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Abstract

Distributing a SIP Servlet Engine for Standalone Mobile Ad Hoc Networks
Basel Ahmad

Mobile Ad Hoc Networks (MANET) are expected to become major components of Next
Generation Networks (NGN). The success of MANET will be largely determined by the
availability of services to users. The protocol of choice to establish service-enabling
multimedia sessions in NGN is the Session Initiation Protocol (SIP). This is due to the
ability of SIP to support both traditional telephony services and emerging services for
convergent networks. Several technologies to enable easy programmability of SIP
services have emerged; most notably the SIP Servlet Technology. In this technology,
services are programmed using SIP servlets. A SIP servlet is a Java application that runs
in an environment provided and managed by a SIP Servlet Engine (SE). Applicability of
SIP Servlet Engines to MANET is an interesting topic because of the success that SIP
Servlet Technology has enjoyed in provisioning services for infrastructure networks.

A SIP SE is a centralized server node that is not suited for infrastructureless
environments that consist of nodes that are both mobile and transiently present.
Currently, SIP Servlet technology has provisions for creating "distributable" servlets
which allow multiple instances of the same servlet to run on multiple nodes. On the one
hand this kind of servlet distribution can achieve load sharing and high availability in
infrastructure networks. On the other hand, this scheme is not sufficient for MANET
because the SIP SE remains a fixed and centralized entity requiring powerful processing

and storage capabilities.

il



We propose a solution to de-centralize the SIP SE by distributing its functionalities
across multiple nodes. A collection of nodes may be present in a MANET such that SIP
SE functionality can be assembled from the combined capabilities of the available nodes.
When this condition is present, these nodes can come together to collectively pose as a
SIP SE to the entities that wish to either provide or consume SIP services.

In this thesis a distribution scheme that would allow a SIP SE to be used in MANET has
been devised and implemented. The resulting scheme has been evaluated with two

conferencing services.
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Chapter 1: Introduction

This introduction provides definitions of key concepts of the research undertaken in this
thesis, the issues, and outlines their importance. Both the problem statement and the
proposed solution are presented and discussed. This chapter concludes with an outline for

the rest of this thesis.

1.1 A Brief Introduction to the Domain

The advent of mobile, cellular telephony has enabled a vast number of consumers to
communicate remotely. Moreover, wireless LAN technologies [1] also provided users
with a wireless access to the Internet. However, both mobile telephony and wireless
Internet access are only available where “the coverage exists”. In other words, a wireless
terminal must be located within transmission range of an entity that provides access to
voice or data communication. The traffic received by the entity that provides coverage,
traverses multiple nodes towards destinations over a pre-deployed, centrally managed
infrastructure. This places a limitation on those wireless services that must be made
available in places where no such infrastructure exists. This has led to the inception of
Mobile Ad Hoc Networks (MANETS) [2, 3, 4]; wireless networks formed without the aid
of an existing infrastructure. Initially, MANETs were deployed by the military on the
battlefield and by rescue and recovery crews in disaster areas. Recent advances in
technology as well as changes in consumer habits (e.g., a large number of people
accustomed to consuming mobile, wireless services) paved the way for the introduction
of MANET technology to the consumer domain. This, in turn, requires service delivery

platforms capable of delivering MANET services to the consumers.



Availability of services and user experience in accessing them is a determining factor that
decides whether a given technology will succeed. In wireless communication, users are
not satisfied with being limited to the traditional two-party voice call service. Instead,
they demand additional services like: multi-party conferencing, instant messaging, and
Internet access. In order to provide such services, signaling protocols capable of
establishing sessions between mobile terminals are required. Moreover, service
provisioning requires platforms that enable easy creation, distribution, deployment and
delivery of services over the signaling protocols used.

Session Initiation Protocol (SIP) [5] is a signaling protocol to control multimedia
sessions. SIP allows for session establishment, termination, participants’ addition or
removal, and modifying session characteristics. The description of the sessions is carried
in a SIP message’s body. SIP is text-based; its message structure resembles that of HTTP
[6]. SIP is not specific to any particular type of multimedia sessions. It supports voice
over IP sessions, traditional telephony services (e.g., caller-id, call-transfer, and multi-
party voice conferencing) [7], and Internet services (e.g., instant messaging, presence,
multimedia conferencing) [8].

SIP servlet technology [9] enables performing creation of SIP services. A SIP servlet is a
Java [10] application specialized in performing SIP signaling logic. SIP servlets run in an
environment provided by a SIP servlet engine (SE). SIP servlet development allows the
programmer to focus on SIP service creation by letting SIP SE handle cumbersome SIP
protocol details (like message retransmissions). SIP servlets are based on HTTP servlets
[11] that have proven their success in server side web programming. A wide community

of programmers exists with an expertise in Java, HTTP servlets, and XML [12]. This



expertise would allow those developers to become productive in SIP servlet development

with minimal learning curve.
1.2 Problem Statement and Contributions of this Thesis

SIP has become the protocol of choice for converged next generation networks. SIP
servlets are the de facto tools for service provisioning with SIP in networks with fixed
infrastructures. With the introduction of MANET to the consumer domain it becomes
worthwhile to extend the use of SIP servlet technology to provide telecom services in
MANET environments. However, SIP SE service provisioning model is not well suited
for MANETS. In this model, a SIP SE is envisioned as a centralized, pre-deployed entity
whose location is known to the clients. The SIP SE possesses powerful processing and
storage capabilities and may implement a clustering mechanism to achieve high-
availability. However, in MANET environments no such centralized entity with powerful
capabilities exists.

The problem addressed in this thesis is to introduce SIP SE architecture suitable for
MANET environments. We propose to do so by distributing a SIP SE across multiple
nodes. The distribution scheme introduces a collection of nodes that combine their
capabilities to collectively pose as a SIP SE to other actors. This distribution has multiple
benefits. First, it will enable SIP service provisioning in environments where participant
nodes have limited capabilities, by letting a group of nodes combine capabilities to
collectively pose as a SIP SE. Furthermore, as a result of decentralizing the SIP SE, the
distribution will allow for schemes that enable recovery should a participant node become

unavailable by providing a substitute or by scaling down the service.



In this thesis we propose three contributions. First, we derive a set of requirements for
distributing a SIP SE for MANET and show that the state-of-the-art fails to meet these
requirements. As a second contribution, we propose and discuss a novel SIP SE
distribution scheme that meets the requirements we derived. The third and final
contribution is a proof-of-concept; a distributed SIP SE prototype. The performance of
the prototype is evaluated by deploying and running two conferencing services. The

results reported in this thesis have been submitted for publication [31].
1.3 Organization of this Thesis

Chapter 2, 'Mobile Ad Hoc Networks', provides background information on MANETS. It
shows that the arrival of MANET applications to the consumer domain is a natural "next
step” in the evolution of wireless, mobile networking. The chapter also discusses
characteristics of MANETs and the impact of these characteristics on service
provisioning. Understanding MANET characteristics is an essential step for deriving
requirements for service provisioning in MANET.

Chapter 3, 'SIP Servlet Technology', is another background chapter. It helps build
understanding of SIP - the signaling protocol of choice for MANETS, and SIP servlets -
the de facto standard for creating, deploying and executing SIP services.

Chapter 4, ‘Distributing SIP SE for MANET”’, presents the first two contributions of this
thesis: a set of requirements for distributing a SIP SE for MANETS, and a distribution
scheme that meets those requirements. We enumerate and discuss the nodes of the
distributed SIP SE, and provide explanations on how those nodes interact with each other
and with external actors. The chapter also provides rationale for the choices made when

deciding on how to distribute SIP SE functionality across multiple nodes. The



architecture is evaluated against all requirements that can be validated without a
prototype implementation. The rest of the requirements are validated in Chapter 5.
Chapter 5, ‘Prototype and Proof of Concept’, presents a proof-of-concept for the
distribution scheme introduced in Chapter 4. It discusses a distributed SIP SE prototype
and presents two conferencing services deployed on the prototype. The prototype nodes’
footprints are evaluated against the requirement that stipulates that a distributed SIP SE
must be deployable on mobile, handheld devices.

Chapter 6, ‘Conclusions and Future Work’, provides discussions of the results and draws
conclusions. This chapter also presents future work opportunities that were identified

during the course of conducting this research.



Chapter 2: Mobile Ad Hoc Networks

2.1 Introduction

A Mobile Ad Hoc Network (MANET) is a network formed by mobile, wireless peers
without the aid of an existing infrastructure [3]. The infrastructure may be unavailable,
unreliable, or non-secure. Therefore, it is up to the participating nodes to bootstrap in
order to discover the nodes to directly communicate with.

The concept of ad hoc, wireless networking was introduced in the 1970 with DARPA
[13] Packet Radio Project [14] aimed at providing data communication between mobile
nodes on the battlefield [1]. However, it was not until recently that ad hoc became poised
to become widely used in consumer applications.

The arrival of consumer ad hoc networking is a natural next step in the evolution of
wireless communication [4]. With the advent of mobile phones wireless voice
communication became widely available to the public. Usage of mobile phones for data
communications (e.g., text messaging) followed. The next step in this evolution was to
use mobile terminals to connect to the Internet. At first, mobile Internet was used to
access services that had been normally accessed over fixed Internet connections. For
example, professionals would access their email while on the move. However, soon after,
purely “mobile” Internet applications began emerging. Advertising location-specific
services for automobile drivers (e.g., locations of nearest gas stations) is a good example
of such “mobile” services [4]. The next step in this evolution is to provide “anywhere and
anytime” access to mobile services including in those places with no infrastructure in

place.



The other factor that has made the adoption of commercial ad hoc networking possible is
the availability of mobile devices that possess the characteristics necessary for ad hoc

networking in terms of’ usability, processing power, storage capacity and connectivity.
2.2 MANET Characteristics

MANETsS can be considered to be a special case of wireless networks. Therefore, they
share many characteristics with the wireless network in addition to some characteristics
that are distinct to MANET. The rest of this section starts by discussing two radio-
frequency technologies that are widely used to interconnect MANET devices: IEEE
802.11 (a WLAN technology), and the Bluetooth (a2 PAN technology). These
technologies will serve as examples to in our discussion of MANET characteristics in the
rest of this section. MANET characteristics are discussed starting from subsection 2.2.3.
2.2.1 Wireless LAN - IEEE 802.11e example

WLAN technologies provide connectivity within local areas such as campuses. Usually,
the coverage area does not exceed 100m. An example of a WLAN technology is IEEE
802.11 [1] (also known as “Wi-Fi”). IEEE 802.11 is specified in a set of standards
defined by the IEEE Wireless Local Area Networks Working Group. The concept of a
“basic service set” (BSS) is central to the IEEE 802.11 architectures. A BSS can be
viewed as a coverage area within which a set of wireless nodes is located. Each two
nodes within a BSS should be able to establish communication between each other. IEEE
802.11 supports two modes of communication: infrastructure mode and infrastructureless
(ad hoc) mode.

Infrastructure mode of communication occurs when an Access Point (AP) node is used

either to form an extended service set (ESS) by interconnecting multiple BSSs, or to



provide centralized access to a service (e.g., a Hot-Spot Internet access), as shown in

Figure 2.1.

Distribution System

(e.g., LAN or the Internet)

Access Point

Figure 2.1: An example of infrastructure mode of communication with IEEE 802.11
Ad hoc mode is established when communication between all nodes in a BSS can occur
directly without having to pass all the traffic through a centralized AP, as shown in

Figure 2.2. In IEEE 802.11 terminology ad hoc mode is also referred to as independent

BSS (IBSS) mode.

Figure 2.2: An example of ad hoc (IBSS) mode of communication with IEEE 802.11



2.2.2 Wireless PAN - Bluetooth example

Bluetooth is a PAN technology that provides short-range connectivity between devices
[15]. Even though some Bluetooth device classes support communication of up to 100m,
the most common use for this technology is to replace cable between devices located
within proximity of up to 10m. One of the main advantages of Bluetooth is its low power
consumption. This feature makes Bluetooth ideal for handheld devices operating on

batteries.

