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Abstract

Studies of interconnection networks with applications in broadcasting

CALIN DAN MOROSAN, Ph.D.
Concordia University, 2007

The exponential growth of interconnection networks transformed the communi-
cation primitives into an important area of research. One of these primitives is the
one-to-all communication, i.e. broadcasting. Its presence in areas such as static and
mobile networks, Internet messaging, supercomputing, multimedia, epidemic algo-
rithms, replicated databases, rumors and virus spreading, to mention only a few,
shows the relevance of this primitive.

In this thesis we focus on the study of interconnection networks from the perspec-
tive of two main problems in broadcasting: the minimum broadcast time problem and
the minimum broadcast graph problem. Both problems are discussed under the 1-
port constant model, which assumes that each node of the network can communicate
with only one other node at a time and the transmitting time is constant, regardless
of the size of the message.

In the first part we introduce the minimum broadcast time function and we present
two new properties of this function. One of the properties yields an iterative heuristic
for the minimum broadcast time problem, which is the first iterative approach in
approximating the broadcast time of an arbitrary graph.

In the second part we give exact upper and lower bounds for the number of
broadcast schemes in graphs. We also propose an algorithm for enumerating all the
broadcast schemes and a random algorithm for broadcasting.

In the third part we present a study of the spectra of Knddel graph and their
applications. This study is motivated by the fact that, among the three known
infinite families of minimum broadcast graphs, namely the hypercube, the recursive
circulant, and the Knodel graph, the last one has the smallest diameter.

In the last part we introduce a new measure for the fault tolerance of an intercon-

nection network, which we name the global fault tolerance. Based on this measure,
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we make a comparative study for the above mentioned classes of minimum broadcast

graphs, along with other classes of graphs with good communication properties.
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Chapter 1

Introduction

1.1 Models of broadcasting

The exponential growth of interconnection networks transformed the communication
primitives into an important area of research. These primitives can be defined as

follows:

e Routing or one-to-one communication.
e Broadcasting or one-to-all communication.
e Multicasting or one-to-many communication.

e Gossiping or all-to-all communication.

Broadcasting is the problem of dissemination of information in which one piece of
information needs to be transmitted to a group of individuals connected by an inter-
connection network. This problem finds applications in areas such as fixed and mo-
bile networks, Internet messaging, supercomputing, multimedia, epidemic algorithms,
replicated databases, rumors and virus spreading, which shows the importance of this
communication primitive.

Among the above mentioned application areas of the broadcasting process, su-
percomputing seems to be the one which relies heavily on optimal broadcasting.
This dependence is due to data dependency arising in real world applications. The

well-known Amdahl’s law gives the speedup limitation S function of the number of



processors p and the fraction 3 of serial part of the parallel algorithm:

p
S=6p+(1~/3) @

Usually, it is assumed that 3 depends only on the algorithm used (constant for a given
problem) and the speedup tends to 1/4 as p grows. Unfortunately, this assumption
is no longer true if the problem solved involves data dependency, and the algorithm
designed to solve it makes appeal to the broadcast primitive. If we have data depen-
dency, then [ is a monotonically increasing function of p: 6 = [y + f(p). This is
due to the fact that the time needed to broadcast is lower bounded by a logarithmic
factor in terms of the number of processors. Therefore, the speedup theoretically
tends to 1 as the number of processors tends to oo. Also, this excludes a priori the
grid networks as underlining architectures for a supercomputer, since they require
over logarithmic time for the broadcasting operations, comparing to the logarithmic
time encountered in more complex architectures, as hypercubes for example. PVM
(Parallel Virtual Machine) [128], MPI (Message Passing Interface) [221], and DECK
(Distributed Execution and Communication Kernel) [23, 24] are the major examples
of programming environments that provide functions for collective communication.

The theory of broadcasting has been focused on two main problems. The first
one, called the minimum broadcast time problem, can be defined as follows: given
a network, find a strategy, called broadcast scheme, such that the time needed to
transmit the information is minimized. The second one, called the minimum broadcast
graph problem, can be defined as follows: find a network architecture on n vertices
with broadcast time [log, 7] and a minimum number of edges. Clearly, the answer to
the above-mentioned problems is highly dependent on the model of communication
used.

From the point of view of the underlying topology used to represent the inter-
connection network, a connected graph G = (V, F) is usually employed, in which the
members of the network are the vertices of G, and the communication links are the
edges of G.

At the communication link level there are two models discussed in the literature
[170]:

e One-way mode - also called telegraph mode or half-duplex. In this mode, one

link may be used only in one direction during a communication process involving

2



two adjacent nodes. This process can be modelled using directed graphs as the

underlying topology.

e Two-way mode — also called telephone mode or full-duplex. In this mode, one
link may be used in both directions during a communication process involving
two adjacent nodes. This process can be modelled using undirected graphs as

the underlying topology.

Following [117], communication in interconnection networks can be classified based
on the ability of the vertices to communicate simultaneously with their neighbours

in:

e Processor-bound also called I-port or whispering, in which a vertex can com-

municate only with one neighbour at a time.

e Link-bound also called n-port or shouting, in which a vertex can call all its

neighbours simultaneously.

Here we have to mention k-broadcasting which is a model of broadcasting that
fits between the two above-mentioned models. Some authors also refer to it as c-
broadcasting [133, 201, 202, 242]. In this model, a vertex can call simultaneously up to
k of its neighbours. A considerable amount of literature [194, 145, 146, 155, 156, 241]
is dedicated to this model, which is useful to the study of DMA-bound systems [200]
or in computing functions in networks [16, 46, 78].

Another issue in characterizing communication in networks is the necessary time
for a message to be prepared, to travel along an edge, and to be received. The are

two widely used models addressing this issue:

e The constant model, in which the time needed to transmit and receive a

message is constant, T' = const.

e The linear model, in which the time needed to communicate is modelled as
T = B+ Lt , where (3 is the cost of preparing the message, L the length of the

message, and 7 the propagation time of a data unit length.

Most papers on broadcasting adopt the constant model, since the linear model can

be reduced to the constant model by quantifying the larger messages to the shortest



possible message. Nevertheless, there are some specific results regarding the linear
model for broadcasting (see, for example, [235, 111, 76, 27]).
Using different assumptions regarding the communication model employed, other

broadcasting models have been developed and analyzed:

¢ Vertex disjoint path mode broadcasting

In this model, in every round of communication, the information is transmitted
from the informed nodes to the uninformed ones via disjoint sets of vertices,
which can form paths of length greater than one. There are two flavors of
this model [96, 101, 192, 171, 41, 113, 114, 116] considering either that one
end-node broadcasts its whole knowledge to all other nodes along the path or
that one of the end-nodes sends its knowledge to the other end-node and the
nodes in between do not read the message sent. The first one is the most
studied in the literature and it has the property that its complexity differs
from the complexity of the accumulation problem. The accumulation problem
is the opposite of broadcasting and can be succinctly defined as the all-to-one

communication problem.

e Edge disjoint path mode broadcasting

In this model, in every round of communication, the information is transmitted
from the informed nodes to the uninformed ones via disjoint sets of edges, which
can form paths of length greater than one. This model was also investigated in
several papers [96, 101, 172, 170, 115, 113], and is quite similar to the wormhole
routing model employed for the analysis of permutation routing [74, 184, 4].
Note that both vertex disjoint and edge disjoint path models are called line

model.

e Restricted protocol broadcasting

In this model, the broadcast protocol may have two types of restrictions: input
restriction and output restriction. A protocol has input restriction ¢ at a given
node if the messages transmitted during any outgoing activation have been com-
municated to this node during at most ¢ of the previous incoming activations.
Similarly, the protocol has output restriction o at a given node if the messages

received during any incoming activation will be delivered by that node using at



most o successive out-going activations. For instance, the broadcast protocols
running on d-bounded degree networks are (1, d)-restricted, the gossip protocols
on d-bounded degree networks are (oo, d)-restricted, and the s-systolic gossip
protocols are (i, 0)-restricted with ¢ + 0 = s. This model has been examined
in a general sense in [110]. Other results concerning specific networks can be
found in [235, 173, 117, 170].

(i,7) mode broadcasting

In this model, in any round, a node can send a message to ¢ neighbours via 7 in-
cident edges and it can receive messages from j neighbours via 7 incident edges.
Therefore, the two-way mode can be seen as a (1,1) mode, with the additional
constraint holding that the edge for receiving and the edge for transmitting are

the same. This model has been investigated in [94].

Radio broadcasting

In this model communication in the network is assumed to be synchronous,
l.e., it occurs in discrete pulses, called rounds. Following [89], on each round of
communication, each node that knows the message to be transmitted is allowed
to send it to all its neighbours. Note that a node can either send the message to
all its neighbours or not send it at all, but it can transmit to no strict subset of
its set of neighbours. Furthermore, only a processor that receives the message
from precisely one neighbor in a certain round is considered to be informed in
that round. The intuition behind this constraint is that a message received
from more than one neighbor in the same round gets corrupted. There is also
a considerable amount of literature concerned with this model (see for example
[121, 176, 57, 58, 56, 8, 9, 25, 59, 125, 193, 89, 90, 91, 92]).

Neighborhood broadcasting
The neighborhood broadcast problem (NBP) was introduced in [70] and is the

problem of disseminating a message from a source vertex to all the vertices

adjacent to the source vertex under the following constraints:

i) each call involves only two vertices;

ii) each call takes one time unit;



iii) each vertex can participate in only one call per time unit;

iv) a vertex can call only a vertex to which it is adjacent.

This model of neighborhood information dissemination has been investigated for
some particular network topologies as n-star graphs in [123, 227, 214], hyper-
cubes in {124, 216, 32], Cayley graphs in [215], and in general in [70, 106, 107].

