A MULTISTAGE SCHEDULED DECODER FOR SHORT BLOCK
LENGTH LOW-DENSITY PARITY-CHECK CODES

Nazanin Elhami-Khorasani

A Thesis
in
The Department
of

Electrical and Computer Engineering

Presented in Partial Fulfillment of the Requirements
for the Degree of Master of Applied Science at
Concordia University

Montréal, Québec, Canada

March 2007

(© Nazanin Elhami-Khorasani, 2007

Library and
Archives Canada

Bibliothéque et
* Archives Canada
Direction du
Patrimoine de I'édition

Published Heritage
Branch

395 Wellington Street

395, rue Wellington
Ottawa ON K1A ON4

Ottawa ON K1A ON4

Canada Canada
Your file Votre référence
ISBN: 978-0-494-28914-3
Our file Notre référence
ISBN: 978-0-494-28914-3
NOTICE: AVIS:

L'auteur a accordé une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par télécommunication ou par I'Internet, préter,
distribuer et vendre des theses partout dans

le monde, a des fins commerciales ou autres,
sur support microforme, papier, électronique
et/ou autres formats.

The author has granted a non-
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non-
commercial purposes, in microform,
paper, electronic and/or any other
formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

L'auteur conserve la propriété du droit d'auteur
et des droits moraux qui protége cette these.
Ni la thése ni des extraits substantiels de
celle-ci ne doivent étre imprimés ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,

their removal does not represent
any loss of content from the

thesis.

Canada

Conformément a la loi canadienne
sur la protection de la vie privée,
guelques formulaires secondaires
ont été enlevés de cette these.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

ABSTRACT

A Multistage Scheduled Decoder for Short Block Length
Low-Density Parity-Check Codes

Nazanin Elhami-Khorasani

Recent advances in coding theory have uncovered the previously forgotten power
of Low-Density Parity-Check (LDPC) codes. Their popularity can be related to their
relatively simple iterative decoders and their potential to achieve high performance
close to shannon limit. These make them an attractive candidate for error correcting
application in communication systems.

In this thesis, we focus our research on the iterative decoding algorithms for Low-
Density Parity-Check codes and present an improved decoding algorithm. First, the
graph structure of LDPC codes is studied and a graph-based search algorithm to find
the shortest closed walk and shortest cycle for each node of the graph is proposed.
Then, the Deterministic schedule is applied on nodes of the graph with the objective
of preserving the optimality of the algorithms. Finally, Hybrid Switch-Type technique
is applied on the improved algorithms to provide a desirable complexity /performance
trade-off.

Hybrid Technique and Deterministic schedule are combined for decoding regular
and irregular LDPC codes. The performance and complexity of the decoder is studied
for Sum-Product and Gallager A algorithms. The result is a flexible decoder for

any available LDPC code and any combination of decoding algorithms based on the

il

communication systems need. In this technique, we benefit the high performance of
soft-decision algorithms and low complexity of hard-decision algorithms by changing
the decoding rule after a few iterations. Hence, a desirable performance can be
obtained with less average number of soft iterations. Moreover, all the nodes do not
update messages in each iteration. As a result, the total number of computations is

reduced considerably.

iv

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to my supervisor, Dr.Yousef R. Shayan
for his constructive comments and valuable support throughout this work. This thesis

is the result of his supervision, thoughtful guidance and encouragement.

I extend my thanks to the faculty and staff of the Department of Electrical and
Computer Engineering at Concordia University, and my friends who helped and en-

couraged me throughout my studies.

Finally, my special thanks goes to my parents and my sister for their endless love
and support. I am truly grateful to them for their patience and sacrifices throughout

these years.

Dedicated to my parents

vi

TABLE OF CONTENTS

LISTOF TABLES o

LISTOF FIGURES

LIST OF ACRONYMS o

LISTOF SYMBOLS o oo

1 INTRODUCTION o

1.1
1.2
1.3
1.4

Literature Review
Motivations and Objectives
Contributions L.

Thesis OQutline

2 LOW-DENSITY PARITY-CHECK CODES

2.1

2.2

2.3

24

2.5

Characteristics of LDPC codes
2.1.1 Block and Convolutional LDPC Codes
2.1.2 Binary and Non-Binary LDPC Codes
2.1.3 Regular and Irregular LDPC Codes
Representation of LDPC Codes
2.2.1 Parity-Check Matrix Representation
2.2.2 Tanner Graph Representation
Construction of LDPC codes
2.3.1 Random Construction
2.3.2 Structured Construction
Encoding of LDPC codes
2.4.1 Systematic Encoding
Decoding of LDPC Codes

vil

~ U

Ne)

2.5.1 TIterative Decoding Algorithms 22

2.5.2 Sum-Product Algorithm 24
2.5.3 Gallager A Algorithm 26
26 Summary e 28
MULTISTAGE SCHEDULED DECODER FOR LOW-DENSITY PARITY-
CHECK CODES 29
3.1 Structure of the Tanner Graph 30
3.2 Sub-Optimality of Decoding Algorithms 33
3.3 Scheduling 36
3.3.1 Node-Based Schedule 36
3.4 Hybrid Decoding 38
3.4.1 Hybrid Time-Invariant Technique 38
3.4.2 Hybrid Switch-Type Technique 39
3.5 Search Algorithm to Find Shortest Closed Path 41
3.5.1 Graph-Based Search Algorithm 41
3.5.2 Tlustrative Example 45
3.6 Multistage Scheduled Decoder 47
3.6.1 Decoding Strategy 47
3.6.2 Advantages of the New Decoder 49
3.7 Summary 51
SIMULATION RESULTS o .. 52
4.1 Parity-Check Matrix Generation 52
4.2 System Model 54
4.3 Performance Study of the Decoding Algorithms 55
4.3.1 Performance Study of (1200, 600) Regular Code 56

viii

4.3.2 Performance Study of (1008, 504) Irregular Code 61

4.4 Complexity Study of the Decoding Algorithms. 64

441 Complexity Study of (1200, 600) Regular Code 64

4.4.2 Complexity Study of (1008, 504) Irregular Code 73

4.5 SUmMMATY o o v e e e e e e e e e e e e e e e 78

5 CONCLUSION AND FUTUREWORK 79
5.1 Summary of Contributions 79

52 Future Worko 81
REFERENCES e 82

ix

4.1
4.2
4.3
4.4

LIST OF TABLES

Study of the Complexity of Algorithms for (1200, 600) Code 64
Study of the Complexity at Bit Level for (1200, 600) Code 65
Study of the Complexity of Algorithms for (1008, 504) Code 73

Study of the Complexity at Bit Level for (1008, 504) Code 74

LIST OF FIGURES

2.1 (10, 2, 4) Regular Parity-Check Matrix 11
2.2 Representation of LDPC Codes 14
2.3 Example of Gallager Matrix for n=20, j=3 and k=4 17
2.4 Message Updating in Iterative Decoding Algorithms 23
3.1 Structure of a Graph with 5 Nodesand 6 Edges 31
3.2 Structure of a Bipartite Graph 0oL, 32
3.3 StructureofaTree Lo 32
3.4 Dependency at Variable Node V; (a) and Check Node Cy (b) 34
3.5 Tree Structure of the Code 42
3.6 Parity-Check Matrix with 4-Cycle and 6-Cycle 45
3.7 Closed Path with Length 6 for Variable Nodevy 45
3.8 Cycle for Variable Node vg L. 46
3.9 Flowchart of The Decoding Process 48
4.1 Block Diagram of Simulation System Model 53
42 BER(-) and MER(- -) for SP Algorithm with (1200, 600) Code . .. 56
4.3 BER(-) and MER(- -) for GA Algorithm with (1200, 600) Code 57
4.4 BER(-) and MER(- -) for HS1 Algorithm with (1200, 600) Code . . . 58
4.5 BER(-) and MER(- -) for HS2 Algorithm with (1200, 600) Code . . . 59
4.6 BER(-) and MER(- -) for HS3 Algorithm with (1200, 600) Code . . . 60
4.7 BER(-) and MER(- -) for HS1 Algorithm with(1008, 504) Code . . . 61
4.8 BER(-) and MERC(- -) for HS2 Algorithm with (1008, 504) Code . . . 62
49 BER(-) and MER(- -) for HS3 Algorithm with (1008, 504) Code . . . 63
4.10 Pdfs of the Iterations for SP Algorithm with (1200, 600) Code 68

xi

4.11
4.12
4.13
4.14
4.15
4.16
4.17

Pdfs of the Iterations for GA Algorithm with (1200, 600) Code

Pdfs of the Iterations for HS1 Algorithm with (1200, 600) Code
Pdfs of the Iterations for HS2 Algorithm with (1200, 600) Code

(

(

Pdfs of the Iterations for HS3 Algorithm with (1200, 600) Code

(

Pdfs of the Iterations for HS2 Algorithm with (1008, 504) Code
(

)
)
)
Pdfs of the Iterations for HS1 Algorithm with (1008, 504) Code
)
)

Pdfs of the Iterations for HS3 Algorithm with (1008, 504) Code

Xil

69
70
71
72
75
76
77

APP
AWGN
BER
BIBD
BP
BPSK
GA
GF

Hr,
LDPC
MER
MS
PDF
SP
SS
ST
TG
UL
WBF

LIST OF ACRONYMS

A Posteriori Probabilities
Additive White Gaussian Noise
Bit Error Rate

Balanced Incomplete Block Design
Belief Propagation

Binary Phase Shift Keying
Gallager A

Galois Field

Hybrid Switch-Type

Hybrid Time-Invariant
Low-Density Parity-Check
Message Error rate

Min-Sum

Probability Density Function
Sum-Product

Sipser Spielman

Switch Type

Tanner Graph

Utilization Level

Weighted Bit Flipping

xiil

BCuvg

€;

Eb/No

H*
Hsys

LIST OF SYMBOLS

Acceptable position in Gallager matrix

Switching threshold in Gallager algorithm

Per bit complexity based on average number of iterations
Per bit complexity based on maximum number of iterations
Codeword

Estimated codeword

Set of row locations of ones in i** column

Set of row locations of ones in i* column excluding location j
Check node with index j

Degree of the column

Degree of the row

Set of edges/ Number of edges

Edge

Energy per bit per noise power spectral density
Generator matrix

Parity-check matrix

New H matrix

Systematic H

Sparse parity-check matrix

Entry of the parity-check matrix

Iteration number

Average number of iterations

Xiv

Me_w

My_—ec

g;i(b)

Identity matrix

Hy'H,

Maximum number of iterations

Iteration number for node u

Number of ones in columns of matrix

Constant

Length of the cycle or closed walk

Length of the message or number of rows

Message from channel

Number of columns in diagonal form at H*
Updated message from check node to variable node
Updated message from variable node to check node
Length of the codeword or number of columns
Hy'H,

Messages from variable node v; to check node c;
Received vector

Messages from check node ¢; to variable node v;
Rate of the Code

Set of column locations of ones in j* row of matrix
Set of column locations of ones in j** row excluding location i
Syndrome vector

Hybrid threshold value

Unacceptable position in Gallager matrix

Xv

Set of vertices

Variable node

Vertix

Weight of the row in parity-check matrix
Weight of the column in parity-check matrix
Fraction of edges connected to variable nodes

Fraction of edges connected to check nodes

Xvi

CHAPTER 1

INTRODUCTION

This chapter provides the literature review for the work and introduces the problems
that have attracted many researchers to this topic. Furthermore, the objectives for
the research and the contributions of the work are given in this chapter. Finally, the

organization of the thesis is outlined.

1.1 Literature Review

Low-Density Parity-Check (LDPC) codes are a family of linear error correcting codes
that have very sparse parity-check matrix. Sparse parity-check matrix H has a small
number of non-zero elements in each row and column. LDPC codes were introduced
by Gallager in 1962 [1, 2]. They are also known as Gallager codes in honor of Robert
G. Gallager. Aside from the works in [3, 4], LDPC codes were almost forgotten until
the invention of Turbo codes by Berrou et al. [5] and the rediscovery of the LDPC
codes by Mackay [6] in 1990s. Lately, LDPC codes have been the subject of many
researches and analysis because of their linear decoding complexity and near shannon
limit performance [6, 7, 8, 9, 10]. These characteristics make them an attractive
candidate for error correcting code applications in communication systems.

Tanner in 1980s introduced the graphical representation of the LDPC codes [3].
This idea which was generalized by wiberg et al. [11, 12] and Kschischang et al.
[13, 14] has been very useful for understanding the behavior of the iterative decoding

algorithms. The graphical representation of the codes are known as Tanner Graph.

Two different sets of nodes or vertices in the graph are variable nodes and check
nodes. In this structure, each bit is presented as a variable node and each parity-
check equation is represented as a check node.

There are a number of iterative message-passing decoding algorithms, each offering
a particular trade-off between error performance and decoding complexity. Hard-
decision algorithms work with single bits 1 and 0, and have a great importance for
their low complexity which makes them attractive for high speed communication in
the cost of performance loss. Majority decoding algorithms [15] and both Gallager
algorithms are in this group [2].

Soft-decision algorithms are processing real value messages and their performance
is better than hard-decision ones but they are computationally complex. One of
the best performing soft-decision algorithms is “Belief Propagation (BP)” or “Sum-
Product (SP) ” algorithm [2, 16]. This algorithm converges to “a posteriori probabil-
ities(APP)” on a cycle-free graph. Another algorithm with almost the same perfor-
mance as BP algorithm but with less complexity is “Min-Sum (MS)”, also referred
to as “Max-Sum” or “Max-Product” [17, 18].

Weighted Bit-Flipping (WBF) algorithm is a soft/hard decision algorithm [19].
In WBF algorithm, check nodes update the messages based on soft-decision rules
and variable nodes update the messages based on hard-decision operations. Sipser-
Spielman (SS) algorithm is functioning almost the same as WBF algorithms, however
its variable node update rule is slightly different [7].

