking the 

node with the least resources level. Second, if the cost of analysis function is designed only 

in terms of nodes' energy level, then the nodes with the low energy level will not be able to 

contribute and increase their reputation values. 

To solve the above problems, we design the cost of analysis function with the following 

two properties: Fairness and Privacy. The former is to allow nodes with initially less 

resources to contribute and serve as leaders in order to increase their reputation. On the 

other hand, the latter is needed to avoid the malicious use of the resources level, which is 

considered as the most sensitive information. To avoid such attacks and to provide fairness, 

the cost of analysis is designed based on the reputation value, the expected number of time 

slots that a node wants to stay alive in a cluster and energy level. Note that the expected 

number of slots and energy level are considered as the nodes' private information. 

To achieve our goal, we assume that the nodes are divided into / energy classes with 

different energy levels. The lifetime of a node can be divided into time-slots. Each node 

i is associated with an energy level, denoted by ELit and the number of expected alive 

slots is denoted by NTi. Based on these requirements, each node i has a power factor 

PFi = ELi/NTi. We introduce the set of / — 1 thresholds P = {pi,..., pi^\} to categorize 

the classes as follows: 
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ck if PF < Pl 

CL = { d. if px_x <PF<Pl; ie [2,1-1] (3) 

cl[ if PF > pi_-i 

The reputation of node i is denoted by Rz. At the first round of the game the reputation 

is initialized to one. Every node has a sampling budget based on its reputation. This 

is indicated by the percentage of sampling, PSi = ^ . The Q notation represents 

the cost of analysis for a single packet (Joule/packet) and ELi(is is used to express the 

energy needed to run the IDS for one time slot. The cost of analysis of each node can be 

calculated based on energy level. However, we considered energy level, expected lifetime 

and the present PS of node to calculate the cost of analysis. We can extend the cost of 

analysis function to more realistic settings by considering the computational level and cost 

of collecting and analyzing traffic. Our cost-of-analysis function is formulated as follows: 

Cost-of-Analysis Function 

/* Nodes execute this function to calculate their cost*/ 
\Af{ELi<ELids)t\\tn 
2. C{ — oo 

3. else 
—#*—xNTt 

t . cx — pF. — EL. 

5. end if 

According to the above formulation, the nodes have an infinite cost of analysis if its 

remaining energy is less than the energy required to run the IDS for one time slot. This 

means that its remaining energy is too low to run the IDS for an entire time-slot. Otherwise, 

the cost of analysis is calculated through dividing the percentage of sampling by the power 
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factor. The cost of analysis c is proportional to the percentage of sampling and is inversely 

proportional to the power factor. The rationale behind the definition of the function is the 

following. If the nodes have enough PS, they are not willing to loose their energy for 

running the IDS. On the other hand, if PF is larger, then the cost-of-analysis becomes 

smaller since the nodes have higher energy levels. In the rest of this thesis, we will use cost 

and cost-of-analysis interchangeably. 

Table 1: PS calculated by proposed cost function 

PS(Percentage of sampling) 

After 200 sec 
After 600 sec 
After 1000 sec 

Classy 

55% 
45% 
40% 

Class?, 

20% 
24% 
26% 

Class2 
15% 
18% 
20% 

Classy 

10% 
13% 
14% 

We show the effect of our cost function over PS through an example. Table 1 shows 

the PS for 20 nodes divided equally over 4 energy classes where nodes in class 4 have the 

most resources. Table 1 indicates that initially nodes belonging to lower energy level have 

a small budget. As the time goes by, the nodes belonging to lower energy class gains more 

budget while the budget of higher classes decreases. This justifies that our cost function is 

able to balance the energy of the nodes and gives a fair budget to all nodes. 

4.2.2 Reputation System Model 

Before we design the payment, we need to show how the payment in the form of reputation 

can be used to: (1) Motivate nodes to behave normally and (2) punish the misbehaving 

nodes. Moreover, it can be used to determine whom to trust. To motivate the nodes in 
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behaving normally in every election round, we relate the cluster's services to nodes' rep­

utation. This will create a competition environment that motivates the nodes to behave 

normally by saying the truth. To enforce our mechanism, a punishment system is needed to 

prevent nodes from behaving selfishly after the election. Misbehaving nodes are punished 

by decreasing their reputation and consequently are excluded from the cluster services if 

the reputation is less than a predefined threshold. As an extension to our model, we can 

extend our reputation system to include different sources of information such as routing 

and key distribution with different assigned weights. Figure 11 shows the abstract model 

of our reputation system where each node has the following components: 

Punishment j 
System I 

J Reputation ^ 
H System ^ 

Threshold 
Check 

Service System 

Figure 11: Reputation system model 

Monitor: It is used to monitor the behavior of the elected leader. To reduce the overall 

resource consumption, we randomly elect a set of nodes, known as checkers, to perform 

the monitoring process. The selected checkers mirror a small portion of the computation 

done by the leader so the checkers can tell whether the leader is actually carrying out 

its duty. We assume the checkers are cooperative because the amount of computation they 
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conduct for monitoring the leader only amounts to a marginal resource consumption, which 

is dominated by the benefit of receiving intrusion detection service from the leader. The 

catch and punish model is given in Section 4.4. 

Information Exchange: It includes two types of information sharing: (1) The exchange 

of reputation with other nodes in other clusters (i.e., for services purposes). (2) To reduce 

the false positive rate, the checkers will exchange information about the behavior of the 

leader to make decision about the leader's behavior. 

Reputation System: It is defined in the form of a table that contains the ID of other 

nodes and their respective reputation R. The node that has the highest reputation can be 

considered as the most trusted node and is given priority in the cluster's services. Therefore, 

the rational nodes are motivated to increase their reputation value by participating in the 

leader election. 

Threshold Check: It has two main purposes: (1) To verify whether nodes' reputation is 

greater than a predefined threshold. If the result is true then nodes' services are offered ac­

cording to nodes' reputation. (2) To verify whether a leader's behavior exceeds a predefined 

misbehaving threshold. According to the result, the punishment system is called. 

Service System: To motivate the nodes to participate in every election round, the amount 

of detection service provided to each node is based on the node's reputation. Each elected 

leader has a budget for sampling and thus only limited services can be offered. This budget 

is distributed among the nodes according to their reputation. Besides, this reputation can 
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also be used for packet forwarding. Packets of highly reputed nodes should always be 

forwarded. On the other hand, if a source node has an unacceptable low reputation then 

its packet will have less priority. Hence, in every round, nodes will try to increase their 

reputation by becoming a leader in order to increase their services. 

Punishment System: To improve the performance and reduce the false-positive rate of 

checkers in catching and punishing a misbehaving leader, we formulate in Section 4.4 a 

cooperative game-theoretical model to efficiently catch and punish misbehaving leaders 

with low false positive rate. Our catch-and-punish model is made up of k detection-levels, 

representing different levels of selfish behaviors of the leader-IDS. This enables us to better 

respond to the misbehaving leader-IDS depending on which detection-level it belongs to. 

Hence, the percentage of checkers varies with respect to the detection-level. Once the 

detection exceeds a predefined threshold, the leader will be punished by decreasing its 

reputation value. 

4.2.3 CILE Payment Design 

In Cluster Independent Leader Election (CILE), each node must be monitored by a leader 

node that will analyze the packets for other ordinary nodes. Based on the cost of analysis 

vector C, nodes will cooperate to elect a set of leader nodes that will be able to analyze 

the traffic across the whole network and handle the monitoring process. This increases the 

efficiency and balances the resource consumption of an IDS in the network. Our mecha­

nism provides payments to the elected leaders for serving others (i.e., offering the detection 
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service). The payment is based on a per-packet price that depends on the number of votes 

the elected nodes get. The nodes that do not get any vote from others will not receive 

any payment. The payment is in the form of reputations, which are then used to allocate 

the leader's sampling budget for each node. Hence, any node will strive to increase its 

reputation in order to receive more IDS services from its corresponding leader. 

Theorem 1: Using the following design of payment, truth-telling is the dominant strat­

egy: 

Rk = Pk = ^2 vtk(C, i)Bpk, where (4) 

1 
Pk = Ck + v̂  „» ir i\ x C Cj S vtj(c\ck = °°^)-^2ci^2 vti(c> W (5) 

Proof: Given any cost vector C, the total cost of node k can be expressed as follows: 

Tk(C) = ck^vtk(C,i)B (6) 
ieN 

Using the above equation, our Social Choice Function (SCF) can be denoted as: 

s(o = J2c><Y,vtk^ ^B = E T^c) (7) 

fce/v ieN keN 

where the objective function is the sum of all players' valuations [70]. Here valuation 

refers to the total cost incurred by a node. According to [46], the strategy-proof payment 

for minimizing a function should have the following generalized form. 
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Pk = Tk(C) - S(C) + hk(c-k) (8) 

where hk(c~k) is an arbitrary function of c~k. When ck — oo, the node is not elected due 

to no vote being received from its neighbors. Hence, its utility and payment will be zero. 

Thus, 

hk{c-k) = ^Cj^vtj{C\ck = oo,i)B (9) 
jeN ieN 

This means, 

Pk = ckJ2 vtk(C, i)B + ] T cj Y^ vtj(C\ck = oo, i)B -J2ci^l vti(C> ^B ( 1 0 ) 

ieN jeN ieN jeN ieN 

Which is reduced to 

= Y vtk(C, i)B{ck + = „ „ x 
• vtk{c,i) 

where, 

(ElcjJ2^j(C\ck = oo,i)-YtciJ2vtj(C,i)]} (11) 
jeN ieN jeN ieN 

= J2vtk(C,i)BPk (12) 
ieN 

1 
Pk = ck + ^ x 

2^i€Nvtk{C,i) 

E ci 5 3 v*iCc'lcfc = °°>?') - E ci 53 ^ ' ^ ^ (13) 

jeN ieN jeN ieN 
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This concludes the proof since the designed payment is in the generalized form of 

strategy-proof payment. • 

In the above proof, it can be noticed that excluding a node k from election will affect 

only the two-hop away nodes, since new leaders may need to be elected within the two-hop 

neighbors of node k. A detailed example is given in Chapter 5. 

4.2.4 CDLE Payment Design 

In Cluster Dependent Leader Election (CDLE), the whole network is divided into a set of 

clusters where a set of one-hop neighbor nodes forms a cluster. Here, we use the scheme 

of [52] to cluster the nodes into one-hop clusters. Each cluster then independently elects 

a leader among all the nodes to handle the monitoring process based on nodes' analysis-

cost. Our objective is to find the most cost-efficient set of leaders that handle the detection 

process for the whole network. Hence, our social choice function is still as in Equation 1. 

To achieve the desired goal, payments are computed using the VCG mechanism where 

truth-telling is proved to be dominant. Like CILE, our mechanism provides payment to the 

elected node and the payment is based on a per-packet price that depends on the number of 

votes the elected node gets. 

Theorem 2: Using the following design of payment, truth-telling is the dominant strat­

egy: 

Pk = Yl vtk(°> 1)BP^ where (14> 

91 



pk = min ^T Cj{dj,o(dj,8-j)) (15) 

Proof: According to the standard notation in mechanism design [70], the second best 

price is the simplest form of VCG mechanism. Here, Ylje-nk
 cj(@j>°(9j'Q-j)) denotes the 

best cost excluding n^. This is because nodes in the cluster have to select one node from 

the same cluster to be a leader. Unlike CILE where nodes can vote to its one-hop neighbor 

and then clusters are formed. D 

4.3 Security Analysis of the Mechanism 

The main objective of our mechanism is to motivate selfish nodes and enforce them to be­

have normally during and after the election process. Here, we analyze the election mecha­

nism in the presence of selfish and malicious nodes. 

4.3.1 Presence of Selfish Nodes 

A selfish node i will deviate from our mechanism if doing so increases its utility, u». Here 

we consider two type of untruthful revelation, namely, node i might either under-declare 

or over-declare the true value q of its cost of analysis. 