Broadcasting with universal lists

In the previously presented models, the order in which every informed node
will inform its uninformed neighbours depends on the originator of the broad-
cast. In broadcasting with universal lists, also known as orderly broadcasting,
a (universal) broadcasting scheme is a function assigning a single ordered list
of its neighbors, called the universal list, to every node. The list is determined
regardless of the source and a node will transmit the received message in the

order of the list.

The problem of broadcasting with universal lists was introduced in [79], taking
into account two models: adaptive and nonadaptive. In the adaptive model,
each node knows which neighbors the obtained messages came from and can
skip those neighbors in its list. However, in the nonadaptive model, a node
does not know the neighbors from which it receives the messages, and may
retransmit the messages to those neighbors. Thus, each node obliviously sends
the source message to neighbors in order of its list since, in some applications
such as radio communication, nodes may not know the origin of the messages
[60, 61].

This model is suitable for nodes with insufficient memory to keep a coordinated
protocol or for ad-hoc networks. This problem has been investigated under the
name of broadcasting with universal lists in [79, 148, 189] and under the name

of orderly broadcasting in [157] for a 2D torus.

Messy broadcasting

The messy broadcasting model has been introduced in [3]. Unlike the previ-
ously presented models, messy broadcasting is concerned with analyzing the

worst case performance of the broadcast schemes. In other words, the messy



broadcasting model is looking for upper bounds in the broadcast time, following

the constraints below:

— one node knows only its neighbors;
— the originator or the time slot is not known;
— there is no coordinating leader;

— 1-port, constant model is assumed.

This model is suitable for nodes with insufficient memory to keep a coordinated

protocol or for ad-hoc networks.

In the previously presented models, the nodes know the topology and, except in
the orderly broadcasting, they know the originator of the message and the time
slot. In practice, however, it is not always realistic to assume that each node of
a network will know the network topology, or will know how to make decisions
based on a set of stored protocols. In many cases, the nodes of the network have
primitive structures with small memories that cannot store such information or
make intelligent decisions. On the other hand, building networks in which the
nodes have no decision-making responsibility is much simpler and more robust.
For these main reasons, the study of messy broadcasting has become especially
interesting. One of the major differences between the messy broadcasting and
the previously presented broadcasting models is that, in a messy broadcast
scheme, the vertices know nothing about the network topology, and at each

broadcast round transmit the message to a randomly selected neighbor.

Three models of messy broadcasting have been proposed in literature, depending

on the amount of knowledge about neighbors:

— Model M1

At each unit of time, every vertex knows the state of each of its neighbours:

informed or uninformed. In this model, each informed vertex must trans-

mit the broadcast message to one of its uninformed neighbours, if any, in

each time unit.

— Model M2
Every informed vertex knows from which vertex (vertices) it received the

broadcast message and to which neighbours it has sent the message. Thus,

7



it knows that this vertex (or these vertices) are informed. In this model,
each informed vertex must transmit the broadcast message to one of its
neighbours other than the ones that it knows that are informed, if any, in

each time unit.

— Model M3

Every informed vertex knows to which neighbours it has sent the message.
In this model, each informed vertex must transmit the broadcast message
to one of its neighbours to which it has not yet sent the message, if any,

in each time unit.

The worst case scenarios for various network topologies such as paths, cycles,
hypercubes, and d-ary trees were studied in [143]. The messy broadcast times
for complete bipartite graphs and an improved lower bound for messy broadcast
times on hypercubes of arbitrary dimension has been derived in [159, 160]. In
[66], the exact values and bounds for the broadcast times on multi-dimensional
directed tori are determined. These studies of messy broadcasting have so far
concentrated on finding worst-case broadcast time. However, such worst-case
scenarios are extremely unlikely to occur in general. The average-case time for
completing messy broadcasting in various network topologies can be found in
[205].

Multiple message broadcasting

In the multiple messages broadcasting, it is assumed that the originator, also
called the broadcaster [18], knows m messages My, My, ..., M,, and has to trans-
mit them to all the members of the network. The idea behind this model is
that, when communicating large amounts of data, many systems break the data
into sequences of messages (or packets) that are sent and received individually.
This approach encourages an investigation into the problem of how to dissemi-
nate multiple messages efficiently in such systems. The problem of broadcasting
multiple messages has been studied in several communication models. The tele-
graph model (unidirectional) has been studied in [55, 62, 97] and the telephone
mode (bidirectional) has been studied in [19, 22, 208, 140, 142].



The problem of broadcasting multiple messages in the postal and LogP models
of communication has been investigated in [20, 21, 181]. In these models, each
processor can simultaneously send one message and receive another message,

but message delivery involves some communication latency.

The multiport model generalizes the one-port model that has been widely in-
vestigated. There are examples of parallel systems with k-port capabilities for
k > 1, such as the nCUBE/2 [223], the CM-2 (where k is the dimension of the
hypercube in both machines), and transputer-based machines. This model has

been investigated in [18]. A good survey of this model can be found in [245].

e Broadcasting with randomly placed calls

The broadcasting with randomly placed calls model originated from the spreading
rumors studies [231]. This model assumes that each informed member of a
population (seen as an interconnected network) transmits the message to a
other members of the population. This model has also been related to the spread
of a communicable disease [199], generalizing the previous work on epidemics
[183]. In this latter model it is assumed that the probability of transmitting a
message depends on the age of the message and on the time since the informed
node learned the message. In [198], a slightly different model is introduced,
which assumes that whenever a node receives the information, it transmits it
on average f times, where f may be a function of time. Further work on this
model and its close connection to rumor and virus spreading can be found in
[228, 229, 230, 131, 72, 73, 130, 48, 132, 102, 219, 83, 30, 122, 225].

More recent work on random broadcasting relates to epidemics algorithms in
replicated databases (see for example {100, 1, 182, 93}). In Chapter 3, we also

introduce and analyze a random algorithm for broadcasting [218].

We have to mention that there is a considerable number of papers dedicated to
broadcasting in mobile or ad-hoc networks. Since in this thesis we are dealing only
with static networks, we omit to present these models.

There are three surveys partially or totaly dedicated to broadcasting in networks
[164, 117, 170].



1.2 Minimum broadcast time problem

Throughout this thesis we adopt a model widely used in the literature, the 1-port
constant model [117]. That is, we consider that each node of the network can com-
municate with only one other node at a time, the transmitting time is constant,
regardless of the size of the message, and the time needed to prepare or to forward
the message is negligible. Therefore, all the calls involving different pairs of nodes
will be synchronous and will take place in rounds.

We model the interconnected network as a simple undirected connected graph
G = (V,E), in which the members of the network are the vertices of G, and the
communication links the edges of G.

Under the assumptions above, the broadcast process can be seen as a graph the-
oretic problem. Let G = (V, E) be a graph and let v be a vertex in G. Consider now
that v knows a piece of information, I(v), which is unknown to all other vertices in
V\ {v}. The broadcasting problem is to find a communication strategy, called broad-
cast protocol, or broadcast scheme, so that all nodes of G learn the piece of information
I(v).

There is no unified notation in literature for the broadcast scheme representation.
For small graphs, an intuitive way to represent the broadcast scheme is to use labels
of the edges in graph, corresponding to the number of the round in which the call has

been made (like in Figure 1).

Figure 1: Edge labelling representing a broadcast scheme

Another way to represent a broadcast scheme is to use a set notation {(a — b)},

with the meaning that a informs b [170]. Then, a broadcast scheme will consist of a

10



ordered sequence of such sets. For example, for Figure 1, the corresponding broadcast

scheme BS,, having node a as originator is:

BSy ={(a— b)},{(b— )}, {(b —e), (c — d)} (2)

An algebraic method to represent a broadcast scheme involving a combined set-
matrix notation has been used in [35] for a particular network topology (Knddel
graphs).

In Chapter 2 we will introduce a more formal notation of a broadcast scheme.
Intuitively, we define the broadcast scheme as a function such that, for the example
in Figure 1, B, (b,2) = ¢, if and only if vertex b will transmit the information to
vertex ¢ at time 2 in a broadcast scheme started from a.

Under this model, we can see now each round of a broadcast scheme, also called
time-slot, as a match between a subset of the informed vertices and a subset of the
uninformed ones.

The broadcast time of a vertex v in a graph G = (V, E), can be defined as the
minimum number of rounds necessary to inform all the vertices of G starting from v.
Such a broadcast scheme is also called an optimal broadcast scheme.

Denoting by b(v) the broadcast time of a vertex v in G, the broadcast time of G,
denoted by b(G) by abuse of notation, can be formally defined as follows:

b(G) = max {b(v)} (3)

veV

For example, the broadcast time of the graph represented in Figure 1 is b(G) = 3.
The proof of the NP-completeness of the minimum broadcast time problem, under
the 1-port constant model, is due to D. J. Johnson and has been presented in [244].

In this paper, the problem is formulated as a matching problem:

Given a graph G = (V, E) with a specified set of vertices Vo C V and a positive

integer k, is there a sequence
%) E17 V17 EZ) VZ) BRI Ek'7 Vk:
where V; CV, E; C E, E; consists only of edges with ezactly one vertex in V;_q,

Vi=Vi i U{v:w € E},

11



and Vi, =V ? (V; is the set of vertices who are informed at time i with calls along the
edges in E;.)

This matching problem reduces to the minimum broadcast time problem for
the case when |Vy| = 1. The above problem can be further related to the three-
dimensional matching problem (3DM) [244]:

Let X = x1,...,Zm, Y = Y1y Um, £ = 21,...,2m and let M C X xY x Z.
Does there exist a subset of M of size m such that each pair of elements of the subset

disagree in all three coordinates?