Generally, LDPC codes have many cycles in their graph structure which is a
characteristic of a good code. The cycles create dependencies for messages that are

propagating through the graph. Therefore, iterative decoding algorithms may not

converge to “a posteriori probability (APP)” solution and become suboptimal. This
is a major problem especially for short block length LDPC codes (less than 10000
bits), with many short cycles in their Tanner graphs. In order to solve the above
issue, we need to know “How and When” the algorithm becomes suboptimal.

Recently, many techniques have been proposed with the goal of devising an effi-
cient and low complex decoding algorithm for LDPC codes. One of these techniques
is Scheduling which has a great influence on performance and complexity. Schedule
(update rule), is the order that messages use for propagating in the graph of the code.
Conventionally, the passing of the messages follows the Flooding Schedule in which
all the variable nodes and all the check nodes pass new messages to their neighbors
at each iteration [13]. A Vertical Shuffle Schedule is proposed in [20] to update the
information as soon as being computed which results in faster convergence than the
BP algorithm. The major drawback of this schedule is that short cycles of the graph
are not considered. In [21], an Horizontal Shuffle Schedule is designed. The same as
vertical schedule, the convergence speed is increased but the short cycles of the graph
are not considered.

In [22, 23, 24], Mao et al. suggested the Probabilistic Schedule and exchanged the
messages according to some parameters of the graph such as short cycles. Reliability-
Based Schedule which is presented in [25, 26] controls the message passing based on
the reliability of information at each node. These two recent schedules improve the
performance of decoding algorithms with cost of adding computational complexity.
Later, a Determunistic Schedule based on the distribution of the shortest cycle and
closed walk in the graph is presented in [27, 28]. This schedule does not deal with

probability or random generator but its performance depends on graph structure of

the code.

In another technique which is called Hybrid decoding, the decoder switches among
different decoding algorithms during the iterative process in order to provide a desir-
able complexity/performance trade-off. Hybrid Time-Invariant and Hybrid Switch-
Type decoding are two types of Hybrid decoding techniques in the literature. In
Hybrid Time-Invariant technique, two sets of nodes are partitioned and nodes in dif-
ferent partitions perform different algorithms [29, 30, 31, 32]. In Hybrid Switch-Type
technique, the decoder is allowed to choose its decoding algorithm during iterative
process [33, 34, 35]. Both of these techniques are trying to increase the performance
and speed of convergence and decrease the complexity of the decoder. However, the
desired performance/complexity trade-off depends on the selection of algorithms and
their decoding thresholds.

In brief, short cycles in the Tanner graph structure of the code is one of the main
problems which has a strong effect on the performance of the code. This issue has
more significance in short block length LDPC codes due to the loopy nature of their
graph. In addition, message updating rules and Hybrid decoding technique have a
great effect on performance and complexity of LDPC codes. Based on the above

studies, motivations and objectives of this work are defined in the next section.

1.2 DMotivations and Objectives

Proposed decoding algorithms in literature have two major drawbacks. First, the
algorithms are not optimal in presence of short cycles in the graph structure of the
code. Moreover, there is still a need for new decoding algorithms with low complexity

and high performance. These made us motivated to merge Deterministic schedule and

Hybrid Switch-Type technique with the purpose of achieving both goals concurrently.
Based on the above motivation, the main objectives of this research are summa-

rized as follows:

e Studying the effect of short cycles in the graph of the code to find out “How

and When” the algorithm becomes sub-optimal,

e Improving the performance of the algorithms individually by preserving their

optimality.

e Decreasing the complexity of the algorithms by reducing the average number of

soft iterations and total number of iterations required for convergence.

e Designing a flexible multistage decoder for any desired LDPC code and any
combination of decoding algorithms, in order to provide a desirable perfor-

mance/complexity trade-off based on the communication systems need.

1.3 Contributions

In this thesis, we narrow down the scope of our work to message-passing schedules
and Hybrid decoding technique. These two different techniques are merged in our
methodology to fulfill the requirement of a decoder with low complexity and high
performance. At the first step of the work, Deterministic node-based schedule which
preserves the optimality of the algorithms is applied on Sum-Product (SP) [16] and
Gallager A (GA) [2]. In order to apply the schedule, Tanner graph structure of LDPC
codes is studied and a search algorithm for finding the shortest closed path of each
node in the graph is developed. At the second step, the improved algorithms are

used to design a two stage decoder with Hybrid switch-type technique. The proposed

algorithm provides a desirable trade-off between performance and complexity based

on predefined thresholds. The contributions of this work is outlined as follows:

e Tanner Graph structure for LDPC codes are studied.

- Studying the graph structure of LDPC codes to understand the operation of

Deterministic schedule and the sub-optimality cases for decoding algorithms.

- Proposing a graph-based search algorithm to find the shortest closed walk and

shortest cycle for each node of the graph.

- Presenting and proving a lemma and a theorem used to design the search

algorithm.

e Deterministic schedule and Hybrid decoding technique to provide complex-

ity /performance trade-off are combined.

- Applying Deterministic node-based schedule on variable nodes, check nodes
or variable/check nodes of the short block length LDPC codes to preserve the

optimality of the algorithms.

- Applying Hybrid Switch-Type technique with different decoding thresholds
on combination of a hard-decision Gallager A and a soft-decision Sum-Product

decoding algorithms to provide a desirable performance/complexity trade-off.
e The performance of the decoding algorithms for regular and irregular LDPC
codes are studied.

- Providing simulation results for regular random structured (1200,600) LDPC

code with rate 1/2, degree of the columns 3 and degree of the rows 6.

- Providing simulation results for irregular (1008, 504) LDPC code with rate
1/2, degree of the columns {2,3,4,5,7,14,15} and degree of the rows {7, 8,9},
optimized for AWGN channel.

o Complexity of the decoding algorithms for regular and irregular codes are ana-

lyzed.

- Providing statistics on the complexity of conventional and new decoding algo-
rithms based on required average number of iterations for convergence in their

waterfall region.

- Studying the complexity of the algorithms at bit level based on average number

of iterations and maximum number of iterations.

- Providing average number of hard iterations and average number of soft iter-

ations required for convergence of each algorithm.

1.4 Thesis Outline

This thesis is organized in five chapters. The introduction chapter provides a brief
review of the previous research done on this topic. It also gives us a general overview
of the work.

Chapter 2, provides the necessary background knowledge on LDPC codes which
are used in subsequent chapters. Consequently, characteristics of LDPC codes and
their presentation methods, encoding rules, iterative decoding algorithms and decod-
ing rules which are used in subsequent chapters are introduced.

Chapter 3, defines the main theme of this works. First, sub-optimality cases

for decoding algorithms are investigated and a search algorithm for finding the sub-
optimality of the nodes is developed. Then, the scheduling technique and hybrid
decoding technique for decoding LDPC codes is introduced. Finally, the main idea of
this work, which is the combination of these two techniques for trading-off between
complexity and performance of current iterative decoding algorithms is described in
detail.

Chapter 4, outlines the simulation system model and system requirements of this
work. Simulation results for studying the performance of the new decoding technique,
which is discussed in chapter 3, are provided. The simulation results are based on
different LDPC codes and iterative decoding algorithms. Further more, decoding
complexity and statistics of iteration numbers for different algorithms are analyzed
and discussed.

Chapter 5 concludes the thesis. It highlights the contributions and achievements

of this thesis. Some suggestions for the future work are also discussed in this chapter.

CHAPTER 2

LOW-DENSITY PARITY-CHECK CODES

In this chapter, the necessary background on LDPC codes and their characteristics
are provided. Furthermore, the representation methods of the code, construction
methods, encoding methods and the iterative decoding algorithms for LDPC codes
are explained.

The organization of the chapter is as follows. In section 2.1, block and convolu-
tional, binary and non-binary and regular and irregular LDPC codes are explained.
In section 2.2, parity-check matrix and Tanner graph representation of LDPC codes
are depicted. Random and structure construction for LDPC codes are explained in
section 2.3. Section 2.4 describes the systematic method for encoding LDPC codes.
Some general knowledge about iterative decoding algorithms are provided in section
2.5 and decoding rules for Sum-Product algorithm and Gallager A algorithm are

given. The summary of the chapter is given in section 2.6.

2.1 Characteristics of LDPC codes

Low-Density Parity-Check (LDPC) codes are distinguished from conventional linear
codes because of their sparse parity-check matrix which has small number of non-zero
elements compared to its total number of entries. Another attractive feature of these
codes is their efficient iterative decoding. The complexity of the iterative decoding
algorithm is related to the number of ones in their parity-check matrix which creates

the connection between check nodes and variable nodes. This complexity is low for

LDPC codes due to their sparse matrix. Moreover, the operation of iterative decoding
algorithms can be described on Tanner Graph of the code. Therefore, the graphical
representation of LDPC codes has a great importance. In this chapter some important

characteristics of LDPC codes are explained.
2.1.1 Block and Convolutional LDPC Codes

Many researchers are working on LDPC block codes because of their great perfor-
mance that can approach close to shannon limit and have relatively simple iterative
decoder. Low-density parity-check convolutional codes are another category of LDPC
codes, which have been proposed by Felstrom and Zigangirov in the late 1990s [36].
LDPC convolutional codes have also very good performance and use decoding algo-
rithms similar to LDPC block codes. Their advantage over the block codes is their
ability to work with arbitrary length of information bits without fragmenting them
into blocks. This feature is used in packet based communication systems dealing with
variable length packets like IEEE 802.3 Ethernet standards. In this thesis LDPC block

codes are considered for the research.
2.1.2 Binary and Non-Binary LDPC Codes

Most of the research publications have considered LDPC codes over GF(2), however
they can be extended to GF(q) by considering a set of non-zero weights € GF(q),
forming the parity-check matrix [37]. In this thesis we use binary LDPC codes, hence
the elements of parity check matrices are 0 or 1.

An (n,j,k) LDPC code is a block code of length n with 5 number of ones in
each column and & number of ones in each row of the parity-check matrix H. The

parity-check matrix consists of zeros and ones. Given information bits of length &

10

and codeword of length n, rate of the code R is defined by k/n which means (n — k)

redundant bits have been added to the message to correct the errors.
2.1.3 Regular and Irregular LDPC Codes

There are two structures for LDPC codes, regular and irregular. In regular LDPC
codes, all columns of the parity-check matrix have the same number of ones and all
rows have the same number of ones as well. This is shown in Fig. 2.1. The number of
ones in each column can be represented by the degree of the column d. or weight of
the column w,., and the number of ones in each row by degree of the row d,. or weight
of the row w, and d, = d.(n/m) which gives the total number of ones in the matrix.

n is the number of columns and m is the number of rows in the parity-check matrix.

1 1110000 0 O]
1000111000
H=|01 0 01 00110
0010010101
0001001011

Figure 2.1: (10, 2, 4) Regular Parity-Check Matrix

If the number of ones in each row or column are not fixed, LDPC codes are called
irregular. For irregular codes the variable node and check node degree distributions
are defined by sequences (A1, Az, ..., Ag,) and (p1, p2, .., pa,)- A; is the fraction of edges
connected to variable nodes with degree ¢ and p; is the fraction of edges connected to
check nodes with degree j. d, is the maximum degree of variable nodes and d, is the

maximum degree of check nodes. We can also show this sequence based on generating

11

polynomials M\(z) = ; Azt~ and p(z) = ¥, piz*~' [10, 38].

Fig. 2.1, shows the parity-check matrix of a (10, 2, 4) regular LDPC code with
rate 1/2, block length 10, weight of the columns w, = d,, = 2, weight of the rows w, =
d. = 4 and number of information bits k = 5. After using generating polynomials for

this code, we have A\(z) = z and p(z) = z°.

2.2 Representation of LDPC Codes

The graph representation of LDPC codes is analogous to their matrix representation.
The parity-check matrix of LDPC code can be obtained by having the Tanner graph
structure of the code. Assuming binary m x n parity-check matrix H, its entry h;;
is 1, if and only if, ith check node is connected to jth variable node in the graph.
Conversely, a bipartite graph between n messages and m check nodes of the same
binary m x n matrix can be obtained by assigning a connection between any check
node and message node of the graph that has 1 entry in the parity-check matrix. A
bipartite graph is a special graph where the set of vertices can be divided into two
disjoint sets v and c such that every edge has one end-point in v and one end-point
in ¢ and no edge exists between vertices at the same set.

Two fundamental ways for representing LDPC codes, parity-check matrix and

Tanner graph, are going to be studied in this section.
2.2.1 Parity-Check Matrix Representation

LDPC codes follow the same definition which already exists for other linear block
codes [39]. A message word m = mym;...my with length k can be mapped to codeword

¢ = ci...c, with length n.

12

g =mig11+ -+ MeGra

= (2.1)
Cn = M1Gg1,n +---+ MrGk,n
We convert these equations into matrix form
c=mG (2.2)
where G

i1 1 Bin
G = o : (2.3)

k.1 o gk.n

is a k x n full rank generator matrix. From the G matrix we can find (n — k) x n
parity-check matrix H such that GH T — 0 and any row of H is orthogonal to all
rows of G. Therefore, based on Eq. 2.2 we will have cH T = 0.H is the parity-check
matrix of the code which can be designed based on the degree distribution of the

nodes (weight of the columns and rows).
2.2.2 Tanner Graph Representation

Tanner graph (TG) of the code gives us a better idea about the structure of decoding
algorithm and gives a complete representation of the code. Tanner graph of the LDPC

codes is a bipartite graph, hence there is no connection or edge between any two nodes

13

of the same set. In Fig. 2.2, variable nodes are shown by circles and check nodes by
squares which is a normal practice in the literature. The connection is based on the
0Os and 1s in the parity check matrix. Check node c¢;, 7 =1,2,...n — k is connected to

bit node v;,7 = 1,2, ...n, if the value of element h;; in matrix H is 1.

