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ABSTRACT
LARGE EDDY SIMULATION (LES) OF TURBULENT FLOWS IN GAS TURBINE

Mohammad Kartmi

Compressible turbulent flow over a modern gas turbine blade is modeled in this thesis
using Large Eddy Simulation (LES) methods. CFD simulation of turbo-machinery flows
is a challenging problem due to the high Reynolds and Mach numbers of such flows.
Reynolds Averages Navier Stokes (RANS) methods that are currently used in industry to
model such turbulent flows do not give satisfactory results specifically at off-design
conditions and therefore there is a need to further improve the turbulence modeling in the
CFD simulations. Herein, different variations of the LES method are investigated to
simulate this compressible turbulent flow. LES methodologies consist of Smagorinsky,
Dynamic Smagorinsky, and Implicit LES accompanied by Yoshizawa and Van Driest
relations. In this work, a 3D unstructured tetrahedral Navier-Stokes solver is applied
using a mixed finite-volume-finite-element method. LES terms are discretized using the
finite-element method. Parallel computation is performed according to MPI standards.

LES pressure distribution results have significant differences with the 3D RANS
results. Much more discrepancy is expected in velocity profiles, shear stresses, and heat
transfer characteristics. Considering pressure distribution results and compared to the
currently used RANS models, LES results are fairly superior especially in the off-design
conditions. LES results of this work are more superior to RANS results in the regions
close to leading edge which contains very high strain in fluid elements and it is not

satisfactorily resolvable using RANS. RANS results of [66] are superior to LES results of
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this work for the mid suction side at which the turbulence structures are not resolved well
in LES where a separation leads to constant pressure distribution which is captured as an
attached flow in LES. This might be due to not introducing fluctuations at LES inlet and
also to not having enough mesh resolution. Both LES and RANS results have difficulty
resolving the shock/boundary layer interaction on the rear suction side of the blade. This
might also be cured in LES by improving the mesh at that region or using adaptation
methods or enhancing the shock capturing characteristics of the flux calculation method.
The deficiencies of the LES simulation are discussed and possible cures and future works
are elaborated.

This work aims at accomplishing the first step and providing a solid basis for future
works on an intellectually challenging topic which is of high importance in academia and

industry: Turbulence Modeling.
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Chapter 1

TURBO-MACHINERY DESIGN USING CFD

1.1 Using CFD in Turbo-Machinery Design

The main parameters in aircraft gas turbine engine design are the thermal efficiency,
the specific power, and the specific weight. These parameters are to be increased in the
design process. Increasing the thermal efficiency leads to lowering the specific fuel
consumption. Thermal efficiency is a direct function of the overall cycle pressure ratio
and the thermodynamic efficiency of the individual components. Specific power mainly
depends of the maximum cycle temperature. Specific weight can be heightened by using
lightweight and high strength materials and reducing the number of turbo-machinery
stages by increasing the stage pressure ratio. The design process is a complicated and
expensive sequence of tasks which iteratively has to improve all the design parameters.
As an illustration, a typical design cycle is shown in figure 1.1.

The Use of Computational Fluid Dynamic (CFD) techniques in aerodynamic design
process is the key technology area to increase the speed of the design cycle, reduce
testing time and therefore, necessary investments. In addition, CFD, by providing the
computational experiment, provides the insight into the flow physics. CFD analysis codes
solve the fluid flow equations at different levels of approximations. These codes are then
used iteratively in the design process for optimizing the component geometry and to

achieve the desired level of performance.
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Specification of design
parameters

Preliminary design
(1D pitch-line correlations)

Axisymmetric design
(ductfiow/throughfiow)

A 4

2D Blading section design
(blade-to-blade)

Aerofoil stacking
(geometry definition)

3D flow analysis
(Euler/Navier Stokes)

Fig. 1.1: Typical turbo-machinery
aerodynamic design cycle [1]

The preliminary design stage provides an initial definition of the geometry of the
blade and the annulus of the turbo-machinery. The design cycle is based on the analysis

where the blade geometry is assessed using CFD codes and it is iteratively refined [1].

1.2 CFD Methodologies Used in Turbo-Machinery Design

The application of CFD in design dates back to 60’s. The reference [2] is mainly
consulted to present the history of using CFD in turbo-machinery design. The early
computer codes in 60’s and early 70’s, for defining the geometry and analysis of the
turbo-machinery flows used streamline curvature methods, stream function methods, and

potential function methods. Streamline curvature methods are capable of predicting the
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overall performance of the turbo-machine both at the design and off-design conditions.
However, these methods need the introduction of the real-flow-effect correlations for
loss, deviation, and blockage. Stream function formulations are restricted to the two
dimensional flows. Potential function formulations are not able to capture shocks due to
the non-conservative form of the discretized principal equations. In the late 70’s, these
drawbacks were tackled after introduction of the CFD methods based on Euler equations.
In contrary to the preceding methods, the Euler method is capable of solving inviscid
flows with shocks. The Euler method was used for blade to blade flows or through linear
cascades. Until then, CFD codes were all used for 2D flow simulations. Nonetheless, the
flow in radial, mixed, and highly loaded axial flow machines are highly three
dimensional. In the late 70’s, the three dimensional inviscid solvers have been developed.
In the same era, the need for unsteady simulation was realized and CFD codes were
improved to simulate unsteady compressible flows to simulate the four major sources of
unsteadiness: wake rotor interaction, potential interaction (interaction between adjacent
blade rows), vortex shedding, and flutter (blade oscillations).

In the mid 80’s, it was recognized that viscous effects can become very significant,
especially in flows with shock boundary layer interactions. Also, many key phenomena
of the flow such as tip clearance flows can only be analyzed by viscous modeling. Two
approaches for viscous modeling have been introduced: viscous-inviscid interaction
methods as well as Reynolds Averaged Navier-Stokes (RANS) equations with appropriate
turbulence models for 2d and 3d flows. RANS models proved to be more robust and
accurate and are still the most commonly used models accompanied by transition and

turbulence models.
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After all of the above-mentioned improvements in CFD calculations, currently the
selection of the turbulence model is the key feature in the quality of the simulation. The
most commonly used turbulence models in the context of turbo-machinery flows are
Baldwin-Lomax and & —& models where the latter is more complicated but often results
in better results.

With all the improvements in CFD simulations, there is still a need for more accurate
turbulence models [3]. The new area for improving CFD calculations is to try to find
better turbulence models out of the context of RANS models. It is understood that most
RANS deficiencies stem from the fact that it aims at modeling all the scales of the flow in
a time-averaged sense disregarding the fact that these scales of the flow may be time-
dependent. Hence, recently more attention has been paid to simulating rather than
modeling the flow. All scales of the flow can be simulated, instead of being modeled,
using Direct Numerical Simulation (DNS) of the Navier-Stokes equations. If DNS
becomes feasible for a flow, it will give the most complete possible picture of the flow
governed by Navier-Stokes equations. However, for moderate to high Reynolds number
flows, DNS is not currently feasible. DNS power depends essentially on the computing
power and it is expected to be practicable in around 80 years [12]. Large Eddy Simulation
(LES) of the turbulence, which is the subject of this work, has a flow realization level
between RANS and DNS models and until DNS becomes feasible for high Reynolds
number flows, applying LES models remains the area for improving the quality of CFD

simulations.
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1.3 History and Literature of Large Eddy Simulation of Turbulent Flows

The first LES simulation dates back to 30 years ago [12]. So far, there have been
numerous works to solidify the theory of LES, to provide experimental data that can be
used to verify LES models, and to apply LES models to different flows (free shear, wall
bounded, acoustic, combustion, etc.). However, as LES has been in its infancy, most of
the application was toward academic flows with very simple geometry. Below, the LES
literature is addressed.

The most important contributions to the theory of LES have been accomplished in
Stanford Turbulence Research Center. A survey of the research carried out at this center
from 1996-2005 shows that so far the academic cases or the industrial cases of very
simple geometry have been investigated. Different areas in which LES has played a role

and the flow geometries are as shown in table 1.1.

Table 1.1: Flows Simulated Using LES

Type of Flow The Case Under Consideration
Aero-Acoustic trailing edge vortices
Combustion nozzle with variable cross-sectional area
Free shear Flows jets, mixing layers

lid driven cavity, channel flow,
Wall Bounded Flows
diffuser (ramp), flow passed circular cylinder

Table 1.1 shows the areas for which LES has been tested and proved to overpower RANS
models. As can be seen from the test cases, usually very simple flows and geometries are

modeled. This fact is true for the whole literature on LES.



Turbo-Machinery Design Using CFD 6

A very interesting work at Stanford Turbulence Research Center has been the
simulation of all parts of a gas turbine [4-5], in which compressor and turbine are
modeled using RANS models and combustor is modeled using LES. The interface of the
RANS-LES models is matched [6-8]. RANS models have been used for the large scale
turbo-machinery calculations, such as flow over multiple stages of gas turbine or
compressor blades [9] or flow over a helicopter rotor [10]. For external flows of large
computational domain, such as flow over an airfoil [11], LES and RANS have been
mixed. LES is used for the regions around the airfoil and RANS is used for the rest of the
domain.

The Von Karman Institute for Fluid Dynamics (VKI) is one of the most important
European centers in which they work on LES. In the lecture series given at VKI between
1998-2005 there is one work of Piomelli [12] in which he presented the LES
methodology for incompressible flow as well as some “building block” flows such as
channel flow, 3D boundary layer, flow over a bump, and the wake downstream of a
circular cylinder. Also, some industrial problems of very simple geometry have been
tackled which include swirling and non-swirling coaxial jets and an asymmetric plane
diffuser. He concluded that LES is not a substitute for other turbulence models but it
complements other models. LES is expected to be reliable for first and second moments
and to produce the basic structures of the flow. In addition, LES should be applied to
complex flows in which the cost is comparable to RANS models or in problems where
other models fail and the Reynolds number is so high that the solution can not be reached
by DNS methods. Such problems include 3D boundary layer flows, vortex-boundary

interactions, separated flows, and flow in complex geometries. In other simple cases, LES
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serves to give a better understanding of the physics of the problem as well as a reliable
data base for assessing the other lower-level turbulence models.

Also in VKI lecture series 1998-2005, Comte and Lesieur [13] presented the LES
methodologies in the context of compressible flows. Their unpredictability growth
investigation shows that the LES error increases linearly with time rather than
exponential growth of chaotic dynamical systems. This fact is promising in unsteady flow
simulations using LES. They also found that dynamic LES models are capable of
reducing the LES viscosity when the solver is too dissipative. They investigated some
academic applications such as compressible mixing layers and flat plat boundary layer as
well as some industrial applications with very simple geometries such as simplified solid
rocket engine and a curved compression ramp.

Elsevier Science Direct is a very rich data base of scientific works in different
disciplines. From 1996 to 2006, there have been around 700 works in which they applied
LES, however, only very few works have been done on turbo-machinery flows. These
works are as follows: Some external flows are investigated using LES on delta wing [14-
16] or NACA airfoils [15-17]. The aero-acoustic LES simulation on an axial fan is
presented in [18]. Conwoy et al. [19] investigated a stator blade is investigated using LES
but they have not verified their method with experimental data. Rodi [20] investigated a
low-pressure blade cascade is investigated using DNS and LES for two low Reynolds

numbers 50,000 and 150,000. On the suction side, the LES and DNS results for C, show

good agreement with experiment with a bit more discrepancy compared to RANS model.

On the pressure side however, C, is underestimated using both LES and DNS results but
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RANS results have a better agreement with experimental data. Also on both pressure and
suction surfaces, LES and DNS results are almost indistinguishable.

Journal of Turbomachinery contains the most enormous amount of research works on
the turbomachinery flows physics, measurements, simulations and models, etc. Also it
contains many informative works close to the scope of this work, for example [21-22] for
the flow physics, it does not have many LES or DNS works. Perhaps the closest work in
this journal to the scope of this thesis is [23] which is a DNS of a transitional cascade
flow with low Reynolds number (Re=60,000). Although [23] contains many useful
information on the turbomachinery flow simulation, but in the pressure distribution
calculation, DNS could only find the pressure distribution on the suction side correctly
and it underestimated the pressure over all pressure side.

AIAA journal is another very important data base for aeronautical and turbomachinery
works. The first successful LES of flow around an airfoil near stall is presented in AIAA
journal in 2002 [24]. Also, very recently, at the last minutes of submission of this thesis,
another interesting LES application is published in AIAA journal [25]. The Reynolds
number in this work is close to ours, Re=5.0e+05, but the Mach number is much lower,
M=0.3, compared to the transonic flow investigated here. Hence, they have no
shock/boundary layer interaction. The numerical simulation is very different from ours.
6" order compact differences are used on a structured mesh. Turbulent stresses are
modeled implicitly and a 10™ order filter is used. They realized successfully the pressure
distribution around the blade and also laminar-turbulent transition. They also explored
remarkably the transitional behavior of the boundary layer. They work is the first

successful LES application of a cascade flow at high Reynolds number that has been
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encountered in the literature review of this thesis. However, the Mach number limitation
in this work did not allow creation of shocks and observing the competence of their
method on the shock/boundary layer capturing.

The thorough literature review reveals that the current study is one of the very first

LES applications to turbomachinery flows at high Reynolds and Mach numbers.

1.4 Thesis Originality and Outline

As pointed out in the LES literature review, very little work has been done in
applying LES methodologies in turbo-machinery flow analysis. In this work, the flow
over a gas turbine blade cascade at high Reynolds and Mach numbers is investigated
using LES at design and off-design conditions. The aim is to study different LES models
in the literature and their behavior and performance for a real industrial flow in a
complex geometry and in different flow conditions. To the authors knowledge this work
constitutes one of the very first LES attempts at simulation of such flow at high Reynolds
and Mach number regimes.

FLUENT software as a robust and user-friendly commercial CFD software is always
the first choice in simulating industrial flows. However, the latest version of the software
FLUENT 6 does not have the LES model for compressible flows. Besides, its parallel
version has a limit on the size of the simulations. For the case under consideration here, a
parallel research CFD code is used which is originally developed by Dr. Paraschiviou and
has been extended by works of Kaveh Mohamed.

The CFD code used in this thesis is a finite-volume-finite-element Navier-Stokes

solver. At the starting point of this work, the CFD code was developed to solve external
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compressible Navier-Stokes equations only. In the course of this work, appropriate
boundary conditions for internal turbo-machinery flow have been added to the code and
by some minor changes in the governing equations, a new CFD code was developed
which was tailored for internal turbo-machinery flow. Afterwards, some variations of the
LES turbulence model available in the literature were added. In the next step, all of the
above modifications were brought to the parallel version of the code according to MPI
standards. Aside form the CFD code development stages at CFD Applications Lab of
Concordia University, more than 100,000 CPU*Hour was spent at Mammoth Parallel
Computer of Sherbrook University to run the simulations. The Mammoth project is a
1024 processor LINUX cluster. The super-computer will be divided in two parts: A
"serial" one which will be composed of the latest generation of X86 processors,
interconnected by an Ethernet gigabit network. A parallel part, equipped with 64-bit
processors (AMD Opteron or INTEL Itanium2) interconnected with a high-speed
network (Quadrix, Myrinet or Infiniband). For this work the Mammoth Parallel is used
and the parallelization 1s performed according to MPI standards.

The outline of this thesis is as follows: Chapter 2 is devoted to presentation of the
governing equations of the gas dynamics and their specific non-dimensional form used in
this work. In chapter 3, the numerical method used to solve the gas flow in this thesis is
fully described. The material in chapter 3 is further extended in chapter 4 to introduce
boundary conditions in the CFD application used herein. In chapter 5, all the steps and
different models for Large Eddy Simulation of the turbulence are presented and the
specific filtered governing equations used in this thesis are derived. Also, a thorough

literature review on different LES models capabilities and features is accomplished. LES
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simulation strategies and results are brought forth in chapter 6 and the future work is

presented.



Chapter 2

GOVERNING EQUATIONS

The governing equations of gas dynamics are a set of three conservation equations,
second law of thermodynamics, and equations of state. The three conservation equations
require that the three fundamental properties mass, momentum, and energy are neither
created nor destroyed and throughout the fluid flow they are just redistributed or, except
for mass, are converted to each other. The second law of thermodynamics requires that
another fundamental property which 1is entropy should never decrease. The equations of
state specify the type and nature of the gas. This collection of equations when written for
a fixed coordinate system, are called Euler Equations; while, they are called Lagrange
Equations when expressed for a moving coordinate system. Taking into account the
effect of viscosity in momentum and energy conservation laws leads to Navier-Stokes
Equation which are considered as the most complete governing equations of modern gas

dynamics.

2.1 Conservation Laws, Compressible Navier-Stokes Equations
The unsteady compressible Navier-Stokes Equations in conservative form and in 3D

Cartesian coordinate system are written as follows [26],

ow 0
—+—|\F +'F,)=8 2.1
ot ax,( / j) @1
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where W is the vector of conservative variables. “F; and "F, designate convective and

viscous fluxes respectively. S is the external forces applied on the system such as

gravity.
rRELEs ] 0 o]
pou, PY U, +P5j1 -0, o,
W=\pu,|, F,=|\puu,+pd,|,'F,=|-0, S =1 ofs (2.2)
Puy pujus + po ~ 03 A
LPe ] pu;h —u 0y +q, | LA |

Vector of conservative variables is formed per volumetric mass p. w, and u, and u, are

Cartesian components of the velocity. Total specific energy,e, is the summation of

internal energy and kinetic energy,
e=e, +ry? 2.3)
2
h is the total specific enthalpy given by

h=e+L (2.4)
p

Tensor of viscous forces for a Newtonian fluid using the Boussinesq relation is

written as,
o, =plu,, +u,, )+ A, 0, (2.5)

Where u is the dynamic coefficient of viscosity and the second coefficient of viscosity

of the fluid A is given by the Stokes relation,
2

Dynamic viscosity of the gas varies as a function of temperature according to the

Sutherland relation,
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3
2(Te +T,
M= U TP Lt , T <2000K (2.7)
T T+T,
where T is a constant for a given gas, and it is equal 7, =110.4K for air. Constants g
and T are reference values generally chosen at zero Celsius degree 7T, =237.15K and
u=1711x10"kgm™' s,
Conduction heat flux is expressed by Fourier law as,

q,= —kT,

; (2.8)
where thermal conductivity can be obtained with assumption of constant Prandtl number,

_ Ky
Pr

k

(2.9)

Prandt] number of the air in normal condition isPr = 0.72. In cases where Prandt] number
can not be fixed, variation of thermal conductivity with temperature may be

approximated as,

k=k L [1+C(T-T,)] (2.10)
Hs

with kg =0.0242kg.m.s™.K ™" andC = 0.00023K .
In the case where gravity is the only external force applied on the system, the source

term S becomes:

S = pgn, (2.11)

| P8I U, |
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The acceleration of gravity isg = 9.81m.s™. The vector 7 = (nl,nz,n3 ) is the direction

along which the gravity is exerted.