. iSlave in one Piconet and Master in another

Figure 2.3: An example of a Bluetooth scaternet with two piconets
In order to communicate, two or more devices form a piconet (as shown in Figure 2.3).
Piconet participants share the same radio channel (i.e., have the same frequency hopping
scheme) and are synchronized to the same clock. Every piconet has exactly one master
and up to seven active slaves. The master provides a synchronization point for the
piconet. Two or more piconets may become connected to form a scaternet. A node can be
a master in only one piconet. Transmission in a piconet can occur only between a master
and one slave at a time, based on slotted time-division duplex. A slave is not allowed to
transmit unless polled by a master. It should be noted that participants may change roles;

a master can become slave and the other way around.



2.2.3 Ad Hoc formation and temporary service life

MANETs are formed on the fly as participant nodes come into contact with each other.
They remain operational for limited periods of time as long as they cater for the, usually
highly specialized, needs of the applications they were created to serve.

This automatic and temporary formation contrasts with the pre-planned, permanent
nature of infrastructure wireless networks. Deployment of cellular networks involves
careful planning of the network topology and base-station locations. This also applies to
AP-based WLAN networks where a location for the AP has to be chosen before the
network is deployed.

2.2 4 Infrastructure-less with Multi-Hop routing

Most wireless networks currently deployed are either cellular networks or WLAN
networks. In the case of the cellular networks, the radio coverage is provided by pre-
defined base-stations. In the case of WLAN, centralized access is provided by access-
points (APs) that are stationary [1] (e.g., mounted on ceilings). As mentioned in section
2.2.1, WLAN can be utilized in both infrastructure and infrastructure-less networks. On
the other hand, MANETs are infrastructure-less. MANET participants bootstrap to
discover nodes to directly communicate with. In addition to communicating directly with
adjacent nodes, a MANET participant may act as an intermediate node that relays traffic
on its way from a source to a destination on behalf of other nodes. This enables multi-hop
communication with the intermediate node referred to as a router. On the other hand, a
node is said to be an ad hoc Aost if it is either a source or a destination for traffic. It is

possible for a node to be both a host and a router [16].
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2.2.5 Limited coverage range between adjacent hops

In terms of connectivity and coverage range MANETSs fall under the category of LAN
and PAN. The distance between two adjacent nodes is short and does not, usually, exceed
the line of sight. For example, in Bluetooth the typical coverage range between two
adjacent nodes is 10m. The maximum Bluetooth coverage range does not exceed the
100m. Extending coverage lengths requires more powerful transducers. This leads to
higher power consumption and places limitations on the battery life of small mobile
devices. Therefore, it is only possible for two MANET devices located out of
transmission range of each other to communicate, if intermediary nodes that can act as
MANET routers exist.

2,2.6 Decentralized Management

In cellular world subscriber and service management is highly-centralized (controlled by
the operator). In WLAN infrastructure mode, a common way to achieve centralized
management is by using wireless Hot-Spot gateways. Those gateways allow the provider
to impose rules that control the way the access is provided (e.g., track the time a user
spends being connected). On the other hand, MANET participants do not have any
predefined roles. The roles are defined when the communication is established. Those
roles are flexible and may change during the course of communication in order to adjust
to changes in network conditions (such as disappearance of a node playing a certain role).
As an example of flexible roles, consider a Bluetooth piconet; a slave in the piconet may
change its role to become a master. Furthermore, a node may simultaneously play a role

of a master in one piconet and that of a slave in all other piconets the node belongs to.
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2.2.7 Standalone vs. Integrated

One of the motivations for commercial ad hoc networking is to extend network coverage
to places where no coverage exists. In this scenario one or multiple nodes are connected
to both a MANET and an infrastructure network. Those nodes act as gateways between
the two networks enabling access to the fixed network by those participants that are only
connected to MANET. In this case, the MANET is considered to be “integrated”. On the
other hand, a MANET that is isolated from infrastructure networks is considered to be
“standalone”. This thesis is mostly concerned with standalone MANETs.

2.2.8 Dynamic topologies

The topology of a MANET is constantly changing as new participant nodes join the
MANET while existing participants disappear. The absence of fixed links results in
sporadic connectivity between the peers. This, in turn, results in frequent disconnects and
reconnects taking place.

Connectivity in MANET is also affected by the fact that MANET participants are
wireless mobile devices. Node mobility and the fact that wireless interfaces are inherently
lossy result in unpredictable delays, packet losses and disconnects.

2.2.9 Resource Constraints

MANET devices are typically equipped with limited capabilities. Small, handheld
devices have limited processing power and storage capacity. They can remain operational
for a limited amount of time determined by battery capacity. Another limitation is their
transmission capabilities in terms of both transmission speed and range. Device
capabilities place limitations on the services that a device can support and the roles a

device can play. For example, a device may not be suitable for being an ad hoc router,
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because this results in higher energy consumption and therefore reduces its operational
time. In addition to device limitations, the wireless nature of links in MANET adds
limitations of its own. Wireless links have smaller bandwidths, slower transmission
speeds, and limited coverage areas. Furthermore, wireless links pose considerable
challenges on communication security because wireless interfaces are accessible to
attackers.

2.2.10 Heterogeneity

Wide differences exist between MANET participant devices. First, those devices have
varying processing and storage capabilities. They may also be manufactured by different
vendors, connected using different interfaces and have different display sizes.

Service delivery platforms should be able to detect the characteristics of participant
nodes, and adjust service delivery accordingly. For example, transmission speed may
have to be slowed down to prevent overflowing a slower recipient.

2.2.11 Scalability

The nature of some ad hoc applications may require support for a large number of
participant nodes. An example of this is a tactical network with a large number of
combatants. Also, in a sensor network, hundreds of thousands sensor nodes may be
present at any given time [17]. A MANET used for these types of applications should be

able to scale up to such a large number of participants.
2.3 MANET Applications

Historically, MANET applications have been in the domain of the military and
emergency services. This section starts by examining military application of MANET.

Then, a recently emerging, specialized type of MANET — the sensor networks is
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examined. MANET applications have not yet established a wide presence in the
consumer domain. However, the last part of this section provides examples of the
possibilities MANET applications have to offer in the consumer domain.

2.3.1 Tactical Networks

Tactical networks where the first applications of MANET. They were introduced by the
DARPA Packet Radio Project (PRNet) [4].

Communication on the battlefield cannot rely on a fixed infrastructure because it may not
exist or can be compromised by the enemy. Radio communication is prone to interference
and jamming. Increasing the communication frequency beyond radio frequencies may
limit the range of adjacent communicating devices to the line-of-sight. The PRNet
introduced a decentralized architecture that consisted of networks of broadcast radios.
Network nodes were able to act as ad hoc routers enabling multi-hop communication and,
therefore, vastly enlarging the network coverage geographically. Later projects have
improved on such aspects as: scalability, energy consumption, security and adaptability.
Early DARPA scenarios involved devices that were either carried by the soldiers or
mounted on tanks or ambulances [3]. The goal was to improve coordination on the
battlefield as well as to assist rescue and recovery effort. In the future, MANET devices
will be carried by unmanned aerial vehicles (UAV) to facilitate intelligence gathering and
coordinate operations among large teams.

2.3.2 Sensor Networks

Sensor Networks [17] consist of a number of sensor nodes spread over a geographical
area that collectively monitor environment conditions (such as air temperature) or objects

(such as an object’s position, orientation, velocity or functional state).
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Each sensor node consists of three units.

1. Sensing unit: to measure the sensed condition or monitor an object.

2. Processing unit: process raw data by performing simple computations on the data

in order to determine the portion of the data that should be transmitted.

3. Wireless Transducer unit: sends and receives data.
Sensor networks have a wide range of applications ranging from the military (e.g.,
measuring radiation levels) to the supermarket (e.g., measuring product inventories).
2.3.3 Emerging Commercial Applications
Commercial MANET applications are yet to realize. However, several usage scenarios
can be contemplated [4]. For example, offering location based services like advertising
the location of a nearest café. Another example is sending a message to a user’s mobile
terminal offering a discount on merchandise from a store the user is passing by.
Multimedia conferencing sessions (e.g., gaming, interest matching) in open air settings or

in places like exhibition centers or airports can be offered as well.

2.4 Conclusions

This chapter presented an introduction to the domain of MANET. It explained what a
MANET is and outlined the evolution of wireless communication that led to the
introduction of MANET technology into consumer domain. Two examples of wireless
technologies were presented to assist in discussion of MANET characteristics. Then,
MANET characteristics were enumerated and explained. Finally three types of MANET

applications were discussed.
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Chapter 3: SIP Servlet Technology

This section provides an overview of SIP servlet technology. It starts by looking at the
Session Initiation Protocol (SIP) and the features that make SIP suitable as a signaling
protocol for multimedia sessions. Then, an overview of Java servlet technology is
presented. Then, HTTP and SIP servlet technologies are explained and contrasted. A
review of the state-of-the-art in distributable servlets follows. Finally, concluding

remarks on this section are presented.
3.1 Session Initiation Protocol (SIP)

Session Initiation Protocol (SIP) is a signaling protocol for multimedia sessions with one
or multiple participants. It is used to establish new multimedia sessions, and terminate or
modify existing sessions (e.g., by inviting a new participant to join an established
session). The development of SIP was started within the IETF MMUSIC (Multiparty
Multimedia Session Control) working group. This work resulted in the introduction of
RFC 2543 [18]. Since September 1999 the IETF SIP working group was established to
become responsible for SIP standardization. The current version of SIP is specified by
RFC 3261 [5] which obsoletes RFC 2543. In the rest of this section we, first, discuss SIP
characteristics. Then, we discuss the applicability of SIP as a service delivery platform.
3.1.1 SIP characteristics and entities

SIP is a client/server, application layer, text-based protocol. The structure of SIP requests
and responses is based on those of HTTP. SIP also reuses many of HTTP headers. The
first line of a SIP request contains the request’s method, followed by the destination’s
URI and concluded with SIP version. The first line of a SIP response consists of: SIP

version, a response code, and a descriptive phase explaining a reason for the response. In
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both SIP requests and responses the first line is followed by lines containing SIP headers.
Then, a presence of an empty line indicates that the request or a response has no more
headers. After the empty line the request’s or response’s body follows.

SIP does not rely on a particular transport protocol. However, support for TCP and UDP
is mandatory while other transport protocols may also be supported. It is possible that
during the course of communication a SIP entity may switch from one transport protocol
to another. For example, a request sent over TCP may be redirected to a UDP server
connection.

SIP entities can be classified as User-Agents, Servers and Registrars. The User-Agent
that initiates requests is referred to as a User Agent Client (UAC). User Agent Server
(UAS) is the entity that serves incoming requests. SIP servers come in three types:
redirect, proxy, and registrar. A redirect server receives a request and responds with a
location at which the sender of the request should try to reach the destination (see Figure

3.1 below).

Redirect SIP server

Redirects the caller to the destination’s location

INVITE sip:destination@domain.com

R,

Redirect SIP server

301 Moved Permanently

INVITE sip:destination@130.158.1.102

200 OK

5 ACK
Caller Destination

Figure 3.1: Redirect SIP Server: redirects the caller to a destination’s location
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Proxy SIP server
Locates the destination on behalf of the caller

e

INVITE sip:destination@cdomain.com

INVITE sip:destinationi@130.158.1 .98

Proxy SIP server

ACK

Caller Destination

Figure 3.2: Proxy SIP server: locates a destination on behalf of the caller

A proxy server attempts to locate the destination and deliver the request to it. Figure 3.2
above shows an interaction where a proxy delivers a caller’s invitation to the destination.
Finally, Registrars, accept user registrations. It should be noted that the aforementioned
entities may be collocated on the same device. For example, a mobile terminal would
contain both UAC and UAS while a proxy server would also perform the role of a
registrar.

