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ABSTRACT

Production Planning in a Multi-Product Manufacturing Environment Using

Constant Work-In-Process

Wen Zhang, Concordia University, 2007

Push-based MRP and pull-based Kanban systems are effective production con-
trol policies for a wide range of manufacturing environment. Both of them, however,
have certain limitations when they are implemented in different production environ-
ments. In recent years, CONWIP (CONstant Work-In-process), a hybrid push/pull
control policy, was proposed and studied to take édvantages of MRP and Kanban
systems for optimal work-in-process (WIP) inventory control. CONWIP is a closed
production system in which a constant number of containers traverse a closed loop
that includes the entire production system.

In order to effectively implement CONWIP control in a manufacturing envi-
ronment, several issues, such as the number of containers, lot sizes and job sequence,
need to be addressed. This research aims at the development of mathematical mod-
els to address these issues and to help implement CONWIP systems in different
manufacturing environments. Two mathematical programming models are devel-
oped to address issues on a single serial CONWIP line system. The first model can
be used in a make-to-stock environment and the objective function of the model is to
minimize the setup costs and the costs associated with an unbalanced workload at
the bottleneck machine. The solution of the first model simultaneously determines

the optimal job sequence on the part list and the lot size associated with each entry



on the part list. The second model can be used in a make-to-order environment or in
a make-to-stock environment with a known part list. The objective function of the
second model is to minimize the system makespan. Two essential CONWIP system
parameters, number of containers and job sequence can be determined by solving
the second model. A third model is developed for an assembly-type CONWIP sys-
tem with multiple fabrication lines feeding an assembly station. The objective of
the third model is to synchronize system production by minimizing makespan dif-
ferences among all the fabrication lines. The solution of the third model determines
the number of the containers and job sequence for each of the fabrication lines.
The solution of such models is NP-hard. The general branch and bound ap-
proach used by most off-the-shelf optimization software cannot be used to solve real
sized problems of this nature. In order to solve real sized problems efficiently, we
develop a heuristic search method based on simulated annealing. Several example
problems are used to test the developed models and algorithms. Computational

results validate the modelling and computational efficiency of the solution methods.
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Chapter 1

Introduction

1.1. Background

As international competition increases, manufacturing companies are now facing
much higher pressure to improve their efficiency, quality, flexibility and profitability
than they ever have. To stay in the competition, they need to provide products with
highest performance and reliability together with improvement in cost, cycle times
and overall operation efficiency. Nowadays, not only manufacturing industry’s big
names, but also small sized companies are looking for better solutions. Many of them
have found that lean manufacturing changed their mind about how a factory should
be organized. As the chief economist at Canadian Manufacturers and Exporters,
Jay Myers said, “If you’re a manufacturing company out there today, you have to
be focused on lean manufacturing because lean manufacturing is just a systematic
way of doing two things: delivering what customers value and eliminating waste
(Macdonald, 2006).” Lean manufacturing refers to a set of techniques aimed at
reducing waste by cutting out activities that add cost but not value (Macdonald,

2006). Not just lean manufacturing, but many other managerial and operational



Chapter 1. Introduction

approaches have been developed to cope with today’s markets. Just-In-Time (JIT),
agile manufacturing, constant work-in-process (CONWIP), the new generation of
Enterprise Resource Planning (ERP), etc. are widely adopted by manufacturers to
help them survive and be successful in the fierce competition. CONWIP is the main
focus of this study.

Traditionally, manufacturing companies may not be particularly responsive to
changing customer demands, a manufacturer may rely on forecasting future demand
and scheduling the release of work into the system to meet expected demand. It is a
so called push-based material requirement planning (MRP) method. Such produc-
tion systems often have excess inventory, higher WIP levels, and longer quoted lead
times from order to delivery. The high WIP is a result of long lead times from MRP
systems to handle shop floor uncertainties. In contrast, just-in-time production,
a pull-based production planning and control, relies on actual demand triggering
the release of work into the system, and pulling work through the system to fill
the demand order. Just-in-time production is better able to respond to changing
customer demands as it advocates producing the right products at the right time
and in the right amounts. Pull-based production systems have many advantages
over push-based production systems but pull systems are more applicable to repet-
itive manufacturing. Limitations of pure pull and pure push production systems
led researchers to investigate the potential of combining the two. It is becoming
more apparent that, in many instances, a hybrid production system is more effec-
tive than either a pure push or a pure pull production systems alone. Since the
early 1990’s, the CONstant Work-In-Process (CONWIP) production system, a pull
and push hybrid system, has received significant attention because of its simplicity

in implementation and effectiveness in inventory control.
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1.1.1. Push and Pull Production Control Systems

In a push controlled production system, production planning is based on forecasted
demand, bill of materials, component lead times and inventory status. The infor-
mation flow in a push system is from the beginning of the production line to the
end of the line. Based on the production plan, production starts at the initial work-
station in the production line when the required raw material arrives. Once the
job is finished at the workstation, it is “pushed” to the subsequent workstation for
further processing. The problem with the push system is its high dependency on
forecasted lead time. Since it is very difficult to accurately calculate the lead times
required by components or end products shipped to customers, to make it “safe”,
production lead times in a push controlled system are often inflated and thus lead
to excessive Work-In-Process (WIP) inventories and plant congestion. In addition,
MRP controlled production systems are not flexible in responding to market changes
(Ignizio, 2003).

In contrast to a push type system, a pull type production control seeks to
reduce the inventory to a minimal level and shorten the lead time. A pull system
(such as a Kanban system) does not use forecasted demands directly for produc-
tion control. Production is triggered by actual component or end product orders.
It reacts to make products to satisfy demands from its customers or downstream
stations. When demand arrives at the final station of the production line, compo-
nents used for demanded products are checked to see if they are available. If so, the
production at the station starts; otherwise, a request is sent to the previous work-
station to request parts. A similar procedure is followed backwards through each
workstation until reaching the first workstation of the production line. Since the

number of Kanbans or cards allowed to be used in the system is creating an upper
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limit on the total amount of WIP, control of WIP becomes much easier and hence
it can be significantly reduced in a pull system. In general, push systems schedule
releases, control release rate and hence throughput and observe work-in-progress
(WIP). While pull systems authorize releases, control WIP and observe throughput.

. Push systems are generally considered to be applicable to more manufacturing
firms than pull systems, but the latter seem to produce superior results when they
can be used. This is due to the fact that controlling WIP is easier than controlling
throughput in complex production systems (Spearman et al., 1990). In order to
take advantage of the wide applicability of push systems and superior performance
of pull systems, a number of hybrid production control strategies were proposed and
studied by different researchers such as Synchro-MRP (Hall, 1981), CONWIP model
(Spearman et al., 1990), generic Kanban model (Chang and Yih, 1994) and drum-
buffer-rope (DBR) model (Goldratt, 1984). Among all these variations, CONWIP

has drawn more attention because of its simplicity of implementation.

1.1.2.  CONWIP Production Control Systems

In a CONWIP system, production is also triggered by actual demand of the prod-
ucts. When demand arrives at the final workstation, components used for demanded
products are checked to see if they are available. If so, the production at the station
starts; otherwise, a request is sent to the first workstation of the production line to
request parts. Once jobs are finished at the first workstation of the production line,
they are then pushed to the next workstation until they reach the final workstation.
Its pull mechanism is similar to a typical Kanban system in that the production of
the first workstation is also triggered by demand. It differs from a Kanban systems

in that Kanban systems are pulled everywhere between two consecutive workstations
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while CONWIP systems are only pulled between the final workstation and the first
workstation. CONWIP control systems are also similar to the MRP systems inside
the production line. Components are pushed from up-stream workstations to down-
stream workstations. It is different from MRP in that it controls WIP by observing
the throughput while MRP controls the throughput (Hopp et al., 1998). CONWIP
control systems have many advantages over pure push or pure pull systems. They

include (Hopp et al., 1998; Marek et al., 2001; Ignizio, 2003):

1. Observability: CONWIP controls WIP and therefore WIP is directly observ-

able while capacity is not.

2. Efficiency: Since CONWIP has the properties of both push and pull systems,
it can achieve the same throughput rate as a push system but with smaller

average WIP level.

3. Variability: As CONWIP systems regulate the WIP level, low times are less

variable than in those push systems.

4. Robustness: CONWIP systems are less sensitive to errors in WIP level than

push systems to errors in release rate.

5. Adaptability: CONWIP systems can be easily used in a non-repetitive man-
ufacturing environment where Kanban systems are difficult to use. Monden

(1983) concluded that Kanban systems are difficult to use in several situations:

e Job orders with short production runs
e Significant setups

e Large, unpredictable fluctuations in demand

6. Simplicity: CONWIP systems are easier to implement than Kanban systems.
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1.2. Problem Statement

Since its introduction, CONWIP systems have attracted much attention from prac-
titioners and academics. As a pull system, it shares the advantages of pull systems
with respect to WIP control, while it is considered more robust, flexible and easier to
implement than a typical pull system. These are important characteristics for man-
ufacturing companies that try to control inventory levels in uncertain and dynamic
environments where Kanban systems do not perform well (Framinan et al., 2003).
From today’s predominant ERP (Enterprise Resource Planning) viewpoint, CON-
WIP is a tool for manufacturing control based on synchronous production (Shtub,
1999). In recent years, the range of applications of CONWIP, like other pull sys-
tems, has been enhanced by the possibility of using these control systems not only
within the manufacturing stages, but also for the different echelons of the supply
chain (Knolmayer, 2002).

Common questions when establishing a CONWIP system are, how to forecast
the backlog list, number of cards operating in the system, and how to sequence the
jobs in the system. Most of the available research articles focus on the card setting
and job sequencing for single production line while card setting and job sequencing
are usually investigated separately. There are almost no papers on mathematical
models for multiple CONWIP production lines. Also a question that has not been
well studied is the impact of lot-sizing, i.e., the number of jobs to attach to a card
or a container, on system performances (Framinan et al., 2003).

It is clearly beneficial to study both card setting and job sequencing at the
same time and to investigate how these two factors would impact on the overall

CONWIP system performance.
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1.3. Contributions of the Thesis

In this research, we develop mathematical programming models to address the major
issues required to implement CONWIP system in an existing manufacturing system.
A non-linear integer programming model is developed to simultaneously deter-
mine optimal job sequence and transfer lot sizes in a serial CONWIP production line.
The model considers sequence dependent setup cost and workload balancing. These
factors have not been well studied in published papers on CONWIP. The model also
considers transfer lot size and its effect on system performance. Research on this
issue is also limited in papers published so far. 7

We develop a second mathematical model for a single serial CONWIP line to
determine not only the job sequence, but also the minimal number of containers or
WIP level in the system. The major contribution of this model is that it can decide
the number of containers directly.

Another major contribution of this research is that we develop a mathematical
model for multiple line CONWIP systems. No such mathematical model is seen in
papers published in the field of CONWIP system research. The model determines
the best number of containers or WIP settings for each fabrication line to obtain
the best overall system performance.

To solve these complicated mathematical programming models for large and
close to real world problems, we propose an efficient heuristic based on simulated
annealing algorithm. Six perturbation schemes and other specific simulated an-
nealing parameters are investigated to see how they affect the solution quality and
the computational efforts. The developed simulated annealing algorithm is imple-
mented using C# in a software CONLine. We design CONLine with a user friendly
GUI. CONLine allows user to solve the model, enter the CONWIP system data and
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control the SA parameters easily via the GUI.

1.4. Thesis Organization

Following this chapter of introduction, Chapter 2 presents an extensive review of the
literature for the CONWIP systems, as well as several solution methods developed
to solve CONWIP and similar problems in manufacturing systems.

Chapter 3 presents two mathematical models developed for a single CONWIP
production line. Lot size, backlog list and job sequence can be obtained from the
first model simultaneously, but the WIP level is handled outside the model. Also the
bottleneck machine is required to be identified before using the model. The second
model presented in this chapter overcomes the shortcomings of the first model in
that identifying the bottleneck machine beforehand is not necessary. The second
model can compute the WIP level along with the best job sequence.

Chapter 4 gives a mathematical model developed for assembly-type multiple
line CONWIP systems. Job sequence and WIP level for each of the fabrication lines
can be obtained at the same time from the solution of the model.

Chapter 5 presents an algorithm based on simulated annealing developed to
resolve the second model of the single CONWIP line and the model for assembly-type
multiple CONWIP lines. Such a heuristic method is needed due to the extensive
computational requirement in solving these models optimally.

Chapter 6 presents several numerical examples to illustrate the developed mod-
els and solution method. First model is solved using software package LINGO and
a small size problem is illustrated to evaluate the model. The second model and the
third model are solved using the developed heuristic algorithm. Simulated anneal-

ing based heuristic method parameters and results of several numerical examples



Chapter 1. Introduction

for single CONWIP line and assembly-type multiple CONWIP lines are presentéd.
The system performances of different examples is also illustrated in this chapter.
Chapter 7 offers conclusions of this research and some suggestions for further
research in this area.
C# source code for the second and third models using the proposed SA based

algorithm is included in Appendix C.
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Literature Review

Since Spearman et al. (1990) introduced CONWIP systems, many research articles
studying such systems have been published. Hopp and Spearman (1991) studied
CONWIP production lines in which processing times were deterministic but ma-
chines were subject to exponential failures and repairs. Duenyas and Hopp (1992)
developed structural results and an approximation for the throughput of an assem-
bly system. The system is fed by multi-station lines where releases were governed
by the CONWIP protocol and all machines had deterministic processing times but
were subject to random outrages. Spearman and Zazanis (1992) compared CON-
WIP systems with pure Kanban systems and offered theoretical analysis for the
apparent superior performance of pull systems. Using a simulation study, Roderick
et al. (1994) compared CONWIP and typical MRP with respect to due dates and
cycle times to check the validity of the CONWIP model in an actual plant envi-
ronment. Chang and Yih (1994) proposed a generic Kanban system to control a
dynamic production system and compared it with the original Kanban system and
the CONWIP system using simulation. Gstettner and Kuhn (1996) classified dif-

ferent pull production systems and analyzed Kanban and CONWIP with respect

10
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‘to production rate and average WIP. Hopp and Roof (1998) developed an adaptive
production control method for setting WIP levels to meet target production rates
in a CONWIP system. Huang et al. (1998) introduced a simulation study that
compared the CONWIP system and the original control system for a cold rolling
plant. Bonvik et al. (2000) presented a decomposition method for approxima-
tion performance analysis of tandem production systems that are controlled by the
CONWIP finite buffer control policy. Leu (2000) used group scheduling heuristics
and single-stage heuristics to generate the backlog list of CONWIP based flow line
and then compared the performance of two heuristics by simulation. Beamon and
Bermudo (2000) presented a hybrid control logic and a structured algorithm for a
multi-line, multi-stage assembly-type production system. A simulation model was
then used to test the algorithm on system performance based on output, lead time
and WIP. Ryan and Choobineh (2003) proposed a planning procedure to set the
constant level of WIP for each product type in a job shop controlled by CONWIP.
Weitzman and Rabinowitz (2003) defined a modified CONWIP algorithm to com-
pare push and pull strategies for production planning and control under different
updating rates for inventory information. Framinan and Gonzalez (2003) reviewed
different contributions on CONWIP production control system according to opera-
tion, application and comparison of CONWIP. They pointed out that most studies
focused on card setting and job sequencing, but no research has been conducted to
show the relative importance of the different implementation decisions on the sys-
tem performance. Koh and Bulfin (2004) analyzed and compared drum-buffer-rope
(DBR), another alternative of push-pull hybrid control policy, and CONWIP in a
three-stage unbalanced tandem production line.

From the above general review of the CONWIP related literatures published

recently in a chronological order, some researchers used simulation to compare push

11
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and pull, push and different push/pull hybrid alternatives, while some others used
stochastic models to analyze CONWIP systems to set WIP levels. All this research
helps us to understand the properties of CONWIP systems, but they do not address
all the issues raised in CONWIP systems. Our particular interests in this research
- are in the area of research on CONWIP mathematical programming models and
methods leading to solve them. Fewer literatures are reported in this area. In the

next sections, we will review some of such research papers in this area.

2.1. Mathematical Programming Model for CON-

WIP Systems

The essential system parameters in CONWIP are the size of the WIP (number
of containers) and the sequencing rules for the backlog list (Golany et al., 1999).
Very little has been published in this area and the research that has been reported
has focused mainly on the issue of WIP level. This was done mainly by analyzing
single item systems characterized with either stochastic processing times or with
deterministic processing times and stochastic breakdowns.

Herer and Masin (1997) developed a deterministic mathematical programming
model for a single serial CONWIP line to generate an optimal sequence of jobs. The
objective function of their model is to minimize inventory related costs including
finished goods holding cost, shortage cost, WIP holding cost and overtime cost. Op-
timal job order and schedule are obtained based on mean throughput and flow time
using mean value analysis (MVA). Lot sizes, number and the effects of bottleneck
machines on job orders were not considered in their model. No algorithm leading to

solving the model was developed in their published paper.

12
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Golany et al. (1999) developed a mathematical model for a multi-cell, multi-
family CONWIP production environment. The model was used to simultaneously
find the best level of WIP and the sequence of the backlog list. Two variant CON-
WIP control mechanisms were compared. In the first one, containers are restricted
to stay within given cells all the time. In the other, containers are allowed to move
through the entire system. The model was solved by a simulated annealing heuristic.
The objective function of the model was to minimize the overall completion time.
Inventory costs and setup costs were not considered in the model. Lot size (the
capacity of the container) was not considered in the model.

Luh et al. (2000) developed a mathematical programming model for a single
CONWIP based serial production line in a job shop for Sikorsky Aircraft. The
objective function of the model is to minimize weighted penalties on tardiness and
on early releasing of raw materials. The model was approximately solved to schedule
a set of jobs over a specific time period to meet fixed due dates at a given WIP
level. A synergistic combination of Lagrangian relaxation, dynamic programming
and heuristic methods were used to solve the model. The number of containers and
lot size were not addressed in their work.

Cao and Chen (2005) developed a nonlinear mixed integer programming model
for a CONWIP-based production system where an assembly station is fed by" two
parallel fabrication lines. The model was linearized and solved by enumerating a
series of solutions of TSP sub-problems. The optimal job sequence and lot sizes can
be simultaneously determined by solving the model. Other issues involved in the
CONWIP system, such as number of containers or WIP level were not discussed in
the paper and not computed in the model.

As mentioned earlier, aside from the number of containers and job order in

the backlog list, lot size or the capacity of container is one of the crucial aspects
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in implementing CONWIP systems. A lot size larger than necessary will needlessly
increase inventory costs, thus offsetting the objective of employing the CONWIP
system, while a lot size too small will incur excessive setup costs and may create
backorders that will ultimately cause a CONWIP system to collapse completely.
The models developed in the above three CONWIP publications did not ad-

dress this essential issue on lot size for the CONWIP systems.

2.2. Meta-Heuristic Algorithms

Mathematical programming models developed to obtain job sequence, WIP level
and lot sizes are often NP-complete. This follows from the fact that flow shop
sequencing problems are typically NP-hard (Garey et al., 1979). In the case of
CONWIP, when the number of containers is greater than the number of items,
the problem is already NP-hard (Golany et al., 1999). Thus, solution to solve the
CONWIP system mathematical model should be found by some heuristic algorithms
for practical applications.