2.1.1 Rotating Frame of Reference

In a rotating frame of reference, assuming a steady rotation of @, the governing
equations undergo some changes. By taking the frame velocity into account, the velocity
# changes to relative velocityV =# —@x 7, where 7 is the local position vector. The

Coriolis and centrifugal forces, —2p@x v — pdx (@x7), have to be considered as an

external force, f"e , and added to the source term as follows,

0
A
S=\0o, (2.12)
2
L~
The total energy takes the new form [27],
* 1 2 - —-\2 - - —
e =e,+5(v,. —(@x7), )=e—(a)xr)-u (2.13)
The total enthalpy changes to rothalpy I as [27],
12 (= \2 - Y -
I=hs+5(v,. —-(a)xr),. )=h—(a)xr)-u (2.14)

where, e,and Agare internal energy and static enthalpy, respectively. eand hare total

energy and total enthalpy, respectively.
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2.2 Equations of State

Equations of state specify the type of the fluid and serve to define the thermodynamic
state of the fluid. The thermodynamic state of a fluid is defined by specifying three
thermodynamic properties of that fluid. Thermodynamic properties of a fluid, such as
internal energy and enthalpy, describe the average microscopic properties of that fluid, in
contrast to mechanical properties of a fluid, such as velocity and kinetic energy, which
describe macroscopic properties of the fluid. Some properties such as density or pressure
can either be considered as mechanical or thermodynamic properties.

Three equations of state are needed to determine all thermodynamic properties. As all
the properties in gas dynamics are specific properties, i.e. per unit mass, there is only
need to two equations of state on the account that mass per unit mass is always one.
Hence two specific equations of state are needed to determine all other specific equations
of state.

In analogy to the conservations laws which are expressed on the macroscopic level,
the equations of state are the conservation laws on the microscopic level. Assuming that
direct collision is the only mechanism for momentum transfer, applying the conservation
of momentum law on microscopic level lead to the ideal gas law or thermal equation of

state [28],

p=pRT (2.15)
where R, is the gas constant and it is equal to 287N.m/kg K for sea-level air. A fluid

satisfying this relationship is called thermally perfect. Using the same assumption,
applying the conservation of energy law on the microscopic level leads to the caloric

equation of state [28],
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e, =c,T (2.16)
Or equivalently,

h=c,T (2.17)
There is a constant on the right hand side of too which is usually unimportant. ¢, and c,

are specific heat in constant volume and constant pressure, respectively. Their values are

assumed constant and for sea-level air are as follows, ¢, =717N.m/kgK
andc, =1004N.m/kg.K . Any fluid satisfies the above-mentiones relation is called

calorically perfect.
Some useful definitions and relations for perfect gases are the followings. Ratio of the

specific heats is the polytropic coefficient which is 1.4 for air,
y=—+ (2.18)

Gas constant and the specific heats are related as below,

R, =c,—c, (2.19)

g
Using the above definition, the internal energy is written as a function of pressure as

follows,

e, =—2 (2.20)

This allows expressing the total energy as,

b 1 2
pe=r——=+=pu (2.21)
(r-1) 2

This allows for evaluating the pressure from conservative variables.
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The speed of sound is the ratio of the speed at which the small disturbances, such as
acoustic disturbances, propagate through a substance to the speed of movement of the

substance.

= %= [RT (2.22)

Two other equations of state can be derived using the definition of speed of sound as

given below,

e (2.23)

h =%u2 +——c (2.24)

In the same fashion, other equations of state for perfect gases can be derived.

2.3 Non-Dimensionalization
Non-dimensionalization chosen here allows for writing transport equations in the

same form as the dimensional equations.

2.3.1 Non-Dimensional Parameters

Dimensional parameter ¢ is non-dimensionalized by a reference value ¢,to give the

non-dimensional parameter ¢ . Principal reference values are given in the table below,
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Table 2.1: Reference Values for Non-
dimensionalization of Governing Equations

¢=g,9" Reference Values Relations
X=L,x"

U=ug’ uy =R, T,

t=t,t" to =Ly [u,
P=pop”

T=TT"
p=pp’ po = PoR,T,
u=pop’

k=kk*

e=eye’ e, =ty

The choice of 7, and p, stems from non-dimensionalization of conservation of mass

equations and equation of state respectively.

Non-dimensionalization of the Navier-Stokes equations will lead to the definition of

three non-dimensional parameters which are,

u,L . . C
Re = 2oto™o Reynolds number, the ratio of convective term to dissipative term

Ho
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c
Pr =‘]’€—'u° Prandtl number, the ratio of viscous diffusion g,/p, to the
0
thermal conduction k,/p,c,
Ma=2 Mach number, the ratio of the speed of the flow to the speed of
%

sound in the fluid

2.3.2 Equation of State
For a perfect gas, the pressure is given as a function of density and temperature by the

equation of state,
p=pRT (2.25)
With the aid of non-dimensional values this equation can be written as,
pP=p,p RTT" (2.26)
This permits using the relation for reference pressure p, = p,R, T, to write

pr=pT" (2.27)

2.3.3 Non-Dimensional Equation of Conservation of Mass

The equation of conservation of mass is written as,

Qe_'__apu,. =0

2.28
ot  Ox (228)
With the aid of non-dimensional values this equation can be written as,
Po op + Potty 9P U, =0 (2.29)

ty 07 L, ox
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Using the relation for reference time #, = L, /u, this equation can be written as,

+

op +6p u;
ot* ax’.+

=0 (2.30)

This shows that the non-dimensional equation has the same form as the corresponding

dimensional one.

2.3.4 Non-Dimensional Equation of Conservation of Momentum

The equation of conservation of momentum is written as,

opu, +6puiuj _6_p+60',~,-

= (2.31)
ot Ox; Ox, Ox,
The tensor of viscous stresses is defined as,
2

o; =y, +uj,,.)—§,uuk,ké‘,.j (2.32)

Using the corresponding non-dimensional values it leads to:

_ ﬂouo + ., + . 2 ot . lu0u0 +

O'ij.——LO—'l:,u (u Lttt U )—E,U U kk 5,-1»:'—?0‘—0'” (233)

In which the notation for differentiation isga—:- =e .. The multiplying coefficient in this
- :

i

2
Holly _ Polo

equation can be written as
L, Re

. Hence the last term on the right hand side of

the conservation of momentum equation can be written as,

2
_ Pt 1 .

O, L, Re /' (2.34)

The gradient of pressure term can be written in non-dimensional form as following,

using the relation of reference pressure p, = p,R, T},
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R.T
p =t p (2.35)
0

The unsteady and convective terms on the left hand side can be non-dimensionalized

using the relation of reference velocityu, = \[R,T, ,

(o), + (o, ), =222 {pur), + (o) | 2.36)

0
The non-dimensional form of the equation of conservation of momentum can be written

using all previously obtained results, as

o+ 4+

op*u; +6p uu;  op* N 1 9o
ot* &t ox Re Ox;

J

(2.37)

This non-dimensional equation is different from its corresponding dimensional one by the

coefficient of 1/Re in its right hand side.

2.3.5 Non-Dimensional Equation of Conservation of Energy

Conservation of the total energy is written as

) . Oo.u.
Ope  peu, __Tpu,  CTiti _Oq (2.38)
ot ox, Ox, Ox . Ox,

i i J i

The total specific energy, as derived before, can be written as a function of temperature,
1,
e=c,T+ —2—ui (2.39)

Using the non-dimensional values the above equation can be written as,

42
i

e=c,T,T" + %uozu (2.40)

Applying the relation of the reference velocityu, = \/R T ,
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1
e=cT,T" +—2—RgTou:2 (2.41)

Using the relations among polytropic coefficient, specific heats, and gas constant, the

above equation will be,

o=t Ly (2.42)
y -1 2

Having the non-dimensional total specific energy, we can write the unsteady and

convective terms on the left hand side of the conservation of energy equation as follows,

3
(pe), +(peu,), = ”"Liﬁz—[(p*e*),p ~(prerur). | (2.43)
0o Uy

Using the relation for reference total specific energy the preceding equation is written as

(oe), +(pen,), = 22 [(pre"), +(pve'wy), ] (2.44)

0

The pressure gradient term can be written in non-dimensional form as follows,

(pu,), = p—zui(p*uf)_,.. (2.45)
0

Using the relation for reference pressure p,=p,R,T, and reference
. . . 2
velocityu, = /R, T, , one can rewrite the relation for reference pressure as p, = pyu,".

Plugging the resulting relation for reference pressure into above equation leads to,

3
(pu,), = !Qi(p*uf ), (2.46)
0

The viscous stress term, using the same approach as that used in non-dimensionalization

of the equation of conservation of momentum, can be obtained as

(o,u,), =p°—u°3L(0'fu’.')‘r (2.47)
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Heat flux term can be non-dimensionalized as,

9 = (_ kT,i )y,‘
k,T, 2.48
— 020 ("k*’Tt)w ( )
L, o
Then factoring the inverted Pradtl number out of the above equation gives,
c 1,T
gt ST ) @)
Y s
Then factoring the inverted Reynolds number out of the above equation gives,
k ’ c,T
q,»,,' - 0 pou() /uO 14 20 (—k+T‘; ),F (250)

coity Ly pogLy uy
Using the relation for reference velocityu, = /R, T, and the definition of polytropic

coefficient, one can write

Sl _ S _ 7 2.51)

uo2 R Y4 1

Hence, the non-dimensional heat flux can be written as,

_ pouo3 L 1 ¥ (—-k+Tt)'+

. — 2.52
T L, PrRey-1 (2.52)

L

Applying the relations derived before, the following non-dimensionalization for the

equation of conservation of energy is obtained,

+ _+ 6++.+ 6++ 80';.'u,.+ +
ap € + p € ux - /4 ul +(L) i _( /4 1 lJaq (253)

ot ox; ox;  \Re) &' \y-1PrRe/ox;

This equation is only different from its analogous dimensional equation by the

coefficients on the right hand side.
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2.3.6 Non-Dimensional Conservative Form of Governing Equations
The conservative form of the non-dimensional governing equations mentioned before

is given as,

ow™ 0 + +
+ ‘F+'F7)=8" 2.54
0t+ ax+ ( J ) ( )

J
J

where the non-dimensional quantities are the following,

0
- r o+ o+ ] F o T
[ p* puj N P L
+ 4+ + 1 +
puy pruju +po, Re P
+, + e t +, + + v t 1 + + £+
W*=\p'u; |,°F, =|p'uju, +p*3,|,’F, = "R S=|p"fy
pu; puiuy +p'S, 1, P I
tet ¥+ 5.9 ot
|pe | pruth Re PS5
) _ 1w v v 11,
B A A
Re y—1PrRe
(2.55)
In which, 4" is the non-dimensional total specific enthalpy given by
nt=et+ 2 (2.56)

+

P
The Sutherland Law for temperature variation of dynamic viscosity can also be written in

non-dimensional form as,

pt = (T*)gi?%%;;] (2.57)
C

In this case, temperature variation of thermal conductivity is given as,

+
k* _H T (2.58)
Pr y-1




Chapter 3

NUMERICAL METHOD

The numerical methodology used here, is a mixed finite element finite volume
method. Convective fluxes are evaluated using a finite volume type formulation.
Diffusive fluxes and source terms are calculated by a finite element type approximation.
Three-dimensional space is discretized using an unstructured mesh of tetrahedral
elements. Dependent variables are located at the nodes of the elements leading to a cell-
vertex discretization. This numerical scheme proved to be an efficient and robust method
that serves well as a solid basis for introducing new turbulence models [29-30]. The
sections below describe the details of the discretization of the weak form of the governing
equations in space and in time. The material of this chapter is written in the lights of the

excellent presentation of reference [26].

3.1 Weak Formulation
Compressible Navier-Stokes equations are written as below,

aa—V:/+V-(CF+VF)=S 3.1)

where W is the vector of conservative variables, ‘’F and "F are the convective and
diffusive fluxes respectively, and S is the source term. The weak formulation is carried

out by multiplying this equation by a test function y and integrating over the whole

physical domain,
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ja—Wy/dv+ JV-(CF+“F)y/dv= [Sy v (3.2)
Q at Q Q

Qstands for the domain and 0Qis its boundaries. The choice of the test function
determines the type of approximation. Following the Galerkin method, the test function is
chosen as to be the shape function of the elements. The shape functions are linear leading

to second order of accuracy of the discretization.

3.2 Discretized Weak Formulation
The physical domain, 2, is discretized by an unstructured mesh into a computational

domain, ,. This mesh consists of N,nodes and N, tetrahedral elements noted
N,

by E(I). The discretized space isQ, = U E(I) , as shown below,
I=1

M4

Fig 3.1: 3D Element

Starting from this mesh, we can construct another dual mesh formed by finite volume

cells noted by C(/). The finite volume cell around a node is formed by the contributions

of each support elements, i.e. elements sharing the given node. Contribution of an
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element to the cell around the node, as shown in the figure below, is the volume obtained
by constructing the median planes, i.e. planes containing middle points of the adjacent
edges, centers of gravity of the adjacent faces, and center of gravity of the element.
Cutting the element by median planes leads to having four sub-tetrahedral with vertices at
centers of the edges and faces that contains node I and center of the element as well,
which surround the node 7 . Then the cell, C([), is constructed by the union of the sub-

tetrahedral having the node 7 as a vertex.

'@I

Fig 3.2: Contribution of an Element to a Cell

Dependent variables are located at the nodes of the elements. Two weak formulations

are used in the mixed formulation. First weak formulation is a finite element type one,

where the solution ¢h| of the variable ¢on the element E(/)is defined as a function

E()
of discrete values ¢, at the nodes of the element as well as shape functions N, associated

to the element:

¢h|E(1) =Z¢1N1(5‘.) (3.3)
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Here, elements are of the type P, , and shape functions are piece-wise linear functions as

given below,

1, atnodel
N, = (3.4)
0 , atother nodes of the element

Second weak formulation is a finite volume type one, where the solution ¢, of the

variable ¢ on the cell C([) is defined on the dual mesh using the discrete values ¢, at the

nodes and the shape functions M, :

NS
b =2 6M,(F) (3.5)
I=1
Base functions which are constant throughout the cell are defined as,

M, = {1 , onC(I) (3.6)

0 , elsewhere

The method of calculation of the flux, as it will be explained after, is a second order finite
volume method, leading to second order accuracy in space.

Finite volume approximation on the cell C(/) is equal to the average value finite

element approximation on the same cell. In practice, these two approximations are
supposed to be identical in order to apply a mixed formulation to Navier-Stokes
equations [26]. Under this condition, in the discrete mixed formulation, unsteady and
convective terms are treated by the finite volume method whereas diffusive and source

terms are treated by the finite element method:

_[aWh dv + jv-”F(Wh)dv=— _[V-VF(W,,)N, dv + .[S(Wh)N, dv (3.7)

c) c) E(I) E(I)
Volume integral of the convective term, using Divergence Theorem, is transformed to a

surface integral on 0C(/) which is the outline of the cell C(). Divergence theorem states
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that the volume integral of the divergence of a vector is equal to the surface integral of

that vector over the boundary of the volume:

[(7F)av = [F-dS = [F7ids (3.8)
N S

14
Volume integral of the diffusive term is rewritten using the divergence theorem applied

to the product of a scalar and a vector and using the following vector identity:
V.(NF)= N -F)+ F-(ON) (3.9)
This is also called Green theorem, leading to,
[(v- NF)av = [NF-7ids
v §

N\V.F)+F-\VN)|dV = (NF -#dsS (3.10)
i )+ Yo - |

VjN(VF)dV =-Vjﬁ-(6N)dV+SjNﬁ-ﬁdS

Finally, the discretized weak formulation is written as:

J’aW" dv+ [FOW,)-Fuyyds= ["FW,)- VN dv— ["F(W,)-Fiq N ds+ [SW,)N,dv

c({ t oc(1) E(I) OE(I) E()
(3.11)
The following sections are devoted to describe the details of discretization of the

convective, diffusive, source, and unsteady terms respectively.

3.3 Discretization of the Convective Term
The convective term in the governing equations state the balance of the convective
fluxes in a finite volume cell through the cell boundary faces. These faces are shown in

the figure below,
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Sd

Fig 3.3: Finite Volume Cells Surfaces

31

The surface of the cell C(I) around the node / is denoted by 8C([). This surface can be

written as

oc(h= Jecu)

JeK(l)

(3.12)

where O0C(1/)is the common face between two neighboring cells C(/)and C(J), and

K(I) notes all the neighboring nodes of the node/, i.e. the nodes connected to the

node / by an edge.