Node i may under-declare its valuation function with a fake value c,(q < Cj). By 

under-declaring, node i pretends that it has a cheaper valuation function than reality. Since 

payments are designed based on VCG, playing by under-declaration will not help the node 

for two reasons. First, suppose the node i indeed has the lowest cost of analysis c,, so it will 
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win the election even by declaring its true value. In this case, reporting a lower value c* will 

not benefit the node because the payment is calculated based on the second best price and 

does not depend on the value declared by node i. Therefore, the utility of node i remains the 

same because it will be the difference between the payment and the real value c,. Second, 

suppose that the node i does not have the cheapest valuation function but tries to win the 

election by revealing a lower value c%. This will help the node i to win the election but it 

will also lead to a negative utility function u, for node i, because the payment it receives 

will be less than the real cost of analysis. That is, the node i will have to work more than 

what it has paid for. 

On the other hand, the node i might over-declare its valuation by revealing a fake Ci(ci > 

Ci). Following such a strategy would never make a player happier in two cases. First, if the 

node i indeed has the cheapest valuation function, then following this strategy may prevent 

the node from being elected, and therefore it will lose the payment. On the other hand, 

if node i still wins, then its utility remains the same since the payment does not depend 

on the value it reports. Second, suppose the real valuation function c, of node i is not the 

lowest, then reporting a higher value will never help the node to win. Last but not least, 

the checkers are able to catch and punish the misbehaving leaders by mirroring a portion 

of its computation from time to time. A caught misbehaving leader will be punished by 

receiving a negative payment. Thus it discourages any elected node from not carrying out 

its responsibility. We can thus conclude that our mechanism is truthful and it guarantees a 

fair election of the most cost-efficient leader. 
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43.2 Presence of Malicious Nodes 

A malicious node can disrupt our election algorithm as follows: 

• First, by claiming a fake low cost in order to be elected as a leader. Once elected, 

the node does not provide IDS services, which eases the job of intruders. To catch 

and punish a misbehaving leader who does not serve others after being elected, we 

propose in Section 4.4 a decentralized catch-and-punish mechanism using random 

checker nodes to monitor the behavior of the leader. Due to the presence of checkers, 

a malicious node has no incentive to become a leader since it will be caught and 

punished by the checkers. After a leader is caught misbehaving, it will be punished 

by receiving a negative reputation and consequently excluded from future services of 

the cluster. 

• Second, by the malicious use of the voting function. Since malicious nodes are ratio­

nal and thus they need to attack without being catched, they have no interest to vote 

to other nodes to be elected as leaders. This is because the number of monitors will 

increase and thus the probability to be catched by the leaders will increase. 

4.4 Catch and Punish Model 

Due to un-control problems such as channel collision, the leader-IDS could not be able to 

monitor and analyze the traffic of some protected nodes for a specific period of time. Hence, 

a checker that is monitoring the behavior of the leader-IDS could report a misbehaving 

event and therefore the leader-IDS is punished and a new leader is elected. This problem 
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motivated us to propose a cooperative game theoretical model that is able to efficiently 

catch and punish a misbehaving leader-IDS with less false positive rate. We propose the 

concept of detection-levels to be DL = {dl\,..., dlk} which enables us to respond better 

to misbehaving leader-IDS depending on which detection-level it belongs to. Hence, the 

percentage of checkers will vary with respect to the detection-level. Our catch and punish 

model is made up of k detection-levels, each level represents the severe behavior of the 

leader-IDS. We introduce the set of k — 1 thresholds T to categorize the detection-levels 

where T = {U,..., t^-i}- Now, we introduce the aggregate function to be: 

F(n) = J2RiXf{i) (16) 

where Ri is the reputation of checker i, n is the set of checkers and f(i) is the catch function 

that takes a value between 0 and 5 according to the severe behavior of the leader-IDS. To 

decentralize the catch decision, F(n) will be calculated by all the checkers after the secure 

exchange of f(i). F(n) sums up the catch-function of each checker i, in a cluster n, while 

considering the reputation of each checker. Now, we categorize the detection-levels as 

follows: 

dh if F(n) < *! 

DL = { dU if U-i < F(n) <U; ie [2, k - 1] (17> 

dlk if F(n) > tfe_i 

Categorizing the misbehavior of leader-IDS into different levels help in catching the 
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misbehaving leader-IDS with less false positive rate and reduce the performance overhead 

of the checkers. We can use non-cooperative game theory as in Chapter 5 in Section 5.5 

to calculate the values of thresholds T and detection-levels DL in order to have better 

results with respect to catch and punish. Here, cooperative game theory is used to formally 

illustrate the problem by analyzing the contribution of each checker on the decision. 

4.4.1 Analyzing the Contribution of Checkers 

The design and analysis of our proposed model is done using cooperative game theory 

[29]. The I checkers will be modeled as a set N of I players in N-person game with N = 

{N\,..., Ni] [8]. We introduce a coalition in cooperative game theory to be: 

A C J V and Vx € A. 

In other words, we define a coalition to be a set of checkers, where each checker re­

ports the behavior of elected leader-IDS. Therefore, each checker in A reports a risk in the 

cluster. Let 5 be the number of checkers in a coalition in a cluster. We use the aggregate 

function over A, 

Y2 R*x f(x) 
x€ A 

to assign the behavior of leader-IDS to its equivalent detection-level dlj. 

Assigning an anticipated marginal contribution to each player (checker) in the game 

with respect to a uniform distribution over the set of all permutations on the set of players 

will be presented by Shapley value [29]. To find the contribution of checker iV, in coalition 

A, we consider all the different permutations for the checkers, n A , in the coalition. Then 
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we calculate the difference between the function including all checkers in the permutation 

before checker Niy including Nit and the function of all checkers prior to Nit excluding TV*. 

We define P^ to be the set of checkers before the node Ni in the permutation ix e JIA-

Then taking the average of all these differences, we get the marginal contribution of checker 

Ni in coalition A. In other words, the contribution would be the following: 

^ A ) = \ E V ^ U M ) - V(P?<) (18) 
' 7renA 

We define the value function for the coalition game as follows: 

1 ifF(N)>U 
V(N) J 

0 Otherwise 

The Shapley value of checker Ni indicates the relative contribution for a given threshold 

£j. Therefore, we can tune the values of the thresholds either by using statistical data in 

order to reduce the false positives or by following the same concept in Section 5.5. In 

each detection-level, we have a different response varies from adding more checkers to 

dropping the leader-IDS and electing new one. This illustrates the importance of analyzing 

the relative contribution of a checker to decide the detection-level. The following example 

illustrates our model. 
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Illustrative Example 

Consider three checkers in a cluster of 10 nodes. A checker noticed that the elected leader-

IDS is not doing the job of detection. Note that the leader could misbehave either due to a 

channel collision or due to selfish/malicious behavior. To efficiently catch and punish the 

misbehavior leader-IDS and reduce false positive, a cooperative decision is made among 

the checkers in the cluster. 

As an example, let us consider that we have four detection-levels DL — {dli1dl2l dl3, dU}. 

Knowing that dl\ indicates normal behavior, dl2 and dl$ mean more checkers have to be 

added to monitor the behavior of node while dl4 means a new leader-IDS has to be elected. 

The threshold set T = {2,4,6}, the detection-levels DL are classified as follows: dl\ < 2, 

2 <dl2 < 4,4 < dl3 < 6, dl4 > 6, the reputation of nodes Rt = 0.5, R2 = 0.8, R3 = 0.2„ 

and / ( l ) = 3, / (2) = 4, / (3) = 3. Using equation 18, we calculate the marginal contribu­

tion of each checker on detection level dl3, which is: $N1 = 0.5, 4>N2 = 0.5 and </>JV3 = 0. 

This means that more checkers have to be added to monitor the behavior of the leader where 

node A^ contribution has no effect on the cooperative decision at dl3 since its reputation is 

low. This will avoid the malicious use of the punishment system. 

4.5 Summary 

In this chapter, we presented our leader election mechanism for truthfully electing the 

leader nodes. We formulated our model using the standard mechanism design notations. 

To achieve the design goal, we designed the cost of analysis function which is the private 
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information of the nodes. To reveal the private information truthfully, we provided payment 

in the form of reputation. We described how this payment can be used to motivate nodes 

and to build a trusted environment. We also designed the payments for the two models 

which are strategy-proof. Last but not least, we analyzed our mechanism against selfish 

and malicious nodes. Finally, we presented the catch and punish model based on cooper­

ative game theory where the contribution of each checker on the final decision is derived. 

This model reduced the false positive and avoid the malicious use of such a model. In the 

following chapter, we present the leader election algorithms to implement our mechanism. 

Moreover, we express our moderate to robust model followed by simulation results. 
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Chapter 5 

Leader Election Algorithms and Robust 

IDS Model 

To use the election mechanism given in Chapter 4, we propose a leader-election algorithm 

that helps to elect the most cost-efficient leaders with less performance overhead. We de­

vise all the needed messages to establish the election mechanism taking into consideration 

cheating and presence of malicious nodes. Moreover, we consider the addition and removal 

of nodes to/from the network due to mobility reasons. Additionally, the performance over­

head is considered during the design of the given algorithm where computation, communi­

cation and storage overhead are derived. 

Relying on leaders for providing IDS service by examining a portion of all nodes' 

packets is suitable whenever the probability of attack is low. This is usually known as 

a moderate intrusion detection model. However, a robust model where the victim nodes 

launch their own IDSs will be more desirable when the threat level is high. Running the 
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moderate model in a non-secure environment raises the need for more nodes to launch their 

IDS according to attack's severity. Thus, more nodes should launch their own IDS accord­

ing to node's security risk. This will help to prolong the lifetime of nodes and increase 

nodes' security. The question that we address here is: What is the optimal threshold value 

needed to inform the victim node to launch its own IDS in order to minimize both resource 

consumption and security risk? We tackle this important issue in this chapter. 

To achieve this goal, we formalize the tradeoff between security and IDS resource con­

sumption as a non-cooperative game between leader-IDS and attacker with incomplete 

information about the attacker. This game guides the leader-IDS and intruder to derive 

their optimal strategy against each other. For the leader-IDS, the game solution derives the 

threshold for informing the victim node to launch its own IDS once the probability of attack 

exceeds the derived threshold. The game will be repeated such that in every election round 

the leader-IDS will be monitoring via sampling the protected node's incoming traffic and 

deciding according to the game solution whether to inform the victim node to launch its 

IDS or not. On the other hand, the attacker's strategy will be to attack once the probability 

of stepping into the robust mode (that is, the victim node will be running its own IDS) is 

low. 

Finally, we evaluate the performance of our election model with respect to random and 

connectivity models. We simulate the schemes using Network Simulator 2 (NS2) [60] and 

MATLAB. Moreover, empirical results indicate that our moderate to robust scheme can 

effectively reduce the resource consumption of IDSs without sacrificing security. 
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This chapter is organized as follows: Section 5.1 presents the objectives and assump­

tions. Section 5.2 devises the election algorithm needed to handle the election process 

taking into consideration the addition and removal of nodes. Section 5.3 provides the per­

formance analysis of our algorithm. Section 5.4 illustrates an informal analysis of the 

correctness and security properties of the algorithm. Section 5.5 provides the moderate to 

robust game model with an illustrative example. Section 5.6 presents the empirical results. 

Finally, Section 5.7 summarizes the chapter. 

5.1 Objectives and Assumptions 

To design the leader election algorithm, the following requirements are needed: (1) To 

protect all the nodes in a network, every node should be monitored by a leader. (2) To 

balance the resource consumption of IDS service, the overall cost of analysis for protecting 

the whole network is minimized. In other words, every node has to be affiliated with 

the most cost efficient leader among its neighbors. Our algorithm is executed in each 

node taking into consideration the following assumptions about the nodes and the network 

architecture: 

• Every node knows its (2-hop) neighbors, which is reasonable since nodes usually 

maintain a table about their neighbors for routing purposes [47,99], 

• Loosely synchronized clocks are available between nodes. 

• Each node has a key (public, private) pair for establishing a secure communication 

between nodes. 
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• Each node is aware of the presence of a new node or removal of a node. 

For secure communication, we can use a combination of TESLA [73] and public key 

infrastructure. With the help of TESLA, loosely synchronized clocks can be available. 

Nodes can use public key infrastructure during election and TESLA in other cases. Recent 

investigations showed that computationally limited mobile nodes can also perform public 

key operations [34]. 

