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Abstract

Dynamic Analysis of Ada Programs for Comprehension and Quality
Measurement

Elaheh Safari Sharifabadi

During maintenance and particularly during corrective and perfective tasks, sys-
tems tend to exhibit a weight gain. As a result, their quality tends to degrade.
Software comprehension is vital in order to assess system quality. In this research,
we aim at deploying dynamic analysis of Ada programs for obtaining comprehension,
and applying measurements to assess their quality. Program instrumentation is per-
formed non-intrusively by AspectAda, an aspect-oriented extension to Ada. Events
which are required for this analysis are captured as execution traces. We have de-
fined a relational database schema to save execution traces, and a set of queries to
obtain measures of quality metrics. New Ada-specific metrics are introduced and
existing metrics have been adopted from the literature. Automation is also provided
as a proof of concept through a prototypical tool which provides information on the
run-time behavior of the system, performs measurements and provides visualization
of the run-time behavior of the system through a call graph. An open source Ada

program is used as a case study to demonstrate our approach.
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Chapter 1

Introduction

Many Ada systems written in the 80s and 90s continue to provide value to their
stakeholders. However, due to different types of maintenance (particularly perfective
and corrective) these systems tend to have gained weight, exhibiting the difficulties
associated with software aging and falling into a legacy state, providing a dilemma
to its stakeholders: On one hand, the system is difficult to understand and maintain
since quality and design have been degraded. On the other hand, the system cannot
be easily replaced by existing applications, since it fully satisfies the needs of the
business rules in the organization [49)].

Maintainers of these systems need to first obtain an understanding of the system
in order to be able to detect components with degraded quality. System documen-
tation, if at all present, cannot provide much help since it is often incomplete or out
of date. The traditional way to understand the system is to manually explore the
source code (static analysis). For large-scale programs, however, this process can

be tedious and time consuming. An alternative approach is to capture and analyze



the dynamic behavior of the system during the execution time. This way, having
a specific need such as evaluating the quality of the system, maintainers can focus
and extract a well-defined set of information. One system characteristic which gets
directly degraded by software aging is modularity. Modularity can be evaluated by
exploring the dependencies which are categorized in two sets: First, the relatedness of
module elements, and second, the module dependencies, known by the terms cohesion

and coupling respectively.

1.1 Objective and goals of this dissertation

In this research, we discuss an approach to extract information about the dynamic
dependencies within and between system packages. Using this information, we also
define a quantitative approach to assess coupling, cohesion and modularity. We be-
lieve that this approach provides an environment in which maintainers can investigate

Ada legacy systems and observe packages whose modularity has been degraded be-

cause of software aging.

1.2 Organization of the dissertation

The rest of this dissertation is organized as follows: In Chapter 2, we provide some
necessary background on system quality, comprehension and measurement. The mo-

tivation behind this research is listed in Chapter 3 and our proposal is outlined in

Chapter 4. The methodology to apply the proposal is discussed in Chapter 5 which



provides the way to obtain the program comprehension and subsequently Chapter 6
which discusses the metrics to measure quality factors of the system. In Chapter 7,
we validate our approach through applying our proposal on a case study. Automation
and tool support are discussed in Chapter 8. In Chapter 9, we discuss related work

and finally, we list conclusions and recommendations for further work in Chapter 10.



Chapter 2

Theoretical background

In this chapter, we provide some necessary theoretical background on quality of the

system, program comprehension and measurement.

2.1 System quality

ISO 8402[35] defines quality as: “the totality of features and characteristics of a
product or a service that bear on its ability to satisfy stated or implied needs.” ISO
9126 [36] defines a model to categorize different types of quality characteristics and
attributes. As shown in Figure 1, the model is based on three levels: The set of
system characteristics is being refined into sets of sub-characteristics, each of which is
measured by a set of metrics. ISO 9126 further defines a set of pure internal metrics
to measure certain attributes of software design and implementation of the software
product that will influence the same or all of the overall software characteristics and

sub-characteristics. For maintainability, modularity seems to be the most important
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Figure 1: ISO 9126 Quality Model.

internal metric as it affects a number of sub-characteristics such as analysability,

changeability, portability and adaptability.

2.2 Measurement

Fenton and Pfleeger in [21] have defined Measurement as “the process by which num-
bers or symbols are assigned to attributes of entities in the real world in such a way
as to characterize them according to clearly defined rules.” In the context of software
engineering, measurement can aid in understanding of the system during development
and maintenance, control the activities in the system development and improve the
processes and product. The measurable entities can be classified into three classes as
processes, products and resources. Also the attributes of each entity can be catego-
rized as internal or external attributes. Figure 2 categorizes measurable attributes of
product, process and resource entities.

The popularity of the object-oriented paradigm has raised the need for defining
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Figure 2: Classification of software measurement activities [20]

new metrics for measuring the attributes of object-oriented artifacts. Object-oriented

measurement is a 20 years old field of research, starting from cost and effort prediction

measures. Following that, new internal and external attributes for object-oriented

design get introduced such as reliability, complexity, reusability, maintainability, cou-

pling and cohesion. Several measures have been proposed by researchers in this field,

while each measure focuses on a specific attribute of the system.



2.3 Modularity

Modularity is defined as “the functional independence of program components” [54].
The definition implies that modularity is a varying property. As such we can say that
a high degree of modularity of a component implies a high degree of representation of
a single concern and a low degree of dependency on other components. Components
with a higher level of modularity tend to be more understandable, reusable and easier
to change and evolve during maintenance. Low modularity can be an indication of
bad design or ignorant surgery [49]. It occurs when the implementation of a feature
or functionality is not well-localized in the decomposition hierarchy of the system.
One possible way to evaluate the modularity of a system is to look at the degree to
which the activities within a single module are related to one another, introducing
the notion of cohesion. Yet another way to determine modularity is to explore the
degree to which the modules are cleanly separated from one another, introducing the
notion of coupling. Investigating both metrics can give us a better idea [17, 46, 54].

Cohesion is a measure of how strongly the responsibilities of a software module
are interrelated [54, 60]. A high degree of cohesion is desirable to avoid having more
than one concern being implemented in a single modular unit.

Coupling is the degree to which each program module relies on other modules
[54]. As a basic principle of object-oriented programming, there should be a baseline
coupling for necessary collaborations between system components [4]. A low degree
of coupling is desired as it can contribute to reuse and adaptability, resulting in less

costly maintenance.



2.4 Aspect-oriented programming and AspectAda

Despite the success of object-orientation in the effort to achieve separation of con-
cerns, certain properties in object-oriented systems cannot be directly mapped in a
one-to-one correspondence from the problem domain to the solution space, and thus
they cannot be localized in single modular units. Their implementation ends up cut-
ting across decomposition of the system, resulting in a decreased level of modularity.
Crosscutting concerns (or “aspects”) include persistence, authentication, synchro-
nization and contract checking. Aspect-Oriented Programming (AOP) [38] explicitly
addresses those concerns by introducing the notion of aspect, which is a modular unit
of decomposition. Currently there exist many approaches and technologies to sup-
port AOP. One notable technology is Aspect] [37], an aspect-oriented extension to
the Java language. AspectJ has influenced the design dimensions of several general-
purpose aspect-oriented languages. In the AspectJ model, an aspect definition is a
new unit of modularity providing behavior to be inserted over functional components.
This behavior is defined in procedure-like blocks called advice blocks which can be
invoked before, after or instead-of (around) some core functionality. However, unlike
a procedure, an advice is never explicitly called. Instead, it is only implicitly invoked
by an associated construct called a pointcut expression. A pointcut expression is a
predicate over well-defined points in the execution of the program which are referred
to as join points.

In earlier work we presented AspectAda [52], an aspect-oriented extension to the



Ada! language. AspectAda is an AspectJ-like language, providing a join point model,
a pointcut description language and the three different types of advice. The join point
model includes calling and executing of subprograms, controlled type initialization

and finalization.

2.5 Program comprehension

Program comprehension is the process of obtaining knowledge about a program [58,
61]. It has shown to consume a significantly large proportion of resources during the
overall maintenance phase [58], particularly when maintainers are not the initial de-
velopers of the system. Furthermore, design artifacts, if at all present, cannot provide
complete comprehension since they are often incorrect or incomplete. Comprehen-
sion methods rely on analysis of the dependencies between program (or software)
elements. A lot of effort has been spent on providing approaches to support and
facilitate program comprehension and, as a result, a variety of models of human pro-
gram comprehension process have been proposed. One extensive survey is provided
by von Meyrhauser and Vans in [61]. Following the proposal of comprehension ap-
proaches, many tools have been developed to provide comprehension. These tools

can be categorized according to the techniques they deploy [65]:

e Deduction refers to reasoning from source code to concrete runs. Using this
technique, the system analyzer tries to predict what should and should not

happen during program execution. For obtaining knowledge concrete runs are

! AspectAda initially supported Ada 95 and it was later extended to support Ada 2005.



not required, i.e. there is no need to execute the program to obtain the program

runs.

e Observation refers to inspecting different program properties in a concrete
run. One should first obtain an execution trace of the program using a tracer or
debugger, and then inspect program properties or compare them with expected

knowledge obtained through deduction.

e Induction refers to reasoning from specific facts to general principles. One

tries to summarize several observations from program concrete runs to an ab-
stract conclusion. Induction is deployed by visualization tools that gather and

summarize dynamic traces like call graph visualization tools.

e Experimentation is an advanced technique that determines specific cause(s)
for an observed effect. One tries to isolate the real cause by applying several
experiences to prove that whenever the cause occurs, the effect will occur and

whenever the effect does not occur, it is because the cause has not occurred.

Most of the existing analysis tools are deploying deduction and observation, while
integrating experimentation with induction or deduction is currently a main challenge

in program comprehension.

2.6 Static and dynamic analysis

Program analysis is the process of analyzing the structure and behavior of computer

programs to determine certain properties. There exist two main types of program

10



analysis: static analysis and dynamic analysis, which have complementary strengths
and weaknesses [18].

Static program analysis is a process to evaluate a system by its structure and it
mostly focuses on source code (it may also be applied to object code). Its advantage
is that it is complete, sound and conservative. Completeness implies that the analysis
predicts behavior resulting from all possible scenarios (since it is performed without
actually executing the program under consideration). Soundness implies that the
analysis guarantees that its results are an accurate description of the program behav-
ior, regardless of any actual input. Conservatism implies that the analysis reports
properties that are guaranteed to be sound but may be weaker (less precise) than
desirable. The disadvantage of static analysis is that its results cannot be used for
getting precise information. Static analysis tends to produce large amounts of data
which can be difficult to understand, summarize, and difficult to extract useful infor-
mation from. Also, it provides potential paths instead of guaranteed execution paths
[41]. In addition, polymorphism and dynamic binding, supported by object-oriented
languages, can affect the system behavior only at runtime, thus static analysis cannot
fully capture the real behavior and dependencies of the system. In such cases, there
is a need for dynamic analysis techniques.

Dynamic program analysis operates by executing a program and examining the
execution of events in order to evaluate system properties and behavior. An event
refers to any change of program state or behavior and the level of granularity in
monitoring events is based on the requirements of analysis. Events are called execution

traces and they are captured by a process called instrumentation. The concept of

11



dynamic analysis is explored by a number of approaches in the literature [24, 28, 40,
51, 62], each one deploying a different technique to extract and visualize execution
traces. An advantage of dynamic analysis is that it is precise because it examines
the actual and exact run-time behavior obtained during program execution. It is
also efficient as it can be as fast as program execution. A disadvantage of dynamic
analysis is that the results may not generalize for future executions, unless input is

carefully considered.