Vo
Vo Vi Vo V3 Vu Vg Ve V7 V1
— —_ Co :Votvotvtve=0
©“l1 01 01010 Vs
H= ®]1 0010101 C1 :Votvatvstvs=0
v
«|0 1 100110 3
«|0 1011001 Ca V1 +va+vs+ve=0 Va
Vs
Cz V4+va+vs+v,=0
Ve
V7

Figure 2.2: Representation of LDPC Codes

We can see in Fig. 2.2 that there are m or (n — k) = 4 check nodes on the left side
and n = § variable nodes on the right side of the graph. On the other hand the m = 4
rows of H represents the m check nodes and the n = 8 columns of H represents the
n variable nodes. As an example, ¢y is connected to vg, Vs, V4, Vg by the solid lines
in the graph and in the first row of the matrix hgg, ho2, hos, hos are equal to one and
ho1 = hos = hgs = hgy = 0. The presented Tanner graph is regular and each variable
node has 2 edge connections or in other words holds degree of 2 and each check node
has 4 edge connections and holds degree of 4. In the parity-check matrix weight of

the columns is 2 and weight of the rows is 4, respectively.

14

2.3 Construction of LDPC codes

Construction of LDPC codes is equivalent to design of parity-check matrix H. The
design of H requires the knowledge of all the parameters, like the desired block length
of the code, degree distributions, rate of the code and other characteristics.

In the design of parity-check matrix we should try to increase the girth (girth is
the length of the shortest cycle in graph), which will be discussed more in the next
chapter. On the other hand, for high minimum distance, we should try to increase
the sparseness of the matrix.

By considering these factors, there are many different ways for constructing parity-
check matrices and designing LDPC codes. These methods are generally defined as

random and structure construction.
2.3.1 Random Construction

Random construction was the first method used to design LDPC codes. Random
construction does not have many constraints and can be easily applied for different
combination of parameters, however it does not guarantee the size of the girth. For
a desired girth size, random constructions may be used with some added constraints.
Mackay and Gallager random construction methods are explained in this section.
a) Mackay Construction :

Mackay designed various random construction methods [8] and confirmed near Shan-
non limit performance of LDPC codes [6]. The major drawback of his codes is the lack
of structure which results in high complexity encoding. Most of his designs are cre-
ating regular LDPC codes based on bipartite graphs. Different Mackay construction

methods are explained as follows.

15

e Construction 1A
An m-row by n-column matrix, created randomly with fixed number of ones
in each column and weight per row as uniform as possible. In this matrix the
overlap between any two columns is not more than 1. Therefore the matrix
does not have cycles with length 4. Since the graph of the code is bipartite, the

length of the cycles must be even. This results in girth size equal to 6.

e Construction 2A
In an m-row by n-column matrix, m/2 of the columns are designed with weight
2 and there is no overlap between any two columns. The rest of the columns
are constructed randomly with weight 3. Weights of the rows are as uniform as
possible and the overlap between any two columns of the entire matrix is not

greater than 1.

e Construction 1B and 2B
An m by n matrix is constructed using methods 1A or 2A. Then small number
of columns of this matrix are chosen and deleted randomly. Hence, the bipartite
graph corresponding to the matrix has no short cycles of less than some length.
By reducing the possibility of having short cycles in the matrix the performance

of the code is improved.

b) Gallager Construction:
Gallager in his thesis designed an ensemble of LDPC codes, then applied some con-
straints to design the matrix without having cycles of length 4 [2].

To construct the matrix, first we define an (n, j, k) parity-check matrix, a matrix

with n columns that has j ones in each column and k£ ones in each row and zero

16

in other locations. For constructing an ensemble of (n,j, k) matrices, we use an
example taken from Gallager’s dissertation as n = 20, 7 = 3 and k£ = 4. The matrix
is divided into j submatrices and each submatrix contains a single 1 in each column.
The first division of these submatrices puts the 1’s in descending order. It means
the " row contains ones in columns (i — 1)k + 1 to i as it is shown in Fig. 2.3.
The other submatrices are column permutation of the first division. Gallager defines
the ensemble of (n, j, k) codes as the ensemble resulting from random permutations
of the columns of the bottom (j — 1) submatrices of a matrix with equal probability

assigned to each permutation.

i1 111 0 0 G 0 0 0 0 0 00 0 90 0 ¢ 0 O
9 0 0 01 11 1 0 0 0 0 0 00090 00O
0 6 0 0 00 0 0 1 1t 1 1 0 0 0 0 00 00
9 6 0 6 0 0 0 0 0 0 0 0 1 1 1 1 0 0 O O
0 0 0 ¢ 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1
1 6 0 01 0 0 0 1 0 0 06 1 0 0 0 0 0 0 0O
¢ 1 0 0 0 ' 0 001 00 00001000
o 01 0 0 0 1 0 0 0 0 0 0 1 0 0 0 1 0 O
6 ¢ ¢ 1 0 0 0 0 0 61 0 0 01 000 10
0 0 6 o 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1
1 ¢ 0 0 0 1 0 0 0 0 O 1t 0 0 0 G 0 1 0 O
¢ 1+ 0 0 0 6 ¢+ 0 0 01 0 0 0 0 1 0 06 0 O
¢ ¢ 1 0 09 0 0 1 06 0 6 01 0 00 0 0 1 O
0 ¢ 6 1+ 0 0 0 0 1 0 0 0 06 11 0 0 1 0 0 O
0 0 0 0 1 0 0 0 6 1+ 06 0 0 0 1 0 0 ¢ O 1}

Figure 2.3: Example of Gallager Matrix for n=20, j=3 and k=4

Gallager also constructs parity-check matrices without cycles of length 4. We refer
to the previous example (n = 20, j = 3,k = 4) and describe the procedure as follows.
First we consider an nj/k by n matrix. The matrix should be divided into jk = 12
submatrices, each with n/k = 5 rows and columns. The first row and column of
submatrices are identity matrices. The rest of the submatrices contain the letter U

in each main diagonal and A in other positions. We have to find 5 non-zero elements

17

in each submatrix in a way that the overlap between any two columns of H matrix
does not exceed one. The letter U represents unacceptable position, since it can
create an overlap of more than one between any two columns of the matrix.

Then, we choose a submatrix with U and A elements. In the first row of the
submatrix, we choose a position of A and change it into 1. Hence, the rest of the
positions in the same row and the same column of the chosen position at the targeted
submatrix can not be 1. Also, the same position in some other submatrices can not
be 1 and should be changed to zero. We should continue this procedure until we fill
in all the positions and do the transform in other rows of the submatrix and extend
to other submatrices as well. The matrix made by the above technique does not have
more than one overlap between any two columns, therefore the parity-check matrix
has no cycle of length 4 or less. In the next chapter, we will use a simple search
method to find and remove all the 4 cycles in parity-check matrix.

There are many other random constructions used in literature like Bit filling con-
struction [40] and Average girth distribution based construction [41]. The former
structure is a search method for finding LDPC codes with large girth and the lat-
ter searches for good short length LDPC codes based on the average of the girth

distribution of the code.
2.3.2 Structured Construction

Since the random structure requires a lot of memory space to keep the non-zero el-
ements in the random parity check matrix, construction of structured LDPC codes
is applied on many applications to reduce the hardware cost and simplify the en-

coding/decoding system. Cyclic and quasi-cyclic LDPC codes are two examples of

18

structured designs. There are many ways to construct them but three typical methods

are quasi cyclic LDPC codes based on finite geometries [42, 19|, balanced incomplete

block design (BIBD) and disjoint different sets [43].

2.4 Encoding of LDPC codes

After designing the H matrix, the generator matrix G can be found easily from H.
One of the weak points of LDPC codes is their encoding complexity. As a result
many different encoding schemes have been suggested for LDPC codes to reduce the

complexity [44, 45]. In this work, systematic encoding is used and described in details.

2.4.1 Systematic Encoding

In systematic encoding Gaussian elimination is used to find the generator matrix G
from corresponding H matrix [8]. The complexity of the calculation is high in this
technique, especially when the length of the codeword is increased. There are several
other encoding algorithms with lower complexities but we use the systematic encoding
in this thesis. For short block lengths, systematic encoding is preferable because the
size of the matrix is not big and method results low complex decoding. Systematic

Generator matrix G can be derived from H through following steps:

1. Choose a regular or irregular H matrix.

2. Reorder the columns of H in a way that the first M columns of new H matrix

(H*) have all one in the diagonal of matrix.
3. Apply Gaussian Elimination to H* in order to get systematic H matrix.

4. Generator matrix G is the transpose of systematic H matrix and can be derived

easily.

19

Now, we assume that the parity check matrix has a formation like

Welmim |

(2.4)

H, and H, are two very sparse matrices and the rows in H are linearly independent.

Matrix H; is a rectangular k x (n — k) and matrix H, is a square k x k invertible

matrix. We can reorder the columns of H matrix, in order to get invertible Hy. The

equivalent parity-check matrix is

H*:Hng:Hgl[Hl|H2 }:[p'IM]

where

P=H;'H, and Iy = Hy 'H,.

The generator matrix of the LDPC code will have the following format

oT — Iy _ I
P H;'H,
and
c=GTk.

20

(2.8)

I is an k x k identity matrix, ¢ is a codeword and k is information message.

Since,

HxG'=H xG'=0 (2.9)

it can be implied from above equations that, we are able to apply systematic Generator
matrix G to the encoder and sparse parity-check matrix H to the decoder. The reason

for using the sparse parity-check matrix is reducing the complexity of the decoder.

2.5 Decoding of LDPC Codes

Let ¢ be the transmitted codeword through a noisy communication channel and r
be the received codeword at the input of the demodulator. The codeword ¢ is an
encoded message using ¢ = GTu. Generator matrix G is in systematic form. Source
vector u has length & (information bits) and is encoded into a transmitted vector c.
The received vector r = (GTu®n), is the combination of noise n and the transmitted
vector. Since the decoder does not know the noise and transmitted message patterns,
it faces the task of finding the most likely message vector u that is sent through the
channel.

Decoder uses the syndrome decoding technique to compute the following equation.

Syndrome of received vector r will be calculated as

S=rHT. (2.10)

21

If r is a codeword, the syndrome will be zero and we accept r as a transmitted
codeword. If r is not a codeword, the syndrome is not zero, hence we are facing error
in the received vector. The usefulness of the above equation is its dependence only on
the noise vector and the parity-check matrix and it does not have any relation with

the transmitted codeword. It means,

S=rH" = S=(c@n)H" = S=cH PnH" (2.11)

where cHT = 0 and S = nHT. This is the relation between the noise and syndrome
vector. Now we can get estimate of the transmitted codeword from ¢ = r — n. But
finding the noise vector is not always an easy task, hence many decoding algorithms

are proposed to solve this problem.

2.5.1 Iterative Decoding Algorithms

Message updating behavior of iterative decoding algorithms is depicted in Fig. 2.4.
In each iteration of the iterative decoding, the information from the channel (intrinsic
information) and the information from previous iterations coming from different nodes
(extrinsic information) are used to obtain a better knowledge about the transmitted
message. LDPC codes can be decoded by different iterative decoding algorithms.

Generally all the iterative decoding algorithms follow 4 steps. At the initialization
step in iteration I = 0, an initial or local message will be assigned to each variable
node. The value of this message will be based on the observations of the output of
the channel.

From the first iteration (I > 1) in the second step, the initial message will be

passed from variable nodes to check nodes through the edges of the Tanner Graph

22

Variable nodes

Check Nodes

Figure 2.4: Message Updating in Iterative Decoding Algorithms

as it is shown in Fig. 2.4 by 8 messages. At the third step, check nodes process the
incoming messages from variable nodes based on the decoding schedules and send new
estimates to the variable nodes. Variable nodes process the incoming messages from
check nodes (a messages) which are updated in previous iterations and send back the
updated value to the check nodes. Messages sent along the edges are independent
from each other.

At step 4 in each iteration, at variable nodes, algorithm approximates the code-
word from the probabilistic information and makes a hard decision. The algorithm
stops if cHT = 0 or maximum number of iterations is reached. Otherwise, algorithm
continues the iterations.

The main theme of this work, which is developed in chapter 3, is applied on two
different algorithms. The first algorithm is a soft-decision algorithm called “Sum —

Product(SP)”, which is the most important probabilistic decoding algorithm used

23

for LDPC codes. It minimizes the probability of decoding error for a given code and
is optimal when the TG of the code is cycle-free but the draw-back of this algorithm is
its computational complexity . The other algorithm is “Gallager A(GA)” algorithm.
This algorithm is especially important for its very simple implementation and low

complexity but its draw-back is the low performance.
2.5.2 Sum-Product Algorithm

Before explaining steps of the decoding algorithm, notations used in the algorithm

are given as follows:

e 7;;(b) is the message that will be sent from check node c; to variable node v;
and b € {0,1}. r;;(0) and r;;(1) are representing the probabilities of receiving
OQor 1.

e g;i(b) is the message that will be sent from variable node v; to check node ¢;.

¢;:(0) and g;;(1) are representing the probabilities of receiving 0 or 1.
e R; is the set of column locations of ones in the j* row of matrix.

e Rj\; is the set of column locations of ones in the j** row of matrix, excluding

location 1.
e C, is the set of row locations of ones in the i** column.

e C;\; is the set of row locations of ones in the i** column of matrix, excluding

location j.

Following steps represent Sum-Product algorithm in probabilistic domain [2, 13]:

Step 1: At the initialization stage, each variable node sends a message along each

24

of its outgoing edges to indicate the probability of having “1” at that node when the

output of the channel for that bit is given.

