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Abstract

New Mapping Schemes for Multi-dimensional Constellation

in MIMO-BICM-ID Systems

Ali Reza Rabbani Abolfazli

Recently, Multiple Input and Multiple Output (MIMO) systems have shown a
tremendous potential to increase the spectral efficiency and the reliability of wireless
communication. These aspects are quantified in terms of the spatial multiplexing gain
and the diversity gain respectively. It was shown that there is a trade-off between
diversity and multiplexing gains. Bit Interlevead Coded Modulation with Iterative
Decoding (BICM-ID) for Multiple Input and Multiple Output channels has recently
been addressed as an effective mean to achieve high data rates while maintaining high
diversity.

It has been shown that, when signal constellation, interleaver and error control
code are fixed, signal mapping has a crucial influence on the error performance of
a BICM-ID system. The role of signal mapping applies to the error performance of
MIMO-BICM-ID system.

In this thesis, the design of constellation mapping for MIMO-BICM-ID system
is studied. Based on minimizing pair-wise error probability, a design criterion is -
proposed to find the optimal constellation mapping for MIMO-BICM-ID. To reduce
computational complexity of exhaustive search, Binary Switching Algorithm is im-
proved to find the optimal solution. Using the design criterion and employing the
Binary Switching Algorithm, some optimal constellation mappings are found for 2-

dimensional and 3-dimensional cases.
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A measurement based on mutual information is developed to evaluate the proposed
constellation mappings. It is shown that proposed mappings sacrifice bit-wise mutual
information without a priori information but improve significantly when perfect a
priori knowledge is available. At the receiver, to avoid the computational complexity
of the optimal Maximum-Likelihood (ML) detector, List Sphere Decoder (LSD) is
used as the inner detector.

Simulation results demonstrate that proposed schemes outperform conventional
ones significantly at high signal to noise ratio (SNR) over fading channels. System
simulations are carried out specifically for 2-dimensional QPSK, 2-dimensional 8SQAM
and 3-dimensional QPSK constellations/mappings. Results show an improvement of
1.3 dB, 1.6 dB and 1.8 dB compared to conventional constellation mappings over slow
fading channels, respectively. This improvement increase to 3.5 dB, 2.7 dB and 2.4

dB for fast fading channels.
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Chapter 1

Introduction

A general digital communication system consists of three basic sections: Transmitter,
communication channel and receiver. The transmitter task is to convert information
bits to signals that can be transmitted over the channel. The channel is the physical
medium used to send signals from transmitter to receiver. -The receiver is the end
of a communication system which detects the information bits with lowest possible
probability of error. Using error correction codes in a real-time communication system
improves error performance at the cost of bandwidth.

Increasing demand for using wireless communication systems, expecting good
quality of service and limitation in availability of radio spectrum, have shifted the
researchers’ focus towards designing more spectral efficient systems. In single an-
tenna wireless communication systems, the Shannon capacity limit [1] can be achieved
through advanced codes, such as Turbo codes [2] and low density parity check codes
[3][4]. Utilizing multiple antennas at both transmitter and receiver sides is another

technique which allows high data rates as well as reliable communication [5] [6].



1.1 Literature Survey

By increasing constellation points or using multilevel/phase modulation in coded
schemes, a good coding gain without increasing bandwidth can be achieved. The
integration of encoding and modulation yields to a digital coded modulation system
which was studied first by Massey [7]. In 1982, Ungerboeck introduced a Trellis-coded
modulation (TCM) system as a bandwidth-efficient signaling over an additive white
Gaussian noise (AWGN) channel [8]. Ungerboeck proposed that for the systems
using non-binary signal constellation, the primary parameter that determines the
performance is Euclidean Distance (ED) rather than Hamming Distance (HD). The
technique of “mapping by set partitioning” is introduced in [8]. This ensures that
parallel transitions in the trellis code mapped into the signals are far enough in the
signal constellation. Therefore, the probabilityk of error is minimized. Since the design
criteria for TCM is helpful only for AWGN channel, it usually causes a low diversity
order, hence performance of TCM over fading channels is significantly degraded. To
increase diversity order of TCM , symbol interleavers were used [9]. The design of
TCM schemes to counteract simultaneously flat fading and AWGN was proposed in
[10].

Zehavi suggested Bit-interleaved Coded Modulation (BICM) for fading channels
which a coded system is built by a convolutional encoder followed by an interleaver
and modulator[11]. Specifically, he suggested a system consisting of 8 states with rate
% convolutional code and three binary random interleavers. Outputs of interleavers
are grouped and mapped to one of the symbols chosen from 8-PSK constellation using
Gray mapping. Using random interleaver, higher diversity order can be achieved with

the proposed system [11] compared to previous works. Thus BICM systems are quite
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attractive for transmitting over fading channels. In [11], it is proven that the diversity
order can be increased to the minimum number of distinct bits between two codewords
rather than the number of distinct symbols which is suggested in [12]. The comparison
between BICM (using bit interleaver) and TCM (using symbols interleaver) shows
that BICM system outperforms TCM by one dB at the Bit Error Rate (BER) of
1075,

The general theoretical framework of Zehavi’s concept is provided in [13] and a
modified BICM model is proposed where all outputs of coded bits are fed into a single
bit interleaver. It is shown in [13] that separation of demodulation and decoding is
beneficial, since the encoder and the modulator can be chosen flexibly. Hence, by
choosing the best convolutional code, which gives the largest Hamming distance for
given code rate and constraint length, the diversity order-can be maximized.

After introduction of Turbo codes [2], iterative decoding was applied to the bit-
interleaved coded modulation systems and is called Bit-Interleaved Coded Modulation
systems with Iterative Decoding (BICM-ID). The idea of iteration between decoder
and demodulator is studied in [14] to overcome the drawback of conventional BICM
systems. In [14], a simple iterative decoding with hard decision feedback is proposed.
It was shown in [15] that BICM-ID significantly outperform the conventional TCM
and is comparable to turbo TCM (TTCM) [16] over both Gaussian and Rayleigh
fading channels with much less complexity. Requiring only one soft-input soft output
(SISO) decoder instead of two as normally used in turbo decoding, is the advantage
of BICM-ID over TTCM [2][16].

In response to increasing demand for using wireless communication systems and



more reliable services while the radio spectrum is limited, Multiple Input Multiple Out-
put(MIMO) systems was introduced. This advanced technology promises significant
improvement in spectral efficiency and as a result in system capacity [5][6]. MIMO
systems make use of multiple transmit and receive antennas to improve the data rate
by increasing the channel capacity and error performance over fading channels by
increasing the diversity [17][18][19].

Utilizing multiple antennas at both transmitter and receiver sides allows high
data rates as well as reliable communication. Hence multiple input multiple output
(MIMO) systems are still an interesting topic in both industrial and academic fields.
The potential for wide capacity gains was first addressed in [5]. Data rate over MIMO
channels can be increased by various spatial multiplexing schemes [20]. For example,
in V-BLAST (Vertical-Bell Labs Layered SpaceTime) architecture, independent data
streams are transmitted in parallel over transmit antennas [21][22][23]. However,
spatial multiplexing gain often results in a loss in spatial diversity [24].

Bit interleaved coded modulation schemes(BICM) for MIMO systems have re-
cently been addressed as an effective mean to achieve high data rates while main-
taining high diversity. It was shown in [25] that with a maximum-likelihood (ML)
receiver, MIMO-BICM systems outperform spacetime trellis codes in fast fading chan-
nels. Employing BICM with iterative decoding (BICM-ID) over MIMO channels is
proposed in [26], which improves BER performance significantly.

It has been shown that when signal constellation, interleaver and error control
code are fixed, signal mapping has a crucial influence on the error performance of a
BICM-ID system [15][27][28]{29]. Similarly, the role of the signal mapping also applies

to the error performance of MIMO-BICM-ID systems. This motivates us to study



the costellation/mapping designs for MIMO-BICM-ID systems.

1.2 Contributions

Since the signal constellation/mapping has a critical influence on the performance
of BICM-ID systems, we focus on the constellation/mapping design over MIMO
channels. In this thesis, multi-dimensional constellations/mappings are proposed for
MIMO-BICM-ID systems. These constellations/mappings can improve the error per-
formance of the system significantly due to optimization of the Euclidean distance
between signal points.

First, a design criterion for multi-dimensional constellation/mapping is proposed
based on minimization of pair-wise error probability. To reduce the complexity of ex-
haustive search, Binary Switching Algorithm (BSA)[30] is modified to find the optimal
constellations/mappings. Based on these, several optimal constellations/mappings
are obtained for 2-dimensional and 3-dimensional cases. Mutual information is used
as a good measure to evaluate proposed signal constellations/mappings. New expres-
sion regarding discrete values is proposed to approximate the mutual information.
Many simulations regarding mutual information have been done for different constel-
lations/mappings. Based oﬁ simulation results comparison is made between proposed
and conventional constellations and mappings.

Based on new constellation/mapping schemes, a transmitter is designed with mul-
tiple transmit antennas. A receiver is designed based on iterative decoding and ML
detection. The receiver benefits using multiple antennas. Due to the exponentially
growing complexity of the optimal Maximum-Likelihood (ML) detector, List Sphere
Decoder (LSD) [31][32}{33] is applied as the inner detector at the receiver.

5



Contributions are detailed in point form as follows:

o Multi-dimensional constellation concept for MIMO-BICM-ID systems is pro-

posed.
e Design criteria for multi-dimensional signaling is suggested.

e Different mapping Schemes for 2-dimensional and 3-dimensional cases are illus-

trated.