2.6.1 Trace extraction techniques for dynamic analysis

There are various techniques for extracting dynamic information at runtime, each one

accompanied by a set of advantages and disadvantages, as follows:

e Debugger: Breakpoints can be set at different locations and the information
will be shown upon reaching each breakpoint. The advantage of this approach

is that the source code will not be modified, but it can considerably reduce the

performance. One such example for Ada is GDB [25].

e Source code instrumentation: Probes (commonly print statements) are inserted
in different locations in the source code. The advantage of this approach is that

it is fast. The disadvantage is that the source code will be modified.

e Binary instrumentation: This technique adds instrumentation to a compiled bi-
nary. An advantage of this approach is that it is not intrusive. A difficulty asso-
ciated with this techniques from the maintainers point of view is that advanced

knowledge of binary code is needed to apply this kind of instrumentation.

12



e Runtime environment instrumentation: Hooks are inserted in the runtime en-
vironment by related libraries, so that events of interest will be captured. An
advantage of this approach is that it is not intrusive. A disadvantage is the

overhead for loading the libraries.

e Compiler assisted: The compiler is associated with the execution of some li-
braries that instrument the code during compilation. In this technique, the
compilation time tends to be analogous to the size of the system. One example

of a call graph execution profiler for Ada is gprof [28].

e Aspects: Aspects can be deployed to monitor the execution of the program.
In this approach, the locations of interest are defined through pointcut expres-
sions. The efficiency and suitability of aspects for the purpose of tracing is
demonstrated by [16, 29]. The advantages of this approach can be summarized

as follows:

1. Aspects are flexible since pointcuts can be highly expressive. They can
monitor subprogram calls, executions, object initializations, deconstruc-

tion, etc.
2. Due to the obliviousness? property in AOP, the code under analysis does
not need to be modified or even be aware of being monitored.

3. Aspects can obtain detailed information about reached join points, such as

involved objects, invoked methods (subprograms), actual arguments and

%In [22] authors Filman and Friedman argued that obliviousness is a necessary characteristic for
AOP. This property implies that functional components are unaware of the existence of aspectual
behavior.

13



return values.

4. Profiling can be well localized into a single aspect definition.

2.6.2 Trace visualization techniques for dynamic analysis

In order to analyze execution traces, a representation model is required. There ex-
ist three main visualization techniques used to represent execution traces which are

summarized below:

e Graph-based visualization: Typically a call graph is deployed to represent the
interactions between subprograms at runtime. A call graph is a directed graph
that represents call relations between subprograms in a computer program. In
this graph, nodes representing the subprograms belonging to a specific package
are connected to each other through edges representing a call from its source

node to its target node.

e A modeling language: Typically, a Unified Modeling Language (UML) sequence

diagram [59] is deployed to visualize the system’s behavior.

o Text: Execution traces can be represented and stored as lists of events in plain

text [28].

14



Chapter 3

Problem and motivation

In this chapter we discuss the problem and the motivation behind this research which
constitutes the scope of this dissertation.

We have previously discussed that many old Ada systems are still operating and
providing value to their stakeholders. However, due to different types of maintenance
(particularly perfective and corrective) these systems tend to have gained weight and
to have fallen into a legacy state. When falling into a legacy state, a system tends
to exhibit the difficulties associated with software aging and its quality starts to de-
grade after performing perfective and corrective maintenance activities. One of the
main quality attributes of the system which is directly affected by software aging is
modularity. Based on the ISO 9126 model (Section 2.1), modularity is a pure in-
ternal attribute that influences many software characteristics and sub-characteristics.
Therefore, in order to evaluate and improve the quality of a legacy system, we need

to look into the level of modularity of its components. We can break the problem

down into three main subproblems: 1) comprehension, 2) quality indicators and 3)

15



metrics, where each one is being described below:

Program comprehension The first challenge in dealing with legacy systems is
obtaining information about either their structure or their behavior. Despite exten-
sive research about comprehension of Ada programs [41, 57], few approaches have

addressed system quality, and modularity in particular.

Modularity as a quality indicator The degraded modularity has motivated us
to investigate this property in Ada programs. In order to be able to evaluate and
improve program modularity, we need to have metrics for measurement purposes.
As we mentioned in Section 2.3, coupling and cohesion of system packages can be
indicators of the degree to which the system packages are modularized. Various
metrics for measuring coupling and cohesion of Ada programs have been proposed in
past investigations [9, 55, 56, 64]. However, all of them are based on a static analysis
of the system. As discussed in Section 2.6, static analysis results in a huge amount
of data [18]. While most of Ada programs are medium- to large-scale, static analysis
will not be fully efficient, unless some abstraction models are applied. Furthermore,
empirical studies have indicated that static analysis is not sufficient for capturing
dynamic dependencies among system modules such as those related to polymorphism,

dynamic binding and inheritance [24].

Metrics A lot of metrics are defined in the literature to capture software quality.
However, they are mostly focusing on the software development process before prod-

uct deployment. They are mainly used as a baseline or a threshold for decision-making

16



purposes about different factors such as cost estimation, defect prediction, risk min-

imization, performance optimization and user interface efficiency, but none of them
are defined or used to evaluate the quality of an existing software for maintenance
purposes.

These problems motivate us first to investigate comprehension of Ada programs
and subsequently, to reason about the level of modularity of systems based on the

obtained information.

17



Chapter 4

Proposal

In order to resolve the problems mentioned in Chapter 3, we propose two complemen-
tary techniques, illustrated in the UML activity diagram of Figure 3 and discussed

subsequently.

Program comprehension We plan to deploy dynamic analysis by monitoring the
execution traces of an Ada program. This way, we make sure that efficient and guar-
anteed information about dynamic behavior of the system has been generated. We
store the obtained data from dynamic analysis of the system in a relational database
for providing cumulative data. In order to provide a complementary view of system
behavior, we plan to visualize it in the form of a call graph which can be considered

as a dynamic model of the system interactions.

Reasoning about modularity We plan to perform fan-out analysis on the call

graph, in order to come up with a set of new metrics and in some cases, adopt and

18
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Figure 3: UML activity diagram illustrating dynamic analysis to provide comprehen-
sion.

refine existing metrics for quantitative measures of coupling, cohesion and modular-
ity. Having such metrics allows us to define thresholds for each criteria and easily
reason about the level of coupling, cohesion and modularity of any system under
investigation.

The expected contributions of this proposal are to provide an environment for
system maintainers to gain comprehension over the quality of legacy Ada programs
through dynamic analysis and applying a set of validated metrics in order to measure
modularity, coupling and cohesion of the system modules. Applying the proposed
approach in this work, system maintainers can investigate how the proposed metrics
behave as the system evolves. This way, they can get concrete indications on the
degree to which maintenance tasks such as refactoring and reengineering improve the

overall quality of the system.
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Chapter 5

Program comprehension

As we discussed in Section 2.5, Zeller [65] came to the conclusion that most of the
existing tools and techniques for system comprehension are using deduction and ob-

servation, while integrating experimentation with induction or deduction is one of the
main challenges in program comprehension. However, the approach we are following
in this work, is an integration of observation, induction and experimentation. Three

main components forming our methodology are:

e Observation by profiling the execution of a program in order to obtain traces.

e Induction by summarizing the information extracted during observation and

visualizing it in a call graph.

e Experimentation by running first the initial program and then the refactored
program (to be discussed in Chapter 7) to investigate the improvement of quality

attributes.
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We provide comprehension of the program by deploying dynamic analysis, cap-
turing the execution traces, storing the data and visualizing it to obtain better un-

derstanding of the dynamic events at runtime.

5.1 Deploying dynamic analysis
We apply dynamic analysis on an Ada program through the following steps:

1. Generate raw data: We execute the system through a specific use-case scenario

and input values.

2. Extract data: We capture execution traces and store them into a relational

database schema.

3. Analyze derived attribute values: We analyze the data through applying a set

of metrics which we have defined or adopted from the literature.

As we mentioned in Section 2.6, the main drawback of dynamic analysis is that
the result is based on specific scenarios and input values and cannot be generalized
for other executions. Therefore, maintainers should make sure that the set of chosen
scenarios fully covers all possible paths in the code. It may be impossible to find
one scenario that fully covers all possible execution paths, but cumulative results can
help to provide more precise analysis, since results obtained from execution of several

scenarios can be accumulated and later be used for analysis purposes.
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5.2 Representing dynamic information through ex-

ecution traces

The result of dynamic analysis is typically represented in the form of execution traces.
An execution trace is an ordered list of interactions between subprograms to run a
specific scenario at runtime. The interactions can occur in different forms, such as
access to a common attribute, modification of a common attribute, etc. However,
in this work, an interaction between subprograms is narrowed down to only the call

relations. In order to represent execution traces, we need to provide some definitions:
Definition 1: A message is a call from one subprogram (caller) to another sub-

program (callee). Thus, it can be represented as:

Message :< Caller Package.Caller SubProgram, Called Package.CalledSubProgram >

Definition 2: An execution trace refers to a sequence of messages. The order

corresponds to the timing order of occurrence of the messages.

EzecutionTrace :: (Messageg, Message1, Messages, ... )

In this project, we concentrate on package level analysis, implying that during
program execution we make no distinction between different objects of the same

package. During program execution, we follow the convention of substituting all
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active objects of the package with the name of the package.

5.3 Obtaining traces: Deploying AspectAda as an

instrumentation tool

As we discussed in Section 2.6.1, there is a set of benefits associated with the use of
aspects for tracing the system behavior. These benefits motivated us to deploy Aspec-
tAda to build a tracer for Ada programs. The tracer aspect, named Tracer_Aspect,
is composed of a weaving rule file (.aaw), an aspect body file (.aab) and an aspect
specification file (.aas). For the purpose of dynamic analysis based on interactions
between system subprograms, Tracer_Aspect should be able to capture the execution
of each subprogram. This join point model is realized through the pointcut definition

in a composition rule file as:

weaver Tracing_Rules is

Execution_.PC : Pointcut := execution (*.x(..));

end Tracing_Rules;

In the aspect body file, Tracer_Aspect declares Tracer_A type as a Detailed_Aspect
which provides more detailed information about the captured join point. This type
defines three records as Log-Count in order to keep track of order of execution,
Exec_Depth in order to keep track of nesting levels of the executions, and a file

as Output_File as the destination output for storing the traces. Finally, one around
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advice is defined in this file. The implementation of the specification file is as:

aspect Tracer_Aspect is
type Tracer_A is new Aspect_Ada.Detailed_Aspect with record

Log_Count : Integer := 0;
Exec_.Depth: Integer := O0;

end record;
advice Around (Tracer : Tracer_A);

Output_File : File_.Type;
Logger : Logger_A;

end Logger_Aspect;

The Tracer_Aspect body file provides the implementation for the around advice
as following:

Before proceeding to the execution of the captured join point, the value of Log_Count
and Exec_Depth increases by one. Also, the logging information is printed in the
Output_File file. Following that, control flow returns to the captured join point and
the subprogram runs. In order to form a hierarchy of nested subprograms execu-
tion, after proceeding and completing the execution of the subprogram, the value of
Exec_Depth should be decreased by one.