This later problem has been shown to be NP-complete in [126].

Due to the NP-completeness of the minimum broadcast time problem, the research
has been focused on two main directions: finding the broadcast time for particular
graph topologies and developing heuristics for arbitrary topologies. Before discussing
in detail each of these aspects, we present some general properties of the minimum

broadcast time.
Property 1. b(G) > [log,n|, where n is the number of vertices in graph G.

This is due to the fact that the number of informed vertices can be at most doubled
in each round.

If we define the radius of a graph G by rad(G) = minycy maxyey d(v, u), and the
diameter of G by d(G) = mazy yevd(v, u), where d(v, u) denotes the distance between

vertices v and u in G, we have the following property [170].
Property 2. rad(G) < d(G) < b(G)
This lower bound can be slightly improved in some cases [170].

Property 3. Let G be a graph of diameter D. If there exist three different vertices
u, vi, and v, with both vy and vy at distance D from u, then b(G) > D + 1.

Given two graphs G;(V4, Ey) and G2(V2, E3) we say that G, is a spanning subgraph
of Gy if V) = V5 and E; C E,. We have the following property [170].

Property 4. b(G,) < b(G»)

12



A. The broadcast time for some particular graph topologies

In what follows, we present some of the results for particular topologies along with

their formal definition as given in [170]. For a more comprehensive description and

study of these network architectures we direct the reader to {203].

a) The Path P,

e)

Definition 1. [170] The (simple) path of length n, denoted by P, is the graph
whose nodes are all integers from 1 to n and and whose edges connect each

vertex ¢ with i+ 1, for 1 <i < n.

Property 5. [170] b(P,) =n — 1.
The Cycle C,

Definition 2. [170] The cycle (ring) of length n, denoted by Cy, is the graph
whose nodes are integers from 1 to n and whose edges connect each vertex 1
(t <4< n) with (i + 1)(modn).

Property 6. [170] b(C),) = [n/2].

The complete tree 17"

Definition 3. [170] The complete k-ary tree of height m, denoted by 17", is
the graph whose nodes are all k-ary strings of length at most m and whose

edges connect each string o of length ¢ (0 < i < m) with the string aa, a €
{0,...,k =1}, of length i + 1.

Property 7. [170] b(T{") = (k — 1)m + 1.
The complete graph K,

Definition 4. [170] The complete graph (clique) of size n, denoted by Ky, is
the graph whose nodes are all integers from 1 to n and whose edges connect each

integer 1, 1 < i < n, with each integer j, i # j.

Property 8. [170] b(K,) = [log,n].
The hypercube H,,
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Definition 5. [170] The (binary) hypercube of dimension m, denoted by Hp,
is the graph whose vertices are all binary strings of length m and whose edges

connect those binary strings which differ in exactly one position.

Property 9. [99] b(H,,) = m.

The cube-connected cycles CCC,,

Definition 6. [170] The cube-connected cycles of dimension m, denoted by
CCCr, has vertez set Vy, = {0,1,...,m — 1} x {0,1}™, where {0,1}™ de-
notes the set of length-m binary strings. For each vertezx v = (i,a) € Vp,
i € {0,1,....,m — 1}, a € {0,1}™, we call i the level and a the position-
within-level (PWL) string of v. The edges of CCCy, are of two types: for each
i €{0,1,...,m— 1} and each & = aga . ..am-1 € {0,1}™, the vertez (i,c) on
level i of CCC,, is connected

— by a straight-edge with vertezx {( + 1)(modm), &) on level (i + 1)(modm)

— by a cross-edge with vertez (i, a(i)) on level i,
with a() = ag . . . 4;_18;Qit1 - - . Gm—1 and @ denotes the binary complement of a.

Property 10. [206] b(CCC,,) = [5m/2] — 1.

The butterfly network BF,,

Definition 7. [170] The butterfly network of dimension m, denoted by BFy,
has vertez-set Vi, = {0,1,...,m—1} x {0, 1}™, where {0,1}™ denotes the set of
length-m binary strings. For each vertex v = (i,a) € Vi, t € {0,1,...,m — 1},
a € {0,1}™, we call i the level and o the position-within-level (PWL) string of
v. The edges of BE,, are of two types: for each i € {0,1,...,m — 1} and each

a = aga . ..am-1 € {0,1}™, the vertex (i,c) on level i of BF,, is connected

— by a straight-edge with vertex (( + 1)(modm), o) and

— by a cross-edge with vertex (i, (1))

on level (i + 1)(modm). Again, o(i) = ag...a;—1T11 - . am-1 and @ denotes

the binary complement of a.
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Property 11. [190] b(BF,,) < 2m — 1.

The shuflle-exchange network SFE,,

Definition 8. [170] The shuffle-exchange network of dimension m, denoted by
SEy,, is the graph whose vertices are all binary strings of length m and whose
edges connect each string aa, where « is a binary string of length m — 1 and
a € {0,1}, with the string a@ and with the string ac. (An edge connecting ca
with aa is called an exchange edge, and an edge connecting aca with the string

ac is called a shuffle edge.)

Property 12. [169] b(SE,,) < 2m — 1.

The de Bruijn network DB,

Definition 9. [170] The de Bruijn network of dimension m, denoted by DB,
s the graph whose vertices are all binary strings of length m and whose edges
connect each string ac, where « is a binary string of length m—1 and a € {0, 1},
with the strings ab, where b € {0,1}.

Property 13. [38/ b(DB,,) < 3/2(k + 1).

The grid network Gla; X az X ... X a4]

Definition 10. [170] The d-dimensional grid (mesh) of dimensions ay, as, . . . , aq,
denoted by Glay X ag X ... X ag) is the graph whose nodes are all d-tuples of pos-
itive integers (21, 22, . . ., 2q), where 1 < z; < a;, for alli (0 < i < d), and whose

edges connect d-tuples which differ in exactly one coordinate by one.
Property 14. [98] b(G[m x n]) =m+n — 2.

More recent results regarding broadcasting in the grid networks can be found
in [243, 65).

Knodel graphs W, ,

Definition 11. [108] Knddel graphs W,, are defined as undirected graphs
G(V,E), withV ={0,...,n — 1}, n even, and the set of edges
E={G))]i+j=02"-1)modn}, where0 <i,j <n-1,1<k<yg, and
1< g < [logyn).
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Property 15. [191] b(Wy q¢) = k.

Property 16. [186] b(Wy_; 3t ) = k.

The broadcast process has also been studied for other particular network topolo-
gies, such as general trees [244], Kautz graphs [167], pancake and star graphs [39],
chordal rings [67], recursive circulants [224], banyan-hypercube [29], cycle prefix di-
graphs [68], etc. Some general results have been obtained for networks under certain

constraints, such as bounded degree networks [37, 212] or planar graphs [165].

B. Heuristics for the minimum broadcast time problem

The first attempt to exactly solve the minimum broadcast time problem is due
to Scheuermann and Edelberg [238], who implemented a backtracking algorithm.
Another exact algorithm, based on dynamic programming, is due to Scheuermann
and Wu [239]. A backtracking algorithm for bounded degree networks is described in
[134].

Since the exact algorithms are not efficient for large graphs, in [239] several heuris-
tics have been proposed for achieving efficient, near-optimal schemes. They are based
on finding a least-weight maximum matching in a bipartite graph and work in O(n3m)
time, for the whole graph, where n is the number of vertices and m is the number of
edges. In fact, most of the heuristics developed after this paper use matching-based
methods. This is due to the fact that each round of calls can be seen as a matching
process between the set of informed vertices and the set of uninformed ones.

A matching-based method has been employed in [28] to derive a O(Rn?mlogn)
time complexity heuristic, where R is the minimum number of rounds needed to
broadcast, which is further lower bounded by [logn| and upper bounded by n — 1.
The time complexity has been further improved by Harutyunyan and Shao in [154].
Using a matching-based method, they provided a O(Rnm) heuristic, where R is the
minimum number of rounds needed to broadcast. A matching-based method has also

been used for partial meshes topology in [120].

The first approximation result is presented in the work of Ravi [232] who pro-
vided a O (1«%%?{) approximation algorithm working in O(mn?log®n) time. This
algorithm is based on the construction of a spanning tree of approximately mini-

1

mum poise '. The result has been improved by Elkin and Kortsarz [88], who gave

1The poise of a tree is defined to be the maximum degree of the tree + the diameter of that tree.
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a O (gﬁ%ﬁ) approximation algorithm working in O(mn?log3n) time (both algo-
rithms are using a minimum flow approach). Moreover, Kortsarz and Peleg [192]
gave a O(y/n) additive approximation algorithm.

Other techniques have also been employed to approximate the minimum broad-
cast time problem. In [168], a genetic algorithm using a global precedence vector is
used to derive a heuristic working in O(mn?®) time. In [17] an integer programming
formulation is given to derive a O(logn) approximation algorithm. In [26], a general
approach for structured communications is presented, which can be applied to solve
the minimum broadcasting time problem.

In Section 2.2 we present an iterative heuristic for the minimum broadcast time
problem working in O(kmn), where k is the number of iterations, which controls the
"degree of optimality” of the solution. Even though the optimality is not guaranteed,
we obtained exact solutions for relatively big graphs, after a reasonable number of
iterations. If we fix k = [logn], the benchmark results are comparable to those
presented in [154]. Note that this is the first iterative approach for this problem.

It is worth mentioning here that the minimum broadcast problem remains NP-
complete even for particular topologies [175], or for bounded degree networks [80, 212].
Other results regarding the inapproximability of this problem can be found in [240].

Since throughout this thesis we are using only the I-port constant model we do

not describe heuristics and results regarding other models of broadcasting.

