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ABSTRACT

A Recurrent Adaptive Time Delay Neural Network
for Fault Detection and Isolation
for the Satellite’s Attitude Control System

Shu ping Zhao

This thesis investigates a new Fault Detection and Isolation (FDI) scheme for the
satellite’s attitude control system by using a recurrent adaptive time delay neural
network. The results obtained reveal that the proposed new scheme works quite well for
detecting and isolating faults in the reaction wheel which cause the satellite to behave
abnormally corresponding to either pitch, yaw or roll axes. Moreover, the promising
robustness and insensitivity of the proposed neural network scheme due to external
disturbances and noise have also demonstrated.

The results presented do indeed demonstrate the satisfactory capabilities and
potential advantages of the proposed neural network based fault detection and isolation
methodology. The specific faults considered are due to both voltage and current faults in
the reaction wheels employed in the attitude control system of a satellite. Both multiple
and simultaneous fault signatures and individual fault patterns have been investigated and
the results presented validate the very good performances obtained by the proposed
neural network. Furthermore, the recovery natures of these faults have also been
investigated in several case studies in which the satellite operates under continuous

setpoint operating changes.
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Chapter 1

Introduction: General Background and Research Goals

1.1. Brief Introduction to Attitude Control Subsystem
Since the late 1950s, studies on spacecraft attitude control have achieved fruitful results.
The attitude control subsystem (ACS) aims on stabilizing and orienting the spacecraft in
desired setpoint positions despite the influence of external disturbances [1-3]. Three types
of control techniques are commonly implemented to meet design requirements, namely:
Gravity-gradient control, spin control techniques and three — axis control techniques [3].
Gravity-gradient control orientates the spacecraft pointed toward the Earth by utilizing
its inertial properties. This technique takes advantage of the fact that an elongated object
in a gravity field tends to align its longitudinal axis through the Earth’s center. The
alignment is generated by torque which is symmetric around the undershoot vector to
eliminate the effect caused by the yaw axis around the undershoot vector. This tendency
is adopted on spacecraft in orbits without yaw orientation requirements.

Spin stabilization is a technique in which the entire spacecraft is made to rotate.

As a result, its angular momentum vector remains approximately fixed in inertial space.



The shape of the spinner affects the behavior of the technique. Disk-shaped spinners are
passively stable while pencil-shaped vehicles are not. Spinners can survive for long
periods without attention and they provide components a thermally benign circumstance
as well as a scanning motion for sensors. However, the main disadvantages of spin
stabilization also need to be considered. First of all, the vehicle mass properties must be
controlled to ensure the desired spin direction and stability. Secondly, the angular
momentum vector requires more fuel to reorient than a vehicle with no net angular
momentum does, therefore, reducing the implementation of this technique for payloads
need to be pointed frequently.

Nowadays, the most common attitude control technique is the three-axis control
in which they maneuver and can be stable and accurate, depending on sensors and
actuators that are used. The control torque about the axes of 3-axis systems comes from
combinations of momentum wheels, reaction wheels, control moment gyros, thrusters or
magnetic torques. Briefly, these systems take two forms: one utilizes momentum bias by
placing a momentum wheel along the pitch axis; another is called zero momentum with a
reaction wheel on each axis. In this thesis, the attitude control is implemented based on
the second approach that is zero momentum.

Generally, four reaction wheels (3 active and 1 redundant) are used on the
spacecraft and that need to be controlled. Each active reaction wheel is aligned with one
of the body axis of spacecraft and it can rotate in either direction and provide reaction
torque for the related axis control. The redundant one will be excited in case of any of the
other three wheels failed. For instance, when facing with secular disturbances, the wheel

will be drifted toward saturation. In this case, an external torque, such as magnetic torque




will be applied to force the wheel speed back to zero. This process is called momentum
dumping [3].

In order to solve the problem of attitude control, researchers have developed a
number of techniques based on both classical control and modern control [1-4]. With the
development of these techniques, intelligent-based approaches have also been introduced
for performing accurate attitude control design [5-7]. In this thesis, the research is based
on a fictitious satellite which has three reaction wheels as actuators to achieve attitude
control on three axes. Three classical PID controllers are independently designed for
three separate control loops as controllers.

Reaction wheels are momentum exchange devices which provide reaction torque
as well as store angular momentum to the spacecraft. They operate in environments with
disturbances and unpredicted external influences. The performance of reaction wheels
impact the attitude control significantly. Therefore, for the spacecraft attitude control,
they play a crucial role for stability and control. The internal faults in wheels should be
detected and isolated as soon as possible to avoid causing serious damage to the
spacecraft attitude control. Generally, one may consider three types of faults in the
reaction wheel, namely: (a) bus voltage drop, (b) motor current drop and, (c) temperature
fault. Temperature is highly related to the viscous friction, which is the main friction
factor of the wheel as discussed subsequently in the following chapter. The temperature
fault will cause the wheel to operate abnormally. However, given that the internal
temperature for the wheel is regulated and does not change much, and based on the fact
that the spacecraft operate robustly with small temperature changes, only the first two

types of fault are studied in this thesis. The bus voltage should be sufficiently high to




avoid elimination of the voltage headroom. Moreover, a low bus voltage not only reduces
the capacity of the torque but also causes the attitude of spacecraft to become seriously
uncontrollable. Motor current drop has the same impact on the vehicle as the bus voltage
drop does. Once the faults occur, the reaction wheel will lose part of the power and
consequently lose capability to provide enough reaction torque to follow the attitude
setpoint change command. A high fidelity mathematical model of a reaction wheel [8]

will be discussed in Chapter 2.

1.2. Literature Review of Fault Detection and Isolation

1.2.1. Basic Concepts for the Fault Diagnosis Problem

Two basic terminologies are introduced to facilitate understanding the fault diagnosis
problem. The information collected here can be traced back to the SAEFPROCESS
Technical Committee [9] documentation.

o The term ‘fault’ is defined as an unexpected change of system function. That is an
un-permitted deviation of at least one characteristic property or parameter of the
system from the acceptable, usual or standard condition. Such a fault or
malfunction often causes an unacceptable deterioration of the performance of the
system or even leads to dangerous situations.

e The terminology ‘failure’ is denoted as complete breakdown of a system
component or function. Generally, feedback from a faulty sensor can quickly

result in instability causing a failure in a control.



Therefore, the goal of fault diagnosis is clear in the sense that it tries to avoid system
shut-down, breakdown and even catastrophes, therefore a fault needs to be detected and
isolated early before it causes a failure.
A fault diagnosis system generally comprises of three stages [10]:
® Fault detection: to determine the presence of a fault in the system or not;
® Fault isolation: to determine the location of the fault. For instance, which sensor or
actuator has become faulty; and
® Fault identification: to estimate the size, type and time-variant behavior of a fault.
Consequently, the basis of the diagnosis is the fault detection step which must be
performed properly in order to able to execute the further isolation and identification
tasks. Fault isolation plays an equally important role as detection does in reality in the
sense that it provides information on which parts of the system need to be substituted or
changed to avoid serious damage to the system. Despite the importance of system
reconfiguration problem, fault identification is not investigated in this thesis. The term
FDI is commonly adopted to indicate fault detection and isolation in the literature as

studied in this thesis.

1.2.2. Classification of Fault Diagnosis Methods

Generally, redundancy is required to detect and isolate faults in a system, which is used
to make consistency checks between related variables. There exist two kinds of
redundancy, namely: hardware redundancy and analytical redundancy. Hardware
redundancy adopts extra control components. For instance, use multiple sensors, multiple

components to measure and control a particular variable. Voting schemes are typically



applied to a system using hardware redundancy to detect and locate the faulty sensor.
This redundancy method is reliable and widely used in most industries. However, the
main disadvantages of it are the need for extra components and the additional
maintenance cost and extra space to accommodate the redundant equipments [11]. Since
for some applications space is very limited, such as in a spacecraft, it is inconvenient and
not practical to implement this method.

Recently, researchers have focused on the development of analytical redundancy
approach. A diagnosis system applying analytical redundancy is called model based
diagnosis system. In this scheme, the detection, isolation and determination of faults are
achieved by a comparison between the available measurements of system components
and a priori information represented by the system’s mathematical model. Figurel.l
illustrates the concepts of hardware and analytical redundancy. It is clear that the
difference of the two methods is the source of the expected value: one is from the model

while another one is from redundant sensors.

Redundant S
Sensors Diagnostic
Logic »
_Inputll Plant Sensors >
Fault
Alarm
l_, Output
FDI i Diagnostic |,
] Model | Logic

Figure 1.1 Comparisons between hardware and analytical redundancy schemes



The aim of model-based FDI scheme is to generate information about the fault
such as the location and the timing by using measurements provided in the system.

Generally, this method comprises of two main stages as illustrated in Figure 1.2.

Input > System Output >
. — |
L Residual Generation '
| l Residual ;
] k4 ]
! ]
E Decision Making i
| i
] i
| 1

. Fault Information

Figure 1.2 Model-based fault diagnosis

The purpose for residual generation is to process the measurable input and output
of the monitored system to generate the indicated fault signal, termed residual. Clearly,
the residual should be normally close to zero in fault free situation in ideal cases and
should be distinguishably different from zero when a fault occurs. This residual
generation stage attracts representative fault symptoms from the system and these
symptoms are carried by the residual. For a good FDI scheme, the residual should contain
as much fault information as possible, however at the same time be robust to system
disturbances and noises. After the residual is generated, it will be sent to the decision-
making stage for fault likelihood examinations. To determine whether a fault is occurred

or not a decision rule needs to be applied here. In this process, the decision may be based



on techniques such as threshold test, generalized likelihood ratio test, and sequential
probability ratio test, etc. A threshold test is commonly used, which is based on either
instantaneous values or moving averages of the residuals. Once the residual exceeds the
threshold for a considerable amount of time, a fault might be judged to have occurred in
the system. Generally, the stage of residual generation is the crucial part due to the fact
that the decision can be made much easier based on a well generated residual than a
poorly generated one.

Generally, model-based FDI methods can be divided into three main
subcategories: observer-based approaches, parity vector (relation) methods and
parameter estimation methods [10-13]. Details about their properties and their
differences will be discussed in the following chapter.

With the development of the above techniques, another type of method known as
intelligent and learning-based methods has attracted researchers’ attention [14]. It can be
broadly classified as a process-history based technique which needs to use a large
amount of process historical data. They are typically made up of an antecedent part
(series of events) and a consequence part, which maps these events to a known fault.
Process history information enters the system in the form of antecedents and
consequences. Thus these involve an explicit mapping of known symptoms to root causes
[15].

Being classified as quantitative methods, neural network based methods for FDI
scheme have received increasing attention in the past few years. Neural network and
fuzzy logic techniques are being investigated as powerful modeling and decision making

tools [16-20]. The use of these methods is considered as an important extension to the



model-based FDI approaches. They have the potential to ‘learn’ the plant model from
input-output data or ‘learn’ fault knowledge from past experiences, and they can be used
as function approximators to construct the analytical model for residual generation, or as
supervisory schemes to make the fault analysis decisions [17]. The nonlinear modeling
capability of neural networks has been utilized for nonlinear fault diagnosis problems
[18-22]. Meanwhile, expert systems and fuzzy logic have also been used in model based

fault diagnosis [23-27].

1.2.3. Desirable Characteristics of a FDI System

Some desirable characteristics of a FDI system are listed here. Researchers can use them
to benchmark various FDI approaches as well as use them as guidelines to design FDI
systems [28]:

1. Early Detection and diagnosis: It is important and desirable for a FDI system that it is
capable of performing early and accurate detection to avoid system breakdown.

2. Isolability: Isolability refers to the ability of FDI system to distinguish different
faults and localize them.

3. Robustness: The FDI system should be robust to various noises, disturbances and
uncertainties of the operating system. The threshold curves have to be chosen
conservatively to avoid false alarms due to the noises and disturbances.

4. Novelty Identifiability: The FDI system should be able to recognize the occurrence
of an unknown, novel fault and not misclassify it as normal operation.

5. Multiple Fault Identifiability: This is an important and difficult requirement for the

FDI system due to the interacting nature of most faults.




6. Explanation Facility: The FDI system should provide explanations on how the fault
originated and propagated throughout the system leading to the current situation.

7. Adaptability: The FDI system should be adaptable to the changes in external inputs
or structural changes.

8. Reasonable Storage and Computational Requirement: There is a tradeoff between

these requirements and a reasonable compromise is desirable.

1.2.4. Model-based FDI Methods

1.2.4.1. Observer Based Approaches
The basic idea for the observer-based approach is to estimate the outputs of the system
from the available measurements by using either Luenberger observer in a deterministic
environment or Kalman filters in a noisy environment. The output estimation error or its
weighted value is served as the residual. The advantage of using the observer is the
flexibility in selecting its gains which leads to a rich variety of FDI schemes [29-31].

In order to obtain the general structuré of an observer, the discrete-time, time-
invariant linear dynamic system under consideration is modeled in the state space

representation as follows.

{x(k+1) = Ax(k) + Bu(k) (1.1)

y(k) = Cx(k)

where u(k)eR", x(k)eR" and y(k)eR™, and 4, B and C are matrices with proper
dimensions. Assuming that all the matrices are known, an observer can be applied to

reconstruct the system states or variables based on the measured inputs and outputs u(k)

and y(k), that is
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{fc(k+l) = A%(k) + Bu(k) + He(k) 12
e(k) = y(k) - Cx(k) '
The observer scheme described by equation (1.2) is depicted in Figure 1.3.
w(@) {x (#+1)= Ax(t) + Bu(t) ye
Y(t) = Cx(t)
+
_ ()
R Jé" O
+ P2e+D e
A
Figure 1.3 The process and the state observer architecture
For the state estimation errore (k), we have
e, (k) = x(k) - x(k)
(1.3)
e, (k+1)=(4-HC)e, (k)

The state error e (k)(and the state errore(k)) is required to vanish asymptotically, that
is }‘im e (k)=0. (1.4)

This will be ensured by proper design of the observer gain H.

1.2.4.2. Parity Vector (Relation) Approaches

The parity vector (relation) approach is the oldest method which has been applied since
the early development of FDI. Typically, there are two ways to arrange hardware

redundancy. One is using sensors having identical or similar functions to measure the
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same variable, whereas the other approach is using dissimilar sensors to measure
different variables but with their outputs being related to each other. The basic idea of
parity vector method comes from the latter one that is to provide a proper check of the
parity (consistency) of the measurements of the monitored system variables.

The measurement equation for a general problem of n-dimensional vector using m

sensors may be expressed as:

y(k)=Cx(k) + f (k) + 5 (k) (1.5)
where x(k) eR" is the state vector, y(k)eR"is the measurement vector, f(k)is the
vector of sensor faults, &£(k)is the noise vector and Cis the matrix with proper size. If
m>n and rank(C) = n, this implies that the number of measurements is greater than the

number of variables to be sensed, and inconsistency in the measurement data then can be
used initially for fault detection and isolation. This technique has been successfully
applied to fault diagnosis schemes for navigation systems where relations between
gyroscope readings and accelerometer assemblies provide analytical forms of redundancy
[32-33].

For FDI purposes, the vector y(k) can be combined into a set of linearly
independent parity equations to generate the parity vector (residual):
r(k) =Py (k) | (1.6)
The residual generation scheme based on direct redundant measurements is shown in

Figure 1.4.
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Figure 1.4 Residual generation via parallel redundancy

1.2.4.3. Parameter Estimation Approaches

Model-based FDI can also be achieved by the use of system identification techniques
[32]. This approach is based on the assumption that the faults are reflected in the physical
system parameters such as friction, mass, viscosity, inductance, capacitance, etc. The
basic idea of the detection method is that the parameters of the actual process are
repeatedly estimated on-line using well known parameter estimation methods and the
results are compared with the parameters the reference model obtained initially under the
faulty-free condition. Any substantial discrepancy indicates a fault. This approach
normally uses the input-output mathematical model of a system in the following form:
y(k)= f(P,u(k)) 1.7
where P is the model coefficient vector which is directly related to physical parameters
of the system. The function f(,-) can take either linear or non-linear forms.

To generate residuals using this approach, an on-line parameter identification

algorithm should be used. If one has the estimate of the model coefficient at time step

k—-1lasB,_,, the residual can then be defined in either of the following ways:

{ r®)=F,-F, (1.8)

rk) = y(k) - f(B_,,u(k))
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where F, is the normal model coefficient vector.

It is not easy to achieve fault isolation using the parameter estimation method
because the parameters being identified are model parameters which cannot always be
converted back to the system physical parameters. However, the faults are represented by
variations in physical parameters. Moreover, [35] proposed an influence matrix approach
to overcome the isolation difficulty. The idea is basically to identify the influence of each

physical parameter on the residual.

1.2.5. Intelligent and Learning Based Methods

1.2.5.1. Fuzzy Logic Based Approaches

Fuzzy logic, as one kind of intelligent-based method, has received a lot of attention in
FDI problems [25-27]. Obviously, the decision making stage of fault detection is a
logical decision process that transforms quantitative knowledge (residual signals) into
qualitative statements (normal or faulty). Due to the fact that the residual contains not
only the information about faults but they are also contaminated by noises and
disturbances, so that the residual will be non-zero even in fault-free cases. Therefore, it
seems very natural to deal with the logical decision making problem with the aid of fuzzy
logic since fuzzy logic shows advantages in handling such cases in uncertain and
complicated situations based on incomplete information. The appealing feature of fuzzy
logic is that it constitutes a powerful tool for modeling vague and imprecise facts and is

therefore highly suited for the applications here.
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1.2.5.2. Neural Network Based Approaches

A neural network is a processing system that consists of a number of highly
interconnected units called neurons [16, 18-19]. Each neuron maps the mathematical
function between its inputs and outputs and the neurons are interconnected by a large
number of weighted link named weights. The inputs are connected to either the inputs of
the system or the outputs of the other neurons in the system. The output of one neuron
affects the outputs of other neurons and all neurons connected together can perform
complex processes. The mathematical model used in traditional FDI scheme can be
sensitive to modeling errors, noise and disturbance. However, no mathematical model is
needed when a system implement a neural network. Once the output of a system is
known, neural networks can be trained to represent the relationships between inputs and
outputs of a system. A well trained neural network can generalize when presented with
inputs not appearing in the training data and it also capable to make intelligent decisions

in cases of noisy or corrupted data.

1.3. Research Motivation

Instead of using mathematical models, a neural network can be used to generate residual
signal as well as to isolate faults and to provide more reliable and practical applications
" for a FDI scheme. The main feature of neural networks is their learning ability. They are
capable of learning from examples. Therefore, they can be trained to represent
relationships between the faulty conditions and the residual data. Different types of

neural networks have been introduced successfully as an FDI scheme for satellite attitude
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control [20-22]. The motivation for this thesis is to explore the possibility of a FDI

scheme with the use of an adaptive time delay recurrent neural network architecture [36].

1.4. Research Objectives and Contributions of the Thesis

According to the motivation stated in the previous section, the objective of this thesis is
to develop a practical scheme based on an adaptive time delay recurrent neural network
for fault detection and isolation in reaction wheels of satellites. Assuming the satellite
changes its angle from 0 degree (deg) and the attitude range change is restricted from 0
degree to 10 degree, the research goal is to determine whether the proposed recurrent
neural network is capable of detecting the faults that has occurred in reaction wheels or
not under these circumstances. If it is feasible, a parallel bank of filters can be established
to construct the entire FDI scheme. For instance, filter A is used to detect faults when the
satellite attitude changes from 0 degree to 10 degree, filter B is used for the range 10
degree to 20 degree, and so on. Therefore, the entire FDI scheme for the satellite can be
achieved by these banks of neural network filters.

In order to achieve these objectives, three neural networks are employed to
supervise the dynamics of the reaction wheels on the three axes separately and
independently. The neural network architecture applied in this thesis is the adaptive time
delay recurrent neural network which represents accurately the nonlinear relationship

between the wheel torque signal and the input reference command signal to the wheel.
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1.5. Research Methodology

On each axis, a well trained neural network is employed to provide the estimated reaction

torque signal. By comparing the difference between the estimated signals and the actual

reaction torques, networks are able of identifying the existence of faults in the system.
The algorithm developed in this thesis consists of three stages:

1. Thresholds Generation: The threshold signal is generated in recall phase in this
thesis. First of all, a well trained time delay adaptive recurrent neural network is
selected (trained) to model the dynamics of the reaction wheel under fault free
operation on one axis. The network has two inputs: one is the torque command
voltage signal (7CV ) and the other is the one step delay of the output of the network
which is the estimated reaction torque. The difference between the actual and the
estimated reaction torque signals are passed through a moving average filter to
generate the residual signal error for a particular setpoint. This prdcedure needs to be
repeated for obtaining the residual signals for different setpoints. Next, a residual
error set including residual curves for these individual setpoints is set up and the
mean value and the standard deviation of the set need to be calculated. Finally, the
suitable parameters for ensuring that the threshold curve that is capable of providing
a false alarm free detection is implemented.