Many meta-heuristics have been implemented to solve combinatorial produc-
tion planning optimization problems by researchers and practitioners. These heuris-
tic algorithms include Simulated Annealing (SA), Genetic Algorithm (GA), Tabu
Search (TS), Hill climbing procedures, and Ant Colony Optimization etc. In addi-
tion, some hybrid heuristic algorithms, combining these meta-heuristic algorithms,

are also introduced in many research papers.
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2.2.1. Simulated Annealing Algorithm

Simulated Annealing (SA) was first introduced by Kirkpatrick et al. in 1983. It is a
random search technique that exploits an analogy between annealing process of met-
als and the search for an optimum in a more general system. The main procedure of
SA can be described as follows. It starts with an initial solution of the problem and
then searches in the neighborhood of the current solution to generate a new testing
solution. If the new testing solution is better than the current solution based on the
value of the objective function, it is accepted and used as the new current solution.
Otherwise, it may be accepted or rejected depending on an acceptance probability,
which is determined by the difference between the objective function values of the
two solutions and by a control parameter called temperature. This process then
continues from the new current solution. Initially, the temperature was set at a high
level, as in the annealing process, so that almost all moves will be accepted. It is
then decreased slowly during the procedure until almost no move will be accepted
(Hejazi et al., 2005). To implement a SA algorithm, generation mechanisms and
cooling schedules must be determined. The generation mechanisms are the ways to
generate neighborhood solutions. They are often called perturbation schemes. The
cooling schedule includes determining parameters, such as initial temperature, final
temperature, the number of iterations at each temperature, and the temperature
changing schemes. Various perturbation schemes have been presented in literature.
Osman and Potts (1989) used interchange neighborhood and shift neighborhood
schemes to solve a flow shop scheduling problem. Ogbu and Smith (1990) employed
the insertion and pair wise exchange as the perturbation schemes. The performances
of these two perturbation schemes were compared. Sridhar and Rajendran (1993)

chose adjacent interchange, insertion scheme and random interchange schemes as
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perturbation schemes. Tian et al. (1999) introduced six perturbation schemes in
their SA algorithm: interchanging two adjacent jobs; interchanging two random
jobs; moving a single job; moving a subsequence of jobs; reversing a subsequence of
jobs and reversing and/or moving a subsequence of jobs. Performances of these six
schemes were then evaluated in solving Traveling Salesman Problems (TSP), Flow-
shop Scheduling Problems (FSP) and Quadratic Assignment Problems (QAP). The
cooling schedule was also discussed by many researchers in their papers. Collins et
al. (1988) and Hajek (1988) suggested a great variety of cooling schedules. Haddock
and Mittenthal (1992) applied SA with a heuristic cooling function to a simulation
optimization problem in which the total expected profit of a hypothetical automated
manufacturing system was maximized. Their results showed that a lower final tem-
perature, a slower rate of temperature decrease and a large number of iterations
performed at each temperature level yielded better solutions. Alrefaei et al. (1999)
presented a SA algorithm that used a constant temperature instead of decreasing
temperature. They used two approaches to get the optimum solution and showed
that both converged to the global optimal solutions.

There is substantial literature on applications of SA to solving sequencing
problems. Osman et al. (1989) proposed a SA algorithm to minimize the maximum
completion time of a permutation flow shop scheduling problem. A relatively large
experimental problem with 20 machines and 100 jobs was solved. It showed that sim-
ulated annealing performs better than some known constructive heuristics. Ishibuchi
et al. (1995) applied a modified simulated annealing algorithm with the best move
strategy to solve a m-machine n-job flow shop sequencing problem with the objective
of minimizing the makespan. They claimed that their modified SA was less sensitive
to the choice of a cooling schedule than that of the standard simulated annealing

algorithm. Golany et al. (1999) presented a SA algorithm specifically developed for
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solving CONWIP system scheduling problems. After comparing SA solutions with
optimal solutions and random solutions, they concluded that the SA algorithm is
an effective method to solve the multi-cell CONWIP problem. McMullen and Fra-
zier (2000) presented a SA heuristic that simultaneously considers both setups and
the stability of parts usages rates when sequencing jobs for production in a Just-
In-Time environment. Several test problems were solved by the SA heuristic and
the solutions were compared to the solutions obtained by a Tabu Search approach.
Comparison‘showed that the simulated annealing approach provided better results
compared to the Tabu Search approach. Ozdamar and Bozyel (2000) used several
heuristic algorithms, including generic algorithm and simulated annealing, to solve
a capacitated lot sizing problem. The problem was to decide lot sizes of multiple
items over a planning horizon with the objective of minimizing setup and inventory
holding costs. Computational results demonstrated that the SA approach produced
high quality schedules and was most computationally efficient. Hejazi et al. (2005)
gave a complete survey of flow shop scheduling problems with minimizing makespan
as a criterion. In the paper, they reviewed a variety of methods for solving flow shop
problems. The methods included some exact methods, constructive heuristics and
meta-heuristics. The meta-heuristic methods covered simulated annealing, genetic
algorithm, tabu search, etc. Vallada et al. (2006) reviewed and evaluated a vari-
ety of heuristics and meta-heuristics for m-machine flowshop scheduling problems
with objective of minimizing total tardiness. They analyzed a total of 40 differ-
ent heuristics and meta-heuristics and evaluated their performances under the same
benchmark of instances for comparison. Jans and Degraeve (2007) provided a re-
view of various meta-heuristics specifically developed to solve lot sizing problems.

Simulated annealing was among the meta-heuristics they have reviewed.
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2.2.2. Genetic Algorithm

Genetic Algorithm (GA) was first introduced by Holland in 1975. It is a stochas-
tic heuristic that encompasses semi-random search methods whose mechanisms are
based on the simplifications of evolutionary processes observed in nature (Gaafar et
al., 2005). According to Gaafar et al. (2005), GA algorithm can be described as fol-
lows. In GA, a solution is represented as a chromosome. A set of such chromosomes
is generated randomly to form an initial population. The generated chromosomes
are evaluated for the corresponding objective function values and the population is
updated. This process continues until an improved solution cannot be obtained or
a prescribed number of iterations is reached. Genetic operators generate new chro-
mosomes (children) from existing ones (parents) by manipulating the order of some
chromosomes mainly in two ways: crossover and mutation. Every crossover opera-
tor is applied to two chromosomes (parents) and results in two new ones (children).
Every mutation operator is applied to one chromosome and results in a different
chromosome.

Many papers have been published in the areas of implementations of GA in
production planning. Reeve (1995) compared the performance of SA and GA for
flow shop problems ranging from small sized problems to large sized problems. They
found that SA outperformed GA in most small sized problems while GA provided
better solutions for large problems. Wang and Zheng (2003) investigated the effect
of different initialization, crossover and mutation operators on the performances of
a GA. They then proposed a hybrid heuristic for permutation flow shop problems.
Simulation results showed that the hybrid heuristic method is effective. Gaafar
and Masoud (2005) applied both GA and SA algorithms to scheduling in agile

manufacturing systems to minimize the makespan. They compared the GA and SA
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algorithms with other heuristics and concluded that both GA and SA algorithms
performed well. When comparing GA and SA, they stated that SA outperformed

GA with a more robust perforrhance.

2.2.3. Tabu Search Algorithm

Tabu search (TS) was first proposed by Glover in 1986 (Glover, 1986). Since its
introduction, it has been used to solve various optimization problems in different
areas by many researchers. According to Hejazi and Saghafian (2005), the TS algo-
rithm can be described as follows. It starts from an initial solution and then applies
a move mechanism to search the neighborhood of the current solution and to choose
the most appropriate one. A neighborhood solution is accepted if it is not “Tabu”
or if a criterion is fulfilled. To use the information about the search history, selected
moves are stored in a data structure called “Tabu list”. This list contains elements
at a time and once a move is entered the oldest one is deleted. The selected move
is put into the Tabu list and remains there for the following iterations. The length
of the Tabu list is controlled by the Tabu list size parameter. To implement a TS
algorithm, defining neighborhood, searching among neighbors and setting tabu list
size are three important issues.

TS algorithms have been adopted by many researches to solve various opti-
mization problems in production and manufacturing systems. Lutz et al. (1998)
addressed a problem of buffer location and storage size in manufacturing lines and
used Tabu search to find the optimal solutions. Martin et al. (1998) implemented
four different variations of Tabu search to determine the number of Kanbans and lot
sizes in a generic Kanban system. They reported that Tabu search performed much

better than local search, but provided the same results as a simulated annealing
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search with longer computing times. They concluded that the Tabu search algo-
rithm could rapidly identify optimal or near-optimal schedules for a broad range
of industrial settings. Solimanpur et al. (2004) developed a Neuro-Tabu search
method, and Grabowski and Wodecki (2004) proposed a fast Tabu search approach.
Both of the methods were developed to solve permutation flow shop problems to
minimize production makespan.

In addition to the implementation of SA, GA and TS as well as their variations
for solving manufacturing system and other problems, many researchers compared
the performance of two or three meta-heuristics and observed that one method
might perform better than the others in certain applications. From the literature
reviewed in this research, it appears that SA outperformed GA or TS in solving
many manufacturing problems. SA is also simpler to implement in terms of coding
efforts. We therefore chose the SA method and customized it to solve our CONWIP

production line problems.
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Chapter 3

Modeling a Single CONWIP

Production Line

Planning and scheduling module is an important component in manufacturing plan-
ning and control framework. While the missing link between CONWIP-oriented
mathematical models and operative planning systems is one reason why CONWIP
control mechanism has not been widely used in the past. To this end, in this
chapter, two mathematical models for a single serial CONWIP production line are
developed. The mathematical models presented in this chapter aim to make the

following decisions when establishing a CONWIP line:

1. Creating a part list, deciding the length of the part list and the lot size of each

entry of the part list
2. Deciding the number of cards or standard containers operating in the system

3. Sequencing jobs on the part list

Depending on the production environment and the specific nature of the pro-

duction line, the mathematical model may be implemented differently. In general,
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production systems fall into two categories: make-to-stock environment and make-
to-order environment. In a make-to-order environment, it may not be required to
create a part list as the part list may directly come from customer orders. While in a
make-to-stock environment, the part list should be generated to meet the forecasted
demands. Also in a make-to-order environment, customers usually expect their or-
ders to be filled by certain given dates. When modelling this type of system, the
objective function is usually to minimize flow time, makespan, maximum tardiness,
or weighted average tardiness, etc. In addition, a production line may be unbal-
anced or balanced. In an unbalanced line, there will be certain types of bottleneck
machines or stations. The bottlenecks could be shared bottlenecks where the bot-
tlenecks of the system are sequence-independent; or non-shared bottlenecks where
the bottlenecks of the system are sequence-dependent (Framinan et al., 2003). In a
non-shared bottleneck production line, the setup times and lot sizes are important
factors for job sequencing.

We first present a mathematical model for a single serial production line in a
make-to-stock environment. A hybrid control policy of drum-buffer-rope (DBR) and
CONWIP is employed in the model. In this model, the length of the part list, the lot
sizes (the amount put into each container) of each part list entry and the sequence
of the jobs are decided simultaneously. The number of containers to be used in the
system then can be decided approximately by Little’s law. A numerical example
of this model is provided in Chapter 6 to illustrate basic characteristics of a single
serial line CONWIP system. A second mathematical model will be presented for a
single CONWIP serial line in a make-to-order environment. In the second model,
the length of the part list is not a concern as it is decided mainly by customer
orders. The lot size is also not a concern and we assume they are known. Since

the lot size remains constant, the transfer lot sizes can, without loss of generality,
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be considered of unit size (Herer et al., 1997). In the second model, the number of
containers or the WIP levels is decided in a different way from the first model. A
simulated annealing based heuristic method is erriployed to solve the second model.
The SA heuristic method will be presented in Chapter 5. The numerical examples

and results of the second model will be given in Chapter 6.

3.1. Problem Description

The CONWIP system considered in this section is a single production line with a
number of workstations in sequence. The workstations process a number of different
types of parts specified in a part list. The part list is simply a list of parts that need
to be processed. Each entry of the part list represents a standard order that has an
associated part number and corresponding lot size. The order placed in the part list
waits for its turn for a free container to enter the system.

The number of containers is limited or eapped to limit the WIP level. Demands
for finished products at the final station will cause the standard containers detached
from the products and sent to the first workstation of the line. This will authorize the
release of new materials to the system for processing. When a container is available,
the parts associated with the order are placed in the free container. The quantity of
parts placed in the container is the lot size of the parts. During a container’s cycle
all items in the container are identical. While proceeding through the system, the
parts in the containers are processed according to a first-come-first-served discipline
(Herer et al., 1997). When a container reaches the end of the line the finished parts
are removed; the container is then sent back to the beginning of the line where it
is again loaded with raw materials (if there are orders waiting in the part list) or it

waits in a queue for another order (if the part list is empty) and the cycle repeats.
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The above described process is a typical CONWIP based system depicted in Figure
3.1. Material flow is “pulled” by demands at the finished goods inventory while at

each workstation inside the line it is “pushed” by upstream production.
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3.2. Mathematical Model 1 - Make-To-Stock Sin-

gle Serial CONWIP Production Line

3.2.1. Assumptions

We made some assumptions when modelling the CONWIP based production line.
We assumed that the production line was an unbalanced line in a make-to-stock
environment. As we mentioned earlier in this chapter that for an unbalanced line
there are bottlenecks. We assumed that there was only one dominant bottleneck
for this production line. To model this type of production line, we followed the
combined DBR (drum-buffer-rope) and CONWIP methodology.

DBR was developed by Goldratt in 1984 (Goldratt, 1984) and has been im-
plemented by a number of manufacturing companies. It is a key component of the
theory of constraints (TOC) used in ERP software for production planning. Schra-
genheim and Ronen (1990) stated that this approach can reduce work-in-process
(WIP) and improve productivity of job shop operations.

DBR consists of three major components, drum, buffer and rope. The drum is
the bottleneck machine, i.e. the constraint of the system; the constraint controls the
overall pace of the system. The buffer is a protection. Buffers are used to protect
the bottleneck from disruptions in the processing steps preceding the constraint.
The rope is a mechanism to force all the parts of the system to work up to the
pace dictated by the drum and not to exceed it. The DBR is best described as a
combination push/pull logistics procedure since materials are pulled into the shop
through the rope based on the rate of use of these materials at the bottleneck. Once
released, materials are then pushed to subsequent work stations.

From the above discussion, we can see that although DBR and CONWIP are
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developed based on different reasoning, they both are push/pull hybrid systems
and there are some similarities between these 2 methodologies. In our model, we
will follow the drum and rope approach. In other words, a bottleneck is identified
first and then a job sequence is generated to keep the bottleneck busy without
interruption. At the same time, the work load on the bottleneck is balanced by using
proper transfer lot size to keep the rate at the bottleneck as uniform as possible.
Since the bottleneck determines the rate of the entire production line, if the rate
at the bottleneck is uniform, then the rate of thebentire production line is close to
uniform. Last, we then can determine the WIP level based on Little’s law. The WIP
level of the production line is limited to this WIP calculated from Little’s law. This
capped WIP level instead of a buffer in the DBR is used to protect the bottleneck
from disruptions in the processing steps. Since the WIP is capped in the system, this
production line is still a CONWIP based production line but with DBR approach
employed. This system can be viewed as a hybrid system of CONWIP and DBR.

Processing times are assumed deterministic and known for all parts. The
sequence dependent setup times are also known. The parts are assumed to be pro-
cessed in batches. The DBR tries to move the orders as fast as possible through the
production line by splitting work orders, i.e., by transferring small batches between
machines to reduce waiting time. Since the processing lot size is determined by the
setup time and the transfer lot size does not have a lower limit, the transfer lot size
can be reduced to increase throughput and to reduce inventory (Shtub, 1999). The
lot size in our model refers to transfer lot size.

In summary, the assumptions we use in developing Model 1 are:

1. The production line is an unbalanced line and there is only one dominant

bottleneck machine in the system.
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10.

11.

. Parts follow the same process routing in the line and are processed on each

workstation sequentially.
Parts are produced in batches.

Setup times and processing times at all workstations are considered known

and deterministic.

. Setup times are sequence dependent. There is no setup incurred for the same

consecutive parts. Setup time is only incurred when two consecutive entries

on the part list represent different types of parts.
Each entry in the part list can only represent one type of parts.

The standard container is large enough to hold the whole lot of each part list

entry (all parts in each of the part list entries).
There are no machine breakdowns.

A perfect quality conformance is assumed for the entire system. Hence, there

18 no defective on all workstations.

Demands are continuous so the parts are removed from the containers as soon

as they finish processing.

Raw material supplies are continuous without interruption.

3.2.2. Objective Function and Constraints

Since the model developed is for a single line in a make-to-stock environment, the

flow time or the make span is not our major concern. The major concern here is to

minimize the overall production cost including setup cost, WIP cost, etc.
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The objective function of the mathematical programming model developed in
this section is to minimize setup cost at the bottleneck machine and the cost asso-
ciated with the variances between consecutive batches of production in the system.
The first part of the objective function, setup cost, is not uncommon in production
line modeling. It is not a distinct property of the CONWIP production system since
it is also widely used in MRP models. The second part of the objective function, the
cost associated with the variances between consecutive batches, is a WIP related
cost. In this CONWIP production line, each standard container can be seen as a
standard product even though it can carry different batches of different parts. In the
approach of DBR and theory of TOC, the bottleneck resource, i.e., the constraint of
the system, dictates the overall pace of the system. If the bottleneck machine has a
nearly constant production rate, the overall production will be close to uniform. Ac-
cording to Little’s law, the average inventory level is equal to the average throughput
rate multiplied by the average flow time. If the system throughput rate is almost
constant, the WIP level, or the number of containers, should have minimum vari-
ations. This is the essential requirement for implementing a CONWIP system. So
the second part of the objective function is specific to CONWIP systems. Also it
is a key part to determine the lot size for each entry of the part list. To determine
the transfer lot sizes (the number of parts put into each container) for each part,
Spearman et al. (1990) suggests using an equal amount of work for the bottleneck
machine. The amount of work is measured by both processing time and setup time.

The weighted sum of these two cost functions comprises the objective function
of the model. The minimization of the objective function is subject to a number
of constraint functions. We first give the notations used in these functions in the
model.

Indices:

29



Chapter 3. Modeling a Single CONWIP Production Line

Part type index: ¢ =1,2,...,1
Part-list entry index: k=1,2,...,. K

Parameters:

Qa - Weighted cost associated with sequence dependent unit setup time
for changing production from one product to another

J6] - Weighted cost for unbalanced workload between production batches

CAFP, - Production capacity of the bottleneck machine

D; - Demand for part ¢

P, - Processing time of part ¢ on the bottleneck machine

Ti; - Sequence dependent setup time for changing production from part 4
to part j on the bottleneck machine, ¢,7 = 1,2,...,I and i # j; if
7= j, T?ij - 0

Variables:

€k Workload difference between the k-th container and the (k + 1)-th

container, k=1,2,..., K — 1

Nik Number of standard units of parts of the k-th entry in the part list

1, if part ¢ is at the k-th entry in the part-list,
Tigp = i=12,...,.1,b,k=1,...,K

0, otherwise

1, if part ¢ is processed at the k-th entry in the part-list
and followed by product j,

Yijk = 3

i=12,..,1,j=12,..1,i#jk=1,.., K

0, otherwise
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The objective function of the mathematical programming model is to mini-
mize the setup cost (associated with setup times) and the cost associated with the
workload difference between adjacent batches at the bottleneck machine. Using the

notations presented above, the objective function in our model can be expressed by:

I

K I
min(Z(Z > aTyik + Ber)) (3.1)

k=1 i=1 j=1

The constraint functions to be satisfied in minimizing the above function are
given below. The first constraint considered in this model is that the bottleneck
machine should have sufficient capacity to complete all the jobs. That is, the avail-
able time must be greater than the required production time and setup times. This

constraint is expressed by:

K I T
>3 (nazaP; + Y yinTi;) < CAP, (3.2)

k=1i=1 j=1

The next constraint is production smoothness. It is required that each time
the bottleneck machine is setup, it should process the amount of work similar to
that in the previous setup (Spearman et al., 1992). This is one of the key CONWIP

requirements and can be expressed by:

1 1 1
| Z(-’Eiknik—pi + Z Yijklij) — Z(xj,k—lnj,k—lpj + Z Yijk—1T35)| < ek (3.3)

i=1 7=1 Jj=1 =1

(-

Eq.(3.3) enforces that the difference of production workload between the (k —
1)-th and the k-th entries be less than or equal to €. If ¢, = 0, exactly the same
amount of work will be processed in these two adjacent entries. Eq.(3.3) can be

replaced by Egs.(3.3.1) and (3.3.2) after the absolute value sign is removed:
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I I I I
S (anals + D yinTig) — Y (Tix-1mip—1 P + D yiw—1Tij) < € (3.3.1)
i=1 Jj=1 j=1 i=1
1 I I I

D (aniP; + > yiinTiy) — Y (@ip—1ny5—1P5 + D vie—1Ti5) > —e (3.3.2)
i=1 J=1 j=1 i=1

In solving the CONWIP production control problem, we require that all prod-

uct demands be satisfied. This is expressed by:

K
> zanig = D; (3.4)
k=1

Eqgs.(3.2), (3.3.1), (3.3.2) and (3.4) are non-linear functions and have the same

non-linear terms. In fact, these non-linear terms can easily be linearized since z;; is

a binary integer variable. Define a new integer variable w;; > 0 and let:

Wik = TikNik
From the definition of z;;. and n;;, we require that:
Nk, if T =1
Wik =
O, if Tip = 0
Such requirement can be realized by enforcing the following three linear in-

equalities simultaneously:

Wik Z Ml'ik + nik - M (341)
wik, < Mzik (3.4.3)
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where M is a large positive number. When z;; = 1, Egs.(3.4.1) and (3.4.2)
enforce wy, = ny, while Eq.(3.4.3) has no effect on the value of wy;; when z, = 0,
Egs.(3.4.1) and (3.4.2) have no effect on the value of w;; while Eq.(3.4.2) enforces
wir, = 0. Non-linear terms in Egs. (3.2), (3.3.1), (3.3.2) and (3.4), after linearized,
will be replaced by w;, with Egs.(3.4.1), (3.4.2) and (3.4.3) enforced in the model.
In solving our problem, we also require that each entry in the part list is assigned

one and only one type of product to process. This is expressed by:

1
i=1
The next constraint enforces that if the (k — 1)-th entry in the part list is
product ¢ while the kth entry is product j, then a setup is required for changing
production from ¢ to 7. This relation is given by:

Yijk = Tig—1Tjk,t £ J (3.6)

This nonlinear function can also be linearized. The standard method to lin-
earize such nonlinear term is to substitute Eq.(3.6) by the following two inequalities

(Herer et al. 1997):

Yijk — Tik—1 — Tjk + 1.5>0 (361)

L.5Ysjk — Tik—1 — Zj £ 0 (3.6.2)

Eqgs.(3.6.1) and (3.6.2) are linear and serve the same function as Eq.(3.6).