Consequently, when an Ada program runs, upon reaching the execution of any
subprogram, runtime information such as entering or exiting the called subprogram,
containing package or type, subprogram arguments, and the sequence of execution will
be saved in a text file. This text file will be parsed and reused later during program

analysis and measurement (to be discussed in Section 5.4). A sample sequence of
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aspect body Tracer_.Aspect is
advice Around (Tracer : Tracer.A) is begin

Tracer.Log_Count:=Tracer .Log_Count+1;
Tracer . Exec_Depth:=Tracer . Exec_Depth+1;

Ada.Text IO .Put_Line( Output_File, Aspect_Ada.Image
(Aspect_Ada.Get_Join_Point (Tracer). all)
& Integer ’Image(Tracer .Log_Count)
& Integer 'Image(Tracer.Exec_.Depth));

Proceed ;
Logger . Exec_Depth:=Logger . Exec_.Depth —1;

end Around;
end Tracer_Aspect;

traces provided by Tracer_Aspect is given in Table 1 and the hierarchy of calls of
this set of traces is shown in Figure 4. It is necessary to mention that in Table 1, P,
is the notion of package and SP; is the notion of the subprogram which is followed

by the signature of the subprogram.

Table 1: Sample traces provided by Tracer_Aspect.

Call Log_Count | Exec_Depth
P0.SP0 (To : in Position) 1 1
P0.SP1 (To : in Position) 2 2
P0.SP2 (To : in Position) 3 3
P1.SP3 (To : in Position) 4 3
P2.SP5 (To : in Position) 5 2
P2.SP6 (To : in Position) 6 3
P2.8P7 (To : in Position) 7 4
P1.SP4 (To : in Position) 8 4
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> P0.SP1 (To: inPosition)
e P SP2 (TO = iy Position)

b PSP {To 2 it Position)
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Figure 4: The hierarchy of subprogram calls.

EzecutionTrace :: (Messagey, Message1, Messages, Messages, .. .) :
(< Po.SP(J, Po.SPl >, < P().S.Pl, Po.SPQ >,

<P().SP1,P1.SP3 >, < Po.S.Po,Pg.SP5 >,...)

The structure and implementation of the tracer does not need to change when
being applied on different Ada programs, since the tracer is not dependent on the
context of the program. However as a limitation of this approach, we can mention
the abstraction of execution traces, meaning that abstraction or selection of a subset
of traces can be done only through AspectAda code. For choosing a specific hierarchy
level of the execution or only message passing among a specific subset of packages in
the system, the user (maintainer) can only do that by changing the code of instrumen-
tation tool. It would be more flexible if AspectAda could provide the ability for the
user (maintainer) to choose the abstraction or selection levels without manipulating

the AspectAda code.
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Figure 5: Relational database schema for storing execution traces.
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Mess: Order
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5.4 Storing traces in a relational database

The obtained execution traces need to be kept in some data storage. One viable
solution for such a data storage can be a relational database, a schema of which is
shown in Figure 5. To implement this solution we can identify two options: The first
option would be to have Tracer_Aspect dynamically creating and populating the
database tables. However, this approach would considerably decrease the program
performance, since the aspect would have to handle the connection and all other
interactions with the database while the program is running. The second option
would be to save the execution traces in a text file. A separate program would then

read the text file, create the database, and populate its tables. We have used the

second option in our approach for the purpose of performance issues.
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Figure 6: The call graph corresponding to the hierarchy of execution traces shown in
Figure 4.

5.5 Visualizing dynamic information

In order to represent the dynamic behavior of the system, we deploy the notion of a

Call Graph. A call graph G is defined as:

G = (E,R)

where E is a set of nodes that corresponds to single-entry-single-exit segments
of code (in Ada programs, this is a “subprogram”) and R is a set of messages, as a

binary relation on members of F denoting a message passing from a source node to

a target one.
Figure 6 illustrates the call graph corresponding to the sample traces in Section
5.3 and its corresponding hierarchy of subprograms call, shown in Figure 4. In this

call graph,
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E ={ P,.SPy, P,.SP,, P,.SP;, PSP,

P,.SP,, P,.SPs, P,.SFs, P,.SP; }

R={< P.SPy, Py.SP, >, < P,.SP,,Fy.SP; >,
< Py.SP,,P,.SP; >, < Py.SPy, P,.SP;s >,
< PSP, P,.SPs; >, < P,.SFs, P,.SP; >,
< PSP, P,.SP, > }

It is important to note that a call from a specific subprogram to another may
occur more than once during the execution of one scenario; that is, the corresponding
edge should appear more than once in the graph. Since this repetition would make
the graph confusing and complex, the edge is drawn once. Since we are interested
in evaluating the occurrence of call relations between subprograms, the number of
occurrences will not add more value to our analysis, because the occurrences may

take place during a loop statement, thus a high number of occurrences does not imply

more coupling or less cohesion. However, the number of occurrences of this edge can
be easily retrieved from the database. The same approach is followed for the order
of occurrence of the message. Since the graph is not suitable for representing the

order of message occurrence, this order is not shown in the call graph. However, this
number is saved in the database for each edge and can be retrieved during analysis if

and whenever required.
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5.6 Scalability

The scale of Ada programs and the need for providing cumulative results raises the
issue of scalability. Even though database management systems can solve the storage
problem, there still exists another problem with visualization, due to the constraint of
limited space. As an example, consider an Ada program with five packages where each
package has an average of five subprograms. As a result, a full code coverage scenario
or a cumulative analysis will produce a graph with almost (53 5) = 300 edges, which
makes a confusing and unreadable call graph. Therefore, in order to have a better
visualization, some abstraction approaches should be considered. We can produce
a more abstract view of a call graph by aggregating all nodes inside a package and
represent them by a single node as the containing package. The edge between each
two nodes is associated with a number that shows the summation of individual edges
from any subprogram inside a source package to any subprogram inside the target
package. This way, the number of edges between each pair of nodes will not be greater
than two.

Some approaches for trace summarization and compression have been proposed
[30, 31]. However, this issue is out of the scope of this research.

As the summary of this chapter, we have gained comprehension of the program by
applying dynamic analysis through monitoring the program execution by AspectAda
as an instrumentation tool, visualizing the structure and the behavior of the programs

at runtime and finally storing the obtained information in a relational database for

providing accumulative data and more precise analysis.
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Chapter 6

Quality measurement

In order to have a template for definitions and representations, we adopt the notion
of modular system, originally defined by Briand, Morasca, and Basili [10] as a 3-tuple
MS = < E,R,M >, where F is a set of entities, R is a set of all relations between
each pair of entities and M is a set of all modules in the system. We consider a call
graph as a modular system, defined by a 3-tuple MS = < E,R,M >, where F is
a set of all subprograms appear in the call graph (in the examined scenario), R is a
set of all call relations between the subprogram, and M is a set of all packages to
which the subprograms belong statically or are dynamically dispatched (in the case
of polymorphism).

The call graph of a sample Ada program is shown in Figure 7. In this modular

system, E/, R and M are as follows:
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Figure 7: The call graph of a sample program shown as a modular system.

E={SP),SP,.. SPs}

R= { < Po.SPo,Po.SPl >, < Po.SPo,Po.SPQ >,
< PO.SP(), PO.SP3 >, < Po.SPo, P,.SP, >,

< Py).SP,, P,.SFs > < PSPy, Fy.SF; >,

cy

< PQ.SPIQ, P, . SP;s >, < P2.SP13, Pz.SP]_G > }

M={P0’P15P21P3}

Briand et al. [10] consider coupling as inter-module and cohesion as intra-module

dependency in the modular system. Based on the call graph of an Ada program,
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coupling between two packages is considered as the degree of dependency between
these two packages which are connected through a call from one subprogram in one
package to a subprogram in another package. In the same way, cohesion of a package
is considered as the degree of dependency among all subprograms within the same
package. In order to separate the measurement of coupling and cohesion based on the
call graph, we adopt the notions of Intermodule-Edges Graph and Intramodule-Edges
Graph mentioned by Allen et al. in [2]. According to these notions, the call relations
are partitioned based on whether or not their caller and callee subprograms are placed

in the same package. This implies:
R = Rinter U Ringra
where,
Rinire: Set of edges where caller and callee subprograms are in one package.
Ripter: Set of edges where caller and callee subprograms are in two different packages.
An edge in the call graph either belongs to Rinter Or Rintrq, implying that:
Rinter N Rintra = ¢

We can now split the call graph into two subgraphs: Intra-Package Graph and
Inter-Package Graph. Each of these subgraphs has the same E as the set of subpro-
grams, the same M as the set of packages, but a subset of R as the set of call relations
between subprograms.

Definition 3: Having a call graph as a modular system MS, Intra-Package

Graph, named M Sjn4rq, is a subgraph of M.S where,
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Msintm =< E» Rintraa M >

Figure 8 is the Intra-Package graph of the call graph shown in Figure 7.

; @ P2 @
1y
G
ey

P3

€)-6)

Figure 8: Intra-Package Graph.

Definition 4: Having a call graph as a modular system M .S, Inter-Package Graph,

named M S;uter, is a subgraph of M.S where,

MSinter =< E> Rinte’r, M >

Figure 9 is the Inter-Package graph of the call graph shown in Figure 7.

In the next sections, we define metrics to measure coupling and cohesion. Before
introducing these metrics, we need to consider the following definitions:

Definition 5: Given a package P;, fan_out(P;, P;) is defined as the number of

calls sent by package P, to package P; in the call graph.
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Figure 9: Inter-Package Graph.

By the following query, the value for fan_out(P;, P;) can be directly retrieved from

the database!:

select count(msg.Mess_ID)
from Message msg join Package pckgl join Package pckg2
on msg.Caller_Pack_ID = pckgl.Pack_ID and

msg.Callee_Pack_ ID = pckg2.Pack_ID

where

pckgl.Pack_Name = "Pi" and
pckg2.Pack_Name = "Pj" and

pckg2.Pack_Name <> "main";

Definition 6: Given a subprogram SP;, fan_out(SP;, SP;) is defined as the

In the database, “main” as the Pack Name and “main” as the SP_Name refers to the call made
by the system to the main file.
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number of call relations sent by subprogram S P; to subprogram SP; in the call graph.
The following query calculates the value for fan_out(SP,, SP;) directly from the

database:

select count(msg.Mess_ID)

from Message msg join Subprogram sbpgl join Subprogram sbpg2
on msg.Caller_SP_ID = sbpgl.SP_ID and

msg.Callee_SP_ID = sbpg2.SP_ID

where
sbpgl.SP_Name = "SP0" and
sbpg2.SP_Name = "SP1" and

sbpg2.SP_Name <> "main";

It is important to mention that the number of occurrences of a call is not important
in measuring coupling and cohesion, since a subprogram can be invoked inside a loop
statement, thus it does not imply stronger dependency. In the subsequent discussion

on metrics, we are only concerned about the number of individual edges from/to a

package.

6.1 Cohesion

In an Ada program, cohesion is the degree to which subprograms in a package are
related to implement a single functionality.
It is necessary to note that in the literature there are two types of cohesion: Struc-

tural cohesion and conceptual cohesion. Structural cohesion deals with the physical
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connection between the elements of a design component and investigates how tightly
the attributes and operations are encapsulated in a module. Conceptual cohesion
focuses on how the elements of a module are conceptually related and collaborate to
implement a single functionality/concern.

We believe that the more the subprograms inside a package invoke each other
rather than invoking subprograms from other packages, the more they are logically
related to implement a single concern without depending on other packages. This im-
plies that strong relations through subprogram invocation inside a package (structural
cohesion) lead us to conclude that the package is conceptually cohesive.