2. Threshold Testing and Fault Detection: For fault testing, the residual signals
generated in the first stage need to be compared with the corresponding threshold
curve. If the residual error exceeds the threshold curve for a considerable period of
time, say 20 minutes in this thesis, a fault can be considered as being present in that

corresponding reaction wheel.
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3. Fault Isolation: By examining the threshold testing results of each axis
independently, one is able to provide the information on fault detection such as fault
location, fault occurrence time and even fault magnitude symptoms such as small,
medium, large etc.

In order to perform the above goals in this thesis, a simulation model of the entire
attitude control system and the reaction wheel are constructed with the aid of MATLAB
(Version 7.20) and SIMULINK. The data collection, preprocessing, neural network
development and implementation as well as the simulation results on assessment and

comparative studies are conducted in MATLAB and its associated toolboxes.

1.6. Outline of the Thesis

In chapter 2, a brief overview of the outline of the attitude control system will be
provided. The details about dynamic characteristics of a reaction wheel and its MATLAB
model are introduced.

In chapter 3, after a brief introduction about neural networks, a time delay
adaptive recurrent neural network FDI scheme will be developed. The choice of neural
network parameters will also be investigated.

The simulation results corresponding to the time delay adaptive recurrent neural
network FDI scheme will be conducted in chapter 4. The general fault detection results,
robustness and isolation tests are based on individual setpoint changes. Two fault patterns
are randomly generated to mimic the wheel operating under faulty condition in real life.
Six case studies are conducted to facilitate and achieve good understanding about the

nature of this neural network to provide:

18



1. Multiple fault detection results under continuous setpoint changes.

2. Multiple fault recovery results under continuous setpoint changes.

3. Robustness for the network operating under continuous setpoint changes.

4. TIsolation test for network operating under continuous setpoint changes.

5. Fault detection and recovery on one axis under continuous setpoint changes with
the other two axes being also faulty.

6. Fault detection and recovery detection by using different definition of the
residual error under continuous setpoint changes.
In chapter 5, the summary of our observations based on the above case studies is

detailed as well as some suggestions for future work are stated.
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Chapter 2

Introduction to the Attitude Control System (ACS)

2.1. Mission Specifications

The entire research is based on a hypothetical satellite which is utilized to investigate the

attitude dynamics and control of a spacecraft. The satellite is launched into a 700 km

circular Low Earth Orbit, sun-synchronous (98.2°) orbit. With a velocity of
approximately 7.5 km/s, the orbit period is 98.8 minutes. Orbit selection is chosen based
on science requirements, orbit lifetime, ground station coverage, and radiation concerns.
The satellite has three axes and each of them has its independent control loop for
position control. The stabilization of the satellite is achieved by using a 3-wheel
assembly, with three active and one being redundant. Each reaction wheel is aligned with
each axis separately. Three separate PID control loops are designed to meet the attitude
pointing accuracy specification which is within 0.2°in all the three axes. The details

regarding a single control loop design will be illustrated in the following sub-section.
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2.2. Single Axis Attitude Control Using PID

The block diagram of the attitude control loop for a single axis is shown in Figure 2.1.
The control loop contains four components: sensor, controller, actuator, and satellite
body. In practice, some noises are added on the sensors as well as external disturbances

are imposed on the body.

Disturbance
Controller Wheel 24,08 Body
Command_ &5 E® | A ‘*é—_‘ A Outputf
* 4 Sensor
F(s) |q
TNoise

Figure 2.1 Single-axis attitude control block diagram [8]

The transfer function of the system is given by
0=0,F.F,F, +Z(s)F, @1

where @ is the controlled attitude angle, and 6, is the command angle,

6,=6.-0, 2.2)
6, =0F, 2.3)

Combining these three equations and setting the disturbance Z(s)to zero, the transfer

function of the closed-loop system is obtained as:

6(s) _ F.()F,(5)F,(s)
0.(s) 1+F,(s)F,(s)F,(s)F,(s)

F(s)= (2.4)

By assuming that the control command 6,(s) = 0, the disturbance transfer function can be

derived as:
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D=2 _ E(s) 5
Z,(9) 1+ EG)F,(F,E)E) |

2.2.1. Sensors

Table 2.1 shows a summary of typical sensors that are used in aerospace industry with
their performance and physical characteristics.

Table 2.1 Typical attitude determination and control subsystem (ADCS) sensors [3]

Sensor Typical Performance Range Wt Range Power

(kg) (W)

Inertial Measurement | Gyro Drift rate =

Unit (Gyros & | 0.003 deg/hr to 1 deg/hr, accel.
Accelerometers) Linearity = 1to 15 10 to 200
1to 5x107%g/ g*

over range of 20to 60 g

Sun Sensors Accuracy = 0.005 deg to 3 deg 0.1to2 0to3
Star Sensors Attitude accuracy =
(Scanners & Mappers) | 1 arc sec to 1 arc min; 2t05 5t020
0.0003 degto 0.01 deg
Horizon Sensors Attitude accuracy:
® Scanner/Pipper 0.1degto 1 deg (LEO) 1to3 5t0 10
® Fixed Head | <0.1 deg to 0.25 deg 0.5t03.5 03to5
(Static)
Magnetometer Attitude accuracy =
03to1.2 <1
0.5 degto 3 deg

The details for the sensors are introduced below [3]:
Sun sensors are visible-light detectors which measure one or two angles between

their mounting base and incident sunlight. They are widely used for instance in the
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normal attitude determination system, the initial acquisition or failure recovery system, or
in an independent solar array orientation system. Moreover, they are accurate and
reliable. Their accuracy feature is less than 0.01deg which is good but it is not guaranteed
achievable forever. Despite requiring clear fields of view, they have become the common
choice. In practice, in order to overcome their limitations, they are usually fixed near the
ends of the vehicle to achieve a visible field of view.

Star sensors are the most popular sensors for high-accuracy missions. They are of
two types: scanners or trackers. A scanner’s field of view has multiple slits which
observe the passage of stars. The attitude of vehicle is derived based on several star
crossings. Scanners are used on spinning spacecraft while trackers are used on 3-axis
attitude stabilized spacecraft to track one or more stars for obtaining two or three axes
attitude information. They are not only capable of tracking the stars as bright spots, but
also identify the star pattern which they are viewing, as well as report the sensor’s
orientation compared to an inertial reference. For the highest accuracy missions, a
combination of star trackers and gyros are usually used to balance the cost consideration.
They complement each other in the sense that the gyros are used for initial stabilization,
during periods of sun or moon interference in the trackers while the star trackers are used
to provide a high-accuracy, low frequency, external reference unavailable to the gyros.

Horizon sensors are infrared devices that detect the contrast between the cold of
deep space and the heat of the Earth’s atmosphere (about 30 km above the surface in the
sensed band). They provide Earth-relative information directly for Earth-pointing
spacecraft, which may simplify onboard processing. Horizon crossing indicators that are

also called pippers, are used on spinning spacecraft to measure Earth phase and chord
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angles which, together with orbit and mounting geometry, define two angles to the Earth
(undershoot) vector. Scanning horizon sensors use a rotating mirror or lens to replace (or
augment) the spinning spacecraft body. In order to improve performance and redundancy,
they are usually used in pairs. For circular orbits, the staring sensors work best.

Magnetometers are simple, reliable, lightweight sensors that measure both the
direction and size of the Earth’s magnetic field. When compared to the Earth’s known
field, their output can be used to establish the spacecrafi’s attitude. However, their
accuracy is not as good as that of star or horizon references, therefore their data are often
combined with the data from Sun or horizon sensors to improve their accuracy. A
magnetometer is used to control the polarity of the torque output when a spacecraft that is
using magnetic torques passes through the magnetic-field reversals during each orbit.

GPS receivers are commonly known as high-accuracy navigation devices. They
have been used for attitude determination by employing the differential signals from
antennas on a spacecraft. Generally, this kind of sensor can be used not only as a back—up
sensor but also to provide the promise of lower cost and weight for Low Earth Orbit
(LEO) mission implementations.

Gyroscopes are inertial sensors which measure the speed or angular rotation from
an initial reference without any knowledge of an external or an absolute reference frame.
Due to the lack of an external, absolute reference, they are often used in combination
with other external references such as Sun sensors or star sensors for precision attitude
sensing of spacecraft. When used with external references such as star trackers, gyros
enable one to offer smoothing and higher frequency information while the star trackers

offer low frequency, absolute orientation information. Individual gyros provide one or
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two axes information, and are often grouped together as an Inertial Reference Unit (IRU)
for three full axes. IRUs with accelerometers added for position or velocity sensing are
called Inertial Measurement Units (IMUs).

For our satellite used in this thesis, the Earth/Horizon sensor is implemented to
obtain the pitch and roll angles. A realistic sensor is more likely to be represented by a
block which represents a delay between the input and output signals, namely

=K 2.6)
1+7}s

However, in order to simplify our problem in this thesis, an ideal sensor is represented by
a simple block whose transfer function is assumed and expressed as:
F =K, =1 2.7

Therefore, the block diagram of the closed-loop can be simplified as shown below:

Disturbance
Controller Wheel Z,,(5) Body
Command_ &4 J 2o L] me LB Outputi
g, g

Figure 2.2 A simplified single-axis attitude control block diagram

2.2.2. Actuators

The actuators used in this thesis for attitude control are three-reaction wheel assemble

consisting of three active reaction wheels on each axis of the spacecraft and one
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redundant wheel. Reaction wheels are momentum exchange devices which provide
reaction torque to a spacecraft and store angular momentum [8]. The mathematical model
of reaction wheel is deduced from Newton’s second law. Additional terms which are a
function of the temperature and the bus voltage are included here to assess the
performance beyond the normal speed ranges. Moreover, the disturbance and noise terms
are also factors that are considered for evaluating the operation. A typical reaction wheel
is driven by an inertial brushless DC motor, which includes a rotating flywheel, typically
suspended on ball bearings.

The fundamental block diagram of a nearly ideal reaction wheel model [8] is
shown in Figure 2.3.

Reaction Torque

Angular Momentum
+

H
&

Torque
Command >_‘D_* Gdkz )

Voltage

Figure 2.3 A nearly ideal reaction wheel model block diagram [8]
The input signal of the wheel is a torque command voltage which controls the motor
current directly and then controls the motor reaction torque indirectly. The angular
momentum stored in the flywheel H, is the product of flywheel inertial and the angular
velocity of the wheel, that is

H =Jo (2.8)
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According to the Newton’s third law, the reaction torque generated to the spacecraft is
opposite to the net torque, namely

T,=—T 2.9)

Z n

According to the Newton’s second law, the net torque can also be deduced from the rate

of change of the angular momentum as

7, =2 o) _ ;00 (2.10)
o a o

In order to simplify the problem, the coulomb friction is ignored and only viscous friction
is considered here. Therefore,

T,=17,—7,0 (2.11)
z, =T.G,k, (2.12)
where T, is the torque command voltage.

From equations (2.8) to (2.12) and with the use of the Laplace transform, the wheel
transfer function from the torque command voltage to the reaction torque is obtained as,

7, (s) B -Gk, Js

- T.(s) Js+r, @13)

F,(s)

On the other hand, the block diagram shown in Figure 2.4 is a detailed and a high
fidelity diagram of a reaction wheel [8]. The diagram illustrates the fundamental
relationships that exist for a high fidelity mathematical model of a reaction wheel system.
This detailed reaction wheel model is utilized in this thesis to substitute for the real
wheel. The diagram consists of five sub-blocks, namely: motor torque control, speed

limiter, EMF torque limiting, motor disturbances and bearing friction and disturbances.
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Further information about each sub function blocks will be given in details in the

following sub-sections.
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Figure 2.4 A detailed and high fidelity reaction wheel block diagram [8]
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The reaction wheel employed herein is the ITHACO’s standard Type A reaction

wheel. The typical parameters used in this diagram are provided in Table 2.2. [§].

Table 2.2 A typical parameter values of Type A reaction wheels [8]

Variable Nomenclature Units Type A
RWA
G, Diver Gain AV 0.19
o, Driver Bandwidth(-3 dB) rad|sec 2000
k, Motor Torque Constant N-mjA 0.029
k, Motor Back-EMF V/rad/sec 0.029
k, Overspeed Circuit Gain V/rad/sec 95
w, Overspeed Circuit Threshold rad[sec 690
T, Coulomb Friction N-m 0.002
J Flywheel Inertial N-m-s 0.0077
N Number of Motor Poles - 36
B Motor Torque Ripple Coefficient - 0.22
C Cogging Torque Amplitude N-m 0
R, Input Resistance Q 2.0
P Quiescent Power w 3.0
R, Bridge Resistance Q 2.0
Torque Command Range vV 5
Torque Command Scale Factor N-mfv 0.0055
K, Voltage Feedback Gain 1414 0.5
0, Torque Noise Angle Deviation rad 0.05
, Torque Noise High PaSs Filter Frequency | rad/sec 0.2

Motor Torque Control Block

The motor driver is a voltage controlled current source with a gain G, . The motor current

I is directly proportional to the torque command voltage. This is then passed through a
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torque constant k, to generate a motor torque 7, which is proportional to 7, . In this thesis,
the torque command voltage is chosen in the range [—SV,SV] .

Speed Limiter Block
The purpose of utilizing a speed limiter circuit is to prevent the flywheel reaching unsafe
speeds. The limiter circuit uses an analog tachometer circuit to sense wheel speed w

which is then compared with an established thresholdw,. Once the wheel speed @
exceed @, , the circuit provides a high-gain negative feedback £, to the torque command.
In order to trigger the negative feedback, a heavy-side function H_ is employed in this

diagram. This function is given according to

{Hs =Ofor|a)|<cos; 2.19)

H, =1for|a|2 o;
EMF Torque Limiting Block

The increasing back-EMF £, of the motor may cause the motor torque to become

bounded at high flywheel speed when the motor operate in low bus voltage conditions.
This situation influence the motor in two ways: on one hand it eliminates the voltage
headroom ultimately. On the other hand, if the back-EMF is kept on increaéing, it will
cause the pulse-width-modulation of the motor to saturate, which reduces the torque
capacity. Moreover, since the motor torque is coupled directly to the bus voltage, from
the disturbance point of view, any fluctuations in bus voltage will be sensed as torque
disturbances.

The back-EMF limiting is coupled to power consumption by voltage drops in the

input filter due to the bus current level. The voltage drop is the product of the bus
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current /., and the filter input resistance R,,. An approximate power consumption

model is adopted below:

PHVPUT -

Vags [rz 0.047,,|Vpus

k
2_R,+ +P + —£ 2.15
VBUS—I B q me k} ( )

El
kl t t
where P, is the power consumption. By dividing it with?,,; , the bus current [, is

deduced as follows

2 0.04(z_|V,
! [T”‘ R +————|T"'l 22+ P +or, Ee—] (2.16)

KUK T

Ipys =
VBUS -1

Combining the above relationships together,

T
k o=-m 2.17
! I, ( )

and equation (2.16) and (2.17) yield:

Loy = -VI—_I[IMZRB +0.04|1,|Vyys + P, + 0L, | (2.18)

BUS

which indicates that the bus current is dependent on the motor current /,, , wheel speed w,

and bus voltage V.

In order to eliminate the voltage drop when the power is not being drawn form the
bus, for instance, during a deceleration when energy is being deposed from the flywheel,

a heavy-side function H, is introduced in the block diagram. Moreover, a reverse
polarity protection diode drop of 1V is also dependent on H, .

{Hb(l) =1forl >0, 2.19)

H,(I)=0forl £0;

Another heavy-side function H , is applied in this sub-block and is defined as:
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{Hf(V) =0forV >0; (2.20)

H,(V)=1forV <0,

Motor Disturbances Block

The high frequency disturbances are usually caused by the torque motor in a reaction
wheel due to the motor excitation and the magnetic construction. The reaction wheel
adopted here use brushless DC motors, which exhibit torque ripple at the commutation
frequency, and cogging at a frequency corresponding to the number of motor poles and
rate of rotation.

Torque ripple is the amount of variation in the motor torque caused by the
commutation method and the shape of the back-EMF. In cases where discrete
commutation is implemented with sinusoidal back-EMF, such as in ITHACO’s reaction
wheels, the torque ripple in a perfectly aligned motor is classically 13.3% overshoot-to-
overshoot of the commanded motor torque, or about 7% rms. For simplicity, the block
diagram approximates the ripple wave as a pure sine wave although its actual shape is a
truncated rectified sine wave. The amount of torque ripple mainly depends on the torque
ripple frequency which is essentially the commutation rate.

Cogging is a disturbance torque which is always present in a conventional
brushless DC motor, which is ignored here to simplify the system model.

Bearing Friction and Disturbances Block
The friction in a reaction wheel can be cataloged as viscous friction and coulomb friction.

The viscous friction 7, that is varied with speed and temperature is generated in the

bearings due to the bearing lubricant. Since the viscosity is temperature dependent, the
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lubricant has a strong sensitivity to temperature. For the ITHACO’s Tpye A reaction

wheels used here, the viscous friction can be approximately modeled as [8]:

0.0002

o

N-m
rad/sec

z, =(0.o49— (T+30"C))x10“2 (2.21)

The coulomb frictionz, is caused by rolling friction within the bearings. In a

reaction wheel application with direction reversals, the bearing stiction will cause a
disturbance which is characterized by a torque discontinuity as the wheel passes through
zero speed. The rolling friction is defined as the smallest amount of torque, which if
applied continuously, will keep the fly wheel rotating. The breakaway torque is the
smallest amount of torque which will start the flywheel from a stalled condition. The
resulting torque discontinuity for crossing through zero speed is therefore the sum of the
rolling friction and the breakaway torque. In most cases, as well as in this thesis, the
coulomb friction can be assumed as twice of the rolling friction, neglecting the
breakaway torque difference [8].

Torque noise is the very low frequency torque variation from the bearings caused
by lubricant dynamics, which can be specified as a deviation from the ideal location of
motor at any constant speed. In the block diagram of the wheel, the torque noise is
assumed as a sine wave at the high pass filter frequency and is approximately modeled
as:

7, =J0.0 sinw,t (2.22)
where J is the flywheel inertial, 6, is the torque noise angle and @, is the torque noise

high pass filter frequency.
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2.2.3. Body Dynamics

-

-y
According to Newton’s second law, 7 = % If the body reference system has angular

velocity @ as observed from the inertial reference frame, then the torque need to revised

to

F=H+dxH | 2.23)
Recalling that

oxH =(oH,-o,H,)i+(o,H, -oH,)j+(oH,-oH)k (2.24)

the Euler’s moment equation can be deduced from the above two equations according to

r,=H, +to H -wH,
t,=H, +w,H, -oH, (2.25)

r,=H,+wH, -oH,
Relating the angular momentum components to the angular velocity components, yields

H=Io-10o-10
H=1o-10-1 0, (2.26)
H=Lo-10-1o0,
By assuming that the spacecraft body frame aligned with the principle axes, where the
products of inertias are zero, result in
T.=0l, +o0, (Izz ——IW)
r, =l +o,0 (. -1,) (2.27)
T,=al, +00 (Iyy ——Ixx)

Xy

where x, y, znow represent the principal axes of inertia.
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Equation (2.27) is utilized for model construction in this thesis. In order to
simplify the PID controller design, a rigid and decoupled system is considered here, in

which the coupling effects are ignored, namely

T,=al,
T,=al, (2.28)
TZ = a.)ZIZZ

Therefore, the transfer function of the body dynamics for a single axis may be expressed

as,
F,=— (2.29)

where [ is the inertia of the related axis.

2.2.4. External Disturbance Torques

Operating in space, the spacecraft experiences many types of external environmental
disturbance torques. Four of them are mainly consider here, namely: gravitation torque,
solar pressure torque, magnetic torque and aerodynamic torque. They are described in
details below.