¢ Mutual information expression is modified for simulating multi-dimensional sig-

naling.

e Simulations for 2-dimensional QPSK, 9-dimensional 8QAM and 3-dimensional

QPSK over AWGN and flat fading channels are performed.

e Proposed mappings are compared with conventional ones showing significant

improvement on system performance.

1.3 Organization of Thesis

This thesis in organized in five chapters.

Chapter 2 studies bit-interleaved coded modulation (BICD) and BICM with iter-
ative decoding for single input single output (SISO) channels. The influence of signal
mapping on the error bounds is discussed. It is shown that for a fixed convolutional
code and signal constellation, signal mapping plays a crucial role in determining the
error performance. MIMO channels are studied and MIMO systems using BICM-ID
concept are reviewed. In addition, Sphere Decoder and List Sphere Decoder algo-

rithms are described, which will be used in our proposed receiver.
6



In Chapter 3, Multi-dimensional mapping for MIMO-BICM-ID transmitter system
is introduced. The design criteria for this mapping scheme is explained. Design goal
is to minimize Bit Error Rate (BER) by using pairwise error probability under the
assumption of perfect a priori information at the demodulator/demapper. Mutual
information is modified and new expression for discrete values is proposed which is
used for simulations. At the end, some examples are provided and evaluated based
on mutual information.

In Chapter 4, the focus is to design a receiver which is counterpart of the trans-
mitter proposed in Chapter 3. The receiver performs based on iterative decoding.
The detector/demapper is designed according to the multi-dimensional constellation
proposed in Chapter 3. The modified detector/demapper works based on LSD.

Finally Chapter 5 concludes this thesis. Some future works are introduced in this

chapter as well.



Chapter 2

Background

In communication systems, fading is caused by interference between two or more
multi-path waves of the transmitted signal which arrive at the receiver at slightly
different times. In multi-path fading environment, correlation between sequential
fading coefficients degrades the error performance. The key parameter in determining
error performance of any communication system over fading channel is diversity order
[9]. In TCM systems, to reduce the correlation between fading coefficients symbol
interleavers can be used [10]. Using symbol interleaver, the diversity order will be
limited to the minimum number of distinct symbols between any two codewords.
Thus, diversity can be increased by avoiding parallel transitions and increasing the
constraint length of the code. Zehavi suggested Bit-interleaved Coded Modulation
(BICM) for fading channels. The BICM system is built by a convolutional encoder
followed by an interleaver[11]. The comparison between BICM (using bit interleaver)
and TCM (using symbols interleaver) shows that BICM system outperforms TCM

by one dB at the bit error rate of 1072,



2.1 Bit Interleaved Coded Modulation (BICM)

2.1.1 The BICM System Model

A conventional BICM system is a serial concatenation of information source, convo-
lutional encoder, bit interleaver and M-ary modulator. Such a system is depicted in

Fig. 2.1(a). Information bits b are eneoded to produce ¢. Coded bits ¢ are passed

Interleaver

b | encoder € T % Modulator _s‘!
its I

|

|

|

|

(a) Transmitter

f———————— ———— Channel |--———————— 4

|
]
: De-interleaver
|

— De-modulator 1[_1 decoder

(b) Receiver

Figure 2.1: The BICM transceiver scheme

through a bit interleaver to produce u. Coded and interleaved bits are mapped to
the appropriate constellation points according to the mapping scheme. Convolutional
code is chosen to produce the largest Hamming distance dy for the given code rate
and constraint length. The pseudo-random interleaver permutes coded bits in order
to position adjacent bits as far as possible. The interleaver is used to break the fading
correlation and increase the diversity order to the minimum Hamming distance of the
convolutional code. It should be noted that, in Fig. 2.1(a) only one interleaver is used

instead of three separate interleavers which was Zehavi’s original proposed scheme.
9



Using m bit interleaver limits the flexibility of BICM and complicates the analysis [13].
In addition, using three separate inteleavers cause a fixed correspondence between the
output bits of the encoder and the label positions. This fixed correspondence results
in unequal error protection and suboptimal performance when the code is chosen at
random [13]. Then modulator input u is broken down into blocks of m bits. The k-th
block is denoted as v = [ug 1, Ug2, ..., Uk,m). Each block of m bits is mapped to one

of the signal points s chosen from M-ary constellation.

s = p(ug) = p(ug, Urz, Ur3) (2.1)

where 1(.) denotes the mapping scheme. For a non-selective Rayleigh fading channel,

the received signal can be written as,

Tk = QgSk + Nk (2.2)

where ry is the received signal at instance k, s is the transmitted signal, a; is a
Rayleigh random variable representing the fading coefficient of the transmitted signal
sy, and ny, is the Additive White Gaussian Noise (AWGN) with zero mean and variance
equal to %9 It should be mentioned that the fading coefficient can be constant for
few symbol duration (slow fading) or change from one symbol duration to another
(fast fading).

The receiver of BICM consists of demodulator, de-interleaver and convolutional
decoder. - Due to employing bit interleaver, joint demodulation and decoding for
Maximum Likelihood (ML) detection of BICM is needed. Therefore, it is impractical

due to complexity. In [11] Zehavi suggested a suboptimal method for decoding in two

10



separate stages: bit metric generation and Viterbi decoding [34]. From each received
signal 1, 2m log-likelihood bit metrics are produced, using ML rule. Considering one

channel use, log-likelihood bit metrics can be expressed as,

Mu;) = log P(rju; =b,a) ~ log Z P(r|s,a) (2.3)

SGQZ;
where Q¢ denotes the subset of constellation points whose label has the value b (“0”
or “17) in its i-th position. The notation ~ inicates the replacement by an equivalent
statistic. The function P(r|s,a) denotes the probability of receiving signal r given

the signal s and fading coefficient a. This can be written as,

P(r|s.q) = 27302 exp (-%ﬁ) (2.4)

where o2 is the noise variance. We can approximate equation (2.3) using log-sum

approximation and equation (2.4) as follows,

Alu;) ~ log Z P(r|s,a) =~ max log P(r|s,a) = — I’Ielgl Ir — as|? (2.5)
seQt S =

It means that, each bit metric is computed based on the minimum squared Eu-
clidean distance between the received signal r and the signal point s over the subset

s € ().

2.1.2 Signal Mapping Role Based on Error Bound of BICM

In this section, the influence of mapping on the BICM error performance based on

error bounds, is reviewed .

11



Let ¢ and € denote the transmitted sequence and decoded sequence with Hamming
distance d between them. P(c — €) denotes the pairwise error probability (PEP)..
In other words, it is the probability of choosing ¢ instead of the transmitted sequence
c. The PEP of a BICM system, with ideal interleaving, is a function of the Hamming
distance d between c and ¢ ,the labelling g and the signal constellation ). Therefore,
we can write PEP as,

Ple — &) = f(d, 1, Q) (2.6)

The union bound of the BER for a BICM system using a rate % convolutional
code, a constellation €2 and a mapping p is given by,
1 x>
Pb = 7 Z Cdf(d7 1, Q) (27)

k
¢ d=dy

where ¢; is the total information weight of all error events at Hamming distance d
and dy is the free Hamming distance of the code [13].

In reference [13], it is mentioned that averaging over all sequences ¢ and € is
impractical. Hence, a new tight bound called BICM expurgated bound for BICM
systems is derived. Also, some insights into the asymptotic performance of BICM at
high Signal to Noise Ratio (SNR) in given [13].

BICM performance is degraded over AWGN channel due to random modulation
caused by interleaver. However, BICM performs well over Rayleigh fading channels.
It is shown in [11] that, Free squared Euclidean Distance (FED) of BICM is given by

where dy is the free Hamming distance of a code and d,,;, is the smallest Euclidean
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distance between the constellation points. For example in a 8PSK constellation
Apnin = 24/ E Sin(%), where F is the symbol energy. It was shown that, generally the
FED of BICM is a few dB lower than its counterpart TCM [11]. Hence, conventional
BICM is less efficient than TCM for Gaussian channels.

In Rayleigh fading channels with perfect Channel State Information (CSI), the
harmonic kmean squared BEuclidean distance determines the asymptotic performance

of a BICM system and is defined as [13][15],

~1

(2.9)

TR E 3) 3p ppems

=1 b=0 te

3—5“2

where m = log, M, M is the size of constellation, and § € Q% denotes the nearest
neighbor of s. The asymptotic performance of BICM over Rayleigh fading channel is

approximated by [13][15],

d E
logyo Py = *1—16 [(R -y (1))a + (Nbo> } + constant (2.10)
dB

where dg is the minimum Hamming distance of the code and R is the data rate.
Another parameter which has influence on the error performance is introduced as
distance spectrum of Euclidean distances for mappings with the value N(dg) [29]. 1t

is defined as,

N(dg) = —%= ZZ Z Ny(dg, sk) (2.11)

i b=0 bkeﬂl
where Nn(dg,sx) is the number of syme)IS § € Q% at FEuclidean distance dg of

the symbol s, € Q, averaged over all bits ¢ = 1,2,...,m and 2™ symbols. The

distance spectrum obviously depends on the specific mapping and should be as small
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as possible.

Based on the error bound of BICM system, it can be observed that for a fixed error
control code and fixed constellation, signal mapping has a significant effect on the
error performance of the system. In [13] Gray and quasi-Gray mappings are proposed

as optimal mappings for BICM systems.

2.2 Bit Interleaved Coded Modulation with itera-

tive Decoding (BICM-ID)

In this section the system model of BICM with iterative decoding is discussed and
the mapping role on the error performance of BICM is explained.

In the previous section, it was shown that BICM performs well over fading channels
by increasing diversity order of the system. However, the performance of BICM is
degraded over AWGN channels due to “random modulation” caused by interleaver,
Therefore, conventional BICM systems are less efficient than TCM systems [11].