Xu et al. in [64] have defined a metric to measure the cohesion of a package in Ada
programs. In their approach, three factors affecting the cohesion are defined as object-
object, subprogram-object and subprogram-subprogram cohesion. The integration of
these three factors is considered as cohesion of the package. In this research, we adopt
and refine the third factor as subprogram-subprogram cohesion to be consistent with
our call graph.

Definition 7: Given a package P, with n subprograms SPy, SP,,...,SP,_1, the

cohesion of P,, P_Cohesion(F,), is defined as:

P_Cohesion(P,) = <

1 n—1 Zn—l Relation(SP;,SP;)

. n 1==0 j=0 n—1

n>1
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0 fan_out(SP;,, SP;) = fan-out(SP;,SP,) =0

Relation(SP;, SP;) = ¢

1 others

In these formulas, we consider fan-out(SP;,SP;) = 0 when ¢ = j, and as the
result Relation(SP;, SP;) = 0. The reason is that a call from one subprogram to
itself does not increase the cohesion of the containing package. Relation(SP;, SP;)
defines whether or not two subprograms are related to each other through calling
or being called by each other. This way, the direction of the call can be ignored,
since having a bidirectional call does not imply more relatedness. Overall, this metric
calculates the ratio of the number of existing edges inside a package to the number
of potential edges in the same package.

The value of P_Cohesion(P,) can be calculated directly from the database by the

following query:

select 2x(X.allrel - Y.repit/2) / (z.number*(z.number-1))
from

(select count(*) as allrel

from Message msg join Package pckgl join Package pckg2

on msg.Callee_Pack_ID = pckgl.Pack_ID and
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msg.Caller_Pack_ID = pckg2.Pack_ID

where
pckgl.Pack_Name = "Px" and
pckg2.Pack_Name = "Px" and

pckg2.Pack_Name <> "main" ) X,
(select count(x) as repit
from
(select msg.Caller_SP_ID as cl, msg.Callee_SP_ID as c2
from Message msg join Package pckgl join Package pckg2
on msg.Callee_Pack_ID = pckgl.Pack_ID and
msg.Caller_Pack_ID = pckg2.Pack_ID
where

pckgl.Pack_Name = "Px" and

pckg2.Pack_Name = "Px" and
pckg2.Pack_Name <> "main") msgl
join
(select msg.Caller_SP_ID as c3, msg.Callee_SP_ID as c4
from Message msg join Package pckgl join Package pckg2

on msg.Callee_Pack_ID = pckgl.Pack_ID and

msg.Caller_Pack_ID = pckg2.Pack_ID

where
pckgl.Pack_Name = "Px" and
pckg2.Pack_Name = "Px" and

pckg2.Pack_Name <> "main") msg2
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where cl = c4 and

c2 =c¢3) Y,

(select count(*) as number

from subprogram sbpg join Package pckg
on sbpg.SP_Pack_ID = pckg.Pack_ID

where

pckg.Pack_Name = "Px") Z;

Definition 8: Given a system with m packages Py, Py, ..., Pp—1, the cohesion of

the system, S_Cohesion, is defined as:

St P_Cohesion(P)

m

S_Cohesion =

The value of S_Cohesion can be derived by having the cohesion of each pack-
age and the value of m. Therefore, combining the above mentioned query and the

following query for obtaining the value of m, S_Cohesion can be calculated:
select count(*)-1 from Package;

We consider the average cohesion of all packages as the cohesion for the over-
all system. The obtained value of S_Cohesion can be used to compare the overall

cohesion of the system before and after applying a change to the system.

6.1.1 Analysis

Based on the proposed formula, if there is only one subprogram inside the package,

the cohesion is equal to its maximum value: 1. This would imply that the subprogram
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implements all the functionality of the package, so it holds the maximum degree of
relatedness.

Based on this formula, the value of cohesion for a package belongs to the interval
[0,1). The formula implies that the more edges inside a package exist, the more
cohesive the package is. While mapping the call graph of the package under analysis
to a mathematical graph, each node represents a subprogram and each edge represents
a call invocation from a source subprogram to a target subprogram.

In order to define a threshold for the cohesion of a package, two main cases should
be considered, the worst and the best cases for the cohesion value.

The worst case occurs when all nodes inside the graph are isolated nodes. Fig-
ure 10.a represents a sample package with the minimum value of cohesion, that is
P_Cohesion(P,) = 0.

The best case occurs when there is at least one edge between each pair of nodes
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in the graph or the graph is fully connected. Figure 10.b represents a sample package
with the maximum value of cohesion, that is P_Cohesion(P,) = 1.

For having a reasonable value of cohesion, the graph should be at least connected,
meaning that all subprograms inside the package are being called or call other subpro-
gram inside the same package. Having a node not connected to the graph indicates
that this subprogram is not related to the functionality of the other subprograms
inside the package.

We can consider the following cases where the graph is not connected:

Case 1: The graph is connected through the minimum number of edges, implying
that by omitting an edge, the graph becomes disconnected (see Figure 10.c).

Representing the call graph of package P, by a graph G = < E, R > with |E| = n,

the minimum number of edges that keeps the graph connected is n — 1. Thus,

if |Rl<n-1

= S0 Y175 Relation(SP, SP;) < 2(n — 1)

= P_Cohesion(P;) <

S|

Therefore, holding the cohesion value less than % for a package with n subpro-
grams implies that at least one of the subprograms inside the package is not logically
related to the others. This value can be considered as the threshold for cohesion
of a package. Holding the cohesion value less than % implies that the graph is not

connected. However, holding the cohesion value equal or greater than % does not
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necessarily imply that the graph is connected (explained in case 2).

Case 2: The number of edges is greater than or equal to n — 1. However, some
of them connect a pair of nodes which are connected through some other nodes and
still the graph is disconnected. Figure 10.d represents this case where the number of
edges is equal to n — 1, but the graph is disconnected.

Representing the call graph of package P; by a graph G =< E, R > with |E| = n,

the maximum number of edges that makes the graph connected is (nfl) Thus,

if |RI> (,2,)

=y ;-:01 Relation(SPF;, SP;) > (n—2)(n —1)

= P_Cohesion(P;) > 1— 2

Therefore, holding the cohesion value more than 1 — % for a package with n sub-
program implies that all subprograms inside the package are logically related to each
other. This value can be considered as the lower bound of having a high cohesion for

the package. Thus, we can conclude that Vn > 3,

Low P _Cohesion(P,) € [0, 2)

Cohesion Level = \ Medium P_Cohesion(P;) € [2,1 — 2]

High P _Cohesion(P,) € (1 — 2,1]
\

n’
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Table 2: Cohesion measure of the packages shown in the call graph of Figure 9.

Package | Cohesion | n | Cohesion Level
) 0.4 8 Medium
P 0.66 3 High
P 0.33 6 Medium
P3 1 2 High
System 0.59 - -

Deploying the formula as a metric, we can measure the cohesion of packages shown
in Figure 9 and the results of these measurement are listed in Table 2. The results indi-
cate that P_Cohesion(P;) > P_Cohesion(P;) > P_Cohesion(Fy) > P_Cohesion(P,).
Even though these measures are relative to all packages in the system, we can con-
clude that subprograms in P; are more related than those in other packages, also the
implemented concerns by package P is more well-encapsulated than the concerns im-
plemented by other packages. Based on this formula, package P, is the least cohesive
package in this system. In the call graph shown in Figure 9, the ratio of existing edges
to potential (possibly existing) edges is very low, implying that the subprograms do

not strongly collaborate inside the package.

6.1.2 Formal validation

Briand et al. in [10] have discussed a set of properties to validate any cohesion
measure. We can prove that our proposal for a cohesion metric can be validated, by

applying all these properties as follows:

1. Non-negativity and normalization. As mentioned in the previous subsection,

cohesion of a package belongs to the interval [0, 1].
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2. Null value. Cohesion of a package is equal to 0, if there is no Intra-Package
dependency among its subprograms, because in this case the fan_out of all

subprograms becomes 0.

3. Monotonicity. Adding an Inter-Package edge to a package does not decrease the
cohesion of the package, since for calculating cohesion we are only concerned

with Intra-Package edges.

4. Merging packages. If two packages, F; and P; for which there is no Inter-Package
dependency between them, are merged to form a new package P, then the
package cohesion of P, would not be greater than the maximum of the package
cohesion of P; and P;. The reason is that not only increasing the number of
some unrelated subprograms in a package will not increase the cohesion, but it

will also degrade the level of relatedness of subprograms inside the package.

6.2 Coupling

In an Ada program, coupling is the degree to which the functionality of a package is
dependent on the operation of other packages. Thus, we use the Inter-Package graph
to measure the coupling of a package to other packages, as in this graph only edges
which are connecting two different packages are shown.

We define a metric to measure the coupling of a package to any other packages in
the system and the system as a whole, based on the degree of dynamic dependency

(call relation) from the given package to other packages.
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Definition 9: Given a system with m packages Py, P, ..., Pn—-1, the coupling of

package P; to P;, P_Coupling(P;, F;) is defined as:

P _Coupling(P,, P;) = fan-out(F;, P;)

In this formula, we consider fan_out(P,, P;) = 0 when ¢ = j, and as a result
P_Coupling(P;, P;) = 0, because if there exist any call from one package to itself, the
related edge would appear in the Intra-Package graph, not the Inter-Package graph.
The reason of choosing fan-out as the coupling indicator is that it shows how much a
package sends messages to other packages and, as a result, how much its functionality
is coupled to the functionality of other packages. Fan-in analysis for a package indi-
cates how much other packages in the system are coupled to the mentioned package.
Based on this metric, the same query used for calculating fan-out(P;, P;), mentioned
in Definition 5, can be used for calculating the value of P_Coupling(P;, P;) directly

from the database.

We have defined three other metrics which can provide some useful information
about the system.
Definition 10: The coupling of a package P; to all other packages or the system
as a whole, P_Coupling(P;, system), is defined as:
m—1
P_Coupling(P;, system) = Z P_Coupling(P;, P;)
§=0
The value of P_Coupling(P;, system) can be calculated directly from the database

by the following query:
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select count(msg.Mess_ID)

from Message msg join Package pckgl join Package pckg?2
on msg.Caller_Pack_ID = pckgl.Pack_ID and
msg.Callee_Pack_ID = pckg2.Pack_ID

where
pckgl.Pack_Name = "Pi" and
pckg2.Pack_Name <> "Pi" and

pckg2.Pack_Name <> "main";

Definition 11: The coupling of the system as a whole to a specific package P;,

P _Coupling(system, P;), is defined as:

m—1
P_Coupling(system, P;) = Z P_Coupling(B;, P))
i=0

The value of P_Coupling(system, P;) can be calculated by the following query:

select count(msg.Mess_ID)

from Message msg join Package pckgl join Package pckg2
on msg.Callee_Pack_ID = pckgl.Pack_ID and
msg.Caller_Pack_ID = pckg2.Pack_ID

where
pckgl.Pack_Name = "Pj" and
pckg2.Pack_Name <> "Pj" and

pckg2.Pack_Name <> "main";

Definition 12: The coupling of the system, S_Coupling, is defined as:
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St St P_Coupling (P, Pj)
m

S_Coupling =

The query to calculate S_Coupling is defined as follows:

select count(distinct msg.Mess_ID)/
(count (distinct pckg.Pack_ID)-1)
from Message msg join Package pckg
where
msg.Caller_Pack_ID <> msg.Callee_Pack_ID and

msg.Caller_Pack_ID <> 1;

We consider the average coupling of all packages as the coupling for the over-
all system. The obtained value of S_Coupling can be used to compare the overall

coupling of the system before and after applying a change to the system.