The gravitational torque arises since the gravitational force varies over the
unsymmetrical mass distribution of the satellite body. Since the radius vector from the
center of Earth to the center of the mass of the spacecraft varies in the body frame-of-
reference, the gravity gradient torque varies throughout the orbit. In this thesis, the

maximum gravity gradient torque during the whole period is assumed to be bounded by:

DIS, =1.8x10°N—m (2.30)
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For solar pressure torque, it is generated by an accumulative force imparted by the
Sun on the spacecraft body orbiting the Earth and the offset of the spacecraft optical
center from the spacecraft mass center. This pressure is highly dependent on the surface

of the spacecraft. In this thesis, the worst case of solar pressure torque is assumed as [3]:
DIS,, =6.6x10°N —m 231

Due to the inaccuracy of the spacecraft’s magnetic dipole vector and the current
loops within the spacecraft, it is difficult to determine the Earth’s magnetic torque
accurately all the time. Generally, a dipole model is used to estimate the value of this
torque. Moreover, in this case, the maximum value of this torque is assumed to be
bounded by [3]:

DIS,, =4.5x10° N —m (2.32)

The aerodynamics disturbance torque is due to the accumulative force imparted
by the molecules found in the upper atmosphere and the offset of the spacecraft
aerodynamic center from the spacecraft mass center. This torque is also related to the
atmospheric density which significantly varies with solar activity. For a preliminary
design, a rough estimate of the maximum value for this aerodynamics disturbance torque
is used as [3]:

DIS,, =3.4x10°N—m (2.33)

For simplicity, the maximum external disturbance torque is assumed as the sum of
the above four torques, namely

DIS = DIS,, +DIS,, +DIS,, + DIS,, =5.68x10° N —m (2.34)

For the construction of the ACS model in this thesis, it is assumed that the

external disturbance torque is a normally distributed random signal with zero mean and
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variance of DIS? = (5.68x10‘5 )2. However, for the PID controller design, it is assumed

as a step function with the step value of 5.68x10”° N —m, which is the maximum
disturbance torque discussed above. Under this assumption, the Laplace transform of the

external disturbance torque becomes:

_DIS _5.68x10°°
S S

z,

1S

(2.35)

2.2.5. PID Controller Design

Let us assume that the design specifications are detailed as follows:
1. The desired maximum overshoot is less than 20% ,
2. The 5% settling time is 30 seconds, and
3. The steady state error is0.2°.
A PID controller is designed as the control component in each axis. The PID controller

can be represented as

F =K, (s+zd)9—+—zf-2—) (2.36)
N

For the sake of convenience, the transfer functions of the each block in the control loop in

Figure 2.1 are rewritten below

( +
F =K, (s+2,) )
s
Fo= -Gk, Js
3 v Js+r, (2.37)
F =1
1
F,=—
| b Is?
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Therefore, the transfer function of the open-loop system can be expressed as:

G, = _'Gdkt‘]Kd (S +ch)(s+zc2)
o (Js +7,)Is

(2.38)

Obviously, the system is a type 2 system which results in zero steady state error for step
function input. Therefore, the steady state error corresponding to this system is caused by

the external disturbance torques. The disturbance transfer function is given by

D(s)=2)__ () (2.39)
Zys(s) 1+ F(S)F,()F,()F(s)
By using the final value theorem, the steady state error of the system is obtained as
) sZ, (8)F, ()
Error, =limsD(s)Z,, (s) = 2 > (2.40)

T E, () E (5)F, () B (3)

Assuming that the maximum disturbance torque is applied to the spacecraft as discussed

above corresponding to equation (2.35), we get

_ 7,(5.68x107)

Error, = (2.41)
Gk Jzyz,K,
Given that the steady state accuracy requirement is 0.2° , we have
Error, <020 =227 (2.42)
180
Hence,
-5
K, >- 7,(5.68x107) 2.43)
G,k Jz 2 027
d™tY“cl“c2 180

Based on the above equation, the value of K, in the PID controller is determined.
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2.3. Three Axes Attitude Control System

Three PID controllers are utilized independently to meet the design specifications by
following the design methodology stated in the previous section. Figure 2.5 illustrates the
three axes attitude control system block diagram. The net torque applied on one axis is
affected by the other two axes. Equation (2.27) repeated and revised below for
convenience represents the coupled effects of the other two axes, which is selected here
for constructing the controllers.

T+l =0 +t0,0,(1,—-1))

T, + T, =0 tw,0 (., -1,) (Revised 2.27)

T, 4+, =01, +o,0, (0, 1)

z

where 7, represents the effects of environmental and internal noise and disturbances.

Z,
Roll axis 4 L (3) 0
£o L 7o Ao e, [ L5
66"' +
— — /')
A
. . Zgig\S)
Pitch axis K i o )
Ey® L F,® | Fip () s 15l [l
0, <
- X))+
Lar 4 Lo “
. 25567
Yaw axis H % o
F,5) Lyl Fp() F, (s) IR 1
0, d ,g

Figure 2.5 A three axes ACS block diagram
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2.4. Initial Conditions and Parameters in Normal Satellite Operation

The initial conditions and parameters corresponding to the healthy operation of the
satellite are summarized in Table 2.3.

Table 2.3 The parameter values in normal operating condition

Nomenclature Units Normal Value or Range
Bus Voltage vV 8
Temperature °c 23
Initial Body Attitude for One Axis deg 0
Initial Body Rate for One Axis rad[sec -1.0x10™ to 1.0x10™
Initial Wheel Speed rad/sec 20 to 30
Setpoint Change for One Axis deg O0to 10
17 0 O
S/C Inertial Matrix Kgm® 0 15 0
0 0 22

2.5. The Performance of the PID Controller

Figure 2.6 is chosen here to represent the continuous position setpoint change on any one
axis of the satellite. The accuracy requirement is also shown explicitly on the diagram as
an accuracy upper bound. Clearly, the satellite follows its position command at each
setpoint change, which indicates that the PID controller meets its design requirements
and specifications and the attitude control system tracks its setpoint command quite well

under fault free and healthy operation.
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Figure 2.6 The body attitude performance with a PID controller

2.6. Conclusions

The basic concepts of an attitude control system are briefly introduced in this chapter and

the dynamics of the reaction wheels are provided in details. To meet the desired pointing
accuracy requirements for each axis, separate PID control loops for each axis are

designed. Simulation results illustrate that the performance of the PID controllers

acceptably met the design specifications.
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Chapter 3

Neural Network Observer-based Fault Detection and Isolation

for the Reaction Wheels

3.1. General Introduction to Neural Networks

Artificial neural networks traced back to biology has been studied and widely used in the
areas of control, signal processing, and pattern recognition and fault diagnosis. A neural
network is defined as a massively parallel distributed processor made up of simple
processing units, which has a capability for storing knowledge contained in data. This
kind of unit is called neuron and the connection between two different neurons is called
synaptic weight. The procedure to store knowledge or learning process is called a
learning algorithm, which modify the synaptic weights in an orderly fashion to attain a

desired design objective. An important characteristic of a trained network is its learning
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ability, implying that a well trained network is capable of generating a reasonable output

with an unseen input [19].

According to [19], neural networks possess three main properties that are suitable

for the application considered in this thesis:

Nonlinearity: A neural network is made up of an interconnection of nonlinear
neurons, making itself a nonlinear system. This property makes it suitable for
modeling dynamical systems which are normally highly nonlinear.

Input-output Mapping: A popular neural network paradigm called supervised
learning involves modifications of the synaptic weights through a set of training
samples. Each sample contains a unique input and a corresponding desired output.
The synaptic weights are modified to minimize the difference of the network output
and the corresponding desired output when presented with a training sample
randomly selected from the training data set. The training procedure will stop when
the network reaches a state where there are no further significant changes in weights.
Adaptability: Neural networks have a built-in capability to adapt its synaptic weights

to changes in the surrounding environment.

3.1.1. Neuron Model

A neuron is the basic processing unit of a neural network. It represents a transformation

function from input p to output¢)( p) . A neuron with R-element input vector is shown in

Figure 3.1.
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Input Neuron w Vector Input
A\

Where...

, R = number of
il >| f a > elements in
- input vector

J

a=f{Wp+b)

Figure 3.1 A neuron with R-element input vector [37]

The relation between input p and output a is governed by:

a=f(Wp+b) 3.1
where W is the weight matrix, b is called a bias and f represents the activation function.
A hyperbolic tangent sigmoid function is generally used as the activation function in all

the neurons. This kind of activation function is defined as

2

tansig(x) = "

-1 3.2)

a = tansig(n)

Figure 3.2 A hyperbolic tangent sigmoid activation function [37]

44



3.1.2. Network Architectures
The network architecture represents how the neurons are arranged and interconnected
together. According to [19], network architectures are broadly divided into two
categories:
a) Feed-forward networks
A single-layer feed-forward network with R input elements and .S neurons in the layer
is shown below in Figure 3.3. Each element of the input vector p is connected to all
the individual neurons through the weight matrix W and each neuron output forms a

column vector a which represents the output of the network.

Input  Layer of Neurons

N7 A
a
Where...
a ;er- nuntmsli)_er of
2 ) elements in
’ input vector
: S = number of
a_ neurons in layer
—
J

a=f (Wp+b)

Figure 3.3 A single-layer feed-forward neural network [37]
In practice, a single-layer feed-forward network is usually used to map a
simple nonlinear combination of inputs, however, if the layers are cascaded, they are
able to represent arbitrary complex nonlinear mappings. The most important

characteristic of a multilayer feed-forward network is that it is capable of learning the
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b)

map of any complexity. A three layer feed-forward network, one input layer, one
hidden layer and one output layer, is capable of representing an arbitrary mapping
between the input and output variables.

Feed-back networks

A recurrent or a feedback network distinguishes itself from a feed-forward network
in which it has at least one feedback loop. The presence of feedback loops has a
profound impact on the learning capability of the network and its performance.
Involving the use of particular branches composed of unit-delay elements, the
recurrent network processes a nonlinear dynamical behavior.

Mainly, there are two kinds of recurrent networks: Elman networks and
Hopfield networks. Elman networks are two-layer back-propagation networks, with
the addition of a feedback connection from the output of the hidden layer to its input.
This feedback path allows Elman networks to learn to recognize and generate
temporal patterns, as well as spatial patterns. The Hopfield network is used to store
one or more stable target vectors. These stable vectors can be viewed as memories
that the network recalls when provided with similar vectors that act as a cue to the

network memory.

3.1.3. Network Learning Methods

Network learning is defined as a procedure of synaptic weights adjustment to capture the

information contained in the training data. By changing these synaptic weights, the

network can generate correct outputs when presented with different inputs. Generally, the
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learning methods are divided into two categories: unsupervised learning and supervised

learning [19].

Unsupervised Learning

Unsupervised learning requires no target output vector values, and hence no
comparison of network outputs with a set of predetermined desired outputs. The
learning set consists solely of input vectors, and the learning algorithm modifies
synaptic weights so as to produce consistent outputs. The learning procéss in essence
extracts the statistical properties of the learning set and group similar vectors into
similar classes.

Supervised Learning

In contrast to unsupervised learning, the learning set of supervised learning contains
both input vectors and the corresponding desired output vectors. After the output of
the network for a given input vector is computed and compared to its desired target,
the difference or error is fed back so that the synaptic weights are adjusted according
to an algorithm that tends to minimize this error. The vectors in the training data sets
are supplied randomly and sequerntially to the network and the learning procedure is
repeated until the error for the entire training data set reaches an acceptable low level

that was defined a priori [19].

3.1.4. Network Training Styles
Briefly, the network training style can be grouped into either batch training in which the
weights and biases are updated after all the inputs are represented or incremental training

in which the weights and biases of the network are updated each time when an input is
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presented to the network [37, 38]. Batch learning can be called as epoch learning while
instantaneous learning is the synonym for the incremental learning.

Usually, the training style can also be distinguished as on-line versus off-line
learning. In off-line training, all the data are stored and can be used repeatedly while in
on-line training, each data is discarded after it is represented and the weights are updated.
Batch learning is always off-line while incremental learning is always on-line.

For the neural network used in this thesis, an intermediate method is adopted for
the training, which is named mini-batch [38]. By using this training method, the
parameters (weights and delays) are initialized before the training and during the training
the following steps is repeated: process certain number of training data (two or more, but
not all the training data) first, then update the weights and delays. This particular number
is one of the training parameters denoted by an update period P in this thesis. In other
words, the network treats the P data points as a batch similar to the batch training. After
the weights and delays are updated, the network discards the P data points and the next

P data inputs in the training set are represented to the network.

3.2. Adaptive Time Delay Neural Network (ATDNN)

For conventional networks, each neuron calculates the weighted sum of the inputs
directly and then passes it through a nonlinear activation function while for the time delay
neural network, a certain delay associated with each weight is introduced to each neuron
[36]. Figure 3.4 illustrates the structure of the adaptive time delay neuron. This dynamic
neuron is capable of representing the relationships between events in time. The input—

output relationship of this neuron is governed by
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y(t)=o(2w,-x,-(r—r,-» (33)

where w,.'s are weights of the neuron, r,.'s are delays and o(.) is the activation function.

Figure 3.4 The structure of a dynamic neuron, g™ is the shift operator [36]

A dynamic multilayer feed-forward network is now constructed by using this
dynamic neuron instead of the conventional static neurons in order to obtain a

feedforward ATDNN as indicated in Figure 3.5.

x(¢-1) Feedforward z(7)
ATDNN

Figure 3.5 The architecture of a feed-forward adaptive time delay neural network [36]

3.2.1. Adaptive Time Delay Neural Networks for Nonlinear System
Mapping
In this thesis, a three layer 6 x3x1 adaptive time delay neural network is constructed for

each axis of the satellite to map the nonlinearity characteristic of the wheel. The update

interval for parameters P is chosen as 2 in this thesis. During the training phase, the
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series-parallel architecture of this adaptive time delay neural network is used to map the

nonlinear system with the following input-output nonlinear autoregressive moving

average model.
(@) = fIy(t =1,y =2),.... Y = N, )yu(t = 1),u(t = 2),...,u(t —M,)] G4
Wheel | Y
A 4 -
u(t-1) 71 e(t)
-1
=D » Feed-forward +
ATDNN -
y(®)

Figure 3.6 A series — parallel architecture of the adaptive time delay neural network [36]

By substituting y(t—1) = )Az(t—l) , a parallel architecture commonly named Recurrent

ATDNN and as shown in Figure 3.7 can be obtained which is used to generate an

estimated wheel output during the recall phase.

u(t—1) | Feedforward P
ATDNN Y0 >
Z—]

Figure 3.7 A recurrent adaptive time delay neural network [36]

3.2.2. Adaptation Laws for the Recurrent Adaptive Time Delay Neural

Networks [36]
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3.2.2.1. Output Layer Adaptation Laws

In this layer, the weights and the delays need to be updated. For weights adaptation laws

we have:

3
né*(t)a" 0,
5O =y,O-o} (t);
100,(9)

aW; =0’(net, (t))[o (- z',g)+

do,(t-,

2 3
2 _Tpn _Tkp_l)

N W0 (nel (=T )Y KW o (et (=%, ~ 23 W

p=l

.

owy,

(3.5)

The weights are updated each P period resulting in the update expression for w,;. as

P
w;, (new) = w,; (old) + % Z: Aw,;
p=

(3.6)

where w;; is the associated weight between the k” neuron in the /" layer (output layer)

and the j”neuron in the (/—~1)" layer, and 7, is the delay associated with the weight

wfg. , and P is defined as the update period of the adaptive time delay neural network as

mentioned before.
For the delays, we have:
aok (t )

oty
53 =y (t)—ok ®);

Az‘,g- 167 (t)

1 0o
akg) o'(net (N Vo wl o' (et (t =22, DD ¥ wh o' (net! (t — 7}
. aoz(t—r,llz—rfm—tfp—l) . 6u(t—r,1,2—z'fm—r,fp -1
n2 3 W, 3
oty oty

Therefore, the law for delay adjustment is summarized as
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P
£} (new) = 73 (old) + = YA (3.8)

p=l

3.2.2.2. Hidden Layer Adaptation Laws
Similar to the previous case, we have:

0.
6‘412 2

B O=Y" 5 ()ohe (w);
16070

—- =0 e o)~y +

Ji

ijz'x‘ = 776? ®
(3.9

: , G0 (-7, 72 1> -1
"N=“ j,,O"(net:,(t—z'?n))w,‘,zoJ(net:(t ~T,p _sz'n "‘D)Z:,LWEP 2 Tnzaw: e

Ji

P
W’ (new) = w’; (old) +-;;2ij; ' (3.10)

p=l

o : . . + th . th .
where w); is the associated weight between the j”neuron in the /™ layer (hidden layer)

and the i” neuron in the (/ —1)* layer.

Similarly, for the delay update we have:

( 90> (1)
At =nd (1) 317,2, ;
N3 ’
HOE ZF] 5. (1Yo (net ) ()W)
< aojz (t) ' 2 N2 2 ' 1 2 1 ’ 3 1 2 (311)
7 =O (net} ()Y, vy who'(net) (t =73 )[whyo'(net ) (t = 7,, — 75, = 1))
Ji
w5 005(t—7,, —Th —To - | Qu(t-t, -5 -7, 1)
p=l "qp a 2 + w"l a 2 ]
L Tﬁ ‘[ﬁ

where r;,. is the delay associated with the weight wj.i .
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P
72 (new) = 72 (old) +-;;ZAT},. (3.12)

p=1

3.2.2.3. Input Layer Adaptation Laws

For the weight update we have:

( o' (¢)
Awl, =63 () avjvj.,. ;
S0y =Y 62 (o het (yw?;
100() , 3.13
61:11 =o'(net; ()[o] (t —7};) + w0 (net ) (t — 7}, — 1)) (3-13)
Ji

1 i 2 3
ZNZ w o'(net’(t—1), 1. —I)ZNl w? 00,1 =72 ~Tpn ~Tgp = 1)
p=t P 4 j2 ar n=l ph ow'

L Ji

]

‘s . . -t . th :
where w); is the associated weight between the j” neuron in the /" layer (input layer) and

the " input.

Similarly, for the delay update we have

' 00’ (¢)
Ar}i = 775; )] a;;i ;
| 511y = ¥ 5200 (et ()WY
oo’ (2) , ou(t—1-7') , (3.14)
6; — = o’'(net, ()[W), __ar_]._._fl_ +wh,o'(net} (t -7}, 1))
Ji i

1 3
dos(t—t}, -1, —7., —1)
or!

Ji

]

N3 e 2 1 3 NT 2
E o War O (net ,(t—7;, =7, —=1)) D, oW
S

where ‘rj.,. is the delay associated with the weight wj.i . The number of neurons in output

layer is donated as q here.
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3.3. Neural Network Observer-based FDI Scheme

3.3.1. General Idea

In this section, a neural network observer-based FDI scheme for reaction wheels is
developed and detailed. Three independent observers are designed for each wheel on the
three axes to execute the FDI mission. The block diagram of the proposed scheme is

shown in Figure 3.8.

Faulty?
- Decision
Recurrent Post Signal N
l‘_ATDNN Processing Making
-1 Healthy?
Controller Z Y
0 g F.() Wheel Body |outputf
c Dynamic Dynamic g

Disturbance

Figure 3.8 The neural network observer-based FDI scheme in the recall phase

The recurrent adaptive time delay neural network is implemented here to generate
the estimated wheel output. Comparing the estimated with the actual wheel output, the
residual error signal is generated. After some signal processing, the generated residual
error is used to compare with the pre-defined residual based on the fault free operation of
the wheel. Once the corresponding residual signal has been exceeded the threshold for a
considerable period of time (for instance 20 minutes here), a fault can be concluded to
have occurred.

The proposed recurrent neural network has two inputs, one is the output of the

PID controller and the other one is the one step delay from its output. It also needs two
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parameters, namely: weights and delays but during the recall phase those parameters
which are obtained during the training phase are never adjusted. As mentioned before,
during the training phase a feed-forward adaptive time delay neural network is used.
Figure 3.9 depicts the diagram of the neural network during the training phase. The
inputs for the ATDNN are outputs from the PID controller and one step delay of the
wheel output. The error e is the difference between the actual torque and the estimated
torque from the neural network, which is used to adjust the weight W and the delayz to
minimize itself to the desired performance index. Once the error signal reaches the
acceptable error tolerance, the training can be stopped and the network is considered as
being well trained for generating the estimated data of the wheel as close as the actual
data. The recurrent network which executes the recall task adopts these parameters which
provide good estimated data under fault free circumstances. Once a fault has occurred in
the wheel, the neural network still generates the estimated data that is corresponding to
the normal and healthy case of the wheel. Therefore, the error between the actual and the
estimated torques becomes large when a fault is present and will exceed the

corresponding threshold, which is the purpose of the FDI.
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Figure 3.9 A neural network observer-based FDI scheme for the network training phase

3.3.2. Training Phase of the Neural Network Observer-based FDI
Scheme

3.3.2.1. Training Data Collection

The data for the network training are the output of the PID controller and the
corresponding reaction torque signal. With the aid of MATLAB, the wheel model is
simulated to operate normally with a sampling period of 0.1 minute. During the first 200
minutes, the wheel will change its position from an initial angle of 0° to the required
setpoint of 2° and then it continues to change to another setpoint of 6 in the following
200 minutes. The data collected from the output of the PID controller and the output of
the wheel are collected as training input signals 1 and 2, respectively. The typical training
data signals for the training of the neural networks for one axis are shown in Figure 3.10

and Figure 3.11 as well as the corresponding setpoint changes as shown in Figure 3.12.
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Figure 3.10 Network training data 1 from the controller

Input 2 for NN training
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T

Figure 3.11 Network training data 2 from the wheel
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Setpoint change for NN training
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Figure 3.12 Satellite setpoint change command for training and the actual position

3.3.2.2. Training Data Pre-Processing
Given that the activation function adopted in this network is a tangent sigmoid function,

one needs to normalize the training data set into the range [-1,1] to ensure that each

input has an equal impact on the training set for good and fair representation.