After the non-linear constraint functions are linearized, the CONWIP production
control problem can be expressed by the following integer programming model:

CONL1:
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min(> O oTyyin + 1;2—:1 Pex))

1
k=1 i=1 j=1 =
Subject to

K I I
3 S (waP + S yipTy;) < CAP,

k=1 i=1 j=1

I I I 1
Z(wik-Pi"'Z yijkﬂj)—Z(wj,k—lpj"”Z yijk-—lTij) <e,i=1,.0L5j=1.,Lk=2.,K
j j=1 i=1

i=1 j=1 J

1 1 1 1
S (P yinTi)) =Y (Wip—1P+Y_vip1Ty) > —eri=1,..0;5=1,...;k=2,.., K

i=1 j==1 j=1 i=1

K
Zwik = D,,z = 1,...,]
k=1
Wik = Mﬁik-f—nik—M,i: 1,...,I,k= 1,...,K
Wi < n,-k,i = 1,...,I,k: 1,...,K
wi < M:Eik,?: = 1,...,],]{3: 1,...,K

I
ink: 1,’{2: 1,...,K

i=1

Yijk — Tig—1 — L +1.520,i=1,..,I;j=1,.,.1,i# j;k=2,.., K

1.5yz~jk — Tijk-1 — Tjk < O,i = 1,...,I;j = 1,...,I,i 35 ],k‘ = 2,...,K
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Ti by Yij = 0,1, nyg, wig > 0 are integers.

The integer programming model CONL1 can be solved directly using available
computer software such as CPLEX or LINDO. In this research, we solved a small size
example problem for testing purposes using LINGO, a version of LINDO (LINDO
Systems Inc., 1995) software. The testing problem and its solutions in different

scenarios are presented and explained in Chapter 6.

3.2.3. Features of the Model

In a CONWIP single serial line, the bottleneck machine largely determines both
mean and variance of the cycle time and hence the output characteristics of the
line. Consequently, in a CONWIP line with multiple products, we measure the
WIP contribution of each job with respect to a standard part defined in terms of
time at the bottleneck (Spearman et al.,, 1989). Our model is unique in a way
that it simplified the serial CONWIP production line problem by focusing on the
bottleneck machine. Since the capacity of the bottleneck machine determines the
throughput of the line and also the WIP level, by minimizing the setup costs and the
costs associated with unbalanced workload at the bottleneck machine, we maximized
the utilization of the bottleneck and therefore increased the throughput. With an
increased throughput for a given WIP level, the flow time is minimized. While with
a given flow time, when throughput is maximized, a minimal WIP level is reached.
The solution of the model simultaneously determines the optimal job sequence on
the part list and the lot size associated with each entry on the part list. Then the

number of containers circulating in the system can be determined by:

35



Chapter 3. Modeling a Single CONWIP Production Line

N =T,/T,

Tm:(%i

I
m=1k=11i=

1
(nixzixPim + > YijeTigm)) /K

1 j=1

I
(nixTic P + Z YiikTign)) | K

1 j=1

K
Th=0_

1
k=1 i=

where N is the number of the containers; M is the total number of machines in
the production line; T,,, is the average flow time for the parts in a standard container;
and T} is the average time taken on the bottleneck machine by parts in a standard
container. The good feature of the model is that it can be used to determine all
the foilowing CONWIP parameters and no similar model was found in the existing
literature: 1. the length of the part list; 2. the transfer lot size for the container; 3.

the sequence of the parts; and 4. the number of the containers in the system.

3.3. Mathematical Model 2 - Make-To-Order Sin-

gle CONWIP Production Line

In section 3.2, we presented a model to simultaneously determine major parameters
of a CONWIP single serial production line in a make-to-stock environment where the
cost is a major coﬁcern. For a make-to-stock environment, the part list forecasting
is essential to a successful CONWIP implementation.

Model 1 has its distinct features as mentioned in the previous section, but it

also has the following limitations:
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1. The bottleneck machine has to be identified in advance before using Model
1. However, in actual production, the bottleneck machine may change from
one machine to another. Even though the capped WIP level in our model will
moderate the effects of the shifting bottleneck, it still has some negative effects

on the system performance.

2. The WIP level is not computed directly by Model 1. It is handled separately

from the model.

To address the above 2 issues related to the Model 1, in this section, we will
develop a second model that does not need to identify a bottleneck machine first
and also the WIP level can be handled directly by the model. The new model can
be used in a make-to-order environment or in a make-to-stock environment with a
known part list. In this model, our main concern is the minimum makespan of the
production. Since the part list is already known or we can directly use customer
orders to form the part list, no part list forecasting is considered in this model. The
task of this model is to find the best job sequence and the WIP level at the same

time to meet the customers’ demand.

3.3.1. Assumptions
The assumptions we use in developing the new model, CONL2, are given as follows:

1. Parts follow the same process routing in the line and are processed on each

workstation sequentially.
2. The lot size is assumed as 1 for all parts.

3. Setup times and processing times at all workstations are considered known

and deterministic.
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e

. Setup times are not sequence dependent.
5. Setup times are included in the processing times.
6. No machine breakdowns.

7. A perfect quality conformance is assumed for the entire system. Hence, there

is no defective on all workstations.

8. Demands are continuous so the containers are removed from parts as soon as

they finish being processed.

9. Raw material supplies are continuous so production does not stop to wait for

supplies.

3.3.2. Objective Function and Constraints

The objective function of the mathematical programming model developed in this
section is to minimize the makespan of production while at the same time the WIP
level and job sequence are determined.

Indices:

Part type index: 1 =1,2,...,1
Part-list entry index: k=1,2,..., K
Machine index: m=1,2,...,. M

Parameters:

tieym - Processing time of part 7 in part-list entry k; on machine m, i =
1,2,...Lk=1,2...Kkm=1,2,...,. M

M, - The first machine in the production line
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M - The last machine in the production line
G - A large positive number

|74 - The desired WIP level

Variables:

1, if entry k; enters the line while entfy k; is still in process
Okik; = ki=1,2,..,K;kj=1,2,..,K; ki # kj

0, otherwise

Wy, Number of loaded containers in the system when k; enters the system
w Total number of containers in the system

bi,m Starting time of k; representing part ¢ on machine m

frm Finishing time of k; representing part ¢ on machine m

Jrmaz Makespan (overall completion time of ali parts)

The goal is to minimize the makespan with low WIP. Using the notations

presented above, the objective function in our model can be expressed by:

min faz (3.7)

The constraint functions to be satisfied in minimizing the above function are
given below.

1. Processing time constraints

fkim = bkim + tkim (38)
The finishing time of entry k; representing part 7 on machine m is equal to its
starting time on machine m plus its required processing time on machine.

2. Job sequence constraints
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blMl = O (39)
Ji—tynm, + 1, if container is available
bemy 2 § max(fie,—wyry» fk—1)a,) + 1, if container is unavailable (3.10)
ki = 2, seey K

The first entry 1 in the part list starts its operation on the first machine M,
at time 0.

Starting time of entry k; other than entry 1 on the first machine of the line
depends on the availability of the containers. As we mentioned earlier, the part
is allowed to enter the production line only when the container is available. If a
container is available, the part will enter the line immediately after the previous
entry finishes its operation on the first machine. If there is no container available,
and even the first machine is idle, the entry cannot enter the line. It will have to

wait until a container is freed from the entry that entered the line prior to it.

bk,-m > ma.x(fki(m_l), .f(k,;—l)m) + 1, m= 2, ceey M; ki = 2, veey K ) (311)

Entry k;(k; # 1) representing part ¢ can only start on machine m(m # 1) until
it finishes its proceeding operations on the previous machine, m — 1, and the entry

prior to it finishes the operations on machine m.

L beay <bray < frgmy
Okite; = ki #kjki=1,2,..,K;k; =1,2,.., K (3.12)

0, otherwise
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This constraint is a 0-1 indictor. When entry k; representing part ¢ enters the
system, if entry k] representing part j is still in process, the indictor is 1; otherwise
it equals to 0.

3. WIP constraints

The next two constraints ensure that there is a constant number of containers

or a constant WIP level in the system and the number of the loaded containers

should be always less than the total number of containers in the system.

K
Wk, = Z 6kikj7ki 74 kj;ki,k’j = 1,2,...,K (3.13)
kj:l
w> wy, ki =1,2,. K (3.14)

4. Makespan constraint

The maximum makespan should be greater than the completion time of each

entry.

Jeirty, £ frazy ki = 1,2, K (3.15)

Put the objective function and all above constraints together, the second CON-
WIP model, CONL2, can be expressed as follows:
CONL2:

minf maxr

Subject to:

fkim = bkzm +tkim7 kz = 17 27 7K7m = 1727 ceey M
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b1M1 = 0

Ji-ym + 1, if container is available
bismy = max(fik;—wymy» fk—1ym,) + 1, if container is unavailable

ki = 2, ,K

bkim 2> max(fki(m——l)7 f(ki~l)m) +1lm=2,. . Mk=2,..,K

L, bimy < bran, < frymy
6k,-k:j = k’i:1,2,...,K;kj21,2,...,K;ki7ékj
0, otherwise

K
wki = Z 6kikj,ki 74 kj,k‘z,kj = 1,2,...,K
k=1

w> we, ki =1,2,..., K

fk:,;ML S fmazaki = 172: 7K

The above model is a mixed integer programming problem. Even though the
model assumes deterministic processing and setup times, due to a large number of
integer variables, the model cannot be solved within an acceptable amount of time
for a large problem using general optimization algorithm. Thus, solutions must be
found via some heuristic mechanism if large size problems are to be solved. In order
to solve the problem efficiently, after comparing different heuristics, a simulated

annealing based heuristic algorithm was chosen in this research to solve the proposed
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model. Details of the simulated annealing heuristic algorithm are given in Chapter
5. The algorithm is coded in C# which is presented in Appendix C. The C# code
is then used to solve the model CONL2 in a PC (Centrino Due 1.83G). The results
of several numerical example problems using model CONL2 will be presented in

Chapter 6.
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Chapter 4

Modelling Multiple CONWIP

Production Lines

Assembly-type production systems are prevalent in many manufacturing systems.
They are characterized as several components are produced in separate fabrication
lines and then assembled together. Despite their prevalence in many manufactur-
ing environments, limited research has been done on these systems for different
production control policies, especially CONWIP. To this end, this research aims
at addressing issues raised in implementing CONWIP in assembly-type production

systems.

4.1. Problem Description

A typical assembly-type production system considered in this research is shown in
Figure 4.1. Figure 4.1 shows a production system where several CONWIP controlled
fabrication lines feed an assembly station. In the above production system, a finished

product is assembled at the assembly station with a number of different types of
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parts fabricated by the fabrication lines. The assembly process can start only after
all the required parts from all fabrication lines have been processed and are ready
for assembling. A CONWIP control mechanism to control such type of system is
presented below.

Arriving demand or new order generates a request for an assembled product
and the request goes to the assembled product buffer. If the inventory level of the
assembled product buffer is not empty, then an assembled product is released to
satisfy the demand; otherwise, a request is sent to the processed product buffers
that are located at the end of each fabrication line. If the processed buffers are
not empty and all required parts for assembling on each of the fabrication lines
are ready, the required parts from each of the processed buffers are matched and
then released to satisfy the assembly request. Otherwise, a request is sent to the
front of all fabrication lines where it goes into a CONWIP control module. The
CONWIP control module determines the number of containers and the job sequence
for each fabrication line. The numbers of containers obtained from the CONWIP
control module are then assigned to each of the fabrication lines. The job sequence
determined by the CONWIP control module is used to form a part list for each
fabrication line. The part list is a list of jobs that need to be processed. The
order of the jobs on the part list is the same as the job sequence determined by the
CONWIP control module. Each fabrication line has its own part list. The part list
of each fabrication line consists of several entries and each entry corresponds to one
type of part on the line. When a container is available and the part list is not empty,
raw material of the job on the part list is put into an available container to enter the
line for processing. The job on the part list can enter the line only when there is free
container. Once the job is released to the first machine in each of the fabrication

lines, it is pushed through the system. Each time a job finishes all its processes and
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reaches the end of the fabrication line, its container is removed and sent to the front
of the line where it is again loaded with raw material if there are jobs waiting in
the part list or it waits in a queue for another order if the part list is empty. The
number of containers in each fabrication line is limited, therefore limiting the WIP
inventory level for each line. Since the WIP inventory level of each fabrication line
is controlled and kept as constant, the entire assembly-type production system WIP
level is constant. The above described control mechanism combines both pull/push
controls and has a constant WIP level, therefore it is a typical CONWIP control
mechanism.

As described above, all required parts from each fabrication line are matched
before sending to the assembly station for processing. If the required parts cannot be
matched because some required parts from some fabrication lines are not available,
the assembly process is delayed. Thus, to reduce system makespan and reduce overall
system WIP inventory cost, synchronization of the fabrication lines to assembly is
crucial. In the CONWIP controlled system, the synchronization of fabrication lines
is maintained by properly sequencing the jobs on the part list and controlling the
WIP inventory level for each of the fabrication lines.

As we mentioned before, the WIP inventory level of each fabrication line is
determined by the number of containers on each line. To determine the number of
the containers for each line, the release mechanism has to be decided first. There are
two possible release mechanisms for a CONWIP assembly-type production system.
One is that each line has the same number of containers which is determined by
the critical line. The other one is that each line can have their own number of
containers, or, their own WIP inventory levels. If the first mechanism is followed,
there is only one set of cards to decide and maintain. Once the number of containers

is decided based on the critical line, it then applies to all other lines. This is easier
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to implement to control a CONWIP assembly-type production system. The second
mechanism is more difficult to implement as there are several sets of containers
whose numbers are to be decided. Synchronization among all fabrication lines is
important to reduce the WIP inventory levels of the entire system. Because parts
finished in the faster lines always have to be put into inventory in front of the
assembly station waiting for the parts from the slower lines to start assembling,
then using the first mechanism, the WIP inventory levels in the faster lines would
be higher than those if the second mechanism is used. In our research, we will
focus on the second release mechanism, i.e., we allow each line to have its own WIP
inventory levels. In summary, the problem considered in this chapter is an assembly
station fed by multiple fabrication lines. Each of the fabrication lines processes
multiple products by multiple machines. Different sets of containers are used in
different lines to control the WIP inventory levels and thus each line maintains its
own job sequence on its own part list.

For the above given system, the WIP inventory level and the job sequence of
each fabrication line are two essential parameters. Since these two parameters are
closely related, we include them in one module which is called the CONWIP control
module. The CONWIP control module should determine the WIP inventory level
and the job sequence for each line. This research aims at developing a mathematical
programming model that can be used in.the CONWIP control module to simultane-
ously determine the WIP inventory level and the job sequence for each fabrication

line. The mathematical model developed for the system is given in the next section.
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4.2. Assumptions

The following assumptions are made in developing the mathematical program-

ming model for the given problem:

1. An assembly station is fed by multiple fabrication lines and each line has

multiple workstations to process multiple products.

2. Parts follow the same process routing in each line and are processed on each

workstation sequentially.

3. A perfect quality conformance is assumed for the entire system. Hence, there

is no defective at any workstation.
4. The lot size is assumed to be 1 for all parts.

5. Setup times and processing times at all workstations are considered known

and deterministic.
6. Setup times are not sequence dependent.
7. Setup times are included in the processing times.
8. There are no machine breakdowns.

9. Demands are continuous so the parts are removed from containers as soon as

they finish processing.

10. Raw material supplies are continuous so production will not stop to wait for

supplies.
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4.3. Model Development for a CONWIP system
with Multiple Lines

In this section, we formulate a rﬁixed—integer programming model for solving
the problem of simultaneously finding optimal job sequence, optimal WIP inventory
level for each fabrication line in a multiple line, multiple stage assembly-type CON-
WIP system. As discussed earlier, the second CONWIP release mechanism is used

in the modeling. The following notations are used in this model: -

Indices:

Part type index: li =1,2,...,I;
Part-list entry index: kl = 1,2, ..., K]
Machine index: m; = 1,2,..., M,

Fabrication line index: [ =1,2,...,L

Parameters:

eyl - Processing time of part ¢ in part list entry k; on machine m; of line
Lki=12,..,K;;m=12,..,.M;l=1,2,...,.L

My - The first machine in the production line [

My, - The last machine in the production line /

G - A large positive number

Wi - Desired WIP inventory level for line [

Variables:

1, if entry k;; enters line [ while entry ki; is still in process
6k,,-kljl = kli = 1, ey Kl; k‘lj = 1, ceey Kl; kli 75 k‘lj;l = 1, ,L

0, otherwise
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Wiyl Number of loaded containers in line [ when k;; enters line [

T wy Total number of containers in line /
b mat Starting time of kj; representing part [i on machine my of line [
Jrymt Finishing time of k;; representing part /i on machine m; of line [
Jmaw | Maximum overall completion time of all parts in all lines
Jomin Minimum overall completion time of all parts in all lines

By putting different number of containers in different fabrication lines to co-
ordinate the finishing time for each of the fabrication lines, the WIP inventory level
of the whole system is reduced. Thus, the objective function of the model is to

minimize the differences of the finishing times of all the fabrication lines.

min(fmaa: - fmm) (41)

The constraints to be satisfied in minimizing the above objective function are
given below.

1. Processing time constraints

fklimll = bkumﬂ + trymyt (4'2)
kli = 1, cery Kl; mp = 1, cesy Ml; = 1, ceey L

The finishing time of entry kj; representing part /i of line [ on machine m; is
equal to its starting time on machine m; plus its required processing time on machine
my of line [.

2. Job sequence constraints

bllM“l =0 (43)
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1=1,..,1L

foy—1yp0 + 1, if container is available
ettt = 4 max( f—wyMut, foku—1ymut) + 1, if container is unavailable  (4.4)

kli = 2, ...,Kl;l = 1,...,L

The first entry 1 in the part list of line [ starts its operations on machine 1 of
line [ at time 0.

The starting times of the other entries kj; on the first machine of the line
depend on the availability of the containers. As we mentioned earlier, the part is
allowed to enter the fabrication line only when a container is available. If there
is a container available, the entry kj; representing part li will be entering the line
immediately after the previous entry finishes its operations on the first machine. If
there is no container available, even the first machine is idle, the entry still cannot
enter the line. It will wait until the container is freed from other entries that entered

the line prior to it.

brymyt > MAX(fry; rmy—1)0> Flkya—1ymat) +1 (4.5)
kli = 2, ...,Kl;ml = 2, ...,Ml;l = 1, ...,L
Entry ki (ki # 1) can start on machine my(my; # 1) only after it finishes its

proceeding operations on the previous machine m; — 1 and the entry prior to it

finishes the operations on machine m;.

17 bkleul < bkliM”l < fk[leLl
6klikljl = kli # kl]; kli>klj = 1’ "'7Kl7l = 17 aL (46)

0, otherwise
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This constraint is a 0-1 indictor. When the entry kj; representing part li on
line [ enters the system, if the entry representing part j on line [ is still in process,
the indictor is 1; otherwise it equals to 0.

3. WIP constraints

The next two constraints ensure that there is a constant number of containers
in the CONWIP production system. Alternatively, the WIP inventory level of each
fabrication line and the number of loaded containers should be always smaller than

the total number of containers in the line.