1

3:(0) = 1—pi=PF(z;=+1y) = 15 o 2w/2 (2.12)
1
4:(1) = p;= Pz =-1ly) = 15 cwi/o? (2.13)

Step 2: Check nodes calculate their response messages using check node update rule.

r;i(0) = 1/24+1/2 I (1—2¢;)(1) (2.14)

‘;ERj\i

rii(l1) = 1-=r;(0) (2.15)

Step 3: Variable nodes update their response messages to check nodes using variable

node update rule .

4:(0) = K;:(1-pi) [] r;(0) (2.16)
JEC;
3;i(1) = Kups [] ru(D) (2.17)
JECi\;j

K; are chosen in a way to ensure that g;;(0) +¢;;(1) =1.
Step 4: The following equations must be calculated for all the i’'s. Variable nodes

update their current estimate by calculating the probabilities for “0” and “1”.

Qi(0) = K;(1-p) [] ri(0) (2.18)
J€C;
Qi(1) = Kip; H 7i:(1). (2.19)
JjeC;

25

K; is chosen in a way to ensure that Q;(0) + @;(1) = 1.
Step 5: After calculating the probabilities at the previous step for every row index

i, variable node compares the probabilities and votes for the larger value.

. 1 If Qi(l)>05 (2.20)

0 else

At this point, if the estimated codeword satisfies the parity-check equation the algo-
rithm stops. Otherwise, we should go back to step 2 until we reach the maximum

number of iterations.

2.5.3 Gallager A Algorithm

Gallager A is a hard-decision algorithm. Therefore, messages passing through the
edges are {0,1} and no soft information is used. Decoding steps for Gallager A
algorithm are given as follows:

Step 1: At the initialization stage, all the variable nodes will be initialized with the

messages they receive from the channel.

My—re = mgo) (2.21)

Step 2: Check nodes update the variable node v using the modulo-two sum of all

the messages coming from other variable nodes except variable node v.

Moy = P Mmy—y (2.22)

yen(c)—v

26

€ in this equation represents modulo-two sum of binary messages.

Step 3: The outgoing message at variable node v is the same as the intrinsic message
which is coming from the channel unless all the extrinsic messages from neighboring
check nodes disagree with the intrinsic message. Therefore, the outgoing message will

be flipped to be the same as extrinsic message.

m I Jyen(v)—c:my_, =m
My = 0 f Y ()] 0 (2.23)

mo Otherwise

mg is the intrinsic message and 77g is the complement of this binary message.
Step 4: Hard decision at variable nodes is based on the majority of votes at previous
step. The algorithm stops if the estimated decision is a codeword or maximum number

of iterations is reached.

27

2.6 Summary

In this chapter, a general background for LDPC codes and iterative decoding algo-
rithms were provided. In section 2.1, block and convolutional, binary and non-binary
and regular and irregular LDPC codes were explained. In this thesis, binary low-
density parity-check block codes are used. The results of the experiments are based
on both regular and irregular codes.

Matrix and Graph representation methods for LDPC codes were depicted in the
second section. Tanner Graph structure of the codes will be studied further in the
next chapter. In the third section, random and structured construction of LDPC
codes were explained. The regular code used in this work is constructed randomly
and the irregular code is based on structured method.

Systematic encoding of LDPC codes and iterative decoding algorithms were ex-
plained in section 2.4. Although the complexity of calculations in systematic encoding
is high for large block lengths, they result in low complex decoding. In this thesis,
systematic encoding is applied on short block length LDPC codes. Some general
knowledge about iterative decoding algorithms and decoding rules for Sum-Product

and Gallager A algorithms were provided in section 2.5.

28

CHAPTER 3

MULTISTAGE SCHEDULED DECODER FOR
LOW-DENSITY PARITY-CHECK CODES

In this chapter, the main theme of this work is defined. The main idea, which is the
combination of Deterministic schedule and Hybrid Switch-Type technique for trading-
off between complexity and performance of current iterative decoding algorithms is
introduced. Also, a search algorithm to find the length of the shortest closed path
for each node in the graph structure of the codes is developed.

The organization of the chapter is as follows. In section 3.1, structure of Tanner
Graph is studied and some definitions on graphs are given. In section 3.2, sub-
optimality cases for decoding algorithms and drawback of conventional algorithms
are indicated. In section 3.3, Deterministic node-based schedule is explained. This
schedule preserves the optimality of the decoding algorithm. Section 3.4, gives a
comprehensive idea about the Hybrid decoding and its different types. The search
strategy which is designed to find the girth and shortest closed walk of the nodes
in graph is proposed in section 3.5. Finally, in section 3.6 the main idea and the

advantages of the new decoder are given. Summary of the chapter is given in section

3.7.

29

3.1 Structure of the Tanner Graph

Knowledge about the graphs is required for the rest of this chapter. Therefore, before
representing the graph-based algorithm, Tanner graph structure of the codes are
studied [28, 46, 47]. Based on the definitions given below, the sub-optimality cases of
the decoding algorithms are explained in the next section. In this work, the graphs
are un-directional and the direction of the cycles and walks are not important as will
be described later.

Definition 1: A graph G consists of a set of vertices V = {vy,v2,- -} and a set
of edges E = {ey, ez, - -} such that each edge ey is identified with an unordered pair
of vertices (v;,v;). In other words, graph is a finite set of vertices (nodes) connected
by links which are called edges. The graph can be denoted by G(V, E). Fig. 3.1 is
an example of a graph with 5 vertices and 6 edges.

Definition 2: The degree of a vertex is the number of edges which have that
vertex as an end point. For example, in Fig. 3.1, degree of the nodes vy and vy is 3.

Definition 3: Walk is a sequence of edges, one following the other. If we have
two vertices v; and v, in graph G, we define the walk (v, v,) as a sequence of vertices
and edges beginning from v; and ending with v, such that vertices and edges are
incident. The number of edges in the walk is the length of the walk. For example in
Fig. 3.1, (v1,v9, v3) is a walk from v; to v3 with length 2 and the walk with the form
(v, V3, Vg, Us, U1, U2) is a closed walk. A walk is called closed walk, if the start node
and the end node are the same. Path is also a rout consisting of connected edges
from start node to the end node.

Definition 4: A walk is nontrivial, if it has at least one edge that is traversed

only once.

30

Definition 5: A cycle is a closed walk in which all the nodes except for the
start and the end nodes are distinct. In Fig. 3.1, (v, vs, v4, s, v2) is a cycle and a

nontrivial closed walk. In other words, cycle is a special nontrivial closed walk.

Figure 3.1: Structure of a Graph with 5 Nodes and 6 Edges

Definition 6: If any two vertices in a graph are connected by an edge, the graph
is called connected graph.

Definition 7: A graph G(V, E) is called bipartite if its vertex set can be par-
titioned into two subsets vy and vy such that no two vertices in the same subset
are connected. For example, if (vy,v2) is an edge, its end points belong to different
subsets. Fig. 3.2 represents a bipartite graph.

Definition 8: Girth of a graph is the length of the shortest cycle in the graph.
In a bipartite graph, the shortest possible cycle has length 4. Hence, the girth of a
bipartite graph is 4. Girth of a node is the shortest cycle passing through that node.

Definition 9: Tree is a special type of bipartite graph. In other words, a
connected graph in which there is only one path connecting each pair of vertices is

called tree. Tree does not have any cycle in its structure. Given two vertices v; and

31

Figure 3.2: Structure of a Bipartite Graph

v of a tree, there is a unique (vq,v2) path in the tree and deletion of any edge makes
the tree disconnected. In Fig 3.3, part of a tree structure is depicted. The start node
at the top of the tree is usually named as the root of the tree or parent node. Each
node in the tree which lies along the path from a child node to the root of the tree

can become parent node. For example, in Fig. 3.3 node b is the parent node for the

children d and e.

Root Node

Figure 3.3: Structure of a Tree

Definition 10: Given a graph G with V(G) = {v;,vs,...,v,}, we define the
n x n adjacency matriz H as follows. Element of the matrix h;; is entry 1, if (v;, v;)

is an edge in the graph and h;; is 0, if v; and v; are not connected.

32

In this work, cw, and g, denote the length of the shortest nontrivial closed walk
and the girth passing through node v, respectively. Vertices of the graphs are com-
monly called nodes and edges do not have direction. Based on the above definitions,

the sub-optimality cases are studied in the next section.
3.2 Sub-Optimality of Decoding Algorithms

Sum-Product algorithm passes the probability of messages through the graph of the
code to find the most likely message. For a cycle free Tanner graph, all the incoming
messages to a node are independent of each other. Hence, Sum-Product algorithm
results in “a posteriori probability (APP)”. On the other hand, it is proved that the
codes without cycle do not have good performance. As a result, LDPC codes contain
numbers of loops in their graph structure.

In a graph with cycles and closed walks, messages that are passing through cycles
create dependency and the incorrect value of a node will propagate through the graph
and will be returned back to itself. At this case, the algorithm needs to be repeated
(iteration), with the goal of correcting the message and resulting in convergence.
However, the first time that dependency occurs, algorithm becomes sub-optimal and
APP result is not guaranteed any more. Other decoding algorithms may lose their
optimality in the same way. When the outgoing message of the node is not optimal,
the node loses its optimality as well. The unreliable message returns to the node via
a cycle or a closed walk and it can effect on the optimality of either variable node or

check node. There are two kinds of dependencies for messages that are propagating

in the graph [28].

33

Case 1: Dependency between incoming messages to a variable node and its initial
(local) weight.
Ezample: In Fig. 3.4 (a), the initial message of variable node v, will propagate in
the graph and return to v; through the cycle after 3 iterations. In the third iteration,
the incoming messages to node v; which are coming from edges (cg,v1) and (cs, v1)
are dependent on the local message of v,. As a result, the outgoing message of v; in
the next iteration to check node c, is not optimal any more due to the dependency

between incoming message from check node c3 and local message of variable node v;.

(a) (b}

Figure 3.4: Dependency at Variable Node V; (a) and Check Node C; (b)

34

Case 2: Dependency between incoming messages to a variable or check node of

the graph.
Ezxample: In Fig. 3.4 (b), the optimality of a check node is violated. Since check node
does not have initial message, the optimality is violated due to the dependency among
its incoming messages. The initial message of variable node v4 will arrive at check node
¢y in second iteration through the paths (vy, c3,v3, 2, U2, ¢1) and (vy, c3, Us, 4, Vg, €1)-
Hence, the incoming messages from vs to ¢; and from v to ¢; are dependent. As a
result, in the second iteration the optimality at check node ¢; will be violated and the
algorithm is not optimal from the third iteration. It should be noted that iterations
start from check nodes.

Based on previous cases, for a variable node v in a cycle with length [the optimal-
ity through the cycle will be violated for the first time in iteration number N = [I/4].
For a check mnode c in a cycle with length [, the optimality through the cycle will be
violated for the first time in iteration number N = [({+ 1)/4]. The proof for these
results can be found in [28].

Fact 1: In a Tanner Graph , for a variable or check node u with girth g, the
optimality for the first time is violated in iteration number N = [g,/4] for variable
node and N = [(g, + 1)/4] for check node.

Fact 2: For variable nodes, the message can be returned to the node through a
nontrivial closed walk. Therefore, for a variable node u with nontrivial closed walk
of length [the local message will be returned to initial node in iteration number [/2
for the first time. As a result, if we have a Tanner Graph with cw,, the optimality of
node u will be violated at iteration number N = cw, /2.

For example, in Fig. 3.4 (b) the local message of variable node v; will propagate

35

through the closed walk (vy, ¢y, vo, ¢a,v3, c3, Us, C4, U, €1, v1) and return back to itself.
It happens after 5 iterations. This comes from [I/2] with knowing the fact that
[= 10. Therefore, if we have a Tanner Graph with cw,, the optimality of node u
will be violated at iteration number N = cw,/2. Concluding from the facts in this
section, I, is the iteration number in which the optimality of the algorithm is violated

for the first time and its value can be calculated based on the following equation:

/ min ([g,/4],cw,/2) If wu is a variable node (3.1)
[(gu + 1)/4] If wis a check node

3.3 Scheduling

Scheduling is a technique which has great influence on performance and complexity
of the decoder. Study on behavior of the iterative decoding algorithms and the graph
structure of the code resulted in understanding the Deterministic schedule [28]. This
graph-based schedule can be applied on nodes or edges of the graph. In this work,
the node-based unidirectional and bidirectional schedules are applied on Sum-Product

and Gallager A decoding algorithms.
3.3.1 Node-Based Schedule

In Deterministic node-based schedule, the idea of preserving the optimality is applied
on nodes of the graph [28]. The nodes will stop sending messages through the graph
based on a pre-determined value. Hence, the name is Deterministic schedule. The
pre-determined value shows when the optimality of the node is violated. In previous

section, the cases in which the node of a graph may lose its optimality were explained.

36

After finding the shortest closed walk and girth of the nodes based on the result of
a search algorithm, a counter will be assigned to each node with an initial value
indicating the iteration number. From this iteration number the algorithm starts

losing its optimality. For variable node v, the value of the counter equals to

(I, — 1) = min([g,/4] , cw,/2) — 1. (3.2)

A counter will be assigned to each variable node at the beginning of the iterations.
After updating the messages at each iteration, the value of the counter will be reduced
by one. If the counter of a node reaches zero , the node will stop sending new messages.
From the next iteration, the message of the node has dependency and may cause
suboptimality. The node just keeps sending messages from the previous iteration
(the last updated message), until the counters for all the variable nodes reach zero.
Then we reset the counters and repeat the process till the algorithm converges or
maximum number of iterations is reached. For the check nodes the process is the

same as variable nodes, but the initial value of the counter is equal to

(Ie = 1) = [(ge + 1)/4] - 1. (3.3)

If the counter is assigned to variable nodes (check nodes), the schedule will be
unidirectional from variable nodes (check nodes) to check nodes (variable nodes).
If the counter is assigned on both variable and check nodes, the schedule is bidirec-
tional. In the next chapter , the simulation results for unidirectional and bidirectional

Deterministic node-based schedules are given.