1.3 Minimum broadcast graph problem

According to Property 1, the minimum time necessary to broadcast in any graph is
[log, n], where n is the number of vertices in graph. We also saw that the complete
graph is one of the topologies that minimizes the broadcast time (Property 8). Un-
fortunately, the complete graph is not minimal with respect to the number of edges.
That is, we can delete some edges and still be able to broadcast from any originator in
[log, n] time. This optimization problem becomes critical in the cases of scarce net-
work resources (in supercomputing for example). Therefore, much research has been
focused on designing network topologies which support logarithmic time broadcasting
while optimizing the number of connections.

A graph with broadcast time [log, n] is called broadcast graph, or shortly bg. A
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broadcast graph with minimum number of edges is called minimum broadcast graph,
or shortly mbg. Finding an mbg for a given number of vertices is known as the
minimum broadcast graph problem.

The broadcast function B(n) is defined as the number of edges of an mbg on n
vertices. Finding B(n) turns out to be a difficult task, even for small values of n.

The exact value of B(n) is known when n = 2F and n = 2*F — 2,

o B(2F) = k2% for all k < 0.
This value is attained by three non-isomorphic families of graphs:
— the hypercube of dimension k [95];
— the recursive circulant G(2F,4) [224];

— the Knédel graph Wy ox {191].

o B(2¥ —2)=(k—1)(2¢1 - 1), for all k > 3.

This value is attained by the Knodel graph Wy_; x5 [186].

Apart from these findings, the exact values of B(n) are known only for some
particular values of n, mainly under 63. Table 1 summarizes these values along with
their references.

Since the exact values of B(n) are known only for a limited number of values of
n, many papers have been dedicated to finding sparse broadcast graphs in order to
improve the upper bounds of B(n). Chau and Liestman [51] developed an algorithm
that constructs broadcast graphs by interconnecting 5, 6 and 7 smaller broadcast
graphs. Gargano and Vaccaro [127] proposed three algorithms based on an intercon-
nection of hypercubes of small dimension to build up larger broadcast graphs. Chen
[62] presented a method similar to the second algorithm of Gargano and Vaccaro,
and then suggested the recursive application of his last method to construct larger
broadcast graphs. Khachatrian and Haroutunian [186, 187] presented compound-
ing methods based on the vertex cover in order to construct broadcast graphs with
O(L(n)n) edges, where L(n) is the number of leading 1’s in the binary representation
of n—1 [139]. Similar results have been obtained by Grigni and Peleg in [133] who use
compounding methods relying on hypercubes and generalized Fibonacci numbers.

Bermond et al. [36] proposed four methods for constructing broadcast graphs and

used them to produce new broadcast graphs for 18 < n < 63. Ventura and Weng [248]
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Table 1: The values of B(n) for some particular values of n.

| n [B(n)| Ref |

T [ 0 99]
2 1 99

3 2 99

4 4 99
55 [99

6 6 99

7 8 99

9 [ 10 99]
10 12 99
11 13 99
12 15 99
13 18 99
14 21 99]
15 24 99
16 32 99
7 | 22 | [203]
18 23 36, 256
19 25 36, 256
20 26 211
21 28 211
22 31 211
2% | 42 | [237, 255]
27 44 237
28 48 237]
29 52 237
30 60 36
31 65 36
32 80 99
58 | 121 | [237]
59 | 124 | ([237)
60 130 237]
61 | 136 | [237
62 | 155 [95]
63 162 197
127 | 389 258
1023 | 4650 241]
4095 | 22680 241]
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developed a method based on the concepts of aggregated nodes and aggregated edges
(which are used to replace ordinary nodes and edges, respectively, of known mbg’s,
for 9 < n < 15) to construct sparse broadcast graphs. Another class of combination
methods using compound graphs has been developed by Bermond et al. [34].

A more general method that allows for systematic vertex deletion was proposed
by Weng and Ventura [251]. The main idea of their method, called the doubling
procedure, is a center node set, defined by so-called official broadcasting. The same
method has been investigated in [82] by investigating official broadcasting and center
node sets in more detail and developing iterative algorithms based on these construc-
tions. Most of the B(n) upper bounds mentioned above have been improved in [144].
They used compound construction between hypercubes or Knodel graphs and other
broadcast graphs, merging after compounding methods, or a generalized construction
of Ahlswede et al. [2].

Most of the compounding methods presented above construct broadcast graphs
on an even number of vertices. Recently, a vertex addition method has been used in
order to obtain broadcast graphs on odd number of vertices [141, 158].

We have to mention here two restricted classes of minimum broadcast graphs. The
first one consists of hierarchical broadcast networks, which are defined as broadcast
networks whose every connected induced subgraph is also a broadcast network. Fraig-
niaud showed in [112] that the minimum number of edges of a hierarchical broadcast
network of order n is [2(%;221 for any n > 4. Another restricted class of graphs con-
sists of minimum broadcast trees, which poses the problem of finding a tree such that
the broadcast time is minimized. This problem has been studied in [226, 195, 185]
and has been generalized in [146].

We conclude this section by presenting some general properties of B(n). The first

property is a direct consequence of Farley’s method [95] for constructing bg’s.
Property 17. [95] B(n) < ﬁﬂ%ﬂ.

The next property, due to Gargano and Vaccaro, is an upper bound of B(n) and

is based on a binomial tree construction.
Property 18. [127] B(n) > 2 ([logyn] — log, (1 + 26271 — n) ).

The following property is due to Grigni and Peleg.
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Property 19. [183] B(n) € ©(nL(n)), where L(n) is the number of leading 1’s in

the binary representation of n — 1.
The following two properties are due to Harutyunyan and Liestman.

Property 20. [144] B(n) < n(m —k +1) — 2™ % — 2(m — k)(3m + k — 3) + 2k,
form=2m -2 —pr with0<k<m—-2and0<r<2t—-1.

Property 21. [147] B(n) is non-decreasing for values of n in the interval
2m141<n<2mt 4 om=3

1.4 Thesis summary

The thesis is structured as follows. Chapter 2 introduces the minimum broadcast
time function and presents two new fundamental properties of this function. One of
the properties yields an iterative heuristic for the minimum broadcast time problem,
which is the first iterative approach for this problem. The other property establishes
a connection between the broadcast time of each vertex and the graph density. This
study is motivated by the fact that most of the random graph generators are using
graph density as a main parameter. The results from this chapter appear in [150] and
[152].

Chapter 3 is dedicated to the study of the number of broadcast schemes in net-
works. We give tight bounds for the number of broadcast schemes in networks and
we present two applications: an algorithm to enumerate all the broadcast schemes
in a network and a new random algorithm for broadcasting. The results from this
chapter appear in [218].

Chapter 4 is dedicated to the study of the spectra of Knddel graphs and some
of its applications. This study is motivated by the fact that, among the only three
known infinite families of minimum broadcast graphs, namely hypercube, recursive
circulant, and Knodel graph, the last one has the smallest diameter and the highest
global fault tolerance. The results from this chapter appear in [149)].

Chapter 5 introduces a new measure of the fault tolerance of a network, which we
name the global fault tolerance. Based on this metric, we make a comparative study
of the above mentioned classes of minimum broadcast graphs and we show that, from
this point of view, there are better networks than the hypercube. The results from

this chapter appear in [153].
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As a result of the relative wide area covered by this thesis, most of the specific
definitions will be given in the places where they are used. Also, because we wanted
the chapters to be as much as possible self contained, some of the definitions and

statements will be repeated, in different contexts or forms.
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Chapter 2

Two properties of the minimum

broadcast time function

Given a graph G = (V, E), the minimum broadcast time function, or shortly the
b-function, is defined as b : V' — N, such that b(v) represents the minimum time
necessary to inform all the vertices of G, starting from v. If S = {v1,ve, ..., 0} CV
is a subset of vertices, then b(S) is the multiset {b(v1),b(vq),...,0(vx)}. By abuse of
notation, the broadcast time of G is denoted by b(G) and is defined as

b(G) = max {b(v)}.

The minimum broadcast time problem has been proven to be NP complete [244],
even for bounded degree graphs [80]. The values of the minimum broadcast time
function are known for a very restricted class of graphs, mainly regular ones, and
very little is known about this function in general.

In the first part of this chapter we describe a new property which connects the
values of the b-function and the behavior of the optimal broadcast schemes. We prove
that this new property of the b-function is true for arbitrary trees and we conjecture
it for arbitrary graphs [152].

Based on this property we exhibit an iterative global algorithm for the minimum
broadcast time problem which performs very well in practice [150]. The algorithm
and the simulation results are presented in the second section of the chapter.

Some of the heuristics developed to solve the minimum broadcast time problem
have been tested on random graphs which were generated using common generators

(150, 154, 168]. Two of the main parameters of the random graph generators are the
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number of vertices and the density of the graph. In the last section we establish a
connection between the minimum broadcast time function and these two parameters

by upper bounding the range in which the b-function can take values [152].

2.1 The b-function and optimal broadcast schemes

We denote by G = (V, E') an undirected graph with V' the set of vertices and E the
set of edges. If we consider the broadcasting process originated in vertex v, at time ¢,
an already informed vertex, say u, will choose one of its uninformed neighbors, say w,
and will transmit the information to w. A broadcast scheme will assign to each vertex
and time slot another vertex to inform. Therefore, we can associate to an optimal
broadcast scheme originated in v a function B, : (V,T') - V, where I' = {1, ..., b (G)},
such that B, (u,t) = w if and only if vertex u will transmit to vertex w at time ¢ in
that optimal broadcast scheme started from v. This is a formal way of representing a
broadcast scheme. Note that this function is not defined for the whole domain (V,T).
That is, there are time-slots ¢ for which B, (u,t) is not defined if vertex u will not
transmit at time t.