3.3.2.3. Network Initialization

The weights are randomly generated in the range [-0.5, 0.5] and the delays are pre-
defined in the range [0, 5]. The potential influences caused by the initial weights are

avoided by repeating the training process several times, which is 20 times in this thesis.
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3.3.2.4. Network Training

With the initial weights and the delays specified as indicated earlier, the network is
trained on-line with an adaptive learning rate for the weights and a fixed learning rate for
the delays. The sample interval for the adjustment P is chosen as 2, which implies that
the weights and delays are adjusted after processing each 2 data points. The weight
learning rate is ihitialized as 0.85 and the adjusting rule is borrowed from traingd, a
MATLAB defined training method. Specifically,

e To implement this method, the initial network outputs and errors need to be

calculated in advance. At each sampling interval P, new weights are calculated using

the current learning rate as well as the new outputs and errors.

e On the one hand, if the new error exceeds the old error by more than a ratio,

e.2.1.04, this implies that the current learning rate is too high and therefore needs to

be decreased by multiplying it with a factor, e.g. 0.7. The new weights are also

discarded and the weights are kept as before.

e On the other hand, if the new error is less than the old error, then the learning rate

is increased by multiplying it with the factor 1.05 in this thesis.

The learning rate for the delays is fixed as 0.001 and the maximum delay 7 _, is

selected as 200. The weights and the delays need to be stored during the training
according to the sampling interval. After several training epochs, once the network
becomes saturated or the magnitude of the mean square error Mse reaches10~, then the
training process is terminated. The final training result for a typical scenario including the

corresponding performance and the mean square error is shown in Figure 3.13.
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Figure 3.13 The MSE performance
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Figure 3.14 The estimated torque signal generated during the tfaining neural network
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Original residual error in training phase
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Figure 3.15 The actual residual error generated during the training phase
As illustrated from Figure 3.15, after the spike which is due to the sepoint change,
the error is neatly around zero, which shows that the trained neural network models the

desired reaction wheel output quite well.

3.3.2.5. Parameter Determination

After completing 20 different training scenarios, the parameters of the network to be used
for the recall phase should be collected properly. Since the weights and the delays in the
last epoch of thé training approach are stable, the mean value of the last 300 sampled
intervals is calculated for each training process. After gathering these 20 mean values, the
mean of the previous 20 mean values is calculated and is then considered as the final

mean value of the weights and delays for the trained network.
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3.3.3. Threshold Generation for the Neural Network Observer-based
FDI Scheme

3.3.3.1. The Residual Error Generation

The threshold for fault detection is generated based on the residual errors obtained under
fault free operation of the wheel. The residual error is defined as the difference between
the actual reaction torque from the wheel and the estimated values from the neural
network. Once the instantaneous residual error is made available, it needs to pass through
a low pass filter to be smoothened and so the moving average value of the residual error
will be substituted for the raw residual error as the proposed residual signal in the rest of
this thesis. For this purpose, the moving average filter window size is to be considered as
a design parameter. Large window size will output smooth residual signal by scarifying
its accuracy. Therefore, a compromise is needed here. Based on a number of experiments,
the window size is decided as 250, which means that the residual is generated on the
mean value of each batch data in 25 minutes. A typical residual error signal is shown in

Figure 3.17.

3.3.3.2. Threshold Curve Determination

The threshold curves should be capable of bounding the residual error signal when the
wheel is operating under normal situation. Once the error signal has exceeded this
boundary, either its upper or/and its lower bound, for a considerable time period (e.g. 20
minutes) the decision making block can make judgment on the existence of a fault. The

formula that we use to calculate the threshold is given by

Xthreshold = Yresidual +axa (315)
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where the value o is the standard deviation of the residual signals and o is a factor
which can be different for the corresponding upper or lower boundary curves. The larger
the value of a, the more conservative the threshold curve will be, however, it also
implies that it has lower capability for use in the case of small fault detection.

The general way for generating the threshold is based on the training phase. That
is, the residual error is collected during the training phase. In this thesis, we propose to
compute the threshold based on the recall phase, in which the residual error is collected
for the recall network whose parameters are provided by the training network. In other
words, the purpose of the training network is that it is responsible for providing the
parameters that are used by the recall network. The advantage of this method is that it
facilitates the thresholds being independent of the training phase, which is feasible and
practical. For instance, it is impractical to train a network for a long time and then use the

generated threshold for fault detection.

Although the network may be well trained at setpoint changes from 2" to6’, it
may have strong representation capability and may be éble of mapping the setpoint
changes up to higher degrees. However no unique threshold is able to map all the setpoint
changes, and therefore the parameters for generating the thresholds need to be adjusted.
In this thesis, one set of thresholds has been found be capable of bounding all the setpoint
changes from 2.5 t07.5" during the fault free operation of the satellite. The parameters
that are used to generate this threshold are listed below:

o for the threshold obtained based on training:

a) The window size for the residual error is set to 305;

b) «a range is from 25 to -9.
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o for the threshold obtained based on recall:

a) The window size for the residual error is set to 250;

b) Therange of « is set from 5 to -5 or 3 to -5.

The threshold curves based on the training approach is shown in Figure 3.16

while the comparable threshold curves obtained based on the recall approach is shown in

Figure 3.17.

Normal operation at 3 degree

x10°

[am]
I T T T =

B 3 ' N '

e S 1 [} )

e feod [0 ] [} '

S o o ' ' :
F= H ' ! o]
E u u lllllll YT i e S el b ——— 8
O o " ' ' -

25 " : "
=N -3 I L S S U 48
o o 5 ' ! ' -

xr o a ) ' '

* _ ' 1 :
' : . o
' L qeemeemc—- il R R o= —— 4
| " " " -

] 1 £ []

T [} 1 ~-ﬂ 1
: ' 1 ) 1 o
llllllll e m e e m e, .- ——————y e st e B oY |
' 3 ] < ' e

] 1 H H [}

) ] 1] 1

) ] 1 1

L L 1} 1
1 ' ] 1 ()
llllllll e m e m .- e R R en ]
1 L] » L} p—

] ] ] N B

] ] 1 & [}

1 1] 1] 1

' [ 1 N [l

L] 1] [} 1
llllllll Tllll'l-l-“lllllllllulllllIIHI dall!bllllulllllilll [am]
L} 1] 1] 4 1 8

t ' ' N ]

1 [} ] 1

1 [} » [}

1 ] 1 “ ]
........ Y SRR SV RPRPIY SUPIOT I AU NI I
" ' : r ' ©

t [} [} 1

[} ) t 1

] ) 1 1

] ] t 1
nnnnnnnn P emccmmmcge e —aap mmncpammamea] O3
1 1 1 ' =t

1 1 [ ——1 '

PRy~ N iy

1 1] L} 1

] ] L} ]

[} 1 1 L]
u...w ..... bememmaan Mammmmm—aa - ek esmaman — >
Ay [ ] ] ] N

L} 1 1 ]

. : : '

—r L] ¥ ]

o, e} i
o <t ™ .“./._ L= L]

IAN) Jou13 [enpisay

Time (minutes)

Figure 3.16 The threshold curves for the residual error test based on the training approach
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Normal operation at 3 degree
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Figure 3.17 The threshold curves for the residual error test based on the recall approach

Both the above two threshold curves are formed under a fault free operation of the
satellite and they provide absolutely false alarm free detection results. It should be stated
here that false alarm free results do not imply that the actual torque signal at no time
exceeds the threshold curve under fault free operation. However, if the time the residual
error exceeds the thresholds is less than our detection time (20 min), then this situation
will not be considered as a false alarm. This is due to the fact that the entire system is
adaptive and nonlinear, and the disturbances imposed on the satellite also impact the
wheel performance. Moreover, a false positive situation will occur when the fault is
removed from the wheel, during which the signal tends to move back inside the threshold
curves. Therefore, no threshold curve can guarantee that the residual error will never

exceed the thresholds under normal operation of the wheel.
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3.3.4. Decision Making for the Neural Network Observer-based FDI

Scheme

Once the residual signal has exceeded the threshold curves from a given point of time for
more than 20 minutes, a fault would then be considered to have occurred at that point.
Although the three axes are coupled dynamically together, the isolation study conducted
in the next chapter shows that the fault detection is only caused by the fault in that axis

itself. Details are provided extensively in the next chapter.

3.4. Conclusions

After the basic concepts of neural network are introduced, a recurrent adaptive time delay
neural network is constructed in this chapter. The entire FDI scheme with this recurrent
ATDNN is provided in details. Simulation results of the neural network training phase
provided that the trained recurrent adaptive time delay neural network is capable of

modeling the wheel output quite well.
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Chapter 4

Simulation Results of the Proposed FDI Scheme for the

Reaction Wheels

4.1. Individual Setpoint Detection

For all the cases that are studied in this subsection, the fault has occurred at t = 100
minutes in a single axis and the other two axes do indeed operate under normal and

healthy conditions.

4.1.1. Voltage Fault Studies

4.1.1.1. Fault Detection for a Voltage Drop

Briefly, the network is capable of detecting faults corresponding to voltage changes from
8V to 0V, 1V, 2V, 3V and 4V; however it can not detect smaller voltage changes such as

8V to 5V. A typical ¥, fault detection result is shown in Figure 4.1.
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Detection for Vbus fault from 8Y to 2V
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Figure 4.1 The detection result for a bus voltage fault

For the sake of convenience, in this thesis the term transient phase (T.P.) is used
to describe the time period from the period t = 100 minutes (the beginning of the fault
occurrence) to t = 120 minutes, the term intermediate phase (L.P.) is used to describe the
period from t =120 minutes to t = 160 minutes and the term steady state (S.S.) is used to
denote the time t > 160 minutes, as shown explicitly on Figure 4.1.

Table 4.1 and Table 4.2 summarize the results for a number of detection scenarios
for satellite operating at different setpoints. In these tables D denotes Detected and UD
denotes Undetected. Table 4.1 depicts the results whose threshold is generated by the
recall network approach with the following detailed procedure as follows:

o First, a recall network is constructed with weights and delays obtained from a

training network.
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o This network is then used to generate the residual errors under normal operation
for each individual setpoint from 2.5 deg to 7.5 deg.

¢ Next, the mean value of the residual error curves and their standard deviations
are computed.

¢ Finally, the proper parameters for the threshold curves in which a is capable of
providing false alarm free detection for as many setpoints as possible are obtained.
For Table 4.1, the range for & is chosen as [-5, 3]. If the upper boundary parameter is
increased to 5 (for the sake of symmetry with the lower boundary), the detection
results will be slightly different from those shown in Table 4.1. These results are not
shown here.

Table 4.1 The Voltage fault detection results based on the recall approach

8§V -0V 8§V -0.5V 8V -2V 8V -3V 8vV-4V Average
D with D with D with
T. 4.4min UD 0.7min 2.2min UD 2.4333
P. delay delay delay min
D but D but D but
ambiguous from D after ambiguous from | ambiguous from
2. L t=125.2 t=155.3 min t=1384 t=129.6 .
3 P. min to (35.3 min min to min to ub 19.3 min
Deg t=131.3 min delay) t= 1427 min t=160.9 min
(6.1mins) (4.3mins) (31.5mins)
D with
S. 15.5 min
S. D D D D delay 3.1 min
t=175.5 min
D with D with D with
T.
3 P. 3.1 min UD 0.5min 1.6 min uD 1.7333
Deg| '|  delay delay delay min
D but
. D but
ambig.il(?:st from D after amgf:xn ous ambiguous from
L t=122.8 L= 147.5 t=1372 t=126.1 UD 15.7500
P, min to mins min to mmnto min
t=127.9 min (27.5min) t=141.1 mins ¢ ;-2;552m61:s1;n
(5.1mins) (3.9mins) ’
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D with

5.3min 5'3/ 5
D D D D delay ‘.
1.06
£=165.3min .
D with D with D with
3.8min delay UD 0.6min 1.9 min UD 2.1min
delay delay
D but D but D but
ambieuous from ambiguous from | ambiguous from
03 D after t=1372 t=126.4 UD
3.5 min tc; T=151.1mins min to min to 17 min
_ . .Imin t= min t= .2 min
D t=27.3 min (31.1mi 141 mi 152.5 mi
cg (Tming) (3.8mins) (26.1 mins)
D with.
15.2min 15.2/5
D D D D delay =
t=175.2min 3.04 min
. D with D with
D with . .
. 0.6 min 1.8min 1.7667
2.9min delay UD delay delay UD min
D but D but D but
ambiguous from D after ambiguous from | ambiguous from
A = 1511 t=137.3 t=126.8
min o min ’ min to min to UuD 15.9500
t=127.3 min (31.1min) t= 141 min t=150.5 min min
4 ( 5.3n;ins) ’ (3.7mins) (23.7 mins)
Deg
D with
4.4 mins
delay
t=164.4 min _
D D D D but 4.4/5=
. 0.88min
ambiguous
after
t=188.9 min
D with D with
D with 0.8min 2.8mins .
6.3 mins delay UD delay delay UD 3.3min
D but D but D but
ambiguous from ambiguous from bi £
t=122.6 Daftert= | t=137.1minto | “Z 3007 "
4.5 min to ‘5(‘3-?‘;’;“3 t = 140.7min o ub 16525
Deg t= ;27.6mn (3.6 mins) t= 151 7min
(Smins) (25.6 mins)
D with
12.3min _
D D D D delay 21 ig /5 .
t=1723mins | <70 ™0
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D with D with D with
3 min 0.7min 1.7 min .
delay Ub delay delay UD 1.8min
D but D but D but
ambiguous from ambiguous from | ambiguous from
5 t=123.8 D after =137.1 t=126.3
D min to t= 148mins min to min to ub li’fZS
cg t=128.4 min (28min). t = 140.7 min t=152.4 min !
(4.6mins) (3.6mins) (26.1mins)
D with
9.2min delay 9'?_/5
D D D D - . =
t=169.2mins .
1.84min
D with D with D with
2.6mins UD 0.5 min 1.7min .
delay delay delay ub 1.6min
D but D but D but
ambiguous from D after ambiguous from | ambiguous from
t=123.2 t= t=137.12 t=126.7 UD
5.5 min to 154 Smins min to min to 17.225min
Deg t=127.9min (34.9min) t=140.7 min t=152.4 min
(4.7mins) ’ (3.6mins) (25.7mins)
D with
12.1mins 12'=1/5
D D D D delay .
=172.1mins | 24%min
D With D with D with
delay ub 0('!7""“ 2.2 min UD 2.0333min
elay delay
6 D but D but D but
Deg| | e | (Dlass | embigous fiom | SUEEOM
L g t=137 min to L UD 15.0250
min to min t =140.7 min minto min
1=127.9 min (25.8min) 3 7n}ins) t=152.1 min
(5mins) ’ (25.6mins)
D with 12.1/5
D D D D 12.1 mins =
delay 2.42min
t=172.1mins
6.5 D with D with D with
d 0.2mins Ub 0.2mins 0.2 mins UD 0.2min
cg delay delay delay
D but D but D but
ambiguous from ambiguous from | ambiguous from
t=122.9 Daflert= t=137.1 t=126.4 16.9750
min to 152.1mins min to min to UuD r;lin
t=127.9 min (32.1min) t =141 min t=153.3 min
(5mins) (3.9mins) (26.9mins)
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D with

S. b 5 o b 14.5mins | 4P
S. delay 2 9min
t=174.5min ’
D with D with D with
Iy 1.9mins UD 0.4mins 0.9mins UD 10667
’ delay delay delay
D but D but D but
ambiguous from ambiguous from | ambiguous from
I t=1229 Daftert= t=136.9 £=126.3 16.7 min
7 P' min to 152.4mins min to min to UD ’
deg ) t=127.6 min (32.4min) t=140.7 min t=152.2 min
(4.7mins) (3.8mins) (25.9mins)
D with
S. b b b b 143mins | 435
S. delay 2.86min
t=174.3min )
T D with D with D with
P' 2.9mins UD 0.6mins 1.7mins uD 1.7333min
’ delay delay delay
D but o D but
ambiguous from am 1g_uous om ambiguous from
1 t=121 D after t=137.1 £=126.1 17.5750
755 o = 154.2mins min to . UD >
deg | | —1274mi (34.2min) t=141 min _ame o
=127.4 min (3.9mins) t=1 51.9.mm
(6.4mins) (25.8mins)
D with
S. D D D D 11.6mins 1 1_':6/5
S. delay 2 32min
t=171.6min ’

Table 4.2 summarizes the detection results by using the thresholds that are

gathered from the training phase approach with its corresponding procedure are given by:

First, generate the residual errors that are obtained from the training under normal

operations but only maps two setpoints. For the sake of convince, call them residual

errorl. Since the training phase is based on 20 different initial conditions, there are 20

residual errorls available.

Find the mean value of the residual errorl curves and their standard deviation.

Construct a recall network with weights and delays as obtained from the training

phase described above.
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Use the recall network to generate the residual error under normal operation for

each setpoint of the scenarios. For the sake of convince, call them residual error2.

Finally, find the proper parameters for the threshold in which a is capable of

providing false alarm free detection for all those residual error2 curves. For Table 4.2,

the range fora is set to [-9, 25].

Table 4.2 The V,, fault detection results (threshold based on the training approach)

8V -0V 8V 0.5V 8V -2V gv-3v 8V 4V Average
D with D with D with
T. 9.3min uD 2.5min 8.7min UD 6':}?33
P. delay delay delay
D but oou D but
ambiguous from am frgrun U ambiguous from
25 |1 t=121.2 _ t=126.8 20.9333
P min to ub t=1338 min to ub min
Deg ’ _ . min to _ .
t=134.7 min t=142.5 min t=167.4 min
(13.5mins) (8.7rr;ins) (40.6mins)
S D with
: D with 21 min delay 4.58
S. b 1.9 min D D t= 181 min min
T D with D with D with
P. 13.9 min uUD 2.4min 9 min uD 8.4333
’ delay delay delay min
D but
D but ambiguous ambi D:::; from
ambiguous from from ¢ Eu 1215
3 I t=120.6 uD t=133.3 min t(; uD 18.1
P. min to min to t = 160.4min min
Deg t=127.8 min t=1415min | ‘o 0
(7.2mins) (8.2mins) ’
D with
g 9.7 min 9.7/5
S D D D D delay =
’ t=169.7min 1.94mins
. D with D with
35 1| ,OWh UD 2.4 min 8.8 min UD 6.8333
Deg | P. ~min delay delay delay min
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D but

. D but
D but ambiguous .
ambiguous from from amt;niu 10 ; ls ;mm
t=119.3 UD t=1333 min t(; UD 18.2
min to min to t=160.3 min min
t=127.3 min t=141.4 min (8 Sr.nins)
(8mins) (8.1mins) ’
D with
20 min delay 20/5=4
D b D D t = 180min min
D with D with D with
13min 2.4 min 9 min 8.1333
delay ub delay delay ub min
D but bt D but
ambiguous from PS grun ambiguous from
t=120.5 = t=121.5
min to uD tr—niln32;3 min to uD 171.;?]67
4 t=127.4 min t=141.4 min t=159.8min
Deg (6.9mins) (8. 1mins) (38.3 min)
D with
4.5 min delay
t=164.5 4.5/5
D D D D but 0.9mins
ambiguous
after
t= 188 min
D with D with
D with 14.2 2.8min 9.1mins 8.7
mins delay ub delay delay ub min
D but D but D but
ambiguous from ambiguous ambiguous from
t=120.5 from
4.5 min to uD ~1332 = 1211 UD 18.0667
Deg t=127.5min min to _mm to min
. . t=160.2 min
(7mins) t=141.3min (39.1 min)
(8.1 min) ’
D with
17.8 min 17.8/5
D D D D delay =
t=177.8 3.56 min
5 D with D with D with
13.8 min 2.3min 8.8 min .
Deg delay upb delay delay up 8.3 min
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D but

. D but
. D but ambiguous ambiguous from
ambiguous from from t=121.7
I. | t=120.8 min to UD t=133.2 . t' UD 18 mi
P.| t=128min min to e min
. _ . t=160.4 min
(7.2mins) t=141.3 min .
(8.1mins) (38.7mins)
. D with
D with .
S. D 0.2mins D D 15.5min 3.14 min
S. dela delay
y t=175.5 min
D with D with D with
T. 9.2 mins UD 2.3 min 8.7min .
P. delay delay delay Up 6.7333 min
D but am]l:)ﬁbu(t)us D but
ambiguous from Py gz) ambiguous from
L| 51205 UD t=1332 t=121.7 UD 17.9667
55 1p min to min to min to min
De t=127.’{' min t=141.3min t=160.3_mm
2 (7.2mins) (8.1mins) (38.6mins)
D with 0.2
min D with
S. delay 10.8mins 22
S. b t=160.2 D D delay min
min t=170.8 min
D with D with D with
T. 9.2min UD 2.4min 8.8 min UD 6.8
P. delay delay delay min
6 D but D.but D but
. ambiguous .
Deg ambt1g=ul(;1(1)s 5from from ambtl g=11102uls ;‘rom
L Lo UD t=133.2 L UD 17.9667
P min to min to min to min
’ t=127.8 min _ . t=160.3 min
. t=141.3 min .
(7.3mins) (8. 1mins) (38.5mins)
D with 16.6/5
S. 16.6 min =
S. D D D D delay 3.32
T =176.6 min
6.5 D with D with D with
T. 9mins UD 2.1mins 5.6mins UD 3-5667
de P min
g : delay delay delay
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D but aml‘zi bu:’ D but
ambiguous from £ grun us ambiguous from
t=120.5 =121.
min to UuD t:};sz‘)z tmilj 107 UuD 1nSm11
t=1227.7 min t=141.5 min t=160.5_m1n
(7.2mins) (8.3mins) (38.8mins)
D with
D D D D 17.4 mins 3.§
delay min
t=177.4 min
D with D with D with 6.7
9.2mins UD 2.2mins 8.7mins UD ",
delay delay delay min
D but am‘si"“;u D but
ambiguous from £ 51:1 s ambiguous from
. o | oup | ez | AT up 17.8667
deg t=127:6 min t=141.3 min t=160.3‘m1n
(7mins) (8.1mins) (38.5mins)
D with .
0 4mins D ith 256
D delay D D mins »
1= 1604 delay min
. t=177.4 min
min
D with D with D with
18.4 mins UD 1.9mins 9.6mins UD %5667
delay delay delay n
D but a ]g‘bu:) D but
ambiguous from M OIEUouS ambiguous from
t=119.9 from t=122.1
min to UD t=133.2 min to UD 18.1
Z’S £=127.2 min (oo | £=160.0 min min
€g (7.3mins) (8. 1ming) (38.9mins)
D with D with
0.6mins 17.4 mi 36
D delay D D ’ ] ns X
t=160.6 delay min
. t=177.4 min
min

By comparing results shown in Table 4.1 and 4.2, one may arrive at the
observation that the detection results are consistent with each other although the results
obtained based on the recall approach still has a slight advantage in the sense that the
delay time is shorter and the parameters (the window size, the value of « ) for composing

the thresholds are smaller.
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4.1.1.2. Reliability Analysis for 7, Faults

The detection results for large 7, faults have been studied in the previous subsection.
Clearly, the proposed neural network is capable of detecting large faults for different
setpoints. However, for small ¥, signal changes in which the magnitude is less than 4V,

for instance 8V to 5V, the input used for the network recall is not significantly changes
by the fault occurrence; therefore, the network is unable to detect it as a fault regardless

of which setpoint the fault has occurred. The simulation results are provided in Figure

472,
Neural network detection for small Vbus fault
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Figure 4.2 The neural network is unable to detect small ¥, change from 8V to 5V

In Figure 4.2, the fault has occurred at t = 100 minutes, however, the residual

error did not cross over the thresholds even after its steady state t >= 160 minutes.
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Therefore, the neural network has failed to detect this fault. This detection result is
applicable to any fault whose magnitude is less than 4V. To investigate the reason for this
behavior, the input to the neural network for small faults is studied and the results are

shown in Figure 4.3 to Figure 4.5.