Convective term can be written as,

[ FW) fyds= 3 [ <Fm,)

aC(I) JeK(I)yac(1r)

] ds
ac(u) oC (1)

Assuming constant convective flux over the common face 8C(1J) leads to,

JCF(Wh)'ﬁ6C(I) ds = Z CF(Wh)|

ac(l) JeK(I)

acw) “Macw) SaC(IJ)

And by noting F,, = °F,, (W, )lac(u) Hacy s

J‘EF(Wh) : ﬁacu) ds = ZFIJ Sacq

oc(l) JeK(I)

(3.13)

(3.14)

(3.15)
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The normal vector is obtained by the contribution from each element, E(1J), that
contains both nodes, I and J. In all such elements, the contribution to normal vector
r,, comes from the normal vectors of the surface 8C(1J) formed during the process of

dual mesh generation.

ny = Z jﬁacw) ds (3.16)

JeK(I) ac (1))
The direction of the normal vector is always outward from the cell. Hence, 7, is directed
outward from the cell C(I)and towards the cell C(J). Therefore, it is evident that,
A, =-h, 3.17)
In the presence of a shock or high gradients in the flow, it is necessary to take into
account the hyperbolic nature of the Euler equations which translates the perturbations in
the privileged directions called characteristic directions, as will be discussed in next
chapters. The convective fluxes can be simply constructed by a centered scheme with
addition of an artificial viscosity which damps the high frequency oscillations generated
by the scheme near the discontinuities to avoid having non-physical solutions. Another
method consists of using an upwind scheme which utilizes the propagation direction of
the information, i.e. the sign of the eigenvalues of the convective matrix. This type of
scheme introduces the physical conditions into the discretization scheme to model the
nonlinearity of the Euler equation in presence of discontinuities. The convective flux

treatment used here is the Roe method [31-32] which consists of determining an exact

solution to the Riemann problem locally at the interface of the neighboring cells.
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3.3.1 Roe Method

A Riemann solver of Roe [31] is used to approximate the hyperbolic part of the
Navier-Stokes equations. Roe method defines a local linearization of the local Euler
equation with the discontinuity located at the interfaces of the mesh. To have the first
order of accuracy, the solution is supposed to be constant on each cell. A simplified

figure of the linearization is shown below:

%

W,
L 4

ac())

Fig 3.4: First Order Roe Method

At the interface, there is a discontinuity in the value of the variable. This jump in the
variable value is supposed to be the contributions from three simple waves. Linearization
consists of carrying out the jump on the variables defined at the interface. Roe method

defines the average values in the following fashion,

P =NPIP, (3.18)

uuzun/_p_J“"“J\/E (3.19)
Vo 4P

" _hlp, +h,4p, (320
NN

where # designates the total enthalpy. Pressure can be expressed as a function of the

average density, velocity, and enthalpy as,

-1 1
Py =y—_pu[hu ___ulzjj (.21
¥ 2

Speed of sound can be written as,
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= [y By (3.22)

Using these values, convective flux at the interface is written as,
1
F, =%[CF,+”FJ]—56“F,J with 8°F, =|4,|0W, (3.23)

where °F, and°F, are the physical convective fluxes at each node on both sides of the
interface. 9°F,, is the sum of the jumps in the flux as a result of the waves which are

propagating through the computational domain. Existence of such waves lies in the
nature of eigenvalues of the homogenous system of differential equations, i.e. the
Jacobian matrices of the convective fluxes. This issue will be discussed further in next
chapters. 4', 4%, and A4° stand for the Jacobian matrices of the flux vectors °F', °F?,
and °F’ respectively. Jacobian matrix J of a vector F is defined as,

FACETESY [of,/ox, ... of,[ox, ]
| AT R [P

ax,,...x,)

_fn (%3m0 %) | |9, [ox, af';'/ Ox, |

F(x,,..,x,)=|. = J(x,,.,x,)

il

Matrix of Eigenvalues of 4* - n, is written as,

u-n 0 0 0 0
0 w-n O 0 0
A=| 0 0 u-n 0 0 (3.25)
0 0 0 & -A+ayn!+ni+n} 0
0 0 0 0 i -fi—ayn +n; +nj |

where # =(n,,n,,n,) is an arbitrary spatial direction. The eigenvalues, physically,
represent the speed of the wave propagation in the directionz. Left eigenvectors

matrix, P, ', associated with conservative variables, is formed by placing left eigenvectors
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in its lines. Right eigenvectors matrix, P, , associated with conservative variables, is
formed by placing right eigenvectors in its columns.
The Jacobian matrix can be diagonalized using the left and right eigenvectors
matrices and eigenvalues matrix as follows,
|4,|=By, |A|R; (3.26)
Hence, the change in the convective flux, §°F,,, can be as,
OFy =P, W)|Ay| P W)W, (3.27)
The last two terms of the right hand side of the above equation are the change in
characteristic variables'¥ . Characteristic variables are the information propagated along

the waves and their change is obtained from projection of the change in conservative

variables, OW , on the matrix of left eigenvectors,
0¥ = P,'ow (3.28)
In the Roe method for flux calculations, the interface quantities which are shown by

o, are evaluated using the Roe average values and the change in the conservative

variables are given byoWw,, =W, -W,.

3.3.2 Entropy Correction

In the computation of inviscid flows using Roe method, some non-physical solutions
may occur. Roe method only sees the values at discontinuities and therefore models an
expansion wave in the sonic regions of the flow by a shock wave without taking into
account its distribution [33]. In particular, in Riemann problem in which the initial

condition has a jump expansion, using Roe method this expansion shock remains as
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stationary solution all the time. Wherever the eigenvalues of the neighboring cells have
the opposite sign, in the Roe average values, speed becomes sonic in an expansion wave
[26].

Roe and Pike [34] introduced an additional flux contribution in Roe’s scheme in case
of expansion through sonic points. This contribution is added to upstream and subtracted
from downstream for conservation purpose.

Another method proposed by Harten and Hyman [35] and have been complemented
by Kermani and Plett [33] which consists of detecting the expansion shock and then
diffusing it by introducing a local expansion fan in Roe’s method. This is done by
modifying corresponding components of the eigenvalues matrix, A, by searching for the
regions of sonic expansion where lx%] approaches zero. Then, Roe averages are written
using the corrected eigenvalue. This condition is called entropy correction in W 1s
approximated by Q(A) as,

4 i Az

A)=di 2 .2 3.29
O(4) = diag ‘e(or))u ld if |A<e (3.29)

and¢ = max[O,(ﬂ —/?,L),(AR —/1)]. The zero in maximum function avoids this correction

on the compression shock.

3.3.3 Second Order Roe Method
Assuming a piece-wise constant solution in each cell leads to the first order accuracy
in space. To obtain the second order accuracy in space, the solution can be approximated

by piece-wise linear functions in each cell as shown in the figure below,
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W,‘—_oi;

ac(r)

Fig 3.5: Second Order Roe Method

Extension of the Roe method to second order of accuracy needs the introduction of
the variables at the interface which specifies the discontinuity. These quantities are
calculated by extrapolation of the corresponding variable at the adjacent cell. The

extrapolated variables at the interface IJ are denoted by e, in cellC,, and by e, in
cellC, . Resolution of the local Reimann problem is done in the same fashion as that of

first order accuracy by a new discontinuity. Roe scheme in second order of accuracy is

written as [26],
1 c c 1 c 3 30
Fuz'i[ FW, )+ F(WJI)]_Ea Fy (3.30)
In which the interface quantities are constructed by linear extrapolation as,

W, =W, +—;_(VW)I 'ﬁu (3‘31)

W,=W,+ -lz-(v w), -, (3.32)

VW, and VW, characterize the gradient of W in the cells C, and C, respectively.
These gradients are evaluated using a finite element technique as [29],

IV(WI% )dv
(v), - <

_ 1 vol(E(1)) N‘W v j (3.33)
.[dV VOI(C(]))EE;I) N, (Z Vo)

<)
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Where, N, is the number of nodes of the finite elements E(J)that support the node / , that
is the elements that are a member of K(/), i.e. have I as a vertex.
The change in the flux is determined by,

o°F, =|4,|om, (3.34)
Which is a function of discontinuity at inter interface 0W,, = W, — W, . This second order

Roe method is a MUSCL, Monotone Upwind Scheme for Conservation Laws, type
scheme. In practice, the simple linear interpolation of the variables is insufficient. Such
schemes generate oscillations close to discontinuities. This behavior is avoided by
imposing a TVD, Total Variation Diminishing, method. This affects the variables
extrapolation by introducing a non-linear term, limiting the value of the variables in a
way that the TVD condition is satisfied. In the next sections the details of flux calculation

and limiter are discussed.

3.3.4 Van Leer MUSCL Type Modification of Roe Method

The x—a type method of Van Leer [36] is basically the second order Roe method,
modified by introducing a factor a allows for balancing the importance of the centered
scheme and the artificial viscosity in the scheme. Flux calculation at the interface

become,
1
Fy, =5[CF(WU WHFEW, )]_aacFu (3.35)
Whena =1/2, this scheme is the same as second order Roe method. To construct the

interface variables a MUSCL type expression is used by introducing a combination of

centered and upwind gradients to evaluate VW, andVW |
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W, =W, +%[(l—K)(VW)f Ay, (V)] -ﬁu] (3.36)

1 _ _
W, =W, + 5[(1 -k\vw)S -7, + (VW) -7, ] (337

with centered gradient defined as (VW); -7, =(W, ~w,)and upwind gradient defined

as(VW)P -7, =2(VWw), -#, —(W, —w,). Where the gradient at node I, as stated before,

is calculated by the average on its support E(/),

(VW), _ 1 VO[(E) VW|
vol(C(1)) gy N £

5

(3.38)

with V|, = S0,

keE
The table below shows the theoretical order of accuracy of the schemes on structured

mesh. When k = 0, the scheme is totally centered and so unstable.

Table 3.1: Order of Accuracy of the Different
Variations of k —a Method on Structured Grid

Name of the Method | « x | Spatial Order of Accuracy
F2 /2 | 1 2
F31 /2 | 1/3 3
F32 1/10 | 1/3 3

3.3.5 Van Leer -~ Van Albada Limiter
As stated before, MUSCL type schemes, which are based on a linear interpolation of
the variables at interface, can generate oscillations at the neighborhood of discontinuities.

So it is customary to limit the variables values, i.e. take the gradient of the interpolation



Numerical Method 40

by a non-linear function g called limiter, to damp off numerical oscillations. In this case,
the resulting MUSCL scheme, with the TVD property, preserves its second order of
accuracy in the areas in which the gradients VI¥, are smooth. But, the scheme becomes a
first order upwind method in the vicinity of discontinuities which introduces a numerical
dissipation with a beneficial damping effect.

By introduction of limiter, the flux calculation can be rewritten as [26],

1
F ZE[CF(WIJ )+CF(WJ1 )]—a@‘FU (3‘39)
with,
1 - -
W,=W, +Eg((VW),C Ry (VW)? "Ry ) (3.40)
1 - -
W, =WJ+"2‘g((VW)S'”JI ’(VW)lJ/'”Jl) (3.41)

The Van Leer — Van Albada limiter [37] is written as follows,

if xy<0
g(x,y)= (x2 +£)y+(y2 + g)x 3.42)

otherwise

*+ylye
where, £is a very small number. The function gproduces the 0 value whenever the
centered gradient and the upwind gradient have the opposite sign; where it changes the

extrapolation of the interface values to the constant mode and limits their value. This

function also gives a very small value when one or both of the gradients are zero.

3.4 Discretization of the Diffusive Term
The diffusive term is discretized by a finite element type method. This term has the

parabolic nature. Owing to the fact that no oscillation can arise in diffusion dominated
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region, discretization is carried out in a centered way. In finite element method, any

function can be interpolated over a finite element E(/)as,

F@, = 2 F0,0)y, (3.43)

JEED)

In Galerkin finite element the test functions, ¥,, are chosen so as to be the shape
functions, N,. The contribution of the viscous term in the discrete Navier-Stokes
equation after the application of Green theorem, as explained before, is decomposed into
a volume integral and a surface integral, as follows,

- [V'FW,)N, dv= ["FO¥,)-VN, dv— ["FO¥,)-figg, N, ds (3.44)

E(n) E(1) 2E (1)
The surface integral represents the viscous flux which passes through the boundaries of
the mesh. This contribution is generally negligible, except close to solid walls. The
volume integral involves the gradient of the shape functions VN, at node/. By
definition, these functions are continuous and piece-wise linear on each element that
supports the node ] . Their gradient is therefore constant on each of these elements. The

volume integral can be written as,

["Fm)- VN, av="3 ["FO,)- VN, dv (3.45)

E(n) JeLD E(7)

where, L(])is the support at node / , i.e. all the elements that node I is their vertex. Jis
one of the supports of node 7, and N, is the base function N, on the element E(J).
The approximation W, of the value of W is piece-wise linear, so its gradient is constant

on each element.
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3.5 Discretization of the Source Term
The contribution of each of the support elements of the node 7 to the source term in

discrete Navier-Stokes equations is given by,

jS(Wh)N, dv="Y jS(Wh)N,, dv (3.46)

E(D) JeL() £(J)
The integral of the source term is calculated as a function of the its average value in each

support element, S, (W,), over the cell as,

[SIIN dv= 3 —(5,0%)v0l(EL) (3.47)

E(I) JeL(I) 4V

3.6 Discretization of the Unsteady Term
The spatial discretization as mentioned above, leads to a semi-discretized
formulation. The governing equations can be rewritten by having the temporal term on

left hand side and the rest of the terms, K(W, ), on the right hand side as,

_[ ow,

dv=KW,) (3.48)

()
The discretized temporal term is integrated by assuming constant W, over the cell,

which is fully equivalent to using a finite element discretization with a mass-lumping
approximation [29].

n

Wl voi(c(ny) (3.49)

i w, . _ow,

ot ot Jav =

i)

c{)
An implicit method is used which has the advantage of having no restriction on time
steps in a linear problem. In the nonlinear problem under consideration here, implicit

method allows very large time steps. This property leads to faster convergence in
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comparison to explicit methods. However, there is a limit for CFL number to maintain
stability which is found practically. Using the implicit discretization method, the right

hand side of the discretized equation, K(W,), should be written in » + 1 time step as,

ow,|"

vol(C(I)) = K(W,;"™") (3.50)

A linearized Newton procedure is applied to the right hand side of the above equation.

Using Taylor series expansion, K(W#,*'), can be found to second order of accuracy as,

nr o, OK(W,/
K(Wh 1)1 =K(Wh )1+_(a't_h_

) At +O(At)? (3.51)

Using the chain rule gives a straight forward way to use the above equation,

oKW, _ oKWy, aw,['

ot ow, ot | (3.52)
Using Taylor series expansion, ;"' can be found to second order of accuracy as,
W =W+ a;Vth nAt +0(Ar)? (3.53)
hence,
ow,|" _ Wt —w; _ AW (3.54)
ot | At At

where, AW,” signifies the change in value of AW, at the time step» . Now, the right hand

side of the discretized equation, K(,), can be rewritten as,

e . OK(W, ;
KW, =KW, ),+—(;7”)LAW,, (3.55)
h

oKWy,

where,
ow,

is simply the Jacobian of the fluxes.
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It should be noted that relation 3.55 is second order accurate. However, the temporal

n

order of accuracy of the method also depends on how —{ is discretized. For first order

accuracy in time, the following first order backward finite difference is used,

w,|"

Whn+l _ Whn _ 5Whn

= = 3.56
ot | At At (3.56)
Hence, the discrete system is written as,
vo,( C(I)) _ aK(Wh )1 é‘Whn — K(Whn)l (3‘57)
At, ow,

For second order accuracy in time, the following second order backward finite

difference is used,

ow,|" _ (1+20)/A+ )W =+ W) + )/A+ W _ (1+20)/(+ )Wy = (D[ + 1) W,
or | At - At

(3.58)

where 7 =At,/At, . The second order time integration of the governing equations is

written as,

vol(C(1))

(a )vol(C(I)) oKW,
At, ow,

]AW,{' =KOW)), [(b) }AW,,”" (3.59)

I

where a = (1+27)/(1+7), b=(z*)/(1+7), and c = (7)/(1 +7).

3.7 Solver
Applying the implicit time integration of Euler to the governing equations, results in a
linear system of equations. This system is then solved using a flexible GMRES technique

[38] which is written by written by Y. Saad and modified by A. Malevsky.
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3.8 Parallelization

The physical domain is discretized using tetrahedral elements. For parallel processing
purpose, the domain is partitioned, using software METIS [39] based on two criteria:
having the same number of elements in each sub-domain as well as having the minimum
interface nodes between adjacent sub-domains. Figure 3.6 and 3.7 show the partitioned
mesh from the front 2D view and they correspond to the coarse mesh with 8 partitions
and fine mesh with 32 partitions, respectively. Parallel processing is done according to
MPI standards [40]. In this parallelization method, all CPUs are treated the same, i.e. they
run the same code in contrary to parallelization methods that break the loops between
CPUs. Here the geometry is partitioned and each partition is assigned to one CPU. Then
for any data that they need from the neighboring CPUs, they communicate according to

MPI standards in the MPI_COMM_WORLD communicator.

Fig 3.6: Partitioned Coarse Mesh
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0 2

Fig 3.7: Partitioned Fine Mesh
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Chapter 4

BOUNDARY CONDITIONS

In the present numerical method, as discussed in previous chapters, diffusive and
source terms are calculated by a weak form which is a volume integral over the

element £(/). On each node I at the boundarydE(/), variables and shape functions of

the finite element discretization are known. This information suffices for their flux
calculation at the boundary in the same way as the flux calculation for the inside of the
domain. In the calculation of these terms, the surface integral obtained by the
decomposition using the Green Theorem has to be taken into account when it is
necessary, in particular near the wall.

The unsteady and convective terms are discretized by an approximation of finite

volume type which balances the fluxes over a cell C(/)surrounding the node/ . At the

boundaries of the domain, the balance of fluxes over this cell needs the evaluation of the

fluxes which cross the boundary face, i.e. C(1)(18Q,.
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Peinnea,

" cunen,

»

Fig. 4.1: Boundary of the Cell C(I)

The value of the unknown at the boundary, W,B, may be imposed by two methods

[26]: first by using the weak formulation, through an imposed flux at the boundary face,
ie. F,=F ,B, second by using the strong formulation, through directly imposing the

value at the boundary face, i.e. W, =W,°.

» \‘ > ]
T ,
‘, Ia . }I‘ I WIB

Weak Formulation o Strong Formulation .