6.2.1 Analysis

Based on this Definition 10, if there is only one package in the system, coupling of the
package would get its minimum value which is 0 since the package is not dependent
on any other packages. However, it does not necessarily imply a good system design
since this situation would indicate that the responsibilities in the system are not well-
distributed, but this problem can reveal itself by measuring the package cohesion.

As we did for cohesion, in order to define a threshold for the coupling of a package,
two main cases should be considered, the worst and the best cases for coupling.

The worst case occurs when each of the subprogram in the package send a message
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to every other subprogram in the system, but this case occurs very rarely and it
implies a very weak design of the system. Therefore, we consider the worst case as
the situation where each of the subprogram in the package is communicating with
all other packages in the system, implying that each subprogram sends at least one
message to every other package. Figure 11.a represents a sample system call graph
with the worst case of coupling?. Let n; be the number of subprograms inside package

P, in a system with m packages, thus Vj € N, =0.m —1,m > 1,

P _Coupling(P;, P;) = n,

P_Coupling(P;, system) = n; X (m — 1)

As we mentioned, the case where P_Coupling(P;, system) > n; x (m — 1) is very
unlikely to occur. We name this situation having a coupling greater than the threshold.
However, we do not take this case into consideration.

The best case occurs when only one subprogram in the package is communicating
with at most one of the other packages (subprogram inside the other package) in the
system, implying that each package sends at most one message to one other package.
Figure 11.b represents a sample system call graph with the best case of coupling.

Thus, 35 € N;j=0.m—-1,m > 1, and

2To improve clarity, subprograms inside packages are not shown in Figure 11.
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Figure 11: Package with the a) maximum, b) minimum and c) medium level of
coupling.

P _Coupling(P;, P;) =1

P _Coupling(F;, system) = 1
The intermediate case occurs when only one subprogram inside a package com-
municates with more than one package in the system, that is considering each pair of
packages of the system, there is only one edge from the source package to the target
package. Figure 1l.c is a sample system call graph representing this case. Thus,

VieN,7=0m—-1m>1

P_Coupling(P;, P;) = 1

P_Coupling(P;, system) =m — 1
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Table 3: Coupling measure of the packages shown in the call graph of Figure 8.

Coupling of | Py | P, | P, | P; | System | Coupling Level
B 03|15 9 Strong
P 31012 6 Strong
P, 001|010 0 Weak
P 001|010 0 Weak
System 313127 3.75 -

We consider this case as the threshold for the coupling value for a package when

m > 1. That is, the possible levels for coupling will be based on the following,

Weak P _Coupling(P;, system) € [0,1]

Coupling Level = ¢ Medium P_Coupling(P,, system) € (1,m — 1]

Strong  P_Coupling(P;, system) € (m — 1,n(m — 1)]
\

According to this metric, the coupling measures of packages in the sample call
graph shown in Figure 8 are listed in Table 3. As shown in Table 3, package P, is
strongly coupled to P3, P, and P,. As a result, its level of coupling to the system is

higher than the level of coupling between any other package and the system, i.e.

P _Coupling(PO0, System) > P_Coupling(P1, System) and
P_Coupling(PO0, System) > P_Coupling(P2, System) and
P _Coupling(P0, System) > P_Coupling(P3, System)

Conversely P; and P, are not coupled to other packages, while most of the packages

are coupled to them. Having zero value for fan_out, they have the minimum amount
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of coupling to the system which is 0.

6.2.2 Formal validation

Briand et al. in [10] have provided a set of properties to validate any coupling measure.
We can prove that our proposal for a coupling metric can be validated, by applying

all these properties as follows:

1. Non-negativity. In the above mentioned metrics (Definitions 9 and 10), the

coupling of a package always has a non-negative value, because:

VP, A\ Pj, fan_out(P;, P;) > 0.

2. Null value. Based on the defined metric, when there is no call from a package to

any other package in the system, it implies that P_Coupling(P;, system) = 0.

3. Monotonicity. Adding an Intra-Package edge to a package does not decrease
coupling of the package, since in calculating coupling, we are only concerned

about Inter-Package edges.

4. Merging packages. If two packages, P; and P;, are merged to form a new Package
P, then the package coupling of P, would not be greater than the summation
of coupling values of F; and P;. The reason is that, the edges between F; and P;
(if exist) which were considered as Inter-Package edges, become Intra-Package
edges after merging. Therefore, the coupling of the newly formed package P

will be less than or equal to the summation of P; and F; coupling values.

5. Disjoint package additivity. If two packages, P, and F;, for which there is no
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Inter-Package dependency, are merged to form a new package Py, then the
package coupling of P, would be equal to the summation of coupling values of
P, and P;. The reason is that none of the edges from the previous Inter-Package

graph will be considered as an Intra-Package edge. Thus, the coupling of the
newly formed package P, will be exactly equal to the summation of coupling

values of F; and P;.

6.3 Modularity

As we mentioned in Section 2.3, cohesion and coupling are the dominant driving
factors of modularity [17, 46, 54]. Therefore, in order to define a metric for system
or package modularity both cohesion and coupling should be considered. Strong
coupling for a package reduces its modularity, while cohesive packages tend to be more
modularized. Based on these relations between modularity, cohesion and coupling,
we define the modularity of a package as follows:

Definition 13: The modularity of a package P;, P_Modularity(FP;), is defined

as.

P _Cohesion(F;)

P_Modularity(P;) =
oqutari y( ) P_COUplTng(-PH system) +1

Definition 14: The modularity of the system, S_Modularity, is defined as:

S_Cohesion
S _Coupling + 1

S_Modularity =
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Table 4: Critical cases for measuring the modularity of package F;.

Case | P_Cohesion(P;) | P_-Coupling(P;, system) | P_.Modularity(P;)
1 0 0 0
2 0 n(m — 1) 0
3 1 0 1
4 1 n(m —1) CEE]

The reason behind incrementing the coupling measure by 1 in the denominator
of these two metrics is to avoid division by zero. The value of P_Modularity(F;)
and S_Modularity can be retrieved from the database by merging the queries of
P_Cohesion(P;) and P_Coupling(P;, system). The query is not shown here due to

space limitations.

6.3.1 Analysis

Depending on the boundary values for P_Cohesion(P;) and P_Coupling(P;, system)
one of the cases (rows) of Table 4 may occur.

Case 1: It occurs when the cohesion of the package has its minimum value,
implying that none of the subprograms inside the package are connected together, but
instead they are only communicating with other packages. At the same time, package
coupling is at its minimum. This case implies that the subprograms inside this package
are called by other packages and they are more strongly related to the functionalities
implemented in other packages rather than those in P,. This module should be broken
down and each subprogram should be localized in the most related package. In this
case, we define the minimum value for modularity as P_Modularity(P;) = 0.

Case 2: This case is the worst case where the subprograms inside the package are
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not related together and at the same time they are highly coupled to functionalities
of other packages. This module should be broken down and each subprogram should
be placed in a package to which it is the most related. Based on the proposed metric
for measuring modularity, P_Modularity(P;) = 0.

Case 3: This case is the best case where the package holds the maximum value for
cohesion and the minimum value for coupling, implying that F; is a cohesive package
with no dependency on other packages. Based on the proposed metric for measuring
modularity, P_Modularity(P;) = 1.

Case 4: It occurs when the subprograms inside the package are strongly related,
but they are highly coupled to other packages in the system. The best solution for
this case is to keep this cohesive package F;, and transfer the subprograms of other
packages to which P, is highly coupled. Based on Definition 13, P_Modularity(FP;) =
A= T

If the package holds any other value for its coupling or cohesion, its modularity

can be calculated by P_Modularity(P;) (Definition 13).

Based on these four cases, we can conclude that for a given package P;,

0 < P_Modularity(P;) <1

However, we can define a threshold for modularity of a package based on all possi-
ble values for cohesion and coupling of a package (shown in Figure 12). We define the
best, medium and worst ranges of modularity of a package based on obtained ranges

of coupling and cohesion of the package. As shown in Figure 12 for both cohesion
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Figure 12: Possible values for cohesion and coupling of a package.

and coupling, the a, b and ¢ ranges represent the best, medium and worst ranges re-
spectively. We consider the best case of modularity when both cohesion and coupling
are in best range, the worst case of modularity when both cohesion and coupling are

in worst range, and the medium case of modularity for any other situations. That is,

High P_Cohesion(P;) € [1 — 2,1] and

P _Coupling(P;, system) € [0,1]

Modularity Level = < Low P_Cohesion(F;) € [0,2) and

P_Coupling(P;, system) € (m — 1,n(m — 1)]

Medium Others

\

Since modularity is a ratio of two factors, we cannot define a threshold for mod-
ularity based on a specific value, and as a result we cannot anticipate a range of
values for intermediate situations where the range of coupling and cohesion are not
the same. Based on Figure 12, these intermediate situations occur when the package

holds one of these pairs for its cohesion and coupling values respectively; (al,b2),
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Table 5: Modularity measure of the packages in the call graph shown in Figure 7.

Modularity | Cohesion | Coupling | Modularity | Modularity
of Level Level Level Value
By Medium | Strong Medium 0.04
P, High Strong Medium 0.09
P Medium Weak Medium 0.33
Py High Weak High 1
System - - - 0.124

(al,c2), (bl,a2), (b1,b2), (bl,c2), (cl,a2) or (c1,b2). Thus, the level of modularity
of a package should be determined based on the level of corresponding measures for
cohesion and coupling. However, the calculated number for modularity based on
Definition 13 can be used for comparing the modularity of different packages, or the
modularity of the package before and after restructuring or any other change during
the maintenance phase.

Table 5 shows the modularity of the packages of the call graph shown in Figure 7.

Based on the calculated values for modularity, we can conclude that
P_Modularity(Po) < P_Modularity(P,) < P_Modularity(P,) < P_Modularity(Ps).

As a summary of this chapter, we have defined measures for cohesion, coupling
and modularity and related thresholds for reasoning about the modularity of packages
in the system and as the result find the packages whose modularity as one of the main

internal attributes has been corrupted.
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Chapter 7

Validation through a case study

In this chapter, we take a case study, then we monitor the program execution using
AspectAda. This experience proved how efficiently the dynamic behavior of the
system can be obtained without modifying the source code, especially in cases where
the system is medium- to large-scale. Then, we apply the approaches mentioned in
Chapter 5 to obtain comprehension over the dependencies between system modules,
and finally we use the metrics defined in Chapter 6 to measure the modularity of the
system. In order to validate the proposed metrics, we apply certain refactorings on
the system, expecting an improvement in the cohesion, coupling and modularity of
the system. Then, by measuring each of these factors in the refactored system, we
check whether or not the obtained result is the same as what we are expecting. In
this way, we ensure whether or not our investigation on “how the proposed metrics
behave as the system evolves” as one of the expected contributions of this research is
accomplished.

We apply our approach on an open source project called Shapes which is in-
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Table 6: Captured traces of Shapes project.