The crux of an optimal broadcast scheme resides in the way of choosing the next
neighbor to inform. If we denote by N, (u,t) the set of uninformed neighbors of a
vertex v in the graph at time ¢ in a broadcast scheme originated in v, the following
theorem establishes a connection between the minimum broadcast time function and

optimal broadcast schemes for arbitrary trees.

Theorem 1. Consider a tree T, an originator vertex v, and the b-function defined
for each vertex of T. During any optimal broadcast scheme starting from v, at an ar-
bitrary time t < b(G), an informed vertex u will call vertex z, which has the minimum
value of the b-function among all uninformed neighbors of u. Formally, B, (u,t) = z
implies b(z) = min {b (N, (u,t — 1))} .

Proof. Let u be an informed vertex at time-slot ¢t — 1. Assume by contradiction that
vertex u will call at time-slot ¢ one of its neighbours, say w, with a greater broadcast
time than z, which has the smallest broadcast time among all uninformed neighbors
of u. Formally, we assume for the purpose of contradiction that B, (u,t) = w and
b(w) > b(z) = min{b (N, (u,t — 1))}
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Figure 2: Tree T and the subtrees generated by u, w, and z.

We denote by T, the subtree rooted at w, and by T, the subtree rooted at by
z, both in an optimal broadcast scheme having v as originator. We denote by T, =
T — Ty — T, the tree remaining after deleting T;, and 7T, from T, rooted at u (see

Figure 2). Also, we denote by:
¢ b(w — T,) the minimum time needed for w to broadcast in subtree T,
e b(z — T,) the minimum time needed for z to broadcast in subtree T,
e b(u — T,) the minimum time needed for u to broadcast in subtree T,

There are 13 possible relationships between b (w — T,,), b(z — T,),and b (u — Ty,),

with respect to “<” and “=". These 13 possibilities can be grouped in six cases:

a) bu—T,) <b(z—T,) <bw—T,)
b(z—T,) <b(u—T,) <b(w— Ty)
We chose to explain this case in more detail. All the remaining cases have a

similar approach.

In this case we have:
b(w)<b(w—T,)+1, and
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b(z) 2 b(w—Ty) +2
The first relation is due to the fact that w can make only one call outside the
tree T,, and the rest are all inside calls. Since the broadcast time of u and z are

less than b(w — Ty,), one of the last calls will be in T,

The second relation is due to the fact that z must first call u and then u must

first call w, since broadcasting in T, takes the most time.

Adding the two relations we get b (w) + 1 < b(2) (contradiction).

b(z—T,)=blw—Ty)=bu—T,)
b(u—T,) <bw—T,) =b(z—T,)

In these cases b(w) = b(2) (contradiction).

bu—T,)=b(z—>T,) <blw—T,)

In this case we have:
b(w)<b(w—Ty)+1, and

b(z) 2b(w—Ty)+1

Adding we get b(w) < b(z) (contradiction).

b(z—>T,)<bw—Ty) <blu—T,)
b(w—T,) <b(z—T,) <b(u—T,)
b(w—T,)=b(z—T,)<b(u—T,)

In this case we have either:
b(w)=0b(2)=b(u—T,)+1,o0r

b(w) =0b(z) =b(u— T,)+ 2 (contradiction).

b(z—=T,) <b(w—Ty)=bu—"T,)

In this case we have:

b(w) L b(w — Ty) +2, and

b(z) 2b(w—Ty,)+2

Adding we get b(w) < b(z) (contradiction).

b(u—T,) <b(w—Ty) <b(z—T,)
b(w—Ty) <blu—T,) <b(z—T,)
b(w—Ty)=bu—T,) <b(z—T)
b(w—T,) <blu—T,) =b(z—T,)



All these relations imply that:

b(w—Ty) <b(z—T,) (4)

Inequality (4) shows that u cannot call w before z since the obtained broadcast scheme

will not be optimal. More formally, b (w—T,,) <b(z—T,)= B, (u, t) #w. |

Note that the converse is not true since we can find more than one neighbor of a
vertex with the same minimum broadcast time. Formally, b (2) = min {b(N, (z,t — 1))}
does not necessarily imply B, (u,t) = z, since there may be another vertex y such
that b (y) = min {b (N, (2,t — 1))} and B, (u,t) = y.

The same property can be proven in a similar way for the product graph P, x P,.
We have explored a large variety of small irregular graphs with known broadcast
scheme without finding a counterexample to this property. Also, based on this prop-
erty, we have designed an iterative global heuristic in order to find the minimum
broadcast time of an arbitrary graph, which works very well in practice [150]. All

these results convinced us to make the following conjecture.

Conjecture Given an undirected connected graph G, an arbitrary originator v, and
a label attached to each vertex corresponding to its minimum broadcast time, during
an optimal broadcast process starting from v, an informed vertex will always call one

uniformed neighbor with the smallest label.

2.2 Aniterative algorithm for the minimum broad-

cast time problem

Due to the NP-completeness some heuristic algorithms have been developed in order
to give approximate solutions for the minimum broadcast time problem ([239, 232,
192, 168, 119, 28, 154, 87]). Most of these heuristics are based on graph matching
techniques. There are two main criteria to compare between these heuristics: the
complexity of the algorithm and the “optimality” of the solution. While the first
criterion is relatively easy to compute, the second one raises some questions, especially
for randomly generated graphs, for which an optimal solution is generally not known

a priori. There are three approaches to overcome this problem: to obtain theoretical
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results regarding the inapproximability of the problem, to run the algorithm on graphs
with known broadcast time, mainly regular ones, or to do benchmarks on random
graphs, generated using common generators.

To our knowledge, the best result regarding the inapproximability of the mini-
mum broadcast time problem is due to Schindelhauer, who showed in [240] that the
broadcast time cannot be approximated within a factor of % —¢, for any € > 0. The
best result regarding the approximability of the minimum broadcast time problem is
due to Elkin and Kortsarz [88] who gave a O (Eﬁ%ﬁ) approximation algorithm.

The best known complexity is O (Rnm), for the entire graph [154], where R is the
approximated broadcasting time, n is the number of vertices, and m is the number
of edges.

In this section we describe an iterative global algorithm which works in O (knm)
time for the entire graph, where k is the number of iterations, n is the number of
vertices, and m is the number of edges. The algorithm is iterative in the sense that, at
each iteration, it attempts to find a better broadcast scheme than the previous known
one and it is global in the sense that it gives broadcast schemes for all the vertices of
the graph and not just for one vertex. In order to capture this global behavior, we

define the average broadcast time of a graph G:

56 == b () (5)

We have experimentally found that, during the first logn iterations, the approxi-
mate solution has the greatest rate of convergence, which gives a O (nmlogn) aver-
age complexity. We have extensively tested this algorithm on a wide range of graph
topologies and we present here the results, which are similar to those from [154].

Note that this algorithm approximates not only the minimum broadcast time of

a graph but also the values of the b—function for all the vertices in the graph.

2.2.1 Algorithm description

We use the adjacency lists as a data structure for keeping G in memory, each list
being organized as a hash table of length n. To each vertex v € G we attach a
label, corresponding to its known broadcast time. Since, at the beginning, there is

no broadcast time available, we assign to all vertices a broadcast time b (v) = n, the
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number of vertices, which is clearly an upper bound for b (v). Also, for each adjacency
list, denoted by adj (v), we keep a pointer to the neighbour with the smallest label.

The algorithm repeatedly parses all the vertices from G, considering each of them
at a time as originators. The number of iterations will correspond to how many times
we parse the whole set of vertices of G.

Once an originator is chosen, say v, we construct the adjacency lists for all vertices,
picking up the neighbours in random order and inserting them in the hash tables
according to their broadcast time. Then we include v in the set S of informed vertices
and we start to broadcast the message from the vertices belonging to S to the rest
of vertices from G — S. The rule of choosing one neighbour to inform by a vertex,
say u, is: at each time every informed vertex will call its uninformed neighbour, say
w, with the smallest known broadcast time corresponding to its label, b (w). If more
than one vertex has the smallest label, the algorithm will pick up the first one. The
edge used for this call will be deleted from both adjacency lists: adj (u) and adj (w).
The new informed vertices will be included in NI, the set of new informed vertices
after a round of calls, only if their adjacency list is not empty. If adj (u) is also empty,
we delete u from S. When all the vertices from S have made a call, we increment the
broadcast time by one and we attach the set NI to the set S, setting NI = .

This process stops when all the vertices from G are informed. At this moment, we
have a new broadcast scheme available for the vertex v, and a new broadcast time.
If this new broadcast time is smaller then the previously known one, we modify its
label b (v) accordingly and continue by choosing the next vertex in G as originator.
One iteration is considered finished when we have considered all the vertices from G
as originators.

We denote by MAX_ITER the number of desired iterations. This can be seen as
a free parameter for our algorithm and it will control the “optimality” of the resulted
broadcast schemes. This parameter can also be set automatically to be the number
of iterations after which there are no changes in the broadcast time of any of the
vertices form G. As you will see in the next section, this approach can be tricky since
the value of the labels decreases very fast at the beginning but can be stationary for
a long time after a certain number of iterations, until it decreases again.