Fig. 4.2: Different Methods for Boundary Condition Assignment
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4.1 Weak Formulation Methods

The boundary conditions using the weak formulation are imposed by determining the
fluxes. In this case, according to the wave propagation direction which is discussed in the
previous chapter, the flux at the boundary is decomposed to a contribution stemming

from outgoing waves from interior domain based on the variable,, and another
contribution arising from incoming waves base on the variable W,B. As proposed by
Steger and Warming,
B + - B B
Fo=A"W) )W, +4 (W, W, 4.1)
where, A*(W,) and A'(W,B) arc contributions of the Jacobian matrix of the convective

fluxes from positive and negative eigenvalues, respectively. The Steger-Warming flux

vector splitting method is given by [41],

_ 5 )
ou+c(A,* - A45)n,
FO_ P m""c(/lzi _,13*)”2 (4.2)
2y aw+c(A -4, )n,
2 T 1
a92—+c(,?;—zj)vn+c”'l—ﬂ3—
L r=1 |

where ¢* =#’> +v +w’ and @ =2(y -DA4," +4," + 4",

In practice, this decomposition does not permit the correct treatment of the supersonic
boundaries. This results in constructing a unique Jacobian matrix from the interior
state W, ,

FP=4 W)W, + 4 W)W’ (4.3)

This formulation is essentially applied on slip wall, inlet and outlet boundaries.
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4.1.1 Slip Wall Boundary Conditions
On slip wall boundary faces, the normal component of velocity is zerou -7 =u, =0

in which # is the outward normal vector at the boundary. The contribution of the viscous
flux is assumed to be negligible hence F Lon jzcﬁ , +n ;. Normal convective flux at the wall

is written as,

0
pn
°F,-ii, =| pn, 4.4)
pn,
- 0 -
Pressure can be determined as a function of conservative variable, i.e.
p=(- 1)[pe ~1/2 pu? ] The Jacobian of the corrected convective flux is written as,
I 0 0 0 0 0
¢’ —(7 —1pn _|ﬁ|2 1 (2 - 7)"1”1 _(7’ _1)“2”1 - (7’“1)“3”1 (7’ _1)"| 4.5)
4=l G-l -G -Dum @-pm, (=T, G-ty | &
c’ _(7_1 h_lﬁlz 3 "(7_1)“1713 _(7_1)"2"3 (2_7)“3’73 (7“1)"3
I 0 0 0 0 0 |

4.1.2 Inlet and Outlet Boundary Conditions

The inlet and outlet boundary conditions are based on the characteristic properties of
the governing equations. Namely, on account of hyperbolicity of the Euler equations, the
solution can be written as superposition of waves propagating in computational domain.
These waves are associated with the eigenvalues of the Jacobian matrix of the flux
vectors. The Eigenvalues arew-n, u-n, é-h, ui-n+c, and #-n—c which represent the

propagation speed of the information waves in the direction 7. The figure below shows
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the domain of influence of the waves at the boundary which dictates the number of

boundary conditions,

A T 0
p C° C
'p P
C/7C

v

Supersonic Inlet Supersonic Outlet X
4 - C? . -
, C C C
P F,
c/ Y
Subsonic Inlet Subsonic Outlet x

Fig. 4.3: Characteristic Waves at the Boundary

The sign of the eigenvalues, as depicted above, determines whether the wave is going
out or coming in. Positive eigenvalues correspond to incoming and negative ones to

outgoing characteristic waves. For incoming waves the physical conditions should be
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imposed, while for outgoing waves only numerical conditions are imposed which means
the corresponding variables should be found using information coming from the interior
points. Compatibility relations can be used to make sure that the outgoing waves are not
reflected at the boundary. This is ensured by imposing the change in characteristic
variable of the corresponding wave to be zero, leading to non-reflecting boundary
conditions.

The number of the conditions to be imposed at a boundary is related to the
information entering or leaving the boundary, i.e. the number of bi-characteristics [26].
Bi-characteristic propagation parallel to the boundary surface neither leaves nor enters
the computational domain. So only the normal projection of bi-characteristic propagation

has significance in transferring the information, namely the bi-characteristics associated

with the vectork = 7 . Characteristic variables in this direction are,

1
W, = o-— 4.6)
W, = kb, - kydu, = ([ x@, ) o (4.7)
W, = ey, — ko, = (6, % £ ) & (4.8)
W, =F -G+ 4.9)

oC
W, =k -G+ & (4.10)

oc

and the corresponding compatibility relations are written as,

(%+ 7 ?le =0 Entropy Wave (4.11)
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[§+(ﬁ+cﬁ)-§]m +cE-(E-f7)7 =0

{%+(a—cl€)ﬁ]m+cl€.(k'ﬁ)ﬁ=0

53
Vorticity Wave (4.12)
Vorticity Wave 4.13)

Entering Acoustic Wave (4.14)

Exiting Acoustic Wave (4.15)

For a problem to be well-posed the range of influence of boundary conditions should

encompass the entire computational domain [28].

Number of physical boundary conditions is shown in table below for different flow

regime. As the equations govern five variables, the same number of variables has to be

imposed at each boundary. The remaining variables have to be determined by a numerical

procedure compatible with the physical conditions and numerical scheme using the

solution of the interior points.

Table 4.1: Number of Boundary Conditions

in Different Regimes of the flow

Inlet Outlet
Supersonic Subsonic Supersonic Subsonic
Physical 5 4 0 1
Condition
Numerical 0 1 5 4
Condition
Incoming | C,:ii-7 >0 Co:u-n>0 C,:u-n+c>0
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Wave C :u-n u-n+c>0

=
3
+
o
\4
o
0
=

C :u-n—c>0
Outgoing C:u-ii-c<0 |C,:u-n<0 C,:u-n<0
Wave C,:u-n+c<0 C :u-n—-c<0
C_:u-n-c<0

The variables that are usually fixed are given in table below, where «

angle of attack,

Table 4.2: Fixed Variables at Boundaries

. 1s the flow

attaci

Inlet Outlet
Supersonic Subsonic Supersonic Subsonic
(s Ups Uy Uy, D, T 5 Copack» Py P
T,u,u,u,p T, Cupper» P p

4.2 Strong Formulation Methods

The boundary conditions using the strong formulation are imposed by determining

the variables at the node. The explicit temporal discretization of the governing equations

can be written in the following form,

AW

1

_— R
At vol(C(D))

(4.16)
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The boundary conditions consist of prescribing the variation of the conservative variable
AW, at the iteration "' from its value at the iteratione”.
The boundary condition can be written in the general form as follows,
BW)=0 (4.17)
Its linear representation in time permits writing its temporal discrete form as given below,

OB(W)
ow

AW =0 (4.18)

This formulation is essentially applied on symmetry, and wall boundaries.

4.2.1 Symmetry Boundary Conditions
On symmetry boundary faces, the component of velocity normal to the boundary is

zerou-n=u, =0. Hence, in the boundary formulation the normal component of

velocity and the increment of the corresponding flux are zero,
w[1]1=0 (4.19)
R[1]1=0 (4.20)

No other condition is imposed on other variables.

4.2.2 Wall Boundary Conditions
On the adiabatic wall the following conditions are imposed,
# =0 Non-slip Condition @20
VT-7#i=0 Adiabatic Condition (4.22)

p,+V-(pi5)=0  Continuity (4.23)



Boundary Conditions 56

Therefore, using primitive variables Y7 = [p, u, ,uz,u3,T],
B(YY =|p, +V-(pii)u,v,w,VT i (4.24)

where 7 is the outward normal at the boundary. First order linearization of the above

equations in time is given below,

aﬁ 17"” _i{-n
—|=— 425
5= 429
V o - n+l _ - n
(a T n)z(VT Ay —(VT-7) 4.26)
ot At
op \n
—=-V.(pu 4.27
= (o) (4.27)
therefore,
OB(V) 0Y vray |
9B(V) oY _ S v 1) (it M R R L A0 (4.28)
oY ot At At At At
The temperature is calculated using conservative variables as
T= 7R—_le——;—(u]2 +u, +u32) (4.29)

g
Gradient of temperature in the normal direction of the wall is calculated using interior
points and a non-centered method.

In case of Neumann boundary conditions, i.e. giving the normal derivatives on
boundary, the space gradients are discretized by a non-centered second order method. In
practice, the physical boundary conditions are often expressed in terms of the primitive
variables. This requires using the transformation matrices described in previous chapter.

In case of Dirichelet boundary conditions, i.e. giving the value of the variables on the

boundary, it is easier to assign the value to the variable and then mask it from
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calculations. But in cases where this value is time dependent, the strong formulation has

to be used.

4.3 Periodic Boundary Conditions

Periodic boundaries are treated completely different from other types of boundaries in
that there is no need to impose any value or calculate any flux through these faces. The
corresponding periodic faces and nodes have to be identified in the pre-processing stage.
Then, by logically wrapping the geometry, a periodic face is replaced by its
corresponding periodic shadow as shown in figure below. In this process, new edges have
to be created and some edges have to be deleted after periodic node replacements. This
process is shown in figure 4.4. The idea is that only the periodic shadow node has to be
substituted by its periodic corresponding node. Hence, all the edges that have a periodic
shadow node as a member, have to be deleted and new edges have to be created by
replacing the periodic point by periodic shadow points on such edges. Also, there are
some edges that contain only members that are periodic shadow points. Those edges have

to be destroyed without creating any new edge in exchange for them.

---- deleted edges
............ new edges

Fig. 4.4: The Process of Making Two Faces Periodic
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The preceding method works fine in the serial code. However, for the parallel version
of the computational code, as the periodic nodes can belong to different sub-domains
which do not have access to each other’s data structure the method is no longer
applicable. For parallel application, instead of creating new edges, the fluxes and other
variables at corresponding periodic nodes are exchanged according to MPI standards. So,
each time a variable is calculated for a node or an edge, if that node or edge has a
periodic corresponding node, the calculated variable has to be exchanged between the

nodes or edges.

4.4 Computational Domain

The computational domain is shown below,

Periodic

Inlet

Periodic

Qutlet

Fig. 4.5: Computational Domain and Boundary Conditions
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Subsonic/Supersonic inlet and outlet boundary condition, according to the method of
characteristics, is constructed by imposing total pressure, total temperature and flow
angle at inlet plane as well as back static pressure at outlet plane. Non-slip and adiabatic
conditions are imposed at walls. The upper and lower surfaces of the computational
domain have been made periodic. To limit the massive number of grid points, the domain
spanwise length is only 10% of the chord length and then two lateral surfaces are made
periodic. The choice of periodic lateral walls allows for the 3D turbulence structured
growing and it is closer to the test conditions. Imposing slip conditions in this situation
forces the flow structures to be 2D. As turbulence does not exist in two dimensions
physically, in LES the lateral faces have to periodic in contrary to RANS simulation with
slip walls. Also, shortage of the spanwise length can have a similar effect especially in
off-design conditions. The test conditions and the effect of spanwise length is more
elaborated on in chapter 6: Results and Discussion. The results are gathered at half the

span conforming to the experimental measurements.
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LARGE EDDY SIMULATION OF TURBULENCE

5.1 Physics of Turbulence

Turbulence is a phenomenon in fluids in which high velocity gradients leads to
disturbances in the flow which are function of space and time. Physically, turbulent flow
is considered as the superposition of eddies of different scales with a continuous energy

spectrum [42]. The length scale /, and velocity scale U, of eddies in the largest size

range of the flow are comparable with length scales and velocity scales of the flow.
Hence, Reynolds number of such eddies is comparable to flow Reynolds number and it is
high; therefore effects of viscosity in those scales are small. Large eddies are unstable
and they break into the smaller eddies and by this process they transfer energy to smaller
scales. Smaller eddies have smaller length and velocity scales; consequently they have a

smaller Reynolds number Re =U,.//v . The vortex break-up phenomenon continues until

eddies’ scales and their Reynolds number are sufficiently small so that the eddy motion
becomes stable and molecular viscosity becomes effective in dissipating the kinetic
energy. The smallest eddies are characterized by Kolmogorov scales. Flow scales are

shown in figure 5.1 below.
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Fig. 5.1: Flow Scales

According to Kolmogorov hypotheses, at sufficiently high Reynolds number the
small scale motions (/ < (/,/6)) are statistically isotropic. The turbulence kinetic energy
is produced in the large anisotropic scales (/> (/, /6)). Then it will be transferred to

smaller scales in the inertial range. The statistics of the flow in this range

(60 << (lo / 6)) is only a function of &, i.e. dissipation rate. Afterwards, the turbulent

kinetic energy will be dissipated in the dissipation range. The statistics of the flow in this

range (/ < 607 ) is dependent on both ¢ and v.

Using dimensional analysis and having rate of energy dissipation & and viscosity v,
the Kolmogorov length, velocity, and time scales can be found as, 7= (v3 / 8)I/4 ,
U E(av)l/ *, and t E(v/g)l/ ® respectively. Reynolds number based on Kolmogorov

n

scales i1s Re, =U, .7 /v =1. These relations give the dissipation rate as
£= (v/ tﬂ2)= v/ (U,, / 77)2. However, rate of the energy dissipation scale has to scale with

the rate of the energy transfer to smaller scale motions, i.e. U,’ / 1, =U,> / l, . The ratio of
the smallest to largest scales of the flow can be determined from the previous statements

as: 7/l, ~Re™*, U, [U, ~Re™*,and 1, /1,  Re™"*.
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A motion with length scale of / corresponds to wavenumber x =2z//. Using a

Fourier transform, the energy can be taken to the wavenumber space to obtain the energy

spectrum function E(x). The contribution to the total kinetic energy from all modes in

the range (K‘a,K'b) is given by [bE(K) dx . Obviously the total kinetic energy is given by
fE(K‘) dx = J% puu, dQ. This continuous energy spectrum function is shown in figure
Q

6.2. In the inertial range the spectrum is E(x)=Cs”’k™** where C is a universal

constant.
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Fig. 5.2: Energy Spectrum Function [42]
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5.2 Turbulence Modeling and LES

The governing equations of the flow do not change in turbulent flow, hence using a
dense enough mesh, all scales of the flow can be simulated. This method is called Direct
Numerical Simulation (DNS). However, due to the high cost of such a deterministic
analysis, DNS is not applicable to problems with high Reynolds numbers due to the
existence of the extremely small scales.

In practice, owing to the fact that turbulent flows are characterized by random
fluctuations, statistical methods are applied to governing equations which can be of time-
average or spatial-average nature. Ensemble averaging the flow equations results in
Reynolds Average Navier-Stokes (RANS) methods in which mean quantities are
separated from fluctuations. Hence, all scales of the flow are modeled and far less mesh
refinement is needed to simulate turbulence compared to DNS. Averaging leads to new
terms that need modeling for closure. In zero-Equation models, the closure is achieved by
using Prandtl mixing length model leading to algebraic equations for eddy viscosity. In
general, zero-equation models fail to perform well in regions of recirculation and
separated flows [43]. Eddy viscosity can also be obtained more accurately by solving one
or two other differential equations for turbulent kinetic energy, turbulent kinetic energy
dissipation, or vorticity, which leads to one- or two-equation models. In general, the
effects of streamline curvature, sudden changes in strain rate, secondary motion, etc. can
not be accommodated in these models [43]. Furthermore, all RANS methods are
accompanied by several empirical constants which are mostly known for incompressible

flows.
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Large Eddy Simulation (LES) is a compromise between RANS and DNS methods in
which large scales of the flow are simulated while only small scales are modeled.
Performance and abilities of LES is between RANS and DNS. The LES filter width A
prescribe the large scales which are larger than A and small scales which are smaller than
A . The filter width is related to the mesh size. Since the large scales are simulated, the
mesh resolution is much finer than RANS but it is quite larger than DNS mesh which
resolve all the scales. However, modeling of LES sub-grid scale terms is simpler than
RANS closure terms modeling on the account that small scales are expected to be more
universal. The ideal application of the LES is in the case of high Reynolds number flow
and with the filter width in the inertial range. Also, the mesh has to be fine enough to

resolve at least 80% of the energy and close to the walls it has to be in the order of

viscous length scale 8, (y* =1) which is the size of important near wall motions.

Simulation of the large scales of the flow is obtained by applying a spatial filter

throughout the computational domain. In this way, each flow variable @can be
decomposed to a resolved component of the large scale g , and an unresolved component
of the sub-grid or small scale g’ .
p=¢+¢' (5.1)
In contrary to Reynolds averaging, for filtering operation one can obtain
$%8 , §=0 (5.2)
The spatial low pass filter can be defined as follows, where f is the large scale part

of a variable [,

f=[Gy(x-&) f(&)de (5.3)
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In general, the filtering operation is supposed to commute with spatial and temporal

derivatives, with an error in the order of the numerical approximation error.

%_o7 39_oF
o0 o ox, ox

1 I

(5.4)

Filtering gives the governing equations of the large scales of the flow. Filtering non-
linear terms also results in some terms which signify the effect of the small scales of the
flow on the large scale. These terms are called sub-grid terms and need modeling for
closure. Hence, the two major steps in LES are filtering and sub-grid scale (SGS)
modeling. Filtering as well as SGS modeling can be accomplished implicitly or
explicitly. In the rest of this section, first the filtered governing equations will be derived
and then explicit and implicit methods for SGS modeling and filtering, which are used in

this thesis, will be discussed.

5.3 Filtered Governing Equations
Using Favre [44] filter for compressible flow, in which the filter is balanced by the

mass, the decomposition is written as,

LY
=4
o=Z"7 (5.5)
p=¢+¢

and sub-grid terms are avoided in continuity equations. Favre filter produces simpler
governing equations which are more similar to the original Navier-Stokes equations;
however, this filter generally does not commute with the partial differential operator [43].
The filtered Navier-Stokes equations can be filtered in different ways whether or not

Favre averaging is used as discussed below.
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5.3.1 Filtering Using Favre Average

66

Here we follow the derivation of Vreman et al. [45]. Non-dimensional Navier-Stokes

system of equations can be written as,

o Oox,

!

__apu’ +_____apuiuj +a_p_%
ot ox, ox,  Ox,

J ! J

=0

Ope . Opew,  Opu, 0o O _
o o oOx, Ox; Ox

1

The constitutive equations are written as,

pe = pe(p,i, p) = p/(y -1)+1/2 pu,u,

o, =0,u,T)= (,u(T)/Re)((u,.,j +u;,) —%uk,,‘é}j]

a1 1
=g (T) = T
4= = R

T=T(p,p)=p/p
The system of equations in functional form is,

NS(p,u,p,e,0,9)=0

(5.6)

5.7

(5.8)

(39)

(5.10)

(5.11)

(5.12)

(5.13)

The filtered Navier-Stokes equations using Favre average can be written in two forms

depending on how to filter the energy equation.