Meural network input signal with small Vbus fault
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Figure 4.3 The neural network inputs for the 8V to 5V and 8V to 4V V faults

Figure 4.3 shows the inputs to the network which reveals that even though the

V,, faults from 8V to 5V and 8V to 4V are not significantly different, the impacts they

cause to the network input are significantly different. The input to the network for the 8V

to 4V ¥V, fault increases alike a ramp function after the transient period while the input
for the 8V to 5V 7, fault behaves like a step function. Consequently, the detection

capability for these two changes is different as shown in Figure 4.4. For the 8V to 4V
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V,, fault, after the input has experienced a transient phase (t >= 140 minutes), the input

does increase. The neural network has detected this change with about 20 minutes of
delay, after t = 160 minutes, when the residual signal has exceeded the threshold

boundary. Since the input for the 8V to 5V ¥, fault did not change much, the residual

signal has remained inside the threshold boundary.

Neural network detection for 8Y to 5V vs. 8V to 4Y Vbus fault
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Figure 4.4 Detection for the 8V to 5V vs. 8V to 4V V. fault
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Satellite output with undetected Vbus fault vs. detected fault
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Figure 4.5 The satellite position change for the 8V to 5V vs. 8V to 4V V,  fault

Figure 4.5 shows the satellite behavior under these two fault scenarios. Before the
fault occurrence, the satellite behavior is undistinguishable and with the fault occurring at
t = 100 minutes, one curve deviates from its orbit rapidly (after t = 140 minutes) while
the other one just deviates away a small distance which is still acceptable and within the
design steady state error accuracy requirement.

From this example it follows that small faults do not result in the satellite
behaving sufficiently abnormally. However, this does not imply that one changes the

definition of a fault. It is not true that small 7, faults can not contribute to the satellite
abnormal operation. Under some circumstances, for instance when”V,,, fault has occurred

simultaneously with another fault, a small 7, fault is still capable of causing detectable
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influence. In some cases, it also has the tendency to “explode” with increase in time and
eventually cause a failure to the entire system.

From the FDI scheme point of view, it is acceptable if the network fails to detect a

small 7, fault as long as it is unable to cause difficulty for the entire system. However,

the more important aspect is that the neural network does not fail to detect a fault which

can potentially cause the satellite system to behave abnormally.

4.1.2. Current Fault Studies

4.1.2.1. Fault Detection for Current Drop

Generally, current fault does exert more influence on the wheel than the voltage drop.
The neural network is capable of detecting current faults from 1A to 0A, 0.1A, 0.2A,

0.3A and 0.4A. A typical current fault detection is shown in Figure 4.6.
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Detection for current fault from 1A to 0.3A
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Figure 4.6 The detection results for the wheel current fault
Table 4.3 and Table 4.4 present a number of current fault detection results for the
satellite operating at different setpoints. Table 4.3 shows the result when the threshold is

generated from the recall approach network and the procedure is the same as in Table 4.1

(see page 69).

Table 4.3 Detection results for current faults (threshold is based on the recall approach)

1A-0A 1A-0.1A 1A-0.2A 1A-0.3A 1A-0.4A Average
D with D with D with D with
T. 0.9min 1.2min 1.9min 4min UD 2
P. delay delay delay delay min
D but D but D but D but
25 ambiguous from | ambiguous from | ambiguous from | ambiguous from D after
’ L t=146.7 t=145.7 t=132.8 t=129.3 t=127.6 16.9
Deg P. min to min to min to min to min min
t=154.6 min = 160.6 min t=164.7 min t=151.5 min 7.6mins
(7.9mins) (14.9mins) (31.9mins) (22.2mins)
S. D D D - D D 0
S. min
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T D with D with D with D with
P' 0.6min 0.8min 1.1min 2.83min UD 1.3250
’ delay delay delay delay min
D but D but D but
D but . ambiguous .
3 . ambiguous from ambiguous from D after
ambiguous from | "y _ 1419 from t=125. £=125
Deg I t=143.3 L t=130.2 L . 11.3200
P. min to — ;m: o min to _mm to. mins min
t=149.3 min “(135m'§1 :)““ t=151.5 min t(l_lli’?an:::)] (5 min)
(6mins) (21.3mins) ’
g' D D D D b 0
D with D with D with D with
T. 0.8 min 1.0 min 1.5 min 3.2 min UD 1.6250
P. delay delay delay delay min
D but D but ambi D(l))l?st from | ambi D::; from
3.5 ambiguous from | ambiguous from tiu 130.1 tiu 1252 D after
D L. t=1432 t=141.8 min t‘ min t. t=126.3 11.2800
€€ | p min to min to mro - 0. mins min
_ . _ . t=150.9 min t=134.4 min .
t=150.2 min t=154.9 min (20.8mins) (9.2mins) (6.3 min)
(7mins) (13.1mins) -omins :
S 0
S. D D D D D min
D with D with D with D with
T. 0.7min 0.8min 1.4min 2.4min Uub 1.3250
P. delay delay delay delay min
D but D but D but D but
4 ambiguous from | ambiguous from | ambiguous from | ambiguous from D after
t=142.9 t=1414 =129.9 t=125.6 t=126.2
Deg II, min to min to min to min to mins 11;:}.100
: t=149.3 min t=154.9.min t=150.7 min t=136.9 min (6.2min)
(6.4mins) (13.5mins) (20.8mins) (11.3mins)
S.
g D D D D D 0
. . D with D with
T. D with D with 2 4min 6.3mins UD 2.7500
P 1.0mins 1.3mins dela dela min
’ delay delay y Y
D but D but D but D but D after t=
ambiguous from | ambiguous from | ambiguous from | ambiguous from 1263
45 | L t=143.5 t=141.7 t=130.2 t=125.2 min.s 13.2000
D P. min to min to min to min to (6.3 min) min
cg t=1505min | t=154.9 min t=151.5 min t=143.4min :
(7mins) (13.2mins) (21.3mins) (18.2 min)
S. .
S D D D D D Omin
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D with D with D with D with
0.8min 0.9 min 1.5min 2.8 min uD 1.5000
delay delay delay delay min
D but D but D but D but
ambiguous from | ambiguous from | ambiguous from | ambiguous from D after
5.0 t=143.3 t=1417 t=130.3 t=1258 t=127.3 12,6800
Deg min to min to min to min to min ) in
t=150.4 min t=154.9 min t=150.4 min t=141.5 min (7.3min) m
(7.1mins) (13.2mins) (20.1mins) (15.7mins)
D D D D D 0
owith D with D with D with
: 0.8min 1.1 min 1.9 min 1.1250
delay Uub .
delay delay delay min
D but D but D but D but
55 ambiguous from | ambiguous from | ambiguous from | ambiguous from D after
D t=142.4 t=141.4 t=129.9 t=125.6 t=127.0 11.9600
cg min to min to min to min to min 1;1in
t=149.0 min t=154.9 min t=150.9 min t=137.3 min (7min)
(6.6mins) (13.5mins) (21mins) (11.7mins)
D D D D D 0
D with D with D with D with
0.8 min 1.0min 1.8 min 3.2 min UD 1.7000
delay delay delay delay min
D but D but D but D but
6 ambiguous from | ambiguous from | ambiguous from | ambiguous from D after
D t=142.9 t=141.9 t=130.1 t=1259 t=1263 11.7800
cg min to min to min to min to min. r'nin
t=150.7 min t=154.9min t=150.9 min t=136.9 min (6.3min)
(7.8mins) (13mins) (20.8mins) (11mins) ’
D D D D D 0
D with D with D with D with D with
0.2 min 0.2 min 0.2 min 0.2 min 0.2 min 0.2
delay delay delay delay delay min
D but
D but D but D but D but ambiguous
ambiguous from | ambiguous from | ambiguous from | ambiguous from from
t=142.9 t=142.5 t=130.2 t=125.3 t=120.5
6.5 . . . . . 10.9200
. min to min to min to min to min to min
deg t=149.2 min t=155.2min t=150.9 min t=132.5 min t=128.2
(6.3mins) (12.7mins) (20.7mins) (7.2mins) min
(7.7mins)
D D D D D 0
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D with D with D with D with
0.5min 0.6 min 0.8min 1.8 min UD 0.9250
delay delay delay delay min
D but D but D but D but
7 ambiguous from | ambiguous from | ambiguous from | ambiguous from D after
de t=143.1 t=142.4 £=130.2 t=125.1 £=1208 9.5400
24 min to min to min to min to . -,
t=149.3 min t=155.3 min t=151.6 min t=131.5 min (Orgrl:in) min
(6.2mins) (12.9mins) (21.4mins) (6.4mins) ’
D D D D D 0
D with D with D with D with
0.8 min 1.0min 1.4 min 2.8 min UD 1.5000
delay delay delay delay min
7.5 D but D but D but D.but_
ambiguous from | ambiguous from | ambiguous from ambiguous
deg t=143.1 t=1414 12130.2 from D after
L L O t=1253 t=127.1 12.0800
min to min to min to . . A
£ =150 min £=154.9 min t=151.5 min _minto min min
(6.9mins) (13.5mins) (21.3mins) t=1369min | (7.1min)
’ ’ ’ (11.6mins)
D D D D D 0

phase approach and the procedure is the same as in Table 4.2 (see page 73).

Table 4.4 shows the results when the threshold is generated from the training

Table 4.4 Detection results for current faults (thréshold is based on the training approach)

1A-0A 1A-0.1A 1A-0.2A 1A-03A 1A-04A Average
D with D with D with D with '
3.9min Smin 6.5min 13.8min UD 7.3000
delay delay delay delay min
D but D but D but D but
ambiguous from ambiguous from | ambiguous from | ambiguous from
t=1384 t=134.1 t=129.9 t=1222 UuD 26.3250
min to min to min to min to min
2.5 t=160.8 min t=163.7 min t=161 min t=161 min
: (22.4mins) (29.6mins) (31.1mins) (22.2mins)
Deg
D D D D D 0
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D with D with D with D with
3.4min S5min 6.4min 13.2min UD Tmi
delay delay delay delay min
D but D but D but D but
3 ambiguous from ambiguous from | ambiguous from | ambiguous from D after
_g}] t=1329 t=1279 t=122.1 t=1249
Deg t=136.9 . . . : 20.2200
min to min to ) min to ) min to i mm‘ min
_ . t=160.9 min t=161.3 min t=154.9 min (4.9min)
t=153.9 min (13mins) (33.4mins) (32.8mins)
(17mins) ’ '
D D D D D 0
D with D with D with D with
3.9min Smin dela 6.3 min 14.8 min UD 7.5000
delay Y delay delay min
D but D but ambi . b: ; from | ambi Dcl)) u: from
35 ambiguous from ambiguous from 1 iulo 2,; 8 t _g__u ] ;I 8 D after
Deg t=137 t=132.7 L o t=1259 23.3000
min to min to _ ;1161;1 ;0 . _ ]11;1; ;0 . min min
t=153.9 min = 161 min t 3dming) “(32m‘in;‘)““ (5.9min)
(16.9mins) (28.3mins) ’
D D D D D 0
D with D with D with D with
3.9min Smin 7.1min 14.1min UubD 7.5250
delay delay delay delay min
D but D but D but D but
ambiguous from ambiguous from | ambiguous from | ambiguous from D after
4 t=137 t=132.7 t=127.7 t=122.1 t=25.6
. . . . . 24.2000
Deg min to min to min to min to mins min
= 152.2min t=16Imin t=161.3 min t= 160.4min (5.6min)
(15.2mins) (28.3mins) (33.6mins) (38.3mins)
D D D D D 0
. . . D with
D with D with D with .
4.2mins 5.1mins 7mins 14&2{: 1ns Upb 7.32mins
delay delay delay Y
D but D but D but D but
ambiguous from ambiguous from ambiguous from ambiguous from D after
t=137.1 t=132.8 t=1278 t=1218 = 154
min to min to min to N . 11.2mins
4.5 t=155min t=160.9 min t=161.2 min _“i‘gom . mins
Deg (17.9mins) (28.1mins) (33.4mins) (3‘8'3m$:‘)‘
D D D D D 1.22mins
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D with D with D with D with
3.9min 5 min 6.3min 13.8 min uD 7.2500
delay delay delay delay min
D but D but D but D but
ambiguous from ambiguous from | ambiguous from | ambiguous from D aft
5 £=137.1 t=1328 t=127.8 t=1221 o1265 | 247400
Deg min to min to min to min to min ’ m
t=154.8 min t=161.9 min t=161.2 min t=160.1min (6.5min) m
(17.7mins) (28.1mins) (33.4mins) (38mins) ’
D D D D D 0
2 with D with D with D with
éela 4.9min 6.2 min 9.8 min UD 6.0250
Y delay delay delay min
D but D but D but D but
55 ambiguous from ambiguous from | ambiguous from | ambiguous from D after
D t=136.9 t=132.8 t=127.7 t=122.1 t=154.2 29.6800
cg min to min to min to min to min' r}li
t=151.1 min t=161 min t=161.3 min t=160.3 min (34.2min) n
(14.2mins) (28.2mins) (33.6mins) (38.2mins) ’
D
D D D D 0
D with D with D with D with D with
3.9 min 5 min 6.4 min 14.8 min 18 9rr]1ins 9.8000
delay delay delay delay delay min
D but D but D but D but D but
6 ambiguous from ambiguous from | ambiguous from | ambiguous from ambieuous from
t=136.9 t=132.9 t=127.7 t=122 Sl 31,8800
Deg min to min to min to min to min to r}lin
t=154.1 min t=161 min t=162.7 min t=159.9 min ¢=160.2 min
(17.2mins) (28.1mins) (35mins) (37.9mins) (41.2mins)
D D D D D 0
D with D with D with D with D with
3 min 4.8 min 5.8 min 9.5 min 18.5mins 8.3200
delay delay delay delay delay min
D but D but D but
6.5 ambiguous from ambi D but from ambiguous from | ambiguous from ambi D::st from
t =136.9min to DIBUOUS t=127.8 t=122 gu
deg — t=132.9min to . . t=120 25.0400
t=153.8 - . min to min to . .
. t=161min _ . _ . min to min
min (28.1mins) t=161.3 min t=160.3 min =128.4 min
(16.9mins) ’ (33.5mins) (38.3mins) @. 4rr.xins)
D D D D D 0
D with D with D with D with D with
7 3.2 min 4.9 min 6.3 min 15.6min B 9.7600
deg delay delay delay delay delay min
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D but

D but

D but

D but

ambiguous from ambiguous from | ambiguous from { ambiguous from ambi D::st from
t=137 t=132.9 t=127.8 t=121.8 f:ug 23.6800
min to min to min to min to into m
£=154 min t=161min t=161.6min t=1539 min ¢ =126 donin "
(17mins) (28.1mins) (33.8mins) (32.1mins) (7.4mins)
D D D D D 0
Dt D with D with - D with
;iela 4.9 min 6.0min 13.2 min UD 6.8500
Y delay delay delay min
D but D but D but D but
7.5 ambiguous from ambiguous from | ambiguous from | ambiguous from D after
deg t=136.9 t=132.9 t=127.9 t=122 _
min to min to min to min to t _r:ﬁs:‘s 26'4.000
t=153.9 min t=161min t=161.2 min t=140.8 min (34 8min) mm
(17mins) (28.1mins) (33.3mins) (18.8mins) ’
D D D D D 0

4.1.2.2. Reliability Analysis for Current Faults

As in the voltage fault scenario, the network is unable of detecting the current faults

whose magnitude is less than the one 0.6 A change as shown in Figure 4.7. The reason is

also the same as in the small voltage fault cases, which is the influences that are caused

by small faults do not provide sufficient change for the neural network to generate

detectable results. Therefore, the neural network fails to detect these faults as shown in

Figure 4.8 and 4.9.
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Small current fault detection
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Figure 4.7 The small current fault is undetectable by the neural network

Neural network input for detectable and undetectable current fault

— — Neural network input for current fault from 1A to 0.4A

Neural network input for current fault from 1A to 0.5A
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Figure 4.8 The neural network input resulting
from large detectable fault and small undetectable fault
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Satellite position
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Figure 4.9 The satellite position changes
corresponding to detectable and undetectable faults

4.1.3. Faults Isolation Study

Since the three axes are coupled together, the influences from the other two axes may
affect the detection results in a given axis. Fortunately, the simulation results reveal that
despite the operating conditions on the other axes affecting the performance on one axis
somehow but they never cause or lead to a false alarm on that given axis. The fault
isolation results for individual setpoints are illustrated below in Figure 4.10 to 4.12. The
yaw axis is operating normally while the other two axes have faults in them. The
detection results on the yaw axis show that the faults on the other axes do not lead to the

yaw axis having any false alarms.

90
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Voltage fault on the roll axis
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Figure 4.10 The ¥, fault on the roll axis at t = 80 minutes
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Figure 4.11 The current fault on the pitch axis at t = 120 minutes
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No infulence exerted on the yaw axis
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Figure 4.12 The yaw axis still operates under normal condition exhibiting no false alarms
Figure 4.12 shows that neither a single fault nor overlapped simultaneous faults
on other axes can cause and lead to false alarm on the yaw axis. Similar results may also

be observed for other axes and are not shown here.