Formally, the algorithm can be written as follows:
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for i = 0 to MAX_ITER
for each v € G
build the adjacency lists of all vertices from G
S ={v}
informed_vertices = 1
btime =0; NI=0
while informed_vertices < |G|
for each u € S
w = neighbor of u with b(w) = min.
delete u from adjacency list of w
delete w from adjacency list of u
if adj (w) is not empty
NI = NIU{w}
if adj (u) is empty
S=8—{u}
informed_vertices = informed_vertices + 1
end for
b_time = b_time + 1
S=SUNI
end while
if b(v) > b_time
b(v) = b_time
end for

end for

2.2.2 Algorithm analysis

The crux of the algorithm is the method of choosing the next neighbor to inform: the

one with the minimum known broadcast time, which corresponds to its label. This

is clearly suggested by Theorem 1 and the simulation results sustain the conjecture

that we have made in the previous section.
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In order to analyse the time-complexity of the algorithm we have to analyse the

following operations:

1. The outer for loop represents the number of iterations, MAX_ITER = k. This
is a free parameter for the algorithm and is controlling the “solution’s optimal-
ity”. Even though there is still no theoretical support for the necessary number
of iterations in order to exactly converge to the optimal solution, experimental
results suggest that during the first logn iterations, the convergence rate is the
highest, and the solution is near optimal (see Section 2.2.3, Figure 3). Never-
theless, for some graphs, as full binary trees, or binomial trees, the algorithm
was able to discover the optimal solution after only one iteration. This number
also relies on the starting vertex and the parsing order but, for large graphs and

bigger number of iteration, this dependency is very weak.

2. The middle for loop, which gives n operations, corresponding to the number of

vertices.

3. The adjacency lists building operation, which takes O (m) time, where m is the

number of edges from G.

4. The combination between the inner for and while loops, corresponding to the

total number of calls, which is n.

5. The number of operations necessary to retrieve the neighbor with the smallest
label. This can be done in O (1) by keeping a hash table and a pointer to the
first non-empty entry in this table.

6. The number of operations necessary to delete the vertices v and ¢ from the
adjacency lists. This can be also done in O (1) by keeping an n? array with the

vertices addresses in the adjacency lists.

From the above analysis, the driving operations for complexity are in the steps 1),
2), and 3), yielding a O (kmn) time complexity.

One could expect that the complexity will increase by increasing the degree of the
vertices in the graph. Nevertheless, experimental results show that, once the graph
density increases and the graph tends to the complete graph, the number of necessary

iterations needed decreases. For the complete graph or for trees only one iteration
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is needed. The experimental results show that the graphs with density close to 0.5
require a greater number of iterations than those with densities close to either 0 or 1.

We are using the adjacency list as data structure for keeping the graph in memory,
and an n x n array with pointers to vertices, which yields a O (n?) space complexity.

Since, at the beginning, all the vertices have the same label, there is no difference
between a random algorithm (see [100]) and this one, for the first originator. Once
this originator has a smaller broadcast time assigned, during the next calls there
will already be an available choice to make. Even though this “warm up” part of
the algorithm seems to be somehow “uncontrollable”, the results derived from our
experiments show that the value of labels decreases from the beginning at a very high

rate (Figure 3).
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Figure 3: The average broadcast time function of the number of iteration steps for a
transit-stub randomly generated graph on 100 vertices. The majority of vertices got
their broadcast time approximation after the first 6 steps.

2.2.3 Experimental results

As we mentioned in introduction, there are two main types of experiments character-
istic to such heuristics: to run them on graphs with known broadcast time, and to do
benchmarks on random graphs generated using common generators. We studied the

algorithm behavior on both types:
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e Graphs with known broadcast time: full binary trees b7, binomial trees BT,
hypercubes on dimension d (Hy), Knodel graphs on 2¢ vertices and dimension d
(W4.24), cube-connected-cycles (CCC), de Bruijn graphs (DB), butterfly (BF),
and shuffle exchange (SE), all of them up to dimension 10.

e Two types of random graphs: GT-ITM pure random and GT-ITM transit-stub
random graphs [253].
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Figure 4: The average broadcast time function of the number of iteration steps for
the hypercube on dimension 6.

Two types of tests were done regarding the “solution’s optimality”: determining
the average broadcast time after [log,n] iterations for the whole graph and deter-
mining the number of iterations needed in order to obtain the optimal solution for the
graphs, where this is known (hypercubes and Knodel graphs) and where this number
is achievable in a reasonable amount of time.

In our experiments we observed a rapid decrease in the average broadcast time
during the first [log, n| iterations (Figure 3). More than that, for the hypercube
in dimension 6, the solution converges to an optimal broadcast scheme after 750
iterations (Figure 4).

The tests on regular graphs are not very relevant for this algorithm since the
main idea behind choosing the neighbour with the minimum broadcast time is not

exploited due to the uniform distribution of the b-function values among graph’s
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vertices. From this point of view, once all the vertices get almost the same label,
there is no substantial difference between this algorithm and a random one. This can
also be seen comparing the figures 3 and 4. We observe that the curve from Figure 3
decreases more sharply than the one from Figure 4.

The algorithm performs better on irregular networks with a significant irregularity
of the b-function values. This result was the reason for testing this algorithm on
transit-stub random networks, which are closer to "real world” networks, miming the
cluster-type networks encountered in the real world (Table 2). It is also the reason

for the high performance of this algorithm on trees.

Table 2: The average broadcast time after logn iterations, for pure random graphs
and transit-stub random graphs.

type vertices | iterations | average
n log n b(G)
pure-random 100 7 10.10
transit-stub 100 7 12.06
transit-stub 600 10 18.77

Table 3: The average broadcast time after log n iterations, for hypercubes in dimen-
sions 3 to 10.

dimension | iterations | average b(G)

3 3 3

4 4 4

5 5 5.1

6 6 6.7

7 7 8

8 8 9

9 9 10.4

10 10 11.5
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Table 4: The average broadcast time after d iterations, for Knoédel graphs on 2¢
vertices and degree d.

dimension | iterations | average b(G)
3 3 3
4 4 4.1
5 5 5.9
6 6 7
7 7 8
8 8 9
9 9 10
10 10 11

Table 5: The average broadcast time after d iterations for shuffle-exchange graphs on
2¢ vertices.

dimension | iterations | average b(G)
3 3 4.12
4 4 6.12
5 ) 8.12
6 6 10.07
7 7 12.07
8 8 14.29
9 9 16.37
10 10 18.75

In Tables 2, 3, 4, and 5 we present the testing results for some regular networks,
considering the average broadcast time as it is defined in (5), for the whole graph,

after [logy,n] iterations.

2.3 The b-function and the graph density

Some heuristics developed for finding an approximate solution for the minimum
broadcast time problem have been tested on random graphs. Since most random
graph generators have the number of vertices and the density of the graph as main
parameters, we considered it opportune to study the relationship between the b-

function and these two parameters. More precisely, considering a vertex v having the
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smallest broadcast time by,;,, and a vertex w having the greatest broadcast time by,
we give an upper bound for the difference bpax — bmin, in terms of graph density p
and the number of vertices n. We show that this upper bound is tight by an additive

factor of two.

Definition 12. For an undirected graph G = (V, E) on n vertices and m edges, the
graph density p is defined by:

_ 1Bl __ 2m
|Ek,|  n(n—1)

p (6)

where |Eg, | represents the number of edges in the complete graph on n vertices K,.

Although the result of the following lemma seems to be somehow trivial, it turns

out to be helpful to our study.

Lemma 1. If there is an edge between vertices v and w in graph, then:
b(v) —b(w)] <1

Proof. Without loss of generality, assume that b(v) > b(w) and b(v) — b(w) > 1,
which implies that B, (v,1) 5 w. Considering a new broadcast scheme B’ in which
v is calling w in the first time-slot, B’ (v,1) = w. After this call, we can follow
the broadcast scheme having w as originator. We obtain for v a broadcast time
Y (v) =b(w)+1 < b(v). This contradicts the definition of b (v) as being the minimum

broadcast time for v. O

This lemma has a straightforward corollary, which bounds |b (v) — b (w)| for two
arbitrary vertices v and w in graph, in terms of graph’s diameter.
Corollary 1. Given a graph G (V, E) with diameter D, |b(v) —b(w)| < D, for any
v,weV.

Using this corollary we can now bound the range in which the minimum broadcast

function can take values.

Theorem 2. For any connected graph G (V, E) on n vertices, having density p, the
following inequality holds:

o2n+1—+/4(pn(n—1) — 2n) + 17
bv) ~b(w)] < [ > ,

for anyv,w € V.
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Proof. By Corollary 1, we have transformed the problem of upper bounding b,,0x —bmin
into the problem of upper bounding the diameter of the graph in terms of graph
density and number of vertices. This problem has been considered in [220] and later
in [47], in a slightly different context. Since we are looking for a closed formula for
the maximum diameter of a graph in terms of the number of vertices and the graph
density, we will use Theorem 3.1 from [220], which gives an upper bound for the
number of edges of a graph, denoted by muyay, given the diameter D, and the number

of vertices n: .
mmax<D+§(n~D—1)(n——D+4) (7)

In order to apply this result, we have to introduce diameter critical graphs: a
graph G is called diameter critical if the addition of any edge decreases the diameter
(Figure 4).

Figure 5. Diameter critical graph on 9 vertices with diameter 6.