SIP transactions go beyond the simple request/response mechanism used by HTTP. A
SIP transaction includes a SIP request, zero or more provisional responses, and one final
response. In the case of INVITE transactions the UAS must confirm reception of a final
response with an ACK message; performing a three-way handshake.

In SIP, a peer-to-peer relationship between two user agents is referred to as a dialog.

Dialogs allow for proper sequencing and routing of requests exchanged between the user-
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agents. INVITE is the only method defined in RFC 3261 that is capable of establishing
dialogs. A dialog is established when the first provisional response is received by the
UAC. The dialog becomes confirmed upon reception of a final SIP success response.
3.1.2 SIP as a service provisioning platform

SIP features exhibit similarities to those of the most widely used protocols of the Internet;
HTTP and SMTP. SIP message structure was modeled after HTTP message structure
while SIP message routing is done in a way similar to the routing of SMTP messages [8].
These similarities have multiple implications on the role SIP can play as a service
provisioning platform. First, SIP can be used to combine existing web and email services
with new multimedia services. Second, a vast community of developers familiar with
service development for the web and email can use their skills to program SIP services
with a minimal learning curve. Furthermore, existing platforms for developing services
for the web can easily be adapted to become applicable to SIP service development. This
leads to a reuse of existing models, techniques, even source code in providing SIP
services.

Support that SIP provides for different media and session types is another feature that
makes SIP highly suitable for service development. For example, if a SIP-based chat
service is deployed, services based on other types of sessions (e.g., a gaming service) can
be deployed without adding new SIP infrastructure.

Finally, in addition to providing services, SIP delivers services to their destinations using
the concept of indirection [19]. Indirection means that a session initiating party does not
need to know where the other participants are located. Since, SIP users have to register

their locations the session initiator only needs to know the permanent SIP URIs of the
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other parties. Matching the permanent SIP URI to the actual location of the parties is
done by SIP servers. Upon finding a match, a SIP server returns the actual location to the

session initiator.
3.2 Java Servlet Technology

A servlet is a Java class that enables execution of protocol specific code on server side.
For example, a servlet would contain logic responsible for generating a response to an
incoming protocol request. Since servlets are written in Java, they are portable across
operating systems.

No direct interaction exists between a servlet and a client. Instead, servlets interact with
the client-side indirectly, through a Servlet Engine (SE). The SE is the entity that creates
servlet class instances, provides the servlets with an execution environment, and manages
servlets through their lifecycles. Furthermore, the SE performs protocol message parsing,
dispatching incoming messages to servlet applications, providing storage for state

information of servlet applications, and enforcing security constraints specified during

application deployment.
avax.serviet |
Generic serviet
————————— package
R
I ™
{ ™.
| ™~
| .
' ™~ Y
} ~
| javax.serviet.sip javax.serviet.hitp ]

a0

Protocol-specific
serviet packages

Figure 3.3: Servlets package diagram
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Rules for interactions between a servlet and an SE are specified by a Servlet API. A
generic part of the Servlet API specifies interactions that are not specific to a particular
protocol.

This generic part is extended to provide protocol-specific Servlet APIs (see Figure 3.3).
Generic Servlet API classes are located under javax.servlet Java package.
Protocol-specific Servlet API classes for a protocol xyz are located under
javax.servlet.xyz Java package.

The servlet lifecycle phases are shown in Figure 3.4 below (taken from [9]).

service ()}
new(} ~ init{) }—\} destroy{) -
R
created initialized destroyed

Figure 3.4: Servlet Lifecycle

First, the SE loads the servlet class from a repository [20]. Then, the SE calls the servlet’s
init () method. The init () method lets servlets perform one-time initializing
activities (such as obtaining database connections) and loading persistent configurations.
Initialization must complete successfully before any messages are dispatched to the
servlet for processing.

After a servlet is initialized the SE will make repeated calls to servlet’s service ()
method every time an incoming protocol message should be served by that servlet. The
service () method contains the logic used for processing the protocol message.

When the servlet should be phased-out the SE calls destroy () method of the servlet.

This, usually, occurs when the SE itself is being shutdown or when it is low on resources.
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Inside the destroy () method clean-up is performed and resources are released in a
proper manner.
In the rest of this section we present and contrast the two servlet technologies widely

deployed today; HTTP servlet and SIP servlets.

3.3 HTTP Servlets

An HTTP servlet generates HTTP responses to incoming HTTP requests. This type of
servlets has been the focus of servlet development so far in order to generate dynamic
web content. Therefore, HTTP servlets can be viewed as a Java alternative to CGI [32]
scripts and Active Server Pages (ASP) technologies [33].

The means of communication between HTTP Servlets and an HTTP SE are defined in the
Java Servlet API as specified by the “Java Servlet Specification” [11]. The latest version
of the API is version 2.4.

One or multiple HTTP servlets are bundled together to form a web application. Web
applications reside in a hierarchical directory structure on the HTTP SE. The location of
each web application relative to the “root” is referred to as the context path of the
application.

The interaction between the HTTP SE and the client commences when the SE receives an
HTTP request from the client. Then, the SE decides which servlet application gets to
serve the incoming request. This is achieved by matching a portion of the request URI
against the context path of all servlet applications running on the SE. The SIP SE
dispatches the request to the servlet with the longest matching context path. The servlet
extracts useful information from the received request’s headers and body, processes this

information and generates an HTTP response. After the response is generated, it is
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possible for the servlet to add new headers to the response, or modify values of existing
response headers. The servlet may also attach content to the response body. Usually, the
content of the response body is an HTML page. However, other contents such as XML
may be carried in the HTTP response body. Finally, the servlet instructs the SE to deliver
the response to the client. HTTP servlets never initiate requests; but only respond to
incoming HTTP requests with exactly one HTTP response.

HTTP Servlet API specifies the interactions between an HTTP SE and an HTTP servlet.
HTTP Servlet API classes are located under the javax.servlet.http Java package.
HTTP  Servlet APl  provides an indirect implementation of the
javax.servlet.Servlet interface using an HttpServlet abstract class, as
shown in Figure 3.5. HttpServlet overrides the service () method to dispatch an
incoming HTTP request to a method specialized in serving that request type. The
specialized methods’ names have the form doXXX () where XXX is replaced by the
HTTP request’s type. For example, an HTTP GET request is dispatched to doGet ()
method. Default implementations of the doXXX () methods do not perform any action.
They are overridden by the actual HTTP serviet implementations to provide the logic

used for request processing.
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winterfaces «interfaces winterface»
javax.serviet ServietResponse javax.serviet Serviet javax.serviet. ServietRequest
init(}
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destroy()
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1
!
favax.serviet. GenericServiet
init()
service(}
destroy{}
winterface» javax.serviet.hitp HTTPServiet sinterface»
javax.serviet.http. HTTPServietResponse doGet{) javax.serviethitp HTTPServietRequest
4uses| . oPost() usesh

Figure 3.5: HTTP servlet class diagram
HTTP Servlet API also provides HTTP-specific interfaces to represent HTTP requests
and responses: HttpServletRequest and HttpServletResponse. The methods
of the HttpServletRequest provide methods to obtain HTTP specific information
from an HTTP request. For example, they allow a caller to obtain the URI used by the
client to make this request by calling getRequestUri () or to get all the cookies
contained in the request by calling getCookies(). The methods in the
HttpServletResponse allow the caller to modify the response (e.g., by setting
response status or adding a header), or perform an HTTP action such as returning an
HTTP error or a redirect to the client. It should be noted that the Ht tpRequest does
not provide methods that perform actions beyond getting information from the request.
On the other hand most methods of the Ht tpResponse are used either to modify the
response or to perform an HTTP protocol action (such as sending a redirect to the client).
This is due to the fact that HTTP servlets never generate requests; but only reply to an

incoming request with exactly one response.
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HttpSession interface provides servlets with means to maintain state information
across multiple requests. The state information is stored in HTTP sessions as a collection

of name/value pairs. Each HTTP session is identified by a unique id.
3.4 SIP Servlets

A SIP servlet is a Java class that performs SIP signaling logic and runs in an environment
provided by a SIP SE. The interactions between SIP servlets and SIP SE are defined in
“Sip Servlet API specification, Version 1.0” document [9].

The introduction of SIP servlet technology was motivated by the need for easy creation,
customization and deployment of SIP services [21]. Extending Servlet APl with SIP
capabilities was feasible due to the success of HTTP servlets in delivering dynamic web
content in addition to the fact that HTTP and SIP share many similarities.

One or multiple SIP servlet classes are bundled together to form a SIP application. A SIP
application may contain multiple servlets in addition to other resources, for example,
non-servlet java classes and text files. The information on how an application is
structured is conveyed in the application’s deployment descriptor. The deployment
descriptor also provides mapping rules that a SIP SE uses to determine the servlet that
gets to execute an incoming initial request. This mapping is based on a rule language
defined in [9].

SIP Servlet API enables SIP servlets to perform a variety of SIP signaling tasks while, at
the same time, hiding the cumbersome details of the SIP protocol. For example, servlet

developers have neither to worry SIP message retransmissions nor maintaining

sequencing information in CSeq headers. The SIP Servlet API simply does not provide
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servlets with access to these functionalities. The SIP Servlet API also guarantees that

servlets cannot perform actions that would violate SIP protocol specifications.

End User SiP Berviet
INVITE .
200 CK T 4 A SIP Serviet performing a Server Transaction lﬁ
ACK T
BYE - A SIP Serviet performing a Client Transaction
200 OK == I pe ¢ [H

Figure 3.6: SIP Servlet acting as both a transaction server and client

An important feature of SIP servlets is that within a SIP transaction a servlet may assume
either the role of a server or that of a client (see Figure 3.6). A SIP transaction consists of:
a request, a number of provisional responses, and one final response. For any given
transaction the party that sends the request becomes the client for that transaction. SIP
servlets have the capability to act both as transaction clients and servers. A SIP servlet is
able to respond to an incoming SIP request with zero, one or several responses. A SIP
servlet may also proxy an incoming request to one or several destinations. Furthermore, a
SIP serviet may generate new SIP requests on its own.

As an example of a service created using a SIP servlets, consider the case of an Outgoing
Call Screening service. In this scenario, the operator forbids calls outgoing to destinations
in “forbidden.com” domain. The listing for the servlet that implements the Outgoing Call

Screening service is shown in Figure 3.7.

26



importc Javax.gervlet.*;
import Javax.servilet.sip.¥*:

pub;ic class OutgoingCallScreenitigServilet extends SipServlet {

“public void dolnvite [SipServiletRegquest red)
.throwsvﬁervletException,.java.io.IOException {

f'.-"' Obtain ‘the destination’s address as a string.
Strlng tTO. = reg. getTo[] getURI{} toStringi):

f {to. cantalns("farbldden com™) )
,ff Destination forbidden.
“// send a 4D3-Forbidden respnnse hack to the sender.
SlpSeeretRespDnse res = red. cresateResponse (403) ;
res.send{): ;

// Destination alloved.
../#.8end the nmessage to the destlnatlon.
Lreq send() ' , ,

Figure 3.7: Listing for OutgoingCallScreeningServlet
The doInvite () method checks if the destination address contains a string
“forbidden.com” to find whether the destination belongs to “forbidden.com” domain. If
the destination belongs to “forbidden.com” domain a 403-Forbidden response is sent
back to the sender. Otherwise, the message is sent to its destination.
3.4.1 API
SIP Servlet API specifies the interactions between a SIP SE and a SIP servlet. SIP Servlet

API classes are located under the javax.servlet. sip Java package.
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Serviet lifecycle methods are defined here.

<<interface>> All serviets should implernent this interface either
javax.serviet. Serviet _ 7| directly or indirectly.
init() it
service() i
testroy)
45 A protocol-independent serviet. B

| -

Provides simple implementations for init{)

: s -~ | and destroy() methods.