4.1.4. Neural Network Robustness Study

In this subsection, the robustness of the neural network to external disturbances and noise
is studied. The proposed neural network now operates under a fault free scenario but with
higher noise levels. The case studies below are expected to measure the noise level that
the neural networks can tolerate in providing false alarm free detection capability. The

results are shown in Table 4.5.
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Table 4.5 Robustness case studies for higher noise levels in all axes

Noise
level '
increased 3Deg 4 Deg 5 Deg
by
Residual signal exceed from Residual signal exceed from Residual signal exceed from
t=118.5 min to t="115.9mins to t=143.2mins to
t=119.2min (0.7 min) ; = 121.8mins (5.9mins); t = 144.7mins (1.5mins);
t=128.6 min to t=185.2mins to t=145.3mins to
t=131.3 min (2.7 min); t= 185.5mins (0.3 min); t = 146mins (0.7 min);
= 131.8mins to t= 146.4mins to
10% | t=132.6min (0.6min) ; t = 146.7mins (0.3 min)
t=137.5min to
t=137.8min (0.3mins);
t=138min to
t =138.4min (0.4mins);
t=182.9min to
t=186.5 min (3.6mins)
Residual signal exceed from Residual signal exceed from Residual signal exceed from
t=185.2mins to t=110.1mins to t=121.3mins to
t=185.9mins (0.7 min) t=111.9mins (1.8mins); t = 122mins (0.7 min);
t= 114.6mins to t = 126.8mins to
t=122.6mins (8mins); t=127.2 (0.4 min);
0
20% = 123mins to t=129.4mins to
t = 123.3mins (0.3 min); t=130.2mins (0.8mins)
t = 124,5mins to
t = 127.2mins (2.7mins);
t=183.1mins to
t = 186.2min (3.1mins)
Residual signal exceed from Residual signal exceed from None
t=118.5mins to t=109.1mins to
t =119mins (0.5 min); t=113.5 (4.4mins);
t=183.1mins to t=114.2mins to
30% | t=186.4mins (3.3mins) t = 122.4mins (8.2mins);

t=125.6mins to
t = 127.3mins (1.7mins);

t= 185mins to
t = 186mins (1min)
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Residual signal exceed from

t=116.3mins to
t=119.9mins (3.6mins)

Residual signal exceed from

t=110.2mins to
t=111.5mins (1.3mins);

t=116.4mins to

None

40% t=122mins (5.6min);
t=171.5mins to
t=172mins (0.5 min);
t=182.8mins to
t = 187.9mins (5.1mins)
Residual signal exceed from Residual signal exceed from Residual signal exceed from
= 110.1mins to t=118.5mins to t=117.5mins to
t=111.8mins (1.7mins); t=119.2mins (0.7mins); t=118.7mins (1.2mins)
t=114.6mins to t=182.9mins to
t=116.1mins (1.5mins); t = 187.9mins (5mins)
t=118.6mins to
o .
30% t=121.4mins (2.8mins);
t=126.1mins to
t = 127.7mins (1.6mins);
t=183.3mins to
t = 186.1mins (2.8mins)
Residual signal exceed from Residual signal exceed from None
t=110.1mins to t=114.7mins to
t = 129.5mins (19.4mins); t=121.7mins (7mins);
o,
60% = 183.2mins to t=126.4mins to
= 186.1mins (2.9mins) t= 127mins (0.6mins) ;
t=184.4mins to
t = 185.9mins (1.5mins)
Residual signal exceed from Residual signal exceed from Residual signal exceed from
t=117.6mins to t=110.1mins to t=119.6mins to
t=119.2mins (1.6mins); t=113.5mins (3.4mins); t=130.9mins (11.3mins) ;
t=125.2mins to t=114.2mins to t=185.5mins to
70% | t=130.7mins (5.5mins) ; = 129.8mins (15.7mins); t = 186.3mins (0.8mins) ;

t= 185.7mins to
t= 185.9mins (0.2mins);

t= 171.4mins to
t=172.1mins (0.7mins);

t= 185mins to
t= 185.8mins (0.8mins)

t=195.1mins to
t= 195.8mins (0.7mins);
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Residual signal exceed from Residual signal exceed from Residual signal exceed from
t = 109.8mins to t =109.2mins to t=117.9mins to
t = 129.9mins (20.1mins); t = 129.8mins (20.6mins); t = 124.5mins (6.6mins);
0,
80% t = 183.0mins to t = 184.1mins to t=144.3mins to
t = 187.7mins (4.7mins) and t = 186.3mins (2.2mins) t = 144.5mins (0.2mins) ;
t= 145.4mins to
t = 146.2mins (0.8mins)
Residual signal exceed from Residual signal exceed from Residual signal exceed from
t = 109.5mins to t = 130.7mins
(21.2mins) t=110.1mins to t= 130.1mins | t=117.0mins to
(20mins); t=118.2mins (1.2mins) ;
t = 184.0mins to t = 186.1mins | t= 133.0mins to
90% (2.1min); t=138.7mins (5.7mins);
t = 184.3mins to
t= 185.0mins (0.7mins);
t= 185.4mins to
t = 186.5mins (1.1mins);
Residual signal exceed from Residual signal exceed from Residual signal exceed from
t=110.1mins to t=115.0mins to t=125.1mins to
t=122.5mins (21.6mins); t = 122.1mins (7.1mins); t = 130.4mins (21.6mins);
0,

100% t=126.4mins to t=125.8mins to t=185.2mins to
t=127.8mins (1.4mins) ; t = 130.4mins (4.6mins); t = 185.8mins (5.4mins)
t=183.2mins to t=183.2mins to
t = 187.8mins (4.6mins) t = 187.9mins (4.7mins)

As may be observed and shown in Table 4.5, the neural network fault detection

system is capable of working normally (that is no false positive alarms are detected)

under less than 80% increase in the noise level when applied to all the three axes.

4.2. Case Studies: Detection of Multiple Faults under Continuous

Setpoint Changes

In this subsection, detection of two fault patterns under three operating situations is

studied. The robustness of the neural network under continuous setpoint changes is also

investigated. The satellite is required to operate at each setpoint for 600 minutes and it is
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expected to change its position five times. During each setpoint, the satellite experiences
voltage and current faults as well as the recovery of these faults. The impacts caused by
the faults as well as the recovery characteristics are investigated. In order to compare and
analyze the detection results, two aggregate fault patterns named F1 and F2 are designed

as described in details below.

VYbus fault signal for F1
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Figure 4.13 The V, fault signal patten for the fault pattern F1
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Current fault signal for F1
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The complete pattern for the fault F1 is detailed below:

From 0 to 599 minutes: the satellite changes its position from 0 deg to 3 deg.

At t = 100 minutes, the ¥V, voltage fault from 8V to 4V is applied which is
removed at t = 200 minutes. Later, at t = 300 minutes, the 7, voltage fault is
applied again, this time from 8V to 5V at t = 300 minutes, and which is
removed (recovered) at t = 400 minutes.

From 600 to 1199 minutes: at t = 600 minutes the satellite changes its position

to 7 deg. At t = 700 minutes, the ¥, voltage fault from 8V to 4V is applied

and before it is removed or recovered, a current fault signal at t = 750 minutes

from 1A to 0.4A is applied. Later, at t = 800 minutes, the V. fault signal is

recovered and at t = 950 minutes the current is also recovered.

From 1200 to 1799 minutes: at t = 1200 minutes, the satellite changes its
position to 5 deg. At t = 1300 minutes, the current fault from 1A to 0.3A is
applied and which is recovered at t = 1400 minutes. Later at t = 1750 minutes,
the V,,, fault from 8V to 4V is applied and it is not recovered within this
setpoint.

From 1800 to 2399 minutes: at t = 1800 minutes, the satellite changes its
position to 4 deg. At t = 1900 minutes, the ¥, fault carried from the
previous setpoint is recovered. Then at t = 2100 minutes, the current fault
from 1A to 0.5A is applied, and this fault is removed at t = 2250 minutes.
From 2400 to 2999 minutes: at t = 2400 minutes, the satellite changes its

position to 6 deg. The V. fault at t = 2500 minutes from 8V to 3V is applied
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and it is recovered soon at t = 2550 minutes. Later, a small current fault from

2650 minutes and is recovered at t = 2800

1A to 0.6A is applied at t

minutes.

Vbus fault signal for F2
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Figure 4.16 The V,,, fault signal pattern for the fault pattern F2

Current fault signal for F2
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Figure 4.18 The setpoint change pattern for the fault pattern F2
The details for pattern F2 are explained below:
e From 0 to 599 minutes: the satellite changes its position from 0 deg to 2.6 deg.
At t = 100 minutes, the current signal fault from 1A to 0.4A is applied and at t

= 200 minutes a V,,, fault is also applied simultaneously. The satellite
operated under these two simultaneous faults until t = 350 minutes when the
current fault signal is removed. Later at t = 400 minutes, the voltage fault is
recovered.

From 600 to 1199 minutes: at t = 600 minutes, the satellite changes its
position to 6.5 deg. At t =700 minutes, the V. fault from 8V to 4V is applied
and the current fault at t = 850 minutes from 1A to 0.4A is then applied
simultaneously. Then at t = 950 minutes, the current signal fault is recovered

first and later at t = 1000 minutes the ¥, fault is also recovered.
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o From 1200 to 1799 minutes: at t = 1200 minutes, the satellite changes its
position to 4.3 deg. At t = 1300 minutes, the current fault from 1A to 0.3A is
applied and soon without being recovered, at t = 1350 minutes a small V7,
fault from 8V to 5V is applied simultaneously. Later at t = 1450 minutes, the
current fault is recovered first, and then the ¥, fault is recovered at t = 1550
minutes. Moreover, at t = 1750 minutes, the current fault from 1A to 0.4A is
applied which is carried out to the next setpoint change.

e From 1800 to 2399 minutes: at t = 1800 minutes, the satellite changes its

position to 3.2 deg. At t = 1900 minutes, the current fault carried over from

the previous setpoint is recovered. Then at t = 2050 minutes, the V7, fault

from 8V to 3V is applied and this large fault is removed at t = 2150 minutes.

o From 2400 to 2999 minutes: at t = 2400 minutes, the satellite changes its
position to 5.7 deg. The current fault at t = 2500 minutes from 1A to 0.4A is
applied and is recovered at t = 2650 minutes. Meanwhile, at t = 2650 minutes,

the V, . fault from 8V to 4V is applied and is recovered at t = 2800 minutes.

4.2.1. Case 1: One Axis is Faulty and the Other Two Axes are Fault Free

4.2.1.1. The Faulty Axis (Yaw Axis) Has F1 Pattern Fault

The detection results corresponding to the F1 are shown blow:
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Case 1: one axis is faulty and two axes are fault free (F1)

1 T 7 ] ]
' - ] '
Wuv.- ’ ® s ' I
A ] & - ' ]
-l = O g |--cea-- prememn- Yfpomnnmann qmcemmmaaa Femm—nea -
e 2o ' 3 P H H
= = ' 2 1= 4 t
e B Y S N ¥ L R | -
— O B 0 i Y H v
H & 9 Of-cenan. M )4 - =
lurvl lllllll A % [
o BT f} . '
c.mww."\hJ
@ e '
= _. lllllll &
! '
- _. ||||||| H
¢
! ‘
)
S [N RP g £
¥
J P e el
. becrneeem- domrmmana
L}
'
L}
'
L]
'
'
b e | S g,
¢ i
t 1
T renm———— »
t )
A P
0 I
' 1
' 1
' )
) ¥
f - - L 1
) 1
' [
' [
e e Femammn—— +
e - - - - - e mwaman=n &
e e | S Y
] 1
l.l.u.l‘.‘.-.l.l.ﬂv-l-l‘.
‘
[
s
. Frmmencaa
.
e e e heonmene-
1
P - - -- TP
¥ T
' '
IR FPrmccasaa .
I IR SR~ T S e
LD - LD o L hang L
- o 2 ] o -~
] o = o (=) o
[} o o ' Q

(IN) Jou3 [enpisay

17518 21225 2526528 30

121314
Time ™00 {minutes)

67895

01234

Figure 4.19 Case 1 detection results for the fault pattern F1

Satellite position corresponding to case 1and fault pattern F1
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Figure 4.20 The positions of the satellite for case 1 corresponding to fault pattern F1
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Each event, either fault detection or recovery, is labeled in Figure 4.19. In
summary, once the fault has occurred the residual error exceeds the boundary and it
would return back and stays inside the boundary once the fault is removed. The details

for the individual setpoints are described below.

Case 1 corresponding to fault pattern F1 and setpoint 1
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Figure 4.21 The detection results for setpoint 1 in case 1 for the fault pattern F1
With 33 minutes delay, the first fault caused the residual error to exceed the lower
boundary at t = 133 minutes. This delay is known as False Negative which implies that
there exist a fault but the neural network was not able to detect it. At t = 200 minutes, this
fault was removed, before the residual error has a chance to enter the boundary it
experienced another kind of delay known as, False Positive, which means that the
network detects it as a fault although no fault exists. The details for this transient phase

are as follows: at t = 207 minutes the residual curve reached its recovery undershoot then
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it ascended and at t = 226 minutes it entered the lower boundary; then exceeded the upper
boundary 2 minutes later (at t = 228 minutes). At t = 232.8 minutes, it reached its
overshoot then it descended and around 20 minutes later, at t = 250 minutes, it reentered
the threshold and settles down inside the boundary. Since the second fault occurred at t =
300 minutes and was recovered at t = 400 minutes was a small fault, the neural network
could not detect it implying that associated with the FDI scheme once a fault is removed

it does not affect the detection characteristics of other faults.

Case 1 corresponding to fault pattern F1 and setpoint 2
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Figure 4.22 The detection for setpoint 2 in case 1 for the fault pattern F1

For the second setpoint, the ¥, fault was applied at t = 700 minutes and the

residual error exceeded the lower boundary at t = 733 minutes. Unfortunately, since the

current fault signal occurred at t = 750 minutes there is no sufficient time (20 minutes) to
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judge the voltage fault as faulty even though the residual has already exceeded the
boundary. The curve ascended to respond to the current fault. At t = 753 minutes, the
residual curve entered the lower boundary and at t = 761 minutes it exceeded the upper
boundary then reached its overshoot at t = 775 minutes. Theﬁ, it began to descend. It
crossed the upper and lower boundaries at t = 783 minutes and t = 792.4 minutes,

respectively. Without much time to settle down, 7 minutes later the ¥, fault was

recovered at t = 800 minutes. The residual curve responded to this change instantaneously
by accelerating its descent speed. At t = 825 minutes, it reached its recovery undershoot
and then ascended. Since the current in the wheel was still faulty, the residual curve could
not enter the threshold. Finally, at t = 950 minutes, the current was recovered and the
residual curve descended first and reached its recovery undershoot at t = 975 minutes and
then ascended. From t = 987.4 minutes, the ascent rate slowed down and at t = 1002
minutes the residual curve changed its shape (reflection point). From t = 1005 minutes to

= 1007 minutes, the residual error crossed the threshold and at t = 1027 minutes, it
reached its recovery overshoot and then descended. At t = 1060 minutes, the residual

curve reentered the boundary and settled down within the two boundaries.
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Case 1 corresponding to fault pattern F1 and setpoint 3
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Figure 4.23 The detection results for setpoint 3 in case 1 for the fault pattern F1

For the third setpoint, the current fault signal was applied at t = 1300 minutes and
the residual curve exceeded the upper boundary 6 minutes later but reentered it soon at t
= 1325 minutes. It was expected to have a detection overshoot during this phase but a
weak one. Then the residual error descended and crossed the lower boundary at t = 1344
minutes. At t = 1400 minutes, the fault was removed. The residual curve reached its
recovery undershoot at t = 1426 minutes and overshoot at t = 1462 minutes. It then
crossed the lower and upper boundaries at t = 1443.4 minutes, t = 1445.5 minutes,
respectively. Finally, the residual error entered the boundary at t = 1484 minutes. Att=
1750 minutes, the voltage fault was applied and the residual curve crossed the threshold

curve from t = 1780 minutes.
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Case 1 corresponding to fault pattern F1 and setpoint 4
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Figure 4.24 The detection results for setpoint 4 in case 1 for the fault pattern F1
At t = 1800 minutes, the satellite received a command to change its position.
Since the voltage was abnormal, a spike due to the setpoint change was missed in this
case. At t = 1852.3 minutes, the residual curve exceeded the lower boundary horizontally
and tended to settle down there. At t = 1900 minutes, the voltage fault was removed and
the residual curve responded to it by descending to reach its recovery undershoot at t =
1912 minutes. Then, it entered the lower boundary at t = 1928 minutes. It took 2 minutes
to exceed the upper boundary and reached its recovery overshoot at t = 1937 minutes.
Finally, at t = 1965 minutes the residual curve reentered the boundary and settled inside
there. From t = 2100 to t = 2250 minutes, a small current fault (1A to 0.5A) has occurred
and consistent with the precious detection results, the neural network did not detect it as a

fault.
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Case 1 corresponding to fault pattern F1 and setpoint 5
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Figure 4.25 The detection result for Setpoint 5 in case 1 for the fault pattern F1

For the last setpoint change, a large 7, fault (8V to 3V) has occurred at t = 2500.

Four minutes later at t = 2504 minutes, the residual curve exceeded the upper boundary
and reentered it at t = 2530 minutes. Since the residval curve crossed outside the
boundary for more than 20 minutes, it was detected as a fault here. It kept on descending
and crossed the lower boundary at t = 2547 minutes. At t = 2550 minutes, the voltage
fault was removed. At t = 2575.9 minutes, the residual curve reached its recovery
undershoot and it crossed the lower boﬁndary and upper boundary at t = 2588.2 minutes
and t = 2589.4 minutes, respectively. It reached its recovery overshoot at t = 2601.4

minutes and then descended and finally reentered the threshold boundaries at t = 2627.5
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minutes. A small current fault (1A to 0.6A) has occurred at t = 2650 minutes and was

recovered at t = 2800, where the neural network could not detect it as a fault.
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4.2.1.2. The Faulty Axis Has F2 Pattern Fault
The detection results corresponding to F2 are shown blow:
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Figure 4.26 The case 1 fault detection results for the fault pattern F2
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Satellite position corresponding to case 1and fault pattern F2
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Figure 4.27 The satellite positions for case 1 corresponding to the fault patter F2
Figure 4.27 indicates that the faults in the F2 pattern cause the satellite to deviate
from its reference command significantly. The detection results for the individual

setpoints are described details below.
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Case 1 corresponding to fault pattern F2 and setpoint 1
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Figure 4.28 The detection results for setpoint 1 in case 1 For the fault pattern F2
For the first setpoint, the faults are imposed together. The recovery order of the
faults is consistent with their occurrence order. At t = 100 minutes, the current fault was
applied and 35 minutes later the residual curve exceeded the lower boundary. After the
specified a priori 20 minutes detection time, at t = 155 minutes the fault was detected. At

t = 200 minutes, the ¥V, fault was applied and the neural network responded to this

change immediately, that is it crossed the lower and upper boundaries at t = 205 minutes
and t = 212 minutes, respectively and reached its detection overshoot at t = 225 minutes.
The residual curve then reentered the upper boundary at t = 231 minutes. The residual
error kept on descending and exceeded the lower boundary at t = 240 minutes. At t = 350

minutes, the current fault was recovered. At t = 375 minutes the residual curve reached its
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first recovery undershoot (caused by the current) and then ascended. Without sufficient

allowed time for the transients to complete, at t = 400 minutes the 7, fault was

removed. The residual curve reached its second recovery undershoot at t = 425 minutes
and then ascended. At t = 460 minutes, the residual curve tended to extend horizontally
and changes its shape at t = 507.5 minutes (reflection point). The residual error kept on
ascending and crossed the lower and upper boundaries at t = 509 minutes and t = 511.2
minutes, respectively. Finally the error reached its recovery overshoot at t = 532 minutes.

At t =563 minutes, it reentered the boundary and settled down there.

Case 1 corresponding to fault pattern F2 and setpoint 2
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Figure 4.29 The detection for setpoint 2 in case 1 for the fault pattern F2
For the second setpoint, the faults were imposed together but the recovery order

of the faults was contrary with their occurrence order. The occurrence and recovery of the

112



current fault was processed before the application of the ¥, fault. However, it did cause

extra difficulties for the detection scheme. With 35 minutes delay, the residual curve
exceeded the lower boundary at t = 735 minutes due to the voltage fault. At t = 850
minutes, the current fault was applied. Three minutes later, the residual curve entered the
lower boundary and crossed the upper boundary at t = 861 minutes. At t = 875 minutes,
the residual curve reached its detection overshoot and then reentered the upper boundary
at t = 881 minutes. It kept oh descending and crossed the lower boundary at t = 902
minutes. At t = 950 minutes, the current was recovered. At t =975 minutes, the residual
curve experienced the recovery undershoot due to the current fault. Without sufficient

time allowed to complete the transient response, V. fault recovery occurred at t = 1000

minutes. At t = 1025 minutes, the residual curve reached its recovery undershoot again
and around t = 1050 minutes the residual curve decreased the ascent rate and at t =
1071.5 minutes, it met its reflection point. At t = 1074 minutes and 1076 minutes, the
residual curve crossed the lower and upper boundaries, respectively. At t = 1096 minutes,
the residual error reached its recovery overshoot and began to descend. At t = 1127

minutes, the error reentered the boundary and settled down there.
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Case 1 cormresponding to fault pattern F2 and setpoint 3
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Figure 4.30 The detection for setpoint 3 in case 1 for fault pattern F2

For the third setpoint, an undetectable fault (8V to 5 V) was applied in addition to
a detectable fault (1 A to 0.3 A) and the results showed that both faults were now
detectable in this situation. The first fault occurred at t = 1300 minutes and 5 minutes
later the residual error exceeded the upper boundary and then reentered it at t = 1326
minutes. The residual curve kept on descending and finally crossed the lower boundary at
t = 1345 minutes. Five minutes later, a small ¥, fault has occurred (at t = 1350
minutes). The residual curve reentered the lower boundary at t =1353.6 minutes and
without reaching the upper boundary it exceeded it at t = 1385 minutes. At t = 1450
minutes, the current fault was recovered. At 1476 minutes, the residual curve reached its

recovery undershoot and around t = 1492.5 the residual curve reached its first recovery
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steady state. At t = 1550 minutes, the ¥, fault was removed and its transient took 106

minutes to settle down. At t = 1575.6 minutes the residual curve reached its recovery
undershoot and at t = 1604 minutes it changes its shape (reflection point). The residual
curve entered the lower and upper boundaries at t =1606.5 minutes and t = 1608.3
minute, respectively and then reached the recovery overshoot at t = 1629 minutes. At t =
1656 minutes, the residual curve reentered the boundary and settled down there. At t =
1750 minutes, the current fault was applied again, and the residual curve exceeded the

boundary at t = 1781 minutes.