37

3.4 Hybrid Decoding

The idea of Hybrid decoding is taken from Gallager B decoding algorithm [2]. In
Gallager B algorithm, the outgoing message of a variable node in updating rule are the
same as messages coming from the channel, unless at least “b6” number of the updated
messages coming from other check nodes disagree. The value of “b” changes from one
iteration to another. In other words, Galager B is switching among different decision
thresholds during the iterative process. This idea resulted in two techniques called
Hybrid Switching-Type (Hgsr) [35] and Hybrid Time-Invariant (Hr;) [29] decoding.

Hybrid (Multistage) decoding is using a combination of decoding algorithms and is
changing the decoding rule during the iterative process to get improved performance
or complexity in the decoder. Hybrid Switch-Type and Hybrid Time-Invariant tech-

niques are explained in this section.
3.4.1 Hybrid Time-Invariant Technique

In Hybrid Time-Invariant technique, N message passing algorithms for decoding will
be considered. Specific combination of different algorithms will be used for each
iteration. The combination of these algorithms does not change by iteration , hence
it is called Time-Invariant technique. In other words, if we consider N message passing
algorithms A;, A,, ..., Ay_1 for decoding, new algorithm A will be defined based on
A, As, ..., Anv_1. In each iteration of the new algorithm, variable nodes and check
nodes are partitioned into N groups using probability mass function vectors of the
nodes, &t = (a(()l),agl), ... ,aN_gl)) and g0 = (ﬂé”,ﬁﬁ”, .. ,ﬁN_g”) respectively.
The nodes in each group 7 process the messages with algorithm A;. The new algorithm

A can be shown as :

38

A=H (A, Ay, Avoy, {aV) {60}) (3.4)

=0

As an example , consider a regular LDPC code consisting of two algorithms. Variable
nodes and check nodes are partitioned into two groups according to their probability
mass function vectors (0.7,0.3) and (0.5,0.5). Therefore, 70% of the variable nodes
and 50% of the check nodes update the messages using the first algorithm. The rest
of the variable nodes consisting of 30% of the nodes and the other 50% portion of the

check nodes will be updated using the second algorithm [29].

3.4.2 Hybrid Switch-Type Technique

In Hybrid Switch-Type (Hsr) method, decoder switches among different decoding
algorithms during the iterations. Number of algorithms involved in the decoding
process will create the number of stages used in hybrid switching type decoding,
hence this technique is also called multistage decoding. In a multistage decoder, the
decoding process starts with a few iterations in first algorithm. After a few iterations
based on the threshold value switches to the second algorithm and repeats the same
trend. This idea can be applied to different algorithms and with different number of
stages depending on the application. Based on the number of iterations in different
decoding stages and the convergence speed of algorithms very interesting results and
complexity /performance trade-offs can be achieved.

The algorithms used for the decoding can have either different or equal complexity.
When the complexity of the algorithms are not the same, their computation time and

speed of convergence is different, hence choosing a correct combination of algorithms

39

which will result in faster decoding is an important issue. Another issue which should
be considered is the compatibility of the algorithms. The transmitted message of
different algorithms are not the same, therefore we have to make the output of one
algorithm compatible with the input of the other algorithm when transition from one
to another occurs.

Since the convergence speed of algorithms are not the same, different number of
iterations are required to achieve a message error rate for different decoding rules.
Hence, the decoding time for different algorithms is not the same. In this work,
decoder starts with a few iterations of soft decision algorithm and then switches
to very fast hard decision algorithm, which will result in faster convergence and
lower complexity. This technique can not improve the performance of Sum-Product
algorithm, because Sum-Product has the best performance among other decoding
algorithms but it can reduce the complexity and speed up decoding process. For hard
decision algorithms it helps to improve the performance significantly and provide a
trade-off between complexity and performance.

In brief, Hr; and Hgr algorithms are functioning different. In the first method,
a combination of algorithms are functioning in each iteration but the ratio of their
involvement is not changing in the whole process of decoding. This ratio is variable
for different nodes based on their probability mass function. In the second method,
all the nodes of one type (variable or check node) use the same algorithm for decoding
in each iteration. The decoding algorithm will be changed by switching from one to

another during the decoding process in different iterations.

40

3.5 Search Algorithm to Find Shortest Closed Path

The analysis of LDPC codes to find closed paths can be performed using either by
parity-check matrix H or graph of the code G. Finding cycles using H matrix is
computationally intensive, therefore we apply graph based search on Tanner Graph
of the code. There are many search algorithms to find short cycles or shortest path
in the graph, however none of them satisfied our need [41, 48, 49]. In this section, a
search algorithm to find the length of the shortest closed-walk and shortest cycle of
the nodes is introduced. The results are used to initialize the iteration numbers in
Eqgs. 3.2 and 3.3.

Fig. 3.5 illustrates part of the graph structure of a specific code. At the beginning,
we assume that graph has a tree structure. In this algorithm, a series of interconnected
nodes will be searched through to find the shortest closed path for each node. A node
can be connected to other nodes via edge or path. The nodes which are connected to
each other are called neighbors. The search can be started from any desired node in
the graph. This node is called root node (start node). The graph will be traversed

until the search results in a closed path (cycle or closed-walk).
3.5.1 Graph-Based Search Algorithm

The idea of the proposed algorithm is to find the length of the shortest closed path
for each node in the Tanner Graph of the code. Let’s assume that a closed path is
encountered at layer m of the graph. It can be concluded that the graph will have
structure of a tree up to the layer m — 1, otherwise this would not be the first closed
path we come across in our search. There are usually different edges coming out of

each node in the tree. Each of these edges create a branch initiated from the start

41

Layer O

Layer 1

Layer 2

Layer m-1

Layerm

Figure 3.5: Tree Structure of the Code

node. The number of edges is equivalent to the number of connections for the node in
the parity-check matrix. The outgoing edges of a node can be labeled using sequential
numbers 1,2, 3,.... If at one layer, node v connects with two nodes from previous
layer, this will result in a closed path from the start node to node v.

The closed path for node v can be a cycle or a closed walk. Closed path will be a
cycle, if the connections from previous steps for node v are initiated from two different
edges of the root node (start node), otherwise it is a closed walk. The length of the
path is twice the number of layers from the start node to the end node. Different
steps of the search algorithm are outlined as follows:

for each vertex u € V [G] do:

1: Initialization:

r =u, flag = false, length = 0, cycle = false, cw = false
2: begin

3: while(flag = false)

42

4: layer := layer+1

5: if n(v € Ajclv,]) = 2 (nis the number of vertices adjacent to node vy)
6: then (flag = true)

7 if u € path(vy, v2)

8: then (cycle = true)

9: else

10: (cw = true)

11: length = 2x layer

12: end

Based upon the above descriptions, we will now present a lemma and a theorem
to prove the fact that the algorithm will find the shortest cycle and shortest closed
walk passing through each node of the graph G.

Corollary 1: A graph is a tree, if and only if, for every pair of distinct vertices
v and v there is only one (u, v) path.

Let’s assume node A is our root node. If node A is connected to & other nodes,
there will be exactly k edges coming out of root node A.

Lemmea: If in any layer of a graph, one node is connected to at least two nodes
from the previous layer, a closed path is formed and the graph will not be a tree
anymore.

Proof: Suppose G is a tree and (u,v) is an edge not included in G. Let’s assume
u is in layer m — 1 and v is in layer m. By corollary 1, there is exactly one (u,v) path
in the graph which consists of a connection from layer m to layer m — 1. This will be
the first connection from node v in layer m and layer m — 1. If the path between node

u and v is uz &3 ... zxv, then adding edge (u,v) which is the second edge between

43

these two layers consisting node v, will create the cycle uzizs ... zxvu and prove the
lemma.

Based on the definition of a tree there is a unique path between any nodes of the
cycle and node A. If the cycle involves node A, we have found a cycle going through
root node. If the cycle does not involve node A, a closed walk is found which is
going though root node. By unfolding the tree from the root node (start node), there
are usually different branches coming out of each node in the tree. The number of
branches is equivalent to the number of connections or degrees of the node in the
parity-check matrix. These lead us to the following theorem.

Theorem: Suppose node A is the root node in graph G with 2 branches which
are labeled as 1 and 2. If node v in layer m of the graph is connected to two nodes
from different branches, it creates a cycle that will go through root node A. If node
v in layer m of the graph is connected to two nodes from same branch, the cycle will
not include node A. In this case, we have found a closed walk which is going through
node A.

Proof: Any node that is part of a cycle should have at least two branches.
Therefore, root node A can be part of a cycle if its degree is at least 2. As a result
we conclude that if A is part of a cycle, a node in layer m has to be connected to
two nodes from different branches in layer m — 1. Furthermore, let’s assume that the
cycle does not involve node A. This means that there is a smaller cycle between layer
m and layer n (0 < n < m). If this is the case, then there will be more than one path
between a node in layer n and layer n + 1 which does not include edges from layer
m — 1 to m. This will be in contradiction to the assumption of a tree structure up

to the layer m and before finding the first closed path in the graph. Therefore, based

44

on the theorem we have found a closed walk which is going through node A.

3.5.2 Illustrative Example

The following example is designed to better illustrate the application of the algorithm.
In Fig. 3.6, parity-check matrix H1 with 9 variable nodes and 6 check nodes is
illustrated. The lines on the matrix are showing the patterns of the cycles with
length 4 and length 6. Variable nodes {vs,vs} and check nodes {cs, ¢4} are involved
in the cycle with length 4. Variable nodes {vg, v4, vg} and check nodes {co, c1,¢5} are

involved in the cycle with length 6.

Vp V4 V2 V3 Vy Vs Vg V7 Vg

| A-0-4-9-4 0 0 0 1
©“{0 110 1-4-4 0 0
H1=°z£000'101l(%00
“loooy 10110
“l0 11301001
s | g-4-9-0-0-0-1 1 0

Vi V2 V3 V4 Vs vyg V7 Vg

Cq

C2

H2

C3

Ca

N ©O O O O O
O O O O O N
o O O O o O
O O W O|Ww

S O O OO
N O W OoOIW O
N O O O O

Cs

I'—‘OOOO'—‘Ié

[OOOOOI\)I

Figure 3.7: Closed Path with Length 6 for Variable Node vy

45

Vo Vi V2 V3 V4 Vs Vg V7 Vs

©|1 010100011
{00001 0200

H3 = ©|0 00000000
|0 00010200
«|0 00000000
“/2 20000220

Figure 3.8: Cycle for Variable Node vy

To find the shortest cycle and closed walk passing through variable node vy which
has length 6 in this example, the search is started in the graph of the code which
is adjacent to the parity-check matrix. Unfolding the tree will be started from root
node vg. Since vg is connected to 2 check nodes ¢y and cs, its degree is equal to 2 and
two branches at the first step are labeled by 1 in H2 matrix (Fig. 3.7) to indicate
the connection between the variable and the check nodes. Two different branches are
labeled as 1 and 2 in H3 matrix to indicate two different paths (Fig. 3.8).

The traverse of the tree is continued in the second layer by finding the connec-
tions between check nodes {cy, ¢s} and unvisited variable nodes. The connections are
labeled as 2 in H2 matrix . The possibility of having a closed path is checked in each
layer of the graph. In matrix H3, the connections are labeled as 1 and 2 for the nodes
initiated from branches 1 and 2 respectively.

In layer 3, the connections between variable nodes {vq,vs,vs, g, v7,vs} and the
check nodes in successive layer are detected. The connections for {v4, vs} are labeled
as 3 in matrix H2. Based on the lemma, since check node c¢; is connected to two
variable nodes {v4,vg} from previous layer, a closed path is found for root node vy.

Furthermore, as it is shown in H3 matrix, these variable nodes are initiated from

46

different branches. Therefore, based on the theorem the closed path is recognized as
a cycle for root node vy. The length of the closed path is two times by the number of
steps or layers traversed from root node vy to ¢; which is equal to 6. The search will
continue through the graph, until we reach to the first closed walk for the root node.
For the sake of simplicity, the connections of other nodes are not marked in matrices

H2 and H3.

3.6 Multistage Scheduled Decoder

It has been shown that Sum-Product (SP) algorithm has the best performance among
all message-passing algorithms but it has very high complexity [16]. Gallager A (GA)
algorithm is much less complex than SP and is suitable for high throughput systems
and implementations, but it does not provide desirable performance. Therefore, we
are looking for a decoder with desirable performance/complexity trade-off. In this
work, we apply the node-based Deterministic schedule on each algorithm to preserve
the optimality and improve their performance individually. After a few iterations of
SP, the decoder switches into a less complex algorithm GA for updating the messages.
This technique offers a good trade-off between decoding complexity and error perfor-
mance by combining a simple hard-decision algorithm and a soft-decision algorithm

with proper scheduling.
3.6.1 Decoding Strategy

Before starting the decoding algorithm, the length of the shortest cycle and closed
walk of each variable node and check node is derived using some search programs.
Girth and closed walk are used for initializing Eq. 3.2 and Eq. 3.3.

Fig. 3.9, shows an overview of the decoding process. In initialization step, the

47

Multistage Scheduled Decoder
nitialization > Check Status > Scheduling

NO
START @

> Termination
oo .