‘ [avax.seniet GenenieServiet 4 service() method is abstract and should be
init() overriden by protocol-specific serviets that
gz‘:;g% extend this class.

T S1P protocol-specific serviet. AN
javax.serviet.sip. SipServiet
doRequest() e Overrides service() method to handte incoming SiP
doResponse() s protocol !jnBSSﬁgeS. N
dolnvite() ?‘he sgrwce(} methods calls doRequest{} if the
doSuccessResponse() incoming message is a SIP request. Then,
doRequest{) dispatches the request 16 a doXxx()

method (where Xxx is the request's type, e.g., Invite).

If the received message is a response it is dispatched to
doResponse{} method. Depending on the response type
one of three methods is called: doSuccessResponse(),
doErrorResponse(), or doProvisionalResponsel).

Figure 3.8: SIP Servlet Class Hierarchy
SIP  Servlet APl  provides an  indirect implementation of  the
javax.servlet.Servlet interface usinga SipServlet abstract class (as shown
in Figure 3.8). SipServlet implements the service () method of the Servlet
interface to dispatch an incoming SIP message (whether request or response) to a method
specialized in serving that message type. The specialized methods’ names have the form
doXXX () where XXX is replaced by the SIP message type. SIP Servlet API also provides
SIP-specific interfaces to represent SIP messages; SipServletMessage and its two
sub-interfaces: SipServletRequest and SipServletResponse (as shown in

Figure 3.9).
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sinterfacen
javax.serviet sip.SipServieiMessage

+ addHeader{)

+ geiteader()
+ getCalitd()
+ send()
«interface» «interface»
javax.sendet.sip.SipServietRequest javax.serviet.sip. SipServietResponse
+ createResponsef) + createAck()
* [sinitial{} + getReasonPhrase()
+ getRequestURI() + getStatus()
+ setMaxForwards() + setStatus()

Figure 3.9: SIP Servlet Message Hierarchy

The reason for providing a SipServletMessage interface as a parent for the other
two interfaces is the fact that SIP servlets have the ability to send requests in addition to
receiving them. In HTTP Servlets information is read from HTTP requests and written
into HTTP responses. In SIP servlets both requests and responses are readable as well as
writable. This means that SipServletRequest and SipServletResponse have
a lot of common methods. Those common methods are placed in
SipServletMessage interface.

SIP Servlet API provides two types of sessions to maintain state information for a SIP
application. First, SipSession provides means for storing state information for each
point-to-point SIP relationship. Therefore, SIP sessions sometimes correspond to SIP
dialogs. However, a SIP session is created before a SIP dialog is created. Furthermore,
only certain SIP messages are capable of creating a dialog, while all SIP messages
processed by a SIP SE belong to a SIP session. Second, a SipApplicationSession
stores state information for a SIP application as a whole (including all SIP session that

are created by the application).
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3.4.2 SIP SE

A SIP SE is the entity that manages SIP servlets through their lifecycle and provides the
servlets with other services such as taking care of cumbersome protocol details and
security. The SE takes care of system programming tasks that are needed by the servlet
applications but are not part of the application’s logic. This enables servlet developers to
focus on their area of expertise, namely, service application logic programming,

SIP SEs come as standalone entities or as extensions to existing servers. The discussion
in this report applies only to standalone SIP SEs. Engines that come as part of J2EE, or
any other type of servers are outside the scope of this thesis due to having additional
requirements (e.g., allowing servlets to obtain references to enterprise java beans).

The architecture of a SIP SE is depicted on Figure 3.10 below.

SIP P arser Loader Transaction Manager
r F 3 F Y
Connector » Processor P Serviet Wrapper
p
Mapper
I
Rules Engine Session Manager

Figure 3.10: SIP SE Architecture
The Connector is the part responsible for sending and receiving SIP messages over the

network. The Connector uses SIP Parser to decode an incoming SIP message from bytes
into a SipServletMessage object. Inversely, outgoing SIP messages are encoded

from a SipServletMessage objectinto a byte array by the SIP Parser.
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The Processor is the central unit that coordinates the other SIP SE components. The
Processor instructs the Loader to load the servlet classes from the repository where they
are stored. After the servlet is loaded the Processor creates a Servlet Wrapper for the
servlet. One wrapper is created for each servlet running on the SIP SE. During the
lifecycle of the servlet the Processor will instruct the Servlet Wrapper to call init(),
service(), destroy() methods of the servlet. Also, upon receiving a SIP message the
Processor queries the Mapper on what servlet should service the incoming message.

Finally, the Processor handles deployment descriptors and enforces security policies.

The Mapper is responsible for the routing of SIP messages. Here, the term routing means:
deciding what servlet should service the incoming message. Routing is done differently
depending on whether the request is an initial or a subsequent request. A request is said to
be an initial request if it is not part of an existing SIP dialog. The routing of initial
requests is done by the Rules Engine. This kind of routing is based on the rules defined in
the deployment descriptors. Figure 3.11 below shows a complete listing of a SIP SE
deployment descriptor. The descriptor defines an application that consists of the serviet

listed in Figure 3.7.
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<?xwl version="1.0" encoding="UTF-8"2>

<!DOCTYFPE sip-app : .
PUBLIC "-//Java Community'Process//DTD SIP Application
1.0//BEN"
"http: ffwww jcp Drgfdtdf51p~app 1 U dtd">

<sip-mpp>
<servliet> ' o .
{servlet—name>0utgalng Call Screenlng{fservlet—name>

<servlet- class}Outgnlngﬂ'llScreenlngSarvletcfservlet~class} '
{load—on—startupf}

<fservlet:>

' {servlat—name}Out 
<pattern> o
{equal} / -
<var>request. method”/var}
<value>INVITE</value>
<fequaL} o
~<pattern> ”7"'.
<fservlet mapplng>
{ISLP app} .

séreening(}setvlet—namé>”'

Figure 3.11: Deployment descriptor example

When a SIP SE receives a SIP request it needs to decide which servlet should handle the
incoming request. In order to make this decision the SIP SE refers to the serviet-mapping
rules listed in the deployment descriptor of each SIP application.

The deployment descriptor in Figure 3.11 defines a SIP servlet application that consists
of one servlet. The servlet is loaded at SIP SE startup. The servlet-mapping rule states
that the criterion to invoke the OutgoingCallScreeningServlet is the request being of type
INVITE. Therefore, all arriving INVITE requests will be handled by the
OutgoingCallScreeningServlet. The routing of subsequent messages is done by the
Session Manager and is based on the SIP dialog-id.

SIP Transaction Manager handles timeouts and SIP message retransmissions. It correlates

a SIP request with all its responses.
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Servlet Wrapper creates an instance of the servlet it “wraps” and manages the servlet

through its lifecycle.

3.5 Comparison between HTTP and SIP servlets

The basic model of HTTP servlet execution proceeds according to the following
sequence. First, an HTTP request arrives. Then, the HTTP SE decides on which servlet
should serve the incoming request. Then, the HTTP SE calls service () method of that
servlet. Finally, when the service () method returns the HTTP SE sends an HTTP
response back.

The aforementioned sequence generally applies to SIP servlets except for the fact that
this sequence is triggered by incoming responses in addition to incoming requests.
Furthermore, SIP SE does not send a response back to the caller when service ()
method returns. Instead, responses are sent back during the course of service ()
execution; whenever the servlet instruct the SE to generate and send a response. In
addition to generating responses a SIP servlet may also proxy a received request or
generate and send a new request on its own.

While HTTP servlets act as extensions to web servers SIP servlet may play a larger
variety of roles as: User Agents, Proxy and Redirect servers, Registrars and Back-to-

back-user-agents.
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HTTP

SIP

Purpose

Generating dynamic web content.

Performing SIP signaling logic.

Specification document

“Java Servlet Specification, Version

247 [11]

“Sip Servlet API specification,

Version 1.0” [9]

Servlet roles

Extending HTTP server capabilities

Multiple possible roles:

- User Agent

- SIP server (Redirect, Proxy, or
Registrar)

- Back-to-Back-User-Agent

Events that trigger

servlet execution

Incoming HTTP request only

Incoming SIP request or response

Action in response to a

servlet triggering event

Generate and send exactly one HTTP

IESponse.

- Generate zero, one, or multiple
SIP responses.

- Generate zero, one, or multiple
SIP requests.

- Proxy an incoming request to one

or multiple destinations.

Request routing

Based on portions of request URI.

Based on rules defined in the

deployment descriptor.

State information

storing

State stored using: HTTP Session

objects, URL rewriting, and Cookies.

State stored using: SipSession objects,

and SipApplicationSession objects

Table 3.1: Summary of differences between HTTP and SIP servlets

An HTTP SE extracts information on what servlet should execute an incoming request by

using a portion of the request’s URIL On the other hand, a SIP SE routes incoming
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requests by matching certain attributes of the request (e.g., its method, source,
destination, etc.) against a set of rules defined in the application’s deployment descriptor.
Session management in HTTP servlets is performed in order to overcome the stateless
nature of HTTP protocol by maintaining state across multiple HTTP transactions
performed by the same user. State management in SIP servlets is more complex. First, a
SIP session exists per each point-to-point relationship between two SIP user agents.
Second, SIP servlets introduce the notion of application sessions that store state
information for the application as a whole. A SIP application session may include
multiple SIP sessions and, in the case of an integrated SIP/HTTP SE, a multiple number
of HTTP sessions as well. Difference between HTTP and SIP servlets are shown in Table

3.1.

3.6 Distributable Servlets

Java Servlet Specification [11] allows the SEs to be distributed across multiple Java
Virtual Machines. Some of those JVM may be running on the same host while others
may be running on remote hosts.

This section summarizes the additional requirements imposed when an application is
marked as being distributable. Some of those requirements are placed on the SE while
others concern the servlet applications.

A distributable servlet may run on multiple JVM. Each JVM may host one instance of a
servlet except for servlets implementing SingleThreadModel interface (the case
when the SE must ensure that only one thread at a time has access to a servlet instance).

In this case the SE may initiate a pool of servlet instances to enhance performance.
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In distributed applications one servlet instance may process an initial request while other
instances of the servlet may process subsequent requests and responses. Therefore,
developers can neither depend on static nor on instance variables of the servlet class to
store the state of the application. For this purpose, sessions or databases should be used
instead.

Servlets running in the context of the same application have access to shared resources.
Those resources are accessed through ServletContext interface, which provides a
servlet with a view of the application that encloses it. In distributed environments servlet
contexts are confined to the scope of a JVM. Therefore, in distributed environments,
ServletContext should not be used to store state information that needs to be shared
between servlets that belong to the same context [23]. Instead, session objects or
databases should be used for this purpose.

In distributable applications all requests and responses that are part of the same session
must be handled by one JVM at a time. This relieves the programmer from considerations
about concurrency issues involved when several requests or responses belonging to the
same session are being processed.

Session objects might be stored on one node or on multiple nodes (for failover or load
balancing purposes). In the latter case a mechanism ensuring that instances representing
the same session and residing on multiple nodes are kept in sync with each other.

Sessions may also be migrated from one node to another node on the distributed SE.
They can also be stored in a database. Distributed SEs must ensure consistent access to

session information by the servlets.
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It follows from the discussion in this section that successfully creating servlets that are
distributable is a shared responsibility. On the one hand, servlet developers should ensure
that the servlet classes they produce are stateless. They should also refrain from using
ServletContext interface for storing state information. On the other hand, serviet
SEs should handle concurrency, session storage, migration, and distribution issues. As a
result servlet developers are relieved from system programming tasks and can focus on
service application programming instead.

3.6.1. Distributed Session Management

This section describes session management for scenarios where multiple SEs are running
instances of the same servlet. A central entity, called a “Load Balancer” or “Load
Director” [24], directs the incoming traffic to either SE. As, mentioned above, these
schemes are used for failover or load balancing purposes.

Both SIP and HTTP are stateless protocols. However, real-life applications require
tracking states. In WEB applications client transactions involve multiple requests. State
information is stored in sessions and is modified during the course of the transaction.