K
Wg,l = Z 6klik[jl7kli 7é kljykliaklj = 1’ ’Klyl = 17"'7L (47)

ku:l

wy > wk”l,kli = 1, ...,Kl;l = 1, ,L (48)

4. Completion time constraint
This constraint measures the overall parts completion time differences among

the fabrication lines.

fmin < fkh-M,Ll < fmam;kli =1, ---:Kl;l =1, 7L (49)

Put the objective function and all above constraints together, the model can

be expressed as follows:

MCONL:

min(fmaac - fmin)

Subject to:

fklimll = bklimll + tklim;l
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k'h- = 1, ...,Kl;ml = 1, ...,Ml;l = 1,...,L

blM“[ = O,l = 1,...,L

Sfoe—1)m + 1, if container is available
bnint 2§ max(fu—wymipt fk—1ymu) + 1, if container is unavailable

kli = 2, ..‘.,Kl;l = 1, ceey L

bkt > MAX( fryy(my—1)1> Fihys—1ymyt) + 1

' ]{71,' = 2, ...,Kl;ml = 2, ...,Ml;l = 1,...,L

L, byt < brymt < frymy
5klikljl = kli 7é klj;k‘li, k‘lj = 1, ceny Kl,l = 1, ceny L

0, otherwise

K,
Wit = D Okyahyts ki 7 kg by kg = 1, Kyl =1, L

kpj=1

wy 2 wklilakli =1,.,K;l=1,.,L

vfmin S fkliMlLl S fmawakli = 11 9Kl’l = 17 7L

The model given above is a generic model for an assembly-type CONWIP pro-
duction system with multiple fabrication lines. From the review of recently published
literatures, we did not find any research done using a mathematical programming

model to solve the assembly-type multiple CONWIP line problems of this type.
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The model is coded in C# and solved by simulated annealing (SA) based
heuristic algorithm on a PC (Intel Centrino duo CPU 1.83GHz). Detailed discussion
on the SA heuristic is presented in Chapter 5. Several numerical example problems

to illustrate the model MCONL above are presented in Chapter 6.
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Simulated Annealing Based

Heuristic Algorithm

Simulated annealing heuristics have been used to find optimal or near-optimal so-
lutions to combinatorial optimization problems. A SA algorithm attempts to over-
come the inherent difficulties encountered by various descent algorithms that stop
the search once a local optimum is obtained. A distinct characteristic of SA is that
it sometimes replaces a current solution by an inferior solution to avoid getting stuck
at local optima. SA has been successfully implemented to solve a variety of difficult
problems, especially sequencing jobs in flow-shop production systems (Golany e~t al.,
1999).

Simulated annealing is a general optimization method that stochastically sim-
ulates the slow cooling process of a physical system. The basic idea behind simulated
annealing is that there is a cost function F that associates a cost with a state of
the system, a “temperature” T, and various ways to change the state of the sys-
tem. The simulated annealing algorithm works by iteratively proposing changes or

configurations and either accepting or rejecting each change or configuration. For
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each proposed change or configuration, we may evaluate the change AF in cost
function F. The proposed configuration may be accepted or rejected by the so called
Metropolis criterion. The Metropolis criterion can be described as follows. If the
cost function decreases, the change or configuration is accepted unconditionally;
otherwise, it is accepted only with probability exp(—AF/K,T). A random number
chosen from A uniform distribution (0,1) is used to make a comparison with the
probability exp(—AF/K,T). If it is less than exp(—AF/KyT), the change or the
configuration is accepted; otherwise, it is rejected. A population of configurations of
a given optimization problem are generated by a generation mechanism at certain
temperatures of cooling. These temperatures are control parameters. The Simu-
lated Annealing process consists of first “melting” the system being optimized at a
high effective temperature, then lowering the temperature by slow paces until the
system “freezes” and no further changes occur. At each temperature level, the simu-
lation must proceed long enough for a system to reach a steady state. The sequence
of temperatures and the number of rearrangements of the parameters attempted
to reach equilibrium at each temperature can be considered an annealing schedule

(Kirkpatrick et al., 1983). In general, the SA algorithm can be described as follows:

1. Initializing all the SA parameters.

2. Selecting a generation mechanism: generate a new solution from the current

solution by a small perturbation.

3. Evaluating the new solution: computing the difference between the current

solution and the new solution.

4. If the new solution is better than the current solution, make it the current

solution; otherwise, use the Metropolis criterion to decide if the new solution

57



Chapter 5. Simulated Annealing Based Heuristic Algorithm

is accepted or rejected.

5. Stop the procedure based on the given stop criterion.

To implement the SA algorithm, a perturbation scheme and cooling schedule

are essential.

¢ Perturbation Scheme

The SA algorithm is an iterative search procedure based on a neighborhood
structure. The quality of the annealing solution is sensitive to the way the
candidate solutions are selected (Kirkpatrick et al., 1983). So the generation
mechanism, which generates a new solution from the current one, often called
perturbation scheme, is required to be determined prior to implementing a SA
based algorithm. We use six perturbation schemes in our proposed SA based

heuristic algorithm. The six perturbation schemes are:

1. Interchanging two adjacent jobs (adjacent interchange):

P1 P2 P3 P4 P5 P6
P1 P2 P4 P3 P5 P6

Algorithm:
Stepl: Randomly select an integer ¢ < n
Step2: Prew(i + 1) = P(i); Prew(t) = P(i + 1)
2. Interchanging two jobs that are randomly selected (random interchange
or pair wise exchange):
P1 P2 P3 P4 P5 P6
P1 P2 P6 P4 P5 P3

Algorithm:

53



Chapter 5. Simulated Annealing Based Heuristic Algorithm

Stepl: Randomly select an integer i < n
Step2: Random select an integer 7 < n
Step3: If P(i) # P(j), go to Step4; otherwise, return to step2.
Stepd: Poew() = P(0); Prew(i) = P(j)
3. Inserting a randomly selected job to a randomly selected position (insert-
ing scheme):
P1 P2 P3 P4 P5 P6
P1 P5 P2 P3 P4 P6
Algorithm:
Stepl: Randomly select an integer i < n
Step2: Random select an integer j < n
Step3: If P(i) # P(j), go to Step4; otherwise, return to step2.
Step4: Insert P(i) at position j + 1
4. Inserting a randomly selected subsequence of jobs to a randomly selected
position

P1P2P3P4P

p
P1 P3 P4 P5 P2 P6

6

Algorithm:

Stepl: Randomly select an integer i < n

Step2: Random select an integer j < n

Step3: If P(i) # P(j), go to Step4; otherwise, return to step2.
Step4: Randomly select an integer k in n excluding ¢ to j
Step5: Insert P(i) to P(j) at position k + 1

5. Reversing a randomly selected subsequence of jobs
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P1 P2 P3 P4 P5 P6
P

P3 P4 P5
P1 P2 P5 P4 P3 P6

Algorithm:

Stepl: Randomly select an integer i < n

Step2: Random select an integer j < n

Step3: If P(i) # P(j), go to Stepd; otherwise, return to step2.

Step4: Reverse job sequence from P(i) to P(j)
6. Reversing a randomly selected subsequence of jobs and then inserting the

entire selected jobs to a randomly selected position

P1 P2 P3 P4 P5 P6
P1 P5 P4 P3 P2 P6

Algorithm:

Stepl: Randomly select an integer i < n

Step2: Random select an integer 7 < n

Step3: If P(i) # P(j), go to Stepd; otherwise, return to step2.
Step4: Reverse job sequence from P(%) to P(j)

Step5: Randomly select an integer k in n excluding ¢ to j

Step6: Insert P(j) to P(i) at position k+ 1

An appropriate perturbation scheme leads to a good performance of the SA
algorithm. According to the research done on SA, it appears that the pertur-
bation scheme is problem related, i.e., one perturbation scheme may be the
best for one type of the problem, but may be the worst for another type of the
problem. Tian (1999) found that for their given flow shop scheduling problem,

scheme number 4 is the most efficient scheme. However, they stated that the
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generation mechanisms currently adopted by the flow shop scheduling problem

are mainly schemes 1, 2 and 3.

In order to find a proper perturbation scheme for solving the proposed CON-
WIP line models, all above six schemes are used in our proposed SA based
heuristic algorithm.

e Cooling schedule

A cooling schedule or sometimes called annealing schedule refers to a temper-
ature control scheme that determines the solving movement permitted during
the search, and therefore it is critical to the SA algorithm’s performance. The

cooling schedule normally includes:

1. Initial temperature T}

2. Final temperature T or stopping criterion

3. The number of iterations to be performed at each temperature level Npoz
4. Rule of changing temperature

The commonly used rule of changing temperature of SA is temperature decre-

ment rule. There are basically two temperature decrement rules:

— Exponential cooling scheme

Ty = CTg

where C is called cooling rate and is a constant less than 1; Ty, 7T}, are

temperatures at step k£ + 1 and step k, respectively.

— Linear cooling scheme
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Ty =Ty — AT

where Ty, ; and T}, are temperatures at step k+1 and step k, respectively;

AT is a small temperature change for each step.

In addition to the above commonly used temperature decrement rules,
Alrefaei et al. (1999) presented a SA algorithm that used a constant
temperature instead of decrementing temperature. Due to the popularity
of the exponential cooling scheme, and since it has been shown to be an
effective cooling scheme by many researchers, the exponential cooling
scheme is used in our proposed SA algorithm. In the exponential cooling
scheme, the selection of the cooling rate C is essential to the SA algorithm.
If the parameter C is too small, then the algorithm may end up at a local
optimal solution, and if it is too large then the algorithm may take a
long time to converge. There is always a tradeoff between the quality
of the SA solutions and the computation effort. The SA based heuristic
algorithm’s performance is evaluated based on the different selection of

cooling rate C.

In the next section, the steps of the proposed SA based heuristic algorithm

are explained in detail.

5.1.

SA Based Heuristic Algorithm Steps

There are 7 steps in our proposed SA based heuristic algorithm:

Step 1: Initialization

The SA heuristic algorithm parameters are specified. The parameters include
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initial and final values of cooling temperature, T; and 7%, respectively; the cooling
rate C and the desired number of iterations N,,, for each level of the current
temperature 7.

A randomly generated sequence is selected as initial solution. The objective
function value of this initial solution becomes the objective function values for both
the current solution F, and the best solution F;. The iteration number N is set to
1.

Step 2: Objective Functions

In this step, the objective functions of the proposed models are selected as

objective functions for the proposed SA algorithm.

For the single CONWIP line model:

F:fmam

For the multiple CONWIP assembly-type line model:

F= fma:c - fmin

Step 3: Generate a feasible neighboring solution

This can be done by using one of the six perturbation schemes presented in the
previous section. The new sequence obtained by the perturbation scheme is referred
to as the test solution and its objective function value is represented by Fj.
Step 4: Compare F; of the test solution with F, of the current solution

If the objective function value of the test solution is greater than the objective
function value of the current solution, i.e., F; > F,, go to Step 5. Otherwise, if

F, < F,, the test solution will replace the current solution. Then, compare this
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test solution’s objective function value with the objective function value of the best
solution found so far F,. If F; < Fj, then replace the best solution with that of
the test solution. Regardless whether the best solution is replaced with the test
solution, go to step 6.
Step 5: Examine the Metropolis criterion

Determine the percent difference between the objective function values of the
test solution and the current solution. The difference is denoted by AF' and it is

calculated by:

AF = 100(F, — F,)/F.

~ The Metropolis criterion is then used to determine the probability at which
the relatively inferior test solution should be accepted. This probability is calculated

by:

P(A) = exp(—AF/(KT)

The value K, is called the Boltzman constant. The Boltzman constant allows
us to control the probability of inferior solutions being accepted. A random number
then is generated in the interval (0,1). If this random number is less than P(A),
then the test solution replaces the current solution. Regardless of acceptance status,
go to Step 6.

Step 6: Increment N

Increase the increment counter N by one. If the value of N is less than or
equal to the desired number of iterations N,,,, for each temperature level, return to
Step 3. Otherwise, go to Step 7.

Step 7: Adjust temperature

64



Chapter 5. : Simulated Annealing Based Heuristic Algorithm

Decrease the temperature by its cooling rate as follow:

T=CT

If the new value of T is greater than or eéqual to the stopping value of T¥, i.e.

if T' > Ty, then reset N to one and return to Step 3. Otherwise, stop.

5.2. Pseudo Code of Simulated Annealing Based
Heuristic Algorithm

The pseudo code of the developed algorithm is shown in Figure 5.1. The notations

used in the code are given below:

Ti - Initial Temperature

Ty - Final ATemperature

C - Cooling Rate

AF - Percent difference between the objective function values of the test

solution and the current solution

K, - Boltzman constant

pPA - Probability for accepting an inferior value

F; - New overall completion time of production line

E, - Current overall completion time of production line
Fy - Best overall completion time of production line
Nz - Maximal iteration for each temperature level

N - Iteration number
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SA based Heuristic Algorithm

begin
Initialize T1, Tf, Nmax, Kb, C;
Randomly generate a solution;
Calculate Ft, Fc and Fb;
repeat
repeat
if (Ft<Fc)
Fc=Ft;

If (Ft <Fb)
Fb=Ft;
}

else
AF =(Ft — Fc)* 100/ Fc;
PA=exp(-AF/{(Kb*T));
Generate a random number from (0, 1);
If (random # < PA)
Fc=Ft;

}
}

N ++;
Generate a feasible neighboring solution by using perturbation schemes;
Calculate Ft;
until N > Nmax
T=T1*C;
until ( T > Tf)

end

Figure 5.1: SA Based Heuristic Algorithm Pseudo Code
66
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5.3. Implementing the Heuristic Algorithm

The proposed SA based heuristic algorithm is used to solve model CONL2 and
MCONL presented in the previous chapters. The SA based heuristic algorithm is
implemented using C# in a software package called CONLine. CONLine is designed
to have a friendly GUI (Graphic User Interface) as shown in Figure 5.2. The GUI
enables the user to easily enter both system parameters and SA parameters. The
main functionalities of CONLine are given below.

1. CONLine is designed to solve the models for both single CONWIP line and
. multiple CONWIP assembly lines. In the case of multiple .CONWIP assembly-type
systems, the maximum number of fabrication lines is 15. The user can select the
number of fabrication lines via the GUI. A single CONWIP line is chosen if 1 is
selected from the dropdown list of the number of lines.

2. CONWIP system parameters, such as number of parts, number of machines
and desired WIP levels can either be entered via the GUI or input from a data file.
The processing times of parts can either be generated randomly from a uniform
distribution (0,100) by CONLine or input from a data file. If the user wants to
generate processing times randomly, the Random checkbox should be selected via
the GUIL Once this checkbox is selected, a new GUI allows the user to enter the
number of parts, the number of machines and the desired WIP levels. The new GUI
is shown in Figure 5.3. If the user selects to randomly generate part processing time
data, the initial sequence of these parts will also be generated randomly. CONLine .
also allows the user to input a pre-determined initial part sequence through a data
file.

3. SA control parameters can also be entered via GUI. These control param-

eters include the number of iterations required for each temperature level; initial
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TF-Fing

ZR-Locling

Figure 5.2: CONLine User Interface 1

68



Chapter 5. Simulated Annealing Based Heuristic Algorithm

T1-ritial Tar

TF-Fimal

Uaing Random 598

Figure 5.3: CONLine User Interface 2
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temperature; final temperature; cooling rate and Boltzman constant.

4. Perturbation schemes can also be selected from the GUI for a specific
system. There are up to 6 different schemes offered to be selected in SWAP MODE
dropdown list. All 6 scheme algorithms were discussed in the previous section.

5. With all inputs entered, the RUN button on the GUI will let CONLine start
the algorithm and solve the selected model (single CONWIP line model or multiple
CONWIP line model). Once the computation is complete, results are shown in the
result window. The result includes part finishing times at each machine on each
fabrication line for each iteration. The minimal makespan of all parts is also shown
in the result. Moreover, the WIP levels at each time period are also displayed in the
result window. The WIP level at each time period does not exceed the desired WIP
level entered. The user can browse the results in the result window or use the SAVE
button to save it into a data file. Figure 5.4 shows an example of the CONLine

result window.
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Figure 5.4: CONLine Result Window
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Example Problems and

Computational Results

6.1. CONL1 Numerical Examples

In this section, a small sized problem is presented to illustrate the CONL1 model
developed in Chapter 3. Consider a production line with four serial workstations that
produces three products. This production line is similar to that shown in Figure 3.1.
Product demands and processing times for products A, B, and C are shown in Table
6.1. Setup times required by the items at the workstations are shown in Table 6.2.
Workstation 2 is the bottleneck station in this example, since it requires significant
longer setup times and processing times for all the items than other workstations in
the line. Production control follows the hybrid pull/push CONWIP strategy.

In solving this example problem, we considered several factors as elaborated
below:

1. Weighted setup costs and workload imbalance costs vs. job sequence, lot

size and the length of the part list
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Table 6.1: Demand and Processing Time
Processing Time

Parts Demands Station 1 Station 2 Station 3 Station 4

A 2 2 2 2 2

B 1 9 10 7 5

C 4 3 6 4 2

Table 6.2: Setup Time
Station 1 Station 2 Station 3 Station 4
A B C A B C A B C A B C

A 0.00 0.10 020|000 100 1.00| 0006 0.05 0.03{0.00 0.0 0.20

B 0.10 0.00 0.05
C 010 0.05 0.00

2.00. 0.00 3.00
3.00 5.00 0.00

0.02 0.00 0.05
0.20 0.05 0.00

0.02 0.00 0.05
0.10 0.03 0.00

Based on the data shown in Tables 6.1 and 6.2, the mathematical programming
model CONL1 is utilized to find the optimal production sequence and optimal lot size
for each item with various given part list length K. The optimization is achieved in
terms of best setup times and smooth production. The example problem was tested
for different K and three different scenarios. If production smoothness is considered
insignificant compared to setup costs, then (3 is set to 0 and the solutions will be
generated with minimized total setup cost only. Optimal solutions of the model
with 8 = 0 and different part list lengths K are presented in Table 6.3.

In fact, if we assume that production smoothness is not a concern in controlling
the production process, then different part list lengths K will have no impact on
the optimal solution in minimizing the setup cost. The best sequence is always
B — A—(C and the best lot sizes are 1, 2 and 4 for these three products, respectively.
In the second scenario, we assume that setup cost is insignificant compared to the

requirement of production smoothness. In this case, we let @ = 0 and let g = 1.
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Table 6.3: Computational Results with Setup Cost Only (o = 1,5 = 0)

K Sequence Lot Size Objective
3 B-A-C 1,2,4 3
4 B-A-A-C 1,2,0,4 3
5 B-B-B-A-C 0,0,1,2,4 3
6 B-B-B-B-A-C 0,1,0,0,2,4 3
7 B-B-B—-B-B-A-C 0,0,1,0,0,2,4 3

Table 6.4: Computational Results without Setup Cost Only (a = 0,48 = 1)

K Sequence Lot Sizes Objective
3 C—-B-A 4,1,2 18
4 C-C—-A—-B 2,2,2,1 9
5 B-C-A-C-C 1,1,2,1,2 8
6 B-C-A-C-C-C 1,1,2,1,1,1 4
7 B-C-A-C-C-C-B 1,1,2,1,1,1,0 5

Optimal solutions of the model for different K are shown in Table 6.4. The results
in Table 6.4 show that K = 6 corresponds to the minimized objective function value
and the job order is B—C — A—C — C — C. The lot sizes are 1, 1, 2, 1, 1, 1,
respectively, for the products in the above sequence. If this solution is implemented,
there should be 6 entries on the part list. In the third and more general scenario,
neither setup cost nor production smoothness requirement is excluded from the
optimization model. In this situation, with o = 1, a number of 3 values were used
to generate different solutions. Solutions corresponding to # = 0.8,1.0,2.0 and 3.0
and different K values are presented in Tables 6.5, 6.6, 6.7 and 6.8, respectively.
The results in Table 6.5 to Table 6.8 show that when 8 = 0.8 or 1.0, the
best part list length K is 6, the best sequenceis B-A-C-C—-C—-C ahd

the lot sizes are 1, 2, 1, 1, 1 and 1, respectively, for the products in the above
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Table 6.5: Computational Result 1 with a = 1.0, = 0.8

K Sequence Lot Sizes Objective

3 C-A-B 4,21 20.8

4 C-C-A-B 2,2,2,1 11.2

5 B-A-C-C-C 1,2,1,1,2 12.6

6 B-A-C-C-C-C 1,2,1,1,1,1 7.8

7 B-C-C-C-C-A-A 1,1,1,1,1,1,1 12.4
Table 6.6: Computational Result 2 with « = 1.0, =1.0

K Sequence Lot Sizes Objective

3 C-B-A 4,1,2 25

4 C-C—-A-B 2,2,2,1 13

5 B-A-C-C-C 1,2,1,1,2 15

6 B-A-C-C-C-C 1,2,1,1,1,1 9

7 B-C-C-C-C-A-A 1,1,1,1,1,0,2 14

sequence. When 3 = 2.0 or 3.0, the best part list length K is also 6, the best
sequence will be C — C — C — C — A — B, and the lot sizes are 1, 1, 1, 1, 2 and
1, respectively. These results indicate that different weights associated with setup
costs and smoothness requirement affect the CONWIP control plan significantly. In
reality, such weight differences can be estimated from different cost and accounting
figures and the mathematical programming model can be run for different scenarios
as shown in this example. The best solution, closest to the real situation, can be
evaluated, selected and implemented.