YES

v NO
Initialization @

YES Y

Restart

YES

mpoesssenrcpbtuesvensssbidqunesavsnnne
4
sescsesscendqeccseshevideonnensas

S T 2

Figure 3.9: Flowchart of The Decoding Process

counters will be initialized and assigned to check nodes and variable nodes. The
threshold value (7T'), which determines the transition time to the new stage will be
initialized too. Based on these values, some nodes may always take part in update
process while others stop updating after a few iterations as soon as losing their opti-
mality. The latter group of nodes will stay in idle state until all the nodes in the same
set lose their optimality. Then, they restart updating the messages with their initial
values. If the threshold is not reached, the algorithm starts scheduling. The decoder
consists of two stages. At the first stage, a Soft-decision algorithm (Sum-Product)
will start updating the messages. This step is shown as START point in Fig. 3.9.
Deterministic schedule can be applied on variable nodes, check nodes or both sets. If
number of iterations reach to its maximum value, the algorithm will go to the STOP
point. After a few iterations, the optimality of the algorithm is preserved and im-
provement in the performance is obtained partially. Therefore, weak performance of
GA is compensated and we can switch to the less complex hard-decision algorithm.

This transition, from first stage to second stage, occurs after a few iterations which

48

is indicated by threshold value.

The threshold value can be set based on desirable complexity/performance trade-
off and will be checked after each updating rule. In this work, we apply Hybrid
Switch-Type (ST) decoding on our algorithms. Therefore, we switch to a different
decoding algorithm after T number of iterations. We make the output of one algo-
rithm compatible with the input of the other. The transition occurs at the output of

the variable nodes in SP and converts soft information to binary messages:

(3.5)
m=0,1randomly If |m|=0

Same as previous stage, the algorithm may function conventionally (Flooding sched-
ule) or update the messages using the node-based schedule. The decoder stops, if the
codeword is found or maximum number of iterations is reached.

In this work, the idea is applied on short block length LDPC codes due to the loopy
nature of their graphs with many short cycles and the importance of preserving the
optimality at their decoder side. This issue has less significance for large block length
codes due to the long cycles in their TG structure, where dependency disappears by
propagating in the graph after some iterations. The schedule is applied on check
nodes, variable nodes and check/variable nodes of SP and GA algorithms and the

threshold value is set to T = 2, 3, 5.

3.6.2 Advantages of the New Decoder

e The idea of combining Deterministic schedule and Hybrid Switch-Type tech-

nique can be applied on any iterative decoding algorithm and different available

49

LDPC codes.

The decoding algorithm does not deal with probability calculations or random
generators, which results in less complexity compared to conventional decoding

schemes.

The flexibility of the decoder allows to obtain desirable results by simply chang-

ing predetermined values.

After applying the schedule, propagation of unreliable information in the Tanner

Graph of the code is prevented.

Hybrid technique provides an option for choosing the decoding rule among

different decoding algorithms based on desirable performance/complexity trade-

off.

In contrast with conventional Flooding schedule, all the nodes are not taking
part in update process at each iteration. Hence, the complexity at each iteration

and as a result in the algorithm is reduced.

50

3.7 Summary

In this chapter, the main theme of this thesis was defined and the advantages of the
work were indicated. In section 3.1, some necessary background on Tanner graph
structure of the code was provided and some definitions on graphs were given. In the
second section, the suboptimality cases for decoding algorithms were studied and 2
suboptimality cases were indicated.

These studies helped us to understand Deterministic node-based schedule, which
is a graph-based schedule. This schedule was explained in the third section. The
schedule finds the iteration number in which a node in the graph loses its optimality.
Then, stops the node from updating messages and preserves the sub-optimality of
the decoding algorithm. In section 3.4, the Hybrid Switch-Type and Hybrid Time-
Invariant techniques were studied.

Based on the studies in section 1 and 2, a search algorithm to find the length of the
shortest closed walk and shortest cycle for each node was developed. This algorithm
was provided in section 3.5. Also, a theorem and a lemma used to design the search
algorithms were presented and proved. In section 3.6, the main idea of the work
which was combining the Deterministic schedule and Hybrid Switch-Type technique

was described in detail. Moreover, the advantages of this decoder were outlined.

a1

CHAPTER 4

SIMULATION RESULTS

In this chapter, the simulation system model of the work is described and simula-
tion results for studying the performance of multistage decoder are provided. The
simulation results are based on different codes and iterative decoding algorithms.
Furthermore, decoding complexity and statistics of iteration numbers for different
algorithms are analyzed and discussed.

The organization of this chapter is as follows. In section 4.1, the model of our
communication system is depicted and parity-check matrix generation is described.
In section 4.2, system model of the work is explained. In section 4.3, the simulation
results and performance discussion for a regular (1200,600) and irregular (1008, 504)
codes are provided. Section 4.4 provides the result of a comprehensive study on
complexity of the algorithms for both regular and irregular codes. The summary of

this chapter is given in section 4.5.

4.1 Parity-Check Matrixz Generation

The simulation system model of the work is illustrated in Fig. 4.1. First, sparse
matrix generator provides the sparse parity-check matrix of the code “H”. The first
code which is generated in this work is a (n, k) = (1200, 600) regular LDPC code
with rate 1/2, block length of 1200 and number of information bits 600 (dimension
of the code). The code is constructed randomly with weight of the columns w. = 3

and weight of the rows w, = 6 using Mackay construction method “1A” [8]. The

02

Sparse Matrix
Generator

|
Message { Codeword Received Data ¢ Decoded Bits

BPSK (AWGN) BPSK
Encoder. 1 Modulator CHANNEL Demodutator —*| Decoder

Comparator

Error Report

Figure 4.1: Block Diagram of Simulation System Model

experiment is repeated with an irregular LDPC code (1008, 504) with rate 1/2, degree
of the columns {2, 3,4,5,7,14,15} and degree of the rows {7, 8,9} which is optimized
for AWGN channels. Both codes are available in [50]. For the encoding process,
a generator matrix dual to the parity-check matrix is generated. This matrix is
systematic “H,,,", therefore the message bits appear in the codeword and make the
decoding process easier. In order to reduce the effect of very short cycles and increase
the performance of the code, all the cycles with length 4 are removed from “H” after
the generation.

All the graphs in this work are Bipartite, therefore any closed path with no re-
peated node (cycle) in the graph of the code must have an even length. The graph of
the code contains many cycles with different lengths, however we focus on the shortest
possible cycle which has length of 4. An algorithm is applied on adjacency matrix of

the graph “H” to locate and remove 4-cycles.

53

Any cycle with length 4 involves four distinct nodes and four distinct edges. Con-
sequently in the adjacency matrix four 1s in unique positions create the cycle [48, 51].
After designing the parity-check matrix H, the algorithm searches the parity-check
matrix for columns with two 1s in identical positions forming rectangle of four 1s
in the matrix. The algorithm tries to eliminate the rectangle, while preserving the
properties of the matrix. The most important concern in removing 4-cycles is to
make sure that no new 4-cycle is created and all the characteristics of the code are
preserved. This can be achieved by swapping edges (1s) in a way that no new cycle
is formed. By applying the algorithm on any LDPC code, a new code with equal size

and complexity will be created which results in faster and more accurate decoding.

4.2 System Model

After the generation of H,,, and H through sparse matrix generator, the system
can start its functionality. Messages are generated randomly which consist of Os
and 1s. After encoding, data is modulated using Binary Phase shift Keying (BPSK)
modulation technique. As a result —1 for a 0 bit and +1 for a 1 bit are sent through
the channel. The received data from the channel consists of the codeword and added
random noise and is sent to the decoder after demodulation process. Decoder proceeds
in different stages and passes the messages along the edges of the graph. It starts with
the initialization stage, alternates between check node and variable node update stages
and stops at a terminal stage. Variable nodes receive intrinsic messages from channel
and extrinsic updated messages from check nodes. The new updated messages from
variable nodes will be sent to check nodes in the next half iteration. The maximum

number of iterations is set to 50. If the equation ¢H7 = 0 is satisfied, the codeword c is

54

found at the output of the decoder and the algorithm stops decoding. Otherwise, the
iteration will continue to update the messages until the maximum number of iterations
is reached. If the decoder fails after reaching the maximum number of iterations,
another new message will be generated and passed through the encoder, modulator,
AWGN channel, demodulator and decoder. At each E,/N, enough codewords are
created to generate 100 codeword errors, hence procedure continues until we find 100
errors. The comparator will compare the output of the decoder to the input of the

encoder, in order to compute bit error rate and message error rate.

4.3 Performance Study of the Decoding Algorithms

In this section, simulation results are provided to investigate the performance of mul-
tistage scheduled decoder for regular and irregular LDPC codes. In chapter 3, a De-
terministic node-based schedule was applied on the nodes of the graph. The schedule
was indicating the iteration number in which the node loses its optimality. Therefore,
the node was stopped updating messages and the optimality of the algorithm was
preserved. Furthermore, Hybrid Switch-Type technique with different threshold was
applied on the improved decoding algorithms to reduce the complexity and provide
a desirable performance/complexity trade-off. In order to study the behavior of the
decoder, the idea is applied on soft-decision algorithm SP and hard-decision algo-
rithm GA. The simulation results show that in all cases, better performance can be
achieved compared to conventional algorithms except SP. Also, the performance of
irregular LDPC code is considerably better than regular LDPC code. The bit error
rate (BER) curves are represented with solid lines and the message error rate (MER)

curves are represented with dashed lines in all Figures.

95

4.3.1 Performance Study of (1200, 600) Regular Code

In Fig 4.2 and Fig 4.3 the effect of applying Deterministic schedule on nodes of the
graph is presented. These results prove that, the schedule applied on the nodes helps

to preserve the optimality of the algorithms.

ol
k3
4
H
£
i

Figure 4.2: BER(-) and MER(- -) for SP Algorithm with (1200, 600) Code

The regular code which is used for performance study in this work is a (n, k) =
(1200, 600) randomly constructed LDPC code with rate 1/2, weight of the columns
w. = 3 and weight of the rows w, = 6. Fig. 4.2 shows the bit error rate and
message error rate curves for SP algorithm with Flooding schedule, SP with Deter-

ministic schedule applied on variable nodes (SP-Variable) and SP algorithm with

o6

Deterministic schedule applied on variable nodes and check nodes of the algorithm
(SP-Bidirectional).

It can be observed that, SP-Variable algorithm has better performance compared
to conventional (SP-Flooding) algorithm. This is due to the fact that, unreliable
variable nodes do not take part in update process and the reliability of the messages
are increased in this algorithm. Based on the same reason, SP-Bidirectional has better

performance in comparison with other two algorithms.

| = GAFionding

| =€~ GAFionding
e GACheck

| === 58 heck

| =B GABidrectionst [
- GABivections! 1]

Error Rate

T S SR DUV YT HUUPRNS FT S N INUS RN B B
52 54 56 58 § 62 64 23 €8 7
EMNo(dB)

Figure 4.3: BER(-) and MER(- -) for GA Algorithm with (1200, 600) Code

Fig. 4.3 shows the bit error rate and message error rate curves for GA algorithm

with Flooding schedule (GA-Flooding), GA with Deterministic schedule applied on

57

check nodes (GA-Check) and GA algorithm with Deterministic schedule applied on
variable nodes and check nodes of the algorithm (GA-Bidirectional). The same as SP
algorithm, performance of the GA algorithms with applied schedules are better than
conventional Flooding schedule (GA-Flooding). However, based on TG structure of
the randomly generated code and its cycle distribution different performance results

can be obtained.

Error Rats

Figure 4.4: BER(-) and MER(- -) for HS1 Algorithm with (1200, 600) Code

In Figs. 4.4-4.6, the bit error rate and message error rate of the new algorithms
are plotted. The simulation results for GA and SP algorithms with Flooding schedule

are provided for the reference. In Fig 4.4, the result of first experiment is shown as

58

curve HSI.

The Deterministic node-based schedule is applied to variable nodes of SP algo-
rithm and the threshold value is set to T = 2, therefore the decoding starts with SP
algorithm and after 2 iterations it switches from SP to GA. The check nodes of SP
algorithm and GA algorithm update the messages in conventional way using Flood-
ing schedule. It can be observed that for BER= 10=¢ almost 0.6 dB gain is obtained

compared to GA algorithm, but SP algorithm still has the best performance.

Error rate

Figure 4.5: BER(-) and MER(- -) for HS2 Algorithm with (1200, 600) Code

In Fig. 4.5, the simulation results for HS2 algorithm is provided. The schedule is

applied on variable nodes of SP and GA algorithms and the threshold value is set to

29

T = 2. At this experiment, the only difference from HS1 algorithm is application of
the schedule on variable nodes of the GA algorithm. Therefore, it can be observed
that there is no considerable improvement in the performance. In fact, since the code
is constructed randomly, the error performance is dependent to the distribution of the
cycles in the graph of the code which results in no improvement in this case compared

to HS1 algorithm.

Error Rate

Figure 4.6: BER(-) and MER(- -) for HS3 Algorithm with (1200, 600) Code

For the third experiment, the threshold value is changed from T'=2 to T = 5 and
Deterministic node-based schedule is applied on variable nodes of SP algorithm and

check nodes of GA. The decoder starts with SP and switches to GA after 5 iterations.

60

It can be observed from HS3 in Fig. 4.6 that the improvement in the performance
is considerably more that HS1 and HS2. This observation can be explained in the
way that decoder is spending more time (5 iterations) in SP algorithm, hence more
reliable information is transfered to the next stage of the decoder. It can be observed

that for BER= 10~%almost 2 dB gain is obtained compared to GA algorithm.
4.3.2 Performance Study of (1008, 504) Irregular Code

To investigate the performance of the decoder with irregular LDPC codes, the exper-
iment is repeated with an irregular LDPC code (1008, 504) with rate 1/2, degree of
the columns {2,3,4,5,7,14,15} and degree of the rows {7, 8, 9}.

Ertor Rate

Figure 4.7: BER(-) and MER(- -) for HS1 Algorithm with(1008, 504) Code

61

Due to the nature of irregular codes, they show better performance results com-
pared to regular (1200, 600) code [38]. Same as the previous trends, the idea is
applied on SP and GA algorithms. In Fig. 4.7, the Deterministic schedule is applied
on variable nodes of the SP algorithm. The check nodes of SP and variable/check
nodes of GA algorithms update messages using Flooding schedule. The threshold
value is set to T = 2, hence after 2 iterations the decoder switches from SP to GA

algorithm.