Recently, the success of turbo codes has shown the advantages of iterative pro-
cessing in the decoding of concatenated coding schemes. Applying iterative decoding
to BICM was studied in [35]. It is shown that BICM-ID with hard-decision feedback
compares favorably with TCM over AWGN channels, while it significantly outper-
forms the BICM over fading channels.

In the BICM-ID, the feedback from robust data sections (i.e. less affected by noise
or other channel impairments) can remove the ambigﬁity in the high orderd demod-
ulation and enhance the decoding of weak data section (i.e. more affected data by

noise). It is obvious that error in feedback leads us to choose the wrong constellation
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point. Therefore, it is crucial to reduce the effect of feedback errors and control the

error propagation. Hence, BICM-ID with soft-decision feedback and well-designed

interleaver should be considered. We exclude the BICM-ID with hard-decision feed-

back from our studies. The following section discusses soft-decision BICM-ID receiver

i more detail.

2.2.1 The BICM-ID System Model

The BICM-ID scheme is illustrated in Fig. 2.2. The transmitter performs exactly the

same as BICM transmitter which was discussed in the previous section.

nformation\ U
bits

As Fig. 2.2 shows, the receiver uses suboptimal iterative method.

encoder

Interleaver

\d
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Figure 2.2: The BICM-ID transceiver scheme

Decoded

bits

It utilizes

two separate Soft-input Soft-output (SISO) components. Demodulator and decoder

individually perform optimal. Fig. 2.3 illustrates the soft-decision receiver where,
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the a priori information for the variable z is represented as P(x; ) and a posteriori
probability is denoted by P(x;0). Demodulator generates a posteriori P(vy; O) in-
formation based on the received signal and the received a priori P(vg;I) information.
It should be noted that, a posteriori information sometimes refers to as the ezxtrinsic
information in turbo code principle {2]. Then the deinterleaved eztrinsic becomes a
priori information P(cy;I) for the SISO decoder. The decoder generates eztrinsic
P(cy; O) information based on the received a priori information and trellis structure.
This extrinsic information after interleaving becomes as a priori information P(v; I)
for the demodulator. For the first iteration, a priori information is not available and
it is assumed that the transmitted signals are equally likely.

Interleaver

1
Povie; ) : Pley; O)
De-interleaver
De-modulator > 7['] .| SISO
™ P, O) Pley; 1) decoder —>
Received Plu,; O)
signal (1)

Figure 2.3: The receiver of BICM-ID system with soft-decision feedback

The a posteriori probability for the coded bits can be computed as,

P(vg =blr) ~ Y P(slr) ~ > _ P(r|s)P(s) (2.12)
se s}

where vy, is the k-th bit in the signal label and ¢ is the subset of constellation symbols
that have b (“0” or “1”) in their labels i-th position. P(s) is the a priori probability
of symbol s.

16



Using proper interleaving, m bits of the symbol label are independent. Therefore,

the a priori information of the symbol s can be written as,

P(s) = HP(%: = v;(s); 1) (2.13)

where v;(s) € {0,1} is the value of i-th bit in the symbol s label. Using equations
(2.12) and (2.13), the extrinsic information which is generated by the demodulator

can be written as,

Ploe=blr)  (Zeeny POISIP(s))

Ploe=60)= 5, =00 =~ Plo = B11) -
+ Z (P(T|S) H‘P(Ui = vi(s);l))
se ik

Equation (2.14) indicates that the bit metrics for one bit is calculated from the a
priori probabilities of the other bits in the same symbol. The final decoded output is
made at the final iteration based on extrinsic information P(uy; O). This information
is also the total a posteriori probability since P(uy; 1) is not used [15].

The interleaver design is critical to achieve high performance in BICM-ID sys-
tems. The interleaver should be designed to increase free squared Euclidean distance
conditioned on the ideal feedback (FEDC) and to mitigate error propogation during

iterative decoding.
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2.2.2 Signal Mapping Role Based on Error Bound of BICM-

ID

Signal mapping has the crucial effect on the error performance of BICM-ID systems.
This influence can be evaluated by two Euclidean distances, which are the harmonic
mean distance d? and harmonic mean distance with perfect knowledge about other
bits Ji The harmonic mean distance d? for any M-ary constellation, can be calculated

as follows,

-1

a2 = %Z > s_js‘ﬁ (2.15)

i=1 seQf

where m = logy M and €} denotes the constellation symbols whose labels have the
value b (“0” or 7“1”) in their i-th position. The symbol § in equation (2.15) belongs
to Q;-) where b is the compliment of b. § is the nearest neighbor of s. The harmonic

mean distance with perfect knowledge about other bits J}: can be computed by,

-1

- I 1

i=1 seqi
where § € €2 has the same label as s except at the i-th position.
The distance d? affects the asymptotic performance of the BICM while J,ZL affects
the asymptotic performance of the BICM-ID. The asymptotic performance of the
BICM-ID system is defined as [28],

d ~ E
logyg Py = —1—15 [(R ~d2(p)ap + (W%) } -+ constant (2.17)
dB

where P, is the probability of bit error, dy is the minimum Hamming distance of
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the convolutional code and R is the data rate. From equation (2.17), it can be
observed that the code and the mapping have independent impacts on the asymptotic
performance. Therefore, for a fixed convolutional code, a mapping should be chosen
that maximizes d? while still a large enough d? is needed to make the first iteration

work [28].

2.3 MIMO Channel Model

In wireless communication, due to surrounding environment different two or more
multi-path waves of the transmitted signal arrive at the receiver at slightly different
times. When these signals are arrived at the receiver, they may add constructively or
destructively depending on the random phases of the signals arriving at the receiver.
This phenomenon is known as fading. Fading can be characterized as frequency
non-selective fading and frequency selective fading. -In the flat fading channels, the
transmitted signal bandwidth is smaller than the coherence bandwidth of the channel.
In frequency selective fading, the transmitted signal bandwidth is larger than channel
bandwidth. This causes different frequency components in the transmitted signal
experience different fading attenuation. Therefore, the received signal is a distorted
version of transmitted signal.

Fading can also been characterized as fast or slow fading. This definition is based
on how rapidly channel changes regarding the transmitted signal duration [36]. The
envelope of the received signal can be described as Rayleigh distribution or Ricean
distribution.

In this thesis we only consider the Rayleigh flat fading channels. The channel is

unknown for the transmitter but for the receiver it is perfectly known.
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The MIMO channel with N; transmit and N, receive antennas is illustrated in Fig.
2.4. The channel path connecting antenna i to antenna j is modelled by a complex
Gaussian distributed coefficient h;; with E[h;;] = 0 and E[|h;;|?] = 1, where E[]
is the mathematical expectation. The path gains are collected to form an N, x N;
channel matriz H[h;;]. The entries of channel matrix are assumed to be statistically

independent.

Figure 2.4: The MIMO channel

At time period k, the channel output is the superposition of the NV, transmitted
symbols weighted by the corresponding path coefficient. This can be expressed as

follows:

| P
Y = 1/ o Hisg + n (2.18)
Ny

where yi = [Yr1, Yka, -, kN, |7 is the received vector , sy, = [s1, Sk2, -y Sk, )7 1S the
transmitted signal vector and ny = [ng1, nkg, ..., ngn, |7 is the additive white Gaussian
noise vector with zero mean and variance o2 = Noly,. P is the total tranmit power
over N; antennas.

Traditionally fading was viewed as a disadvantage to the wireless system. But,
20



with the progressing of MIMO systems, it is thought that fading can be beneficial.
This is because fading increases the degrees of freedom available for communication.
This is indicated by the capacity of the ergodic MIMO channel with V; transmit and

N, receive antennas which can be expressed as [6][5]

3

C(SNR)=E [log det(Ty, + 2 RHHH)} (2.19)
t
C (SNR) ~ min(N,, N,) log <§%§) ¥ high SNR (2.20)
t

We observe that at high SNR, the channel capacity increases with SNR as
min(N;, N,.) log (&’]\\/{—tR) bits per channel use. It shows that the capacity grows linearly
with the smaller of the numbers of transmit and receiver antennas in rich scattering en-
vironments [5][6][20]. Moreover, using MIMO systems, the reliability is increased due
to diversity. For a MIMO system with /V; transmit and N, receive antennas, assum-
ing that the path gains between two individual antennas are independently Rayleigh
faded, the achievable maximal diversity gain is N, x N, [17][18]{19]{37][38][39]. Bell-
Lab Layered Space-Time (BLAST) system is one of the practical space-time schemes
that offers high spectral efficiency through its use of multiple antennas. The original
BLAST is the D-BLAST (diagonal-BLAST) proposed by Foschini [40]. D-BLAST
system offers efficient spatial diversity in expense of a high implementation complex-
ity due to the use of specialized inter-substream block coding. V-BLAST (Vertical
Bell-Lab Layered Space-Time) overcomes this limitation by excluding inter-substream
block coding [21][22}[23]. Thus V-Blast does not utilize spatial diversity. V-Blast

method can be interpreted as spatial multiplexing.
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2.4 Bit Interleaved Coded Modulation for MIMO

Multiple-input Multiple-output channels promise high improvement in the spectral
efficiency of the system [5][6}[20]. Combining MIMO systems with BICM and a
posteriori (APP) decoding, makes this technique more efficient. This combination is
studied in [26]. Fig 2.5 depicts the transmitter for such a system. The transmitter
performs in the same fashion as BICM which is discussed in 2.1.1. Using a serial
to parallel (S/P) component after the modulator, symbols are transmitted over N,
different transmit antennas. In other words, at each channel use the symbol vector
s = [s1,82,...,8N,]T which is a function of N; x m bits (m = log, M and M is the

constellation size) will be transmitted.