System (/) can be obtained by using filtered pressure and modifying total energy as,

—_— = -~~~

(5.14)

(5.15)
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&, =0,(@,T) (5.16)
g, =q.(T) (5.17)
T=7(.p) (5.18)
With,
0
Ry = A +4, (5.19)

B +B,+B,+B,+ B+ B, +B,
System (/7), which is used in the present work, is obtained by using filtered energy
and modifying pressure as given below in more details,
pe = pe(p,i, p) = p(y =1)+1/2 pi,di, +1/2pz,, (5.20)
wherez, =y, - ZI—,ZI_; , leading to modified pressure and temperature as follows,
p=(-Ne-Y2pu4,)=p+(r-1)/2p7, (5.21)
T=T(p,p)=p/p=T+(r-1)/27, (5.22)
The other constitutive equations are given as,
g.=q,u).T) And g =q,(uD)7) (5.23)
&, =0,(uT),4) And &,=o0,(u)i) (5.24)
The filtered governing equation are written as,

9P ,.%u _ (5.25)

ot  Ox,

ot ox, Ox, Ox, Ox, ox, Ox; (5.26)

With,
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a(ﬁ "ﬁ) - a((y'_l)/zlaakk) (5.27)
Ox; ox;
Ope  opei,  opir, 05,7, g, _ olpei,— pew,) , 6(p p)_ 06,7 -om), 8(G,-3)
ot ox; Ox, ox;, 0Ox ox; Ox, Ox,
(5.28)
Considering,
a(pa, )_ B/ -0+ry2pmi)i) 1 dpE) , d/2P0EE) (g
Ox; y—1 0x Ox,
And,

a(ﬂe ) p/(}’ 1)+l/2pukuk)u) -1 a(p_u,.)_a(l/Zpukuku,.) (5.30)
ox, y—1 &x Ox, .

i i

Leads to,

a(;az —;ez): 1 a(ﬁﬁi—7%)+a(1/2PWkﬁki_1/2p“kukui) (5.31)
Ox, y-1 Oox; Ox, '

1 I

Also,

a(ﬁt’z —p_u,) — a((ﬁ*'(}’_l)/zﬁakk);i _p_uz) — a(ﬁa, _;;i)_,{_ a((}/—l)/zlaakkgx) (5'32)
Ox, Ox, Ox, 0.

i i i i

Hence the first two terms on the right hand side of the energy equation are,

5(17@2 "E—Ji—)_’_ a(ﬁﬁx -p_u,) __7 a(ﬁﬁz _p_ui)+ a(l/zp_gkﬁkgi _l/zpukukui)+ a((},_l)/zﬁakkﬁi)
Ox; ox;

y-1 ox, Ox; Ox,
= D, + D, + D,
(5.33)
And the last two terms are,
0 U, g —a
_ (O-uut O-yut)+a( i ql) =D, +D, (5.34)
Ox, Ox,

J

This derivation in functional form is written as,
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With,

NS(ﬁ,ﬁ,ﬁ,peaov-aq) = ESGS

Res =

E = pe(/_)’ﬁ’ﬁ)
&, = o, (u(),ii)

g, = q,.(y(T),T)

T =T(p,p)

0

C+C,+C
D +D,+D,+D,+D;
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(5.35)
(5.36)
(5.37)
(5.38)

(5.39)

(5.40)

In which pressure and temperature are modified. The sub-grid terms are given in the table

below, where 0,® = 9/0x, ,

Table 5.1: Sub-Grid Scale Terms

System (/) System (/)
Equation
Symbol Expression Symbol Expression
4 a,.(,ar,.j) G 0,(57,-,-)
Momentum 4, -0, (&ij - O_'u) O 9, ((7 - 1)/ 2p7y )
G -9, (5':'/ ~0; )
1 . . —
Energy Bl _ai(-’?ui —pui) D| _y_ai(pui _pui)
y—1 y—1
B, PO, —pou, D, a:'(1/2 pui i, —1/2 p”kukui)
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B, -3,(pr,ii,) D, 8,((r-1)2p7,4,)
B, pa,d,i, D, -0,(6,7 -o,u,)
By | oou-~0di | D, 0,3, -7)

B, | -d,5,4-ou,)

B, 6.(%,-7)

In modeling, only sub-grid terms 4, , B,, and B, from system (/) or C,, C,, and D,
from system (II) are usually taken into account. Different tests can be carried out to
show the significance of each term. Priori LES Test is carried out by filtering a DNS
database in order to calculate turbulent stresses and compare them with the stresses
prescribed by sub-grid models. Hence, it used only DNS methods. Posteriori LES Test is
carried out by performing a LES study and comparing the results with those of filtered
DNS. Vreman et al. [45] performed a priori LES test, using DNS results of a mixing layer
using a top hat filter with width of 8 cells, and concluded that sub-grid models which
incorporate energy equation should at least take into account the divergence pressure-
velocity term B, , pressure dilatation term B, and turbulent stress velocity term B,. Also,
it seems reasonable to neglect sub-grid terms that contain viscous stress or heat flux,
which are relatively small in high Reynolds number flows. However, inviscid sub-grid
terms, such as B, which is the pure effect of compressibility, should not be neglected.

These results are summarized in the table below.
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Table 5.2: Classification of Sub-Grid Terms Based on Their Order of Magnitude
System (/) System (/1)
Category
Momentum Eq. Energy Eq. Momentum Eq. Energy Eq.
Large aj(;r‘iﬁj )+ 0,p ai((/;-i-}_));i) a,(pr/,.ﬁ, )"' 0,p ai((/—oej+i))7i)
Medium 61‘6.1_';' a](&ga’z)’ 6161 ajai-ij a] (5.1]171)’ 61‘q41
4 B, B,, B, (C1+C2) Dy, D,
Small B4 » Bs D3 s D4 s Ds
Negligible 4, B, B, G,

5.3.2 Filtering without Using Favre Average

Favre averaged equations are simpler and no model in necessary in continuity

equations. Some information is lost in this process but it is not really a problem for

relatively low Mach number flows. However, continuity is still a non-linear equation

which can cause numerical instabilities leading to small grid point to grid point waves.

This drawback can be removed by adding an artificial diffusion term to the right hand

side of the equation or by averaging the governing equation without density weighting. In

the latter approach the governing equations are derived, following Boersma and Lele

[46], as,

opy; +a'5‘7il7/

ot Ox .

J

ot Ox

i

op , 0PT, _ awé-@
xi

(5.41)

Ox, Ox, Ot

! J

.5, _dpr-pu), a(ﬁﬁﬁaj - pu,

J

) (5.42)
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a;+a;ﬁ,. L P, 954 +%:8(;12—7m)+3(7”7i—;"_i) (5.43)
Ox;,

ot ox, Ox, ox, Ox ox;
Where,
— = — oy 2_
&, = (u@)/Re) @,, +7,,)- =7, ,5, (5.44)
3
g, = Y11 T, (5.45)
y—1PrRe "

In these equations, the damping term is already present in the momentum equation.
However, it is a bit more complicated as there is additional unsteady term in the

momentum equation,

5.3.3 Conservative Form of Filtered Governing Equation

Filtered compressible Navier-Stokes equations in conservative non-dimensional
form, assuming no source term, are as given below. The Favre filter is used here. For the
sake of simplicity the superscripts showing the non-dimensional values are omitted.

GVV—+ 0 (”F —)

_— +VF_ :0 546
o ox; 7 (5.46)
_ﬁ ) —Wj | 0
/712 p_ajﬁl+p5jl _(~;1+?Ij1)
W =\ g4, |, °F, =| pijit, + pS,, |, 'F, =| (6, +7,,) (5.47)
pi; pu iy +Poj, -, +?,-3)
L pe | u(pe+p - ~ ~ o~
- (pe+p) - —uk(a,v.+‘r,q)+—y7j(qj+q;)

It should be noted that Dynamic viscosity and thermal conductivity are supposed to be

expressed as function of filtered temperature in the same fashion as they are in



Large Eddy Simulation of Turbulence 73

instantaneous field. The Prandtl number is assumed to be the same for both large-scale

and small-scale heat transfer.

5.4 Explicit Sub-Grid Scale Models
The system of equations used in this study is system (/) using Favre averaging. The

following terms which are of ‘medium’ importance need modeling,

¢, =o,(plag, —uu))) (5.48)
G, =ai((}/_l)/2ﬁrkk) (5.49)

¥ _
D =——0\pu,—pu, )=
1 }’_1 i i p 1)

= '};—}:—1‘5.(,5717, —;?—TZ)

(5.50)

D, =ai(1/2p—akﬁkl7i_1/2pukukui) (5.51)
The common modeling practice is to model the terms C,, C,, and D, only. Although the

term has D, a medium to low value, due to the lack of a model in the literature, it is

disregarded here, as in reference [47] by the same research group who investigated the
order of magnitude analysis. So it is assumed that the convection of sub-grid kinetic
energy by the sub-grid velocity is small.

Modeling these SGS terms is easier than RANS models for large-scale eddied due to
the fact that the small-scale eddies in LES simulations are more or less isotropic.
However, for compressible flow especially in supersonic and hypersonic limits, the

turbulent heat flux D,, turbulent diffusion D,, and turbulent viscous dissipation D,

become significant which makes SGS models far from satisfactory [43].
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Turbulent stress can be decomposed into three parts, which is the basis of some SGS

models, and gives insight into the nature of turbulent stress.
-7, =L;+C; +R, (5.52)

Using the following identitiy,

= [~ ry_~~ ~. 1 "~ ot
u,.uj—(u,.+u,.)(uj+uj)—uiuj+u,.uj+uiuj+uiuj
- /. / (5.53)
PP PO B S 7
—u,uj+ ,uj iuj)+(u,uj+uiuj)+(uiu )

The tensors L., C.

s Cis and Rij are called Leonard-, Cross-, and SGS Reynolds-stresses

respectively, as given below,

L, =uu, —ui, (5.54)
C, =y, +u, (5.55)
R, =up (5.56)

Leonard stresses represent the interaction between resolved scales which transfer the
energy to the small scales. This phenomenon is known as out-scatter. Cross stresses
characterize the interaction between resolved and unresolved scales which transfer energy
to either large or small scales. The sub-grid Reynolds stresses illustrate the interaction
between small scales which produce and transfer energy and from small scales to large
scales. This phenomenon is knows as back-scatter.

Using a scale similarity model [48], the cross stress tensor can be written in terms of

resolved scales,
Ul =uYd, —UU, (5.57)

Together with the Leonard stress, they can be written as,
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—

Kij=Lij+C,.j =uu; -

u

I
3t

(5.58)

i)
This can be calculated using resolved field. Hence, the only term which needs
modeling is the sub-grid Reynolds stress term.
SGS terms can be modeled explicitly, such as eddy viscosity models, scale similarity
models, and mixed models, or they can be modeled implicitly using the artificial

diffusion of the numerical scheme.

5.4.1 Smagorinsky Model
Eddy viscosity models take into account the global effect of SGS terms disregarding
the local convection or diffusion of energy, such as Smagorinsky’s model [49] in which

the deviatoric part of the SGS turbulent stress is given by,
z, —%rmmé‘k, — 2p(C,A) |§|(§k, —%'S}mcsk,j (5.59)
with eddy viscosity,

w = p(CAYS] (5.60)
where the Favre averaged strain tensor is §ij =1/2 (17, ST j,,.) , and characteristic rate of
strain tensor is given by |§ ‘ =428;S; . A is the filter length. Also a model for the
isotropic part of the SGS stress is given by Yoshizawa [50] as,

7 =25(C,AV[S] (5.61)
The constant C, used for isotropic SGS modeling is assumed to be the same as the

Smagorinsky constant Csused for modeling deviatoric part of the SGS tensor. This

model results in the following relations,
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¢ = P, ~ug; )= pos3, (5.62)
¢y = (y =125, = (r-1fC,PAS]f (5.63)

Numerous values for the Smagorinsky constant C, is proposed in the literature,
Deardorff [51] has proposed the value of C, =0.1in the case of channel flow and
C, =0.2 in the case of the homogeneous isotropic turbulence. McMillan and Ferziger
[52] obtained an intermediate value C; = 0.13 which matches the sub-grid scale tensor

with the corresponding exact value calculated by direct simulation. Based on the
spectrum of the energy, Schumann [53] suggested the following relationship for

Smagorinsky constant,

-3/4
C, = %(f" ) (5.65)

where C, =1.41s the Kolmogorov constant. This expression is based on the hypothesis
that the dissipation of sub-grid kinetic energy is identical to the flux of kinetic energy in
the energy cascade between resolved and unresolved scales when the sub-grid scale is

-5/3

located in the Kolmogorov cascade, i.e. in the k™" zone. This choice leads to the value

of C, =0.18. This constant, however, is not universal. Smagorinsky model is known to

be too much dissipative in the laminar region and the correlation between the exact sub-

grid scale tensor and the model is often poor. In practice, it is often customary to keep the

lower value for the constant, for example Moin and Kim [54] proposed C, = 0.065 for
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channel flow or Erlebacher et al. [55] recommended C, =0.092 for compressible flow.
Herein, the value C; = 0.1 has been used.

It is assumed that the filter width is the third root of the volume of the cell around the

13

node under consideration, i.e. A =vol(C(I))". This approach to specify the filter is the

implicit filtering which suits the unstructured meshing. Presence of a solid wall modifies
the dynamics of the turbulence in different aspects; in particular it suppresses the growth
of the small scales and the preceding expression of the filter cut length overestimates the
characteristic mixing length of the sub-grid modes. Therefore it is essential to damp the
characteristic length of the sub-grid scale given by the Smagorinsky model. This
decreases the intensity of the sub-grid scale viscosity by introducing a damping factor
which is a function of distance from the wall. Hence the filter cut length is written as

follows,
A= 1A, (5.66)

The function proposed by Van Driest [56] is a very common approach and is given as,
N2
s
oM =£l—e f”j , A7 =25 (5.67)

The dimensionless normal distance to the wall y*is defined in appendix A. It should be

noted that for the parallel computation, y*, has been found globally on the account that

the closest wall face to a certain point can be located in another sub-domain, especially

for nodes close to sub-domain boundaries.
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5.4.2 Performance of Sub-grid Scale Models

Vreman et al. [45] using a priori LES test, investigated the quality of SGS modeling.
Two measures have been carried out to study the effectiveness of the models. First, norm
of the modeled turbulent stress is compared with that of exact turbulent stress to show
whether average value of turbulent stress is calculated well. Second, correlation of the
modeled turbulent stress with that of exact turbulent stress is calculated to explore the

quality of the spatial structure of the modeled turbulent stress. The study is performed for

the turbulent stresses “,Erl j“, I

p7y;, and ”ﬁa J“ in case of filtered DNS results and
Smagorinsky, Bardina, and Clerk models.
Smagorinsky model is founded to be too much dissipative in the transitional regime

due to the presence of mean shear, but beyond that as the flow is more developed, the
sub-grid terms are reasonably predicted forCy =0.17. However, the poor correlation
coefficient of this model shows that the spatial structure of turbulence is not modeled
satisfactorily at all.

Bardina, and Clerk models are shown to perform excellent both in terms of magnitude
and correlation coefficient of higher than0.95. However, in cases such as 2D mixing
layer, these models are reported to lead to numerical instability. This instability can be
interpreted as negative eddy-viscosity.

Vreman et al. [45] also studied norms ofz,,, L,, C,,, and R,,. It is showed that
R, has the least important contribution. This is due to the fact that large-scale structures
of the mixing layer DNS database mainly contribute to L, and C,, when they are

filtered. This fact also explains the poor correlation of Smagorinsky model since this

model has been developed for flows in which term R, is significant.
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5.4.3 Consistency between Sub-grid Scale Models and Filters
Piomelli et al. [57], performed a priori test using DNS of an incompressible channel
flow using Gaussian and cut-off Filter as well as Smagorinsky and Bardina’s mixed

model. Filter can be defined as a weighted average of the quantity over a volume as,

(%) = [GE %, A)u,(F) &' (5.68)

u; =u, —u, will depend both on the grid size and on the type of filter. The Gaussian and

cutt-off filters are defined as follows,

2Sin(ze(x, - x)/A,)

”(xi_x;)

G(x,,x,A) = , i=1..3 Sharp Fourier cut-off filter (5.69)

G.(x,,x,A,) = (6/mr,)" expl— 6(x; —x,.')Z/A,.Z_I , i=1.3 Gaussian filter (5.70)
When Gaussian filter is used, sub-grid scale account for a considerable fraction,
about10% , of total turbulent kinetic energy. When Cut-off filter is used, contribution of
sub-grid scale is entirely due to high wave numbers and account for a very small fraction,
about1% , of total turbulent kinetic energy.
The Bardina’s mixed SGS model is defined as below,
M _

T, CBM(u,.uj —u,.uj)— 2u,S

S; (5.71)
l¢is a length scale which represents small eddies and it is related grid and filter size.

Smagorinsky model by itself assures Galilean invariance, but in mixed model C,,, must

be equal to unity for the equation of motion to be invariant under transformation between

inertial frames of reference.
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Piomelli et al. [57] found that the behavior of sub-grid scale Reynolds stress strongly
depend on the filter chosen. The consistency requirement between the model and the
filter is satisfied if they both carry the same information.

Applying cut-off filter, the sub-grid scale field contains the contribution of any

structure with wave number|k,.|>(7r/Ai). The Gaussian filter application, however,

results in wider range of scales contributing to the sub-grid scale model.

Smagorinsky model is adequate when the sub-grid scales are well defined. It contains
information only about one length scale and can not be coupled with Gaussian filter in
which wider range of structures contribute to sub-grid stress. However, this model suits
the cut-off filter characteristic which defines the maximum length scale of sub-grid
structures more precisely. This choice is called C—-S model. However, when the cut-off
filter is applied, the scale similar part of the mixed model is identically zero and mixed
and Smagorinsky models are identical.