2. Number of containers

Once the part list, job sequence and lot size have been determined, the number
of containers can be obtained from the formula presented in Section 3.2.3.

As shown in Table 6.6 when a@ = 1, 8 = 1, the length of the part list K is
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Table 6.7: Computational Result 3 with a =1.0,8 = 2.0

K Sequence Lot Sizes Objective
3 C-B-A 4,1,2 43
4 C-C-A-B 2,2,2,1 22
5 B-C-A-C-C 1,1,2,1,2 23
6 c-C-C-C—-A-B 1,1,1,1,2,1 14
7 B-C-C-C-C-A-A 1,1,1,1,1,1,1 22
Table 6.8: Computational Result 4 with a = 1.0,3 = 3.0
K Sequence Lot Sizes Objective
3 C-B-A 4,1,2 61
4 C-C—-A-B 2,2,2,1 31
5 B-C-A-C-C 1,1,2,1,2 31
6 c-C-C-C—-A-B 1,1,1,1,2,1 19
7 B-C-A-C-C-C-B 1,1,2,1,1,1,0 27

5; job sequence is B — A — C — C — C and lot sizes are 1, 2, 1, 1, 2, respectively.
The number of containers = 110/38= 2.89. The number of the containers is then
rounded to the nearest integer. In this case, the number of the containers is 3.

3. Makespan vs. the length of the part list and lot sizes

The makespan is defined as the time required to complete all the products
from the time the first part starts in the system for processing until the last part
leaves the system. The objective function of CONL1 has two portions. The first
portion is the setup costs and the second portion is the costs associated with the job
production smoothness. The setup costs or the setup times will affect the overall
completion time as the setup times discussed in model CONL1 are sequence de-
pendent. However, it is not very obvious that the second portion of the objective

function would affect the part overall completion time. Below we will show how the
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job production smoothness factor will affect the overall part completion time.
Take two cases from Table 6.6 with a = 1.0 and 8 = 1.0. The two cases are

shown below in Table 6.9:

Table 6.9: Two cases with Weighted Objective Function (o = 1.0, 5 = 1.0)

Cases K Sequence Lot Sizes Objective
Case 1 5 B-A-C-C-C 1,2,1,1,2 15
Case 2 6 B-A-C-C-C-C 1,2,1,1,1,1 9

From the above table, we can see that the setup costs or the setup times for
the two sequences are the same since only different part type switching incurs setup
costs while switching between entries representing the same parts does not incur
any setup cost. Because the costs associated with job production smoothness on the
bottleneck are different, the length of the part list and the lot sizes are different in
these two cases.

Table 6.10 below shows the makespan for the two cases with the number of

containers set to 2, 3, 4 and 5.

Table 6.10: Makespans vs. Number of Containers for Case 1 and Case 2

Number of Makespans
Containers Case 1 Case 2
2 87 79
3 73 67
4 68 61
5 66 61

Two observations can be made from the information in Table 6.10 and Figure
6.1. First, in terms of CONWIP system performance measured by the makespan,

it performs better in case 2 than in case 1. In other words, the CONWIP system
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with smaller lot size and longer part list has better performance than the system
with larger lot size and shorter part list. Secondly, with the same overall part
completion time for the two cases, case 2 has smaller number of containers than
that in case 1. Since the system WIP levels are limited by the number of containers,
smaller number of containers indicate lower WIP levels. The result shows that
smaller lot size results in smaller number of containers and thus, lower WIP levels.
From these two observations, it shows that both processing lot size and transfer lot
size are important for system performance. The processing lot size is determined
by the setup time but the transfer lot size can be reduced to decrease the overall
part completion time thus to increase the throughput and to reduce the WIP level.
These observations also confirm that the second portion of the objective function of
CONLI1 is of the same importance as the setup costs and is essential to determine

the optimal transfer lot size.
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Makespan vs. Number of Containers
100
90
80
70 —— Qase 1 - Larger Lot
= 60 Sizes, Shorter Part
o 50 List Length
% 40 —8—Case 2 - Smaller Lot
= 20 Sizes, Longer Part List
Length
20
10
0
2 3 4 5
Number of Containers

Figure 6.1: CONWIP System Performance for Different Lot Sizes
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6.2. CONL2 Numerical Examples

In Section 3.3.2, we presented the model CONL2 for a single serial CONWIP
production line. In Chapter 5, a simulated annealing based heuristic algorithm
was presented to solve the model. In this section, we will present several example
problems to illustrate this model. The example problems are solved by the proposed
SA based heuristic algorithm. Computational result analyzes are given to evaluate

the CONWIP system performance. The system performance includes makespan and

WIP levels.

6.2.1. Example 1

In Example 1, a small sized problem is considered to validate the model CONL2
and evaluate the proposed simulating annealing based heuristic algorithm.

Specific information for this small sized single CONWIP serial line is:

The production system has 3 machines and is a single serial CONWIP pro-

duction line

6 types of products or parts are processed in this CONWIP line.

All 6 parts are processed by all 3 machines sequentially.

Processing times on the 3 machines for the six products were generated ran-

domly from uniform distribution (0,100). For comparison purpose, once they
are generated, they are kept the same for the calculation of all WIP levels.
The processing times for the six products are listed in Table A.1 of Appendix
A.
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o WIP levels from 1 to 6 are tested.

e Different sets of parameters for simulated annealing based heuristic algorithm

are tested to evaluate its performance. The parameters selected are listed in

Table 6.11.
Table 6.11: SA Parameteres
SA  Cooling Iterations Initial Inferiority Initial Final
Para.  Rate for Each P(A) Base Temperature Temperature
Sets (%) Temperature (%) (%)
Level
1 95 10 25 ) 25 1
2 95 20 25 5 25 1
3 95 20 50 10 25 1
4 99 20 50 10 25 1

P(A) and Inferiority Base in Table 6.11 give the probability of inferior solutions
being accepted to become the current solution. These values are used to compute
the Boltzman constant Kj. At the initial temperature 7} a solution inferior to the
current solution by “Inferiority Base” percent has an “Initial P(A)” percent of being
accepted. For example, Set 1 in Table 6.11 indicates that a solution 5% inferior to
the current solution in terms of the objective function value has a 25% probability
of being accepted at initial temperature 7T3.

As discussed in Chapter 5, six different perturbation schemes are used in our

proposed SA based heuristic algorithm. These perturbation schemes are:

1. Interchanging two adjacent jobs

2. Interchanging two jobs that are randomly selected
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3. Inserting a randomly selected job to a randomly selected position

4. Inserting a randomly selected subsequence of jobs to a randomly selected po-

sition
5. Reversing a randomly selected subsequence of jobs

6. Reversing a randomly selected subsequence of jobs and then inserting the

entire selected jobs to a randomly selected position

Tables 6.12, 6.13, 6.14, 6.15, 6.16 and 6.17 show minimal makespans found by
the SA algorithm and optimal makespans found by the off-the-shelf software package
LINGO.
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Table 6.12: Example 1 - Results of Perturbation Scheme 1

SA WIP Minimal Optimal Deviation Total CPU
Para. Levels Makespans  Makespans (%) Solutions Times
Sets (SA) Evaluated  (seconds)
1 1021 1021 0.0 3
2 548 538 1.9 3
3 438 438 0.0 3
1 4 421 417 1.0 693 2
5 417 417 0.0 3
6 417 417 0.0 3
1 1021 1021 0.0 5
2 538 538 0.0 4
3 452 438 3.2 4
2 4 417 417 0.0 1323 4
5 418 417 0.2 5
6 417 417 0.0 4
1 1021 1021 0.0 4
2 538 538 0.0 4
3 447 438 2.1 1)
3 4 418 417 0.2 1323 7
5 417 417 0.0 )
6 417 417 0.0 5
1 1021 1021 0.0 31
2 538 538 0.0 32
3 438 438 0.0 29
4 4 417 417 0.0 6741 31
5 417 417 0.0 29
6 417 417 0.0 33
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Table 6.13: Example 1 - Results of Perturbation Scheme 2

SA WIP Minimal Optimal Deviation Total CPU
Para. Levels Makespans  Makespans (%) Solutions Times
Sets (SA) Evaluated  (seconds)
1 1021 1021 0.0 2
2 538 538 0.0 2
3 449 438 2.5 2
1 4 438 417 5.0 693 2
5 418 417 0.2 3
6 417 417 0.0 3
1 1021 1021 0.0 5
2 538 538 0.0 4
3 438 438 0.0 4
2 4 417 417 0.0 1323 5
9 417 417 0.0 4
6 417 417 0.0 4
1 1021 1021 0.0 5
2 538 538 0.0 4
3 447 438 2.1 5
3 4 417 417 0.0 1323 6
5 417 417 0.0 6
6 417 417 0.0 6
1 1021 1021 0.0 30
2 538 538 0.0 30
3 438 438 0.0 31
4 4 417 417 0.0 6741 30
5 417 417 0.0 30
6 417 417 0.0 29

84



Chapter 6. Example Problems and Computational Results

Table 6.14: Example 1 - Results of Perturbation Scheme 3

SA WIP Minimal Optimal Deviation Total CPU
Para. Levels Makespans  Makespans (%) . Solutions Times
Sets (SA) Evaluated  (seconds)
1 1021 1021 0.0 2
2 538 538 0.0 2
3 447 438 2.1 2
1 4 426 417 2.2 693 2
5} 417 417 0.0 3
6 426 417 2.2 2
1 1021 1021 0.0 5
2 538 538 0.0 5
3 438 438 0.0 5
2 4 417 417 0.0 1323 6
5 417 417 0.0 4
6 417 417 0.0 4
1 1021 1021 0.0 5
2 538 538 0.0 6
3 447 438 2.1 4
3 4 417 417 0.0 1323 6
5 417 417 0.0 5
6 417 417 0.0 5
1 1021 1021 0.0 30
2 538 538 0.0 31
3 438 438 0.0 31
4 4 417 417 0.0 6741 30
5 417 417 0.0 30
6 417 417 0.0 31
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Table 6.15: Example 1 - Results of Perturbation Scheme 4

SA WIP Minimal Optimal Deviation Total CPU
Para. Levels Makespans Makespans (%) Solutions Times
Sets (SA) Evaluated  (seconds)
1 1021 1021 0.0 2
2 538 538 0.0 2
3 438 438 0.0 2
1 4 417 417 0.0 693 2
5 417 417 0.0 2
6 426 417 2.2 2
1 1021 1021 0.0 5
2 538 538 0.0 4
3 438 438 0.0 5
2 4 426 417 2.2 1323 4
53 417 417 0.0 4
6 417 417 0.0 L)
1 1021 1021 0.0 5
2 538 538 0.0 6
3 438 438 0.0 7
3 4 417 417 0.0 1323 5
5 417 417 0.0 5
6 417 417 0.0 5}
1 1021 1021 0.0 32
2 538 538 0.0 33
3 438 438 0.0 30
4 4 417 417 0.0 6741 30
5 417 417 0.0 31
6 417 417 0.0 30
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Table 6.16: Example 1 - Results of Perturbation Scheme 5

SA WIP Minimal Optimal Deviation Total CPU
Para. Levels Makespans Makespans (%) Solutions Times
Sets (SA) Evaluated  (seconds)
1 1021 1021 0.0 2
2 538 538 0.0 3
3 438 438 0.0 3
1 4 417 417 0.0 693 2
5 417 417 0.0 2
6 418 417 0.2 2
1 1021 1021 0.0 5
2 538 538 0.0 5
3 452 438 3.2 4
2 4 417 417 0.0 1323 5
53 417 417 0.0 4
6 417 417 0.0 4
1 1021 1021 0.0 5
2 538 9538 0.0 6
3 438 438 0.0 5
3 4 417 417 0.0 1323 5
5 417 417 0.0 5}
6 418 417 0.2 6
1 1021 1021 0.0 29
2 538 538 0.0 31
3 438 438 0.0 32
4 4 417 417 0.0 6741 31
5} 417 417 0.0 31
6 417 417 0.0 31
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Table 6.17: Example 1 - Results of Perturbation Scheme 6

SA WIP Minimal Optimal Deviation Total CPU
Para. Levels Makespans  Makespans (%) Solutions Times
Sets (SA) Evaluated  (seconds)
1 1021 1021 0.0 2
2 538 538 0.0 3
3 438 438 0.0 3
1 4 418 417 0.2 693 3
5 417 417 0.0 3
6 417 417 0.0 2
1 1021 1021 0.0 6
2 538 538 0.0 4
3 438 438 0.0 4
2 4 417 417 0.0 1323 4
d 417 417 0.0 4
6 417 417 0.0 5
1 1021 1021 0.0 7
2 538 538 0.0 7
3 438 438 0.0 4
3 4 417 417 0.0 1323 5
5 417 417 0.0 5
6 417 417 0.0 5
1 1021 1021 0.0 32
2 538 538 0.0 30
3 438 438 0.0 31
4 4 417 417 0.0 6741 33
5 417 417 0.0 33
6 417 417 0.0 30

Table 6.18 gives both minimal makespans and the job sequences found by
solving CONL2 using the developed simulated annealing algorithm.

For each SA parameter set, six WIP levels were computed.

The relationship between the WIP levels and the makespans is shown in Figure

6.2.
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Table 6.18: Results of Example 1 - Perturbation Scheme 2

SA WIP Minimal Best Job Total Computational
Para. Levels Makespans Sequences Solutions Times
Sets Evaluated (seconds)

1 1021 P2-P5-P6-P1-P3-P4 2
2 538 P2-P3-P5-P4-P1-P6 2
3 449 P2-P4-P1-P5-P3-P6 2
1 4 438 P5-P2-P4-P1-P3-P6 693 2
5 418 P2-P5-P4-P1-P3-P6 3
6 417 P2-P4-P5-P1-P3-P6 3
1 1021 P2-P5-P6-P1-P3-P4 5
2 538 P2-P3-P5-P4-P1-P6 4
3 438 P5-P2-P1-P4-P3-P6 4
2 4 417 P2-P4-P5-P1-P3-P6 1323 5
5 417 P2-P4-P5-P1-P3-P6 4
6 417 P2-P4-P5-P1-P3-P6 4
1 1021 P2-P5-P6-P1-P3-P4 Y
2 538 P2-P3-P5-P4-P1-P6 5
3 447 P5-P2-P1-P4-P3-P6 5
3 4 417 P2-P4-P5-P1-P3-P6 1323 6
5 417 P2-P4-P5-P1-P3-P6 6
6 417 P2-P4-P5-P1-P3-P6 6
1 1021 P2-P5-P6-P1-P3-P4 30
2 538 P2-P3-P5-P4-P1-P6 30
3 438 P5-P2-P4-P1-P3-P6 31
4 4 417 P2-P4-P5-P1-P3-P6 6741 30
5 417 P2-P4-P5-P1-P3-P6 30
6 417 P2-P4-P5-P1-P3-P6 29
By looking at the results in Tables 6.12 to 6.18, we have the following obser-
vations:

1. CONWIP system performance:
The makespan decreases as the WIP level increases. However, once the WIP

reaches certain point, adding more containers or increasing WIP levels will not
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improve the system makespan. In our particular example, the best WIP level or
the number of the containers for this CONWIP production line is 4. This provides
an important message to factory managers that more containers beyond a certain
number cannot further reduce the makespan. Also it shows that the proposed model
and the heuristic method can help managers to find the best WIP level to improve
the production performance and at the same time to avoid having no-value added

but costly extra containers circulating in the system.

System Performance
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Figure 6.2: Makespan vs. WIP Level in Single CONWIP Line Example 1

2. Bottleneck Machines
As we discussed earlier, the system reaches its maximum throughput level with

4 containers. We know that there are only 3 machines in the system, this indicates
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that there is no idle machine in the system at any point of time and there is a
waiting queue in front of the bottleneck machine. Table 6.19 gives the total waiting
time for different WIP levels. The total waiting time is the waiting time of all parts

in front of each machine during the time of processing.

Table 6.19: Waiting Times (Scheme 4)

WIP Level Total waiting Times
Machine 1 Machine 2 Machine 3
2 160 0 0
3 0 144 21
4 0 125 102

Table 6.19 shows that with different WIP levels, the total waiting time is dif-
ferent. Also the location of the bottleneck machine changes when the WIP level
varies. With 2 containers, machine 1 appears as the constraint of the system as
parts are waiting in front of machine 1 for a free container to enter the system. On
the plant floor, a waiting queue appearing in front of the first machine of the product
line could indicate that more containers need to be added to the system. With 3
containers, machine 2 becomes the bottleneck in the system while with 4 containers,
both machines 2 and 3 are shown as bottlenecks. In the case of 4 containers, no
dominant bottleneck can be determined. In conclusion, when the number of con-
tainers are varied, the bottleneck machine can shift from one to another. Moreover,
different WIP levels can have more than one bottleneck in the system.

3. Simulated Annealing Based Algorithm Performance

Tables 6.12 to 6.17 show that with 99% cooling rate, the proposed SA based

heuristic algorithm found the optimal solutions for all the tested WIP levels. While
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with .a 95% cooling rate as shown in set 3, SA based heuristic algorithm failed to
find the optimal solutions for all the WIP levels. So selecting a higher cooling rate
may result in better results. This is understandable as with a higher cooling rate,
the temperature in the annealing process decreases slower than that with the lower
cooling rate. Therefore, the annealing process will take a longer time. And this
longer annealing process avoids having the system being cooled too fast without
reaching its steady state. So the cooling rate should be carefully selected when the
SA algorithm is applied in order to obtain an optimal or near-optimal solution and
to avoid being trapped in a local optimum.

By comparing set 2 and 3, the results do not show much difference. In terms
of the algorithm parameters, the differences between these 2 sets are initial P(A)
and the inferior base. As we mentioned earlier, these values were used to determine
the Boltzman constant. The Boltzman constant is 0.00577 and 0.00144 for set 2 and
set 3, respectively. From this experiment, we conclude that the Boltzman constant
does not have a clear effect on the results for the particular tested case.

4. Perturbation Schemes vs. SA Solutions

Tables 6.12 to 6.17 show that when the iteration number is relatively small,
as shown in set 1, schemes 4, 5 and 6 were able to find the optimal makespan
while other schemes failed to find the optimal solution with the WIP level set as 4.
With same computation time and same initial job sequence, schemes 4, 5 and 6 are
more efficient than all other schemes. When the iteration number is large, we do
not observe significant differences among the six different perturbation schemes in
terms of solution quality.

In fact, it is necessary to find the most efficient scheme when considering
tradeoffs between solution quality and computation time, especially for large sized

problems where it is impossible to choose sufficient large iteration numbers within
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an acceptable computation time.

5. Computation Efforts Observation

Computation time depends on the selection of the cooling rate; the iterations
for each temperature level and the WIP level. It is obvious that the CPU time
or computation time increases when the cooling fate and the iterations for each
temperature level increase. However, Table 6.18 does not show a clear trend of

CPU time or computation time with WIP level increase.

6.2.2. Example 2

In this section, we present another example for a small sized single serial CONWIP
line. In this example, the number of machines is larger than the number of parts.
This is different from the example 1 where the number of machines is smaller than
the number of parts.

Below is a summary of the system parameters for example 2:

The production system has 10 machines and is a single serial CONWIP pro-

duction line

5 types of products or parts are processed in this CONWIP line.

All 5 parts are processed by all 10 machines sequentially.

Processing times on the 10 machines for the 5 products were generated ran-
domly from uniform distribution (0,100). For comparison purpose, once they
are generated, they are kept the same for the calculation of all WIP levels.
The processing times for the 5 products are listed in Table A.2 of Appendix
A.

o WIP levels from 1 to 8 are tested.
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Example 2 was also solved by the SA based heuristic algorithm, but only
scheme 4 was employed. SA parameters chosen in this example are the the same as
in set 1 in example 1, i.e., cooling rate is 95%, the initial temperature is 25, the final
temperature is 1 and the iteration for each temperature level is 10. The Boltzman

constant is 0.00144. Table 6.20 shows the minimal makespan for 8 WIP levels.