Ore proved in [220] that the upper bound of (7) is attained for diameter critical
graphs. Therefore, given a graph with n vertices and m edges, the maximum possible

diameter, Dy, satisfies the following inequalities:

1
m<Dmax+§(n_DmaX'“1)(n_Dmax+4) (8)
1
m>Dmax+1+§(n_Dmax"‘2)(n_Dmax+3) (9)

Inequality (9) is obtained applying Ore’s theorem for the case in which the diameter

would be D + 1. Solving the last two inequalities for Dy, we get:

D.. e ([271 —21 —S-’ ’ L2n+21~5” U HZn —21—}—5'} ’ {2n+21—|—5}> (10)
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where S = /8 (m — n) + 17. Since oty 82(m*n)+17-| >n—1forany m >n—1,

the maximum diameter must be in the interval:

D.. e <[2n—21—5w’{2n+21—SH (1)

We observe that the limits of the interval from (11) satisfy:

n—-1-8 2n+1-S
{'—_2—1 = [—T“J (12)
except in the case when /8 (m —n) + 17 is an odd integer. In this case:
n—-1-S8 2n+1-S
e w

Since the left side of the interval from (11) is opened, we obtain the following formula

for the maximum diameter of a graph:

2 - ”
Do - {71+1 V8 (m n)+17J (1)
2
If we substitute m = pn (n — 1) /2 in (14) we obtain the claimed bound. O

—o---0—o

Figure 6: A path of length n, joined by an edge with a star on n, vertices

Observation
The upper bound of Theorem 2 is tight by an additive factor of 2. This can be

proved by finding a graph for which byax — bmin = D —2. We can draw such a graph by
joining the extremity of a path on n; vertices with the center of a star on n, vertices
(Figure 6). It can be seen that if n; is smaller than the number of neighbors of v then
b(v)—bw)=(Mm1+ny—1)—ng=ny—1=D—2.
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Chapter 3

The number of broadcast schemes

in networks

3.1 Problem description

Throughout this chapter we model the interconnection network by a simple undirected
connected graph G = (V, E), in which the members of the network are the vertices of
G and the communication lines are the edges of G. Many models of communication
have been proposed and analyzed for broadcasting. For the purpose of this chapter
we consider the I-port, constant-time model [117]. That is, once a member of the
network knows the information, he can transmit it only to one neighbor per time-
unit and the transmitting time is constant. At each time-unit, each member can be
in one of the following three states: transmitting, receiving, or idle. Note that we
allow an informed node to be idle, even though one of its neighbors is not informed.
This approach may be seen as a suboptimal one, but we consider it more realistic
since, for example, one processor could be busy at a certain moment of time. Also,
in this way we cover the whole set of possible broadcast schemes. The same model
has been used in [100] in order to analyse a random algorithm for broadcasting.

In a broadcast scheme, each informed vertex has to transmit the information to a
subset of its neighbors in a certain order. Throughout this chapter we consider that

two broadcast schemes are different if:
a) they have different originators, or
b) one vertex transmits to a different subset of neighbors, or

c) one vertex transmits to the same subset of neighbors but in different order.
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In this chapter we give a tight lower bound, corresponding to a path, and a tight
upper bound, corresponding to the complete graph, for the number of all possible
broadcast schemes, under the above mentioned assumptions. We count them by
mapping this set into a superset of the set of rooted spanning trees. We give the
exact value for complete bipartite graphs and we establish an upper bound for regular
graphs. Based on these results we describe an algorithm for enumerating all the
broadcast schemes in networks. This work finds applications in a closely related
problem: minimum broadcast graphs. This problem consists of finding a graph such
that the broadcast time is [logn] and the number of edges is minimized. Minimum
broadcast graphs are known only for some particular values of the number of vertices,
mainly around n = 2% or small values of n. The smallest value for which the minimum
broadcast graph is not known is n = 23. Such a small number suggests a brute force
approach, which subsequently requires a knowledge of the dimension of the problem
and an algorithm to enumerate all the broadcast schemes.

A random algorithm for broadcasting has been described and analyzed in [100].
As a byproduct of the method of counting the broadcast schemes, we describe and
analyze a new random algorithm for broadcasting.

The chapter is organized as follows. In Section 3.2 we compute the lower and the
upper bounds for arbitrary graphs. In Section 3.3 we count the number of broadcast
schemes in complete bipartite graphs. Finally, in Section 3.4 we describe and analyze
an algorithm for enumerating all the broadcast schemes along with a new random
algorithm for broadcasting in networks. The definitions will be given in the places

where they are used.

3.2 Bounding the number of the broadcast schemes

Given a simple connected undirected graph G, we denote by d; the degree of a vertex
i, by ST (G) the set of spanning trees of G, by ST (G) the set of rooted spanning
trees of G, by SB (G) the set of all possible broadcast schemes in G, and by |S| the
cardinality of a set .S.

The following lemma offers some helpful insights about the number of broadcast

schemes in networks.

Lemma 2. Giwen a tree T on n vertices, with the degree sequence di,...,d,, the
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number of all possible broadcast schemes in T 1s:
ISB(T)|=2(n—1)[] (d; —1)! (15)
j=1

Proof. Assume that vertex 4 is the originator. This vertex can choose to send the
information among its d; neighbors. Thus, the number of all possible calls for vertex
1 to its neighbours will be d;!. Consider now one of its informed neighbors, say j. This
one can choose among only d; — 1 neighbors, giving a total of (d; — 1)! possibilities.
Thus, the number of all possible broadcast schemes, having vertex ¢ as originator,
will be d;! H (dj — 1)!. Considering now all possible n originators

J#z

n n n
1SB(T)| = _d! ] (d; — 1)! Zdzn (d; — 1)! (16)
=1  j=1 i=1
7
Since the degree sum of all the vertices in a tree is 2n — 2, the result follows. [

The following theorem gives the exact lower and upper bounds for the cardinality

of SB(G).

Theorem 3. Given a graph G on n vertices, the following inequalities hold:

(2n — 2)!

2n—2§|SB(G)ISm

(17)

Proof. Assuming a given broadcast scheme in GG, we can construct a subgraph formed
by all the vertices of G and by the edges that were used to transmit the information.
This subgraph is a spanning tree in G because it contains all the vertices of G, it
is connected, and it has no cycles (a vertex will never transmit to another already
informed vertex). Furthermore, if we identify the originator, we can map the set
of broadcast schemes into the set of rooted spanning trees of G. This is a many-
to-one map since, as we saw in Lemma 2, there can be more broadcast schemes
corresponding to one rooted tree, and every rooted spanning tree has at least one
corresponding broadcast scheme.

From Lemma 2, we deduce that, for a graph G on n vertices, in order to minimize
the cardinality of SB (G) one must minimize both the degrees of the spanning trees

and the number of spanning trees. We know that the path graph P, on n vertices
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meets these requirements. Since P, is a tree with the degree sequence 1,2,...,2,1,

applying the result from Lemma 2 we obtain the lower bound:
2n -2 < |SB(G)| (18)

For the upper bound we consider the complete graph on n vertices K,, which
maximizes both the degrees of vertices and the number of spanning trees. Let
T (n;dy,...,d,) be a spanning tree in K, with the degree sequence dy,...,d,. The
number of spanning trees with a given degree sequence in the complete graph has
been computed in terms of generating functions first by Harary and Prins in [137]
and then explicitly by Berge in [31]:

ST (n;dy, ..., dn)| = ( -2 > _ (=2 (19)

di—1,..,d, —1 n
! [1 (d; — 1)!

j=1
Applying the result from Lemma 2, we obtain all the broadcast schemes corresponding

to all the trees with a given degree sequence dy, ..., d, in K,

(n=2t 2(n - 1)ﬁ(dj— l=2(n—1)! (20)

1SB (Tyy,...a0)| =
I1 (d; —1)! j=1
j=1

We observe that the result does not depend on a specific degree sequence. Now we
have to count how many possible different degree sequences realizing a tree are in K.

This is given by the number of integer solutions of the equation:
di+dy+...+d, =2n—2 (21)

subject to constraints 1 < d; < n — 1, since the maximum possible degree is n — 1
and there are at least 2 vertices with degree 1 [31].

Since we will need this result later, we will solve a slightly more general problem:
"Find the number of integer solutions of 1 + x5+ ... + z, = m, subject to constraints
1<z, <kforalll1 <i<n” The original problem is the particular case m = 2n — 2
and k =n— 1.

Let f(m, k) be the number of solutions of our general problem, and define
G(z)=(z+ 22+ 28+ ..+ 2°)" (22)

The exponent of z in G(z) is the sum of the exponents in the n terms. Thinking

of the exponents as being the z;’s, in order to get 2™ in the product the exponents
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(x;'s) must sum to m. The number of ways we can get 2™ in the product is exactly
the number of solutions of zy + 2z + ... + 2, = m. The constraints 1 < z; < k are
reflected in the fact that each of the integers 1,2, ...,k is found exactly once in the

exponents in (z + 22 + 2% + ... + 2*). We note that:
G(z) = 2°(1 — 2)"(1 — )" (23)

Expanding the second term in an infinite series and using the binomial theorem we

Glz) = i (" +j - 1) 7 zn: (=1y (EL) 2 (24)

i=0

get:

where (;) is the number of combinations of n objects taken m at a time. To get the
z™ term in the result, we must have n + i + jk = m, i.e.

b S (" T 1) (”) (25)

1
7=0 J

where n + i + jk = m. We can eliminate ¢ in the above equation by letting ¢ =

m—n — kj:
L N
k) = -1 J
rmn =5 =0 () () (26
We can simplify this result by noting that (:2:27_ “k;) = (m;'ijl_l). Therefore,
L(m—n)/k] :
(n\ (m—kj—1
= -1y 2
f(m, k) ; ( >(j)( o ) (27)

The original problem is just the case f(2n — 2,n — 1). The number of solutions is

then
[(n—=2)/{n~-1)] :
. n-—-kj—-3 2n— 3
s E () (7)) e

§=0
Thus, the total number of broadcast schemes in K,, will be

SB ] =2 (n —(227;'_(3)_' - ((2:__12))!! (29)

which is also the upper bound for any simple, connected, undirected graph. O
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It is interesting to compare the number of broadcast schemes with the cardinality
of the set of solutions of other NP-complete problems. For example, the ratio between
the number of broadcast schemes in the complete graph to the number of Hamiltonian
cycles in the same graph, denoted here by |HC (K, )|, has an exponential order of

magnitude:
SB (K| _ (2n—2)!
|HC (K,,)]  (n—1)n!

s 2%n (30)

3.3 Results for particular topologies

In this section we give the exact value for the number of broadcast schemes in the

complete bipartite graphs and we establish an upper bound for regular graphs.