5.2 Leader Election 

To start a new election, the election algorithm uses four types of messages. Hello, used 

by every node to initiate the election process; Begin-Election, used to announce the cost 

of a node; Vote, sent by every node to elect a leader; Acknowledge, sent by the leader to 

broadcast its payment, and also as a confirmation of its leadership. Note that the payment 

is calculated according to network settings (i.e., CILE or CDLE). For describing the algo­

rithm, we use the following notation: 

• service-table(k): The list of all ordinary nodes, those voted for the leader node k. 

• reputation-table(k): The reputation table of node k. Each node keeps the record of 

reputation of all other nodes. Initially, the reputation of all the nodes is initialized to 

one. 

• neighbors(k): The set of node fc's neighbors. 
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• leadernode(k): The ID of node k's leader. If node k is running its own IDS then the 

variable contains k. 

• leader(k): A boolean variable that sets to TRUE if node k is a leader. 

5.2.1 New Election 

Initially, each node k starts the election procedure by broadcasting a Hello message to all 

the nodes that are one hop from node k and starts a timer T\. This message contains the 

hash value of the node's cost of analysis and its unique identifier (ID). This message is 

needed to avoid cheating where further analysis is conducted in Section 5.4.2. 

Algorithm 1 (Executed by every node) 
/* On receiving Hello, all nodes reply with their cost */ 
1. if (received Hello from all neighbors) then 
2. Send Begin-Election (ID^, costk); 
3. else if (neighbor s{k)-0) then 
4. Launch IDS. 
5. end if 

On expiration of Ti, each node k checks whether it has received all the hash values from 

its neighbors. Nodes from whom the Hello message have not received are excluded from 

the election. On receiving the Hello from all neighbors, each node sends Begin-Election as 

in Algorithm 1, which contains the cost of analysis of the node and then starts timer T2. If 

node k is the only node in the network or it does not have any neighbors then it launches 

its own IDS and terminates the algorithm. 

On expiration of T2, the node k compares the hash value of Hello to the value received 

by the Begin-Election to verify the cost of analysis for all the nodes. Then node k calculates 
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Algorithm 2 (Executed by every node) 
/* Each node votes for one node among the neighbors */ 
1. if (V n e neighbor (k), 3 i e n : C{ < cn) then 
2. sendVote(IDk, IDi,costj^i); 
3. leadernode(k):- i; 
5. end if 

the least-cost value among its neighbors and sends Vote for node i as in Algorithm 2. The 

Vote message contains the IDk of the source node, the IDi of the proposed leader and 

second least cost among the neighbors of the source node costj^. Then node k sets node 

i as its leader in order to update later on its reputation. Note that the second least cost of 

analysis is needed by the leader node to calculate the payment. If node k has the least cost 

among all its neighbors then it votes for itself and starts timer T3. 

Algorithm 3 (Executed by Elected leader node) 
/* Send Acknowledge message to the neighbor nodes */ 
1. Leader{i) :=TRUE; 
2. Compute Payment, P*; 
J. UpCMllGserviCe—tabled)> 

4. UpddterepUtation—tabled)> 

5. Acknowledge = Pj + all the votes; 
6. Send Acknowledge^); 
7. Launch IDS. 

On expiration of T3, the elected node i calculates its payment using equation 4 and 

sends an Acknowledge message to all the serving nodes as in Algorithm 3. The Acknowl­

edge message contains the payment and all the votes the leader received. The leader then 

launches its IDS. Each ordinary node verifies the payment and updates its reputation table 

according to the payment. All the messages are signed by the respective source nodes to 

avoid any kind of cheating. At the end of the election, nodes are divided into two types: 

Leader and ordinary nodes. Leader nodes run the IDS for inspecting packets, during an 
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interval TELECT, based on the relative reputations of the ordinary nodes. We enforce re­

election every period TELECT since it is unfair and unsafe for one node to be a leader 

forever. Even if the topology remains same after TELECT time, all the nodes go back to 

initial stage and elect a new leader according to the above algorithms. 

Example: To illustrate the election scheme in CILE, Figure 12 shows a MANET with 

ten nodes. Since our model is repeatable, we present the election process at the 10"1 round. 

The reputation at the 9th round is given in the first row of Table 2. 

Table 2: Leader-IDS election example 

Nodes 

Reputation 9th 

Cost of Analysis 
Reputation 10"1 

iVi 
120 
3 
165 

N2 

140 
5 
140 

N3 

100 
4 
195 

N4 

80 
12 
80 

N5 

130 
7 
170 

N6 

60 
8 
60 

N7 

90 
6 
90 

N8 

160 
4 
160 

N9 

10 
2 
110 

N10 

110 
11 
110 

Figure 12: MANET after leader election 
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To elect a new leader in the 10 round, every node sends Hello and then a Begin-

Election message according to Algorithm 1. Nodes reveal their cost of analysis to the 

mechanism based on their type {Selfish or Normal). The corresponding cost of analysis is 

given in the second row of Table 2. Then, node 7, 8, 9 and 10 vote for node 9 to be the 

leader as it has the least cost of analysis. Similarly, node 6 votes for node 5; node 3, 4 and 

5 vote for node 3; node 1 and 2 vote for node 1. After getting the vote, leader node 1, 3, 

5 and 9 will calculate their payment using equation 4. For node 9, the payment per packet 

is p9 = 2 + | ( 8 x 1 + 4 x 3 — 2 x 4 ) = 5 because if node 9's cost is oo then node 10 

would have voted for node 6 and node 7, 8 and 9 would have voted for node 8. Hence the 

total cost would have been 20 instead of 8. Therefore, the total payment of node 9 is P 9 = 

Y^ v9BpQ = 4 x 5 x 5 = 100, where B= 5 packets/sec is the sampling budget. After election, 

leader N9 distributes the total IDS sampling budget over the protected nodes JV7, iV8, JV9 

and Nw, according to their reputation, as follows: S = {S7 = ^f, S8 = ^ ^ , S9 = 

HJ^o, 51 0 = i ^ 2 } . Similarly, the payment for elected leaders Nlt N3 and N5 will be 

45, 95 and 40 respectively. Finally, the leader nodes will send Acknowledge message to all 

neighbors and run their IDS. Upon receiving the Acknowledge, all the neighboring nodes 

increase the reputation of the elected leaders, as shown in the third row of Table 2. 

5.2.2 Adding New Nodes 

When a new node is added to the network, it either launches its own IDS or becomes 

an ordinary node of any leader node. To include a new node to the IDS service, four 

messages are needed: Hello, Status, Join and Acknowledge. Hello is sent by a new node n 
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to announce its presence in the network. This Hello message is similar to the one presented 

in the previous section. Upon receiving the Hello, all the neighbors of the new node, reply 

with a Status message. If the neighbor node k is a leader node, then the Status message 

contains its cost. On the other hand, if node k is an ordinary node, the Status message 

contains the ID of its leader node as in Algorithm 4. 

Algorithm 4 (Executed by neighboring nodes) 
/* The neighboring nodes send 'Status' to new node */ 
1. if (leader{k) = TRUE) then 
2. Status := Costk', 
3. else 
4. Status := leadernode(k); 
5. end if; 
6. send Status(k,n); 

Figure 13: MANET after adding a new node 

On receiving the Status messages from the neighbors, the new node n sends Join to 

the leader node. If two of its neighbors are leaders with the same cost, then the new node 

can send Join to any of the nodes depending on its physical location (i.e; signal strength). 
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We assume that an ordinary node have no interest to be a leader during the service time 

since it will not receive any payment from others. The algorithm does not make the new 

node as a leader for others before the new election (i.e., to reduce performance overhead). 

Detailed analysis is presented in Section 5.4. If the new node has the least cost, it can either 

send Join to the leader node or launches its own IDS. After getting the Join message, the 

leader node adds the new node to its service list and divides its budget according to nodes' 

reputation. We do not give any new payment to the leader as the leader node has the same 

budget. A problem can arise from keeping the same sampling budget for every added node. 

It causes the voting nodes to have less IDS service compared to what they have payed for at 

the election time. Thus, less sampling is offered to the voting nodes, which will ease the job 

of an attacker. An attacker can take an advantage from this technique only if the network is 

static. On the other hand, in a dynamic network, which is the case of MANET, nodes are 

dynamically added and removed from the network due to mobility. As a result, the average 

value of the budget will remain the same. Thus, the security of nodes will not be effected. 

Finally, the leader node sends an Acknowledge message, that includes its payment, to the 

new node so that the new node can update its reputation table. 

Example: Let us consider a new node that will be added to the network in Figure 12. The 

resulting network after adding the new node is shown in Figure 13. The new node 11 is 

connected with nodes 3, 5 and 6. The cost of node 11 is 6. Node 11 sends a Hello message 

to all its neighbors. All the nodes reply with the Status message. Node 11 sends Join to 

leader node 3 as it has the least cost. Finally, leader node 3 adds node 11 in its serving list. 

109 



5.2.3 Removing nodes 

When a node is disconnected from the network due to many reasons; such as, mobility or 

battery depletion, then the neighbor nodes have to reconfigure the network. 

Algorithm 5 (Executed by neighboring nodes) 
/* The neighboring nodes reconfigure the network and declare new */ 
/* election if necessary*/ 
1. if (leadernode(k) - n) then 
2. leadernode(k):= NULL; 
J. UyClllZ£repUt ation \ ™v> 

4. send Begin — Election as in Algorithm 1; 
5. end if; 
6. if (leader{k) = TRUE) then 
7. if (n e service(k)) then 
o. upcidte serviceQ, 
9. end if; 
10. end if; 

We assume that whenever a node dies, its neighbors are aware of it. At first a Dead(n) 

message is circulated to all neighbors to confirm the removal of node n. On receiving the 

Dead(n) message, the neighbor node k checks whether node n is its leader node or not. 

If node n is the leader node of node k, then node k announce a new election and updates 

its reputation table. On the other hand, if node n is an ordinary node then its leader node 

update its serving list. 

Example: Here, we consider the removal either of an ordinary node or a leader node. 

Considering the network in Figure 12, let us assume that node 7 has left the network or 

died. Immediately, nodes 8 and 9 will be aware of the failure. On receiving the Dead(7) 

message, nodes 8 and 9 check whether node 7 is their leader or it's being served by them. 

As node 7 is an ordinary node, node 8 does nothing. In case of node 9, it updates its serving 
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Figure 14: MANET after adjustment 

list as in Algorithm 4. Assume now that the links of node 9 have been broken as shown in 

Figure 14. Then the neighboring nodes 7, 8 and 10 will discover that node 9 is their leader. 

Immediately, they will go for a new election, and node 8 will become the new leader. In 

the case of node 10, it will launch its own IDS since it has no neighboring leader node. It 

cannot even Join node 6, because node 6 is an ordinary node and it is served by node 5. It 

has to wait for the expiration of TELECT for the new election. 

5.3 Performance Analysis 

In this section, we analyze the performance overhead of our proposed leader algorithm. In 

summary, our algorithm has four steps. In the first 3 steps, all the nodes broadcast Hello, 

Begin-Election and Vote messages consecutively. In the last step, only the leader node 

sends an Acknowledge message to others. 
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5.3.1 Computation Overhead 

Each node i signs its messages sent in the first 3 steps. Also, each node verifies the mes­

sages it received in these steps. In the 4th step, the leader node signs the Acknowledge mes­

sage and others verify. Hence each normal node signs 3 messages and verifies 3\Ngt\ + 1 

messages where Ngi is the number of neighboring nodes. On the other hand, the leader 

node signs 4 messages and verifies 3\Ng{\ messages. Note that each node must find the 

least cost node which requires 0(log(Ngi)). Therefore, each node approximately per­

forms 0(Ngi) verifications, 0(1) signatures and 0(log(Ngi)) to calculate the least cost 

node. Thus the computation overhead for each node is 0{Ngi) + 0(1) + 0(log(Ngi)) 

« 0(Ngi). Since our algorithm involves more verification than signing, nodes can use the 

public key cryptosystem of [34] to verify a signature in 0.43s. Since leader election will 

take place after a certain interval, this computational overhead is tolerable. 