In SIP a session is used to represent a SIP dialog, which is a SIP relationship between two
User-Agents. Dialog ID (a combination of Call-ID, From tag, and To tag) is used to
uniquely identify a SIP dialog and the corresponding SIP session.

The SE uses the information stored in SIP sessions to perform subsequent request
routing. The dialog id of an incoming SIP message is matched against the dialog ids of
the SIP sessions managed by the SE. The matching session can be used to provide

information about the serviet that should process the request.
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Next we consider two approaches discussed in [24] to session management for

distributable servlets.
3.6.2 Fixing a dialog to the SE that handles the initial request.

In this approach the Load Director remembers which SE handled the initial request of a

dialog. All subsequent messages belonging to that dialog will be routed to the same SE.

SIP 8E 1
Serviet A

SIP SE 2
<~~~ 7] Serviet A

UAC| initial 8ip req.. | Load Director

N | SIPSE3
Y Serviet A

Figure 3.12: “Sticky Sessions” technique

Figure 3.12 shows three SEs, each hosting an instance of servlet “A”. When the initial
request arrives the SE may choose any of the three nodes to handle it. In the diagram the
chosen node is “SIP SE 1”. Therefore, all subsequent requests belonging to the same
dialog will be routed to “SIP SE 1”.

The advantage of this approach is its simplicity. The Load Director routes dialog’s
subsequent requests to the same SE that handled the initial request. The SE running the
servlet also acts as a session repository.

On the other hand, if the SE handling the dialog becomes unavailable, the session data is
lost. Also, some SEs may become overloaded while, at the same time, other SEs running

instances of the same servlet will be idle.
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3.6.3 Separating session repositories from servlet hosting

In this approach, session repository is separated from servlet hosting and moved into a
“central point of reference” [24] located on a different host. We will use the term “session
repository” to refer the aforementioned “central point of reference”. Therefore, nodes that
host and execute servlets are not responsible for storing sessions. Instead, multiple hosts
running instances of the same servlet may access the session repository in order to
retrieve or modify session information. The location of session repository is provided to

the servlet-hosting nodes by the Load Director. This approach is illustrated in Figure

3.13.
Load Director may Nodes that host semvlets
route a SIP reguest access the session repository
to ANY of the nodes in order to read or modify
hosting the serviet "A" attributes of a session.
AN SIP SE 1
AN Serviet"A"
N
N\
A
— / SIP SE 2 , .
UAC subsequent SIF req Load Director ~ Session Repositary

Serviet "A"

SIP SE 3
Serviet"A”

Figure 3.13: Separating session repositories from servlet hosting
At any given point, only one servlet instance (the one currently processing the message)
can access or modify the session. After the servlet finishes processing the message,
further messages of the same dialog can be served.
Since SEs do not store sessions state information the next subsequent message may be
processed on a different SE. Failure in any SE hosting a servlet does not result in dialog
session information loss. The drawback of this approach is that the session repository

becomes the central point of failure.
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3.7 Conclusions

In this chapter we discussed Session Initiation Protocol and the features that make it
suitable as a signaling protocol for multimedia sessions. However, in order for SIP
services to succeed it needs a technology that would allow for easy programmability and
deployment of SIP services. SIP shares multiple similarities with HTTP. Therefore, it is
feasible to apply to SIP those technologies that have proven their success in providing
services in HTTP. The success of servlet technology in providing dynamic content for the
web, paved the way for the introduction of SIP servlet technology. This chapter discussed
and contrasted the HTTP and SIP servlet technologies. Finally, a state of the art in
distributable servlets was presented. The in the next chapter we present a scheme for

applying SIP servlets to MANET by distributing a SIP SE.
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Chapter 4: Distributing SIP SE for MANET

4.1 Introduction

In this chapter we propose an architecture for distributing a SIP SE across multiple nodes.
First, we derive requirements for such an architecture. Then, we show that state-of-the-art
fails to meet the derived requirements. Then, we discuss a business model [25] for service
provisioning with SIP servlets in MANET. This is followed by proposing a distributed
SIP SE architecture and its components. Then, we discuss mechanisms used by the nodes
of the distributed SIP SE to communicate with each other and with external actors.
Finally, we establish that the proposed architecture meets most of the requirements we

derived. The remaining requirements are evaluated in Chapter 5 with a prototype.
4.2 Requirements

In order to be suitable for MANET environments a distributed SIP SE must satisfy a set
of requirements. In this section we derive and explain the requirements imposed by
MANET operating conditions on the distributed SIP SE.

First, distributed SIP SE components must be deployable on mobile, handheld devices
with limited capabilities. This requirement stems from the fact that a typical MANET
participant node is a mobile device with limited capabilities (as explained in Section
2.2.9). Therefore, the components of a distributed SIP SE should be of small size, and be
light on runtime memory consumption.

Second, a distributed SIP SE must support on-the-fly service deployment. This is because
the distributed SIP SE does not load services when it is formed by its component nodes.

It neither stores any SIP service archives itself, nor has any knowledge of the servlet
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repository’s location. Instead the distributed SIP SE loads a servlet application from a
servlet repository [20] when it is instructed to do so. The location of the SIP service
command must be provided by the issuer of that command.

Third, components of a distributed SIP SE must bootstrap to discover each other’s
presence. They must achieve a distributed SIP SE formation without the aid of an
external node. Information on participant nodes’ locations (e.g., hostnames, ports) must
not be preconfigured. Instead, such information should be acquired dynamically as
participant nodes come within transmission range of each other.

Fourth, changes in the network topology should, ideally, have no impact on service
delivery. This requires support for redundancy. If a SIP SE node becomes unavailable the
remaining nodes should attempt to keep the distributed SIP SE functional. This can be
achieved either by replacing the disappeared node with a node having similar capabilities,
or by allowing the service to be delivered with fewer nodes. Also, a distributed SIP SE
should allow several nodes to run an instance of the same servlet. In this case, the SE
should choose one of those nodes to service an arriving protocol message that should be
handled by that servlet.

Fifth, the distributed SIP SE should be able to handle constant changes in connectivity
characteristics. The changes in connectivity result from user mobility and from the
inherent characteristics of wireless media. The SIP SE should be able to cope with

unpredictable delays, packet losses and disconnects.

Sixth, the distributed SIP SE should scale well to the increase of the number of servlets
deployed, the number of requests it can serve, and the number of participant nodes (e.g.,

if more nodes are used, say, to provide redundancy).
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4.3 Evaluation of the state-of-the-art with regard to the

requirements

Commercial SIP SEs available today are part of global application servers. Examples of
such application servers are: IBM Websphere [28], and SIPMethod [29]. These
application servers are representative of the ones currently available on the market.
System requirements for these servers make them unsuitable for deployment over mobile
devices with limited capabilities, as stated by our first requirement. For example, the
minimal requirements for IBM Websphere on Windows 2000 are: 512 MB of RAM,
Intel® Pentium® processor (500 MHz), and 990 MB of disk space.

The available SIP SEs support on-the-fly deployment of SIP applications, thus satisfying
our second requirement.

Our third requirement that the components of a distributed SIP SE bootstrap to discover
each other is not satisfied by any of the existing SIP SEs. This is because existing SIP
SEs have been developed for networks with fixed, centrally managed networks. In these
types of networks the need for automatic discovery of different nodes does not exist.

The fourth requirement is to tolerate changes in network topology without an impact on
service delivery is not satisfied by any existing SIP SE implementations. Network
topology is assumed to be stable. Redundancy was implemented for fault-tolerance and
load-balancing purposes. However, these redundancy schemes use a “Load Director”
node which remains a centralized entity and, therefore, cannot be used in MANET

environments.
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The fifth requirement (support for changes in connectivity and user mobility) is not met
by existing SIP SEs because this requirement is not applicable for infrastructure
networks.

Most existing SIP SEs are highly scalable, thus satisfying our sixth requirement on

scalability.

4.4 Business Model

Business Models describe the different actors involved in service provisioning as well as
their relationship to each other [30]. Once a business model is defined, it serves as a
starting point for identifying interfaces between the actors and specifying the service
architecture.

The work done in [25] proposes a business model for service provisioning in MANET
with SIP servlets. This model consists of four roles: end-user (E.U.), service provider
(S.P.), service capabilities provider (S.C.P.), and service execution environment provider

(S.E.P). Figure 4.1 below depicts the business model.

S.CP.

. . S,
{Publish/Discover o, Download

r

_\ Invoke
EU. SEP.

Figure 4.1: Business model for service provisioning with SIP servlets in MANET
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An end-user is the entity that requests a service to consume. A service provider is the
entity that advertises and offers services to end-users, and owns service logic. The logic
on how a SIP servlet service is built from its building blocks and conditions that trigger
service execution are listed in the deployment descriptor for the service. Even though a
service provider owns service logic, it does not, necessarily, own the resources required
to build and execute the service. Therefore, a service provider ensures that both service
building blocks and an environment to host the service are available. Services are
constructed from building blocks called capabilities. SIP servlets act as capabilities for
SIP servlet services. A service capabilities provider is an entity that acts as a repository
where capabilities are stored. This entity is also referred to as a “servlet repository”.
Finally, a service execution environment provider provides an environment to deploy
and execute services. In other words it is the provider of the SIP SE that loads and
executes the SIP servlet applications. Service provider issues a “deploy” command to the
SIP SE instructing it to download a service from the servlet repository and deploy the
service. After the service is operational, SIP SE becomes ready to receive “invoke”
commands from the end-user that wishes to consume the service. It should be noted that
in service provisioning using a SIP SE only the “invoke” interaction has to occur over

SIP protocol.

4.5 The Proposed Distribution Scheme

4.5.1 Overall View
In this section we propose an architecture to distribute a SIP SE across multiple nodes:
connector, controller, wrapper, and session repository. This is equivalent to substituting

the role of a service execution environment provider with four roles of: connector
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provider, controller provider, wrapper provider, and session repository provider. Figure
4.2 shows the four new roles within the boundary of the distributed SIP SE and how these

roles interact with the three roles that are not part of the distributed SIP SE.
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\Distributed SIP SE boundary
Figure 4.2: An overall view of service provisioning with a distributed SIP SE

4.5.2 Components of the distributed SIP SE
4.5.2.1 Connector

A connector provides transport layer connectivity to a SIP SE by managing listen points.
A listen point is a transport connection at which SIP messages are sent and received. This
means that all SIP messages that a SIP SE sends or receives must traverse the connector.
A transport connection of the connector may use TCP, UDP or any other transport

protocol. The connector parses received SIP messages and validates their format. For

every correctly-formatted SIP message that a connector receives, it creates an object
representation of the message. Then, the connector forwards the object representation of

the SIP message to the controller via intra-node communication as shown in Figure 4.3.
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Inversely, a connector receives object representations of SIP messages from the

controller, parses it into a SIP message and sends the message to its destination.

Communication with SIP inter-node communication
over UDP, TCP or any using Serializable objects
other transport protocol that represent SIP messages
A \
\ 1
\ !
\ }
y \
\ \
E.U. ,’1 S8IP message Connector /“ SIP message .| Controller
P -~

Figure 4.3: Connector’s interfaces

It should be noted that the Connector performs two distinct functionalities: managing
transport connectivity, and parsing SIP messages to and from a format used for intra-node
communication between SIP SE nodes. A question arises on whether these functionalities
should be performed by the same node or be split across separate nodes. On the one hand,
splitting the functionalities between a transport node and a parsing node would enable
multiple transport nodes to reuse the same parsing node. On the other hand, the output of
the transport node would be an array of bytes representing a SIP message. This is,
essentially, equivalent to what the transport node receives from the network. The array of
bytes will have to be sent to the parsing node over inter-node communication that, in
turn, is implemented over some transport mechanism. In our view, this introduces an
overhead that is not justified. Therefore, we opted for combining the functionalities of
transport connectivity and message parsing in one node.