Theorem 4. The number of broadcast schemes of the complete bipartite graph K,

. (p+q—1!{p+q-2)!
(p—1!(g—1)

Proof. Tt can be shown by induction over the number of vertices that the number of

|SB (Kp,q)‘ =2 (31)

spanning trees in K, ,, with a given degree sequence ¢, ..., ¢p, d1, ..., dq is:

IST (p+ q; C1, -'-’Cp’dla 7dq)l = p (p — 1)' (;1 = 1)' (32)
1T (o= 1) [] (& = )

where 1 <¢; <¢q,1<i<p,1<d; <p,and1<j<yq.

We present here a proof of (32) due to Igor Pak [222]. For n = 2 the statement is
true: |ST (2;1,1)] = 1. Assume that the statement is true for all n < p + ¢. Assume
now that n = p + ¢. Consider T,, a spanning tree in K,, Denote the vertices
li, ..., l, with degrees cy, ..., ¢, the "left” partition and the vertices ry, ..., 7, with degrees
di, ..., dg the "right” partition of T,,. Assuming that the degrees are ordered in
descending order, we delete one vertex with degree one (there must be one) in T,
say vertex l,. We obtain a spanning tree with degree sequence ci, ..., cp—1,d1, ..., dg —
1,...,dg, if the vertex was adjacent to the k** vertex from the right side in that
particular spanning tree. Considering now all the edges between [, and the "right”
partition (q edges) and using the fact that the number of spanning trees in K, 4 is

known by the induction hypothesis, the number of spanning trees in K, with degree
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sequence Ci, ..., Cp, dy, ..., dg will be:

U0

T+gcr,...,cpdy,...,dg)| =

_N (p—2)!(g—1)!
B Z (c1 — D (epr — DI (dy — DL (d — 2)1.. (dg = 1)
(=2 (g =D (dy — 1+ ... +dy— 1)

T e =Dl (G = D) = DL (de = D) (dg = 1)1
B (0—2) (g =1 (d1 + ... + dg — q)
T {er = D (gt = DI (dy = DL (die — D)l (dg — 1)!

Since Kj 4 is bipartite
it tcp=di+..+d,

On the other hand
a+..teptd+.+dg=20p+q-1)
Hence,

|ST (p+ g;¢1, ..y Cpy i, ..y dg)| =

_ (p=2(g-1D)!'p+g—1-gq)
(=Dl (epor = D (dy — D (dg — 1)
_ (p—D'(g—1)

N (01 - 1)' (Cp—l — 1)' (dl - 1)' (dq - 1)'

! =

! =

(36)

Applying Lemma 2, we obtain the number of broadcast schemes for the above set of

trees:
ISB(p+qcr,.sCpydiynndg)| =2(p+q—1)(p— 1) (g —

1)! (37)

The number of different degree sequences in K, ; is the number of integer solutions

of the equation:
Gt teptdit..+dg=2(p+q) -2

subject to constrains:

1<¢ <q, withl <i<p, and
1<d;<p with1<j<gq

We denote by N, the number of integer solutions of the equation
i+ ... +p=p+qg—1
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and by Ny the number of integer solutions of the equation
di+..+dg=p+qg-—1 (41)

subject to constrains (39). According to (27):

-2 -2
ch(p+q )ande=<p+q ) (42)
p—1 q—1
Hence, the number of solutions of (38) will be:
@+wﬂ!y
(p—1DHg-1)

Combining (43) and (37) we obtain the number of broadcast schemes in the complete

NN, = ( (43)

bipartite graph K, 4:

1SB(Kpo)l =2(p+¢—1)(p — 1) (g~ 1)! ((p(ﬁ);](; .2_)!1)!) N
_Slptg-1lp+g—2)
B TPEY )
O

Consider now a star tree on p + 1 vertices, formed by one vertex connected by p
edges to p vertices. According to Lemma 2, the number of broadcast schemes in a

star tree on p + 1 vertices is 2p!. On the other hand, using (44) we obtain

+1-1)! 1-2)!

Also, in a cycle on n vertices C,, there are n spanning trees, with degree sequence

|SB (Kp,1)| = 2

1,2,...,,2,1. For each spanning tree we have 2(n — 1) broadcast schemes, according
to Lemma 2. Therefore, the number of broadcast schemes in a cycle on n vertices
Cn i8 |SB(Cp)| = 2n(n — 1). On the other hand, Ky, is the cycle on 4 vertices Cy.
Applying (44) we obtain: |SB (Kss)| = DI _ 4y

E—D)I(z—1)!

Theorem 5. The number of broadcast schemes for any regular graph on n vertices

and degree k, denoted by R, x, s upper bounded by:

ISB (o)) < 2k ((k — Dy EH] ( nk ) (46)

n—1
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Proof. Let us consider a tree T on n vertices, with an ascending order sorted degree
sequence dy, ..., d;,...,d;, ..., d,. Without loss of generality, assume that there exist
i and 7, 1 < j, such that 2 < d; < d;. By Lemma 2, the number of broadcast schemes

in T' can be expressed as:
|SB(T)| = c(d; — 1)1 (d; — 1)! (47)

where ¢ is where ¢ is the remaining product of factorials.

Let us consider now a new tree 7" on n vertices with the degree sequence
di, .oy iy dyy oy dp. (48)

That is, only two vertices change their degree: vertex i has degree d;’ = d; — 1 and
vertex j has degree d;' = d; + 1. The number of broadcast schemes in 7" can be
expressed as
|SB(T")| = c¢(d; — 2)d;! (49)
We observe that
|SB(T)| < |SB(T")] (50)

Thus, by increasing the bigger degrees in the detriment of the smaller degrees we
obtain a tree with a bigger number of broadcast schemes. Since the degrees in regular
graphs R, i are upper bounded by k, we conclude that the degree distribution which

yields maximum number of broadcast schemes in such a tree is

L1, 1,k k k.. k (51)
1
n—p-— P

where 1 < k' < k and p < l—%}ﬂ It is clear that, in general, such a spanning

tree might not exist in a regular graph R, x, but it will upper bound the number of
broadcast schemes of any other spanning tree in R, by:
[#=1]
ISB (Tspanning tree in Rn,k)l < 2 TL - 1) (k - 1)' =
1

Jj=
2(n - 1) (k- )l (52)

>

On the other hand, Biggs [40] gives a tight upper bound for the number of spanning

trees of any regular graph on n vertices and degree k:

st < 2 (25 (53)

n—1
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Combining this result with (52) we obtain the claimed upper bound. Note that the
claimed bound is not tight, even though the bound provided by Biggs is tight for
complete graphs. O

The observation from (50), which states that increasing the bigger degrees in the
detriments of the smaller ones increases the number of broadcast schemes, yields the

following corollary:

Corollary 2. The mazimum number of broadcast schemes of a tree on n vertices is
|ST(T)| = 2(n — 1)! (54)

and 1t s obtained for the star tree K,_1 ;.

3.4 Applications

3.4.1 An algorithm for enumerating all the broadcast schemes

A first straightforward application of the counting method described in Section 3.2 is
an algorithm for enumerating all possible broadcast schemes in arbitrary graphs.
Recall that there is a many-to-one correspondence from the set of all possible
broadcast schemes to the set of the rooted spanning trees. Also, there is a many-
to-one correspondence from the set of the rooted spanning trees to the set of the
spanning trees in graph. Moreover, Lemma 2 shows a direct connection between a
given rooted spanning tree and all possible broadcast schemes in that tree. Consider
now the rooted trees as directed trees, where the orientation of the edges is from the
root to the leaves. All the possible broadcast schemes in such a tree can be obtained
by generating all the possible permutations of the outgoing edges for each node. That
is, we can relabel all outgoing edges according to each permutation, for each vertex.
In order to obtain all the rooted trees, we can run an algorithm for enumerating
all the spanning trees ([178] for example), and, for each such tree, we consider one
root at a time. The complexity of enumerating all the rooted spanning trees is driven
by their number [178], and the edge labelling of a spanning tree takes O(n) time,
where n is the number of vertices in graph. According to Lemma 2 and Theorem
3, the overall complexity is O(nN), where N is the number of all possible broadcast

schemes.
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3.4.2 A random algorithm for broadcasting

The only known random algorithm for broadcasting has been described and analyzed
in {100]. It is based on a natural idea: at each time unit, every informed vertex will
randomly choose to inform one of its neighbors.

Our algorithm has two phases:
a) Randomly choose a spanning tree.

b) On this spanning tree run the algorithm of Slater, Cockayne and Hedetniemi

[244] which gives in © (n) time an optimal broadcast scheme for this tree.

There are two main issues in comparing the two random algorithms for broad-
casting. The first one concerns the distributed character of algorithm in [100]. This
issue can be overcome by transforming our algorithm into a distributed one as follows:
chose a random spanning tree as in [7] and find the broadcast time of this tree as in
[15].

The second issue is related to the probability of choosing an optimal broadcast
scheme. Since it is still an open question if the algorithm of [100] is equivalent to choos-
ing a broadcast scheme uniformly at random from the set of all possible broadcast
schemes, we cannot compare the two algorithms using this criterion. Nevertheless, we
encounter two extreme cases: a tree and a complete graph. For any tree with more
than two vertices, our algorithm chooses an optimal broadcast scheme with