5.3.2 Communication Overhead 

Each node i broadcasts one message in the first 3 steps and only the leader node broadcasts 

a final Acknowledge message in the 4th step. Hence, the total communication overhead of 

our election algorithm is 3|A^| + 1 « O(iVj), where |A^| is the number of nodes in the 

network. 
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5.3.3 Storage Overhead 

According to the algorithm, each node maintains a reputation-table, neighbors list and two 

variables: Leadernode and leader (see section 5.2). The leader node keeps an extra service-

table. Hence, each normal node needs |iVj| + \Ngt\ + 2 storage and the leader node needs 

| JVJI + |7V<7t-| + \Vi\ + 2. Knowing that | JVj| is the number of nodes in the network, \Vi\ is the 

number of votes the leader node received where \Ni\ > [Ng^ > \Vi\. Therefore, the total 

storage for each node is in the order of O(JVj). 

For CDLE, the network has to be initially clustered. Hence there is an extra overhead 

for clustering. A comparison of different clustering algorithms is presented in [52]. 

5.4 Leader Election Algorithm Analysis 

In this section, we provide an analysis of our algorithm where we analyze its characteristics 

and security properties. 

5.4.1 Algorithmic Analysis 

Here, we analyze our leader election algorithm to verify whether it satisfies our leader 

mechanism characteristics or not. 

Proposition 1: Our algorithm confirms that each node is monitored by a leader node. 

Proof: It is easily noticeable that after executing the election algorithm, each node is 

assigned a role. According to Algorithm 2, a node is either a leader or ordinary within a 

finite time. This can be proved from Algorithm 2. After receiving Hello and Begin-Election 
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messages from all the neighbor nodes within (T\ + T2) time, nodes are sorted according to 

their cost of analysis. By executing Algorithm 2, each node sets its variable leadernode(k) 

to k if node k has the least cost of analysis. Nodes cannot do anything but to send the 

Vote message to the deserving candidate. If a node does not have any neighbor, it becomes 

the leader node according to Algorithm 1. Besides, if a node loses its connection with the 

leader due to change in the network topology, it can always get associated with another 

leader through Algorithms 4 and 5. Thus, in all cases a node is either a leader or ordinary 

(monitored by a leader node). • 

Proposition 2: The overall cost of analysis for protecting the whole network is mini­

mized. 

Proof: According to above proposition, each node is assigned a role and the role is 

decided according to the cost of analysis. Each node sends a Vote message to the node 

which has the least cost of analysis. Thus, our election scheme minimizes the SCF func­

tion depicted in equation 1 through assigning each node to the most cost-efficient leader. 

Since each node can affect only two-hop away nodes, the locally optimal election results 

are sufficient to yield the globally optimal result (that is, the minimized SCF function). 

One exception can occur when a node is added after the election and the new node has the 

minimum cost of analysis. We do not elect the new node as a leader since it will cause 

communication overhead (frequent leader change) in the network and could be used ma­

liciously to disrupt the IDS service. The new node has to wait for the new election round 

after TELECT to participate in the election process. • 
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5.4.2 Security Properties Analysis 

Our proposed algorithm itself has to be secure along with its algorithmic correctness, which 

we believe it is hard to achieve especially in a distributed environment. In the following, 

we discuss some of the security properties of our algorithm. 

Proposition 3: The algorithm provides basic security requirements. 

Proof: Since we assume the presence of TESLA and PKI protocols, all the messages 

are signed by the source node and verified by others. This provides the integrity of every 

message. Unauthorized nodes cannot do any modification of the messages. The recipient 

nodes can verify the signature of the sender node. Since the private key belongs only to 

the sender node, thus source authentication is also achieved by protecting the message 

integrity. Besides, each message includes the time. Since loose synchronized clocks are 

available between the nodes, the recipient nodes can verify whether the message is replied 

or not. Thus our algorithm is also safeguarded against reply attack. • 

Proposition 4: The algorithm is cheat proof. 

Proof: We claim that our algorithm is cheat-proof because a node, which does not have 

the least cost of analysis among its neighbors cannot be elected as a leader. To prevent 

a node from revealing its cost after observing others, we design our cost revaluation pro­

cedure in two rounds: First, each node computes the hash of its cost where all the nodes 

use the same hash function. Then, nodes broadcast the hash value using the Hello mes­

sage. Second, upon receiving the hash values from all the nodes, each node reveals its cost 

of analysis. Since the hash values are already available, every node verifies the cost of 

analysis of the other nodes. In this way, we are able to prevent cheating by declining the 
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revelation of the announced cost of analysis value or changing it later on. • 

5.5 Moderate to Robust Game Model 

Leader election model is considered as a moderate intrusion detection since it only monitors 

and analyzes a portion of all events occurring in the network. This model can be used 

whenever the threat of attack is low. It will help to reduce the overall resource consumption 

of IDSs and communication overhead. Once the probability of attack against a node is 

high, the victim node should launch its own IDS to detect and thwart intrusions. Therefore, 

the detection steps into the robust mode. A mechanism is needed to decide when to go 

from moderate mode to robust mode. To formally address this issue, we formulate a game 

with two players: Leader-IDS and intruder. The objective of the intruder is to attack a node 

without being detected, where that of the leader-IDS is to detect such intruders. In order to 

detect an intrusion, the leader-IDS samples the incoming packets for a target node based on 

a sampling budget determined through that target node's reputation. Once the probability 

of attack goes beyond a threshold, the leader-IDS will notify the victim node to launch its 

own IDS. Our goal is to find the optimal threshold value needed to notify the victim node. 

5.5.1 Game Definition 

We model the game as nonzero-sum noncooperative game with incomplete information 

about the players where each player has a private information about his/her preferences. In 

our case, the leader-IDS type is known to all the players while the sender type is selected 
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Table 3: Moderate to robust game 
Strategy 
Attack 
Not-Attack 

Robust 
ErV-Ca, ErV-— OT-

0 , - C r 

Moderate 
EmV — Ca, EmV- ~ (^m 

0, —Cm 

from the type set 0 = {Malicious (M), Normal (N)}. Knowing that the sender type is a 

private information. Bayesian Equilibrium [95] dictates that sender's action depends on 

his/her type 9. By observing the behavior of the sender at time tk, the leader-IDS can 

calculate the posterior belief evaluation function /j,tk+l{0i\ai) using the following Bayes 

rule: 

(Hk+i(0i\ai) = 
E*i€e IMM PtMQi) 

(19) 

where /%(#*) > 0 and Ptk(ai\9i) is the probability that strategy a, is observed at this stage 

of the game given the type 6 of the node i. It is computed as follows: 

Ptk{Attack\6i = M) = EmxO + Fm{\ - O) 

Ptk(Attack\di = N) = Fm 

where O is the observed behavior, which is determined by the IDS monitor. Fm is the false 

rate generated by the leader-IDS due to sampling and Em is the expected detection rate via 

sampling in moderate mode. 

We define the intruder's pure strategy as Ai = {Attack, Not — Attack}. On the other 

hand, leader-IDS strategy is selected from the strategy space AJOS = {Robust, Moderate}. 
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By solving this game using pure strategy, there is no Nash equilibrium. Thus, mixed strat­

egy is used to solve the game where q is the probability to run in robust mode and p is the 

probability to attack by the attacker. In Table 3, the game is defined where the utility func­

tion of the IDS by playing the Robust strategy while the attacker plays the Attack strategy 

is defined as Er V — Cr. It represents the payoff of protecting the monitored node, which 

values V, from being compromised by the attacker, where ET V » Cr. On the other 

hand, the payoff of the attacker if the intrusion is not detected is defined as Er V — Ca. It 

is considered as the gain of the attacker for compromising the victim node. Additionally, 

we define Em V — Cm as the payoff of IDS, if strategy Moderate is played while the at­

tacker's strategy remains unchanged. Conversely, the payoff of the attacker if the intrusion 

is not detected is defined as Em V — Ca. Now, if the attacker plays Not-Attack strategy and 

the IDS strategy is Robust then the losses of the IDS is CT while the attacker gains/losses 

nothing. Moreover, the payoff of the attacker with the same strategy and IDS strategy is 

Moderate is 0 while the losses of the IDS is defined as Cm which is the cost of running the 

IDS in moderate mode. Where, 

• Er is the expected probability of not detecting an intrusion in the robust mode while 

ET is the expected probability of detecting an intrusion in the robust mode. Note 

that Er = Probability (Eieader \J Evictim), where Eieader and Evictim are the expected 

probability of detection by leader-I-DS and monitored node (victim) respectively. 

We define the expected probability of detection as E= YlieL xiVi' w n e r e x\ is the 

probability of detecting an intrusion via sampling and it is equal to si/ft. On the 

other hand, yt is the probability of selecting link I by an intruder to attack a victim 
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node. Knowing that s/ is the sampling rate at victim's incoming link I and /; is the 

flow at link I where L is the set of incoming links. We consider the link I as the route 

link that connect the victim node with other nodes. 

• Em = Eieader is the expected detection in the moderate mode, where only the leader-

IDS is running the IDS to detect intrusions. On the other hand, Em is the expected 

of not detecting an intrusion in the moderate mode. 

• Cr is the cost of running the IDS in robust mode. We define the cost as the aggre­

gation of the cost of monitoring by the leader Cieader and cost of monitoring by the 

Victim Cvictim-

• Cm is the cost of running the IDS in moderate mode which is equal to Cieader-

• Ca is the cost of attack by the intruder. 

• V is the value of the protected victim node (asset). The value of V could vary from 

one node to another according to its role in the cluster. For example, gateway nodes 

are valued more than regular nodes. 

5.5.2 Game solution 

To solve the game and find the optimal values of p and q, the IDS and attacker compute 

their corresponding utility functions followed by the first derivative of the functions. From 

Table 3, the IDS utility function UIDS is defined as follows: 

UIDS = [qp(Er V-CT)+ p(l - q){Em V-Cm)- q{\ - p)CT 
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- ( 1 - q)(l - p)CmW = M)- [qCr + (1 - q)Cm](l - fi{6 = M)) 

The main objective of the IDS is to maximize this utility function by choosing for a 

fixed p*, a q* strategy that maximizes the probability of protecting the victim node and 

leads to equilibrium where the following holds: 

Uws(p\q*)>Uws(p\q) 

To achieve this goal, the IDS will calculate the optimal value of p* by finding the first 

derivative with respect to q* and setting it to zero. This will result to the following: p* = 

Cr-Cm a n ( j c a n b e reduced to: fig*'™ . 
/J V \&r — £jm) H V ^victim 

The value of p* is used by the leader-IDS to decide whether to inform the victim node 

to launch its own IDS or not. Knowing that the leader-JDS' is monitoring and analyzing 

traffic via sampling to detect an intrusion launched by an external attacker i. The IDS is 

computing the belief \i, as in Equation 19, of each node to check whether it is behaving 

maliciously or normally. If the sender type is malicious and decided to attack by launching 

an intrusion the expected probability to be detected by leader-ZDS is E\ea^T. Since the 

intrusion could be launched iteratively and could be missed in the coming iterations, the 

IDS will decide to inform the victim node to launch its own IDS if the probability of attack 

is greater than ?,vV?m • 

On the other hand, the utility function Ua of the attacker is defined as follows: 

Ua = qp(Er V-Ca)+ p{\ - q)(EZ V - C„) 
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The main objective of the attacker is to maximize this utility function by choosing for 

a fixed q*, a p* that maximizes the probability of compromising the victim node and leads 

to equilibrium where the following holds: 

Ua((p*\9 = M),q*)>Ua{(p\8 = M),q*) 

To maximize the utility function, it is sufficient to set the first derivative with respect to 

p* to zero which will be equal to: q* = ,^"~fm,^. This can be reduced to E'^r v-c», 
r -a i [Er-Em) V Evictim V 

From the solution of the game, the attacker best strategy is to attack once the probability 

of running the IDS by the victim (robust mode) is less than g ' e°d e r v~,?a. To achieve this, 
^victim v 

the attacker will observe the behavior of the IDS at time tk to determine whether to attack 

or not at time 4+1 by comparing its estimated observation with the derived threshold. 