Mixed or scale-similar models are based on the assumption that principal interaction
between resolved and unresolved eddies take place between the smallest resolved and the
largest unresolved eddies. These models are best used with Gaussian filter which allows
for interaction of wider range of scales close to the filter width. This choice is called
G- M coupling. In comparison, G— M combination predicts energy spectrum better
than C-S combination on account of high dissipative characteristic Smagorinsky

model.
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5.4.4 Dynamic SGS Turbulent Shear Stress — Incompressible Flow

It is known that eddy-viscosity SGS models fail to represent correctly different
turbulent flows with a single universal constant, especially in rotating or shear flows,
near solid walls, and in transitional regime [58]. M. Germano et al. [58] based on a LES
priori test using a cut-off filter, presented an eddy-viscosity model in which the model
coefficient is computed dynamically based on the algebraic identity between resolved
SGS turbulent stresses at two different filtered levels. The proposed model has the
advantages that it vanishes in the laminar regions of the flow and also it has the correct
asymptotic behavior in the near-wall region of turbulent boundary layer without requiring
damping or intermittency functions. The model is also capable of taking into account the
backscatter. This model locally calculates the eddy viscosity coefficient by using the

smallest resolved scales to model SGS turbulent stresses. In this model two filters are

defined as the convolution of the variables with two filter functions: grid filter G and test

filter G, as follows,
F@®=[fGHGG ) (5.72)
J@ = [7EGEF) (5.73)
Test filter is assumed to have a larger width A than that of grid filter A and corresponds

to a coarser mesh. It is also assumed that G = GG . Applying the filters G and G to
the governing equations results in sub-grid stresses at each filtering level which are given
below respectively. The grid filter is shown by & or eee and the test filter is shown by

~ —
® Or eee .
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T, =W, U, (5.74)
e =
T,=uu,~uu, (5.75)

The contribution to Reynolds stresses by scales whose length is between grid and test

filter is given by,

KDY
=|}

(r,-%,)=L, = 7 -

i i iu

u, (5.76)
This is the resolved turbulent stress which can be calculated explicitly. This identity is
used to derive more appropriate value for Smagorinsky coefficient with regard to the

instantaneous state of the flow. It is assumed that the same relation, such as Smagorinsky

model, can parametrize both 7, and 7. The anisotropic parts of these two SGS stress

tensor is given by,

7, (6, /30 = m, = 2(CAV[S|S, Where [3|=25,,5,, and 5 =(0,7 +0.1,)/2

(5.77)
T, (5, /3, = M, = 2(csiﬂ§ S, Where ’§' =y25,,5,, and S =(0,7 +a4 )2
(5.78)

Plugging the above Smagorinsky model in the preceding identity for L, gives the

following,

_ ) ~
LS, =2C, [Az S

§§) (5.79)

The above relation can be used to evaluate the Samgorinsky coefficient C; dynamically.
On account of ill-conditioning possibility for C;that happens when the value of the

parentheses on the right hand side becomes zero, M. Germano et al. [58] took an average
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over the plane normal to the channel wall, denoted by <0>, to compute C; as given

below,
o =% N 7R (5.80)
oy PE— ===z =
A <S pquq>—A <}S s,,,,,sm,,>
Hence, the dynamic eddy-viscosity is given by,
mij =T= — o= L_lekl [ IEIS] (581)
(A/A)z<’S 5 m> —<‘S Spquq>

This model has remarkable properties such as, zero SGS stress in laminar regions of flow

or at solid wall due to the fact that L, vanishes in such conditions. Also in the near wall
region, m, is proportional to the cube of distance from wall which is the correct
asymptotic behavior without requiring any ad hoc damping functions. In addition, the
model does not exclude backscatter. This can be seen from the fact that the modeled SGS

dissipation g5 = m,;S,

;» 18 proportional to average dissipation of the resolved turbulent

stresses <L,.j§,.j> , which can be either positive or negative.

The only parameter to adjust in the model is (X/ A) . Small values of this ratio can be
infected by numerical errors while large values bring larger structures into account in
SGS turbulent stress calculation. The optimum value, however, varies depending on the
flow. M. Germano et al. [S8] found that for the ratio (Z/ A) =2, the mean SGS shear
stress 7,, and dissipation &, matches the exact values very well, and for larger values

results were not shown to be very sensitive. In transition regime, however, the results

were not satisfactory. The discrepancy is owing to the fact that small difference in
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prediction of the onset of transition leads to significant difference in the instantaneous

field that is simulated after. Eventually, the effect of ratio (E/K) should be further

investigated for more complex geometries, different filters such as box filter, and local or

time averages instead of their plane average.

5.4.5 Dynamic SGS Turbulent Shear Stress — Compressible Flow

Moin et al. [59] further extended the dynamic SGS modeling for compressible
turbulent flows by sharp cut-off filtering of the DNS data of isotropic turbulence,
homogeneous shear flow, and turbulent channel flow. They found excellent results for
isotropic turbulence decay simulation. They also found an expression for SGS turbulent
Prandtl number as a function of molecular Prandtl number, direction of the scalar
gradient, and distance from the wall. This dynamic model, using the scale similarity idea,
utilizes the spectral information available in large scale field.

They also used another methodology for filtering the governing equations resulting in
the term D, = ,E(T du, —T 8kz7k) and then it was neglected based on a priori test which

showed the term is only 5%of the SGS heat flux. The SGS turbulent shear stress is

turned out to be,

T, = pui; — puu, (5.82)
Applying the test filter G to the resolved field, the test filtered stresses are,

—A—

Tij =(—p17i'puj/ﬁ)~puiuj (5.83)

Using the Germano’s identity, the Leonard stresses are given by,
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(r,-%,)=L, = (70 i, | §) - P 5.84
ij—Tij = ij—(puipuj p)—puiuj ( . )
The right hand side of the above relation i1s computable solely from the resolved field.

Using the eddy-viscosity model at both filtering levels, the isotrpic SGS turbulent stresses

are given by,

~|2
74 = 25(C,A)[S) (5.85)

2

A
~

T, =2p(C,A)|S (5.86)

assuming the same eddy-viscosity model with the same constant is applicable at two

filtered level. The coefficient C, can be computed as,

- —_= —= = 2 :_‘2:’2 2 5%
T, — %y = pi i, —(ou, pi, | p) = 2C, (PA S’ —A p|S| ) (5.87)

As shown in priori test of Germano et al. [58] the terms similar to the right hand side of

the above equation can become zero at some points. Hence, the well-conditioned

formulation for C, is obtained by an averaging procedure. Moin et al. [S9] assumed that
in their temporally developing homogeneous flow, C, is only a function of time. They

performed a volume averaging denoted by <0> , that leads to,

== ==
P, —(pu, pu, | p)
C’ = (5.88)

~

2P g
2( pR(S| - 455

However, in more complex flows, more localized averaging should be done in space and

time. The model for 7, then will be written as,
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—— ~ —_— ——— =
puit, —(pu, pu, | p)
~|2
Ty = Pps] (5.89)

(A

T
Xl

Using the Smagorinsky model at both filtering levels, the deviatoric SGS turbulent

stresses are given by,

r,,,ma‘,, p(C.A \S|(S ——Smma,jj (5.90)
Yr.6,=25(cAfR(5,-15,6, 1
T 3 mm™ij p SA 3Smm i (59 )

Again it is assumed that the same eddy-viscosity model with the same constant is

applicable at two filtered level. Then,

(§._ 5 5) ir.s 2C2—A2|S|( _1g 5j+
3 3

(5.92)

. : . I oy B eteplaviop P . .
Using the previous relation for 7,, —7,, = pu,u, —(pu, pu, / p), multiplying both sides
by §k, , using the identity §u5k1 =8 ;» and performing appropriate volume averaging, the

coefficient C is given as below,

<[Puku1 (puk PY, /p)]Skl -Y3(T,, - )§”>
C,’ = (5.93)
2 —ﬁAZS’(SkISkI—g mm ”j-*-Az(p’S’Sk[Skl 1/3p‘S|Smm Vi
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Again the only adjustable parameter is (X/Z). A different formula for C; will be

obtained if it was contracted with another tensor than S,. However, LES results are

expected not to be sensitive to this factor as it appears both in numerator and denominator
of the above fraction. Moin et al. [S9] found that two different contracting tensor might
have at most 10% discrepancy in some turbulent statistics. They found the value of C; to
be roughly between 0.008—0.014 and value of C, to be roughly

between 0.0025 -0.009 . They also found these values are relatively little influenced by

initial temperature spectrum.

5.4.6 Dynamic Turbulent Heat Flux — Compressible Flow

As seen before, the SGS heat flux is given as a function of filtered variables,

9 = ﬁ(ﬁ_akf)

-, (5.94)
= pu, T =\pu, pT / P )
Where the eddy-diffusivity model for SGS heat flux is given by,
g, =2 9T (5.95)
Pr, ox,

Where eddy viscosity is v, = CSA2’§ ’ The SGS turbulent Prantdl number Pr, is to be
found dynamically. The heat flux at the test filter level is given by,

r—%r—hr—’ﬁ

0, = pu, T —(pu, pT/ p) (5.96)

The eddy-diffusivity at this level is given by,

so,of _ PRt

Q== Pr, ox, Pr, 6xk

(5.97)
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Using the idea of Germano’s identity, the difference of heat fluxes at different filtering

level can be written as,

K, =0, -3, = (pu, pT /D)~ (pu, pT1P) (5.98)

——

SPU N o L~
= (pu,T)-(pu, pT / p)
The above relation is directly computable. Substituting the eddy-viscosity models into the

above relation leads to,

f—/%

2 —pAZ’S}—) (B, (55, 2T 1 B) (5.99)

S (_A2 a_T
Pr,

k

Contracting with 8T / Ox, and performing appropriate spatial averaging leads to,

r——&—\
—AZ‘S 6_T6_T__A G_T@_T)
Ox, Ox, Ox, Ox,
Pr, =C,’ (5.100)

2 (pu,T)—(pi, pT/ p))—

X

Moin et al. [59] used the value of (X/Z) = 2 but they demonstrated that in compressible
LES the results are insensitive to this parameter when it exceeds 2. The same thing was
accredited by Germano et al. [58] in case of incompressible flows. Moin et al. [59] found
that Pr,is approximately 0.85. Higher value of Pr, not only attributes to compressibility
effects but also shows the different initial temperature and velocity spectra. It is also been

seen that Pr varies with time, and in case of channel flow, it also varies with distance

from wall. Eventually, the study revealed that LES with constant model coefficient
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accumulate more energy at high wave numbers. This shows the need to dynamically
compute these coefficients to adjust to flow conditions.

Priori tests have shown that dynamic LES accurately predicts isotropic turbulence
decay as well as transitional and turbulent channel flow. However, their performance it is

limited for extrapolating the actual LES calculations.

5.4.7 Cure for Dynamic SGS Models Singularity

Lilly [60] proposed a modification to the dynamic SGS modeling of Germano et al.
[58] and Moin et al. [59] for their stress-strain relationship at two different filtered level
to become optimal using a least square approach. This modification also removed the
singularity in the model which necessitated spatial averaging. Considering the following

eddy-viscosity model for Leonard stresses,

1
L =3 Lud; = 2C5°M, (5.101)
Where,
(5 12 (s 1w )
M, =pRS (Su —gSmm%)— pAz’s\(sk, —gsmm%j (5.102)

It represents five independent equations in one unknownC;. As no value of Cgcan

simultaneously make all five equations correct, by applying a least square methods, the

error of the above relation can be minimized. To this aim, square of error is defined as,

1 2
0= (L/ -3 L +2cs2M,.jj (5.103)
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since 3°0/a(c,*f > 0, setting 00/a(C,?)= 0 will give the C;? that makes Q minimum
as,

2\ M7

y

LM,
C = 1(#] (5.104)

The relation in references [58] and [59] is C,° =1/ 2(L,.j§,j / My§y) This choice is just one

of the many possible projections of the Leonard stress relation. Germano et al. [58] and
Moin et al. [59] also found that denominator of their relation might vanish leading to
numerical instability. Hence, they averaged the numerator and denominator and this has
lessened some advantages of their model. However, here C becomes infinite only if all

five independent components of M, vanishes. Also it is less presumable but excessive

values of Ccan be removed by an averaging or simply by truncating isolated large
values.

The same approach is taken for SGS heat flux. By analogy to Leonard stresses they

can be written as,

2
KiEQi—éi=2fs R, (5.105)
Iy

where,

—t—

R = (o5 %-5&2 5

27;) (5.106)
ox,

The same least square procedure results in the following,

1 1 KR M KR

Pr, ) 2Cs2 Ri2 B LijMij Ri2

(5.107)
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5.5 Implicit Sub-Grid Scale Models

The numerical solution of the LES governing equations has several numerical errors.
The most important numerical error is the spatial truncation error and depends on the grid
spacing 4 [42]. The new governing equations, that are actually solved in the CFD

simulation, are given below for an incompressible flow,

5_[7,' 62(7j 0 ( )
Dt v

2 O e)- LB (5.108)
Ox,0x, Ox; p Ox,

i

in which r,;' is the numerical stress which is of the order 4" with » being the order

accuracy of the numerical method. Hence, r,.jf depends on the numerical method used to

solve the governing equations. Using the SGS models discussed in the previous sections,

SGS

the ideal numerical model should produce a negligible r,.jf compared to 7
As initiated by Boris et al. [61], in implicit LES (ILES) approach, the “monotone”
numerical methods are used to solve the Navier-Stokes equations without using the

explicit residual stress model. The monotone methods lead to significant numerical stress
T; which replaces the SGS model. Boris et al. [61] called this method MILES which

stands for Monotone Integrated Large Eddy Simulation.

In ILES approach, artificial diffusion of the numerical scheme, in the form of the
truncation error terms, is solely responsible to model the effect of the unresolved scales
on the resolved scales in the energy cascade and damp the turbulent kinetic energy. No

SGS diffusion model is used while the mesh is highly resolved. Hence, in the implicit

LES the modeling issue lies in the treatment of the convective term. The convective flux,
as discussed in previous chapters, is computed here using the k¥ — a type method of Van

Leer based on the second order Roe method which is modified by introducing a factor &
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that allows for balancing the importance of the centered scheme and the artificial

viscosity in the scheme. Flux calculation at the interface of cells I and J becomes,
1 (4 [ 4
F, = 5[ F(W,)+F(W,)|-adF, (5.109)

where W is the variable vector. When « =1/2, this scheme is the same as the second

order Roe method. To construct the interface variables a MUSCL type expression is used

by introducing a combination of a centered and an upwind gradients to evaluate VW),

and VW,
1 . -
w, =W, +5[(1—K)(VW),C iy, +x(Vw)Y -n,,] (5.110)

1 3 i}
W, =W, +§[(1—x)(vw)f iy k(W) | (5.111)

The table below shows the theoretical order of accuracy of the different schemes for

calculating convective flux on a structured mesh.

Table 5.3: Flux Calculation Methods

Flux Calculation Method | « x | Spatial Order of Accuracy
F2 1/2 1 2
F31 1/2 1 1/3 3
F32 1/10 | 1/3 3

Decreasing & leads to a higher spatial order of accuracy. Decreasing a leads to lowering
the artificial diffusion term in the Roe flux calculation method. When x =0 or a =0,

the scheme is totally centered and so unstable. This artificial diffusion removes energy
from smallest scales without contaminating the large scales. It is argued [42] that the

details of how this energy is removed are not very important.
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The idea behind this ILES methodology, as shown by Margolin et al. [62], is based on
the physical significance of the truncation errors of the spatial discretization. These
truncation errors can be related to the correction necessary for the discretized finite
volume equations to represent the governing equation of an infinitesimal point of fluid.
Hence, it is claimed that such terms are not the numerical error but also they legitimately
describe the physics of the flow [62]. Flow realization using implicit LES is also helpful
to understand the behavior of numerical diffusion and its interaction with SGS models in

explicit SGS modeling.

5.6 Explicit Filtering

For the use in dynamic sub-grid scale modeling, an explicit filter is constructed
following the procedure of Marsden et al. [63]. This filter commutes with differentiation
up to second order of accuracy. Commutative filter construction starts by definition of its
moments which is then used to achieve second order commutation accuracy. Filter

moments are defined using filter kernel G and filter size A, as
ofy =y 1 a -
m (%) = = ” ninfn! G(x,m)dn,dn,dn, (5.112)
Q

where7, = (x,~,)/A. To achieve second order commutation error the following

conditions should be satisfied,

afy r=\ _ lljﬁazﬂ:}/
m (Jc)-{O i atfiy=1 (5.113)

These conditions are met for interpolation-based filters [64]. Interpolation is done by
finding 4 points around the node under consideration, in form of a tetrahedron as filtering

window. A first-order polynomial is passed through the four neighboring vertices. The
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weight of each vertex of the tetrahedron is chosen, following [64], as follows: the first-

order polynomial interpolant is defined as,
P(x,y,z2)=a,+a(x—x))+a,(y—y,)+a;(z—2z,) (5.114)
with (x,,,,2,) being the node which is going to be filtered. The Lagrange interpolation
form of the linear interpolating function at the point (x,, y,,2,) is written as follows,
P(xy,¥9,20) = By = WP + W, P, + w,P, + w,P, (5.115)
with B, P,, P,, and P, being the value of the interpolant at 4 vertices of the filtering
tetrahedron. These weight are simply calculated from the system of equations AW = b,

where

1 1 1 1
X=Xy X,—X, X3=X, X=X

NW=Yo Ya=Yo Vi Yo Ys—o
2,—2y 2,-2, Z3-2, 2,2,

A=

(sl
Il

(5.116)

(=B el ol

To attain more flexibility in filter width and shape, 7 different tetrahedral are found
around each node. The weight of each tetrahedron is found, following Ciardi et al. [65],
by matching the resulting filter with an equivalent isotropic spherical top-hat filter with
filter size of A . For the equivalent top-hat filter, one can write

3 0
—A 5.117
0 (5.117)

M200 = M020 - M002 —

Ml]O — MlOl = M011 =0 (5118)
The filterering weight of each tetrahedral is given by the solution of the following system

of equations,

7
> m g = M where afy = 200,020,002,110,101,011
i=l
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ﬁ0+z7:ﬂi=1 (5.119)

where [, is the weight assigned to the i"™ basic filter, and B, is the weight associated to

the filtered point under consideration which is set to 0.5 as recommended in reference

[65].

5.7 Implicit Filtering

Implicit filtering has been done using the effect of differential operators of finite
element method as an implicit filter. For the implicit filtering, it is assumed that for the
largest to shortest edge ratio of at most 1000, the implicit filter can be used for static

Smagorinsky model and as the grid filter of dynamic Smagorinsky model.