Case 1 corresponding to fault pattern F2 and setpoint 4
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- Figure 4.31 The detection results for setpoint 4 in casel for the fault pattern F2
For the fourth setpoint, with the current fault applied at t = 1800 minutes the

residual curve missed a spike due to the setpoint change. At t = 1852.3 minutes, the
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residual curve exceeded the lower boundary horizontally. At t = 1900 minutes, the
current fault signal was removed. The residual curve reached the recovery undershoot at t
= 1920 minutes and overshoot at t = 1945 minutes and finally entered the boundary at t =
1970 minutes. At t = 2050, the ¥, fault was applied and 4 minutes later the residual
curve exceeded the upper boundary and reentered it at t = 2079 minutes. Finally, the error
exceeded the lower boundary at t = 2101 minutes. At t = 2150 minutes, the ¥V, fault was
recovered. At t = 2176 minutes, the residual curve reached its recovery undershoot and
began to ascend. Around t = 2198 minutes the residual curve met its reflection point. At t

= 2224 minutes the residual error reached its recovery overshoot and at t = 2249 minutes,

the residual curve settled down in the boundary.

Case 1 corresponding to fault pattern F2 and setpoint 5
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Figure 4.32 The detection results for setpoint 5 in case 1 for the fault patter F2
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For the fifth setpoint, another interesting fault pattern is studied that is the current

recovery and the ¥, fault have occurred simultaneously. As a result, the transient phase

due to the current removal has disappeared. At t = 2500 minutes, the current was faulty,
and 36 minutes later, at t = 2536 minutes the residual curve exceeded the lower boundary.

At t = 2650 minutes, the current was removed and the ¥, signal became faulty. Without

any change, the residual curve kept its tendency. At t = 2800 minutes, the 7, fault was

recovered. The residual curve reached its recovery undershoot at t = 2825.6 minutes and
crossed the lower and upper boundaries at t = 2835.3 minutes and t = 2837 minutes,
respectively and then it reached its recovery overshoot at t = 2851 minutes. Finally, the
residual curve settled down into the boundary after t = 2874 minutes.

Based on the previous 10 setpoint change studies, we are able to make the
following observation. Namely, the neural network is capable of providing good fault
detection results in general. However, it seems that after the recovery of a fault the
satellite tracking point accuracy has been impacted, which is due to the nonlinearity of
the system. Since the entire system is nonlinear, the impact caused by the fault can not be
removed completely as the fault is recovered. Therefore, there exists an increasing
requirement that the PID controller parameters need to be fine tuned after the recovery of
each fault, which is called self-tuning in the control area and which is clearly beyond the

scope of this thesis.
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4.2.2. Case 2: One Axis is Fault Free and the Other Two are Faulty

4.2.2.1. Two Faulty Axes with F1 Fault Pattern

The detection results corresponding to the fault pattern F1 in case 2 are shown blow:

Case 2: two axes are faulty (F1) and one axis is fault free
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Figure 4.33 The detection results for the fault patter F1 in case 2
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Satellite position:
Case 2 corresponding to the fault pattern F1 and the fault free Yaw axis
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Figure 4.34 The satellite position for the fault free axis in case 2 and the fault pattern F1
From Figure 4.33, it may be concluded that the two faulty axes did not cause any
adverse influence on the fault free axis (Yaw axis) despite the strong nonlinear
interaction among all the three axes. These results are also supported by the results

provided in Figure 4.34.
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Satellite position:
Case 2 corresponding to the fault pattern F1 and the faulty roll axis
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Figure 4.35 The satellite position for the faulty roll axis in case 2 and the fault pattern F1

Satellite position:
Case 2 corresponding to the fault pattern F1 and the faulty pitch axis
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Figure 4.36 The satellite position for the faulty pitch axis in case 2
and the fault pattern F1
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4.2.2.2. Two Faulty Axes with Fault Pattern F2

The detection results corresponding to the fault pattern F2 in case 2 are shown blow:

Case 2: two axes are faulty (F2) and one axis is fault free
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Figure 4.37 The detection results for the fault pattern F2 in case 2
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Satellite position:
Case 2 corresponding to the fault pattern F2 and the fault free yaw axis
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Figure 4.38 The satellite position for fault free yaw axis in case 2 and fault pattern F2

Satellite position;
Case 2 comresponding to the fault pattern F1 and the faulty roli axis
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Figure 4.39 The satellite position for faulty roll axis in case 2 and fault pattern F2
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Satellite position;

Case 2 corresponding to the fault pattern F2 and the faulty pitch axis
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Figure 4.40 The satellite position for faulty pitch axis .in case 2 and fault pattern F2
Figures 4.35, 4.36, 4.39, and 4.40 provide the satellite setpoint change in the other
two axes under the fault pattern F1 and F2. It is revealed that the same fault pattern
imposed on different axis lead to different detection results, which may be attributed fo
the presence of random disturbances and noise in the system. Therefore, under the certain
circumstance of “small fault “ it still may be possible that the detection scheme has the

capacity to detect these faults even though the previous cases showed them to be

undetectable.

Time (minutes)
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4.2.3. Case 3: All Three Axes are Faulty

In this subsection, three axes have been subjected to the same fault pattern. The fault

detection study is performed on the yaw axis.

4.2.3.1. Three Axes Have Fault Pattern F1

The detection results corresponding to the fault pattern F1 in case 3 are shown blow:

Case 3: three axes are faulty (F1)
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Figure 4.41 The detection results for the fault pattern F1 in case 3
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Satellite position:
Case 3 cormresponding to the fault pattern F1 and Yaw axis
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Figure 4.42 The satellite yaw axis position for the fault pattern F1 in case 3

The detection results for the individual setpoints are described in details below.

125



Case 3 corresponding to the fault pattern F1 and setpoint 1
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Figure 4.43 The detection results for the fault pattern F1 in case 3 and setpoint 1

The wheel has experienced voltage fault twice during this setpoint. Thirty-five
minutes after the first voltage fault has happened, the residual curve exceeded the lower
boundary (at t = 135.3 minutes). According to the fault decision criterion used in this
thesis, namely 20 minutes, this fault was detected at t = 155 minutes. At t = 200 minutes,
this fault was removed. The details for the transient phase are as follows: at t = 222.3
minutes, the residual curve reached its recovery undershoot and then it ascended and at t
= 233.7 minutes the error entered the lower boundary. At t = 248.7 minutes, the residual
curve reached its overshoot and then it descended and 20 minutes later, at t = 272.3

minutes, it entered the threshold again and settled down there. The second voltage fault
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has occurred at t = 300 minutes and it was recovered at t = 400 minutes where it was still

undetected.

Case 3 corresponding to the fault pattern F1 and setpoint 2
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Figure 4.44 The detection results for the fault pattern F1 in case 3 and setpoint 2

For this setpoint, the residual curve exceeded the lower boundary at t = 737
minutes due to the voltage fault that has occurred at t = 700 minutes and it stayed beneath
the lower boundary until the current fault has happened at t = 750 minutes. Since the
current fault has occurred so close to the first fault there was no sufficient time to
determine that the fault has occurred. Therefore, under this circumstance that fault was
not detected. At t = 753 minutes, the residual curve entered the boundary and kept to
ascend and cross the upper boundary at t = 761 minutes. At t = 775 minutes, the residual
curve reached its detection overshoot and began to descend. At t = 783 minutes, the error

reentered the boundary and at t = 792.4 minutes it exceeded the lower boundary
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eventually. At t = 800 minutes, the voltage fault signal was removed. The residual curve
reached its recovery undershoot at t = 825 minutes and then began to ascend and settled
down beneath the lower boundary. At t = 950 minutes, the current fault was removed.
The residual curve reached its recovery undershoot at t = 975 minutes and began to
ascend. From t = 990 minutes, the residual curve decreased its ascent rate and at t =
1055.3 minutes, it met its reflection point, At t = 1057 minutes, the residual curve entered
the lower boundary and at t = 1060 minutes it crossed the upper boundary. At t = 1080
minutes, the error reached its recovery overshoot and began to descend. At t = 1105

minutes, the residual curve reentered the boundary and settled down there.

Case 3 corresponding to the fault pattern F1 and setpoint 3
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Figure 4.45 The detection results for the fault pattern F1 in case 3 and setpoint 3
The residual curve exceed the upper boundary with 5 minutes delay at t = 1304.7

minutes when the current signal became faulty. At t = 1323 minutes, the residual curve
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reached its detection overshoot and began to descend. At t = 1331 minutes, the error
entered the upper boundary and at t = 1354 minutes it crossed the lower boundary. The
fault signal was recovered at t = 1400 minutes. The residual curve reached its recovery
undershoot at t = 1425.3 minutes and then ascended and at t = 1466 minutes the residual
curve changes its shape (reflection point). At t = 1470 minutes, the residual curve
reentered the boundary and at t = 1472 minutes it crossed the boundary again. At t =
1491.4 minutes, the residual curve reached its recovery overshoot and descended into the
boundary at t = 1514.4 minutes. The residual curved settled in the boundary until t =
1783 minutes when the voltage fault was applied again. With 33 minutes delay, the

residual curve exceeded the boundary again due to the present of the voltage fault.

Case 3 corresponding to the fault pattern F1 and setpoint 4
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Figure 4.46 The detection results for the fault pattern F1 in case 3 and setpoint 4
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At t = 1852 minutes, the residual curve crossed the lower boundary. Since the
voltage fault signal was removed at 1900 minutes, the residual curve reached its recovery
undershoot at t = 1926 minutes and at t = 1952 minutes the curve met its reflection point.
At t = 1956 minutes, the residual curve entered the lower boundary and at t = 1959
minutes, it crossed it. At t = 1977.2 minutes, the residual curve reached its recovery
overshoot. Eventually, it réentered the boundary at t = 2021.3 minutes and settled down
there. Since a small current fault signal was applied at t = 2100 minutes, the residual
curve exceeded the lower boundary at t = 2125 minutes. At t = 2250 minutes, the current
signal became normal. The curve reached its recovery undershoot at t = 2268.3 minutes
and crossed the lower boundary and upper boundaries at t = 2281.5 minutes and at t =
2284.3 minutes, respectively. Then, the residual curve reached its recovery overshoot at t

= 2293.3 minutes. Finally, the residual curve reentered the boundary at t = 2316 minutes.
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Case 3 corresponding to the fault pattern F1 and setpoint 5
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Figure 4.47 The detection results for the fault pattern F1 in case 3 and setpoint 5

The residual curve exceeded the boundary with 3.8 minutes delay when the
voltage fault was applied at t = 2500 minutes. It reached its detection overshoot at t =
2523 minutes and entered the upper boundary at t = 2537.5 minutes. At t = 2551 minutes,
the residual curve exceeded the lower boundary and coincidently the fault signal was
removed at t = 2550 minutes. At t = 2575.8 minutes, the residual curve reached it
recovery undershoot and at t = 2595 minutes, it met its reflection point. At t = 2601
minutes and t = 2602.6 minutes, the residual curve crossed the lower boundary and upper
boundaries, respectively. At t = 2619.8 minutes, the residual curve reached its recovery
overshoot and at time t = 2645 minutes, the residual curve reentered the boundary and
settled down there. A small undetected current fault happened at t = 2650 minutes and

was removed at t = 2800 minutes.
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4.2.3.2. Three Axes with Fault Pattern F2

The detection results corresponding to the fault pattern F2 in case 3 are shown blow.

Case 3. three axes are faulty (F2)

o
m
oo
[
L
w
o4
-t
o~
......... e
1 |
)
nnnnnnnnn | R =) ]
1 -~
= - el ey g A SRR —
e e e e a——.— - - —
‘ s : H
1 i [} ' 1
T [, o _.A T ... e man _
un ﬂ tﬂ' .w.v 1 ¥y
RRREEE bomeees R T bemees <
e Lo [ o doeeio. [ -
je e mmmem peessmom— Tomm——- F e qecsssecan it b
i ] A" 4 1
.I.!.l..ll'l.?“ll..ll.llllnplllll - Ilﬂ.;h..iu.ﬂ.cnpvﬂ.u‘urlﬂuﬂﬂrnnlulaull.. o
i 1 £ 1 u ] 1 h
' ' » “K ' ]
I e I T e R s Jdo
- -osee posens 45555055 i puasc s EREERREEE Feoennas ==
- eeae e Famemaan $omemn TR s e ane dmmmammaan P {2
‘ ' It ' ) e
3 ' = ' 1
b e Lawcanansl laceacan- ey - Jdeacecacaaa [ ~
" ||.I-. e e )|IH"|..|"rL..|1.\“L|.
F = == g o Nyl i g oo imaaa — 0
1 ) RS ' 1
: : i " "
1 ] I
o= oo Fosmom-- I ==~ (bt peom - - =t
ittt L LR L . - e qeesccooao- re—sa--— —
" _ 2z " "
eemeeee e SERRRSL, oy B IRRER bommenes e
] 4
s b omeees deeene- = SO LI beene- -
1 i .
(]
o oy L0 Q Lo - n
- o] ] [oon] o hou
o o = o o Q
= =) = _ =S|

(WN) Joug |enpisay

Time *100 (minutes)

Figure 4.48 The detection results for the fault pattern F2 in case 3
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Satellite position:
Case 3 corresponding to the fault pattern F2 and Yaw axis
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Figure 4.49 The satellite yaw axis position for the fault pattern F2 in case 3

The detection results for the individual setpoints are described in details below.
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Case 3 corresponding to the fault pattern F2 and setpoint 1
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Figure 4.50 The detection results for the fault pattern F2 in case 3 and setpoint 1

Due to the presence of the current fault which has occurred at t = 100 minutes, the
residual curve exceeded the lower boundary at t = 141.7 minutes. At t = 200 minutes, the
voltage fault signal was also applied and the residual curve responded to this fault
instantaneously by changing its descent tendency to an ascent. At t = 206.5 minutes, the
residual curve entered the lower boundary and at t = 212.4 minute it crossed the upper
boundary and then reached its detection overshoot at t = 225 minutes. The error
descended and at t = 229.6 minutes the residual curve entered the upper boundary and
exceeded the lower boundary at t = 248.8 minutes and then settled down beneath the
lower boundary. At t = 350 minutes the current signal became normal, the residual curve

reached its recovery undershoot at t = 375 minutes and then the residual curve ascended.
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At t = 400 minutes, the voltage fault signal was also removed. The residual curve reached
its recovery undershoot at t = 424.6 minutes then around t = 460 minutes the residual
curve stopped ascending and began to extend horizontally. At t = 565.6 minutes, the error
began to ascend and reached its recovery overshoot at t = 590.5 minutes and then

descended. At t = 600 minutes, the descent seemed to not has finished yet.

Case 3 corresponding to the fault pattern F2 and setpoint 2
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Figure 4.51 The detection results for the fault pattern F2 in case 3 and setpoint 2
At t = 600 minutes, the position change command was applied and it blocked the
pervious recovery transient phase. This situation did not affect the FDI performance but it
exerted negative influence on the satellite position pointing as shown in Figure 4.49. At t
= 700 minutes, the voltage fault signal was applied and after 39.7 minutes the residual
curve exceeded the lower boundary and settled beneath the boundary. At t = 850 minutes,

the current signal became faulty and the residual curve ascended due to this fault. At t =
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853 minutes, the error entered the lower boundary and at t = 860.8 minutes it exceeded
the upper boundary. At t = 875.2 minutes, the residual curve reached its detection
overshoot and began to descend. At t = 950 minutes, the current signal became normal
and the residual curve reached its recovery undershoot at t = 975.2 minutes and then it
ascended. Without sufficient time to complete its transient, at t = 1000 minutes, the
voltage signal was also removed. At t = 1025.2 minutes, the residual curve reached its
recovery undershoot and began to ascend. At t = 1057.4 minute, the residual curve
stopped its ascent tendency and extended horizontally until t =1155 minutes. From that
reflection point, t = 1155 minutes, the residual ctirve began ascending and reached its
recovery overshoot at t = 1180 minutes. Then, it descended while the transient was not

completed at t = 1200 minutes.

Case 3 cotresponding to the fault pattern F2 and setpoint 3
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Figure 4.52 The detection results for the fault pattern F2 in case 3 and setpoint 3
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At t = 1300 minutes, the current fault from 1V to 0.3V was applied and the
residual curve exceeded the boundary with short delay, at t = 1304.3 minutes. At t =
1325.5 minutes, the residual curve reached its detection overshoot and at t = 1331.4
minutes it reentered the upper boundary. However, since this period (from 1304.3 to
1331.4) is longer than the detection criteria time (that is 20 minutes), a fault could be
considered to have occurred in this period. At t = 1350.2 minutes, the residual curve
exceeded the lower boundary and coincidently at t = 1350 minutes the voltage signal was
faulty. The residual curve entered the boundary at t = 1351.7 minutes and crossed it at t =
1384.3 minutes and then settled beneath the lower boundary. At t = 1450 minutes, the
current signal became normal and the residual curve reached its recovery undershoot at t
= 1475.4 minutes and then began its ascent. At t = 1496 minutes, the ascent rate
decreased. At t = 1550 minutes, the voltage became normal and the residual curve
reached its recovery undershoot at t = 1575.6 minutes. From t = 1597.7 minutes, the
residual curve began to extend horizontally and at t = 1672.7 minutes, the residual curve
began to ascend and then reached its recovery overshoot at t = 1697.8 minutes. At t =
1722.2 minutes, the error reentered the boundary. Later at = 1750 minutes, the current
fault was applied again and with 37 minutes delay, at t = 1786.5 minutes, the residual

curve exceeded the boundary again.
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Case 3 corresponding to the fault pattern F2 and setpoint 4
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Figure 4.53 The detection results for the fault pattern F2 in case 3 and setpoint 4

The residual curve exceeded the lower boundary horizontally at t = 1852.4
minutes due to the current fault. At t = 1900 minutes, the current fault signal was
removed. The residual curve reached its recovery undershoot at t = 1925.5 minutes and
began to ascend. At t = 1955 minutes, the residual curve met its reflection point. At t =
1957.8 minutes and t = 1960.2 minutes, the residual curve exceeded the lower and upper
boundaries, respectively and reached its recovery overshoot at t = 1980 minutes. Then, it
descended and at t = 2010 minutes, it entered the boundary. At t = 2050 minutes, the
voltage fault signal was applied and the residual curve exceeded the boundary with 4
minutes delay, at t =2053.5 minutes. It reached it detection overshoot at t = 2075.7
minutes and then descended and crossed the upper and lower boundaries at t = 2082.7

minutes and t =2101.4 minutes, respectively. At t = 2150 minutes, the voltage signal
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became normal and the residual curve reached its recovery undershoot at t = 2175.6
minutes and then ascended. At t = 2220 minutes, the residual curve changes its ascending
shape (reflection point). At t = 2223 minutes and t = 2225.3 minutes, it crossed the lower
and upper boundaries, respectively and reached it recovery overshoot at t = 2245.5
minutes. Then, it descended and reentered the boundary at t = 2269.9 minutes and settled

down inside there.

Case 3 corresponding to the fault pattern F2 and setpoint 5
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Figure 4.54 The detection results for the fault pattern F2 in case 3 and setpoint 5
The current fault signal was applied at t = 2500 minutes and with 39.7 minutes
delay at t = 2539.7 minutes the residual curve exceeded the boundary. At t = 2650
minutes, the current became normal but the voltage became faulty. The residual curve did
not change its tendency due to these two faults. At t = 2800 minutes, the voltage fault was

removed and the residual curve reached its recovery undershoot at t = 2825.9 minutes.
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The residual curve tended to extend horizontally from t = 2843.8 minutes and at t =

2868.8 minutes, the residual curve became to ascend and crossed the lower and upper

boundaries at t = 2871.4 minutes and t = 2874.1 minutes, respectively. At t = 2893.8

minutes, the residual curve reached its recovery overshoot and descended. At t =2919.6

minutes, it reentered the boundary and settled inside the boundary.

To summarize and specify the differences that are presented by the influences

from other axes, Table 4.6 provides all the details during the application of faults and the

recovery phases of these faults.