Nt

Interleaver

s b C U s
encoder o1 Modulator S/p

Figure 2.5: The transmitter of BICM for MIMO system

b

To recover the information bits, soft information of the coded bits needs to be
extracted from the received signals. In iterative receivers, such as BICM-ID, usually
a detector provides the receive symbol and using a priori information, the a posterior:
(AAP) information is computed. The receiver of BICM for MIMO system is shown
in Fig. 2.6.

Since coded bits have been randomly interleaved, it is possible to compute the
probability of ¢; = b where b € {0,1}. This probability is called a posteriori and can
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Figure 2.6: The receiver of BICM for MIMO system

be expressed as,

APP(c;j) = plejly)
_ Phle)ple) (2.21)

, 7=1.. Ny xm
p(y)
where y is the received vector which is described by equation (2.18) and p(c;) is
the a priori information. The conditional probability of the bit ¢; is determined by

marginalizing the joint density of all bits. This can be expressed as,

P(YICJ) = Z P(y7617627"'acNtXmlcj)
i €{0,1},i=1,.., Ny xm,i#j

= Z P(ylclac%~"aCNt><m)HP(C[)

ci€{0,1},i=1,....Nyxm,i] I#j

(2.22)

An essential part of calculation of APP is computing the likelihood function
P(yler,c2,...;cnyxm) and assuming ¢ = [c1,C2, ..., CN,xm)- The APP can be found

easily from the equation (2.18) as,
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exp (5 - |ly — Hs|?)
(27['0’2)Nt

P(yls = map(c)) = (2.23)

where o in the noise variance.

This information is passed through an interleaver and then processed by a SISO
decoder. The SISO decoder produces an eztrinsic information Ext(c;). This informa-
tion after interleaving becomes a priori probability P(c;) for the coded bits ¢;. This
exchange of information continues until final iteration. The final decision is made
based on a posteriori probability generated by the SISO decoder at the last iteration
and b; =0 if APP(b; =0) > APP(b; = 1) otherwise b; = 1.

2.5 Sphere Decoder

For detecting the received signal in MIMO systems, the mazimum a posteriori (MAP)

is one of the decision rules and is defined as,

§ = arg mag:{P(sly)} (2.24)
s€
where (2 is the constellation.
Another decision rule is Mazimum Likelihood (ML) rule which can be expressed
a's’
§ = argmin{|ly — Hs||?} (2.25)
s€

In other words, ML method chooses the symbol at the nearest distance to the

received signal. In fact ML rule is equivalent to MAP rule if the transmitted signals
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are equally likely.

It is shown that the best approach for detecting received signals is Maximum
Likelihood (ML) detection approach {41]. ML promises the optimal performance.
In the ML approach all the constellation points are checked to find the one which
satisfies the equation (2.25). The major concerns in detecting usin ML approach, is
the complexity. The complexity is growing exponential with the size of constellation.
Therefore, ML detection is not feasible. For example, if a 8 x 8 MIMO system and
16QAM constellation is used, the ML detector needs to search over 16% ~ 4 x 10°
symbols.

To make its use possible, the ML detection algorithms with reduced complexity
have been proposed, such as the Sphere Decoding algorithm. SD is first proposed in
[32] and expanded to MIMO systems in [31].

We try to search over only constellate points that lie in a fixed sphere of radius d

around the given vector z. This idea is illustrated in Fig. 2.7

Figure 2.7: Idea of Sphere Decoding
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Choosing the radius is one of the major concerns in using SD. If the radius d is
chosen to be too small, only a few points will be found inside the sphere, this reduces
the method performance. On the other hand if d is chosen to be too large, sphere
contains many points and this slows down the SD detection.

Note that ||n||? = ||x — Hs]|? is a x? random variable with n degree of freedom.

In fact the radius is a linear function of the noise variance, Therefore

4 = ano? (2.26)

where « is the tuning parameter and trying to satisfy P(||n]|? < d?) =1 —¢(1 — € is

set to be very close to 1). a can be achieved by solving the following equation,

n

51 N
—e "dA=1—¢ (2.27
L @ )

2

In the following, the general Sphere Decoding method is described [33].
It is assumed that channel matrix H is known perfectly at the receiver. The

constellation point Hs lies inside a sphere of radius d centered at x if and only if
Ix — Hs||? < d> (2.28)

()R factorization of the matrix H is used in order to make the equation (2.28) easier

to be solved.

R
H=Q (2.29)

O(n—m)xm
where R is an m x m upper triangular matrix, and Q = [Q;Qz2] is an n x n orthogonal

matrix. The matrices Qq and Q, represent the first m and last n — m orthogonal
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columns of Q, respectively. We can rewrite the equation (2.28) using equation (2.29),

as follows

2 2

R
> lIx—[Q Qi s|| = X — s
0 4 0 (2.30)

= |Qi"x ~ Rs||* + |Q}'x|?

where (.)" denotes Hermitian matrix transposition. Equation (2.30) can be rewritten

as,

& — |Q7'x|* > |1Qi'x — Rs||? (2.31)

Defining y = Qz and 2 = & — ||QH z||2, we can rewrite the last equation as,

m m 2
d* > Z <y, — Zri’jsj) (2.32)
i=1 =1

where r; ; denotes an (¢, j) entry of the R. Using the upper triangular property of R,

we can rewrite equation (2.32) as follows,

Ciz Z (ym - Tm,msm)2
(2.33)

2
+ (ymfl - 7”m—l,'msm - rm—l,m—13m~—1) + ...

It can be observed that in equation (2.33), the first term depends only on s,,, the
second term on {s,,, S;»_1} and so on. Therefore, d? > (Ym — TmmSm)? IS a necessary
condition for Hs to be enclosed in the sphere. This inequality can be written in the
following form,
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[M] < sm < [dQ*—y””‘J (2.34)
T'mn Tm,m

where [.] denotes rounding to the nearest larger elements in the set of numbers that
spans the lattice. Similarly, |.] denotes rounding to the nearest smaller elements in
the set of numbers that spans the lattice.

For each s if s,, satisfies equation (2.34) then the next dimension s,,—; should be

checked. The radius for the next dimension can be defined as

d?n—l = d’z - (ym - rm,msm)2 (235)

and considering

Ym—1im = Ym—1 — Tm—-1,mSm (236)

simplifies the calculations in the next dimension. Therefore, s,,_; belongs to

"CiQ m—1lm d,2 + ™m—
[ mo1 ¥ Y-l ] < 8ot < {——————’”“1 Ym—tjm (2.37)

Tm—1,m—1 T"m—1,m-1
This progress will be continued untill s;. Thus, all constellation points belonging

to (2.28) are obtained. The formalized algorithm can be found in [33].
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Chapter 3

Constellation Mapping
Optimization for MIMO-BICM-ID

It has been shown that when signal constellation, interleaver and error control code
are fixed, signal mapping has a crucial influence on the error performance of a BICM-
ID system [15}[27][28][29]. Recently, Multi-dimensional mapping has been proposed
in [42][43] for Single-Input Single-Output BICM-ID systems.

To maximize the gain of iterative decoding, we make crucial changes to traditional
mappings. In this chapter, Multi-dimensional mapping for MIMO-BICM-ID systems
is introduced. The design criteria for this mapping scheme is explained. Design goal is
to minimize BER by using pairwise error probability under the assumption of perfect
a priort information at the demodulator/demapper. At the end, some examples are

provided and evaluated based on mutual information.
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3.1 System Model

In this thesis, we consider the BICM-ID system using multiple transmitter antenna
depicted in Fig. 3.1. The transmitter is a serial concatenation of the information
source, an encoder, a bit-interleaver (), a serial to parallel convertor and a Multi-
Dimensional mapper. The information bits b are first encoded by an outer convolu-
tional encoder of rate R, to produce the output coded bit sequenée. The convolutional
code is chosen to be optimal in the sense that it gives the largest free Hamming dis-

tance dy for given code rate and constraint length. The coded bits are permuted

)

randomly by the pseudo-random interleaver, the output sequence is c.

. | e -
P R Interleaver P Multi- E
. c i . . . :
@ormatlon Souj _b.> encoder T E— S/P - dimensional ’
S — : .
e ; i mxNt Mapper
: e Nt

Figure 3.1: The transmitter of MIMO-BICM-ID.

NV

Ematc

V-Blast
Signal
Processing

Tx data

et

Figure 3.2: V-BLAST Transmitter

For conventional MIMO-BICM or to be more precise V-BLAST-BICM systems,
a coded and interleaved bit sequence is demultiplexed into N; sub-sequences. Then

each sub-sequence bit stream is fed to its respective transmitter. At the transmitter
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each m = log, M bits are mapped independently to one of the signal points chosen
from an M-ary constellation. Hence at each time slot &, N, different and independent
signals will be sent over N, transmit antennas as shown in Fig. 3.2 . In contrast to the
conventional systems, in the proposed design, the sequence of N coded and interleaved
bits, [co, €1, ..., Cn.1], is broken down into blocks of m x n bits, which m is the number
of bits per conventional complex symbol and n is the number of dimension. It is
assumed that the number of dimensions is equal to the number of transmit antennas.

The kth block is denoted as

Ck = [Cko, Ck1; - Ch(mxn—1)] (3.1)

where ¢; is a coded and interleaved bit which gets a value of either 0 or 1(0 < i <

mxn—1),1<k<K, and K = _-2) Now ¢ bits are simultaneously mapped

mxn

to n parallel M-ary signal points ( n x 1 vector, where n = N,). This will make a

bigger constellation ¢ in n dimensions, having M" signal points, where

S; = ,U(Ck). (32)

p(-) denotes the multi-dimensional mapping function, choosing one of the n-
dimensional signals according to m x n bits. In proposed constellation each signal

point can be represented as a vector:

8 = [T14, 265 -y Tng]” (3.3)

where z,;, represents the p-th conventional M — ary constellation point.