Table 6.20: Results of Example 2 - Perturbation Scheme 4

WIP Minimal Optimal Deviation Total CPU
Levels Makespan Makespan (%) Solutions Times
(SA) Evaluated (seconds)
1 2588 2588 0.0 693 4
2 1390 1390 0.0 693 5
3 1020 1020 0.0 693 5
4 827 827 0.0 693 )
5 810 810 0.0 693 4
6 810 810 ' 0.0 693 4
7 810 810 0.0 693 4
8 810 810 0.0 693 4

Results of example 2 show the same observations as those of example 1, except
the following:

In example 2 problem, the system reaches its maximum capacity when the
container number is 5. Since there are 10 machines in the system, there are always
5 machines at idle at any point of time. While in example 1, there is no idle machine.
This is the result of less parts than inachines and the imbalance in processing times of
the different parts. This observation suggests that in order to obtain a better overall
CONWIP system performance and to better utilize machine capacities, processing

times of all parts may need to be balanced if possible.
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6.2.3. Example 3

The third example was constructed to solve a relatively large problem of a single

serial CONWIP production line. Details of this example are given below:
e The system has 10 machines in a single serial CONWIP production line.
e 30 products or parts are manufactured in this CONWIP line.
o All 30 parts are processed by all 10 machines sequentially.

e Processing times on the 10 machines for the 30 products were generated ran-
domly from (0,100) using uniform distribution and they are kept as the same

for all WIP level computations. The processing times for the 30 products are

listed in Table A.3 of Appendix A.
o WIP levels from 1 to 30 are tested.

o Different sets of parameters for the simulated annealing heuristic algorithm
were tested to evaluate the heuristic algorithm. The parameters selected are

listed in Table 6.21

Table 6.21: SA Parameters

SA  Cooling  Iterations Initial Inferiority Initial Final
Para.  Rate for Each P(A) Base Temperature Temperature
Sets (%) Temperature (%) (%)
Level
1 99 50 25 5 25
2 99.5 50 25 5 25 1

The six perturbation schemes presented in Chapter 5 were also used in the

SA algorithm to solve this example problem. Tables 6.23, 6.24, 6.25, 6.26, 6.27 and
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6.28 show the minimal makespans found by the SA based heuristic algorithm for
schemes 1, 2, 3 /4, 5 and 6, respectively.

Similar observations were obtained from the computational results of this
larger example problem.

1. System Performance

In terms of system performance, we have similar observations to those from
Example 1. Tradeoffs between makespan and WIP level are shown clearly from
Figure 6.3 when the number of containers is varied. A smaller container number to
keep the WIP level low limits the jobs in the system and thus reduces production
throughput. The results show that larger number of containers can reduce the
makespan. However, the results also show that 14 containers are maximum in terms
of reducing the makespan for this problem. If there are more than 14 containers
circulating in the system, the extra containers will not help to further reduce the
makespan.

2. Perturbation Schemes

As shown in Figure 6.3, different schemes have no significant impact on makespan
and WIP levels for this particular case.

3. Simulated Annealing Heuristic Algorithm Performance

In terms of parameters of simulated annealing, from Table 6.23 to 6.28, the
same conclusion in solving the small sized problem can be reached. Faster cooling
rate results longer computation time since there are more iterations. Also different
levels of WIP may not affect much on the computation time.

4. Computation Efforts Observations

The model was solved using the SA heuristic algorithm on a Intel Centrino
Duo 1.83Hz PC computer. By comparing the results shown in Table 6.22, it is

obvious that with the number of parts increasing, the computation time increases.
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Table 6.22: Computation Times with Different Number of Parts

Number Cooling  Iterations  Initial Inferiority Initial Final CPU

of Rate for Each P(A) Base Temp Temp Time
Parts (%)  Temperature (%) (%)
Level
6 99 50 25 ) 25 1 101
30 99 50 25 5 25 1 244

In solving these examples, when part number increases from 6 to 30 with the same
WIP level at 6 and the same perturbation scheme 1, the computation time increases

from about 101 seconds to 244 seconds with the same SA parameters.

97



Chapter 6. Example Problems and Computational Results

Table 6.23: Example 3 - Results of Perturbation Scheme 1

SA WIP Minimal Total CPU
Para. Levels Makespans Solutions Times
Sets (SA) Evaluated (seconds)
1 15732 248
2 7897 243
4 4322 242
6 3201 244
8 2753 239
10 2562 251
12 2487 252
14 2452 254
1 16 2455 16371 249
18 2427 250
20 2405 252
22 2426 255
24 2428 268
26 2453 250
28 2360 253
30 2390 251
1 15732 927
2 7902 898
4 4259 922
6 3225 923
8 2784 972
10 2556 949
12 2469 962
14 2406 967
2 16 2423 32793 943
18 2379 931
20 2380 922
22 2390 957 -
24 2384 947
26 2423 946
28 2444 953
30 2382 946
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Table 6.24: Example 3 - Results of Perturbation Scheme 2

SA WIP Minimal Total CPU
Para. Levels Makespans Solutions Times
Sets (SA) Evaluated (seconds)
1 15732 255
2 7910 246
4 4278 242
6 3191 242
8 2763 243
10 2572 250
12 2451 252
14 2343 250
1 16 2402 16371 251
18 2398 250
20 2368 251
22 2350 248
24 2400 249
26 2380 250
28 2381 250
30 2364 250
1 15732 980
2 7899 894
4 4267 953
6 3187 896
8 2747 895
10 2528 924
12 2410 942
14 2383 929
2 16 2361 32793 942
18 2372 933
20 2395 959
22 2389 968
24 2391 956
26 2371 1032
28 2370 992
30 2395 951
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Table 6.25: Example 3 - Results of Perturbation Scheme 3

SA WIP Minimal Total CPU
Para. Levels Makespans Solutions Times
Sets (SA) Evaluated (seconds)

1 15732 255

2 7896 245

4 4239 250

6 3168 250

8 2776 246

10 2523 248

12 . 2375 253

14 2400 250

1 16 2392 16371 247
18 2415 249

20 2422 244

22 2402 243

24 2382 249

26 2388 246

28 2381 247

30 2391 258

1 15732 916

2 7890 899

4 4218 886

6 3207 890

8 2720 891

10 2521 915

12 2453 923

14 2398 925

2 16 2391 32793 927
18 2385 923

20 2408 932

22 2366 929

24 2377 926

26 2355 921

28 2395 ' 929

30 2342 932
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Table 6.26: Example 3 - Results of Perturbation Scheme 4

SA WIP Minimal Total CPU
Para. Levels Makespans Solutions Times
Sets (SA) Evaluated (seconds)
1 15732 » 247
2 7899 240
4 4261 237
6 3196 238
8 2724 245
10 2540 246
12 2432 262
14 2393 251
1 16 2414 16371 248
18 2400 251
20 2401 249
22 2398 254
24 2366 244
26 2393 262
28 2398 254
30 2392 247
1 15732 917
2 7896 904
4 4223 | 887
6 2702 884
8 2701 884
10 2502 918
12 2382 930
14 2391 909
2 16 2373 32793 925
18 2355 913
20 2370 922
22 2384 926
24 2356 930
26 2380 926
28 2342 916
30 2378 934
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Table 6.27: Example 3 - Results of Perturbation Scheme 5

SA WIP Minimal Total CPU
Para. Levels Makespans Solutions Times
Sets (SA) Evaluated (seconds)
1 15732 245
2 7898 238
4 4228 238
6 3195 237
8 2768 237
10 2537 243
12 2438 245
14 2374 245
1 16 2394 16371 259
18 2363 248
20 2402 250
22 2360 250
24 2396 259
26 2368 244
28 2368 245
30 2340 251
1 15732 908
2 7895 892
4 4262 883
6 3166 879
8 2752 881
10 2547 912
12 2434 923
14 2384 915
2 16 2385 32793 915
18 2376 917
20 2318 913
22 2345 915
24 2384 919
26 2373 915
28 2330 917
30 2370 917
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Table 6.28: Example 3 - Results of Perturbation Scheme 6

SA WIP Minimal Total CPU
Para. Levels Makespans Solutions Times
Sets (SA) Evaluated (seconds)

1 15732 254

2 7902 240

4 4238 240

6 3188 241

8 2702 240

10 2561 245

12 2435 247

14 2358 247

1 16 2392 16371 250
18 2392 248

20 2406 255

22 2379 249

24 2387 249

26 2372 250

28 2376 249

30 2390 255

1 15732 948

2 7899 891

4 4189 , 886

6 3177 884

8 2741 881

10 2538 916

12 ' 2400 938

14 2399 929

2 16 2363 32793 957
18 2370 967
20 2384 1002

22 2387 927

24 2354 919

26 2385 916

28 2344 923

30 2350 924
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6.3. MCONL Numerical Examples

The assembly-type multiple line CONWIP model MCONL is solved using the same
heuristic method - simulated annealing based heuristic algorithm presented in Chap-
ter 5. In this section, we present two examples of CONWIP based assembly-type
systems with several fabrication lines. The layout of the system is similar to the

system shown in Figure 4.1.

6.3.1. Example 1

Example 1 problem is an assembly-type multiple line CONWIP system with three
fabrication lines feeding an assembly station. In each of the fabrication lines, a
number of parts are processed sequentially on a number of machines. The first
fabrication line has 4 machines processing 6 parts. The second fabrication line has 6
machines processing 10 parts. The third fabrication line has 3 machines processing
5 parts. The processing time for each part at each machine is listed in Tables B.1,
B.2 and B.3 of Appendix B. The processing times are randomly generated from
uniform distribution (0, 100). Once they are generated, they are kept the same for
the calculation of all WIP inventory Ievelsr.

As discussed earlier, the major issue in an assembly-type multiple CONWIP
line system is to synchronize the fabrication lines by minimizing the makespan dif-
ference among the fabrication lines. - To reach this goal, the WIP inventory level
and job sequence for each of the fabrication lines are two essential parameters. The
purpose of this numerical example is to show how these two parameters can be
determined using our presented model MCONL and SA based algorithm.

As presented in Chapter 5, the model MCONL and the proposed SA based

heuristic algorithm are implemented in a software package CONLine. The example
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Table 6.29: SA Parameters for Multiple Line Example 1

SA  Cooling Iterations Initial  Inferiority Initial Final
Para. Rate for Each P(A) Base Temperature Temperature
Set (%) Temperature (%) (%)
Level
1 99.5 50 25 5 25 1

1 problem is solved using the CONLine software package. To evaluate the efficiency
of different perturbation schemes, all six perturbation schemes are used to compute
the makespan difference for this example. For all six perturbation schemes, the
SA parameters used in this example are listed in Table 6.29. The WIP inventory
levels for fabrication lines 1, 2 and 3 are chosen as 2, 6 and 1, respectively for the
six perturbation schemes. Table 6.30 shows the results of the job sequence and
the makespan differences for all six perturbation schemes. Figure 6.4 compares the
makespan differences for the six perturbation schemes.

The results shown in Figure 6.4 are in favor of scheme 4 and scheme 6 as the
least makespan differences are found by schemes 4 and 6 within approximately the
same computation time.

As shown in Table 6.30, when the WIP inventory levels of all fabrication
lines are set, the job sequence of the fabrication line 2 plays an important role on
synchronization of the three fabrication lines and it determines the throughput of the
system. This is because line 2 is the slowest line among three fabrication lines. The
fastest line in this example problem is the line 3. To have a synchronized CONWIP
system, the slowest line should be assigned with large number of containers or set

with a higher WIP inventory level; the fastest line should have a small number of
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Table 6.30: Results of Multiple Line CONWIP System Example 1

Schemes Fab- WIP Minimal = Minimal Best Job CPU
Lines Levels Makespans Different Sequences Times
Times (seconds)
1 2 786 P5 P6 P3 P2 P4 P1
1 2 6 828 168 P9 P2 P8 P4 P3 P5 1755
P7 P1 P6 P10
3 660 P2 P4 P3 P1 P5
1 2 745 P6 P5 P2 P3 P4 P1
2 2 6 816 156 P9 P4 P2 P1 P8 P7 1795
P3 P5 P6 P10
3 1 660 P3 P1 P5 P4 P2
1 2 737 P6 P1 P4 P5 P2 P3
3 2 6 832 172 P9 P2 P10 P8 P3 P7 1762
P5 P4 P6 P1
3 660 P5 P2 P1 P3 P4
1 2 731 P6 P3 P1 P2 P5 P4
4 2 6 802 142 P9 P4 P2 P8 P7 P1 1781
P3 P5 P6 P10
3 1 660 P1 P2 P5 P4 P3
1 2 779 P4 P2 P6 P3 P5 P1
5 2 6 821 161 P9 P4 P1 P7 P8 P3 1782
P2 P5 P6 P10
3 660 P1 P4 P2P5P3
1 2 711 P1P5 P6 P2 P4 P3
6 2 6 802 142 P9 P4 P2 P8 P1 P7 1800
P3 P5 P6 P10
3 1 660 P4 P5 P1 P2 P3
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Makspan Diff vs. Schemes

Schemes

Figure 6.4: CONWIP System with 3 Fabrication Lines

108



Chapter 6. Example Problems and Computational Results

containers or lower WIP ihventory level setting.

As mentioned earlier, the WIP inventory level settings for fabrication lines 1,
2 and 3 are chosen as 2, 6 and 1 respectively. But we have not given the reason why
these WIP inventory levels were chosen as above. There could be many possible
choices of the WIP inventory level setting for the three fabrication lines. Trying all
the possibilities is time consuming and not necessary. Below we define a relatively
simple way to determine the WIP inventory levels for all fabrication lines.

First of all, we compute the job sequence and the corresponding WIP levels
for each individual fabrication line, i.e., each fabrication line is treated as a single
serial CONWIP line excluding the final assembly station.

As shown in Figure 6.4, perturbation schemes 4 and 6 give the same best
result within an acceptable amount of computation time. So in this case, we simply
use scheme 4 to calculate makespans with different WIP inventory levels for each
individual line. The SA parameters used here are the same as the one used earlier
in Table 6.29.

Figure 6.5 illustrates the system performance for all three fabrication lines.
The system performance reflects the relationship between WIP levels and minimum
makespan. Since fabrication line 2 has the longest makespan, we call it the critical
line. The critical line determines the production rate of the entire assembly system.
Figure 6.5 shows that fabrication line 2 reaches its production capacity with six
containers circulating in the line. To synchronize the three fabrication lines, the
best WIP inventory level for each fabrication line needs to be decided. To do so,
we start from critical line 2 and draw a horizonal line as shown in Figure 6.5 from
line 2’s minimum makespan. The line has intersections with both line 1 and line
3. From the intersection of line 2 and line 1, a vertical line can be drawn to find

corresponding WIP level for line 1. From the intersection of line 2 and line 3, we
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can find the WIP level for line 3 in the same way. The WIP level found by the
vertical line may not be an integer. Round the WIP level to its closest integer if
needed. In this case, the WIP level or the number of containers for line 1 and line 3
are 2 and 1, respectively. Once the combination of WIP levels for line 1, line 2 and
line 3 is determined, this combination can then be feed into the SA based heuristic
algorithm to calculate the minimal makespan difference. The makespan difference
should be minimized for a synchronized production of the 3 fabrication lines. In
this case, the best WIP levels are 2 containers for line 1, 6 containers for line 2, and
1 container for line 3. The resulting WIP levels, part sequence for each fabrication
line and the minimum makespan difference are shown in Table 6.30.

The method described above to find the best combination of WIP levels for
each fabrication line is able to provide a factory manager with an initial container
distribution for the entire system. The combination can be adjusted based on ex-
perience in the plant. Using the method presented above, it is easy to identify the
critical line and then based on the critical line to find the WIP levels of the other

fabrication lines.
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6.3.2. Example 2

In this section, we present another example with more fabrication lines for an
assembly-type multiple line CONWIP system. In this example, there are 5 fab-
rication lines in the system. In each of the fabrication lines, a number of parts are
processed sequentially on a number of machines. Fabrication line 1 has 3 machines
processing 4 parts; line 2 has 4 machines processing 5 parts; line 3 has 3 machines
processing 3 parts; line 4 has 4 machines processing 4 parts; line 5 has 5 machines
processing 3 parts. The processing time data for each part in each fabrication line
are listed in Tables B.4, B.5, B.6, B.7 and B.8 of Appendix B.

Same as example 1, all six perturbation schemes are used to solve this example
for minimizing the makespan difference among the lines. For all six perturbation
schemes, the SA parameters used in this example is listed Ain Table 6.31. The WIP
inventory levels for fabrication lines 1, 2, 3, 4 and 5 are chosen as 3, 3, 1, 2 and 2,
respectively for the six perturbation schemes.

The result shown in Figure 6.6 does not favor any scheme. Different schemes
do not have any impact on determining the makespan difference in this case. The
reason behind this is that the total computation iteration numbers determined by
the SA parameters are sufficiently large enough for this example problem. There
are less parts processed by each of the fabrication lines compared with the example
1 problem even though there are more fabrication lines in this case.

Using perturbation scheme 4 and the SA parameters shown in Table .6.31,
makespan versus WIP levels for each fabrication line are calculated by the SA based
heuristic algorithm. The results are shown in Figure 6.7.

Critical line and the number of containers or WIP levels are determined in the

same way as described in example 1. The critical line in this example is line 1. The

112



Chapter 6. Example Problems and Computational Results

Table 6.31: SA Parameters for Multiple Line Example 2

SA  Cooling Iterations Initial Inferiority Initial Final
Para. Rate for Each P(A) Base Temperature Temperature
Set (%) Temperature (%) (%)
Level
1 99 10 25 5 25 1

number of containers are 3,3, 1,2,2 for line 1 to line 5.

Comparing this example with example 1, we can see in this example that the
number of containers among fabrication lines are closer. In this example, among all 5
lines, the maximum number of containers is 3 and the minimum number of containers
is 1. This is because workloads among fabrication lines in example 2 system are more
balanced. The imbalance of workloads among fabrication lines in example 1 results
in a larger difference in the number of containers and larger makespan difference in
the system. Thus, balancing workloads among the fabrication lines is also essential
in order to synchronize the production and to minimize the overall WIP inventory
level in the system. In conclusion, in order to have a better performing assembly-
type CONWIP system, not only the WIP level and job sequence for each fabrication
line need to be well determined, but also the workloads among the lines need to be

well balanced.
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Makespan Diff vs. Schemes

Figure 6.6: CONWIP System with 5 Fabrication Lines
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Chapter 7

Conclusions and Future Research

7.1. Overview

Facing ever increasing international competition and pressure for profitability, the
manufacturing industry has made profound and fundamental changes to cope with
such challenges. Lean manufacturing has become a must for many manufacturing
companies. On the other hand, the cost of change and the resistance to change
by labor forces in the manufacturing industry are also tremendous. To have a lean
operation and to ease the pain of change to a minimum, hybrid production control
systems, such as CONWIP systems should be considered by many manufacturing
companies in converting their push-based MRP systems to pull-based Just-In-Time
systems. Push-based systems have been widely used by many manufacturing com-
panies, but they do not respond well to today’s rapid product development and may
create difficulties in keeping a manufacturing company competitive. Pull systems
are typically lean systems, but may be difficult to implement in many existing man-
ufacturing systems. The CONWIP control approach takes advantages of both push

and pull systems and is easy to implement in most existing manufacturing systems.
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That is why CONWIP systems have attracted many practitioners and researchers
since it was introduced a decade ago. In order to successfully implement a CON-
WIP system in an existing manufacturing system, the following issues need to be

addressed:

1. Job sequence in the backlog list
2. Number of containers used in the system
3. System performance forecast

4. Transfer lot size

To effectively address the above issues, many factors must be considered.

These factors include:

1. Single production line or multiple production lines
2. Single product or multiple products

3. Workload balancing

4. Lot splitting

5. Job sequencing

6. Setup time/cost

7. Work-In-Process levels

8. Bottleneck machines
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7.2. Summary and Concluding Remarks

In an effort to address the factors listed in the previous section, we developed three
mathematical programming models for CONWIP system analysis in this research.
Our first model CONL1 presented in Chapter 3.2 was developed for a single serial
CONWIP production line. The solution of that model determines the job sequence
and the lot sizes for different items processed in a CONWIP line. The model consid-
ered sequence dependent setup cost and the cost incurred by workload imbalance.
Our review shows that this is the first CONWIP mathematical programming model
that considers both sequence dependent setup cost and workload balancing. Also
this is the first CONWIP mathematical programming model to address the transfer
lot size problems. A numerical example based on a small sized problem was solved
by LINGO to demonstrate the model and its potential benefits. Computational ex-
perience on such a small problem showed that a significant amount of cost savings
can be achieved by considering bottleneck machine workload balancing and lot split-
ting. Our computational results also showed that there are significant differences on
WIP level and makespan if workload balancing is not attempted.