5.8 LES Models Implemented in This Work

In this work LES is modeled by solving the filtered governing equations using Favre
Average (section 5.3.1) and by using filtered energy and modified pressure (system II).
For SGS stress modeling, Smagorinsky, dynamic Smagorinsky and Implicit LES models
were implemented. The Smagorinsky coefficient C; is evaluated using the equation 5.60
and 5.61. The filtered strain §k, is found from the grid filter velocity. Also, in Yoshizawa
relation 5.62, the coefficient C, for modeling the isotropic part of the SGS stress is
assumed to be equal to the Smagorinsky coefficient C; used for modeling the deviatoric
part of the SGS stress tensor. For dynamically evaluating the Smagorinsky coefficient C,

Lily proposal [60] (equation 5.104) is used. Tensors M, and L, are evaluated from the

resolved field using the grid filter and a test filter. The test filter is chosen to a discrete
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interpolation filter with a commutation error of second order accuracy conforming to the

second order numerical method used in this work. The filtered strain §k, is found by

filtering the grid filter velocity using the discrete interpolation filter and then
differentiating the test filter velocity field. For the sake of simplicity, the turbulent
Prandtl number is assumed to be equal to the laminar Prandtl number and equation 5.108
is not used. ILES method is considered using different flux calculation methods

according to table 5.3.



Chapter 6

RESULTS AND CONCLUSIONS

In this chapter the LES results for flow over a gas turbine blade is presented. A high
pressure gas turbine rotor blade profile (RS1S profile of SNECMA) mounted in two-
dimensional linear cascade arrangement is selected for this purpose. The cascade is
composed of 6 blades, i.e. 5 passages. The 3™ (counted from top) profile was
instrumented either for static pressure or heat flux measurements. The blade geometry is

shown in figure 6.1,

25 -
101~
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Fig. 6.1: Geometry of the 2D RS1S rotor blade

The main geometrical characteristics of the blade is summarized in table 6.1,
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Table 6.1: Geometrical characteristics of the blade

Chord length ¢ 35.906 mm
Pitch to chord ratio 0.7607
Blade height to chord ratio 1.393
Stagger angle (from tangential direction) 58.38 deg
Inlet flow angle (from axial direction) 53.36 deg
Inlet flow angle (from axial direction) -65 deg

Measurements were performed at von Karman Institute by Arts et al. [66] under
operating conditions encountered in modern aero-engine. By independent variations of
exit Mach (0.8 ... 1.3) and Reynolds number (5¢05 ... 2¢06), free stream turbulence (1
... 6 %), and incidence angle (-14 ... +11 deg), a detailed data base of test results for
blade isentropic Mach number and heat transfer coefficient is provided. This case is used
at SNECMA for validation purposes. Test facility allows for an independent selection of
Mach and Reynolds number as well as gas to wall temperature ratio. Air was used as a
working fluid and typical test duration was about 0.5 second.

Free stream total pressure and temperature, static pressure and turbulence intensity
were quantified at 1/2 axial chord length upstream of the leading edge. Exit isentropic
Mach number was quantified at 1/3 axial chord downstream of the trailing edge by
pressure taps that covered almost 2.5 pitches to qualify downstream periodicity. The
blade Mach number distribution was determined by 27 static pressurc taps distributed at
mid-height around the blade profile. Isentropic Mach number is only a function of non-

dimensional pressure and it is found using the following relation, proved in Appendix B,
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14

P_[1+7= ) 6.1)
pa,in 2 ?

where p,, is the total inlet pressure which is also used to non-dimensionalize the

pressure. The uncertainty on pressure was+0.5% .

The convective heat transfer measurement at the wall was determined by means of a
transient technique. The convective heat transfer coefficient is defined as the ratio of the
measured wall heat flux and the difference between the total free stream and the local

wall temperature as given below,

q
h=—"tr— 6.2
T,.-T (€2

The heat flux gauges were about 20mm long and the heat transfer measurements describe

some kind of spanwise average. The uncertainty on heat transfer coefficient was+5%.

Results distribution are presented for a coordinate along the blade, s, which is 0 at
point (0,0) and it is maximum at (¢,0) referring to figure 6.1. s is positive for suction
side (upper surface) and negative for pressure side (lower surface).

The physics of flow is explained in [66]. Isentropic Mach number and heat transfer
coefficient are selected in experiment. Isentropic Mach number distribution which is also
called blade velocity not only reveals pressure distribution on the blade but also it gives
information on flow acceleration and favorable or positive pressure gradient which can be
indicators of existence of a separation zone. In the separation zone however this variable
maintains the same level. Heat transfer coefficient is a very important design parameter in
modern engines. It also discloses important information on the regime of boundary layer

being laminar or turbulent as well as on the transition point.
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Isentropic Mach number distribution on the blade is quite sensitive to inlet incidence
angle and exit Mach number. At positive incidences, blade velocity reaches a sharp peak
on the suction side and an early transition of the suction side boundary layer occurs. At
negative incidences, the velocity peaks on the suction side and pressure side decrease and
acceleration becomes much more continuous. This leads to development of a laminar
boundary layer. In addition, different back pressures significantly change the blade
velocity on the rear part of the suction side. Both incidence angle and back pressure
change the boundary layer development. However, more rigorous study of boundary
layer development requires studying heat transfer coefficient. Two other flow variables
play major role in blade heat transfer, turbulent intensity and Reynolds number.

Increasing turbulent intensity augments laminar heating in the leading edge area and
along the laminar part of the suction side. At lower inlet turbulent intensity (0.8%),
boundary layer on the suction side remains laminar until the s=40 mm where the shock
impinges on the blade surface. At higher inlet turbulent intensity (4%), transition is
triggered much upstream at s=18 mm and the stabilization effect of the favorable pressure
gradient decreases the heat transfer coefficient due to reacceleration of the flow from
s=18 — 40 mm until the location of shock/wall interaction. Reynolds number has the
similar effect. At lower Reynolds number boundary layer stays laminar until shock
impingement. But at higher Reynolds number transition is undergone upstream the shock
position. Overall, increasing Reynolds number leads to more upstream transition and
overall enhancement in heat transfer.

A small recirculation bubble exists at the beginning of the pressure side which

manifests itself by strong heat transfer variation due to the separation and reattachment of
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the flow in that region. The amplitude of this variation is not a function of Reynolds
number but it is strongly reduced for higher turbulent intensity. Increasing the Reynolds
number increases the heat transfer coefficient on the pressure side.

The effect of exit Mach number on heat transfer coefficient is similar to that of
pressure distribution, i.e. it makes changes only in the rear part of the suction side and in
the region of shock/boundary layer interaction. In the transonic and supersonic regimes,
the boundary layer grows faster and heat transfer coefficient decreases. The effect of inlet
incidence on heat transfer coefficient is also analogous to that of pressure distribution, i.e.
at higher incidences, the transition is set off more upstream on the suction side and at
lower incidences, the effect of the separation bubble on the pressure side is more
pronounced.

Arts et al. [66] also simulated this flow using a SNECMA-ONERA Navier-Stokes
solver. The solver computes compressible flows with finite-volume and time marching
techniques on multi-block structured grids. Both experimental and RANS data will be
used herein to verify the LES results.

The test conditions considered here are the transonic flow at two flow angles, i.e.

I=5336",64.36". The first one corresponds to the design flow angle with least

separation possible. The second angle is I/ =11" higher than the design flow angle.
Experimental isentropic Mach number at the outlet is reported to be 0.844 [66]. However,
as suggested in [66], this value should be adjusted to a few percent for a better agreement

with experimental results. Here, M, at outlet is adjusted 16% to get the best match with

LES results.
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Pressure distribution is known to be the first parameter to be used in verification of
new turbulence models. Other flow statistics such as Reynolds stresses are more rigorous
verification parameters. The large separation that exists in the second test case,
I =63.36", is a suitable condition to assess whether LES performs better than RANS
models. In incompressible and low speed subsonic flows, pressure distribution over the
blade is an inviscid phenomenon which is even resolvable with Euler models and the
choice of turbulence model has no significance. However, in the transonic regime of the
flow with existence of several weak and strong shocks on the blade and their interaction
with the boundary layer at a very high angle of attack, the physics of the flow is viscous
dominated and LES and RANS results are completely distinguishable. This different is
more pronounced in off-design conditions due to the existence of a separation region.

Mesh generation is a major step of LES calculations. The criteria for mesh size are as
follows: mesh has to be fine enough to resolve the wave-numbers in -5/3 law (figure 5.2)
and the resolved domain has to contain at least 80% of the flow energy. Also in the near
wall region, mesh has to be finer than the viscous length scale, i.e.y" =1. The
Kolmogorov  length scale for this flow, assuming Re=0.54e06, is
n/l, ~Re™* =5.02¢-05, where /, is the flow length scale, i.e. chord length here.

According to RANS simulations of this flow [66] of the of the first cell is located at
I(y* = 1)/ chord = 2.8e—04, that is, for DNS of this flow there is a need to have elements
with edge length of 7~/(y* =0.2). Such a DNS mesh is impossible to create for our
resources. However, the inertial sub-range of the flow is the length scales in the interval

60n << 1<<1,/6. 60 times large than the Kolmogorov scales means 6077 ~I(y" = 30).
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In this work, two levels of mesh resolutions are considered here. The resolution of the

mesh on the wall is Ay" ~5 and Ax” =Az* =25in wall units for coarse mesh and

Ay" =0.5 and Ax" = Az" =10 for fine mesh. After 20-30 boundary-layer type layers of
structured mesh with the ratio of 1.2, the boundary mesh is smoothly mixed with the
outer unstructured mesh. The largest edge length is the same in both meshes, Ay* = 50 if

measured using the corresponding values on the wall, leading to a largest edge to shortest
edge ratio of 10 and 100 in coarse and fine meshes respectively. Both meshes are well
inside the inertial sub-range region of the flow. The effect of near-wall resolution can be
best seen from the difference in the simulations of these two meshes since the fine mesh
has higher near-wall resolution with the nearly same domain resolution compared to the
coarse mesh and maximum edge 1ength of both meshes are the same. No near-wall model
is used in either case. It is assumed that within this limit of largest to shortest edge ratio,
the implicit filter can be used for static Smagorinsky model and as the grid filter of
dynamic Smagorinsky model. The coarse mesh consists of nearly 0.5 million nodes (2.5
million elements) while the fine mesh is composed of 2.5 million nodes (13 million
elements). The coarse mesh is partitioned to 8 sub-domains while 32 CPUs are found to
be enough to run the fine mesh.

Time stepping is another major issue in LES calculations. Very fine mesh usually
results in very small time steps. However, as we use implicit methods, it is possible to
increase the CFL number without stability problems. The maximum time step is found by
looking into Kolmogorov scales. Largest edge in the flow is 100 times larger than
Kolmogorov length scale. Hence, the first attempt can be choosing maximum time-steps

to be 100 times larger than Kolmogorov time scale. The Kolmogorov time scales of this
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flow, assuming Re = 0.54¢06, is ¢, /¢, ~ Re™? =1.36¢—03. ¢, is the time scale of the
flow which is around 1.0e-04 second which is 1000 times larger than ¢, . The maximum

time-step will then be used in extracting the statistics of the data. In this work, two
sampling strategies are used. In the more expensive one, the maximum time step in the

simulation is chosen to be Az, /f, =0.1 and the number of data sampling is 1000. In the
less expensive one, the maximum time step in the simulation is chosen to be Az, /1, =1

and the number of data sampling is 400. It is found that, the results of both sampling
strategies are identical for pressure distributions.

Each case runs until the flow becomes statistically steady. This is ensured by
monitoring pressure and aerodynamic forces on the blade and residuals. Then the
problem is run for a period of time, according to above-mentioned sampling strategies,
which is assumed to be much longer than the period of flow oscillations. Then the data
statistics are extracted.

The results are presented for Smagorinsky, ILES, and Dynamic Smagorinsky models
to investigate the effect of different SGS modeling approaches. They are all calculated
using the second-order accurate convective flux calculation. Afterwards, the interaction
of numerical scheme artificial diffusion and turbulent SGS modeling is explored by
changing the order of accuracy of the convective flux calculation as well as changing the

coefficient of artificial diffusion in x -« convective flux calculation.

6.1 Qualitative Study
Different flow variables are shown in the following figures to give a qualitative study

of the simulation.
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Fig. 6.2: Instantaneous Pressure Field
Design Condition

Fig. 6.3: Instantaneous Streamlines and Vorticity Isosurfaces
Leading Edge - Design Condition
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Fig. 6.4: Instantaneous Streamlines and Vorticity Isosurfaces
Trailing Edge - Design Condition

Fig. 6.5: Instantaneous Pressure Field
Off-Design Condition
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Fig. 6.7: Instantaneous Streamlines and Vorticity Isosurfaces
Suction Side — Off-Design Condition
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Fig. 6.8: Instantaneous Streamlines and Vorticity Isosurfaces
Suction Side — Off-Design Condition

Fig. 6.9: Instantaneous Streamlines and Vorticity Isosurfaces
Trailing Edge — Off-Design Condition
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The figures 6.2-6.9 show the qualitative behavior of the instantaneous flow field. As
seen from these figures, at design condition the flow is completely attached to the blade
and pressure field is completely different from the off-design conditions in which several

flow separation bubbles exist.

6.2 Sensitivity Analysis

To further investigate the flow behavior and the effect of different flow conditions,
the pressure distribution over the blade is investigated which is the most important flow
variable in engineering. Effects of the two main flow parameters are explored in this
section, namely inlet flow angle and back pressure. The results are presented as isentropic

Mach number M,

is?

which represents pressure, versus the stream-wise length of the blade
s . The pressure side is the region (s < 0) and suction side is the region (s>0). The blade
length is non-dimensionalized using its maximum value on both side s, . s, is total

length of the suction side for s>0 and total length of the pressure side for s<0. This

value for suctions side is nearly twice this value for pressure side.
Effect of the flow angle in isentropic Mach number is shown in figures 6.10 and 6.11

for two different back pressures. It can be seen that the first jumps in the M, on both
pressure side (s <0) and suction side (s>0) depends mainly on the flow angle. The

experimental data in these figures correspond to the flow angle 7 =53.36". The solid lines

in the following figure correspond to the results for the experiment condition.
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Effect of back pressure is shown in figures 6.12 and 6.13 for the flow

1=5336
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Fig. 6.12: Different Back Pressure at 1 =53.36
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Fig. 6.13: Different Back Pressure at [ =53.36
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It is clearly seen from figure 6.12 and 6.13 that on the pressure side (s <0), after the

first jump in M, results, rest of the M, distribution remains constant regardless of the

is

back pressure. However, on the suction side (s>0), M, distribution varies significantly

with back pressure. As stated before, the back pressure is adjusted in the numerical
solution to have the best match with experimental data. In two levels of back pressure
adjustment, figures 6.12 and 6.13 respectively, the back isentropic Mach number of 0.98
was found to best represent the experimental data which is shown by a solid line. The
distribution which has the closet match with experimental data is shown by solid line in

these figures.

6.3 LES Verification at Design Angle of Attack
In this section LES results will be presented and validated in this section. These

results corresponds to Re =0.54¢06, T

o,in

=415K, and adiabatic walis.

6.3.1 Smagorinsky Model
Figures 6.14 and 6.15 show the isentropic Mach number distribution on the blade
using the Smagorinsky model for coarse and fine meshes respectively. The effects of the

addition of Yoshizawa model for 7, (modeling the termC,) as well as Van-Driest

damping function have been explored.
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Plain Smagorinsky Plain Smagorinsky

...... With Yoshizawa Model = ====°  With Yoshizawa Model
With Van-Driest Damping Function
Experiment [66]

is A Experiment [66]

Fig. 6.14: Coarse Mesh Fig. 6.15: Fine Mesh
Smagorinsky Model Smagorinsky Model

Yoshizawa model by modifying pressure is expected to change the isentropic Mach
number distribution which is a function of non-dimensional pressure only. However,
figures 6.14 and 6.15 which show that Yoshizawa model makes a very small change on
the coarse mesh while it has almost no significance on the fine mesh in this flow

condition and the results of the Smagorinsky model with or without the 7,, modeling fall

on the same line. Furthermore, Van-Driest model for correcting the viscosity near the
wall is expected to improve the flow variables distributions on the blade. However, for
the coarse mesh, Van-Driest damping function makes the solution unstable and it is not
shown here and in case of the fine mesh it makes almost no difference in pressure
distribution on the blade. These results suggest that for a sufficiently finc mesh, all

variations of the Smagorinsky model lead to the same pressure distribution.
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The trend of the isentropic Mach number distribution is found well using different

variations of the Smagorinsky model. Three jumps in M, on the suction side (positive s)

and one jump in M, on the pressure side (negative s) are distinguishable in the

experimental data and they are shown by circles in figure 6.15. The first jumps at point 1
on both suction and pressure sides are mainly a function of angle of attack and it is
accurately captured. The pressure side jump is overestimated. The last two jumps on the
suction side are mainly dependent on the back pressure. After point 2, pressure, hence

M

is?

reaches a plateau that LES calculation fail to capture. At point 3, again LES results

seem to capture the shock behavior fairly well.

6.3.2 ILES Model
Figure 6.17 shows the isentropic Mach number distribution on the blade using the

ILES model for coarse and fine mesh resolutions.

Coarse Mesh
______ Fine Mesh
M A Experiment [66]

08+

Pt

Fig. 6.16: ILES Model
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The effect of the artificial diffusion of the numerical method has been investigated in
these figures. Although the diffusion of the coarse mesh is higher than that of the fine
mesh, according to the ILES results, there is not a significant difference between the
results of the two mesh resolutions. The results on the two mesh resolution level is almost
the same but fine mesh has a smoother pressure variation on the blade. The sharp jump in

M, numerical results on the pressure side near the trailing edge, which is shown by a

circle in figure 6.16, is much lower on the fine mesh. Other SGS models also retain the
same behavior. This jump exists even in the RANS results [66] and it is much larger than

the LES results.

6.3.3 Dynamic Smagorinsky Model

Figures 6.17 and 6.18 show the isentropic Mach number distribution on the blade
using the Dynamic Smagorinsky model for coarse and fine meshes respectively. These
figures also contain the Smagorinsky and ILES results to provide a comparison among

different SGS models.