The main difference between conventional mapping scheme and our multi-dimensional
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mapping is that in our scheme, choosing each symbol z,,; € Q , 1<p<n is a function
of m x n bits while in the conventional scheme it merely depends on m bits. It is
clear that conventional mapping scheme can be a special case of our proposed one,
when n = 1. On the other hand our scheme does not change spectrum efficiency.

We consider the transmission of data frame over a frequency-nonselective Rayleigh
fading channel with NV, transmit antennas and N, receive antennas. As a conventional .
multiple input multiple output (MIMO) system, the channel path connecting antenna
i to antenna j is modeled by a complex Gaussian distributed coefficient h;; with
E[hi;] = 0 and E[lh;]?] = 1, where E[] is the mathematical expectation. The path
gains are collected to form an N, x N; channel matriz H[h;;]. The entries of channel
matrix are assumed to be statistically independent.

At time period k, the channel output is the superposition of the N, transmitted
symbols weighted by the corespondent path coefficient. This can be expressed as

follows:

Vi = Hg.sp +ny (3.4)

where yx = [yr1, Yr2, ..., Ukn,]T is the received vector , si = [sk1, Sk2, .-, Sk, )T is the
transmitted signals vector and ny = [ng, nga, ..\ nin, )T is the additive white Gaussian
noise vector with zero mean and variance o2 = N,Iy, .

In this thesis two types of channels are considered. The first type is quasi-static
Rayleigh fading channel (block fading) where the channel maintains constant in one
modulation block but it may change from biock to block. Hence the channel is not

necessarily constant for a coding frame which usually consists of a large number of
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modulation blocks. The second type is non-static Rayleigh fading (fast fading) chan-
nel where the channel changes randomly and independently at each symbol period.
In this thesis to avoid increasing complexity we assume equal number of transmit

and receive antennas (N,=N,).

3.2 Design Criterion for MIMO Mapping

In this section, we derive a criterion for optimal mapping based on pairwise error
probability (PEP).
Let’s P(S; — gk) express the probability of choosing S, instead of the actual

transmitted signal Sy. P(Sp — S’A;\) can be written as:

P(Sk — SK) = Q (-d—) (3.5)

20,

where o2 is variance of AWG noise and can be denoted as % . Hence we can rewrite

n

equation 3.5 as:

P(Sk — ) = Q (\/%) (3.6)

where d is the Euclidean distance between S, and Se. In a MIMO systems where

channel matrix H is perfectly known in the receiver, d can be expressed as:

d=/IH(Sk = SOI* . (3.7)

Hence the pairwise error probability (PEP) in equation (3.5) can be rewritten as:
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20,

. V ISk = S)lI? — Sl
Pls - G —q [ VW) \/——”H(S;NS")”) 39

An upper bound for Q-function is used, called Gaussian Tail approximation. It is

derived from the chernoff bound [36] and states:

2
Qz) < %exp(—%), x> 0. (3.9)

The use of this bound in equation(3.8) gives:

sy oL (S, — Si)|I?

3.2.1 Design Based on Pairwise Error Probability

Assume two codewords ¢ and ¢ which differ in d bits (Hamming distance). Assuming
ideal interleaving, these d different positions will be spread in space and time over
d distinct transmission period. Let P(c — ¢) denotes pairwise error probability
(PEP), i.e. choosing the sequence € instead of transmitted sequence c¢. This PEP
can be achieved by averaging over all symbols defined by constellation and all bit

positions(g) as it is determined in [13].

d

P(c— &) = p .12(] D3N P(Se— S (3.11)

=1 b=0 spe¢} sp€d}

where s; € ¢! denotes symbols whose labels have the value b € [0, 1] in their i-th
position similarly, §; € gb% are symbols with b in their i-th position.
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Obviously the pairwise error probabilities of symbol vectors with a small Euclidean
distance dominate the overall error performance. This depicts the playing role of the
mapping in error bounds.

Substituting equation (3.10) in (3.11) and considering number of bits in proposed

multi-dimensional signal mapping, result in:

d

. - IH(Sx — Se)lI”

Plc— &) = — 2nm+l ZZ Z Z exp ( SR (3.12)
i=1 b= Osk@p’ §k€¢’

Based on PEP in equation (3.12) and considering the influence of Euclidean dis-

tance of pairwise symbols, the criteria to choose the best mapping can be defined as

optimization of the cost function § where

0= EH Qnm+1 ZZ Z Z exp ( lI—ISi\L]\]—()S’c)'|2) (3'13)

i=1 b=0 sk€¢’ 3k€¢1

and En[-] denotes mathematical expectation over channel matrix H. Equation (3.13)

can be rewrite as:

L Ll ))IPIP I

i=1 b=0 skeqS’ §k€¢'

exp <-—”—Hg§i—];—o—skl|z)} (3.14)

The result of the expectation in equation (3.14) will be different for AWGN, slow

fading and fast fading channels. Considering slow fading situation and using the
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procedure shown in [18], the criteria function is simplified as:

nmn

1 ! 1
5:WZZZ ZW (3.15)

i=1 b=0 Sk€¢§, éke¢% 4No

It should be noted that ¢ in equation (3.15) depends on the channel signal to
noise ratio. On the other hand, § depicts the signal mapping effect on the asymptotic
performance of MIMO-BICM-ID systems, the smaller cost function (6) the lower
asymptotic bit error performance.

In the next chapter numerous simulations are performed for AWGN, slow fading
and fast fading channels which show good performance for cases. The criteria obtained
in equation (3.15) has been used as a general cost function to choose the mapping
schemg over all kinds of channels in this thesis.

As it is mentioned, the derived criteria is based on pairwise error probability, in
other words, the Euclidean disténce between two symbols which are common in all
bit positions except one is maximized. Therefore, we are intuitively using the genie
method that assumes perfect a priori information [44].

An optimum mapping is the one that minimizes the cost function defined in equa-
tion (3.15). It is obvious that for a crowded constellation, an exhaustive search to
find a mapping that yields the smallest values of the cost function, is impossible due
to the complexity. To avoid long searches, we use Binary Switching Algorithm (BSA)

in this thesis as explained in the next section.
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3.3 Modified Binary Switching Algorithm

Binary Switching Algorithm (BSA) is proposed first in [30]. The main idea involves
iteratively switching the index of two symbols to reduce the cost function (3.15).
BSA starts with an initial mapping, using cost function () in equation (3.15). Then
cost of each symbol and the total cost corresponding to all symbols existing in the
constellation are calculated. Afterwards, an ordered list of symbols sorted by the
decreasing cost is generated. The symbol with the largest cost (the one with the
strongest contribution to the poor performance) is selected as a candidate to be
switched first. The label of this symbol is switched temporarily with the label of
another symbol, and the total cost regarding the tentative switch recalculated. To
determine the possible decrease in total cost following each switch. Eventually, a
switch is selected such that the decrease of the total cost due to that change is as large
as possible. If such a switch cannot be found (an unsuccessful switch attempt), then
the symbol with the second highest cost is chosen to check for the possible decrease
in total cost. This process is continued with all the symbols in the decreasing ordered
list till a successful switch occur. Following each successful switch a new decreasing
order list is generated and the process starts over. This will be continued until no
further decreasing in total cost is possible due to switching the label of symbols. Then
the algorithm halts in a locally optimal state.

Since the outcome of applying BSA is locally optimum, different initial mappings
results in different output mappings. In other words, the output of the BSA is depen-
dent on initial mapping. For initializing mapping the simplest method is to choose an
arbitrary mapping. Applying several random initial mappings leads to the presumable

global optimal mapping.
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As noted previously, the default for the algorithm is to keep running until a local
optimum is reached. In this case, if the index of two symbols are switched, then no
decrease in (§), can result. This halting condition can yield extremely long running
times for crowded constellations. The other option is to define a poor upper bound
on running time considering maximum number of index switches possible or define
an upper bound for iteration! numbers. BSA procedure is described in Fig. 3.3.

In this thesis, our goal is to modify the conventional signal mapping in order to
improve the error performance, therefore this mapping scheme is used as the BSA
initial mapping. Then, the proposed mappings are evaluated as explained in the next

section.

3.4 Proposed Mappings for MIMO-BICM-ID

In this section, improved mapping schemes for BICM—ID over MIMO systems is pre-
sented based on the design criteria introduced in the previous sections. It is assumed
that the system operates over Rayleigh block fading channels.

In the following subsection the mapping for several kinds of signaling is presented;
four signal mapping corresponding to 2-dimensional case and one for 3-dimensional.
In 2-dimensional signaling three different kinds of well known conventional constella-
tions QPSK, 8QAM and 8PSK are used. QPSK signaling is also used in 3-dimensional
constellation. To increase the data rate more crowded constellations such as 16QAM
and 32QAM can be used in the expense of adding complexity. The complexity will

increase exponentially with increasing the constellation order.

1The completion of each switch or unsuccessful switch attempt constitutes the end of an iteration
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Figure 3.3: Binary Switching Algorithm(BSA) procedure block diagram
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Figure 3.4: 2-dimensional QPSK constellation scheme
X137X24 —1 X11,X21 — 2 X13,X22 —3 X1, X3 — 4
X2, X920 — 5 X14,X23 — 6 X127X24 — 7 X4y X91 — 8
X1, Xoa — 9 | Xi3, Xo1 — 10 | X1, Xop — 11 | X3, Xo3 — 12
Xia, Xo2 = 13 | X114, Xo3 — 14 | X4, X4 — 15 | Xq1, Xo1 — 16

Table 3.1: The proposed mapping for 2-dimensional QPSK scheme

3.4.1 The proposed mapping schemes

In each multi-dimensional case, the required mapping can be obtained by minimizing
the cost function § as introduced in equation (3.15). Such mappings are found for 2-
dimensional QPSK, 2-dimensional 8QAM, 2-dimensional 8PSK and 3-dimensional
QPSK by computer search using BSA. The proposed mapping for 2-dimensional
QPSK is depicted in Fig. 3.4 followed by table 3.1 which shows the index assign-
ments for corresponding constellation.