Model CONL1 uses a hybrid control philosophy. It is a hybrid of TOC and
CONWIP. In such a control policy, the bottleneck machine has to be identified
first. In some manufacturing environments, the bottleneck machine can be identi-
fied based on past experience. However, in many manufacturing systems and their
operations, identifying bottleneck machines may be difficult. Moreover, bottleneck
machines may depend on product mix and can shift from time to time. In addition,
in complicated manufacturing systems, there could be more than one bottleneck ma-

chine. To overcome this difficulty of identifying bottleneck machines, model CONL2
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was developed in Chapter 3. No bottleneck machines need to be identified before-
hand in solving the model CONL2 and the number of containers can be determined
directly in solving the model. The objective function of CONL2 is to minimize
makespan. The focus of model CONL2 is to meet demands in time and at the same
time to achieve a minimal WIP level. Numerical examples using small sized and
medium sized problems were presented to demonstrate the model. Computational
results show a clear relationship between WIP levels and makespan. Our results
also show that production makespan cannot be decreased further if the WIP level
is over certain limit.

Both model CONL1 and model CONL2 are developed for single serial CON-
WIP production lines. In practice, multiple line production systems are more preva-
lent in manufacturing. Our review shows that no mathematical programming model
for multiple line CONWIP production system has been seen in published research
so far. To this end, a model dealing with an assembly-type CONWIP system with
multiple fabrication lines was developed in Chapter 4. The advantage of using CON-
WIP in assembly-type multiple line systems is that the WIP can be controlled at
different levels for each fabrication line in order to synchronize the production of
all fabrication lines. The synchronization allows the parts from all fabrication lines
to arrive at the assembly station at around the same time. With proper WIP set-
ting and job sequence in each fabrication line, the system makespan is minimized
while the WIP level of the entire assembly system is kept at the lowest level. Model
MCONL was developed to minimize the overall system makespan difference among
fabrication lines and to decide on the number of containers or the WIP setting for
each fabrication line. Numerical examples using small sized problems were solved
by the proposed SA based heuristic algorithm to illustrate the model. Computa-

tional results showed that the performance of an assembly-type CONWIP system
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with multiple fabrication lines is mainly determined by a critical fabrication line. A
critical fabrication line is a line that has the largest WIP setting.

As we mentioned above, three mathematical programming models were de-
veloped for CONWIP systems in this research. All these models are NP-hard. In
solving such mathematical programming models for large sized problems, a branch
and bound based general search algorithm cannot give optimal or near optimal solu-
tions within acceptable computational times. To this end, we developed an efficient
heuristic algorithm based on simulated annealing that is presented in Chapter 5.
Six different perturbation schemes were incorporated in the algorithm. The impact
of different SA parameters on CONWIP system performance and computational

efforts were investigated.

7.3. Future Research

7.3.1. CONWIP System Mathematical Programming Mod-
els

For future research in terms of modeling, there are some interesting areas where the
current models can be extended:

a) This research focused on a single period time planning. So the natural
extension of the study would be multi-period planning.

b) In this research, processing times and setup times were assumed known and
deterministic. The future study can be extended to have deterministic processing
time with random machine failure anci repair times.

¢) In this research, the WIP level was set to a limited level for a production line

or the whole production system. It will be interesting to move the WIP levels down
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for individual type of parts. This can be modeled by having CONWIP constraints

for each part.

7.3.2. Heuristic Algorithm

An effective simulated annealing based heuristic algorithm was developed in this
research to solve CONWIP production planning problems. The algorithm can be
effectively used in solving large sized and close to real world problems. It would be
interesting to develop other heuristic algorithms to solve the models and to compare
them with the heuristic algorithm developed in this research. Therefore, developing
other efficient and robust solution methods is another interesting topic for future

research.

7.4. Publications from This Thesis Research

This section lists several papers published or in preparation for possible publication
based on different aspects of this thesis research. They include international journals

and conference publications.

e Zhang, W., Chen, M., 2001. A mathematical programming model for produc-
tion planning using CONWIP, International Journal of Production Research,

39, 2723-2734.

e Zhang, W., Chen, M., 2000. Job Sequencing in CONWIP Production Lines,
INFORMS 2000 Annual Meeting, San Antonio, TX, November, 2000.

e Zhang, W., Chen, M., 2007. Simulated Annealing based Heuristic Algorithm
for Multiple Production Line CONWIP System, In preparation, to be submit-

ted to the International Journal of Production Fconomics, April 2007.
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Appendix A

Processing Time Data for Model

CONL2 Examples

Table A.1: CONL2 Example 1: Processing Times

Machines Processing Times
Part 1 Part 2 Part 3 Part 4 Part 5 Part 6

Mach 1 88 16 62 59 37 96
Mach 2 85 79 81 99 3 6
Mach 3 49 77 27 33 80 7
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Table A.2: CONL2 Example 2: Processing Times

Machines Processing Times
Part 1 Part 2 Part 3 Part, 4 Part 5

Mach 1 63 94 52 95 31
Mach 2 52 54 68 55 56
Mach 3 55 7 29 93 24
Mach 4 53 3 84 62 95
Mach 5 85 10 92 63 24
Mach 6 31 76 64 43 3
Mach 7 51 15 39 92 13
Mach 8 71 25 80 40 36
Mach 9 24 37 45 64 72
Mach 10 8 19 99 78 15
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Table A.3: CONL2 Example 3: Processing Times

Part Processing Times on Machines

Parts M1 M2 M3 M4 M5 M6 M7 M8 M9 M10
P1 40 22 94 69 9 33 82 92 89 54
P2 51 55 31 54 9 &4 59 84 14 45
P3 20 49 12 52 25 50 41 26 16 1
P4 68 93 35 47 38 71 46 60 25 24
P5 37 13 99 33 6 51 92 29 85 57
P6 40 90 52 76 26 89 1 48 8 56
P7 61 18 42 84 75 94 51 48 14 30
P8 11 67 14 94 95 8 52 73 59 88
P9 17 26 41 52 67 99 35 42 90 98
P10 63 9 74 68 94 79 32 42 7 44
P11 82 85 27 23 43 83 34 9 85 66
P12 75 59 99 57 67 67 5 70 59 95
P13 44 43 11 9 83 53 65 31 48 35
P14 69 33 12 70 51 68 73 55 81 58
P15 96 15 99 37 91 46 48 93 25 29
P16 1 29 71 32 2 94 50 27 84 8
P17 61 49 4 53 27 2 71 27 50 70
P18 36 13 32 5 53 26 77 15 81 56
P19 50 98 69 63 2 47 55 6 39 55
P20 43 41 23 84 76 98 92 68 33 21
P21 28 11 78 17 69 74 31 42 74 46
P22 30 8 54 85 50 97 47 22 95 53
P23 85 89 67 60 11 1 65 59 74 98
P24 43 75 52 56 51 46 16 74 57 28
P25 80 14 76 46 62 74 57 98 42 5
P26 79 85 35 52 33 9 36 10 59 19
P27 75 18 24 27 22 94 69 94 2 22
P28 36 36 2 6 75 83 45 14 44 15
P29 92 31 74 12 95 52 78 98 10 44
P30 78 77 70 57 13 25 24 58 78 64
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Appendix B

Processing Time Data for for

Model MCONL Examples

Table B.1: Example 1: Fabrication Line 1 Parts Processing Times

Machines Processing Times
Part 1 Part 2 Part 3 Part 4 Part 5 Part 6

Mach 1 53 19 7 30 18 70
Mach 2 42 9 30 90 55 39
Mach 3 29 64 31 93 98 29
Mach 4 84 63 82 44 62 14
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Table B.2: Example 1: Fabrication Line 2 Parts Processing Times

Machines Processing Times
P1 P2 P3 P4 P5 P6 P7 P8 P9 P10

=eews

Mach 1 64 44 46 31 96 99 34 65 17 30
Mach 2 23 77 98 58 43 3 58 16 26 59
Mach 3 94 46 57 4 99 52 30 36 83 41
Mach 4 72 52 97 60 82 27 35 54 50 64
Mach 5 48 91 70 - 59 36 37 62 84 2 24
Mach 6 18 31 41 36 22 47 32 95 88 17

Table B.3: Example 1: Fabrication Line 3 Parts Processing Times

Machines Processing Times
Part 1 Part 2 Part 3 Part 4 Part 5
Mach 1 8 51 68 31 78
Mach 2 9 70 48 2 46
Mach 3 50 10 10 ) ()

Table B.4: Example 2: Fabrication Line 1 Parts Processing Times

Machines Processing Times
Part 1 Part 2 Part 3 Part 4
Mach 1 85 85 77 98
Mach 2 10 68 91 52
Mach 3 68 93 50 70
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Table B.5: Example 2: Fabrication Line 2 Parts Processing Times

Machines Processing Times
P1 P2 P3 P4 P5
Mach 1 20 69 39 30 58
Mach 2 5 39 34 57 95
Mach 3 94 94 65 71 34
Mach 4 53 7 95 16 97

Table B.6: Example 2: Fabrication Line 3 Parts Processing Times

Machines ' Processing Times

Part 1 ~ Part 2 Part 3
Mach 1 70 43 72
Mach 2 79 62 29
Mach 3 76 51 30

Table B.7: Example 2: Fabrication Line 4 Parts Processing Times

Machines Processing Times
P1 P2 P3 P4
Mach 1 98 96 66 57
Mach 2 32 36 64 68
Mach 3 24 56 28 54
Mach 4 27 21 45 50
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Table B.8: Example 2: Fabrication Line 5 Parts Processing Times

Machines Processing Times
Part 1 Part 2 Part 3
Mach 1 9 60 54
Mach 2 14 88 7
Mach 3 96 35 53
Mach 2 19 44 14
Mach 3 24 61 40
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Appendix C

C# Source code of SA based

heuristic algorithm

/o ok sk sk ok ok ok sk sk sk o ok sk ok ok ok ok sk ok sk ok sk ok sk o Kok ok sk ok sk o sk ok sk ok sk ok sk ok ok ok ko K ok ok ok K ok ok o K
* CONLine: Simulated Annealing Based Heuristic Algorithm to *
x calculate job sequence for different WIP levels for *
x multi—products single and multiple CONWIP lines. *
Kook ok o KKKk ok ok oK ok KK K Kok oK R KK KoK K R ok ok ok o K K KKK R R K KK sk oK sk ok Sk sk R R o K ok ok ok /

using
using
using
using
using
using
using

using

System ;
System .
System
System .
System
System
System .

System .

Collections . Generic;

. ComponentModel;

Data;

.Drawing;

.Text;

Windows . Forms;

10;
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namespace CONLine {
public partial class SquenceForm : Form
{
DateTime startTime=new DateTime();
DateTime endTime=new DateTime /() ;

/¥ Class ProcessTimex/

class ProcessTime

{
private int _Line;
private string _mlID;
private string _pID;
private int _PTime;

public ProcessTime ()
{
_Line= 1;
mlD = "";
_pID = nn.
-PTime = 0;

}

public ProcessTime(int line ,string pid, string mid,

int pt)

_Line = line;
_mlD = mid;
-pID = pid;
_PTime = pt;

}

public int Line

{

get

{
}
set

{
}

return _Line;

-Line = value;
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public int PTime

{
get
{
return _PTime;
}
set
{
_PTime = value; "’
}
}
public string sMID
{
get
{
return _mlID;
}
set
-mID = value;
}
}
public int iMID
{
get
{
return (int.Parse(this._mID.Remove(0, 1)) —
1);
set
-pID = "M" + value;
}
public string sPID
{
get
{
return .plD;
}
set
_pID = value;
}
}

145




public int iPID
{

get

{

return (int.Parse(this._pID.Remove(0, 1)) —
1);

_pID="P"+value;

}

/* Class Listltem x/
public class Listltem

{

private int _Line;
private string _plID;
public ListItem ()

{

_Line = 1;
_pID J— nn;

public Listltem (int line, string pid)

{
_Line = line;
-pID = pid;

}

public int Line

{

get

{

return _Line;

-Line = value;
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public string sPID
{

get
{

return _plID;
}
set

pID = value;
}

public int iPID
{

get

{

return (int.Parse(this._pID.Remove(0, 1)) —
OF

_pID = "P" + value;

public SquenceForm ()

{
}

/* Load main form x/
private void Forml Load(object sender, EventArgs e)

{
}

/¥ Save results into a date file x/
private void btnSave_Click(object sender, EventArgs e)

{

InitializeComponent () ;

DialogResult dr;
dr = dlgSave.ShowDialog() ;
if (dr = DialogResult .OK)
{
StreamWriter wtr = new
StreamWriter (dlgSave . FileName , false);
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try
for (int i = 0; i < listBoxl.Items.Count;
i++)
{

}

catch (Exception ex)

{

}
finally

wtr. WriteLine (listBox1 .Items[i]);

MessageBox . Show (ex . Message) ;

wtr. Close () ;

}

/*x Main */
private void btnRun_Click(object sender, EventArgs e)

if (checkBox1.Checked)

DialogResult drQuit;

drQuit = MessageBox .Show("Do you want take
Random DATA?", "Confirmation",
MessageBoxButtons . YesNo,
MessageBoxIcon . Question ,
MessageBoxDefaultButton . Button2);

if (drQuit = DialogResult.No)

return;

}

else

DialogResult drQuit;

drQuit = MessageBox.Show("Do you want take
DATA from file?", "Confirmation",
MessageBoxButtons . YesNo,
MessageBoxIcon . Question ,
MessageBoxDefaultButton . Button2) ;

if (drQuit = DialogResult .No)

return;
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checkBox1.Checked = false;
startTime = DateTime .Now;
listBox1.Items. Clear();

/* Initialization x/

int numberLines=15;

int [] numberParts = new int[numberLines];
int [] numberMachines = new int[numberLines];
int [] Ctt = new int[numberLines];

int [] WIP = new int[numberLines];

int [] MinTime = new int [numberLines];

int [] position_MinTime = new int[numberLines];
double T1 = 25;

double TF = 1;

double CR = 90.0;

double Kb = 0.00144;

int timesLoop=2;

int count = O0;

int Ct = 999999;

int Cc = 999999;

int result=999999;

int position_result = 0;

string squ="";

const double EPSILON=0.00001;

for (int i

{

0; i < numberLines; i++)

WIP[i] = 100000;

Ctt[i] = 999999;

MinTime[i] = 999999;
}

#region Collect Parameters

try

{

timesLoop = int.Parse(txttimesLoop. Tex‘t) ;

catch (Exception ex)

{

MessageBox . Show (ex . Message) ;
txttimesLoop .Focus();
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. try

{

Tl = double.Parse (textBoxT1.Text);

catch (Exception ex)

{

MessageBox . Show (ex . Message) ;
textBoxT1.Focus();

}

try
TF = double. Parse (textBoxTF . Text);

catch (Exception ex)

{

MessageBox . Show (ex . Message) ;
textBoxTF . Focus () ;

}

try
Kb = double. Parse (textBoxKb. Text) ;

catch (Exception ex)

{

MessageBox . Show (ex . Message) ;
textBoxKb. Focus () ;

}

try
CR = (double.Parse (textBoxCR.Text) / 100.0);

catch (Exception ex)
{
MessageBox . Show (ex . Message) ;
textBoxCR . Focus () ;
}
int swap = int.Parse(SwapMode. Text) ;
numberLines = int.Parse(cboxLines. Text);
#endregion

//=new ProcessTime [numberLines|[][];
ProcessTime[,,] P;

int[,,] F; // = new int[numberLines][][];
int|,,] S; // = new int[numberLines][][];
int[,,] R; // = new int[numberLines][][];
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int [,] W;
string [][] minList = new string[numberLines][];
string [][] minListl = new string[numberLines|[];
List<ListItem >[] partsList = new

List<ListItem >[numberLines |;

Random rm = new Random();

#region read data from files
for (int i = 0; i < numberLines; i++)

{
string FileName = "ProcessTime_" + i + ".txt";
FileInfo theSource = new Filelnfo (FileName);
try

{

StreamReader reader = theSource.OpenText () ;

string fileText;

#region read Number of parts, machines
try

{

fileText = reader.ReadLine();
numberParts[i] = int.Parse(fileText);

fileText = reader.ReadLine();
numberMachines [i] = int.Parse(fileText);

fileText = reader.ReadLine();
WIP[i] = int.Parse(fileText)—1;

catch (Exception ex)

{

MessageBox . Show (ex . Message) ;
//textBoxDI. Focus();

finally

{
}

#endregion

reader . Close () ;
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int
int
for

SDwmY -
Pl

ol

for

catch (Exception ex)

{
}

MessageBox . Show (ex . Message ) ;

MaxtempM=0;
MaxtempP=0;
(int i = 0; i < numberLines; i++)

minList[i] = new string [numberParts[i]];
minListl[i] = new string [numberParts[i]];
if (numberParts[i] > MaxtempP)
MaxtempP = numberParts[i];
if (numberMachines|[i] > MaxtempM)
MaxtempM = numberMachines|[i ];

new ProcessTime[numberLines ,MaxtempP ,MaxtempM | ;
new int[numberLines ,MaxtempP ,MaxtempM | ;

= new int[numberLines, MaxtempP, MaxtempP];

new int [numberLines, MaxtempP, MaxtempP|];
new int[numberLines, MaxtempP ];

(int 1 = 0; i < numberLines; i++)

string FileName = "ProcessTime_" + i + ".txt";
FileInfo theSource = new Filelnfo (FileName);
try
{
StreamReader reader = theSource.OpenText();
try
{
int j = 0;
string fileText;
fileText = reader.ReadLine(); //read

numberParts

fileText = reader.ReadLine() ; //read
numberMachines

fileText = reader.ReadLine(); //read
WIP

fileText = reader.ReadLine();
List<ListItem> temp = new
List<ListItem >();
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foreach (string spid in
fileText . Split(’ ?, ’\n’))

{if ((spid !'= "") && (spid != "\n"))

ListItem item = new ListItem();
item . Line = i;

item .sPID = spid;

temp . Add(item) ;

}
partsList[i] = temp;
do
fileText = reader.ReadLine();

if ((fileText = "") &
(fileText != null))

{
//char[] split = new char[] {};
int ki = 0;
string
smid=string . Format("{0:D2}",
(i +1));

smid = "M" +4smid;
foreach (string s in
fileText.Split(’> ?, ’\n’))

if ((s != "")&&(s != "\n"))

int x = int.Parse(s);
Pli, ki, j] =
new ProcessTime (i,
partsList [i][ki].sPID,
smid, x);
ki++;
}
!
J++;

} while (fileText != null);
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catch (Exception EX)

{
MessageBox . Show (EX. Message ) ;
}
finally
{
reader.Close();
}
}
catch (Exception EX)
{
MessageBox . Show (EX. Message) ;
}
}
#endregion

#region output data
for (int i = 0; i < numberLines; i++)
{
listBox1 .Items.Add("Number of Parts: " +
numberParts[i] + "\n");
listBox1.Items.Add("Number of Machines: " +
numberMachines[i] + "\n");
listBox1 .Items.Add("Work in Process: " +
(WIP[i]+1) + "\n");
listBox1 .Items.Add("Iteration: " + timesLoop +
||\nu);
listBox1.Items.Add("\n");
listBox1 .Items.Add("\n----------=-occou———

squ ="Line No.: " 4+(i+1)+" \n\n";
listBox1 .Items.Add(squ);
Squ:" ";
for (int ki = 0; ki < numberParts[i]; ki++)
{

squ += string.Format("{0:83} ",

P[i, ki, 0].sPID);

}

squ 4= "\Il";

listBox1 .Items.Add(squ);
squ = "";
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for (int m = 0; m < numberMachines|[i]; mt+)
{
squ = P{i, 1, m].sMID + " ",
for (int ki = 0; ki < numberParts[ 1; ki++)

{
string spt=string.Format(" {0:D2}",
P[i, ki, m].PTime);
squ += string.Format("{0:83} ", spt);
}
Squ _l_.___ "\nll;
listBox1.Items.Add(squ);

}

listBox1 . ITtems . Add (" \m k% kskokokok ok ok s ok ok ko ok o o ok ok k
sk ke ko ok ok ok ok ok ok ok 3k 3k ok ok ok ok s sk ok ok ok ok ok ok ok ok sk ok sk sk ok sk okok sk ok koK ok ok ok ko K
Aok Kok R kok kK Rk Rk Kok kR R kokkok\ DY )

}
squ = n n;
#endregion

count = 0;
int iterate = 0;
#region

/* Simulated Annealing Algorithm x/
while (count <= timesLoop)

{
for (int i = 0; i < numberLines; i++)
for (int j = 0; j < numberParts[i]; j++)

for (int k = 0; k < numberMachines[i];
k++)