Call Log_Count | Exec_Depth
Screen.Put_Point (: Integer) 78 3
Shapes.Lines.Draw (: in Line.Type) 79 2
Screen.Put_Line (: Point_Type) 80 3
Screen.Put_Line (: Integer; : Integer) 81 4
Screen.Put_Point (: Integer) 82 )
Screen.Put_Point (: Integer) 83 3
Shapes.Lines.Draw (: in Line_Type) 84 2
Screen.Put_Line (: Point_Type) 85 3
Screen.Put_Line (: Integer; : Integer) 86 4

cluded in the GNAT package [27]. In this system, there are three defined types as
Line_Type, Rectangle_Type and Face.Type where all three are the extended types
of Shape_Type. They inherit some of the subprograms and introduce new subpro-
grams. The scenario under which the system is being analyzed is as follows: first
the user creates some shapes such as line, rectangle or face (which is implemented
by initialization subprograms), then he refreshes the screen by clearing and drawing
these shapes. The user can also move each shape; after each move, the screen gets re-
freshed automatically. Also, the user can place the existing shapes to create different
figures on the screen (which is implemented by stack subprogram) and this action
is followed by refreshing and drawing the figures automatically. We run the program
and execution traces are captured by Logger_Aspect. Table 6 lists a partial sequence
of the extracted traces.

The numbers in Log_Count column are the order of the calls and the numbers
in Exec_Depth column correspond to the level of the calls in the overall system call
hierarchy. After the traces are extracted, we populate the corresponding tables in

the database to have cumulative data for further analysis. Having the traces, we can
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Figure 13: The call graph of project Shapes.

visualize them as a call graph as shown in Figure 13!. In this call graph E, R and M

are as follows:

E = { Refresh,Clear, Draw(: Face_Type),
NEast(: Face_Type), N East(: Rectanglerype),

Put_Line(: Point_Type), Put_Line(: Integer;: Integer),

o}

R = { < Shapes.Refresh, Screen.Clear >,
< Shapes.Refresh, Faces.Draw(: Face Type) >,
< Faces.Draw(: Face-Type), Faces.SWest(: Face Type) >,

-}

In order to improve clarity of the figure, the signatures of the subprograms are not shown, except
in the case of overloaded subprograms.
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M = { Shapes, Shapes.Rectangles, Shapes.Lines, Faces, Screen }

Based on the number of entries in the related tables in the database, |E| = 24
as the number of subprograms defined in 5 packages (|M| = 5), and the number of
call relations between these subprograms to run the scenario are 491 (|R| = 491).
It is important to mention that we should not include the main package and main
subprogram in measuring the coupling and cohesion since these are some auxiliary
components added to database for data consistency and visualization. The corre-
sponding Intra-Package and Inter-Package graphs can be extracted from this call

graph, but due to space limitations,they are not shown here.

7.1 Quality measurement of the system

Cohesion Table 7 lists the value and level of cohesion of each package in this
project. Based on the result, most of the packages in this system have a low degree

of cohesion.

Table 7: Cohesion measure of the packages of project Shapes.

Package Cohesion | n | Cohesion Level
Shapes 0 2 Low
Shapes.Rectangles 0 7 Low
Shapes.Lines 0 3] Low
Faces 0.4 5 Medium
Screen 0.2 5 Low
System 0.12 - -

Also as it is shown in the call graph, the Intra-Package edges exist only in two of
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Table 8: Coupling measure of the packages of project Shapes.

Coupling Shapes Shapes. Shapes. | Faces | Screen | System Coupling

of Rectangles Lines Level

Shapes 0 4 4 2 2 12 Greater than threshold
Shapes.Rectangles 0 0 0 0 1 1 Weak
Shapes.Lines 0 0 0 0 1 1 Weak
Faces 0 6 1 0 1 8 Strong
Screen 0 0 0 0 0 0 Weak

System 0 10 ) 2 5 4.4 -

the packages in the graph (Faces and Screen). In other packages, there is no relation
among the subprograms inside the package, implying that the package contains the
implementation of some different and unrelated concerns. For instance, packages
Shapes.Rectangles and Shapes.Lines contain a set of subprograms which are only
called by other packages. These results imply that some refactorings are needed
to localize the most related subprograms in one cohesive package. For example,
subprogram Initialize separated in three packages can be localized into one package

that exclusively implements this concern.

Coupling Table 8 lists the value and level of coupling of packages in this project.

Based on the result, package Shapes holds the coupling value even greater than
the threshold, implying that it is strongly coupled to other packages. That is because
it contains two unrelated subprograms, Refresh and Stack, each of which is sending
more than one message to every package. Also package Faces is strongly coupled to
the functionalities of the other packages. Other packages have a weak level of coupling,
since they are sending at most one message to only one package in the system. This

shows that they are able to handle a concern with the minimum dependency to other
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Table 9: Modularity measure of the packages of project Shapes.

Modularity of Cohesion Level Coupling Level Modularity Level | Modularity Value
Shapes Low Greater than threshold Low 0
Shapes.Rectangles Low Weak Medium 0
Shapes.Lines Low Weak Medium 0
Faces Medium Strong Medium 0.04
Screen Low Weak Medium 0.2
System - - - 0.022

subprograms or packages.

Modularity Having the cohesion and coupling of the system packages, we can
evaluate the modularity of each package using the metrics proposed in Section 6.3.
The modularity of packages in the system is listed in Table 9.

The combination of both value and level of the modularity for a given package
can be used to compare or reason about the modularity of the package. For instance,
based on the results shown in Table 9, we conclude that package Shapes has the least
modularity in this system, that is because it has the least possible cohesion which is 0
and a high value even greater than the threshold for coupling. This implies that not
only this package has a very low degree of quality, but also it has degraded the overall
modularity of the system. Some reengineering tasks are required to restructure the
package, so that its quality gets improved. Even though packages Shapes.Rectangles
and Shapes.Lines hold a weak level of coupling, they are not very cohesive. However,
they have better quality than package Shapes. Package Faces is the most cohesive
package, but it is highly coupled to other packages. Package Screen is not coupled
to other packages, but it has a low level of cohesion. Overall, packages Screen and

Faces, tend to have higher quality among all packages in the system.
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7.2 Quality measurement of the refactored system

The goal of this section is to validate the proposed metrics for cohesion, coupling and
modularity of the packages in a system. Essentially, obtaining measurements on a
system is analogous to taking a snapshot of the status of its quality in terms of a set of
quality attributes which are of interest to the analysis at the time. By implementing
refactoring, we expect the quality of the system to improve for the same set of quality
attributes. In this case study we take two snapshots, one before refactoring and one
after refactoring. We then we compare the two snapshots to determine the degree
to which refactoring has improved the quality attributes under consideration. To
evaluate the system we run it under the same scenarios and extract the execution
traces. Then, we form the call graph to observe the dependencies in the refactored
system. In the next step, we apply the metrics on the system to measure the cohesion,
coupling and modularity of the packages. Finally, we compare the obtained measures
from the original and refactored system to validate whether or not the proposed
metrics provide measures which are consistent to our expectations.

How to determine which refactoring strategies are the most suitable for this system
is out of the scope of this research. However, based on the exhibited anomalies by
the packages and the guidelines discussed in [23], we chose the following changes to

apply to the system:

e Localizing the initialization concern in one newly created package, named
Initialization and moving three subprograms Initialize defined in three

packages
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Shapes.Rectangle, Shapes.Lines and Faces in package Initialization. We
expect that this task will reduce the coupling between the three packages

Shapes.Rectangle, Shapes.Lines and Faces and builds a new cohesive pack-

age.

e Transferring subprogram Refresh from package Shapes to package Screen. The
reason is that the functionality of subprogram Refresh is clearing and refreshing
the screen and drawing some shapes. Thus, it is more related to screen related
concerns than shape concerns. By applying this change, we expect to improve

the measures for coupling and cohesion of package Shapes.

e Applying the polymorphism feature in packages Shapes, Shapes.Rectangle,
Shapes.Lines and Faces by defining a subprogram Stack in both Shapes.Lines
and Shapes.Rectangle packages. This way, when the subprogram Stack in
package Shapes is called, based on the received argument, this subprogram dele-
gates the call to its corresponding child, either Shapes.Rectangle, Shapes.Lines
or Faces. By applying this change, we expect a decrease of coupling of package

Shapes, and an increase of cohesion of its children packages.

We apply the changes, run the program, and make sure that the behavior of the
system is preserved (one of the criteria of the refactoring concept). Due to space
limitations, we do not show the extracted execution traces, and Intra-Package and
Inter-Package graphs and only the obtained call graph is shown (Figure 14). In
the following subsections, cohesion, coupling and the modularity of the packages are

measured.
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Figure 14: The call graph of the refactored project Shapes.
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Table 10: Cohesion measure of the packages of the refactored project Shapes.

Package Cohesion | n | Cohesion Level
Shapes 1 1 High
Shapes.Rectangles 0.2 7 Low
Shapes.Lines 0.3 5 Low
Faces 0.3 5 Low
Screen 0.3 5 Low
Initialization 0.66 3 High

System 0.46 - -

Cohesion Table 10 lists the value and level of cohesion of each package in the
refactored system.

The comparison of the cohesion values of packages and system in the original and
refactored system are shown in Figure 15. Based on the obtained results, the cohesion
of all packages, except package Faces, has increased particularly for package Shapes,
also the cohesion of the system has increased significantly from 0.12 to 0.46. We

observe that the obtained results are based on our expectations from the changes.
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Figure 15: Comparison of the cohesion values of the original and the refactored
systems.

This observation validates the applicability and correctness of the proposed metric

for measuring the cohesion of the system and its packages.

Coupling Table 11 lists the value and level of coupling of packages in this project.
The comparison of the coupling values of packages and system in the original and
refactored system are shown in Figure 16. Based on the obtained results, the cou-
pling of packages Shapes and Faces has decreased, while the coupling of packages
Shapes.Rectangles and Shapes.Lines has not changed since they had a weak level
of coupling in the original system. The only package whose coupling has increased
is package Screen. However, the overall coupling value of the system has decreased
noticeably from 4.4 to 2.5. We observe that the obtained results are based on our
expectations from the refactorings. This observation validates the applicability and

correctness of the proposed metric for measuring the coupling of the system and its
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Figure 16: Comparison of the coupling values of the original and the refactored
systems.

packages.

Table 11: Coupling measure of the packages of the refactored project Shapes.

Coupling Shapes Shapes. Shapes. | Faces | Screen | Initial- | System | Coupling

of Rectangles Lines ization Level

Shapes 0 1 1 1 0 3 0 Weak

Shapes.Rectangles 0 0 0 0 1 0 1 Weak

Shapes.Lines 0 0 0 0 1 0 1 Weak

Faces 0 3 0 0 1 0 4 Weak

Screen 0 0 1 1 0 0 2 Weak

Initialization 0 2 0 2 0 0 2 Weak
System 0 6 2 4 3 0 2.5 -

Modularity The modularity of packages in the system is listed in Table 12.

The comparison of the modularity values of packages and system in the original
and refactored system are shown in Figure 17. Based on the obtained results, the
modularity of all packages, except package Screen has increased. Modularity of

package Screen has decreased due to the increase of its coupling from 0 to 2. However,
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Table 12: Modularity measure of the packages of the refactored project Shapes.
Modularity of Cohesion Level | Coupling Level | Modularity Level | Modularity Value
Shapes High Weak High 0.25
Shapes.Rectangles Low Weak Medium 0.1
Shapes.Lines Low Weak Medium 0.15
Faces Low Weak Medium 0.06
Screen Low Weak Medium 0.1
Initialization High Weak High 0.22
System - - - 0.13
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Figure 17: Comparison of the modularity values of the original and the refactored
systems.

the overall modularity value of the system has increased significantly from 0.022
to 0.13. We observe that the obtained results are based on our expectations from
the refactorings. This observation validates the applicability and correctness of the

proposed metric for measuring the modularity of the system and its packages.
As a conclusion of this chapter, we observe that the obtained results of this system
before and after verify that the proposed metrics are appropriate indicators of system

internal attributes as cohesion, coupling and modularity. Having these indicators,
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maintainers of the system are able to find potential packages that tend to decrease
the overall quality of the system. These metrics also can be used as indicators to
reveal whether or not a potential change to the system would degrade the overall

quality of the system.