The proposed mapping for 2-dimensional 8QAM is depicted in Figs. 3.5 and 3.6
followed by tables 3.2 and 3.3 which show the index assignments for corresponding

constellations.
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X18, Xog — 1 | X1, Xop =2 | Xig, Xn — 3 | X511, Xpg — 4
Xi5, X933 — 5 | Xi, Xog— 6 | X, Xog =7 | Xy, X2 — 8
Xi5, X22 — 9 | Xy, Xos — 10 | Xis, Xoz — 11 | Xy3, Xop — 12
X2, Xo7 — 13 | Xie, Koz — 14 | Xig, Xo6 = 15 | X1y, X0 — 16
Xz, Xo1 — 17 | Xig, Xos — 18 | Xy, Xp5 — 19 | Xy2, Xog — 20
X]B’X22 — 21 X13,X26 — 22 X14,X28 — 23 X]g,Xz4 — 24
X12,X26 — 25 X16,X22 — 26 X13,X28 — 27 X17,X24 — 28
X5, Xog — 29 | X1, Xo1 — 30 | Xi7, Xo3 — 31 | Xig, X7 — 32
Xis5,Xo1 — 33 | Xq2, X5 — 34 | Xi3, X5 — 35| Xi7, Xog — 36
X12,X22 — 37 X15,X26 — 38 X15,X28 — 39 XH,X23 — 40
X117X26 — 41 X16,X27 — 42 X16,X28 — 43 X12,X24 — 44
X15,X25 ~» 45 X12,X21 — 46 X12,X23 — 47 X15,X27 — 48
X14,X25 — 49 X17,X22 — 80 X18,X27 — 5l X14,X23 — 52
X17,X25 — 53 X14,X21 — 54 X13,X23 — bd X17,X27 — 56
Xlg,Xgl — 57 X14,X24 — b8 X16,X24 — B9 X17,X28 — 60
X13,X22 — 61 X17,X26 — 62 X187X28 — 63 X13,X24 — 64

Table 3.2: The proposed mapping for 2-dimensional 8QAM scheme(1)

Xie, Xog — 1 | Xi3, Xoqg —2 | Xpy, Xoz >3 | Xyg, Xor — 4
X11, X5 = 5 | Xig, Xoz =6 | Xig, Xoo — 7 | Xy3,X06 — 8
X14, Xo1 — 9 | X5, Xo7 — 10 Xyz, Xog — 11 | Xy, Xogy — 12
X17,X22 —> ].3 X12,X28 — 14 Xlg,Xg5 hand 15 X15,X21 — 16
X11,X21 ad 17 Xlg,X27 — 18 X167X28 - 19 X11,X24 — 20
X16,X22 — 2]. X13,X28 — 22 X13,X25 —F 23 Xlg,X21 — 24
X17,X26 g 25 X12,X24 — 26 X14,X23 — 27 X17,X27 — 28
X14,X25 — 29 X15,X23 — 30 X15,X22 — 31 X127X26 — 32
X7, Xo1 — 33 | Xia, Xo7 — 34 | Xy, Xog — 35 | Xi7, Xog — 36
X4y X92 — 37 | Xy5, Xog — 38 | Xi5, Xog — 39 | Xia, X9y — 40
X1, Xo6 — 41 | Xig, Xog — 42 | Xy, Xoz3 — 43 | X1, Xoy — 44
X6, Xo5 — 45 | X3, Xo3 — 46 | Xy3, Xog — 47 | Xy5, Xog — 48
X4, Xo6 — 49 | Xi5, Xog — 50 | Xy7, X3 — 51 | Xyy, Xoy — 52
X7, Xos — 53 | Xyo, Xo3 — 54 | Xio, Xog — 55 | X5, X6 — 56
X16,X21 hard 57 X13,X27 — b8 X11,X28 — 59 X16,X24 — 60
X1, Xoo — 61 | Xy, Xog — 62 | Xyg, Xo5 — 63 X13, Xp — 64
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Figure 3.5: 2-dimensional 8QAM constellation scheme(1)
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Figure 3.6: 2-dimensional 8QAM constellation scheme(2)

The proposed mapping for 2-dimensional 8PSK is depicted in Fig. 3.7 followed

by table 3.4 which shows the index assignments for corresponding constellation.

The proposed mapping for 3-dimensional QPSK is depicted in Fig. 3.8 followed

by table 3.5 which shows the index assignments for corresponding constellation.
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v

Figure 3.7: 2-dimensional 8PSK constellation scheme

Xig; Xoo = 1 | X192, Xo6—2 | X2, X04 — 3 | Xi5,X98 — 4
X2, X913 — 5 X5, Xp4 — 6 Xig, Xo7 — 7 Xy1, Xog — 8
X11, X5 — 9 | Xyg, Xoy — 10 | Xy5, Xy — 11 | Xyg, Xo5 — 12
Xis, Xor — 13 | X1, Xog — 14 | Xig, Xog — 15 | Xy, Xpg — 16
X4, Xos — 17 | Xyg, Xog — 18 | Xyg, Xog — 19 | X34, X9y — 20
Xig, Xog — 21 | Xy3, Xog — 22 | Xyy, Xoz — 23 | Xq7, Xog — 24
X17,X21 — 25 X15,X25 haaed 26 X12,X25 - 27 X167X21 had 28
X13,X23 — 29 X17,X28 - 30 X16,X28 — 31 X13,X24 b 32
X2, Xog — 33 | Xi6, Xoga — 34 | Xy6, Xo3 — 35 | Xy, Xoy — 36
Xls,X25 — 37 X11,X28 - 38 X12,X22 — 39 .X]S,XQG — 40
Xis, Xog — 41 | Xyy, Xog — 42 | X3, Xog — 43 | X5, Xog — 44
X]l,XQl — 45 X15,X26 g 46 X14,X27 — 47 Xll,X23 - 48
Xig, Xo3 — 49 | X3, X9g — 50 | Xyy, Xog — 51 | X153, X — 52
X3, Xo1 — 53 | Xy7, Xog — 54 | Xig, Xoy — 55 | X14, Xoo — 56
X3, Xo7 — 57 | Xy, Xo3 — 58 | Xi7, Xo2 — 59 | X3, Xo5 — 60
Xi7,Xo5 — 61 | Xy3, Xop — 62 | Xyp, Xo3 — 63 | Xy7, Xo7 — 64

Table 3.4: The proposed mapping for 2-dimensional 8PSK scheme
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Figure 3.8: 3-dimensional QPSK constellation scheme

Xig, X201, X320 — 1

X2, Xo3, X3 — 2

X3, X23, X33 — 3

X11, X201, X34 — 4

Xi3, X294, X33 — 5

X14,X227X31 — 6

X117X227X34 — 7

X3, X4, X32 — 8

X137 X22) X34 -9

Xi1, Xo4, X34 — 10

X117X24,X32 — 11

X3, X2, X33 — 12

X11, X3, X31 — 13

X137X217X33 — 14

X3, X2, X33 — 15

Xi1, X4, X351 — 16

X1, X3, X3q — 17

X3, X21, X3; — 18

X2, X921, X33 — 19

X147 X237 X32 — 20

Xi2, Xog, X31 — 21

X1, Xog, X3z — 22

X4, Xoa, X32 — 23

X127X227X34 — 24

X2, Xog, X3 — 25

X4, X2, X33 — 26

X4, Xo9, X3y — 27

X2, Xog, Xz1 — 28

X4, Xo1, X33 — 29

Xi2, Xo3, X33 — 30

X12, X1, X3y — 31

X4, Xo3, X33 — 32

X192, Xo3, X34 — 33

X4, X201, X34 — 34

Xi1, Xo1, X302 — 35

X192, Xo3, X33 — 36

X4, Xog, X3 — 37

X9, Xog, X33 — 38

-X137 -X247 X34 — 39

X1, Xop, X33 — 40

X1, X0y, X33 — 41

X3, Xo3, X39 — 42

Xi3, Xo3, X33 — 43

X1, Xo1, X3 — 44

X3, Xog, X31 — 45

X1, Xog, X33 — 46

X1, Xo3, X3 — 47

X13, X213 X34 — 48

Xi3, Xo1, X32 — 49

X1, Xo3, X33 — 50

X137 X237 X34 — 51

X4, Xo1, X313 — 52

X127 X247 X34 — 53

Xi3, Xog, X31 — 54

X1, Xog, X302 — 55

X14, X4, X33 — 56

X4, Xo3, X33 — 57

X127X21,X34 — 58

812, S217 S32 — 59

Sl47 S237 534 — 60

X2, Xo2, X33 — 61

X4, Xog4, X31 — 62

5147 524a S34 — 63

312, 522, S3p — 64

Table 3.5: The proposed mapping for 3-dimensional QPSK scheme
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Figure 3.9: (X33, Xos — 14) illustration for 2-dimensional QPSK

In the above-mentioned tables, each entry (..., X;;,... — K) represents an n-
dimensional signal, where ¢ indicates the i-th dimension, j shows the position of
the corresponding signal in the conventional constellation and K is a decimal label
corresponding to m X n-bit binary number and (K)o = (m x n+ 1)2. Assume an
specific signal point (X;;, X23 — 14) chosen from table 3.1 which is a 2-dimensional
QPSK constellation. This signal represents “1101” binary bits and depicted in Fig.3.9.