5.5.3 Illustrative Example 

To illustrate the election scheme and the process for gradually adding more monitors, we 

consider a MANET of 10 nodes, as shown in Figure 15, with 3 external nodes with un­

known identities. Since our model is repeatable, we present the election process at the \Qih 

round. The reputation at the 9th round is given in the first row of Table 4. 

Table 4: Leader-IDS election example 

Nodes 
Reputation 9th 

Cost of Analysis 
Reputation 10th 

JVi 
120 
3 
165 

N2 

140 
5 
140 

W3 

100 
4 
195 

N4 

80 
12 
80 

N5 

130 
7 
170 

Ne 

60 
8 
60 

N7 

90 
6 
90 

Ns 

160 
4 
160 

iV9 

10 
2 
110 

Nw 

110 
11 
110 
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Figure 15: MANET after leader election 

To elect a new leader in the 10 round, nodes reveal their cost-of-analysis to the mech­

anism based on their type (Selfish or Normal). The corresponding cost-of-analysis is given 

in the second row of Table 4. Then, node 7, 8, 9 and 10 vote for node 9 to be the leader 

as it has the least cost of analysis. Similarly, node 6 votes for node 5; node 3, 4 and 5 vote 

for node 3; node 1 and 2 vote for node 1. After getting the vote, leader node 1, 3, 5 and 9 

will calculate their payment using our payment function. The payment for elected leaders 

Ni, N3, N5 and N9 will be 45, 95, 40 and 100 respectively. All the neighboring nodes 

increase the reputation of the elected leaders, as shown in the third row of Table 4. After 

election, leaders distribute the IDS sampling budget over the protected nodes according to 

their reputation. For example, leader N9 distributes its total budget B over Nj, JV8, N9 and 

N10 as follows: S = {S7 = ^ , 5 8 = ^ , S 9 = l-^,Sw = ± § ^ } . Here, we 

elected a set of leader-IDS and divided the network into a collection of protected clusters. 
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Due to leader limited sampling budget and according to nodes' security threat level, moni­

tored nodes (victim) that are expected to receive an attack in the coming time slots should 

be notified to launch their own IDS. Thus, nodes' resources are consumed according to the 

security needs. 

After election is completed, nodes are in moderate intrusion detection mode where 

the leader is sampling and analyzing the packets. To demonstrate how nodes are notified 

according to the security needs, we show the interaction between leader-IDS Na and the 

3 external nodes. As an example, we select node N7 as the target node where an intruder 

is targeting to attack. Figure 15, describes an attack scenario where an intrusion could be 

directed to node N7 either from node Nn, Nu or A 1̂3. Hence, the leader-IDS will use 

the belief function of Equation 19 to calculate the belief of each external node using the 

prior observed actions. For example, we assume that the leader's belief regarding each 

external node connected to N7 is \i = {fin = 0.7,/x12 = 0.2, /ii3 = 0.1}. According 

to node's belief, the IDS will compute the threshold that determines the behavior of the 

external nodes (i.e., attack or not). If the probability of attack is greater than the computed 

threshold then the leader Ng should inform the victim node N7 to launch its own IDS. 

For example, if the threshold of attack by node Nn is 0.18, assuming that CViCum = 10, 

V7 = 100 and EvictiTn = 0.83, then the victim node will more frequently launch its IDS. 

This is because the value of the node, with respect to the cluster, is much more than the 

cost of running the IDS. Hence, launching the IDS by the victim is affected by the ratio of 

the monitoring cost to the value of the node (gateway, normal, etc.). 
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5.6 Simulation Results 

In this section, we evaluate the performance of our model with respect to random and 

connectivity models. Also, we evaluate the performance of our moderate to robust model 

with respect to resource consumption and security. We simulate the schemes using Network 

Simulator 2 (NS2) [60] and MATLAB. 

5.6.1 CILE Simulation Results 

The main objective of our simulation results is to study the effect of node selection for IDS 

on the life of all nodes. To show the negative impact of selfish node, we conducted two 

experiments: Time taken for the first node to die and percentage of packet analysis. Besides, 

we use the following metrics to evaluate our algorithm against others: Percentage of alive 

nodes, energy level of nodes, percentage of leader node, average cluster size, maximum 

cluster size and number of single node clusters. Our experiments have been conducted in 

both static and dynamic networks. For a static network, we compare our algorithm with 

both random and connectivity models, while for dynamic network, we only compare with 

connectivity model since we believe that the random model will perform almost the same 

as in static one. Each point in the graph is the average result of 100 simulation run. 

Simulation Environment 

To implement the models, we modify the energy model to measure the effect of running 

IDS. Initially, we randomly assign 60 to 100 joules to each node. We assume that the 

energy required for running the IDS for one time slot as 10 joules. We ignore the energy 
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required to live and transmit packets to capture the silent aspect of the problem. We set the 

transmission radius of each node to 200 meters. Two nodes are considered as neighbors if 

their Euclidean distance is less than or equal to 200 meters. 

Table 5: Simulation Parameters 

Parameter 

Simulation Time 
Simulation Area 
Number of Nodes 
Transmission Range 
Movement Model 
Maximum Speed 
Pause Time 
Traffic Type 
Packet Rate 

TELECT 

Value 

2000 seconds 
500 x 500 m 
20,30,40,50 
200 m 
Random Waypoint Model 
15 meters/sec 
200 sec 
CBR/UDP 
4 packets/sec 
20 sees 

Besides, we deploy different number of nodes, which varies from 20 to 50 in an area of 

500 x 500 square meters. It helps us to measure the performance of the nodes from sparse 

networks to dense networks. Table 5 summarizes our simulation parameters. 

Simulations 

Nodes can behave selfishly before and after the election. A node shows selfishness before 

election by refusing to be a leader. On the other hand, selfishness after election is consid­

ered when nodes misbehave by not carrying out the detection service after being a leader. 

Both kinds of selfishness have a serious impact on the normal nodes. To show the seri­

ousness and impact of selfishness before election on resource consumption, Figure 16.(a) 

depicts the impact of selfish nodes on the life of normal nodes. The result indicates that the 
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Figure 16: Effect of selfish nodes on the other nodes 

normal nodes will carry out more duty of intrusion detection and die faster when there are 

more selfish nodes. Figure 16.(b) shows the impact of selfishness after election on security. 

We consider the presence of 20% of selfish nodes out of 10 nodes. As selfish nodes do 

not exhaust energy to run the IDS service, it will live longer than the normal nodes. Thus, 

the more the time goes, the more the chances that the selfish node will be the leader node. 

Hence, the percentage of packet analysis decreases with time, which is shown in Figure 

16.(b). This is a severe security concern since fewer packets are analyzed. 

In Figure 17, we compare our model with the other two models to show the percentage 

of alive nodes with respect to time. We simulate our model in a network of 10 mobile nodes 

as shown in Figure 12 with the presence of 20% of selfish nodes. We consider nodes 4 and 

7 to be selfish and study their impact on our model, random and connectivity models with 

no mobility. The nodes repetitively elect a set of leaders every TELECT — 10 seconds. The 

election is based on the proposed scheme. The experiment indicates that our model results 

in a higher percentage of alive nodes, in contrast to other models. On the other hand, the 
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Figure 17: Percentage of alive nodes 

random model elects leaders without considering the energy level and leads nodes with low 

energy to die fast. Finally, the connectivity model elects leaders based on their number of 

connections. In the case of static scenarios, the model elects the same node repeatedly, 

which causes the normal nodes to die very fast. In our model, the node that has the least 

cost of analysis becomes the leader. In this way, all the nodes can keep a balance of their 

energy level with time. Hence, all the nodes will live long and die at the same time which 

is clearly shown in Figure 17. 

Figure 18.(a) indicates that our model is able to balance the resource consumption 

among all nodes. On the other hand, the random (Figure 18.(b)) and connectivity (Fig­

ure 18.(c)) models result in unbalanced energy consumption and several dead nodes. 

Now, we evaluate the performance of our algorithm in a dynamic network for different 

number of nodes from 20 to 50. The simulation parameters are mentioned in Table 5. We 

compare our model only with the connectivity model since we believe that the expected 
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Figure 18: Energy level of the nodes 
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Figure 19: Percentage of alive nodes in dynamic network 

performance of the random model will be close to the one given with low mobility (static 

network). Figure 19 shows that more nodes are alive in our model compared to the con­

nectivity one. Knowing that we embedded our motivation and punishment model to both 

CILE and connectivity models since the latter suffers from the presence of selfish nodes. 

From the figure, we can realize that as the number of nodes increases, the life of nodes 

also increases since there are more nodes to act as leaders. Thus, the detection service is 

distributed among the nodes which prolongs the live time of the nodes in MANET. 
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Figure 20: Comparison of cluster characteristics 

Last but not least, we compare some of the cluster characteristics of our model with 

those of the connectivity model. Figure 20.(a) shows the percentage of the leader nodes. 

The percentage of leaders for our model is less as compared to those of the connectivity 

model that saves the energy of nodes. Figure 20.(b) compares the average cluster size of 

both the models for different number of nodes. Our model has a higher average cluster size 

than the other one. This proves that our model is able to uniformly distribute the load of 

the leaders. Moreover, this can help us to formulate efficiently our catch and punish model. 
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Figure 20.(c) illustrates the size of the maximum cluster. The maximum cluster size for 

both models is increasing with the number of nodes. For our model, the maximum cluster 

size is less and thus avoid many problems; such as, message collisions, transmission delays 

and etc. This could also improves the detection probability since more number of packets is 

analyzed per node compared to the other model. Moreover, our model is able to reduce the 

number of single node clusters as the density of nodes is increasing. This shown in Figure 

20.(d). From these experiments, we can conclude that our model is able to balance the 

IDS resource consumption in the presence of selfish nodes. Moreover, it is able to reduce 

single node clusters and also the maximum cluster size. Besides, it achieves more uniform 

clusters with less leader nodes. Finally, these properties improve the efficiency of the IDS 

on detecting intrusions since the sampling budget is distributed over less number of nodes 

compared to the other model. 

5.6.2 Moderate to Robust Model Simulation results 

To simulate our model, we assume the leader-IDS collects packets via sampling in each 

round to determine whether there is an attack or not. The output of the leader-IDS ranges 

between 0 and 1. If the computed output is less than 0.8 then it is classified as a normal 

behavior, otherwise it is abnormal (attack). Figure 21.a shows the behavior of an external 

node (node ATn in the previous example) for two different attack scenarios for 40 consec­

utive rounds. To determine the type of the sender (Nn), the posterior belief function is 

calculated using Equation 19 with prior belief fi0 = 0.5, Fm = 0.1 and Em = 0.83. Fig­

ure 21 .b shows the posterior belief of the leader for these two attack scenarios. The belief 
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for the first attack scenario converges to 1 faster than the second attack scenario. This is 

because in the first scenario the attacker starts to attack earlier compared to the second sce­

nario. Once the belief reaches 1, it does not go down even if the attacker is not attacking 

since the type already been identified. After calculating the belief, the leader-IDS computes 

the attack threshold. The victim node launches its own IDS according to the notification 

of the leader-IDS. Figure 21.c illustrates the cumulative energy consumption by the victim 

node for the two attack scenarios. We assume that the victim node consumes 5 joules of 

energy for launching the IDS for one round. Thus, if the node is always monitoring it con­

sumes 40 x 5 = 200 J for the 40 rounds. On the other hand, in our model the victim node 

consumes 145 J and 100 J for the two attack scenarios respectively. This will prolong the 

IDS lifetime. Thus, the victim launches its IDS (robust mode) optimally depending on the 

frequency of attack and the ratio of the monitoring cost to its value. 

5.7 Summary 

In this chapter, we designed our election algorithm to implement our mechanism. The 

algorithm provides the details about how the nodes compute their payments and how they 

elect a set of leader node from the whole network. Besides, we also extended the solution 

to reconfigure the network in the case of addition or removal of nodes from the network. 