70



Chapter 8

Tool support

In this chapter, we describe the details of the underlying mechanisms used for dynamic
analysis tools in the following paragraphs.

In order to support the proposed methodology in this research, we have developed
a prototypical tool, named ADynA: Ada Dynamic Analyzer. This tool is developed
to analyze the gathered raw data on dynamic events during runtime. We expect that
the task of code instrumentation is completed (with AspectAda or otherwise) and
the traces are obtained and stored. The input to the tool is the text file containing
all calls made at runtime. Figure 18 shows the first tab of the tool that the user can
choose the input traces file through Load File button. After the file is selected, all

recorded calls get loaded into the call view and are ready to get analyzed by pushing

Analyze File button.
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8.1 ADynA features

The result of analysis functionality of the tool can be categorized as follows:

e System comprehension through the extraction of information about both struc-
ture of the system components and also dynamic behavior of the system during
execution. The result of structural analysis, shown in Program Components tree
view of Figure 19, is a tree view of the packages and their subprograms witch
are involved in the execution of that specific scenario. The result of behavioral
analysis, shown in Messages list of Figure 19, is a list of all messages passed
between the above mentioned packages and subprograms during the execution
of that specific scenario. The messages in this list are ordered based on the time

they have been generated.

e Graph-based visualization to provide a better representation of the system dy-
namic behavior. The call graph extracted from the message passing list is
generated and drawn in the Graph Visualization view of the tool, shown in

Figure 20.

e Measurement analysis through applying the metrics mentioned in Chapter 6 on
the list of messages. The corresponding tables, shown in Figure 21, represent the
values and levels of cohesion, coupling and modularity of each package during

the program execution.
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8.2 ADynA implementation

ADynA is implemented in Ada, however only for Graphical User Interface (GUI) we
have used Java, since Ada does not fully support graphical representations. Also for
call graph representation, we utilized an stand-alone tool named Graphvis 2.20 (Graph
Visualization Software). Graphvis is an open-source graph visualization software that
takes descriptions of graphs in a simple text language, and make diagrams in several
formats including call graph. MySQL is used as the Relational Database Management

System (RDMS) in ADynA for data storage and retrieval.

8.3 ADynA adaptability

One of the objectives of ADynaA design and implementation is to deploy an adapt-
able tool which is capable to analyze a set of object-oriented program including Ada,
Java, C++, C# and etc. The only required condition for including a programming
language in this set is that the language should support the concept of the units
of modularization (package) each of which including a set of functionalities (sub-
program). Any functionality in a unit should be able to communicate with (call)
accessible functionalities inside the same surrounding unit, and also any unit should
be able to communicate with (call) the accessible functionalities included inside other
units. Once the list of calls (with a specific format mentioned in Section 5.3) are
generated by an instrumentation tool, ADynA can store the traces in the database
and through the same queries mentioned in Sections 6.1, 6.2, 6.3, the values and levels

of cohesion, coupling and modularity of the units or the system can be evaluated.
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8.4 ADynA limitation

One limitation that we can consider for ADynA is the scalability of the call graph.
The call graph generated from the execution of a large-scale program has a lot of
nodes and edges. However the tool used for graph visualization (Graphvis) does not
allow to zoom. As the result the call graph will become difficult to understand and
trace. Adding some levels of abstraction for visualization can help in categorizing a
set of subprograms or packages inside a abstract unit. This way, we can visualize a

more clear graph.
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Chapter 9

Related work and evaluation

The proposed approaches for system analysis are mostly specialized for some spe-
cific needs. In this field, proposed metrics for measuring and evaluating the system
internal quality attributes such as cohesion, coupling are the basic proposals in the
literature which are either general for any object-oriented system or defined for a
specific language. We discuss the language-independent proposals in the next two

sections 9.1 and 9.2, following by Ada specific analysis approaches in Section 9.3.

9.1 Cohesion

Several approaches have been proposed in the literature to measure cohesion in an
object-oriented system each of which falling under different categories based on the

kind of cohesion they measure.
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9.1.1 Maeasuring structural cohesion

This is the most investigated category and the one followed by our approach. The
main idea behind measuring structural cohesion is to investigate the level of relations
between class (package) elements, such as variables and methods (subprograms). Sub-
programs are related when they either use the same set of variables or invoke each
other. Some commonly used and known metrics defined in this category are as follows:

LCOM]1 [14]: Chidamber and Kemerer have defined LCOM1 (Lack Of Cohesion)
for measuring the class cohesion as the degree to which the methods are similar in
accessing the instance variables. LCOMI1 is the number of pairs of methods that
share no instance variables.

LCOM2 (13]: In the later work, Chidamber and Kemerer have proposed LCOM2
as subtraction of the number of pairs of methods with shared instance variables from
the number of pairs of methods without shared instance variables. If the result is
negative, the cohesion measure will be 0.

LCOM3 [43]: Li and Henry have defined this measure as follows: Consider an
undirected graph G where the vertices are the methods of a class and there is an
edge between two vertices if the corresponding methods share at least one instance
variable. LCOMS3 is defined as the number of connected components in graph G.

LCOM4 [34]: Hitz and Montazeri have added the concept of call relation to the
cohesion measure defined by Chidamber and Kemerer and restated by Li and Henry.
LCOM4 is the same as LCOMS3 where graph G additionally has an edge between

vertices representing methods a and b, if method a invokes method b or vice versa.
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C [33]): Hitz and Montazeri have defined C (Connectivity) which discriminates
classes having LCOM4= 1 by taking into account the number of edges of the connected
component. C is a linear mapping of the interval [n-1, n.(n-1)/2] (as the result of
LCOM4) onto the interval [0, 1] as follows: Let V' be the vertices of graph G from

LCOM4 and FE its edges, then

— olEl-(n-1)
C= 2(n 1)(n~2)

LCOMS5 [33]: LCOMS is defined as follows: Consider a set of methods M; (i =
1,...,m) accessing a set of instance variables A; (j = 1,...,a). Let u(A;) be the

number of methods that reference A;. Then

LCOMS5 = (2) >i=1 u(A5)—m

1-m

TCC and LCC [5]: The measure TCC (Tight Class Cohesion) is the relative
number of directly connected methods and LCC (Loose Class Cohesion) is the relative
number of directly or indirectly connected methods. They are defined as follows: Let
NP be the maximum number of public method pairs, that is, NP = N *(N Y for N
public methods. Let NDC be the number of direct connections and NIC be the
number of indirect connections between public methods. Then TCC is defined as
TCC = ¥BC and LCC as LOC = YRCENIC,

RCI [7]: RCT has been introduced for measuring the cohesion of a class in object-
oriented systems as a ratio of number of all existing interaction between methods and
data declaration in a class to the number of all possible interactions.

CBMC [11]: CBMC has been defined for measuring cohesion of a class. Chae et

al. have used reference graph representing the relations among methods and instance
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variables in a class. They believe that two factors affect the cohesion of a class. First,
the connectivity of the reference graph and second, the pattern of interactions among
the constitute components of a class.

ICBMC [69]: Zhou et al. have analyzed the limitations with the existing measures
for cohesion and finally they have proposed ICBMC as an improved measure for
cohesion based on CBMC defined by Chae in [11].

DRC [68]: Zhou at al. have defined DRC as a more precise measure for cohesion
of a class than those proposed before. DRC uses a class member dependence graph to
represent all kind of dependencies among class members. Cohesion is measured based
on four types of basic dependency as: 1) Read dependence from methods to attributes,
2) Write dependence from attributes to methods, 3) Call dependence between meth-
ods and 4) Flow dependences between attributes. They believe that considering four
above mentioned types of relations can better characterize all relations among the
members of a class.

DMC [63]: The definition of DMC is similar to the definition of DRC measure. The
authors have proposed the construction of an adjacency matrix to be able to reflect the
dependence degree of explicit dependencies among the nodes in the dependence graph.
Comparing with the previous cohesion measures, they believe that in the previous
works, neither the direction of dependencies between methods and attributes, nor flow
dependencies and potential dependencies are characterized. DMC precisely considers
the relationships among the elements in a class, which characterizes not only four
types of explicit dependencies (read dependence, write dependence, call dependence,

and flow dependence), but also the implied indirect and potential dependencies.
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In addition, Briand [7] has defined a unified framework that classifies and compares
all the above mentioned metrics for cohesion. Data flow between the methods is
the principle factor for measuring cohesion. Most of the above mentioned measures
consider only instance variables used or shared between methods for calculating the
class cohesion. The only metrics that consider call relations (method invocation)

among the methods as well as instance variable usage are LCOM4 and DRC measures.

9.1.2 Measuring conceptual cohesion

Another category of metrics are proposed to measure how class elements are logically
related. The main idea behind this category relies on the fact that a cohesive class is a
unit whose elements are conceptually and functionally strongly related. The method-
ology behind this class of cohesion is based on analysis of the semantic information
embedded in the source code, such as comments and identifiers. This category in-
cludes metrics such as LORM (Logical Relatedness of Methods) [19], C3 (Conceptual
Cohesion of Classes) [45] which is based on semantic information in the source code

and the composite cohesion metric proposed by Patel et al. [50] that measures the

information strength of a module.

9.1.3 Measuring other types of cohesion

Some other cohesion metrics have been proposed based on other aspects of the system
such as Slice-based metrics [47] as a complementary views of cohesion to the struc-

tural metrics, cohesion for knowledge-based systems [39], dynamic cohesion metrics
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for distributed applications [15], information theory-based metrics [2] and metrics

proposed for measuring cohesion in aspect-oriented programs (26, 67].

9.2 Coupling

Several approaches have been proposed in the literature to measure coupling of object-

oriented systems. They can be categorized based on the kind of coupling they mea-

sure.

9.2.1 Maeasuring structural coupling

This is the most investigated category in the literature and the one followed by our
approach. Here, coupling is based on method invocations and attribute references.
Classes are coupled when they call methods of each other or refer to attributes of
each other. Some known metrics defined in this category are as follows:

MPC [43]: Li and Henry have proposed MPC (Message Passing Coupling) for
measuring the coupling of a class. MPC of class ¢ is defined as the numbers of sent
messages which are defined in class 4.

DAC [43]: Another measure proposed by Li and Henry is DAC (Data Abstraction
Coupling) which is defined as the number of abstract data types (ADTs) defined in
a class as the class attributes. This measure indicates the number data structures
dependent on the definition of other classes. This measure does not consider message
passing or call relation among classes.

RFC [14] : The Response For a Class (RFC) is defined by Chidamber and Kemerer
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as a set of methods that can be potentially executed in response to a message received
by an object of that class. As explicitly mentioned, this measure is concerned about
the potential calls, not guaranteed calls at runtime.

RFC, [8]: In the definition of RFC by Chidamber and Kemerer, RFC does not
only include the methods directly invoked by a method, but also the methods called
by these methods and so on, implying that the levels nested method invocations are
not considered in this definition. Briand et al. [8] have added the levels of message
passing to RFC and defined RFC,, where a = 1,2,3,.... Then, they have considered
the RFC measure proposed by Chidamber and Kemerer as special case of RFC,,

where:

RF(C(c) = RFCi(c)

CBO; [14]: Chidamber and Kemerer have defined CBO (Coupling Between Ob-
jects) for measuring coupling of a class. It is defined as the count of non-inheritance
related couples with other classes. Two objects are considered as coupled if they act
upon one another, implying that an object of one class uses the methods or instance
variables of the other. This measure is calculated based on static information of the
source code.