Table 3.6 lists the parameter ¢ of proposed mappings at SNR = 10dB. It is
assumed that the average symbol energy is normalized to be one. For a fixed SNR
the cost function 4 in equation (3.15) can be interpreted as harmonic mean distance
with perfect knowledge of other bits (d%) Since d% affects the asymptotic perfor-
mance of a BICM-ID system, it is expected that a mapping with smaller § leads to
lower asymptotic performance in MIMO-BICM-ID systems. This is confirmed with
simulation in Chapter 4. Therefore, in the sense of achieving optimum asymptotic
performance in MIMO-BICM-ID systems, the constellation or mapping with smaller
¢ is required. Considering the table 3.6, 3-dimensional QPSK has the smallest &
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Constellation and Mapping Type )
2-dimensional QPSK 8.33e-02
2-dimensional 8QAM(1) 7.47e-02
2-dimensional 8QAM(2) 6.58e-02
2-dimensional 8PSK 6.51e-02
3-dimensional QPSK 4.53e-02

" Table 3.6: The parameter § for the proposed mappings

among the mentioned constellation and mappings.

3.5 Evaluation of Proposed Constellations/Mappings

Constellations and mappings can be evaluated basically in three ways. Mutual infor-
mation, EXIT charts and distance spectrums are suggested approaches. Using either
Mutual Information or EXIT chart is preferred in the sense of visualizing the charac-
teristic of the mapping or constellation. In this section, the proposed constellations

and mappings are evaluated based on mutual information.

3.5.1 Study of proposed constellations/mappings by Mutual

Information

One of the approaches to evaluate a mapping, is to measure the information about
the transmitted signal (X) provided by the received signal (Y) (channel observations).
This is expressed in [45]:

p(X,Y

vy o )
1(X;Y) _f?{p(x,y) log o ey (3.16)
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Consider an M-ary constellation ¢ where M = 2™. The channel output r is
described as:
r=H-s+n (3.17)

The average symbol-wise mutual information for SISO systems over AWGN chan-

nel is defined as:

p(r)

In the multi-dimensional case where each constellation signal represents n x m

I(sir) = - ;/_;wpmsk) Tog, 2158 4, (3.18)

bits, the average mutual information can be expressed as:

1 nxXm +oo 400 rls
M) = g > [ o) [ ptelsy) - tog, Bearan (39)
k::l —oQ —OC
where
p(r) = S ; p(r|sk) (3.20)

In the equation (3.19) integration over r and H are two-fold integrals. On the

other hand, p(r|s;) is easily found from equation (3.17),

1 lr — H - s5¢)?
p(rlse) = W - €Xp <——‘"—§0_2— (3:21)
whe_re 5 = 1\72—" (double-sided noise power spectral density) and N is the number

of dimensions. In our system of interest which is a specific case, N is equal to N

(number of transmitter and receiver antennas). For example consider a 2-dimensional
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case where the system uses two transmit and receive antennas over AWGN channel.

p(r|sk) can be written as,

nosPrial)

1

where receive and transmit signals are represented as ry and x; in dimension 1 and
as 1o and 15 in dimension 2, respectively.

For the multi-dimensional constellation over fading channels evaluating average
mutual information using several multi-dimensional integration is prohibitive. We can
estimate this mutual information with a Monte-carlo simulation. Consider transmis-
sion over AWGN channel with N,, samples of the noise, we use Monte-Carlo method

for simulating the symbol-wise mutual information using the following equation

p(r,lsy)
I(s;r) Z log, — (3.23)
" n=1 2n}(m i*l p(rn lsk)

This can be modified for transmission over fading channels. The mutual informa-
tion using Monte-Carlo simulation with Ny number of samples of channel state, can

be described as:

Ny N,
= = (rn |sn Hh)

onxm

h 1 n=1 2nxm k=1 prnlsk‘7Hh)

I(s;r) =

(3.24)

Here we define the bit-wise mutual information. Bit-wise mutual information is
a technique to measure the information about the each of the bits in a symbol label
by observing tile received symbol. This mutual information can Be defined in two
ways. One is evaluating bit-wise mutual information without any knowledge about

other bits Iy. The other one is bit-wise mutual information with perfect knowledge
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about other bits /;. Consider a MIMO communication system and let [¢1, 2, ..., Cpxm]
denote the n x m bits mapped to one symbol in the constellation ¢. The average

bit-wise mutual information without any knowledge about other bits can be expressed

as:
1 nxXm
Iy=—— > Hewr) , (3.25)
k=1
where

I(cp;r) = ZI ¢k = b;r) (3.26)

and I(cy = b;r) is calculated as:

Ha=bm) = [ o) [ | sy 3 slels)

o0
s;E0F

X (m—1 S5 kp j
2nx 0D seqk PULIS; ,

x log, -
L gt | Saycat PUEIS;) + Sy e plxlS;)]

[

2- ZsEd}k p(r[sj)
Hoe=bm) = gy 30 [ ot00) [ ptels) - log, o2 v
2 ( 1) S;%;:b Z?zl p(r|s;)

(3.28)

In equation (3.27), s;_€ ¢F denotes the symbols whose labels have the value

b € [0,1] in their k-th position. For the AWGN channel, the integration over the
probability density function p(H) of the channel state matrix in equation (3.34),
can be omitted. As it has been mentioned, evaluating this mutual information over
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fading channels and multi-dimensional constellations, involves with several two-fold
integrations. Consider transmission over fading channel with N,, samples of the noise,
we use Monte-Carlo method for simulating the average mutual information without

knowledge about other bits, using the following equation

Ny 235 eor PTals;, H)

1
‘[0 = 37 Z }OgQ X T
N" n=1 Z]Q':l p(r"lsj’ H)

In equation (3.29) s; € ¢¥ denotes symbols whose labels have the value of b in

(3.29)

their k-th position (b= p~!(s,), k). b gets the values of either “0” or “1” depending
on the k-th position of s,,’s label (r,, = H-s, + n,). In calculating Iy, if the channel
state is unknown in the receiver, averaging over samples of H is inevitable.

I, is the average bit-wise mutual information with perfect knowledge about the

n x m — 1 other bits. The expression for I, can be obtained as follows.

1 nxm )
L= . ; I(cy; r|all other n x (m — 1) bits are known) (3.30)

Let [c1, €2, ..., Cnxm) denote the n X m bits mapped to one symbol in constellation

¢. We define:

_c__j_k_: [61762: "'7Ck~1~,ck+17"'acn><m] (331)

and therefore (3.30)can be rewritten as:,

1‘ nxXm
= I{cy; r|Cy). .32
I nxm; (ck; x| Cie) (3:32)

I(ci;x|Cy) can be expressed as:
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. .
1
](Ck; I‘iCk) = — ](Ck = b;I‘iCk = Ck) (333)
— 2nxm —_—

b=0 ‘v’ck
where ¢ = [b1, b2, ..., bk 1, D11, buxom) and b; gets the values of either 0 or 1. Regarding

the mentioned assumptions we evaluate I{c, = b; r|Cy = c;) by numerical integration:

+00 +o00
I =b;xr|Cx =€) = / p(H)/ p(rier =b,Cy = cy)

e o 3.34
2 p(rjcy = b, Cx = cy) JHdr (3.34)

rlcy = 0,Cx = c) + p(rley = 1, Cy

Il

-lo
201 p( Ck)

with
p(rlex = b, Cx = i) = p(r[s;), s; = p(c1, 02, ooy Ck=1, by Cht1y ooy Cuxen) (3.35)

where u(-) is the mapping scheme. p(rls;) is defined in equation (3.21). It is explicit
that in calculation of I(c, = b;r|Cy = c;) we deal only with two symbols, chosen from
constellation ¢. These symbols differ only in their k-th position. For the AWGN chan-
nels, the integration over the probability density function p(H) of the channel state
matrix in equation (3.34), can be omitted. For the multi-dimensional transmission
over fading channel, calculating the average mutual information in equation (3.34) is
involved with several multi-dimensional integration. As mentioned previously, we use

Monte-Carlo method for simulating the mutual information with perfect CSI using

Nn

1 2 - p(rnls,, H)
I = N, 2 s ) £ (el H) (3.36)

In equation (3.36), N, is the number of samples of noise and r,, = H - s, + n,.
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It is clear that s and s! is chosen from the signal constellation ¢ considering s,. s
has the same label as s, with “0” in its k-th position. It is the same for sl except
its k-th position gets the value of “1”.In other words, let [cy, ..., Caxm] = p~(s,) then
sO = p(cty ooy Cko1, 0, Chyty ooy Caxen) and 82 = pfey, oo, Cho1, 1, Chi, -, Caxem ). There is
no doubt that at a time, s,, will be either 52 or s:l. In calculating Iy, if the channel

state is unknown in the receiver, averaging over samples of H is inevitable.

3.5.2 Characterizing the proposed constellation and map-
pings using mutual information

In this section based on mutual information discussed in the previous section we
evaluate the proposed constellation and mappings.

As it has been mentioned, in calculation of the average bit-wise mutual information
Iy, it is assumed that there is no information about the other bits. Hence I, is an
important parameter for the first iteration of systems employing BICM-ID where
no information is available to feedback from the decoder. So usually Iy is more
important for BICM systems. If the iterations between the channel decoder and the
demodulator start working, then more and more reliable information about other
bits in one symbol is delivered to the demodulator [46]. Therefore /; is not important
any more. Eventually, if a perfect information about all other bits is available at the
demodulator, the average mutual information with perfect knowledge about the other
bits (I;) is dominant.