The benefits of introducing a Connector stem from the fact that no other SIP SE node has

to parse SIP messages, ensure their validity, or manage transport connections. The
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Connector prevents malformed SIP messages from propagating to the other SIP SE
nodes. Instead, the other SIP SE nodes operate on an object representation of a SIP
message that enables them to easily access and modify message content (its headers and
body). It should be noted that the Connector functionality does not overlap with any other
node’s functionality.

4.5.2.2 Controller

A controller is a central node that coordinates all other nodes of a distributed SIP SE.
Furthermore the Controller is responsible for: receiving commands to deploy an
application, handling SIP transaction layer functionality, and SIP message routing (i.e.,
deciding which servlet gets to serve an incoming SIP message).

First, the Controller is the entity which a service provider instructs to deploy a SIP
application. The Controller receives a deployment descriptor and creates rules mappings
that specify the conditions that trigger SIP servlets execution. The Controller does not
load and instantiate the servlets itself. Instead, it forwards the deploy command to the
Wrapper for further processing. Figure 4.4 shows (in bold) the portion of a deployment
descriptor that a Controller uses to create a rule that triggers a servlet execution. The
Controller will use this information to decide where to route incoming initial requests
(i.e., requests that are not part of an established SIP dialog).

Second, the Controller manages SIP server and client transactions. A server transaction is
created for each incoming SIP request. It is used to correlate a received SIP request with
its responses. If no SIP responses are generated within a given amount of time a server
transaction mechanism returns a SIP response that indicates a timeout [5]. A client

transaction is created for each outgoing SIP request. It is used to correlate received
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responses to sent requests. Additionally, client transactions control request
retransmissions and handle timeouts.

<2xml vérsion i3 0 0" encodlng "UTF-8"2>
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i 1 G/XEN"
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' {Blp"app}
<serv_l_et>

{load—on—startup}'} 1;~
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 <servlet- name:%ﬂutgolng Call Scxeen1ng<{servlet—name}
_ <patterm> ~
<equa]}
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«:f servle t,—mapplng}
{;’s.‘Lp-—app> s

Figure 4.4: Deployment descriptor portion processed by the controller
Third, when the controller receives a SIP message from the connector it needs to decide
on the servlet that should serve the message. Initial requests are routed according to the
rules specified in the deployment descriptor. For example, the deployment descriptor in
Figure 4.4 specifies that a received initial SIP request of type INVITE should be handled
by the ”Outgoing Call Screening” servlet. For all SIP messages that are not initial SIP
requests the controller computes a SIP session id and retrieves a SIP session from the
session repository. SIP sessions contain information on what application they belong to
and what servlet should serve the incoming message. After the controller determines the
servlet that should serve the incoming message it inserts information containing the

servlet’s name to the message and forwards the message to the wrapper on which the
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servlet is hosted. The information on the servlet’s name is necessary because a Wrapper
may run a servlet application that consists of multiple servlets. If the name of the servlet
is not provided, then the Wrapper will have to determine which servlet gets to serve the
message. This, in turn, will result in an overlap of functionality between the Controller
and the Wrapper.

4.5.2.3 Wrapper

A wrapper is the entity that provides an execution environment for SIP servlets. It
downloads a servlet from a repository. Then, it loads the servlet’s class and calls the
servlet’s init () method. For each SIP message that should be served by the servlets
the wrapper calls the servlet’s service () method. Finally, when the servlet should be
phased-out the wrapper calls the servlet’s destroy () method. Figure 4.5 shows (in
bold) the portion of a deployment descriptor processed by the wrapper. This portion
creates a mapping between a servlet’s name and its class. ;Fhe name of the servlet that
should serve an incoming SIP message is provided to the Wrapper by the Controller. The
Wrapper, then, matches the servlet name to an instance of a servlet class, and calls
service () method on that instance. In the example shown in Figure 4.5, when a SIP
request should be served by ”"Outgoing Call Screening” servlet the wrapper will call

service () method of "OutgoingCallScreeningServlet” class.
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Figure 4.5: Deployment descriptor portion processed by the wrapper

4.5.2.4 Session Repository

Session Repository stores state information for SIP servlet applications. The motivation
for introducing this node is to separate servlet hosting from application state storage. This
achieves several benefits. First, creating a node that is solely responsible for storing state
information reduces the sizes of the other nodes. Then, it introduces redundancy which
makes it easier for a distributed SIP SE to operate in MANET environments. This is due
to the fact that servlet hosting nodes become stateless. Therefore, different messages
directed to a particular servlet may be served by different instances of that servlet; each
instance running on a different host. Finally, from a conceptual point of view this
separation introduces a node with high cohesion because its responsibilities have a well-

defined and narrow scope; storing state information.
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Application state can be classified into two types: protocol session local, and application
wide. For SIP, protocol session local state is stored per each SIP point-to-point
relationship between two User-Agents (i.e., per each SIP session). It is possible to store
local state information for other protocols as well (e.g., HTTP sessions); but this is
beyond the scope of this thesis. Application wide state encloses all protocol sessions
created by the application in addition to application data in the form of name/value pairs.

Session Repository provides storage and retrieval for both protocol session local (SIP
session), and application wide (SIP application session) state information. It also ensures
the integrity of the data by resolving issues that arise when multiple entities require

access to the same piece of state information.
4.6 Communication between SIP SE nodes and external actors

This section describes interactions between the nodes of a distributed SIP SE on one side
and the nodes representing the other business roles (service provider, end-user, and
service capabilities provider) on the other. As previously depicted in Figure 4.1, the three
types of interactions between SIP SE nodes and external actors are: Deploy,
Download, and Invoke. Figure 4.2 expands the SIP SE to reveal the nodes that it
consists of. It also reveals which nodes of the distributed SIP SE are involved in
executing the aforementioned interactions. Next, we discuss those three interactions in
detail.

4.6.1 Deploy

Deploy is the interaction that an S.P. issues in order to instruct a distributed SIP SE to put
a SIP application into service. As shown in Figure 4.2 this interaction occurs between the

S.P. and the Controller. Three conditions must be satisfied prior to issuing this command.
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First, a distributed SIP SE formation must be in place. Then, the S.P. must be aware of
the location of the S.C.P. where the application is stored. Finally, the S.P. must discover
the Controller node of the SIP SE. After the deploy interaction completes successfully the
distributed SIP SE becomes ready to receive invocations of the service from the E.U.

Table 4.1 summarizes Deploy interaction.

Name Deploy
Purpose Instruct a SIP SE to put a SIP application into service.
Parameters 1. Service logic (deployment descriptor).

2. Location of the Capability Provider

Response Connector’s SIP listen-point location or an error if deployment

fails.

Table 4.1: Deploy interaction
4.6.2 Download
Download is the interaction that the Wrapper issues in order to download an archive
containing a SIP servlet application from an S.C.P. The application archive contains
servlet classes and other resources necessary to run a service (such as image or audio
files). After this interaction completes successfully the Wrapper will extract the servlets
from the archive, and load and initialize the servlet classes. Table 4.2 summarizes

Download interaction.
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Name Download

Purpose Obtain service capabilities and other resources required to run a service.
Parameters The URI where the capabilities are located.
Response Servlet application archive is returned to the Wrapper.

Table 4.2: Download interaction
4.6.3 Invoke

After a successful completion of Deploy and Download interactions, Invoke interaction
allows the E.U. to trigger execution of a service deployed on the SIP SE. This interaction
is conducted by sending a SIP request to the Connector node of the SIP SE. The SIP SE
will process the incoming request and execute service logic responsible for processing

that request. Table 4.3 summarizes Invoke interaction.

Name Invoke

Purpose Invoke service logic on an incoming request from the End-User.
Parameters -

Response Depends on the service logic.

Table 4.3: Invoke interaction
4.7 Communication within the distributed SIP SE

This section describes interactions between the different nodes of a distributed SIP SE.

Figure 4.6 below emphasizes the links between SIP SE nodes.
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Figure 4.6: Communication within the distributed SIP SE
Two types of interactions occur between SIP SE nodes: SIP message exchange
interactions, and session access interactions. The rest of this section discusses the two
interaction types, and defines abstractions used for conducting those interactions.
4.7.1 SIP message exchange
This interaction is used to pass a representation of a SIP message between SIP SE nodes.
Two abstractions are introduced to achieve this:
1. SIP. REQUEST: represents SIP request parts: start line, headers, body.
2. SIP_RESPONSE: represents SIP response parts: start line, headers, body.
Those abstractions carry information found in SIP requests and SIP responses
respectively. Consider the case of a SIP request received by the Connector. The
Connector parses the received request creating a SIP. REQUEST. Then, it passes the
SIP_REQUEST to the Controller. The Controller, in turn, passes the SIP. REQUEST to

the Wrapper. The Wrapper applies service logic and creates a SIP_ RESPONSE. The
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SIP_RESPONSE traverses the same path as the SIP. REQUEST, but in the opposite
direction ~ from Wrapper, to the Controller, and then, to the Connector. The Connector
parses the SIP. RESPONSE into a byte array and sends it to its destination.

4.7.2 Session access

Session access interactions are used to: create, modify, delete, and access both SIP
sessions and application sessions. First, we define the structures that represent a SIP
session and a SIP Application Session. Then, we define the different types of session
access interactions.

The first data structure primitive used for session access interactions is SIP_ APP_SSN.
This primitive is used to represent a SIP Application Session. It consists of a unique
session 1id field, a list of all protocol session ids that are part of this application session,

and a map of application session’s attributes (see Table 4.4).

Parameter Value

App_ssn_id SIP application session id

Protocol ssn_ids | A list of protocol session ids that are part of the application session.

Attribs A map of application session’s attributes. The map keys are attribute

names. The map values are the attribute values.

Table 4.4: Abstraction for a SIP application session (SIP_APP_ SSN)

The second data structure primitive used for session access interactions is SIP_SSN (see
Table 4.5). It represents one point-to-point relationship between a servlet and a User

Agent. This primitive consists of three fields. First, a session id field that is unique. The
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second field is the SIP application session the SIP session belongs to. This field is of type

of SIP_APP_SSN. The third field is a map of the SIP session’s attributes.

Parameter Value

Sip_ssn_id SIP session id

Sip_App_Ssn SIP application session the SIP session belongs to.

Attribs A map of application session’s attributes. The map keys are attribute

names. The map values are the attribute values.

Table 4.5 - Abstraction for a SIP session (SIP_SSN)
After discussing the primitives used in session access interactions we, now, discuss the
different types of session access interactions. A new SIP session is created with a
SIP_SSN_CREATE interaction. A SIP session is created before the actual SIP dialog
that it represents is established. Therefore, a SIP session is, first, created with a temporary
session id. When the SIP dialog is established this temporary session id should be
replaced with the dialog id. The interaction responsible for changing the session id is
SIP SSN CHANGE ID. The other session access interactions are concerned with SIP
session retrieval, deletion, and returning a modified SIP session to the repository. These
primitives are: SIP_SSN_GET, SIP_SSN DELETE, and SIP_SSN_PUT, respectively.

These primitives are shown in Table 4.6.
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e SIP_SSN CREATE

Purpose

Creates a SIP session and adds it to the repository.

Parameters

e Sip Session

e SIP_SSN _CHANGE_ID

Purpose

Instructs the repository to modify SIP session id.

Parameters

e Old SIP session id.

e New SIP session id.

e SIP SSN GET

Purpose

Gets SIP session from the repository.

Parameters

e SIP session id.

e SIP_SSN PUT

Purpose

Returns a SIP session to the repository.

Parameters

e Sip Session.

e SIP SSN_DELETE

Purpose

Permanently removes a SIP session from the repository.

Parameters

e SIP session id.

Table 4.6: Session access primitives

4.8 Distribution scheme vs. requirements

First, we proposed distributing SIP SE functionality across multiple nodes with each node
performing part of the SIP SE functionality. Therefore, each participant node is expected

to require fewer resources than a node that hosts a SIP SE in its entirety. The exact
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amount of resources required for each node will be determined by the implementation of
the prototype which is discussed in the next chapter.