CBO [13]: In the later work, Chidamber and Kemerer have revised the definition
of CBO;. In the new definition, CBO for a class is the number of other classes to
which this class is coupled. Similar to C'BO,, static analysis is used for calculating
CBO.

ICP [42]): ICP (Information-flow-based Coupling) is defined by Lee and Liang as
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the number of polymorphistically invoked methods of other classes, weighted by the
number of parameters of the invoked method.

A suite of coupling measures (IFCAIC, ACAIC, OCAIC, FCAEC, DCAEC, OCAEC,
IFCMIC, ACMIC, DCMIC, FCMEC, DCMEC, OCMEC, IFMMIC, AMMIC, OM-
MIC, FMMEC, DMMEC, OMMEC) [6] is defined by Briand et al. where the authors
distinguish between different type of relationship between classes such as friendship,
inheritance and none, different types of interactions such as class-attribute, class-

method and method-method interactions, and the locus of the interaction impact.

e The first or first two character of the name of each measure refers to the type of
coupling relationship between classes as follows: A: Ancestor, D: Descendant,

F: Friend classes, IF: Inverse Friends (classes that declare a given class a as

their friend) and O: Others.

e The next two characters indicate the type of interaction as follows: CA: class-
attribute interaction from class a to class b, implying that an attribute of class
a is of type class b, CM: class-method interaction from class a to class b, if
a newly defined method of class a has a parameter of type class b and MM:
method-method interaction from class a to class b, if a method implemented in
class a statically invokes a method of class b, or receives a pointer to such a

method.

e The last two characters shows the locus of the interaction impact as follows:
IC: Import coupling, counts the number of other classes called by the class and

EC: Export coupling, count number of other classes using class x.
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However, the authors assign no weight to these different kinds of interactions.

Also a framework is proposed by Hitz and Montazeri [34] which distinguishes
between object level and class level coupling.

In all above mentioned measures are static coupling measures, since the class re-
lations are obtained through static information of the source code. However, the
empirical studies indicate that static analysis of the code can not provide a com-
plete set of information about the system dependencies due to polymorphism and
inheritance principles of object-oriented programming. Arisholm [3] has introduced
the concept of dynamic coupling measure as a complementary approach to static
coupling measures. They measure the coupling based on actual call relations at run-
time of the program. A tool is implemented to collect the dynamic data at runtime
and apply the defined measures. Their results have indicated that dynamic coupling
measures can capture different properties than static coupling measures.

DCM [32]: Hassoun et al. have defined DCM (Dynamic Coupling Metric) in re-
flective systems as a metric for measuring system coupling based on dynamic analysis
of message passing and method invocation. DCM of an object P during a time period
At, is defined as the sum of all program execution steps and the sum of total number
of objects which are coupled to object P. If the program consist of one object, then
the coupling measure of the system is zero.

In addition, Briand [8] has defined a unified framework that classifies and compares

all the above mentioned metrics for coupling.
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9.2.2 Measuring conceptual coupling

Conceptual coupling is the degree to which the classes are logically dependent on

each other. It uses the concept of semantic similarity between elements of the source
code, such as comments and identifiers. Some work has been done to measure concep-
tual coupling such as [53] by Poshyvanyk and Marcus, also the research in software

clustering field [44] use the same concept as semantic similarities in the source code.

9.2.3 Measuring other types of coupling

Several metrics are proposed in the literature to measure coupling of different types of
software systems, such as coupling metrics for knowledge-based systems [39], coupling

metrics for aspect-oriented programs [66] and information theory-based metrics [2].

9.3 Comprehension and measurement in Ada

Most of the researches about analysis of Ada programs are based on static analysis.
They mainly focus on the structural dependencies in the code to obtain information
about fault-prone components, early error detection and metrics. Examples of such
works are as follows:

In the field of comprehension of an Ada program, Raza et al. have designed
and implemented, Bauhaus [57], a comprehensive tool suite that supports program
comprehension and reverse engineering on all layers of abstraction, from source code
to architecture. The tool is implemented in Ada and it is capable to analyze pro-

grams written in Ada, C, C++ and Java. The tool utilizes both dynamic and static
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approaches to do control-flow and data-flow graphs analysis, pointer analysis, side
effect analysis, program slicing, clone recognition, source code metrics, static trac-
ing, query techniques, source code navigation and visualization, object recovery, re-
modularization and architecture recovery techniques. The metrics implemented in
Bauhaus operate on different levels of a software system, source code level and ar-
chitecture level. On the source code level, metrics such as lines of code, Halstead,
maximal nesting and cyclomatic complexity are implemented. On the architecture
level, the tool provides metrics such as number of methods, classes and units, coupling
and cohesion, and derived metrics such as number of methods per class and classes
per unit. However, the measures used for deriving the metrics are not mentioned in
the paper. The calculated results of the metrics can be used to estimate software
complexity, to detect code smell or to provide parameters to maintenance effort mod-
els. The objective of this work is close to our research, but the result of their work is a
general tool suite for comprehension while in our research. We are mostly concerned
about measurement of system modularity through measuring coupling and cohesion.

In the field of program analysis, Laski et al. in [41] have performed dependency
analysis of Ada programs. Discussing some limitations of the result of existing static
analysis approaches such as undecidability, inability to offer an explanation of the
reported events and its inadequacy to handle events that occur on individual pro-
gram paths, they have a modified dependency model as a solution which also can be
beneficial in dynamic analysis of Ada programs. Their modifications include partial
vs. total definitions of Ada arrays, new concept of reaching definitions, potential vs.

guaranteed dependencies, inter-procedural dependencies, and an explanation feature.
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They also investigate path analysis as a novel method for the identification of de-
pendencies along individual program paths. Based on their proposal, the modified
dependency model can be beneficial in integrating dynamic and static analysis in
order to analyze Ada programs. Their main goal is to define a more accurate model
for procedure calls, suitable for catching undetectable data flow anomalies and a bet-
ter solution for analysis of error creation and propagation in testing and debugging.
Comparing the objectives of their work with our research, we can observe that the
objectives behind each work is to analyze Ada programs to obtain some information
about the existing anomalies in the code, however their methodology is to define a
new form of dependency model, while we extract the anomalies through measurement
of coupling and cohesion of system components.

Pritchett in [55, 56], has defined a set of metrics for Ada 95 in order to find fault
prone packages in the code. The proposed measures are based on those defined by
Chidamber and Kemerer in [13]. The factors measured in this work are depth of in-
heritance, total number of children, total attributes, local attributes, total operations,
local operations, overridden operations, class-wide operations, message passing cou-
pling, attributes of abstract data types, abstract data types referenced, class cohesion
and max cyclomatic complexity. AdaSTAT [1] static analysis tool is utilized to collect

metrics data for each package. Once collected, the data is entered into the Minitab
[48] statistical software package and descriptive statistics for each of the metrics are
collected. The main goal of this research is to reason about how each metric affects

the fault proneness of the code. For this reason, they have conducted an empirical

study. Using both regression analysis and correlation coefficient, they have concluded
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that all above mentioned factors, except message passing coupling, class cohesion,
overridden operations and class-wide operations, are predictors of fault-prone classes.
They have not proposed a specific formula for measuring these factors, and they are
calculated based on those proposed traditionally by Chidamber et al. in [13]. As
mentioned above, this work is based on the static properties of the code.

In the field of measurement, Cherniack et al. [12] designed a tool for measuring
coupling and cohesion of Ada programs. They have used Verdix’s DIANA Interface
Package (DIP) instead of Ada compiler, since the compiler can not provide the needed
data for calculating the coupling and cohesion of an Ada program. The tool is based
on traversing Descriptive Intermediate Attributed Notation for Ada (DIANA) nets,
that extracts those Ada program characteristics needed for coupling and cohesion cal-
culations. Even though the metric used in this work is not explicitly mentioned, they
believe that cohesion is an intra-module property that measures the interrelation-
ship between the inputs and outputs of calculations and coupling is an inter-module
property that measures the interdependence between software modules.

Xu et al. in [64] have proposed an approach to measure the cohesion of a package
in an Ada program based on dependence analysis. In their approach, cohesion is
separated into three categories of relation: inter-object, subprogram-object and inter-
subprogram. They have defined a measure for each category. The calculated results of
each measure are integrated to measure the package cohesion independently and also
for measuring the cohesion of the system as a whole. In their work, the methodology
for measuring the inter-subprogram cohesion is similar to the measure defined in our

work. Based on their measures, the value of cohesion is 1 (maximum) when execution
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of each subprogram depends on all other subprograms in the package. Inversely, the
value of cohesion is 0 (minimum) when all subprograms have no relation with any
other subprograms in the same package. The difference of their approach with the
approach defined in this research is that they have used static analysis to extract the
dependencies among subprograms and objects, which can not be sufficient in case of
main object-oriented principles as polymorphism and dynamic bindings. They have
mentioned this task as their future work.

To summarize the related work to this research, we can conclude that all analysis
approaches mentioned above, except Bauhaus [57], are based on static analysis. Static
analysis alone is insufficient in evaluating the dynamic behavior of an application at
runtime, since in object-oriented systems due to dynamic binding, inheritance and
polymorphism, dynamic information about the events at runtime of the system can
provide a set of valuable and precise information about the system. In this research,
we have used dynamic analysis to obtain a set of data about system interaction in
the execution time of the program. After analyzing this set of data by applying the
measurements and metrics, we detect the problematic packages which need to get

refactored or restructured to expose better object-oriented design principles.

90



Chapter 10

Conclusion and recommendations

10.1 Summary and conclusion

In this research, we proposed an approach for obtaining comprehension of Ada pro-
grams. Our approach is based on applying dynamic analysis on Ada program through
obtaining execution traces, captured by AspectAda. We refined certain existing met-
rics for measuring cohesion and also introduced a new set of metrics for measuring
coupling and modularity in order to assess the modularity level of the system. This
way, we provide an indication of packages whose modularity as an internal quality
factor is been degraded due to adding requirements or any other perfective or cor-
rective activity during the evolution and maintenance phase. We believe that this
approach can aid maintainers to find potential packages that tend to decrease the
overall quality of the system. Our approach is currently supported by automation
and a prototypical tool. Our proposed methodology complements the existing ap-

proaches for Ada comprehension and measurement by adding the concept of dynamic
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analysis, since most of the existing approaches are based on static analysis and are
not able to extract dynamic information at runtime such as dynamic binding and
polymorphism. Also, the existing methodologies for comprehension of Ada programs
are general and can not provide the required set of information for measuring cohesion
and coupling. Moreover, the existing metrics in Ada are not sufficient for reasoning
about the system modularity. Based on our proposal, defined thresholds for system
cohesion, coupling and modularity can help the system maintainers to assess the

system quality in terms of system modularity.

10.2 Recommendations

For future work, we intend to extend and import ADynA into the GNAT package.
Also, we plan to extend our measures to apply on aspect-oriented Ada programs. A
complementary investigation is to define a set of measures for concurrent program,
to check how the coupling, cohesion and modularity of different threads in a running
program can be evaluated. The result of this investigation helps to catch the dead-
locks of the program, since the deadlock is generally a point of execution where the
execution of two or more threads depend on each other.

In order to improve the system modularity, we need to investigate Ada/AspectAda
specific refactoring strategies. Also, we intend to work on aspect-oriented migration
as a recommended approach to improve the modularity of the system. These are a
set of directions related to this research that one can follow as the future work on

this research.
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