Figure 4.8: BER(-) and MER(- -) for HS2 Algorithm with (1008, 504) Code

Fig. 4.8 shows the performance of the decoder when schedule is applied on variable

nodes of SP algorithm and variable nodes of GA. The threshold value is set to T' = 3.

62

It can be observed that the algorithm has considerable improvement compared to GA
algorithm and is getting closer to SP. Also, It has better performance compared to
HS1 algorithm with irregular code due to the fact that more reliable information will
transfer to GA algorithm after 3 iterations. We can also observe that at BER= 10°
HS2 algorithm with irregular code has obtained almost 1 dB gain compared to HS2
algorithm with regular code. Fig 4.9, shows the performance result of HS3 algorithm
with threshold of T = 5. The schedule is applied on variable nodes of SP algorithm
and check nodes of GA algorithm. The algorithm shows very good performance

because of a high threshold value and irregularity of LDPC code.

Error Rate

EbMNo(dE)

Figure 4.9: BER(-) and MER(- -) for HS3 Algorithm with (1008, 504) Code

63

4.4 Complexity Study of the Decoding Algorithms

In LDPC codes, which are graph-based, the decoding complexity depends on the
number of edges E in the Tanner Graph of the code. The number of edges is equal
to number of ones in the parity-check matrix of the code. Decoding complexity also
depends on the number of iterations. As described earlier, decoding terminates if
the codeword is found or after maximum number of iteration when the syndrome

decoding fails. In this section we study the complexity of algorithms based on the

above factors [52].

4.4.1 Complexity Study of (1200, 600) Regular Code

Table 4.1 provides the statistics on complexity of decoding for regular (1200, 600)

code.

Table 4.1: Study of the Complexity of Algorithms for (1200, 600) Code

Algorithms

Schedule

Involved Nodes

Eb/No(dB)

Average No. of
Soft lterations

Average No. of
Hard lterations

Complexity

SP

Flooding

46
104

0
0
0

Very High

GA

Flooding

251
48
23

Very Low

HS1

Deterministic

Variable/—

72
13
0.1

Low

HS2

Deterministic

Variable/Variable

74
13
1.2

Low

HS3

Deterministic

Variable/Check

B W NI O B IO O B O O L N

ool on oo ool

437
97
0.1

Medium

64

Table 4.1 provides the average number of soft /hard iterations required for conver-
gence of algorithms at their waterfall region for regular (1200, 600) code. Due to the
fact that Sum-Product algorithm has a lot of computations in its variable/check node
update rule, it has highest decoding complexity among other decoding algorithms.
GA has lowest complexity among others, since it does not deal with soft information
and its average number of soft iterations is 0. Based on these analysis, SP provides
the desirable performance at lower Eb/N0 compared to other algorithms with the cost
of complexity. In HS2, we can achieve to the desired performance at lower Eb/NO
compared to GA by performing 2 iterations of SP followed by required number of
hard iterations in GA. GA provides lowest complexity at the cost of performance

loss.

Table 4.2: Study of the Complexity at Bit Level for (1200, 600) Code

Number of

Algorithms Eb/NO(dB) BCave BCumax Edges

298.64
63 301.1 3614
30.8
175.6
25.27 | 300.8 3610
13.8
55.3

19.8 300.5 3607
126
56.7
20.6 301.3 3616
2.5
2034

88.59 301.3 3616
30.7

SP

GA

HS1

HS2

HS3

BN Olnid [®0s] NG [N|=

Therefore, this table presents the complexity /performance trade-off that is pro-

vided in this work. It can be observed that increasing the complexity (number of soft

65

iterations) results in better performance (lower Eb/NO).

In table 4.2, the complexity per bit for different algorithms are provided and
compared in their waterfall region. BC sy g is the per bit complexity based on average
number of iterations “I4vg” and BCjsax is the per bit complexity based on maximum

number of iterations “Iy;4x”. They can be calculated using following equations,

I x B

BCavie = ———AVI;((4.1)
I E

BCuax = ———MA)I({X (4.2)

where E is the number of edges in the graph and K is the number of information
bits.

The first equation helps us design a decoder for average number of iterations and
choose appropriate 4y g, in order to achieve desirable performance. For example,
algorithm SP at Eb/No = 3 dB has BCyyg = 30.8, while BCpax = 301.1 is almost
10 times larger. Based on the results on this table, we can conclude that 4y g is
significantly smaller than Ins4x in our algorithm. Therefore, we can design decoders
with lower maximum number of iterations which results in complexity reduction.

Figs. 4.10-4.14 give the statistical analysis of each iteration number for different
values of Eb/No in waterfall region of the algorithms. The percent on utilization level
(UL%) of each iteration number helps us to study the behavior of the algorithm. For
small Eb/N0, most decodings fail and required number of iterations is almost equal to
Intax. In higher Eb/No, smaller iterations become dominant which results in lower
Iy g. Tt can be observed that at higher Eb/No, 14y g is much less than Ipsax.

As an illustrative example, we consider Fig. 4.12 for HS1 algorithm. The required

66

number of iterations for Eb/No = 2.0 dB is almost equal to 50 (more than 90%).
Therefore, we can conclude that for this algorithm at Eb/No < 3 dB the decoding
requires maximum number of iterations. By increasing Eb/No, the number of smaller
iterations increases which results in lower average number of iterations. Therefore,
the significance of Iy 4x is reduced in higher Eb/No (Fig. 4.12 (d)). The significant
difference between I 4y g and Iy ax for high Eb/No has a great influence on complexity
of the algorithm as it was shown in table 4.2.

The statistical study of the complexity for LDPC codes has a significant role in
designing a low complex decoder. One of the important parameters in the design
is number of decoding iterations which varies based on Eb/No values. PDFs of the
iteration numbers give sufficient information on decoding complexity which are used
for implementation issue. These results are given for all the algorithms in this work
and are used for evaluation of trade-off between performance of LDPC codes and

their complexity.

67

Eb/No=1.0

1 8 15 22 29 36
Number of lterations

@

8

Eb/N0=2.0

15 22 29
Number of lterations
(b)

36

43

50

100

80

15 22 29 36

Number of iterations
(©)

Figure 4.10: Pdfs of the Iterations for SP Algorithm with (1200, 600) Code

68

Eb/N0=5.0 Eb/No=6.0

1 8 1% 22 29 36 43 50

Number of fterations Number of lterations

@ ®)

1 8 15 22 29 36 43 50
Number of lterations
i (c)

Figure 4.11: Pdfs of the Iterations for GA Algorithm with (1200, 600) Code

69

Eb/N0=2.0 1 Eb/N0=3.0
100
80
60
)
=)
40
20
0 } i3 - R Sy & . ‘ v i ¥ 2
1 8 15 22 29 36 43 50 1 8 15 22 29 36 43 50
Number of lterations Number of lterations
(@) (b)
Eb/No=4.0 Eb/No=5.0

1 8 15 22 29 36 43 50 1 8 15 22 29 36 43 50
Number of lterations Number of terations

©) ot d)

Figure 4.12: Pdfs of the Iterations for HS1 Algorithm with (1200, 600) Code

70

Eb/No=2.0 Eb/No=3.0
100 100
80 80
X 60 X 60
- -~
> S
40 40
20 20
0 1]
15 22 29 36 43 50
Number of lterations Number of lterations
(@) {b)
Eb/No=4.0 Eb/No=5.0
100
80
x 60
.
=}
40
20
0
18 22 29 36 43 50
Number of {terations
(d)

Figure 4.13: Pdfs of the Iterations for HS2 Algorithm with (1200, 600) Code

71

Eb/No=2.0 Eb/No=3.0

100
80
< 60
-
=)
40
20
]
1 8 15 22 29 36 43 50 1 8 15 22 29 36 43 50
Number of fterations Number of lterations
(@) (b)
Eb/No=4.0
100
80
X 60
-t
-
40
20
0

1 8 15 22 29 36 43 50

Number of lterations

()}

Figure 4.14: Pdfs of the Iterations for HS3 Algorithm with (1200, 600) Code

72

4.4.2 Complexity Study of (1008, 504) Irregular Code

To investigate the complexity of the decoding algorithms with irregular codes, the
same trends are applied on (1008, 504) irregular LDPC code. Table 4.3 provides
the statistics on required average number of iterations for convergence of decoding

algorithms in their waterfall region. The statistics depend on different switching

thresholds and schedules applied on algorithms.

Table 4.3: Study of the Complexity of Algorithms for (1008, 504) Code

. Average No. of| Average No. of :
Algorithms| Schedule |Involved Nodes| Eb/No{dB) Soft terations | Hard lterations Complexity

1 25 0

P Flooding — 2 8.82 0 Very High
3 5.76 0
5 0 232

GA Flooding S 6 0 36 Very Low
7 0 18
3 2 458

H31 |Deterministic| Variablel— 4 2 18.8 Low
5 2 12
3 3 259

HS2 Deterministic} Variable/Variable 4 3 17 Medium
5 3 0.09
2 5 353

HS3 Deterministic Variable/Check 3 5 21 High
4 5 0.03

As an example, HS3 algorithm shows less required number of hard iterations
compared to HS1 and HS2 algorithms at £b/No = 4 dB. It can be explained in the
way that HS3 spends more time (5 iterations) in SP algorithm compared to HS1 and
HS2. Hence, more reliable information transfers into second stage and it requires less
number of hard iterations to reach target bit error rate and desirable performance.

In other words, it provides better performance at the cost of complexity. As another

73

Table 4.4: Study of the Complexity at Bit Level for (1008, 504) Code

Number of

Algorithms | Eb/No(dB)} BCave | BCmax Edges

236
70.5 400 4033
46
185.6
28.8 400 4033
14.4
382.4

166.4 400 4033
25.6
231.2
38.3 400 4033
247
3224
57.4 400 4033
40.2

SP

GA

HS81

HS82

HS3

ﬁwa O|dlw b ko] N0 JOIN]-

example, it can be observed that the average number of hard iterations for HS1
algorithm is higher than HS2 and HS3 due to the fact that HS1 has lowest threshold
value (T = 2) compared to others. Hence, it spends more number of iterations in GA
algorithm.

Table 4.4 represents the per bit complexity of the algorithms based on average
number of iterations and maximum number of iterations for (1008, 504) code. Since
the parity-check matrix of the code is not generated randomly, therefore the number
of edges is constant and “E=4033". Moreover, I 4x is set to 50 for all the algorithms
and the dimension of the code is K = 504. Consequently, BCs4x has the same value
for all the algorithms.

Figs. 4.15-4.17 give the statistical analysis of each iteration number for irregular
code in waterfall region of the algorithms. As an illustrative example, we consider

Fig. 4.16 for HS2 algorithm. More than 50% of the iterations for HS2 algorithm at

74

Eb/No=3.0 Eb/No=4.0

1 8 15 22 29 36 43 50 1 8 15 22 29 36 43 50
Number of lterations Number of terations
(@ (®)

Eb/No=5.0

1 8 15 22 29 36 43 50
Number of iterations
©

Figure 4.15: Pdfs of the Iterations for HS1 Algorithm with (1008, 504) Code

Eb/No = 3.0 dB is 50 which is the maximum number of iterations. By increasing
Eb/No, the number of smaller iterations increases and their contribution becomes
significant. It can be observed that at Fb/No = 5 dB the algorithm converges with
less than 5 iterations. This trend is repeated for HS3 algorithm. Although, the speed
of convergence is much faster than HS1 and HS2 in this algorithm but the average

number of soft iterations and the complexity of the decoder is increased.

75

Eb/No=3.0

Eb/No=4.0
100
80
*60 -
-
=
40
20
o]
1 8 15 22 29 36 43 50 1 8 15 22 29 36 43
Number of lterations Number of lterations
| @ ®
Eb/No=5.0
100
80
x 60
t .}
i D
| 40
20
0
1 8 15 22 29 36 43 50
Number of lterations
(©

Figure 4.16: Pdfs of the Iterations for HS2 Algorithm with (1008, 504) Code

76

Eb/No=2.0 Eb/No=3.0

1 8 15 22 29 36 43 50 1 8 15 22 29 36 43 50
Number of lterations

(@) (b)

Eb/No=4.0

| 1 8 15 22 29 36 43 50
Number of lterations

(©

Figure 4.17: Pdfs of the Iterations for HS3 Algorithm with (1008, 504) Code

7

4.5 Summary

In this chapter, the simulation system model of the work was described and simulation
results for studying the performance of the decoder were provided. The simulation
results for both regular and irregular LDPC codes showed a significant improvement
in performance compared to the hard-decision algorithm GA. It was shown that
combination of Hybrid technique with Deterministic schedule provides a significant
improvement compared to GA algorithm. It was also observed that changing the
threshold value in Hybrid and selecting different involved nodes in scheduling results
in various performance/complexity trade-offs.

In this chapter, the complexity of the algorithms based on number of edges and
number of iterations was studied. Based on the observations, irregular codes can result
in better performance with less number of iterations which results in less complexity.
It was also shown that, complexity per bit for different algorithms has a direct relation
with number of edges or number of connections in parity-check matrix of the code.

In conclusion, the complexity of the decoder is reduced in two ways. First, GA
algorithm can not provide desirable performance with the same number of iterations.
Therefore, desired performance can be obtained at higher Eb/No. On the other hand,
SP provides desirable performance with the cost of complexity which is not suitable
for hardware implementation. In this technique, we benefit the high performance of
SP and low complexity of GA by changing the decoding rule after a few iterations.
Hence, a desirable performance can be obtained with less complexity. Furthermore,
since all the nodes do not update messages in each iteration, the average total number

of computations is smaller than the number required for the Flooding schedule.