Table 4.6 Summary of the detection results corresponding to influences from other axes

Fl F2
S;t Fault Event
point | Seq.
Case 1 Case 3 Case 1 Case 3
Spl Ist Detected with | Detected with | Detected with 35 | Detected with
P Occurrence | 33 mins. delay | 35.3 mins. delay | mins. delay 41.7 mins. delay
fault
1. It took 7 min. | 1. It took 22.3 | 1. It took 25 min. | 1. It took 25 min.
to reach the [ min. to reach |[to reach the|to reach the
undershoot; the undershoot; | undershoot; undershoot;
2. It took 261 2. It took 33.7 | 2. The transient | 2. The transient
min. to reach | min. to reach | did not complete. | did not complete.
the lower bound | the lower bound
and 28 min. to | and 359
the upper | minutes to the
bound; upper bound;
3. It took 32.8 | 3. It took 48.7
Recovery min. to reach | min. to reach

the overshoot;

4. It took 50
min. to reenter
the boundary.

the overshoot;

4. It took 72.3
min. to reenter
the boundary.
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For detection: 2 more minutes | For detection: 6 minutes delay caused
delay caused by the influence by the influence.
Proverties For recovery: total 50 min. to | For recovery: Not much difference.
P complete transient in case 1 and | Both transients were not completed
total 723 min. in case 2. It} due to the occurrence of the next
clongates 22.3 minutes. event.

1. It took 5 min. | 1. It took 6.5 min.

to exceed the |to exceed the

lower bound and | lower bound and

12 min. for the | 12.4 min. for the

upper bound; upper bound;

2. It took 25 min. | 2. It took 25 min,
ond to reach the|to reach the
fault Occurrence Undetected Undetected overshoot. overshoot;

3. It took 31 min. | 3. It took 29.6

to reenter the | min. to reenter the

_ upper bound and | upper bound and

40 min. to exceed | 48.8 min. to

the lower bound. | exceed the lower

bound.

1. Ittook25min. | 1. It took 24.6

to reach the | min. to reach the

undershoot; undershoot;

2. It extended [ 2. It extended

47.5 minutes { 105.6 minutes

horizontally. horizontally,

3, It took 109} 3, It took 166.7

min. to reach the | min. to reach the

Recove None None lower bound and | lower bound and
Ty 111.2 min. for the | 169.5 min. for the
upper bound; upper bound;

4. It took 132 ]4. It took 190.5

min. to reach the | min. to reach the

overshoot; overshoot;

5. It took 163 | 5. The transient

min. to reenter | did not complete.

the boundary.
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Since this fault is small, the neural

For detection: 2 more minutes delay
caused by the influence

For recovery: total 163 min. to
complete he transient in case 1 and it

Properties network can not detect it. will tak.e more than' 209 minutes in
case 2 since the transient is blocked by
the occurrence of the next event. The
influence elongated the procedure
more than 40 minutes.

Detected  with | Detected with | Detected with 35 | Detected with
Sp2 o 33 minutes | 37 minutes | minutes delay. 39.7 minutes
ccurrence
delay delay. delay.
1. It took 25| 1. It took 25| 1.Ittook 25 min. { 1. It took 25.2
min, to reach | min. to reach | to reach the | min. to reach the
the undershoot; | the undershoot; | undershoot; undershoot;
2. It extended | 2. It extended
21.5 minutes | 97.6 minutes
horizontally. horizontally.
3. It took 74 min. [ 3. It took 157
to reach the lower | min. to reach the
bound and 76 | lower bound and

Recovery minutes for the | 159 minutes for

upper bound; the upper bound;
Ist 4. It took 96 min. | 4. It took 180
to reach the | min. to reach the
fault
overshoot; overshoot;
5. It took 127 | 5. The transient
min. to reenter | did not complete.
the boundary.
For detection: 4 more minutes | For detection: 5 more minutes delay
delay caused by the influence caused by the influence
For recovery: not much difference. | For recovery: total 127 min. to
complete the transient in case 1 and it
. will take more than 200 minutes in
Properties

case 2. The influence elongated the
procedure more than 70 minutes.
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2nd
fault

1. It took 3 min. | 1. It took 3 min. | 1. It took 3 min. | 1. It took 3 min.
to exceed the | to exceed the | to enter the lower | to enter the lower
lower bound | lower bound | bound and 11 | bound and 11
and 11 min. for | and 11 min. for | min. for the upper | min. for the upper
the upper | the upper | bound. bound.
bound; bound;

2. It took 25 min. | 2. It took 25.2
2. It took 25)2. It took 25|to reach the | min. to reach the

Oceurrence min. to reach | min. to reach | overshoot. overshoot.

the overshoot; the overshoot;

3. It took 31 min. | 3. It took 31 min.
3. It took 33 |3. It took 33 |to reenter the | to reenter the
min. to reenter | min. to reenter | upper bound and | upper bound and
the upper bound | the upper bound | 52 min. to exceed | 52 min. to exceed
and 42.4 min. to | and 42.4 min. to | the lower bound | the lower bound
exceed the | exceed the
lower bound lower bound
1. It took 25| 1. It took 25| 1.Ittook 25 min. | 1. It took 25.2
minutes to reach | minutes to reach | to  reach  the | min. to reach the
the undershoot; | the undershoot; | undershoot; undershoot;

2. It extended
14.6 minutes
horizontally.

3. It took 55
min. to reach
the lower bound

2. It extended
65.3  minutes
horizontally.

3. It took 107
min. to reach
the lower bound

2. The transient
did not complete.

2. The transient
did not complete.

Recovery | and 57 min. for { and 110 min.

the upper | for the upper

bound; bound;

4, It took 77 | 4. It took 130

min, to reach | min. to reach

the overshoot. the overshoot.

5. It took 110 | 5. It took 155

min. to reenter | min. to reenter

the boundary. the boundary.

For detection: no difference. No difference for both detection and

recovery.

For recovery: total 110 min. to

Properties | complete the transient in case 1 and

155 minutes

in case 2. The

influence elongated the transient

45 minutes.
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Sp3

1. It took 6 min. | 1. It took 4.7 1. It took 5 min. | 1. It took 4.3 min.
to exceed the | min. to exceed | to exceed the |to exceed the
upper  bound | the upper bound | upper bound and | upper bound and
and 25 min. to | and 31 min. to | 26 min. to reenter | 314 min. to
reenter it. reenter it. it. reenter it.
Occurrence .
2. It took 44 12. It took 54| 2. Ittook45 min. { 2. It took 50.2
minutes to | minutes to | to exceed the | min. to exceed the
exceed the | exceed the | lower boundary. lower boundary.
lower bound lower bound
1. It took 26| 1. It took 25.3 | 1. It took 26 min. | 1. It took 26 min.
min. to reach [ min. to reach |to reach the|to reach the
the undershoot; | the undershoot; | undershoot; undershoot;
2 It took 434 |2. It took 70| 2. It took 42.5| 2. It took 46 min.
min. to reach | min. to reach | min, to decrease | to decrease the

the lower bound
and 45.5 min. to

the lower bound
and 72 min. to

the ascend rate.

ascend rate.

1st the upper | the upper
fault Recovery bound; bound;
3. It took 62| 3. It took 91.4
min. to reach | min. to reach
the overshoot; the overshoot;
4. It took 84 ] 4. It took 1144
min. to reenter | min. to reenter
the boundary. the boundary.
For detection: the curve outside | For detection: the curve outside the
the boundary was extended: less | boundary was extended: less detection
detection delay and  more | delay and more ambiguous time.
ambiguous time.
Propertics For recovery: not much difference.
For recovery: total 84 min. to
complete the transient in case 1 and
1144 minutes in case 2 The
influence elongated the transient
30 minutes.
It took 30 min. | Ittook 33 min. | Ittook 3.6 min. to | It took 1.7 min, to
to exceed the to exceed the enter the lower | enter the lower
f?ncllt Occurrence | lower boundary. | lower boundary. | bound and 35 | bound and 34.3
au

minute to exceed
it.

minute to exceed
it.
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1. It took 256
min. to reach the
undershoot;

2. It extended 15
minutes
horizontally.

3. It took 56.5
min. to reach the
lower bound and

1. It took 25.6
min. to reach the
undershoot;

2. It extended 75
minutes
horizontally.

3. It took 1254
min. to reach the
lower bound and

Recovery None None 58.3 min. to the | 128.2 min. to the
upper bound; upper bound;
4. It took 79 min. | 4. It took 147.8
to reach the | min. to reach the
overshoot; overshoot;
5. It took 106 | 5. It took 172.2
min. to reenter | min. to reenter the
the boundary. boundary.
For detection: 3 minutes delay by | For detection: not much difference.
the influence.
For recovery: total 106 min. to
Properties | For recovery: the fault was not | complete the transient in case 1 and
recovered in this setpoint. 172.2 minutes in case 2, The influence
elongated the transient 66 minutes.
1. Detected with | 1. Detected with | 1. Detected with | 1. Detected with
30 min. delay in | 33 min. in the | 31 minutes delay { 36.5 minutes
the last setpoint. | last setpoint. in the last | delay in the last
setpoint. setpoint.
Sp4 | st Occurrence 2. It took 52,3 | 2. It took 52.3
fault min, to exceed | min. to exceed | 2. It took 523 |2. It took 524

the
boundary

lower

the
boundary

lower

min. to exceed
the lower
boundary

min. to exceed the
lower boundary
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1. It took 12
min. to reach
the undershoot;

2. It took 28
min. to reach
the lower bound
and 30 min. to

1. It took 26
min. to reach
the undershoot;

2. It took 56
min. to reach
the lower bound
and 59 min. to

1. It took 20 min.
to reach the
undershoot;

2. It took 32 min.
to reach the lower
bound and 34.5
min, to the upper

1. It took 25.5
min. to reach the
undershoot;

2. It took 57.8
min. to reach the
lower bound and
60.2 min. to the

the upper | the upper | bound; upper bound;
Recovery bound; bound;
3. It took 45 min. | 3. It took 80 min.
3. It took 37| 3. It took 77.2 | to reach the|to reach the
min. to reach | min. to reach | overshoot; overshoot;
the overshoot; the overshoot;
4. It took 70 min. | 4. It took 110
4, 1t took 65| 4. It took 1213 | to reenter the | min. to reenter the
min. to reenter | min. to reenter | boundary. boundary.
the boundary. the boundary.
For detection; 3 minutes delay by | For detection: 6 minutes delay by the
the influence. influence.
For recovery: total 65 min. to | For recovery: total 70 min. to complete
Properties | complete the transient in case 1 and | the transient in case 1 and 110 minutes
121.3 minutes in case 2 The | in case 2. The influence elongated the
influence elongated the transient | transient 40 minutes.
56 minutes.
It took 25 min. | 1. Detected with | 1. Detected with 4
to reach the | 4 minutes delay | minutes delay and
undershoot; and 29 min. to { 327 min. to
reenter the upper | reenter upper
Ind bound; bound;
fault Occurrence Undetected
2. It took 51 min. | 2. It took 514
to exceed the | min. to exceed the
lower boundary; lower boundary;
1. It took 18.3 | 1. It took 26 min. | 1. It took 26 min.
min, to reach | to reach the |to reach the
the undershoot; | undershoot; undershoot;
2. It took 31.3 | 2. It took 48 min. | 2. It took 70 min.
min. to reach | to change its |to change its
the lower bound | shape. shape.
and 34.3 min. to
Recovery None the upper | 3. It took 53.4 | 3. It took 73 min.
bound; min. to reach the | to reach the lower

3. It took 43.3
min., to reach
overshoot;

4. It took 66

lower bound and
55.5 min. to the
upper bound;

4. It took 74 min.
to reach the

bound and 75.5
min. to the upper
bound;

4. It took 95.5
min. to reach the
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min. to reenter
the boundary.

overshoot; overshoot;

5. It took 119.9
to reenter the | min. to reenter the
boundary. boundary.

5. It took 99 min.

For detection: with influence from
other axes, the small fault became
detected

For detection: no difference.

For recovery: total 99 min. to complete

Properties the transient in case 1 and 1199
For recovery: total 66 min. for the | minutes in case 2. The influence
transient in case2 elongated the transient 20 minutes.
1. Detected with | 1. Detected with | It took 36 min. to | It took 39.7 min.
4 minute delay [ 4 min. delay | exceed the | to exceed the
and it took 30 | and it took 37.5 | boundary boundary
minute to | minute to
reenter the | reenter the
Sp5 Oceurrence | “PPE bound. upper bound
2. It took 47 2. It took 51
minutes to | minutes to
exceed the | exceed the
lower boundary. | lower boundary.
1. It took 259 { 1. It took 25.8
min, to reach | min. to reach
the undershoot; | the undershoot;
2. It took 382 ]2 It took 51
min. to reach | min. to reach
1st the lower bound | the lower bound
fault and 39.4 min. to { and 52.6 min. to
the upper | the upper
Recovery | bound; bound; None. None.
3. It took 51.4 | 3. It took 69.8
min. to reach | min. to reach
the overshoot; the overshoot;
4. It took 77.5|4. It took 95
min. to reenter | min. to reenter
the boundary. the boundary.
For detection: not much difference. | For detection: with 4 minutes delay
caused by the influence.
For recovery: total 77.5 min. to
Properties | complete the transient in case 1 and | For recovery: No recovery properties.
95 minutes in case 2. The influence
elongated the transient 17 minutes.
t?a I:lclit Occurrence Undetected Undetected No delay No delay
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Recovery

None None

1. It took 25.6
min, to reach the
undershoot;

2. It took 35.3
min. to reach the
lower bound and
37 min. to the
upper bound;

4. It took 51 min.
to reach the
overshoot;

5. It took 74 min.
to reenter the
boundary.

1. It took 25.9
min. to reach the
undershoot;

2. It took 714
min. to reach the
lower bound and
74.1 min. to the
upper bound;

4. It took 93.8
min. to reach the
overshoot;

5. It took 119.6
min. to reenter the
boundary.

Properties

The fault was undetected in both
cases.

For detection: no difference.

For recovery: total 74 min. to complete
the transient in case 1 and 119.6
minutes in case 2. The influence
elongated the transient 46minutes,

4.2.4. Case Study 4: Robustness Investigation

In this subsection, the robustness properties of the neural network scheme under case 1

with F1 fault pattern are investigated. The nominal ripple noise applied to the wheel is

shown in Table 2.2 with a ripple value of 0.22. This ripple noise is increased to different

levels at each setpoint as shown in Figure 4.55.
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Ripple noise is increased by 30% 50% 90% 70%,20%

T ¥ ¥ ¥

Ripple Noise

0 600 1200 1800 2400 3000
Time (minutes)

Figure 4.55 The increased ripple noises corresponding to different setpoint positions

The detection results associated under this changing noise value are shown below.
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Figure 4.56 Detection results for the fault pattern F1 in case 1 with large noise
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As can be observed from the above simulation results, by increasing the ripple
noise the rate of false alarms for detecting faults does not change and increase. This
implies that the proposed neural network is quite robust to these uncertainties. Since the
detection results (in terms of the detection time and recovery time) for a given fault
pattern can be slightly different due to the randomly generated noise and disturbances
that are applied to the system, a strict comparison between various noise and disturbances

scenarios are not conducted here.

4.2.5. Case Study S5: Detection Results Using a Different Definition of

the Residual Error

All the detection results that are provided in this thesis have the property that the residual
signals decrease but the error curve lays below the threshold curves at steady state. There
is however a more appropriate representation for the error signals. Given the fact that the
threshold curve is generated based on the normal operation of the satellite and the neural
networks are also trained to represent and capture the satellite behavior under normal
conditions, if error signals in the wheel decrease and the neural networks always
correspond to normal data, then the difference between the wheel output and the network
output should increase rather than decrease as shown in our previous figures. The reason
for this behavior is that the residual error adopted in this these is defined as
error =y —o, where y is the output of the wheel and o is the output of the neural

network. If, on the other hand, the error definition is changes to error =0 —y, then the

detection results figures will be more consistent with the above common sense
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interpretations. As an illustration, Figures 4.58 and 4.59 show the corresponding

difference by using this new residual error definition.

The fault pattern F1 in case 1 diagnosis by using the error equationo - y
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Figure 4.58 The detection results for the fault pattern F1 in case 1

using a different error definition
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The fault pattern F2 in case 1 diagnosis by using the error equation o - y
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Figure 4.59 The detection results for the fault pattern F2 in case 1
explored. Moreover, in order to understand the properties of the proposed neural network
well, six case studies in which the satellite operates under continuous setpoint change

In this chapter, the FDI scheme for satellite attitude control by using an adaptive time
delay neural network is investigated. The detection results for either V. fault or current
fault in the reaction wheel for individual setpoint changes of the satellite are summarized
and provided in details first. Next the robustness of the proposed neural network is also
circumstances as well as presenting multiple faults in the reaction wheel are also

4.3. Conclusions



conducted and explained in details. Based on the problems investigated in this chapter, an
overall recommendation about the proposed FDI scheme can be drawn that this new
scheme is more than capable of its tasks. More conclusions are summarized in details in

the following chapter.
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Chapter §

Conclusions and Further Work

In this thesis, a fault detection and isolation (FDI) scheme is proposed by using an
adaptive nonlinear neural network system for the satellite’s attitude control system. The
following observations and conclusions may be drawn based on the studies that are
conducted in previous chapters. Specifically:

1. The proposed FDI scheme building on adaptive recurrent neural networks
performs quite satisfactorily. From the setpoint range of 2.5 to 7.5 deg, the
network provides very good fault detection and isolation results for the
satellite’s attitude changes (either by increasing or decreasing its angle). Under
fault free operation, the residual error curves remain inside the threshold curves
and provide a free false alarm detection results. Corresponding to the wheel
becoming faulty, the residual error will cross over the threshold curves except in
some exceptional situations as elaborated later.

2. The neural networks are robust to the system noise and disturbances. Increasing
the ripple noise will not cause any change to the detection results. For instance,
no false alarms are reported and the recovery duration after the fault is removed

has not been affected.
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Once a fault occurs in the wheel the residual error will cross over the threshold
curves and once the fault is removed and the wheel operates under a fault free
condition, the residual error will move inside the threshold boundaries after
some transient time.

. The recovery process after a fault has been removed from the wheel shows an
undershoot and an overshoot transient and during this pair there exist a
reflection point. However, if the wheel is still under another and a second fault,
only the undershoot behavio;is present.

. Depending on the magnitude of the fault, some large faults will exceed one
boundary first and then move inside the boundary and after some ambiguous
detection time, the other boundary is then créssed.

. The magnitude of the faults effect the first time the residual error exceeds the
threshold boundary. It generally takes shorter time to cross over the boundary
corresponding to a large fault.

. In practice, if a fault occurs very close to another one (that is not more than 50
minutes apart) it will cause a false negative detection for the first fault implying
that the first fault cannot be detected. One of the reasons for this behavior is that
the average steady state detection time for faults applied to the wheel is 60
minutes after the application of the faults. Anther reason is that one needs some
time to determine the detection of the fault, which implies that the residual error
has crossed the threshold boundary clearly for the duration of at least a

considerable time (20 minutes in this thesis). Therefore, a sufficient separation
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time is needed between the occurrences of two consecutive faults for our
proposed FDI scheme.

As a mater of fact, two faults applied simultaneously do not cause the deviation
of the residual error further away from the threshold however it impacts the
satellite position significantly.

If an undetected fault is applied after a detectable fault, then it is possible that
both faults become detectable by the neural network, however if one fault has
occurred after the recovery phase of the other fault, then the first fault has no

influence on the current fault detection.

10. The presence of fault on any of the other two axes does not affect the FDI

11.

12.

13.

detection results on the third axis. The existence of faults on the two axes do
only somewhat elongate the fault recovery transient phase on the third axis,
however they do not cause any false alarms (false positive flags) therefore they
do not affect the fault isolation results corresponding to the third axis.

It was shown that setpoint changes corresponding to the satellite attitudes do not
influence the nature of the fault detection and isolation scheme.

For a given single fault (not applied simultaneously with another fault) will
produce similar detection behavior and recovery characteristics and overshoot
magnitudes.

For a given type of a fault, the larger the magnitude of the fault is, the larger the

recovery process transient overshoot takes.
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14. The duration of thé presence of a fault impacts the transient phase of the
recovery process. For a given single fault which has longer duration, it will take
a longer time for the recovery transient phase.

15. Changing the satellite setpoint during the presence of a fault will cause the
recovery process of that fault to take a longer time. Therefore, it is
recommended that no setpoint changes take place during wheel faults.

Overall, the proposed neural network performs very well as a ‘fault detection and
isolation scheme for the safellite attitude control. The advantages of the proposed neural
network are listed as following;:

e It is capable of providing reliable detection results for the faults which can

cause the satellite behave abnormally.

e The proposed neural network possesses strong robustness capability for the

uncertainties (noise and disturbances) exerted to the satellite system.
While the disadvantage of the proposed neural network is that the proposed neural
network is not capable of distinguishing small fault signals with normal signals.

The following are some suggestions for further research to be conducted beyond
this thesis:

1. Neural networks designed and implemented for the other two axes (roll and pitch
axes) should be studied also to provide a full three axes fault detection system.

The fault detection capabilities in conjunction with the coupling effects need to be

investigated further.

2. A comparison with other types of recurrent neural networks should also be

studied.
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3. The self tuning of the control system aﬂér the recovery of each fault is an
important attitude réquirement. After each recovery of a fault, the entire system
has been changed due to the nonlinearity nature of the satellite attitude system.
The pre-designed and fixed controller parameters are unable to meet the desired
pointing specifications 'any longer; therefore these parameters need to be

adaptively adjusted for the proper execution of the mission.
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