Second, the proposed distribution scheme supports on-the-fly deployment through the
“Deploy”, and “Download” interactions.

Third, the proposed distribution scheme does not assume a presence of an entity that the
distributed SIP SE nodes can query in order to perform discovery. Therefore, the SIP SE
nodes must bootstrap to discover each other; thus meeting the requirement for bootstrap
discovery.

Fourth, the requirement for tolerating changes in network topology is met by allowing
multiple SIP SE components of the same type to be part of a distributed SIP SE
formation. For example, multiple Wrapper nodes running the same SIP service may be
present in order to ensure service continuity should one of the Wrapper nodes become
unavailable.

The requirement for handling changes in connectivity and user mobility can be met by
implementing node communication using middleware targeted at MANETs. Such a
middleware will be responsible for user mobility and changes in link characteristics.
Finally, the proposed distribution scheme satisfies the scalability requirement. This is
achieved by letting multiple nodes of the same type to coexist in a distributed SIP SE

formation (in a way similar to meeting the requirement on tolerating changes in
topology).

4.9 Conclusions

In this chapter we derived requirements for a scheme to distribute a SIP SE for MANET.

We showed that existing SIP SE implementations fail to satisfy most of these
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requirements. Therefore, we introduced an architectural scheme for distributing a SIP SE
for MANET and showed how it met the requirements. The distribution scheme includes
four component roles for a SIP SE: controller, connector, session repository and wrapper.
Furthermore, the distribution scheme describes models of communication used among
the SIP SE nodes and between the distributed SIP SE and external actors. Finally, we
established that the distribution architecture meets the requirements that we derived with
the exception of the requirement that the nodes of the SIP SE should be deployable on
mobile, handheld devices. This requirement will be validated in the next chapter with a

distributed SIP SE prototype.
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Chapter 5: Prototype and Proof of Concept

This chapter describes a prototype of the distributed SIP SE and two services used as a
proof-of-concept for service deployment on the prototype. First, the communication
model with the middleware of choice is explained. Then, the main control flows that
occur in the prototype are discussed. Finally, analysis of results obtained with two

conferencing services is presented.
5.1 Communication with LIME

We chose LIME [26] as the middleware for communication between the distributed
nodes of the prototype. LIME was also chosen as means of communication between the
distributed SIP SE prototype and Service Provider. The rest of this section starts by a
brief outline of the main concepts of LIME. Then, a justification for using LIME is
provided by contrasting it with another middleware protocol, Java RMI. Finally, a
description of how LIME is used by the prototype’s nodes is provided.

5.1.1 Introduction to LIME

LIME uses a model where information communicated between entities is carried in
tuples. A tuple is an ordered sequence of typed fields. A source sends a message to a
destination by adding a tuple to the destination’s tuple space. This operation is referred to
as out(t) where ¢ is the tuple being communicated. In order for the destination to retrieve
a tuple written into its tuple space, the destination must register a reaction with a template
for the tuples it expects to receive. A template is a special tuple that provides logic used
to match received tuples against those expected. For example, consider a tuple space that
expects to receive tuples that consist of three fields: a string with a predefined value

“message”, followed by an arbitrary integer value, followed by an arbitrary string value.
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A template used in the reaction for such tuples would be <’message”, int, String.class>.
The first field, an actual with a value "message”. Actual fields specify the exact value of
a field. The second and the third fields are formals. Formal fields specify the type of a
field; but not its value. In the aforementioned example the second and the third fields of
the received tuples must be of types integer and string, respectively.

Each node of the distributed SIP SE prototype maintains its tuple space together with
reactions to the tuples it expects to receive. In order for a node to send a message to
another node the source node writes a tuple to the destination node’s tuple space. The
destination node reacts to the tuple, reads it from its tuple space and applies processing

logic to the received information.

Controller -
- Tuple Space

-0 I Ssn Repository  Wrapper:.
Tuple Space Tuple Space Tuple Space

‘Wrapper:
Tuple Space Tuple Spatce

Figure 5.1: SIP SE communication with LIME
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5.1.2 Mobility support

LIME was specifically designed for mobile environments where participants constantly
adapt to dynamic changes in their context (e.g., node mobility and changes in link
characteristics). LIME facilitates mobility by decoupling operations through which nodes
communicate from how communication details are implemented. All nodes located
within range of each other share a common LimeSystem tuple space. This tuple space
contains context information, such as accessible mobile nodes and their tuple spaces.
Nodes can detect context changes by reacting to LimeSystem events and adapt
accordingly. The context itself is represented using a Federated Tuple Space. This tuple
space provides each node with an illusion that all tuple spaces belonging to all connected
nodes are located locally.

For example, when the Connector needs to send a message to the Controller it performs
out(t) operation (where “t” is the tuple carrying the message) to the Controller tuple
space. The Connector has access to the Controller tuple space through the Federated tuple
space as shown in Figure 5.1.

On the other hand, existing middlewares such as Java RMI were designed for
client/server environments. Therefore, they exhibit strong coupling between clients and
servers, as well as predefined roles of: server, client, and registry. Furthermore, adapting
dynamically to context changes is made difficult by relying on the notion of addresses for
interaction between entities. In order to deliver a service over RMI a server must create
remote objects and register them with an RMI registry. In order to access a remote object

a client must query an RMI registry and obtain a stub to the remote object. The stub acts
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as a proxy to the remote object; a client calls a method on the stub and the call is relayed
to the remote object via RMI.

5.1.3 LIME tuples of the prototype

This section describes tuples used for the distributed SIP SE prototype’s communication
model. First, tuples used for SIP message exchange are discussed. Then, tuples used for
Session Repository access are presented. Finally, a tuple used for service deployment is
presented.

5.1.3.1 SIP message exchange

SIP messages transmitted in message exchange tuples are represented by instances of
either SimpleSipRequest or SimpleSipResponse classes. Both of these classes extend a
common, abstract parent, SimpleSipMessage. In order to be transmitted across the
network the parent class implements java.io.Serializable interface. This class hierarchy is

shown in Figure 5.2 below.

«interface»
java.io Serializable

o

SimpleSipMessage
setHeaderField()
getHeaderValue()
setContent()
getContent()

1

I |

SimpleSipRequest SimpleSipResponse
getMethiod() getStatus()
setMethod() setStatus()
getRequestUri{)
setRequestUri()

Figure 5.2: SimpleSipMessage hierarchy
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Tuples that carry representations of SIP messages consist of three fields: a predefined
tuple name, an instance of a SimpleSipMessage subclass, and an originator node’s type
(as a string). Therefore, templates used by the reactions on the destination node’s side
also consist of three fields. First, an actual field of type string to denote the tuple’s name.
Second, a formal whose type is a subclass of SimpleSipMessage. Third, a formal of type

string to denote the originator node’s type. Message exchange tuple templates’ structure

is shown in the following two tables: Table 5.1 and Table 5.2.

Field Actual or Formal Field type or value
Tuple Name Actual ”SimpleSipRequest”
Payload Formal SimpleSipRequest.class
Originator Node Formal String.class

Table 5.1: A tuple template to transmit a SIP request
Field Actual or Formal Field type or value
Tuple Name Actual ”SimpleSipResponse”
Payload Formal SimpleSipResponse.class
Originator Node Formal String.class

Table 5.2: A tuple template to transmit a SIP response
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5.1.3.2 SIP session access

Communication with Session Repository occurs using the tuple depicted in Table 5.3.

Field Actual or Formal Field type or value

Tuple Name Actual ” LimeSessionRepository”
Command Type Formal SsnRepCommands.class
Session Id Formal String.class

New Dialog Id Formal String.class

Sip Session Formal SipSession.class
Originator Tuple Space Formal String.class

Table 5.3: A tuple template to access Session Repository

A SIP session access tuple carries a session access command and its arguments. Session
access command types are provided in the SsnRepCommands.class enumeration.
Commands supported by the prototype are:

¢ ADD: adds a new session to the repository.

e CHANGE: modifies session id.

e GET: retrieves a session from the repository.

e PUT: returns a session to the repository.
New dialog id field is set to an empty string for all commands except the CHANGE
where it is set to the session’s new id, the dialog id. Sip session field is set to an empty
session for all commands except the ADD and the PUT. The only command for which
the Session Repository provides a response is the GET command. The response tuple has

the same structure as the request tuple. The value of Sip Session field is set to the actual
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sip session retrieved from the repository. The response if written to the tuple space of the
originator specified in ”Originator Tuple Space” field.

5.1.3.3 SIP application deployment

This section defines the deployment command tuple. This tuple is issued by the Service
Provider which writes it to Controller’s tuple space. The Controller processes the
command and then forwards it to the Wrapper. The deploy tuple template structure is

shown in Table 5.4 below:

Field Actual or Formal Field type or value

Tuple Name Actual "DEPLOY_COMMAND”
Service URL Formal String.class

Deployment Descriptor Formal byte[]

Service Name Formal String.class

Table 5.4: A tuple to transmit a deploy command
A deployment tuple provides a URL from which to download an archive containing a SIP
service. It also provides the deployment descriptor for the service (sip.xml) and the

service name.
5.2 Control flows

This section describes the main control flows of the prototype. First, the flow of the
deploy command is explained. Then, the control flow of serving initial and subsequent

requests is provided
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5.2.1 Deploy command flow
Deploy action is performed by the Service Provider to instruct the Controller to load a

SIP servlet application. The command flow for this action is shown in Figure 5.3 below.

L S.P. I l Controfler i [ Wrapper l I Tamcat I
¥ T T ¥
I |
! 1 | ]
deploy : :
| |
) i
Create rpappings 1 l
1 |
§ )
- 1
]
depioy :

HTTP GET
HTTP GET res
.

load sprviets

Figure 5.3: Service deployment control flow
First, the Service Provider instructs the Controller to deploy a SIP servlet application by
writing a deploy tuple to Controller’s tuple space. As specified in section 5.1.3.3 the
deploy tuple contains the application deployment descriptor and the URL from which to
the download the application archive. The Controller parses the deployment descriptor
and creates mapping rules that specify conditions that trigger the application to be
invoked. Then, the Controller writes the deploy tuple to Wrapper’s tuple space. The
Wrapper obtains the URI of the application from the tuple. Then, the Wrapper downloads
the application’s archive by issuing an HTTP Get command. The application’s archive is
passed to the Wrapper in the HTTP response. The Wrapper extracts the archive’s
contents onto a local directory, loads and initializes the servlet classes contained in the
archive. Finally, the Wrapper parses the deployment descriptor to create mappings

between servlet names and classes.
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5.2.2 SIP message flow

Figure 5.4 illustrates the flow that occurs when an initial request is received.
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Figure 5.4: Initial request serving control flow

The Connector receives a SIP request, creates a tuple representation of the request and
writes the tuple to Controllers tuple space. The Controller obtains the request session id
and contacts Session Repository to retrieve the session. Since, the request is an initial
request, no corresponding sessions are found. The Controller routes the request to a
servlet by applying rules stated in the deployment descriptor. A rules matching result
specifies the name of the application and the name of the servlet that should serve the
request. Then, the Controller proceeds to create a new SIP session, and adds it to the
repository. Since, the session is in its initial state a temporary session id is used. This
temporary id is replaced when a response is generated and the SIP session moves to its

confirmed state. Before writing the request tuple to Wrapper’s tuple space the Controller
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adds a number of SIP headers to the requests. These headers take part in the
communication between the Controller and the Wrapper. They are explained in detail

later in this section.
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Figure 5.5: Subsequent request serving control flow (also applies to serving
responses)
Control flow for subsequent requests is shown in Figure 5.5. It differs from the flow of
initial requests in the way the request is routed. The Controller obtains the request session
id and contacts Session Repository to retrieve the session. Since, the request is a
subsequent request a corresponding session is retrieved from the Session Repository.
Information regarding the name of the application and the servlet that the request should
be routed to is found in the application session enclosed inside the sip session. This
information is retrieved and placed into the specialized SIP headers of the request. Then,

the request tuple is written to the Wrapper tuple space.
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Specialized SIP headers assist in providing communication between SIP SE nodes. In
order to convey a piece of information, a SIP SE node may insert a specialized header
into a SIP message before passing it to another SIP SE node. The specialized headers we
propose to introduce are not currently defined in SIP. Therefore, the SIP SE must remove
those headers before sending a SIP message to a node that is not part of a SIP SE. Table

5.5 below enumerates the proposed specialized headers and their meaning.