73

CHAPTER 5

CONCLUSION AND FUTURE WORK

In the first chapter of this thesis, we indicated the objectives of our work. In this
chapter, the main contributions of the thesis based on our objectives are reviewed

and some possible directions for future research work are suggested.

5.1 Summary of Contributions

The first objective of the work was “studying the effect of short cycles in the graph
of the LDPC codes to find out How and When the decoding algorithm becomes
suboptimal”. As part of the first contribution of this work, the graph structure of
LDPC codes was studied and the sub-optimality cases for decoding algorithms were
highlighted. Furthermore, a graph-based search algorithm to find the shortest closed
walk and shortest cycle for each node of the graph was proposed. We proved that our
search algorithm is working for any desired node in the graph.

The second objective of this work was “improving the performance of the Sum-
Product and Gallager A algorithms individually by preserving their optimality”. As
part of the second contribution of this work, we applied Deterministic schedule on
variable nodes, check nodes or both variable/check nodes of LDPC regular and ir-
regular codes in Sum-Product and Gallager A algorithms. This schedule applies the
search algorithm on the nodes to find the iteration number in which the node starts

to become sub-optimal. After that iteration, the node does not update messages

79

and the optimality of the algorithm will be preserved. Moreover, Hybrid Switch-
Type algorithm with different decoding thresholds was applied on improved decoding
algorithms to provide a desirable performance/complexity trade-off.

The third objective of the work was “decreasing the complexity of the algorithms
by reducing the average number of soft iterations and total number of computations
required for convergence of algorithms”. GA algorithm can not provide desirable
performance at low Eb/No. On the other hand, SP algorithm provides desirable
performance with the cost of complexity which is not suitable for hardware imple-
mentation. Using Hybrid technique , we benefit the high performance of soft-decision
algorithms and low complexity of hard-decision algorithms by changing the decod-
ing rule after a few iterations. Hence, a desirable performance can be obtained with
less average number of soft iterations. Moreover, by applying the schedule, nodes
will stop participating in update rule after losing their optimality. Therefore, all the
nodes do not update messages in each iteration and the total number of computations
is reduced. Consequently the requirements for the third objective are fulfilled.

The last objective of the thesis was “Designing a flexible decoder for any de-
sired LDPC code and any combination of decoding algorithms, to provide a desirable
performance/complexity trade-off based on communication systems need”. The pro-
posed technique was applied on both regular and irregular LDPC codes. Simulation
results for regular random constructed (1200, 600) LDPC code with rate 1/2, degree
of the columns 3 and degree of the rows 6 were given. Also, the performance of the
decoder for irregular (1008, 504) optimized LDPC codes for AWGN channels were
provided. In addition, a combination of soft-decision and hard-decision algorithms

with different decoding thresholds were used in the decoder. The performance and

80

complexity studies as part of this contribution proved that the designed decoder has
the flexibility to work with any available LDPC code and different combination of

decoding algorithms.
5.2 Future Work
The future research work can be developed in the following directions:

e Applying Hybrid Time-Invariant technique instead of Hybrid Switch-Type tech-

nique and investigating the behavior of the decoder.

e Applying the idea on large block length LDPC codes and studying the conver-

gence behavior of the decoder.

e Combining “girth” parameter of the Deterministic schedule with other measures

to design a new decoding schedule.
e Investigating the sub-optimality cases of decoding algorithms in general.

e Modifying the graph of the codes with known good parameters such as large

girth and studying the behavior of the decoder on modified Tanner Graphs.

81

[1]

2]

8]

[4]

[5]

[6]

[7]

8]

[9]

[10]

[11]

[12]

REFERENCES

R. G. Gallager, “Low-Densidty Parity-Check Codes,” IEEE Transactions on
Information Theory, vol. IT-8, pp. 21-28, Jan. 1962.

——, “Low-Density Parity-Check Codes,” Ph.D. dissertation, MIT Press, Cam-
bridge MA, 1963.

R. M. Tanner, “A recursive approach to low-complexity codes,” IEEE Transac-
tions on Information Theory, vol. IT-27, no. 5, pp. 533-547, 1981.

G. A. Margulis, “Explicit constructions of graphs without short cycles and low
density codes,” Combinatorica, vol. 2, no. 1, pp. 71-78, 1982.

C. Berrou, A. Glavieux, and P. Thitimajshima, “Near Shannon limit error-
correcting coding and decoding: Turbo Codes,” in ICC’93 Geneva, vol. 2, May
1993, pp. 1064-1070.

D. J. C. Mackay and R. M. Neal, “Near shannon limit performance of low-density
parity-check codes,” IEEFE FElectronic Letters, vol. 32, pp. 1645-1646, 1996.

M. Sipser and D. A. Spielman, “Expander codes,” IEFE Transactions on Infor-
mation Theory, vol. 42, pp. 1710-1722, Nov. 1996.

D. J. C. Mackay, “Good error correcting codes based on very sparse matrices,”
IEEFE Transactions on Information Theory, vol. 45, pp. 399-431, 1999.

T. Richardson and R. Urbanke, “The capacity of Low-Density Parity-Check
codes under message-passing decoding,” IEEFE Transactions on Information The-
ory, vol. 47, no. 2, pp. 559-618, Feb. 2001.

T. Richardson, A. Shokrollahi, and R. Urbanke, “Design of capacity-approaching
irregular low-density parity-check codes,” IFEE Transactions on Information
Theory, vol. 47, no. 6, pp. 619-637, Feb. 2001.

N. Wiberg, “Codes and decoding on general graphs,” Ph.D. dissertation, Univ.
Linkoping, Linkoping, Sweden, 1996.

N. Wiberg, A. H. Loeliger, and R. Kotter, “Codes and iterative decoding on
general graphs,” in IEFE International Symposium on Inoformation Theory,
Whistler, Canada, Sept. 1995, p. 468.

82

[13] F. R. Kschischang, B. J. Frey, and H. Loeliger, “Factor graphs and the sum-
product algorithm,” IEEE Transactions on Information Theory, vol. 47, no. 2,
pp- 498-518, Feb. 2001.

[14] F. R. Kschischang, “Codes defined on graphs,” IEEE Communication Mag.,
vol. 41, no. 8, pp. 118-125, Aug. 2003.

[15] K. S. Zigangirov and M. Lentmaier, “On the asymptotic iterative decoding per-
formance of low-density parity-check codes,” in Proc. Int. Symp. on Turbo codes
and related topics, Brest, France, Sept. 2000, pp. 39-42.

[16] G. D. Forney, “On iterative decoding and the two-way algorithm,” in Int. Symp.
on Turbo codes and related topics, Brest, France, Sept. 1997, pp. 12-25.

[17] A. Anastasopoulos, “A comparison between the sum-product and the min-sum
iterative detection algorithms based on density evolution,” in Proc. IEEE Global
Telecommunication Conference (Globecom), vol. 2, Nov. 2001, pp. 1021-1025.

[18] J. Zhao, F. Zarkeshvari, and A. H. Banihashemi, “On implementation of min-sum
algorithm and its modifications for decoding low-density parity-check (LDPC)
codes,” IEEE Transactions on Communications, vol. 53, no. 4, pp. 549 — 554,
2005.

[19] Y. Kou, S. Lin, and M. P. C. Fossorier, “Low-density parity-check codes con-
struction based on Finite Geometries : a rediscovery and new results,” IEEFE
Transactions on Information Theory, vol. 47, pp. 2711-2736, Nov. 2001.

[20] J. Zhang and M. Fossorier, “Shuffled belief propagation decoding,” in Signals,
Systems and Computers, 2002, Nov. 2002.

[21] M. M. Mansour and N. R. Shanbhag, “Turbo decoder architectures for low-

density parity-check codes,” in IEEE Global Telecommunication Conference
(GLOBECOM), Nov. 2002.

[22] Y. Mao and A. H. Banihashemi, “Decoding low-density parity-check codes with
probabilistic schedule,” IEFEE Communications Letters, vol. 5, no. 10, pp. 414—
416, Oct. 2001.

[23] ——, “A new schedule for decoding low-density parity-check codes,” in IEEE
Globecom 2001, Texas, vol. 2, Nov. 2001, pp. 1007-1010.

[24] ——, “Decoding low-density parity-check codes with probabilistic schedule,” in
Proc. IEEE PACRIM 2001, Victoria, Canada, vol. 1, Aug. 2001, pp. 119-123.

83

[25] A. Nouh and A. H. Banihashemi, “A new decoding algorithm for low-density
parity-check codes,” in 21st. Biennial Symposium on Communications, Queen’s
University, Kingston, Canada, June 2002.

[26] ——, “Reliability-based schedule for bit-flipping decoding of low-density parity-
check codes,” IEEE Transactions on Communications, vol. 52, no. 12, pp. 2038~
2040, Dec. 2004.

[27] H. Xiao and A. H. Banihashemi, “New schedules for decoding LDPC codes,” in
21st. Biennial Symposium on Communications, Queen’s University, Kingston,
Canada, June 2002.

(28] ——, “Graph-based message-passing schedules for decoding LDPC codes,” IEEE
Transactions on Communications, vol. 52, no. 12, pp. 2098 — 2105, Dec. 2004.

[29] P. Zarrinkhat and A. H. Banihashemi, “Hybrid decoding of low-density parity-
check codes,” in Proc. Int. Symp. on Turbo codes and Related Topics, Brest,
France, Sept. 2003, pp. 503-506.

[30] ——, “Hybrid hard-decision iterative decoding of regular low-density parity-
check codes,” in IEEE ICCC 2004, Paris, France, 2004, pp. 435-439.

[31] ——, “Hybrid hard-decision iterative decoding of regular low-density parity-
check codes,” IEEE Communications Letters, vol. 8, no. 4, pp. 250-252, Apr.
2004.

[32] ——, “Hybrid decoding of irregular low-density parity-check codes,” in IFEE
ISIT 2005, Adelaide, Australia, Sept. 2005, pp. 312-316.

[33] M. Ardakani and F. R. Kschischang, “Gear-Shift Decoding,” in 21st. Biennial
Symposium on Communications, Queen’s University, Kingston, Canada, June
2002.

[34] ——, “Gear-Shift decoding for algorithms with varying complexity,” in IFEE
ICC 2005, vol. 1, Seoul, Korea, May 2005, pp. 500-504.

[35] ——, “Gear-shift decoding,” IFEE Transactions on Communications, vol. 54,
no. 7, pp- 1235-1242, 2006.

[36] A. J. Felstrom and K. S. Zigangirov, “Time-varying periodic convolutional codes
with low-density parity-check matrix,” IEEE Transactions on Information The-
ory, vol. 45, pp. 2181-2191, 1999.

84

[37] M. C. Davey and D. J. C. Mackay, “Low density parity check codes over GF(q),”
IEEE Communications Letters, vol. 2, pp. 159-166, 1998.

[38] M. Luby, M. Mitzenmacher, M. Shokrollahi, and D. Spielman, “Improved low-
density parity-check codes using irregular graphs,” IEEE Transactions on Infor-
mation Theory, vol. 47, pp. 585-598, Feb. 2001.

[39] R. Zhang, “Linear block codes,” Department of Electrical and Computer Engi-
neering, Drexel University, Tech. Rep. ECE-S622/T602, Fall 2002.

[40] J. Compello, D. S. Modha, and S. Rajagopalan, “Designing LDPC codes using
bit-filling,” in ICC 2001, June 2001, pp. 55-59.

[41] Y. Mao and A. H. Banihashemi, “A heuristic search for good LDPC codes at
short block lengths,” in ICC 2001, June 2001, pp. 41-44.

[42] Y. Kou, S. Lin, and M. P. C. Fossorier, “Low-density parity-check codes con-
struction based on finite Geometry,” in Globecom2000, Nov. 2000, pp. 825-829.

[43] H. Song, J. Liu, and B. V. K. V. Kumar, “Low-density parity-check codes for
partial response channels,” in Globecom 2002, Nov. 2002, pp. 1294-1299.

[44] D. J. C. Mackay, S. T. Wilson, and M. C. Davey, “Comparison of constructions
of irregular Gallager codes,” IEFE Transactions on Communications, vol. 47,
pp. 1449-1454, Oct. 1999.

[45] T. J. Richardson and R. L. Urbanke, “Efficient encoding of low-density parity-
check codes,” IFEE Transactions on Information Theory, vol. 47, pp. 638—656,
Feb. 2001.

[46] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to
Algorithms. Cambridge: MIT Press, 1990.

[47] J. L. Gross and J. Yellen, Graph theory and its applications. Chapman and
Hall, 2006.

[48] T. Tian, C. Jones, J. D. Villasenor, and R. D. Wesel, “Selective avoidance of
cycles in irregular LDPC code construction,” IEEE Transactions on Communi-
cations, vol. 52, no. 8, pp. 1242-1247, Aug. 2004.

[49] T. R. Halford and K. M. Chugg, “An Algorithm for Counting Short Cycles in
Bipartite Graphs,” IEEE Transactions on Information Theory, vol. 52, no. 1,
pp. 287-292, Jan. 2006.

85

[50] D. Mackay. Encyclopedia of sparse graph codes. [Online]. Available:
http://www.inference.phy.cam.ac.uk /mackay /codes/data.html

[61] J. Kim, U. Peled, 1. Perepelitsa, V. Pless, and S. Frieldland, “Explicit con-
struction of families of LDPC codes with no 4 cycle,” IEEE Transactions on
Information Theory, vol. 50, pp. 2378-2388, Oct. 2004.

[52] M. Baldi, G. Bosco, F. Chiaraluce, and R. Garello, “Decoding Complexity and
Iteration Number Statistics in Low Density parity Check Codes,” Proceedings
of the 4th Int. Symposium on Information and Communication Technologies,
vol. 92, pp. 81-86, 2005.

86