We calculated different overheads of our algorithm and analyzed the algorithm correctness 

to verify whether it meets our objectives. Additionally, we discussed different security 

properties of the algorithm. 
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The tradeoff between security and the resource consumption of IDSs has motivated us 

to propose a game-theoretical solution for prolonging the lifetime of nodes and increasing 

their security. A nonzero-sum noncooperative game was formulated to analyze the interac­

tion between the leader-IDS and intruder. The game guided the two players to know their 

optimal strategy against each other. The leader-IDS notifies the victim node to launch its 

own IDS once the probability of attack is greater than the game-derived threshold. 

To study the performance of our election model, we compared it with the other two 

models. We simulated the models both in static and dynamic network for different number 

of nodes. At first, we showed the negative impact of selfish nodes on the network. Selfish 

nodes decrease the lifetime of other nodes and also increase the security vulnerabilities 

of the network. The other models ignore completely the presence of selfish nodes. We 

observed that our model can prolong the lifetime of the network and at the same time can 

balance the energy level of the nodes. Unlike other models, it prevents the nodes from 

dying fast. We also discovered some other advantages of our model. Our model reduces 

the number of leader nodes with uniform cluster size. Besides, it has less number of single 

node clusters while the maximum cluster size is smaller than connectivity model. Finally, 

we showed the simulation results of the moderate to robust model where we described how 

our model is able to reduce IDS resource consumption according to the security risk. 

In the next chapter, we find the optimal sampling strategy that can increase the expected 

probability of detection. 
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Chapter 6 

Multi-fragment Intrusion Detection via 

Sampling 

In this chapter, we consider the detection of multi-fragments intrusion that can be launched 

from a MANET targeting another one in different geographical area. Knowing that MANETs 

in different geographical areas are connected over wired lines. We decided to generalize 

our solution to wired infrastructure based network since such an intrusion is still applicable 

to it. To detect such an intrusion, an intrusion detection system is needed as a second line 

of defense to detect intrusions and consequently generate the appropriate responses. Typi­

cally, detecting an unusual activity is done through monitoring and analyzing the network 

traffic searching for an unusual activity. Analyzing the traffic could be achieved by either 

considering the whole traffic or by sampling a portion of the traffic looking for intrusions. 

Analyzing the whole traffic is considered costly since it needs time and consumes a lot of 
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resources such as memory and CPU. On the other hand, analyzing the network using sam­

pling is less costly but it has the problem of missing some intrusions due to its sampling 

budget constraint. Therefore, finding a strategy that is capable of enhancing the probability 

of detection using sampling is considered as a challenging problem especially when we 

consider the case of smart intruders and cooperative intruders that are capable of sending 

an intrusion through multiple fragments1 [75]. 

Our main goal, in this chapter, is to consider the following two scenarios: 

1. First, we consider the presence of a smart intruder that is able to divide the intrusion 

over different fragments to attack a victim node. Moreover, the intruder is able to 

select the routing paths to inject the fragments to harden the possibility of detection. 

On the other hand, the IDS objective is to sample according to the sampling budget 

looking for the fragments and collecting at least m out of n. Knowing that n is the 

total number of fragments that form the intrusion. 

2. Second, we consider the case where we have a group of cooperative intruders. The 

intruders initiate an intrusion by sending a series of fragments from different sources 

using different routes. The IDS objective is to divide the sampling budget over the 

intruders and sample for each one according to the new budget. Note that the IDS 

detect an intrusion if all the fragments are analyzed. 

In summary, our work aims at developing a network packet sampling policy to effec­

tively reduce the success chances of an intruder by finding the value of the game using 

'Fragrouter is a network intrusion detection evasion tool that could be used by an attacker to divide an 
intrusion into different fragments. It implements most of the attacks described in [75]. 
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a min-max strategy [65]. This game can guide the Internet Service Provider (ISP) to op­

timally distribute the intrusion detection budget over the network links to maximize the 

probability of detection. Non-cooperative game theory with complete information about 

the players is used to formally express our problems, where the players are: (1) the coop­

erative intruders or a smart intruder (depends on which scenario we are solving) and (2) 

the intrusion detection system. This game theoretic model will guide the IDS to have an 

optimal sampling strategy in order to detect the malicious packets. The strategy for each 

intruder node is the probability of choosing each possible path to send its malicious packet 

to the victim node. Consequently, the optimal strategy for the IDS is to assign the sampling 

rates to each link to maximize the probability of detection while not exceeding the total 

predetermined budget. 

The rest of the chapter is organized as follows. In Section 6.1, we consider the first 

scenario where an attacker distributes an intrusion over multiple fragments. We present 

the problem statement and then illustrate the assumptions. Next, we introduce the game 

and discuss the constraints and objective of the game. Sections 6.2 and 6.3 present the 

game formulation and solution respectively. In the solution, we consider the case where 

m out of n fragments are needed to detect an intrusion. Sections 6.4 and 6.5 present the 

second scenario where a distributed attack is launched via cooperative intruders. First, a 

game theoretic framework is built and then the solution of the game is introduced providing 

strategies for both the IDS and the intruders. A case study is presented as well. Section 6.6 

discusses the game results through numerical results, which is followed by the concluding 

remarks in Section 6.7. 
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6.1 Problem Statement 

The problem set-up is outlined in four steps. First, we discuss the assumptions in the net­

work. Then, we introduce the game defining the adversaries in a game theoretic framework. 

Afterward, we describe the objective of the game that is played between the adversaries and 

finally introduce strategies for the players. 

6.1.1 Network Model and Assumptions 

The network is modeled as a directed graph, G — (N, E) where N is the set of nodes and 

E is the set of unidirectional links. It is also assumed that there are k nodes and I links 

in the network. The capacity of link e G E is denoted by ce and the amount of traffic 

flowing on link e is represented by fe where fe value can be controlled by the ISP. Given 

two nodes u and v in the network, let pv
u represent the set of paths from u to v in G. We 

present the maximum flow between u and v with MF£(c), where c is the capacity vector. 

Corresponding to the maximum flow between nodes u and v, there is a minimum cut [83] 

consisting of a set of links in the network. The set of links in this minimum cut will be 

represented by Mincut^. In our study, we consider two scenarios. In the first scenario, 

an attacker can split an intrusion over n packets each containing a fragment of the attack. 

We assume the intruder injects a fragment of the intrusion by selecting a path to the target 

using the Multi-Protocol Label Switching (MPLS) protocol [78]. This harden the detection 

possibility by IDS. Moreover, we assume the intruder source is known to the IDS which 

could be a region by itself. On the other hand, we have a distributed intrusion detection 
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system that is detecting attacks over multiple packet and the intrusion is being detected if 

a fraction of the a-fragments are being analyzed. The IDS can detect the intrusion if m a-

fragments are being detected where m < n. For the second scenario, we introduce Q to be 

the set of cooperating intruders, each sending a fragment of the intrusion to the target node 

t, in order to initiate the attack, where |Q| is the number of intruders. Also, we introduce 

se to be the sampling rate on link e. 

6.1.2 Introducing the Games 

In the first scenario, we assume that the game is played on an infrastructure-based network 

between two players: The IDS and the intruder. The objective of the intruder is to inject n 

a-fragments from some attacking node a E N with the intention of attacking a target node 

t G N. An intrusion is successful when at least m a-fragments out of the n a-fragments 

reach the desired target node, t, without detection. In order to detect the intrusion, the IDS 

is allowed to sample packets in the network. Without loss of generality, it is assumed that 

sampling takes place on the links in the network. The game is illustrated in Figure 22-a. 

In the second scenario, the game is played between the IDS and the cooperating intruders. 

Assuming the set of cooperative intruders as one player, we model the game as a zero-

sum game with complete information about the: IDS and intruders. The objective of each 

intruder x € O is to send an a-fragment to the target node t. An intrusion is successful when 

all the fragments reach the desired target node t without detection. In order to detect the 

intrusion, the IDS samples packets in the network via its agents. Furthermore, the agents 

sample the traffic on each link in the network as shown in Figure 22-b. 
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Figure 22: Single intruder and cooperative intruder games 

6.1.3 Game Objectives and Constraints 

Sampling all the packets flowing on a link and examining these packets can be fairly expen­

sive to perform in realtime. Therefore, we assume that the IDS has a sampling budget of Bs 

packets/second over the entire network. This sampling effort can be distributed arbitrarily 

over the links in the network. Here, we assume a distributed agent based IDS [32] and not 

a centra] one to avoid single point of failure. The IDS samples the packets on each link 

via the agents while not exceeding the sampling budget, Bs. The sampling bound can be 

viewed as the maximum rate at which the intrusion detection system can process packets in 

realtime. If a link e, with traffic fe flowing on it, is sampled at rate se, then the probability 
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of sampling a malicious fragment on this link is given by pe = se/fe. Therefore, we have 

the sampling constraint J2eeE se ^ Bs. The game theoretic problem that we are going to 

discuss in the next sections, is formulated in terms of pe. We assume that all the players 

have complete information about the topology of the network and all the link flows in the 

network. 

6.1.4 Players' Strategies 

In the case of the intruder, in the two scenarios, a pure strategy would be to pick a path 

P 6 px for the malicious packet to traverse from x to t. The intruder, in our case, can 

use a mixed strategy. In the case of a mixed strategy, the intruder has a probability vec­

tor qx = (q(Pix),.-.,q(PZx)) over the set of paths in px = {P\x,P2x,--,PZx} such that 

Ylp;ipt q(P) — 1- Moreover, let Vx = {q : ^P£pt q{P) = 1} represent the set of fea­

sible probability allocations over the set of paths between x and t. The intruder, x, then 

picks a path P £ px with probability qx(P) for each malicious packet. The strategy for 

the IDS is to choose the sampling rate se on link e such that J2e£Ese — &*• We also 

introduce U = {p : Y2e€E fePe — Bs}
 t o represent the set of detection probability vectors 

p — (j9ei ,...,pe[) that satisfy the sampling budget constraint. The strategy for the IDS is to 

pick a set of detection probabilities at the links which belongs to the set U. 
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6.2 Intruder-IDS Game Formulation 

Having the intruder and IDS each chosen their strategies, (i.e., their probability distribu­

tions, (1) q over the set of paths in pl
a, and (2) p a set of detection probabilities at the links 

for the intruder and IDS respectively). The payoff for both the IDS and the intruder depends 

on the probability of the intrusion being detected as it goes from a to t. The probability of 

sampling an a-fragment traversing from node a to node t is the sum of probability of taking 

each path times the probability of sampling the a-fragment on that particular path over all 

possible routes from a to t. Denote a to be such probability then we have: 

«= xypMi-n*1-^)] (2°) 

Therefore, the probability of detecting an intrusion that requires exactly ma-fragments is, 

am x (1 - a)n~m. (21) 

Notice that the IDS will detect the intrusion if at least m a-fragments are sampled. Hence, 

the IDS will detect the intrusion with probability, 

n 

^ a l x ( l - a ) " ^ (22) 
i=m 

Accordingly, the IDS will choose a strategy that maximizes the detection probability: 

n 

m a x y ^ x f l - a p , (23) 
i—m 
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where, 

U = {P:Y,fePe<Bs}. 

On the other hand, the objective of the intruder is to choose a distribution q and number 

of fragments n that minimize this maximum value. In other words, the objective of the 

intruder is: 
n 

min m a x V r f x (1 - a)n~\ (24) 
nGN.qeV peU ^-^ 

i=m 

Using a similar argument, the objective of the IDS becomes: 

max min V a' x (1 - a)""2 . (25) 
peU n£N,<jeV ^—' 

This is a classical two person zero-sum game. According to minmax theorem [95], there 

exists an optimal solution to the intrusion detection game where the following noted min­

max result holds, 

= max min Y^a* x ( l — a)n l (26) 
PeU n£N,geV ^-—' 

x—m 

min m a x ^ a 4 x ( 1 - a ) n \ 
neN.qev Peu f—' 

and 9 is the value of the game. 
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6.3 Game Solution 

In this section, we suppose to solve the game for the case where the IDS requires at least 

m a-fragments to detect an intrusion as illustrated in Section 6.2. Due to the mathematical 

complexity on solving the game in Equation 26, we solve the game for the case an intrusion 

detection requires only m a-fragments out of n. By recalling Equation 21, the game is 

reduced to the following: 

# = max min am x (1 - a)71'™ = min m a x a m x ( l - a r m , (27) 
Peu nen,qev nen,qev Peu 

Considering the intruder problem the game is reduced to the following: 

min m a x a m x (1 - a ) n - m (28) 
neN.gev Peu 

For a fixed q e V and n, it is sufficient to solve the following: 

m a x a m x (1 - a ) n _ m (29) 
peu 

To maximize equation 29, it is sufficient to maximize a. Thus, we have to find the value of 

pe that maximizes the function which is done as follows: 

m g a x [ ^ g ( F ) [ l - n ( l - P e ) ] ] , (30) 
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which is equal to 

™£l£ <?(P)- J2 lq(P)I[(}-Pe)}), (3D 
P£p'a P£pi egP 

or alternatively one can minimize the following, 

P£pi e£P 

This objective function is non-linear with respect to pe which makes the problem intractable. 