Fli, j, k] = 0;
// First Part
F[i, 0, 0] = P[i, 0, 0].PTime;
for (int m = 1; m < numberMachines[i]; mi+)

Fli, 0, m] = F[i, 0, m — 1] + P[i,0,
m].PTime+1;
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int MaxW = 0;

int kkki = partsList[i][0].iPID;
foreach (ListItem pj in partsList[i])
{
int kj = pj.iPID;
if (kkki !'= kj)
S[i, kkki, kj] = 0;
if ((F[i, kkki, numberMachines[i] — 1] <
(F[i, partsList[i].IndexOf(pj), 0] —
P[i, partsList[i].IndexOf(pj),
0].PTime))
&& (partsList[i].IndexOf(pj) != 0))
R[i, kkki, kj] = 1;
else
R[i, kkki, kj] = 0;
}

Max W = 1;
//other parts except the first one

for (int ki = 1; ki < partsList[i].Count;
ki++)

{
if ((MaxW >= WIP[i]) && (ki > WIP[i]))
Fli, ki, 0] =
Math . Max(F[i, ki — WIP[i] — 1,
numberMachines[i] — 1],
Fli, ki — 1, 0]) + P[i, ki, 0].PTime
+ 1;
}
else
{
F[i, ki, 0] = F[i, ki — 1, 0] +
Pli, ki, 0].PTime + 1;
}
for (int m = 1; m < numberMachines[i];
m+)
F[i, ki, m] = Math.Max(F[i, ki — 1,
m] ,
Fli, ki, m - 1]) +
P[i, ki, m].PTime + 1;
}
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int kki = partsList[i][ki].iPID;
foreach (ListItem pj in partsList[i])
{
int kj = pj.iPID;
if ((ki > partsList[i].IndexOf(pj))
&& (kki != kj))
S[i, kki, kj] = 1;
else

S[i, kki, kj] = 0;

if ((F[i, partsList{i].IndexOf(pj),
numberMachines[i] — 1] <
(Fli, ki, 0] — P[i, ki,
0].PTime)) &&
(ki !=
partsList [i].IndexOf(pj)) &&
((F[i, partsList[i].IndexOf(pj)
numberMachines[i] — 1]) != 0))
R[i, kki, kj] = 1;
else
R[i, kki, kj] = 0;

3

}

int [] sum_S = new int[numberLines];
int [] sum-R = new int [numberLines];

sum_S{i]
sum-_R[1]

0;
0;

[t

int kkil = partsList[i][ki].iPID;
for (int kj = 0; kj <
partsList [i]. Count; kj++)

int kkj = partsList[i][kj].iPID;
if (kkj '= kkil)

sum_S{i] += S[i, kkil, kkj];
sum R[i] += R[i, kkil, kkj];
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W[i , kkil]
W[i , kkki]

sum_S[i] — sum_R[i} + 1;
L

|

if (MaxW < W[i,kkil])
Max W = W[i , kkil];

}

squ = "Line No.: " + (i+1) + " \n";
//listBozx1 . Items.Add(squ);

squ += "Iteration No.: " + (iterate + 1) +

" \nll;
listBox1 .Items.Add(squ);
#region output R S

listBox1 .Items.Add("--~------~--~~-———————-
Si" + (i + 1) +

M) e e \n");
for (int ci = 0; ci < partsList[i].Count;
ci++)
{
string squ0Q = "";
for (int j = 0; j < partsList[i].Count;
i++)
{
squ0 4= S[i, ci, j].ToString() +
" " .
}
squ0 += "\n";
listBox1 .Items.Add(squ0);
squd = "";
}

listBox1.Items.Add("\n");
listBox1.Items.Add("------~-----==——————-—-
R(" + (i + 1) + ]

string squ2 = "";

for (int ci = 0; ci < partsList[i]. Count;
cid+)

{

string squl = "";
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for (int j = 0; j < partsList[i].Count;
i+

squl += R[i, c¢i, j].ToString() + "

b

}
squl 4= "\n";
listBox1 .Items.Add(squl);
Squl — "";
squ2 +=W[i, ci] + " ";
}
squ2 4= "\n";
listBox1 .Items.Add("\n---=-=—======—~ou——-
W \n");

listBox1.Items.Add(squ2);
listBox1.Items.Add("Max W=" 4+ Max W) ;
listBox1.Items.Add("\n-~------———---—~ovun

listBox1.Items.Add("\n");
#endregion

Ctt[i] = F[i,numberParts[i] — 1,
numberMachines[i] — 1}];
if (MinTime[i] > Ctt[i])

MinTime| i |
for (int j

Ctt[i];
0; j < numberParts[i]; j++)

minListl [i]]
partsList

il =

[i][]j].sPID;
|
position_MinTime[i] = iterate+1;

}

}

int max = Ctt[0];

int min = Ctt[0];

for (int ii = 1; ii < numberLines; ii++)

{

if (max < Ctt[ii})
max = Ctt[ii];
if (min > Ctt[ii}])
min = Ctt[ii];
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Ct = max — min;

if (result > Ct)

{

for (int i = 0; i < numberLines; i++)
for (int j = 0; j < numberParts{[i]; j++)
minList [1]]]]

partsList [i][j].sPID;
}

result = Ct;
position_result = iterate+1;
}
squ = "Time Difference Ct=" 4+ Ct + " \n";
squ += "Minimum Time Difference: " + result + "
\nu;

listBox1 .Items.Add(squ);

/% if the test value is smaller than the current
value */

if (Ct < Cc)
#region

/* Replace the current value with the
testing value x/
Ce = Ct;

/* if the testing wvalue is smaller than the
best value x/
if (Ct < result)
{
/% replace the best result with the
testing value x/
result = Ct;

}

count++; /* increment the counter x/
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}

/* if the counter >= NMAX x/
if (count > timesLoop)

{

}

Tl = (T1 % CR);
if (T1 >= TF)

{
count = 0;
}
else
count = timesLoop + 1;

(int 1 = 0; 1 < numberLines; 1++)

squ = "Line No.: "+ (l+1)+ " Complete
time of all parts in all machine:
\n";
listBox1.Items.Add(squ);
squ = "";
for (int i = 0; i < numberParts[1]; i++)
{
squ += string .Format("{0:83}
" P[l, i, numberMachines{[1] —

1].sPID);
}
squ += n\nn;
listBox1 .Items.Add(squ);
squ = "":

for (int 1 = 0; i < numberParts[1]; i++)
{

squ += string .Format(" {0:D3} .,

F[l, i, numberMachines{1] — 1]);

}
squ 4= u\nu;
listBox1.Items.Add(squ);
Squ — " ";
//listBoxl.Items . Add( 7\ nx %% kskkkkokskok*
ok R R R KRRk Rk R R KRk R R K KKKk ok ok ok ok R KKk
********************\n");
listBox1.Items.Add("\n");

#endregion
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else

#region

double DI = (Ct — Cc) / (Cc + EPSILON) ;

double PA = -DI / (Kb % T1);

PA = Math.Exp(PA);

double rmp = rm.Next(10000) / 10000.0 +
0.01;

if (rmp < PA)

{

}

for (int 1 = 0; 1 < numberLines; 144)

{

Ce = Ct;

squ ="Line No.: "+ (l4+1)+ " Complete
time of all parts in all machine:
\nl';

listBox1 .Items.Add(squ);

squ = "";

for (int i = 0; i < numberParts[1]; i++)

{
squ += string .Format("{0:S3} "

P[1, i, numberMachines[1] —

1].sPID);
}
Squ +: "\n";
listBox1 .Items.Add(squ);
Squ — " ";

for (int i = 0; i < numberParts[1]; i++)
{
squ += string.Format(" {0:D3} ",
F[l, i, numberMachines[1] — 1]);

}

squ 4= n\nu;
listBox1.Items.Add(squ);
Squ —_ " ";

listBox1.Items.Add("\n~----~-—====—-——-

listBox1.Items.Add("\n");
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count-+-+;
if (count > timesLoop)

T1 = (T1 * CR);
if (T1>= TF)

count = 0;
else
count = timesLoop + 1;
}
#endregion

list Box1 . Ttems . Add (" \m %k skokokokok ok ok ok ook okok ok ok ok okok ok %
ke e o o 3k 3k e ok ok ok ok ok 3K ok ok ok ok 3k ok ok ok 2k oK ok ok ok sk ok ok ok ok 3k ok K ok ok ok ok ok ok K 3 ok ok ok kK

********************\n");

switch (swap)

FH#region swap Mode 1ok ok okok s ok sk ok okok s ok ok ok ok ok ok ok k
sk ok ok ok s ok ok %k ok ok ok ok %k ok sk ok ok % ok s ok ok ok ok ok ok sk ok ok ok ok ok o ok ok ok ok ok kok sk ok ok

case 1:

{

for (int i = 0; i < numberLines;
i++)
{

int xi, xj;

ProcessTime temp = new
ProcessTime () ;

ListItem iteml = new ListItem();

xi = rm.Next(numberParts[i]) ;
xj = xi + 1;
if (xj >= numberParts[i])

xj = 0;

iteml = partsList[i][xi];

]
[

partsList [i][xi
partsList[i]

partsList [i][xj] = iteml;

xj;

for (int k = 0; k <
numberMachines[i]; k++)
{
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temp = P[i, xi, k];
Pli, xi, k] =P[i, xj, k];
P{i, xj, k] = temp;
}
}
break;

#endregion

Hregion swap Mode 2%k sk ko ok ok ok ok okok ok ok ok ok Kk ok ok
3k ok K K K K K ok K ok oK ok 3K 3k ok 3k K K K ok KoK ok K K ok o o K K K oK ok ok ok sk sk ok

case 2:
{
for (int i = 0; i < numberLines;
i++)
{

int xi, xj;

ProcessTime temp = new
ProcessTime () ;

ListItem iteml = new ListItem();

xi = rm. Next(numberParts[i]
xj = rm.Next(numberParts[i]
while (xi == xj)

{

)5
)

xXj =
rm. Next (numberParts[i]) ;

}

iteml = partsList[i][xi];

partsList [i][xi] =
partsList[i][xj];

partsList [i][xj] = iteml;

for (int k = 0; k <
numberMachines[i]; k++)
{

temp = P[i, xi, k];

P[l, xi, k] =P[17 ij k]7
Pli, xj, k] = temp;

break;
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#endregion

#region swap Mode 3 ks kskk s skkkokkkokkkk ok kokk
kkckkkkkkkkkokkkkokkkkkokkkkkkkkkkkkkkokkkkkkokk
case 3:
for (int i = 0; i < numberLines;
i++)

int xi, xj;

ProcessTime temp = new
ProcessTime () ;

ListItem iteml = new ListItem ();

xi = rm.Next(numberParts[i]) ;
xj = rm.Next(numberParts[i]);
while (xi == xj)
{ -
Xj =
rm. Next (numberParts[i]) ;

}

iteml = partsList[i][xi];
partsList [i]. RemoveAt(xi);
partsList [i]. Insert(xj, iteml);

numberMachines[i]; k++)

if (xi>xj)

temp = P[i, xi, k];
for (int x = xi; x > xj;
x—-)
Pli, x, k] =
P[i, x — 1, k];
}

else

temp = P[i, xi, k};
for (int x = xi; x < xj;
x++)
P[i, x, k] =P[i, x
+ 1, k;
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P[17 Xj k] = temp;
}
}
break;
#endregion

#region swap Mode 4k skokkokkokk &k ko ok ok okok & ko ok ok
sk >k %k 3k %k %k ok ke sk sk %k ok 3k %k %k ok ok %k sk sk ok sk sk sk ok sk sk sk ok ok sk sk sk ook ok sk sk sk sk ok ok k

case 4:

{

for (int i = 0; i < numberLines;
i++)
{

int xi, xj, xx;

List <ProcessTime >[] temp =
new List<ProcessTime>
[numberMachines[i]];

List<ListItem> item = new
List<ListItem >(); ;

xi = rm.Next(numberParts[i]) ;
xj = rm.Next (numberParts[i]);

while (xi == xj)
{
Xj =
rm. Next (numberParts[i]) ;

}

int 1 = 0;
if (xi > xj)

1 = numberParts[i] — xi +
xj+1;
}

else
1 = xj — xi+1;

for (int x = 0; x < 1; x++)

{

int ix=xitx;
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if (ix >= numberParts[i])
t
ix = ix —
numberParts|i];

item .Add(partsList [i][ix]);
}

int xii = xi;
for (int x = 0; x < 1; x++)

if (xii >=
partsList [i]. Count)
{

xii = xii -
partsList [i]. Count;

partsList [i].RemoveAt(xii);

}

XX =

rm. Next(partsList [i]. Count);

int xxx = xx;
for (int x=0; x<l; x++)
partsList [i]. Insert (xxx++,
item[x]);

for (int k = 0; k <
numberMachines [i]; k++)
{ List <ProcessTime> temp0 =
new List<ProcessTime >();
for (int x = 0; x < 1; x++)
{
int ix = x 4+ xij;
if (ix >=
numberParts[i])
1X = 1X —
numberParts[i];
temp0.Add(P[i, ix, k]);

temp [k] = tempO;
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if (xi > xj)

for (int k = 0; k <
numberMachines[i]; k++)

for (int x = 0; x <
numberParts[i] — 1;
x++)
{
int ixj = xj + x+1;
Pli, x, k] = PJ[i,
ixj, kj;

}

else

{
for (int k = 0; k <
numberMachines[i]; k++)
{

for (int x = 0; x <
numberParts[i]—xj;

x++)

{ - -
int ixi = xi + x;
if (ixj <

numberParts[i])
Pli, ixi, k] =
P[i, ixj, k];

}

for (int k = 0; k <
numberMachines [i]; k++)
{

for (int x = numberParts[1i]
— 1-1; x >=xx ; x—)
{

int ixj = x 4+ 1;
P[i, ixj, k] = P[i, x,

y
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for (int k = 0; k <
numberMachines[i]; k++)
{

for (int x = 0; x < 1; x++)
{
int ix = x + xx;
Pli, ix, k] =
temp [k][x];
}
}
}
break;
#endregion
#region swap Mode B sokkkskskkokdkokskokskkskokkkokk ko

ok ko ok ok ok ok ok ok sk ok ok ok ok sk sk ok sk ok sk ok ok sk ok ok ok sk ok ok sk ok ok ok ok ok Kk ok ok X ok
case 5:

for (int i = 0; i < numberLines;
i++)
{

int xi, xj;

List <ProcessTime> temp=new
List <ProcessTime >();

List<Listltem> item=new
List<ListItem >() ;;

xi = rm.Next(numberParts[i]) ;
xj = rm.Next(numberParts[i]);
while (xi = xj)
L
Xj =
rm. Next (numberParts[i]) ;

}

int 1 = 0;
if (xi > xj)

I = numberParts{i] — xi +
Xj;
}
else
I = xj — xi;
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for (int x = 0; x < 1; x++4)

{

}

int ix = x 4+ xi;
if (ix >= numberParts[i])
{
ix = ix —
numberParts[i];

i}tem .Add(partsList[i][ix]);

item.Reverse () ;
for (int x = 0; x < 1; x++4)

{

}

int ix = x + xi;
if (ix >= numberParts{i])
{
ix = ix —
numberParts[i];

partsList[i][ix] = item[x];

for (int k = 0; k <

{

numberMachines[i]; k++)

for (int x = 0; x < 1; x++)
{
int ix = x + xi;
if (ix >=
numberParts[i])
ix = ix -
numberParts |

il;
temp.Add(P[i, ix, k]);

}

temp . Reverse () ;
for (int x = 0; x < 1; x++4)

{

int ix = x + xi;

if (ix >=
numberParts[i])
ix = ix —
numberParts[i];
Pli, ix, k] = temp([x];
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}

}

break;

}

#endregion

FHregion swap Mode 6 ks kskokok sk ok sk okok skok ok ok Kok ok ok %
ok sk ok ok sk ok ok ok ok sk sk ok sk o ok ok o ok ok ok ok sk ok sk ok ok sk ok sk ok ok sk ok ok ok ok ok ok ok ok

case 6:

{

for (int i = 0; i < numberLines;

{

i++)

int xi, xj, xx;

List <ProcessTime >|[] temp =
new List<ProcessTime>
[numberMachines[i]];

List<ListItem> item = new
List<ListItem >(); ;

xi = rm.Next(numberParts[i]) ;
xj = rm.Next(numberParts[i]) ;

while (xi = xj)
e
Xj =
rm. Next (numberParts [i]) ;-

}

int 1 = 0;
if (xi > xj)

I = numberParts[i] — xi + xj
+ 1;
}
else
l = xj — xi + 1;

for (int x = 0; x < 1; x++)
{

int ix = xi + x;

if (ix >= numberParts[i])
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ix = ix -
numberParts|[i];

item.Add(partsList [i][ix]);

item . Reverse () ;
int xii = xi;
for (int x = 0; x < 1; x++)

if (xii >=
partsList [i].Count)
{

xil = xii —
partsList [i]. Count;

partsList [i].RemoveAt(xii);

}

XX =
rm. Next (partsList [i]. Count);

int xxx = XX;
for (int x = 0; x < 1; x++)
partsList [1]. Insert (xxx++,
item [x]) ;

for (int k = 0; k <
numberMachines[i]; k++)
{

List<ProcessTime> temp0 =
new List<ProcessTime>();
for (int x = 0; x < 1; x++4)
{
int ix = x + xi;
if (ix >=
numberParts[1])
ix = ix -
numberParts[i];
temp0.Add(P[i, ix, k]);

tempO . Reverse () ;
temp [k] = tempO;
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if (xi > xj)

for (int k = 0; k <
numberMachines[i]; k++)

for (int x = 0; x <
numberParts[i] — 1;
x++)
{
int ixj) = xj + x +
L
P{i, x, k] =Pli,
ixj, kJ;
}
}
}
else
for (int k = 0; k <
numberMachines[i]; k++)
for (int x = 0; x <
numberParts[i] — xj;
x++)
{
int ixi = xi + x;
int ixj = xj + x +
1
if (ixj <
numberParts[i])
P[i, ixi, k] =
P[i, ixj, k];
}
}
}

for (int k = 0; k <
numberMachines[i]; k++)
{

for (int x = numberParts|[i]
-1 -1; x>= xx; x—)

{
int ixj =x + 1;
Pli, ixj), k] =
Pli, x, k];
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}

for (int k = 0; k <
numberMachines[i]; k++)

{
for (int x = 0; x < 1; x++)
{
int ix = x + xx;
Pli, ix, k] =
temp [k][x];
}
}
}
break;
#endregion
}
iterate+-+;
}
#endregion
endTime = DateTime.Now;
#region
squ = "Minimum Completed Time of Processing in Each
Line*;

listBox1 .Items.Add(squ);
for (int 1 = 0; 1 < numberLines; 1+44)
{
squ = "Line No.: " + (1 + 1).ToString() +
\nn;
//listBoz1.Items.Add(squ);
squ +== "Iteration No.: " +
position_MinTime [1]4+"\n";
listBox1 .Items.Add(squ);
squ = "";
for (int i = 0; i < numberParts{l}; i++)

{
}

listBox1 .Items.Add(squ);

squ += minList1[1][i]. ToString() + " "5

squ =
squ 4= "\n";

HH .
3
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"

squ += "Minimum Completed Time of Processing: ";
squ +=MinTime[1]. ToString();

squ 4= n\nn;

listBox1 .Items.Add(squ);

listBox1.Items .Add("\n---------——-=————=--v-—o

———————————————— \n");
listBox1 .Items .Add("\n");
}
squ = position_result.ToString() + ".) Minimum Time

Difference.";
listBox1 .Items.Add(squ);
for (int 1 = 0; 1 < numberLines; 1++4)

{
squ = "Line No.: " +(1+41).ToString ()+"\n";
listBox1 .Items.Add(squ);
Squ _— "";
for (int i = 0; i < numberParts|[1]; i++)
{
squ += minList[1][i]. ToString() + " ",
}
listBox1 .Items.Add(squ);
}
squ = "";
Squ += ll\nll;

squ 4= "Minimum Time Difference: ";

squ += result.ToString();

squ 4= n\nn;

listBox1.Items.Add(squ);

listBox1 .Items.Add{("\n---~--=-—------mmmmmm

#endregion

listBox1.Items.Add("Start Time: " + startTime + "
" 4+ "End Time: " + endTime);

partsList = null;

minList = null;
P = null;
= null;
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private void checkBox1_CheckedChanged(object sender,
‘EventArgs e)

if (checkBox1.Checked)
{

int line = int.Parse(cboxLines.Text);
Parameters frm = new Parameters(line);
frm . MdiParent = this.ParentForm;
frm . Show () ;
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