Header Name Header Value Example value

manet.servlet-name Servlet to invoke (as Speciﬁed conferencingServliet

in the deployment descriptor).

Manet.application-name Servlet Application name. Conferencing
Manet.session-id SIP session id. 3uydip
Manet.transaction-key SIP transaction key and type. z9hG4bKegqd78; server

Table 5.5: Specialized SIP headers
All the proposed specialized headers are used by the Controller to convey information to
the Wrapper. When a SIP message arrives at the Controller, the Controller determines the
application, the servlet within that application and the id of the SIP session the message
belongs to. Therefore, the Controller forwards this information to the Wrapper so that the
latter does not have to redo the effort. Additionally, the Controller passes the key of the
SIP transaction the received request belongs to. This information is not required by the
Wrapper. Instead, it is forwarded back to the Controller when the Wrapper generates a
response. This is due to the fact that the Controller needs to match the response to an

existing SIP transaction in order to handle the response properly.

71




5.3 Prototype characteristics

The prototype nodes had the footprints shown in Table 5.6 below:

Component Footprint with no servlets deployed (Kbyte)
Controller 462
Wrapper 462
Connector 417
Session Repository 340

Table 5.6: SIP SE node footprints
The nodes of the distributed SIP SE and other actors involved in running the scenarios
were deployed on three laptops. The centralized SIP SE that we used to compare the
distributed prototype against was deployed on a desktop with characteristics shown in

Table 5.7. The characteristics of the laptops were identical (shown in Table 5.8).

Processor Pentium 4, 3 GHz

RAM 1 GB

Operating System Windows XP Professional
Connectivity Ethernet

Table 5.7: Desktop characteristics for the scenarios for the centralized SIP SE
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Processor Mobile Pentium 4
RAM 512 MB
Operating System Windows XP
Connectivity WLAN 802.11g

Table 5.8: Laptop characteristics for the scenarios for the distributed SIP SE

The node placement on the laptops was done 1s such a way that no SIP SE actor is

collocated with another SIP SE node it directly communicates with. The actor

distribution is shown in Table 5.9 below.

Laptop 1 Controller

SIP SE node

Servlet Repository (Apache Tomcat)

Non SIP SE node

Laptop 2 Session Repository SIP SE node
Connector SIP SE node
Service Provider Non SIP SE node

Laptop 3 Wrapper SIP SE node

End-Users

Non SIP SE node

Table 5.9: Scenario actors’ locations

5.4 Interest-based Conferencing with N participants

5.4.1 Service description

In this scenario a service provider instructs the distributed SIP SE to initiate a new

conference between two or more participants. As a precondition, it is required that no

such conference exists prior to the execution of this scenario. The call-flow for this
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service is shown in Figure 5.6 below. In this scenario the Service Provider sends an
INVITE with a special header "Manet.Conference” that lists the addresses of conference

participants.

| sP. | ( Distributed SIP SE I L A B I l c l

INVITE
100 Trying
REFER
REFER
REFER
200 OK
200 OK
200 OK
NOTIFY INVITE )
200 OK
NOTIFY INVITE
200 OK
> NOTIFY INVITE
200 CK
200 OK
200 OK
202 Accepted 200 OK
ACK
ACK . RTP session .
ACK
L RTP ‘mJI>
ACK
< RTP session I
— — \_ T T

Figure 5.6: Establishing a new conference between N nodes
In this example, the value of the Manet-Conference header would be :
Sip:a@winter:7080;transport=tcp~sip:b@winter:8090~sip:c@winter:9010
(note that the ”~” character is used as a separator). The servlet generates a necessary

number of REFER requests in order to establish a fully-meshed conference. This number

N
is equal to ZN —i = %N (N —1). This number is calculated by noting that for a fully-

i=1
meshed conference to be established the first node sends an INVITE to the remaining (N-

1) nodes. The second node sends invites to all nodes except the first node (i.e., (N-2)
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INVITEs). The last node does not send any INVITEs. When a client receives a REFER it
sends an INVITE to the referred node. Upon sending the INVITE the client immediately
sends a NOTIFY back to the servlet to indicate that it is trying to contact the referred
party. When the servlet receives back a number of NOTIFYs that is equal to the number
of REFERs the servlet returns a 202 Accepted response back to the Service Provider.
5.4.2 Statistics and analysis

This scenario was executed five times on both centralized and distributed SIP SE. The
results for the scenario execution are shown in Table 5.10 below. The results depict
average response times of service execution and the standard deviation obtained for the
response times. Service execution times constitute experimental data related to the
scalability requirement. This data demonstrates whether the service can be delivered

within reasonable amounts of time with a distributed SIP SE.

N Distributed Centralized
Response time Standard Response time Standard
Deviation Deviation
2 4.69 1.97 1.00 0.34
3 17.16 6.07 7.45 | 0.74
4 24.05 6.97 13.4 3.24

Table 5.10: Interest-based conferencing with N participants: execution results

Figure 5.7 depicts the execution results for both the distributed and centralized SIP SEs

side by side.
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Execution Results for Interest-hased Conferencing with N-participants
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Figure 5.7: Interest-based conferencing with N participants: response times
comparisons
It can be noted the average response time increased as the number of participants
increased for both centralized and distributed cases. The centralized SIP SE was 4.69
times faster than the distributed SIP SE for 2 participants. This gap decreased as the
number of participants grew to 3 (2.30 times difference) and 4 (1.84 times difference).
With increasing the number of participants from two to four the increase in response time
was much steeper in the case of the centralized SIP SE, 13.4 times as opposed to 5.1

times on the distributed SIP SE. This may be attributed to the higher runtime overhead

due to Java's garbage collection on the centralized SIP SE. The larger overhead is due to
a larger number of processing tasks performed on the centralized SIP SE compared to the

processing on any node of the distributed SIP SE.
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The standard deviation also increased for both cases. However, its increase was much
more significant for the distributed SIP SE. This indicates high variance in response times

between trials. This may be attributed to wireless link characteristics.

5.5 Adding a participant to an existing conference

5.5.1 Service description
In this scenario a service provider instructs the distributed SIP SE to add a new
participant to an existing conference with N participants. The resulting conference will
have N+1 participants when the SIP SE finishes processing the Service Providers request.
In this scenario the Service Provider sends an INVITE with a special header
”Manet.Conference” that lists the addresses of current conference participants. Address
of the new participant is provided in "Manet.New-Participant” header. For example, to
invite client ”C” to a conference that has ”A” and ”B” as participants the value of the two
will be as shown below:

e Manet.Conference: <sip:a@winter:7080;transport=tcp>~sip:b@winter:8090

e Manet.New-Participant: sip:c@winter:9010headers: sip:c@winter:9010

The call-flow for this service is shown in Figure 5.8.
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Figure 5.8: Adding a new participant to an existing conference
Note that "A” and ”B” are already engaged in an RTP session. The servlet adds the new
participant by sending N REFERs (one REFER per existing participant). Upon receiving
N NOTIFYs the servlet returns a 202 Accepted response to the Service Provider.
The trials proceeded in four stages:
1. Creating a conference with two participants (“A” and “B”).
2. Adding a third participant “C” to the conference.
3. Adding a fourth participant “D” to the conference.
4. Adding a fifth participant “E” to the conference.
5.5.2 Statistics and analysis
This scenario was executed ten times on both centralized and distributed SIP SE. The

results for the scenario execution are shown in Table 5.11 below. Experimental data is
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presented in a way similar to the one in Section 5.4.2 and is also related to the scalability

requirement.
Phase | Distributed Centralized
Response time | Standard Response time Standard
Deviation Deviation
1. 5.75 1.13 0.91 0.21
2. 6.96 245 3.57 1.20
3. 9.97 3.62 5.96 1.00
4. 14.05 4.81 14.57 3.79

Table 5.11: Adding a participant to an existing conference: execution results

Figure 5.9 depicts the execution results for both the distributed and centralized SIP SEs.

Execution Hesults for adding a participant to a conference

1B
14
12

10

-——e— Distributed
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Average response time (sec)
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Phase

Figure 5.9: Adding a participant to an existing conference: response times

comparisons
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It can be noted that the gap in response times decreases with increasing number of
participants. For the fourth category the distributed SIP SE slightly outperformed the
centralized SIP SE. In distributed SIP SE runs the standard deviation increased
consistently with the increase of number of participants. This is an indicator that response
times obtained during the trials varied considerably from each other and from the average
values. This may be attributed to varying wireless link conditions as well as to Windows

operating system process scheduling.
5.6 Conclusions

In this chapter we introduced a SIP SE prototype as a proof of concept for the proposed
architecture. We discussed LIME as our choice of middleware. LIME characteristics
were presented and contrasted to those of Java RMI. Then, we examined the control
flows for serving SIP messages. The control flows highlighted the interaction between
the distributed SIP SE nodes as well as processing that occurs. Then, we presented the
prototypes characteristics. The resulting footprints of prototype nodes did not exceed
500KB which makes them deployable on a large number of mobile, handheld devices
available on the market today, thus satisfying our first requirement. The average
execution times between the distributed SIP SE and a centralized one were compared.
The biggest difference (6.3 times) was obtained with two participant nodes. This
difference was less significant with a larger number of conference participants. In one
scenario setup the distributed SIP SE response slightly surpassed that of the centralized
SIP SE. Distributed SIP SE trials exhibited much higher standard deviation than those of

the centralized SIP SE. This was attributed to the characteristics of the wireless links.
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Chapter 6: Conclusions and Future Work

6.1 Summary of Contributions

Mobile Ad Hoc Networks (MANET) will constitute a major part of Next Generation
Networks. SIP protocol and SIP servlet technology will play a central role in signaling
and service provisioning in MANET environments. In this thesis, applicability of SIP
Servlet technology to service provisioning in MANET was investigated. This resulted in
the introduction of a novel architecture for distributing a SIP SE for MANET. It was
established that the novel architecture meets requirements imposed by MANET
environments and by the limitations of participating devices. A prototype of the
distributed SIP SE was implemented. The footprints of the prototype’s nodes did not
exceed 500 KB which makes them suitable for deployment on a large number of mobile,
handheld devices. The prototype was evaluated with two conferencing services:
establishing an interest-based conference between N participants, and adding a new
participant to an existing multiparty service. The average execution times between the
distributed SIP SE and a centralized one were compared. It was found that the difference
in execution times became less significant as the number of conference participants
increased. Due to the characteristics of wireless links, distributed SIP SE trials exhibited

higher standard deviation than those of the centralized SIP SE.
6.2 Future Work

The SIP SE prototype discussed in Chapter 5 proved useful in evaluating the proposed

distribution architecture. However, it can be enhanced with further features such as:
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proxying support, lighter XML processor (to reduce its size and the amount of
processing), event notification support and security.

The proposed architecture introduced a distribution scheme. However, it did not provide
schemes for how the distributed nodes may advertise their capabilities and discover each
other’s presence [27].

The proposed architecture allows for a number of redundant nodes to be present in a
distributed SIP SE. For example, multiple Wrapper nodes running the same SIP servlet
application may be part of the same distributed SIP SE. Furthermore, multiple Session
Repositories may provide storage and sharing of the applications’ state information.
Mechanisms for implementing such redundancies as well as component sharing between

multiple distributed SIP SEs provide opportunities for future research.
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