Therefore, we have to linearize this function before optimizing it. Given the assumption 

of sampling is bounded with a budget that restricts the sampling efforts, we are going to 

allocate our sampling efforts on the links that belongs to the Mincutl
a set. This strategy will 

reduce the sampling efforts from sampling all the links between a and t to sampling some 

critical links. Since sampling will be done for at most one link in path P, we can rewrite 

equation (32) as: 

mmX>(P)(l-5»]. (33) 
Pepi eeP 

To minimize this equation, it is sufficient to maximize the following: 

p e t / *—» •^—' 
Pepi eeP 

Subject to the fol lowing constraints : 
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J^/ePe < B3, 
e€E 

Pe>0-

Associating a dual variable A [72], we obtain the following dual optimization problem with 

the corresponding constraints: 

min BSX, (35) 

eeE Pepi.eeP 

A > 0 , 

Interpreting q(P) as a flow on path P, the constraint 

J2 q(P)<^2feK 

restricts the flow for all links to be at most ^2e&E /eA. Hence, J2e&E f^ c a n be interpreted 

as the capacity of link e. The constraint ^2P€pt q{P) = 1 enforces one unit flow to be sent 

from node a to node t. 

The objective of the game is therefore to determine the smallest A so that a flow of one 

unit can be sent from node a to node t. This can be done as follows: 

• Assume that link e has capacity fe and determine the maximum flow from a to t, 
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MF^(f), using these capacities. 

• Scale the capacities by MF*(f)~ so that a flow of one unit can be sent from node a 

to node t. 

• A will be M i * ( / ) _ 1 . 

• The value of the game is 6 = BsMFl
a{f)-1. 

From the network flow duality, corresponding to the maximum flow value there is a min­

imum cut. The IDS computes the maximum flow from o to t using fe as the capacity 

of the link e. Let ei,e2, . . . ,e r denote the arcs in the corresponding minimum cut with 

flows / i , /2 , . . . , fr- From duality Y7i=i /« = MFl(f). The IDS samples link e* at rate 

BsfeMFa(f)~ . On the other hand, we assume the intruder fragments the intrusion into 

n fragment where n < I, where I is the number of paths. Moreover, the intruder uses 

the standard flow decomposition techniques to decompose the maximum flow into flow on 

paths -Pj, ^2) •••, Pi from node a to node t with flows of 1711,% •••,mi respectively (note 

that 5Zi=i m» = MFl(f)). The intruder transmits each malicious fragment packet along 

the path P, with probability m , M ^ ( / ) _ 1 . 

We now illustrate the results in Section 6.3 on the example shown in Figure 23. The 

numbers next to the links are the flows on the links. Suppose that there is a sampling budget 

Bs of 12 units for the IDS. Additionally, we assume the intruder's fragmentation is equal 

to 3 where a = A and t = I are the intruder and victim respectively. The links (C, E), 

(B, D) and (B, G) belong to the minimum a — t [83] cut which are shown in bold lines. 

The minimum cut (and hence the maximum flow) has a value of 29 units. 
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Figure 23: Single intruder with multiple a-fragments 

The intruder launches the attack over 3 fragments where each fragment is forwarded by 

selecting a path with the following probabilities: 

• Path A - C - E - I with probability 11/29. 

• Path A-B-G-H-I with probability 8/29. 

• Path A - B - D - F - I with probability 7/29. 

• Path A-B-D-G - H -I with probability 2/29 . 

• Path A-B-D-E-F -I with probability 1/29. 

Correspondingly, the distributed IDS's strategy is the following: 

• Sample link (C, E) with the sampling rate se — (12 x l l ) /29 . 

• Sample link (B, G) with the sampling rate se = (12 x 8)/29. 

• Sample link (B, D) with the sampling rate se = (12 x 10)/29. 

Note that the total sampling budget is equal to 12. 
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6.4 Cooperative Intruders-IDS Game Formulation 

In this section, we extend the previous game to the case where multiple intruders will co­

operate with each other to attack the same target. Knowing that the intrusion is fragmented 

to n fragments. The objective of each intruder x G Cl is to send a fragment of the intrusion 

to the target node t where f2 is the number of intruders. Here, we assume that the intrusion 

is successful if all the fragments are delivered without detection. Therefore, the game is 

played between cooperative intruders and IDS where the IDS samples the packets for each 

link in the intruder's Mincutl
x set while not exceeding the total sampling budget, Bs. 

The intruders and IDS should choose their strategies, which are the probability distribu­

tions: qx over the set of paths in px, and p a set of detection probabilities at the links for the 

intruders and the IDS respectively. The objective of each intruder is to inject a fragment of 

the intrusion by selecting the path that can reduce the IDS probability of detection. Thus, 

the payoff for both the IDS and intruders depends on the probability of the intrusion being 

detected as it goes from the intruding nodes to the target node t. For any node x € Q, the 

probability of detecting a fragment of the intrusion traversing from node x to node t is the 

sum of probability of taking each path times the probability of sampling the packet on that 

particular path over all possible routes from x to t. We introduce ax to be the probability 

of detecting the intrusion, when intruder x is attacking node t, which is given by: 

«x=x^PMi-n^1-^ (36) 

Pep*. eeP 

Next, we define the function $ to be the mean value of detecting the intrusion through 
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sampling: 

$ = =^X> <37> 
xeQ 

The main goal of the IDS is to maximize $. In other words, the IDS aims at maximizing 

the following: 

S(* = fiE»-) (38) 1 

i l -

where: 
C/ = {p:]T/ ep e<58} 

On the other hand, the cooperative intruders aim at minimizing Equation (38). The intrud­

ers will fulfil this objective by assigning probabilities for all possible routes to the target 

node: 

min max($ = — ^ ax) (39) 

where: 

\n\ xen 

Using a similar argument, the objective of the IDS becomes: 

maxmin($ = —T V^ ax) (40) 
Peu gevx

y \tt\ t-Z x! 

1 ' xen 

This is a mixed strategy zero-sum game, for which the following min-max theorem holds: 

(3 = max min(3> = —Y^ ax) 
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min max($ = —- > ax) (41) 
q&x pet/v |ft| ^ ' xgn 

where (3 is the value of the game. 

6.5 Game Solution 

In this section, we propose our solution to the min-max problem formulated in section 6.4. 

First, we consider the intruders' problem: 

min maxf$ = —— > ar) (42) 
1 ' x£f2 

For a fixed q the problem reduces to the following: 

S<(* = pX>> <«> 

In order to maximize the previous equation, it is sufficient to maximize all the terms. There­

fore, the problem simplifies to the following: 

max ax (44) 
peu 

We know that each node is sending one packet to the target node. Therefore, we can 

divide the budget, Bs among the |Q| intruders. Thus, each intruder, x, will have the budget 

constraint |=$ or Bs\Q\~l. Replacing ax, using Equation (36) and rewriting Equation (44) 
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the problem can be written as follows: 

max 5>(P) [1 - I I (!-<)] (45) 
x Pepi eeP 

where, 

e£E 

x — v 
x€fl 

Having the sampling constraint: 

J2fe*e<Bs\n\~l (46) 
e£E 

Thus, using the same approach as in Section 6.3, the subgame reduces to the following: 

min£ sA (47) 

Subject to: 

X)/eA> ]T q{P),Vx£ujyeeE (48) 
e<=E Pepi.eeP 

A > 0 (49) 

]C q(P) = i (50) 

Next, we calculate the maximum flow from x to t, MF*(f). Knowing that the maximum 

flow is equal to the summation of the flows on all the paths from x to t, we then normalize 
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the flows in the network (with respect to the MF?(f)). Therefore, the normalized flow on 

each path can be interpreted as q(P) and constraints (50) hold. Furthermore, interpreting 

q(P) as the flow on path P suggests Ylpep1 eeP *i(P) t 0 ̂  t n e n o r malized flow on link 

e. Hence, in order to minimize A, satisfying constraint (48), we introduce A to be the 

maximum flow; that is, A = MFKfY1. Therefore, the value of the game is: 

Bsl^-'MFHf) (51) 

The game would guide us to the following strategies satisfying the budget constraint. 

Hence, the strategy for intruder x is: 

• Calculate the maximum flow from x to t using fe as the capacity of the link e. 

• Use the standard flow decomposition techniques [1] to decompose the maximum flow 

into flows on paths Pi,Pz, ••-, Pix from node x to node t with flows of mi , m2,..., m^ 

respectively, knowing that Y!i=\ mi = MF*(f) and |p£| = lx. 

• Transmit the malicious packet along the path P; with probability rriiMF^f)"1. 

Consequently, the IDS's strategy is: 

• For each node x G O find the minimum cut. 

• Let Mincut^. denote the set of arcs in the corresponding minimum cut. 

153 



• Sample link e at rate: 

£ BM-'MFlifY'U (52) 
x^Q.,edM incut x 

Note that, Y,eeET,x(:n,eeAKncuitx
BsM-1MF^fr1fe = 5 , and therefore, satisfying the 

budget constraint. 

Figure 24: Cooperative multi-intruder attack 

Now, we illustrate the game with an example as shown in Figure 24, where nodes A 

and E are the cooperative intruders and node / is the target. In other words, Vt = {A, E} 

and \Q\ = 2. The budget constraint, Bs, is 60. Therefore, Z^l^l"1 = 30. The maximum 

flow from A to / is 99 and the maximum flow from E to J" is 54 as shown in Figure 24 in 

bold links. Mincut]
A = {AB, DG, EG, EF} and Mincutl

E = {EG, EF}. Hence the IDS 

will sample the links as follows: 

• AB with sampling rate 30 * 30/99 ~ 9.09 

• DG with sampling rate 30 * 15/99 ~ 4.54 

• EG with sampling rate 30 * 39/99 + 30 * 39/54 ~ 33.47 
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• EE with sampling rate 30 * 15/99 + 30 * 15/54 ~ 12.87 

Note that the total sampling is 59.97 < 60. 

The intruders send the malicious packet as follows: 

• Node A sends the malicious packet through path ABC I with probability 30/99. 

• Node A sends the malicious packet through path ADGI with probability 15/99. 

• Node A sends the malicious packet through path ADEGCI with probability 21/99. 

• Node A sends the malicious packet through path AEGCI with probability 18/99. 

• Node A sends the malicious packet through path AEFHI with probability 15/99. 

• Node E sends the malicious packet through path EGCI with probability 39/54. 

• Node E sends the malicious packet through path EFHI with probability 15/54. 