124 ~mo==-- ILES
Dynamic

M, | - -.-.- Smagorinsky

Experiment [66)
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Fig. 6.17: Coarse Mesh
Different SGS Models
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121 -=-=-=-- ILES model
Dynamic
Smagorinsky
Experiment [66)
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Fig. 6.18: Fine Mesh
Different SGS Models

ILES is the case with least amount of viscosity, while the Smagorinsky model has the
highest viscosity. Dynamic Smagorinsky results always fall between the other two, on the
grounds that this model by adjusting the amount of turbulent viscosity, based on the
dynamics of the flow, provides a moderate turbulent viscosity. This is shown by zooming
into figures.

As shown in figures 6.17 and 6.18, the dynamic Smagorinsky results are almost
identical to the ILES results. This behavior stems from the fact that by dynamically

finding the Smagorinsky constant Cy, its value becomes very small. The maximum value
for the Smagorinsky constant using its dynamic version is found to be C,° =0.00034

while this value is C Sz =0.01 in the plain Smagorinsky model. This value depends on the

choice of filter and definition of filter width. Using a sharp cut-off filter, Germano et al.

[53] found this value to be around 0.023 in an incompressible turbulent channel flow
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while Moin et al. [S4] for an incompressible isotropic turbulent decay found this value to
be roughly between 0.008 and 0.014. Also as can be seen from figures 6.17 and 6.18, the
results on the fine mesh are more sensitive to SGS models than that on the coarse mesh

on the account that coarse mesh has a higher numerical diffusion.

6.3.4 Interaction of Artificial Diffusion with SGS Modeling

To study the interaction of numerical diffusion and LES turbulent diffusion, different
methods of convective flux calculations, i.e. F2, F31, and F32 according to table 3.1,
have been examined and shown in figures 6.19-6.22 for coarse and fine meshes using

Smagorinsky and Dynamic Smagorinsky SGS models.

F2 Method
Ml -°°°° F31 Method

Lo A A F32 Method (a=0.2)
Experiment [66]

08+
064
04+

02+

-1 05 0 05 3
55 s

Fig. 6.19: Coarse Mesh
Smagorinsky Model - Different Flux Accuracies
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124 ———  F2 Method
""" F31 Method
1.7 F32 Method (@=0.3)
A Experiment [66]

5/ S

Fig. 6.20: Coarse Mesh
Dynamic Model - Different Flux Accuracies

As previously discussed, owing to the fact that ILES results on both coarse and fine
meshes are very close to each other, both meshes have responded the same to the
artificial diffusion adjustment and on both meshes, the coefficient of artificial diffusion
a can at most be reduced to 0.3 for ILES and dynamic SGS models and the solution still

remains stable.

127 —_—

F2 Method
M\l °-°°= F31 Method
b A F32 Method (@ =0.2)
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Fig. 6.21: Fine Mesh
Smagorinsky Model - Different Flux Accuracies
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12— —_— F2 Method
""" F31 Method
M, | aea- F32 Method (a =0.3)
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Fig. 6.22: Fine Mesh
Dynamic Model - Different Flux Accuracies

For Smagorinsky model a can even be reduced to 0.2. For a values lower than the
above-mentioned values the solution becomes unstable.

As seen in figures 6.19 — 6.22, the only part of the flow to be affected by the artificial
diffusion adjustment is the second half of the suction side which contains the shock zone.
On the coarse mesh, the Smagorinsky model is more sensitive to the flux calculation
method. However, on the fine mesh, the dynamic model is more sensitive to the flux

calculation method.

6.4 LES and RANS Results at Design and Off-Design Conditions
Figures 6.23 and 6.24 show the isentropic Mach number distribution in the LES and
RANS simulations respectively at design conditions 7 = 53.36 . LES results corresponds

to M,

ishack

= 0.98 ; however, there is ambiguity in the RANS back Mach number (it is said

[66] to be 0.844 with some adjustments). This case is the hardest case to outperform the

RANS simulations, on the account that RANS models perform well for pressure
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distribution on the wall at design conditions where the flow is attached. RANS models
are derived based on flow characteristics on the wall and they do not behave as good
throughout the flow. Also they have severe difficulties for non-attached flows, i.e. off-
design conditions. As can be seen in figures 6.23 and 6.24, there are two local maximum
in the LES Mach number on the rear suction side. This is the characteristic of transonic
blades. One reason that it is not captured in RANS results is due to the unknown back
Mach number which might not be as large as LES results. Figure 6.12 shows that for

lower back Mach number, LES will not predict more than one local maximum at this

region.
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Fig. 6.23: Design Condition Fig. 6.24: Design Condition
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Three jumps in M, on the suction side (s >0) and one jump in M, on the pressure

1. L
side (s < 0) are distinguishable in the experimental data and they are shown by circles in
figure 6.23. The first jumps in isentropic Mach number on both suction and pressure sides

(point 1 in figure 6.15) are mainly a function of angle of attack. Comparing to the RANS
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results presented in [66] using a 3D SNECAM-ONERA solver the first jump at point 1
on the suction side is much more accurately captured. The pressure side jump is
overestimated in both LES and RANS results. The last two jumps on the suction side are

mainly dependent on the back pressure. After point 2, pressure, hence M,

is?

reaches a

plateau which is found well in RANS calculation but obviously LES calculation fail to
capture it. At point 3, again LES results seem to capture better the shock behavior.
Figures 6.25 and 6.26 show the isentropic Mach number distribution in the LES and
RANS simulations respectively at off-design conditions / =64.36. The LES results
correspond to M, . =122 ; however, there is ambiguity in the RANS back Mach
number (it is said [66] to be 1.088 with some adjustments). This case is a better case to

show the superiority of the LES whose main characteristic is being able to resolve to

separation bubble on the suction side and near the leading edge which can not be

captured using RANS.
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As seen in figure 6.25 and 6.26, on the pressure side (s < 0) results are overestimated
in LES while is found very well in RANS simulation. The most deficiency of the RANS
simulation is on the suction side (s> 0) where the physics of the flow is very different

than the pressure side. LES predicts the first jump in M, very accurately in contrary to

1A

RANS. However, at the second jump in M, on the suction side, LES results deviate

significantly from the experimental data. This behavior is also seen in design condition.
As stated before, the RANS data are found by some back pressure adjustment. This
change is vaguely stated to be “a few percent”. In this work, based on the above-
mentioned sensitivity analysis, the value 0.98 is found for the back isentropic Mach
number at the design condition and 1.2 for off-design condition. The experimental values
are 0.844 and 1.092 respectively. However, this ambiguity does not make the process of
comparison difficult as far as the trend of the isentropic Mach number distribution is
concerned. Even at lower back isentropic Mach number which is shown in figure 6.12,

there are two bumps in LES results for M, distribution, at point 2 and 3, that the first one

is obviously not present in the experimental data and it is not shown in RANS
distributions. As can be seen from the pressure field, figure 6.2, the region of very low
pressure at point 2 is connected to the point 3 by periodicity, i.e. considering a linear
cascade, point 3 on a given blade has the same x coordinate of the point 2 on the lower
blade and point 3 is located just above point 2. That is, the flow structure is not found
well on both suction and pressure sides. It might be due to the shortage of spanwise
direction. It can also be a result of aspect ratio and skewness of the elements. However,
removing each of these constraints leads to a much higher computation load. These issues

are discussed in the last section.
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6.5 Effect of Iso-Thermal Wall Conditioning

Up to now, presented results have been carried out using adiabatic wall conditioning
which is the common practice in the analysis of turbo-machinery flows without cooling.
But it is interesting to see the results of iso-thermal wall conditioning. The initial
temperature of the wall is set to be 298 K and the inflow total stagnation temperature is
420 K. Figures 6.27 and 6.28 show the isentropic Mach number distribution versus non-
dimensional axial chord for design and off-design conditions respectively. It can be seen
from the following figures that iso-thermal and adiabatic conditions do not have a
significant difference in predicting the pressure distribution on the wall. However,
throughout the flow and especially for temperature distribution, the results are completely

different.

Adiabatic Wall 181 Adiabatic Wall
------- Iso-Thermal Wall M. = === === Iso-Thermal Wall

y J y y | 0 + + + + —
0 0.2 04 06 08 1 0 02 0.4 0.8 0.8 1
xfc,, .

Fig, 6.27: Iso-Thermal Results Fig. 6.28: Iso-Thermal Results
Design Condition Off-Design Condition
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6.6 Effect of Spanwise Length

The computational cost of the LES simulation is determined by the resolution
requirements. Grid spacing in the direction normal to wall has to be small enough to
resolve dissipative scales. Also, the spanwise domain length has to be large enough to
allow 3D turbulence structure evolving. Time step is also limited by considerations of
numerical accuracy. An important limitation in the calculations up to now was the
spanwise domain size. Due to the high computational costs, span length of the blade is
only 10% of the chord length. In the LES simulation, shortage of the span length may not
allow capturing the 3D flow structures well. This effect is minimized by making the
lateral surfaces periodic but it can still be responsible for the large deviation of the
numerical results.

At the design condition, boundary layer separates in a very small region around the
trailing edge. Hence the spanwise length limitation has its lowest effect on the simulation
on the account that three-dimensional motions that can be affected from the lateral
dimension do not prevail in the flow and in the absence of a large boundary layer
separation zone or shocks, pressure distribution becomes an inviscid phenomenon which
is not very sensitive to the turbulence model. At off-design conditions, however, the
spanwise limitation becomes a very important issue which can make the large eddies
two-dimensional and have a huge impact on the solution.

Extension of the previously used meshes from 10% spanwise length to 100% spanwise
length makes the mesh size 10 times bigger, i.e. 4.5 million nodes for stretched coarse
mesh and 25 million nodes for stretched fine mesh. Due to the resource limitations, only

stretched coarse mesh is feasible. Figures 6.29 and 6.30 show the isentropic Mach
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number distribution versus non-dimensional axial chord for design and off-design
conditions respectively in case of stretched coarse mesh and iso-thermal wall
conditioning. It is clearly shown in the following figures that spanwise length has no
importance in design condition and it is important at the separation zone of at the off-

design conditions.

121 Spanwise = 10% Axial Chord Length 161 Spanwise = 10% Axial Chord Length
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Fig. 6.29: Different Spanwise Lengths Fig. 6.30: Different Spanwise Lengths
Design Condition Off-Design Condition

6.7 Conclusions and Future Works

Compressible turbulent flow over a gas turbine blade at high Reynolds and Mach
number is investigated using the present state of the art physical models and the
mathematical solution methods. Different LES methodologies are explored using a 3D
unstructured tetrahedral Navier-Stokes parallel solver which is based on mixed finite-

volume-finite-element method. Two different mesh levels are investigated which are one
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of the largest meshes that have been generated for such a CFD simulation. This work
constitutes a first attempt at large eddy simulation of a compressible industrial turbulent
flow over a complex geometry at high Reynolds and Mach numbers.

The results have been compared with experimental data on isentropic Mach number
distribution. The results have a fairly good agreement with experimental data; however,
there are still some challenges for industrial LES applications which have to be addressed
to lead to a better agreement with experimental data. These challenges are mainly the
shock/boundary layer interaction on the suction side near the trailing edge and separation
bubble on the pressure side near the leading edge.

LES pressure distribution results have significant differences with the 3D RANS
results. Much more discrepancy is expected in velocity profiles, shear stresses, and heat
transfer characteristics. Considering pressure distribution results and compared to the
currently used RANS models, LES results are fairly superior especially in the off-design
conditions. LES results of this work are more superior to RANS results in the regions
close to leading edge which contains very high strain in fluid elements and it is not
satisfactorily resolvable using RANS. RANS results of [66] are superior to LES results of
this work for the mid suction side at which the turbulence structures are not resolved well
in LES where a separation leads to constant pressure distribution which is captured as an
attached flow in LES. This might be due to not introducing fluctuations at LES inlet and
also to not having enough mesh resolution. Both LES and RANS results have difficulty
resolving the shock/boundary layer interaction on the rear suction side of the blade. This
might also be cured in LES by improving the mesh at that region or using adaptation

methods or enhancing the mesh capturing characteristics of the flux calculation method.
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Different SGS methods used here do not significantly change the results in the present
flow conditions. This can be a justification for using ILES method in the context of Roe
method flux calculation for complex geometries. Up to now, ILES is theoretically proved
to be meaningful just for very simple flows [57].

Different flux calculation methods are explored and the artificial viscosity is reduced
up to the level of flow instability without a substantial difference in the results. This
proves that SGS viscosity or its interaction with the numerical diffusion is not the cause
of the difference between numerical and experimental results. Better resolution of the
turbulent flow structures may lead to improved results compared to the time-averaging
turbulence models. As far as the LES methods are concerned, for the current flow

conditions, pressure does not appear to be a very sensitive quantity to the SGS viscosities.
One important assumption that is made here, is neglecting the term D,. It is a

customary practice in LES of compressible flow to offset this modeling lack by further
increasing the SGS viscosity.

One important issue in this work is the limitation on spanwise length. It is already
been shown that in separation zones and at off-design conditions, in which flow is highly
3D, the spanwise length limitation plays an important role. 2D RANS results of this flow
[66] show that there is not a significant difference in the time-averaged pressure
distribution results due to the three-dimensionality. But it completely affects the other
quantities such as heat transfer characteristics. The LES results shows that at off-design
condition the effect of spanwise limitation can be clearly seen in pressure distribution

results. A more pronounced difference is also expected in heat transfer coefficient.
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Another important issue in this simulation is the lack of introduction of fluctuations
into the flow and the turbulence in the flow mainly depends on the transition occurring on
the blade. Introducing these fluctuations accurately can be an expensive process. The
choice of neglecting them for the time being is made solely for the sake of simplicity and
as this work is a first step in LES application at Concordia University CFD Lab. Also,
RANS pressure distribution results are not very sensitive to this parameter. However, this
might not be true in a LES calculation as it is shown very recently [25]. Obviously there
is a need for accurate and inexpensive LES inlet conditioning. Simply adding random
fluctuations to the flow, which lack temporal and spatial correlations of a real turbulent
flow, will dissipate shortly after the inlet [7].

A major dilemma in LES of industrial flows is that the available experimental data of
engineering value are mostly tailored for RANS validations. For a better LES of
engineering flows appropriate experimental data are required. The next step of this study
is to improve the current LES solver by introducing a more accurate inlet condition. Also,
the flux calculation method has to be improved to reduce the artificial diffusion involved.
Self adaptive methods which can reduce the explicit artificial diffusion or higher order
MUSCL schemes, 4™ and 6™ order, which can reduce the implicit artificial diffusion,
have to be explored. For better capturing the shock/boundary layer structure, shock
capturing characteristics of the flux calculation method has to be improved. Also, better
mesh resolution in the rear suction side or using an adaptation method for improving the
mesh at that region is required. The fluctuation intensities of other flow quantities will
also be investigated which needs a more complete experimental data. Heat transfer

characteristics and friction coefficient are of high important value and are great identifiers
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whether the boundary layer regime and transition to turbulence are captured well. Energy
spectrum is also a very informative parameter on how well the flow structures are
resolved. This work aims at accomplishing the first step and providing a solid basis for
future works on an intellectually challenging topic which is of high importance in

academia and industry: Turbulence Modeling.
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Appendix A

y* CALCULATION

The non-dimensional normal distance from the wall is defined as follows,

. _ YU,
yr=2 (A1)
14

yis the normal distance to the wall, v is the kinematic viscosity. u, is the wall-friction

velocity and is defined as,

u, = |—- (A.2)

p,, designates the value of the density at the wall. 7, is the wall shear stress and in

boundary layer approximation is defined as,

U
=u | A3
T, #w( > LO (A3)

M, 1is the dynamic viscosity at the wall which is calculated using the Sutherland law. In

practice and in case of complex geometries, it is simpler to determine the wall shear
stress as the norm of the wall stress tensor projected on a plane tangent to the wall. The

stress vector acting at the wall is defined as,

T (A.4)

Ql

T =

> - -

where o is the tensor of viscous stresses at the wall, and ». = (¢,n,s) is the local normal

vector of the wall. The stress vector can be decomposed into its components as follows,
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- » - -

T=T,t+T,n+T,S (A.5)

Wall shear stress magnitude is then defined as the normal to the tangent vector as given
by,

T, =T, T, (A.6)

To determine these components, it suffices to remove the normal components of the wall

shear stress.
;—(;~;F=rw,;+rws; (A7)
Then, in Cartesian coordinates (Ex,éy,éz )this can be written as,
;—(;-;F=rwx;x+rwéy+rwz;z (A.8)

and therefore,

(A.9)

- - - '

2 2 2 _
Tw=\/‘l'wx +r, +7, = \r—r-n
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Appendix B

ISENTROPIC RELATIONS

For an isentropic flow, the ratio of all the static properties, e.g. p, o, T, to their
stagnation values can be expressed as a function of Mach number M and y . In this case,
the Mach number is called isentropic Mach number M, . Starting from the energy

equation,
1 5
¢, Ty =C”T+Eui (B.1)
and plugging the speed of sound, ¢’ = T, gives,

2 2
Cy c

+—u’ (B.2)

!

N | =

y-1 7-1
where ¢, is the stagnation speed of sound. This above relation can be used to obtain the

ratio of static temperature to its stagnation value, using the Mach number definition

M =u/c which is now isentropic Mach number in this flow.

2 -1
L :(1 +7——1M,j) (B.3)
¢, T 2

First law of thermodynamics states that the energy of a system and surroundings is
conserved. Hence, for a system, the change in the internal energy de, is equal to the

amount of specific heat into the system dg minus the amount of work done by the system

dw, i.e. de, =dq—dw. Using the definition of enthalpy h=e¢, + p/p, the first law of
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thermodynamics can be written as dh=dg +udp. For a perfect gas and a reversible
process, dq =c,dT — RT dp/p and dq =Tds . Integration between two points 1 and 2 can
be integrated as s, —s, = ¢, In(7,/7;)- RIn(p, / p, ).

In an isentropic flow (adiabatic, irreversible) of an ideal gas, one can write,

o} o
IZ_ = (&) 4 = [&j (B.4)
T \p o

Hence, using the relation B.3, the static to stagnation ratio of pressure and density can be

written as,

P (1 +—72‘1 M,.j) & (B.5)

L (1 N M,jj"' (B.6)