6.6 Numerical Results 

In this section, we evaluate the reliability of our game model on improving the probability 

of detection compared to two different approaches: Random and uniform. Random is a 

model where sampling is done on random links. While uniform model is achieved through 

dividing the sampling effort equally over the links. Note that, all the models must sat­

isfy the sampling budget constraint. To implement the three models, we use C+ + as the 

programming language and Figure 24 as the network graph. 
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Figure 25: One intruder sending 2 a-fragments 

First, we consider the scenario where a single intruder transmits the a-fragments to a 

target node in order to launch the attack. We consider throughout our implementation the 

case where an intrusion detection is fulfilled if half of the a-fragments are detected. More­

over, we assume that A is the attacker and I is the target. Figure 25 shows the detection 

probability as a function of the budget, where the budget varies from 1 to 150 (packets/sec­

ond). From the case study in Section 6.4, the maximum flow between A and / is 99. As it is 

shown in Figure 25, as the budget reaches the maximum flow, the probability of detection 

becomes close to 1, no matter how many packets are being sent. This is because we are not 

sampling randomly or uniformly on all the edges. Instead, we focus all the budget on the 

minimum cut edges, where every packet transmitted from the attacker to the target has to 

traverse at least one of the links in the minimum cut set. From the min-cut theorem [83], 

we know that the summation of flows in the minimum cut is equal to the maximum flow. 
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Therefore, if the sampling budget is equal to or greater than the maximum flow between 

the attacker and target, we can sample with a rate equal to the actual flow on each link in 

the minimum cut. Thus, any packet either normal or malicious would be sampled ensuring 

that the intrusion is being detected. We can see that the game results are much better than 

the other two approaches. For very small sampling budgets, all the three approaches have 

small detection probabilities. As the budget increases, we can see that the detection prob­

ability increases, for all approaches. The reason is that we sample with higher sampling 

rates on the links, and thus greater sampling probabilities on each link. Therefore, the total 

probability of detection increases. As shown in the figure, our game approach has a greater 

slope; this is due to the fact that the sampling is done on the critical links where any traffic 

has to be transmitted through them (i.e., minimum cut). In other words, the budget is dis­

tributed over a set of critical links instead of all the links in the network, while all the traffic 

is still traversing through these links. This improves the detection rate. 

Figure 26 illustrates the results of another scenario, where an intruder A transmits dif­

ferent number of a-fragments to a target node I having a constant sampling budget equal 

to 60. The attacker transmits the a-fragments through different paths. Note that there are 

12 paths from A to I that could be selected randomly by the intruder. Here, the detection 

probability is demonstrated as a function of the number of a-fragments. As we can see 

the detection probability for odd number of a-fragments, is less than the even ones for two 

consecutive numbers of a-fragments. This is due to the fact that the IDS needs half of the 

a-fragments, which is one more for the case of odd numbers. In case of larger networks, 

this difference between odd and even number of packets would be neglected. The results 
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are illustrated in Figure 26. Using the same terminology as in the previous scenario, our 

game theoretic framework presents better results than the other two models. 

Sampling Budget=60 

1 2 3 4 5 6 7 8 9 10 11 12 

Number of a-fragments 

Figure 26: One intruder sending multi-fragments 

Finally, we illustrate the multi-intruder scenario, where n cooperating intruders dis­

tribute the attack over n a-fragments, and where each intruder sends one a-fragment to a 

common target node. The attack is successful if half of these a-fragments reach the target 

node without being detected. The numerical results are shown in Figure 27. The detection 

probability decreases as the number of intruders increases. This is because the IDS has 

to divide the budget over the number of intruders. When the number of intruders is less 

than 60% of the total number of nodes in the network, focusing the sampling budget on 

the union of the minimum cuts for each intruder and the target node, helps in increasing 

the detection probability. In this case, the number of links in the union of minimum cuts 
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Figure 27: Multi-intruders sending one fragment each 

are still much less than the total number of links in the network. Therefore, we distribute 

the total sampling budget over a smaller number of links and consequently the sampling 

rate increases on each link leading to better results. As the number of intruders increases, 

more and more links are added to the union of critical edges (union of minimum cut sets 

for each intruder and the target node). Thus, the set of the links becomes comparable to the 

total number of links. Here, the a-fragments are almost over all the links. In this case, the 

sampling budget is divided by the number of attackers, which becomes a relatively small 

number. The sampling rate on the other hand would be multiplied by this small sampling 

budget and divided by the maximum flow. Thus, the sampling probability decreases. For 

random and uniform strategy, the budget is independent of the number of attackers. In other 

words, they continue to sample almost with the same rate for any number of attackers. This 

shows why the uniform and random methods provide better results over the game one in 
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the case where intruders presence exceed 50%. 

6.7 Summary 

We considered the problem of intrusion detection in a network by means of packet sam­

pling. Given a total sampling budget, we developed a network packet sampling strategy 

to effectively reduce the success chances of an intruder. We considered two different sce­

narios where the adversary has considerable information about the network and can select 

paths to minimize chances of detection. In the case of a single intruder, we formulated 

the intrusion detection problem as a zero-sum two-player game with complete information 

about the players: IDS and attacker. We formulated the game for the general case where at 

least m out of n fragments are needed to detect an intrusion. We solved the game consid­

ering the case where the intrusion detection requires m out of n fragments. Furthermore, 

we considered the problem of multiple cooperating intruders where the attackers can se­

lect paths independently in order to reduce the chances of detection. We formulated the 

intrusion detection problem as a zero-sum non-cooperative game with complete informa­

tion about the IDS and the set of attackers. We solved the game to bring up strategies for 

both the IDS and the set of intruders. Finally, we evaluated our game solutions via numer­

ical results. Our numerical results show the effectiveness of our game theoretic models in 

detecting intrusions via sampling over random and uniform models. 
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Chapter 7 

Conclusion 

The unique security characteristics of MANET motivated researchers to propose different 

intrusion detection systems as in Chapter 2. The proposed models suffers from one com­

mon problem which is resource consumption. Resource consumption problem is handled 

by electing a head cluster, which is also known as leader, to handle the intrusion detection 

service on behalf of all the nodes in the cluster. Such models suffer from the selfishness 

problem where nodes might not participate to be elected as a leader to avoid consuming 

their resources. The selfishness in routing for MANET was addressed under the cooper­

ation enforcement mechanism discipline, which was addressed in Chapter 2. Selfishness 

is considered as a crucial problem for routing and intrusion detection, which we consid­

ered by proposing a mechanism based on mechanism design theory that was discussed in 

Chapter 3. Our mechanism was proposed in Chapters 4 and 5. 

The leader election model is adequate in environments with low security risks. It can be 

seen like a security guard monitoring a home. Once the security risk is high, more guards 
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should be added which is considered costly in terms of money. If the security controller 

of a home can predict the moves of the intruders before entering the home, then he can 

allocate more guards according to the security needs. To achieve this, game theory which 

was presented in Chapter 3 is a very good tool that can analyze the steps of the intruder and 

help to find the optimal solution of the game. It helped us to determine the threshold for 

adding more guards or monitors in our case according to security needs. This game was 

presented in Chapter 5. So, what about the time of monitoring? In other words, for how 

long should the guard monitor in order to catch the intruder. Knowing that the continuous 

monitoring is considered costly. This problem motivated us to extend our work to more 

general case which can be applied to different types of networks that are connected over 

wired lines. The game solution guided the intrusion detection system to allocate the optimal 

monitoring time which is the sampling rate that can increase the probability of detection. 

This work was presented in Chapter 6. 

7.1 Concluding Remarks 

The unbalanced resource consumption of IDSs in MANET in the presence of selfish nodes 

has motivated us to propose an integrated solution for prolonging the lifetime of mobile 

nodes and for preventing the emergence of selfish nodes. The solution motivated nodes 

to truthfully elect the most cost-efficient nodes that handle the detection process on be­

half of others. Moreover, the sum of the elected leaders is globally optimal. Here, we 
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addressed two applications: Cluster Independent Leader Election (CILE) and Cluster De­

pendent Leader Election(CDLE). The former does not require any pre-clustering whereas 

CDLE requires nodes to be clustered before running the election mechanism. 

To achieve this goal, incentives are given in the form of reputations to motivate nodes 

in revealing truthfully their costs of analysis. The cost function was designed taking into 

consideration two main properties: Fairness and privacy. Reputations are computed us­

ing the well known VCG mechanism by which truth-telling is the dominant strategy. To 

motivate nodes to participate in every election round, we related the reputation to detec­

tion service. Thus, the leader will sample the incoming packets of each node according to 

node's reputation. This will motivate nodes to participate in the leader election to increase 

their reputation value which effects their security level. 

After the election mechanisms are designed, we analyzed the performance of the mech­

anisms in the presence of selfish and malicious nodes where nodes might behave self-

ishly/maliciosly during the election and after. According to our payment design, nodes' 

truth-telling strategy is the dominant strategy among all nodes. Thus, selfish nodes that are 

considered as rational have no incentive to deviate from telling the truth about their cost 

function. Therefore, our election mechanism can handle the selfishness problem during the 

election process. 

To catch and punish the misbehaving leader (selfish or malicious) after election, we 

proposed a cooperative decision model based on game theory. This is done by electing 

randomly a set of checkers that will monitor the behavior of the leader by mirroring a 

portion of leader's work. Cooperative game theory was used to analyze the contribution of 
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each checker on the catch decision which will reduce the false positive rate generated by 

the nodes. According to the detection level, checkers are gradually added to observe the 

behavior of the leader which reduces the overall resource consumption by the nodes. We 

assumed that checkers are motivated to perform this job since security risk is valuated much 

more than the consumed resources. Due to the presence of checkers, malicious nodes have 

no incentive to be elected as a leader since it will be catched easily. Note that malicious 

nodes are rational in the sense they want to attack without being detected. 

To implement the leader election mechanism, we devised a leader election algorithm 

with reasonable performance overheads. Moreover, we considered the mobility of nodes 

where nodes might be moved in and out randomly. Add and remove algorithms were 

devised to handle this issue. To analyze the correctness of our algorithms, we provided 

an informal analysis to show that the devised algorithms are able to provide the intrusion 

detection service for all the nodes where single nodes will launch their own IDS. Moreover, 

we analyzed some of the well known security properties to verify that our algorithm can 

resist such type of security flaws. Also, we analyzed our leader election mechanism and 

algorithm against cheating. 

The tradeoff between security and the resource consumption of IDSs has motivated us 

to propose a game-theoretical solution for prolonging the lifetime of nodes and increasing 

their security. A nonzero-sum noncooperative game was formulated to analyze the interac­

tion between the leader-IDS and intruder. The game guided the two players to know their 

optimal strategy against each other. The leader-IDS notifies the victim node to launch its 
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own IDS once the probability of attack is greater than the game-derived threshold. Simula­

tion results showed that our model is able to reduce IDS resource consumption according 

to the security risk. 

Simulation results showed that our leader election model is able to prolong the life­

time and balance the overall resource consumptions among all the nodes in the network. 

Moreover, the CILE model can decrease the percentage of leaders, single node clusters, 

maximum cluster size and increase average cluster size. These properties allowed us to 

improve the detection service through distributing the sampling budget more uniformly. 

After leaders are elected for each MANET, the question that we raised is: How to 

consider attacks that are launched from one MANET to another? Knowing that all proposed 

IDS models for MANET are modeled to handle intrusions that are launched in the same 

network. More specifically, some of the attacks in MANET can be designed using multi-

fragments to evade the IDS. Thus, we proposed an intrusion detection model based on 

game theory that can handle multi-fragment intrusions. Knowing that intrusion detection 

is accomplished via sampling to reduce the resource consumption. Since such types of 

intrusions can be launched from any type of network targeting any other type, we preferred 

to generalize our solution. We assumed that different types of networks, including MANET, 

in different geographical areas are connected over wired lines. This will help us to have 

a static flow of links. Our solution considered two scenarios. First, a single intruder with 

known network source is attacking a victim in a known target network using multi-fragment 

intrusion. Second, multi-intruders with known network sources are cooperating to launch 

a multi-fragment intrusion where each intruder injects a fragment of the intrusion. The 
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attacker attacks by selecting a path to the victim node while the IDS will allocate the critical 

links that are used by the attacker to distribute the network sampling budget. Minimum cut 

algorithm was used to allocate the critical links while game theory was used to calculate the 

optimal sampling strategy of each link to increase the probability of detection. The game 

solution guided both the attacker and IDS to find their best response against each other. 

Thus, the attacker strategy was to select the path to inject a fragment of attack according 

to its maximum flow. On the other hand, the IDS samples according to link's flow and 

attacker's maximum flow. Numerical results showed that game theory performed much 

better than random and uniform models with respect to intrusion detection. 

7.2 Future Work 

As a future work, we will consider the following: 

• To extend our model to other election applications in MANET; such as, certificate 

authority. Moreover, to have a unified model that handle MANET services. 

• To establish a cooperative detection model among elected leaders using repeated 

game theory. In other words, to motivate leaders to cooperate with each other on 

intrusion detection. 

• To enhance the watchdog monitor to handle IDS misbehavior. 
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