The sum of bit-wise mutual information, for a fixed constellation, is always a
constant value (I), independent of the applied mapping [46]. Therefore, there is a

trade-off between the bit-wise mutual information. It has been found that, for a
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constant constellation, usually a mapping with maximum /; induces minimum I,
and vice versa [27][29]. To have a good performance with no iteration, a mapping
should be chosen which maximizes Iy. On the other hand, a mapping with larger I
and consequently smaller mutual information with a priori knowledge (/;), can not
gain the error performance of the system through the iterations. Gray mapping is a
good sample of such a mapping. Also it has been found that iterative process cannot
improve the error performance of a system utilizing a mapping with large I) and very
small Iy because of early crossing of the transfer function [47], which would cause
the iterative process to stop early[29]. A compromise solution is to find a mapping
with big enough I; to make the iterations work, while maximizing I; to achieve good
performance after number of iterations. According to the design criteria defined in
the previous sections, we expect to improve the mutual information while there is a
perfect (reliable enough) information about the other bits. Although /p has not been
considered in designing the criteria, result of simulations show that still we get big
enough Iy while I; is maximized.

According to the definition in previous section, the mutual information depends
on the specific Signal to Noise Ratio (SNR) of the system of interest. Thus to compare
mutual information of different mappings, the SNR range should be fixed.

Results of simulations regarding Mutual information of the proposed constella-
tion/mappings are illustrated as follows. First of all the comparison between the
symbol-wise mutual information of the proposed constellation/mappings in tables
3.1-3.5, is presented in Fig. 3.10. In comparison between two different tonstellations,
although the symbol-wise mutual information is independent of the applied mapping,

the one with the higher symbol-wise mutual information is preferred. Since choosing
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Figure 3.10: Symbol-wise mutual information for different multi-dimensional constel-
A lation

the constellation with higher symbol-wise mutual information gives the pliability to

design the desired values of the bit-wise mutual information. Therefore, 3-dimensional

QPSK is preferred to 2-dimensional 8QAM or 8PSK, considering Fig. 3.10.

Figs. 3.11-3.20 show the simulation result for the average bit-wise mutual infor-
mation versus symbol-wise mutual information for proposed constellations/mappings.
These illustrations are useful to compare two mapping schemes for a fixed constella-
tion. According to our design criteria and the discussion in the previous paragraph, it
is required that the proposed mapping maximizes Iy while Iy is still reasonable. Figs.
3.11-3.20 present that conventional mapping schemes have almost the same Iy and
1;. For each constellation and mapping two graphs are depicted, one for the average
bit-wise mutual information without perfect a priori information (Iy) and another for

the average bit-wise mutual information with perfect a priori information (/7). In
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each figure a comparison between conventional mapping and proposed one is made.
It is shown that all proposed mappings maximize I; while /g is still big enough to
make iterations work. There is always a trade-off between I; and Iy, maximizing Iy

results in minimizing Iy.
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3.6 Summary

In this chapter, it is mentioned that signal mapping has a critical influence on the
error performance of communication systems performing based on BICM-ID con-
cept. Therefore, a system model for MIMO-BICM-ID transmitter based on multi-
dimensional mapping has been proposed. This new constellation is based on mapping
information bits to the parallel symbols and sending them over N, transmitter anten-
nas.

An upper bound for pairwise error probability is derived and based on PEP, a cost
function is defined. Binary Switching Algorithm is modified to be used in choosing op-
timum mappings. A few multi-dimensional mappings are found and introduced based
on the cost function by using computer search utilizing BSA. Two kinds of bit-wise
mutual information according to a priori information are defined. A model for simu-
lation, to be used in Monte-carlo method is proposed. Finally, proposed mappings are
evaluated based on mutual information. Simulations of bit-wise mutual information
for the proposed constellations/mappings are presented. Regarding bit-wise mutual
information comparison has been made between the conventional mapping schemes

and proposed schemes.
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Chapter 4

MIMO-BICM-ID Receiver Based

on Sphere Decoder

In this chapter, the focus is to design a receiver for the transmitter proposed in Fig.
3.1. This receiver is designed considering the receiver introduced in [31]. Such a
design will resolve the diversity problem introduced by spatial multiplexing. For sim-
plicity, our simulations consider only examples where the number of transmit and
receive antennas are equal. Simulation results show that we can achieve good perfor-
mance using a simple bit-interleaver, simple convolutional code and a simple V-Blast.
The detector/demapper is designed according to the multi-dimensional constellation
proposed in Chapter 3. The modified detector/demapper works based on List Sphere

Decoder.
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4.1 System Model

Recently, the turbo principle, originally proposed for decoding parallel concatenated
turbo codes [2], has found applications in various communications systems. In [48][49],
it has been shown that the performance of demapping a multilevel modulated signal
(e.g. QSPK or 16-QAM) can be improved by using iterative demapping and decoding.
The concept of using iterative detection and decoding has been extended to MIMO
systems in [31]. In these communication systems, transmitters are modelled as a serial
concatenation of outer code and an inner linear MIMO modulation. This method is
the most promising technique for high data rate applications. The system combines
powerful and well-known conventional binary codes with simple spatial multiplexing
schemes on the basis of working in an iterative fashion [31]. In this thesis, this system
which is called MIMO-BICM-ID is considered.

Fig. 4.1 illustrates the MIMO-BICM-ID scheme. In Fig. 4.1, at the transmitter
information bits b are first encoded then randomly permuted by passing through a
bit interleaver. Coded and interleaved bits are grouped into blocks with n x m bits
(n = N, and m = log, M where M is the constellation size of conventional modula-
tion scheme). Each block is mapped to a multi-dimensional signal according to the
mapping function pu(-) (sy = p(ex)). The mapping scheme has been proposed and dis-
cussed in the Chapter 3. The multi-dimensional signal is sent simultaneously over N;
transmitter antennas. It should be mentioned that for multi-user systems, each user
has its own channel encoder, interleaver and mapper. The symbol vector correspond-
ing to one block of coded and interleaved bits is denoted by s = {21 4, T2k, .-, T g tT
where n is the number of dimensions and n = N;. z; is one of the ¢onventional

constellation points (i.e. QPSK constellation or 8QAM constellation). Despite the
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Figure 4.1: The MIMO-BICM-ID scheme

conventional MIMO system, these transmitted symbols are not independent. 1t is
assumed that the average symbol energy is equal to 1, i.e. E[||x]|?] = ﬁ—, The N,-
dimensional received signal vector vy = {rig, rox,....7) T!k}T at the symbol-sampled

instant k& can be modelled as

r; = Hpsp +ng (4.1)

where s; denotes the N,-dimensional transmitted symbol vector and Hy, is the MIMO
channel associated with s;. The channel matrix H is an N, x NV; complex ma-
trix whose element h;; is the channel gain from the i-th transmit antenna to the
j-th receive antenna. h;; is assumed to be independent and identically distributed

(4.i.d.) complex Gaussian random variable with zero mean and unit variance. n; =
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{nyk, nok, ...,nNT,k}T is N,-dimensional Additive White Gaussian Noise vector. The
entries of n assumed to be i.i.d complex Gaussian random variables with zero mean
and variance of 0% = %ﬂ (double sided noise spectral density).

At the receiver side, for optimally decoding ¢, ¢, ... blocks, the joint detector and
decoder should calculate the likelihood of each bit given all received symbols ry, ro, ... .
This is impractical due to computational complexity . The joint iterative detection
and decoding based on the turbo principle can be applied to achieve near-optimal

solution while complexity is reasonable [31].

4.2 Iterative Recelver

The iterative receiver of Fig. 4.1, utilizes two soft-input soft-output (SISO) blocks,
the inner demodulator/demapper and the outer decoder. Although, separate demod-
ulator /demapper and channel decoder are individually optimal, the receiver will be
sub-optimal due to this separation. Information between the detector and decoder is
exchanged in an iterative fashion until the convergence is achieved as illustrated in
Fig. 4.1(b). The optimal algorithm for the outer SISO decoder is derived by Bahl et
al in [50] which is known as BCJR decoder algorithm. Therefore, in this thesis we
focus on the inner detector/demapper.

Assume one channel use of equation (4.1). The a posteriori(APP) LLR (Log-
Likelihood Ratio) of the i-th bit in the label of multi-dimensional signal input s using

the corresponding channel observation r can be written as
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P(c;=1|r)
P(c;=0|r)

I (P(rlci =1) Plg= 1))
P(rle;=0) P(c;=0)

Ly(cijr) = In

and La(¢;) = }}z&’zég is a priori information regarding c;.

According to the proposed transmitter in Chapter 3, encoded bits are scram-
bled using the bit-interleaver and then sent to the multi-dimensional mapper. Inter-
leaver separates neighbor coded bits as far as possible. Therefore, comprising bits
of the block ¢ = p!(s), are statistically independent of each other. The demodula-
tor/demapper produces the APP LLR of the i-th bit in the block ¢ based on the a
priori LLRs, Ly = [Lat,cys Latoegs oo La],cNtxm] and corresponding channel observation

r. These a priori LLRs are sent by the SISO outer decoder for block ¢ at the previous

iteration. The APP LLRs of the i-th bit of the block ¢ can be written as,

Ldl,ci = Lel,ci + Lal.ci (43)

Pl(c; = 1y, L&)
Ly, =1 .
dl,c; \n P(Cl — 0[y7 L;zl)J

Le],ci

+Lai,e (4.4)

where Lgy = [Lae, Latiers s Lateiiss Latyeisrs s Laten,xm] @0d variables with sub-
script “1” are associated with inner detector.
Employing Bayes’ theorem and using the independency of ¢, ..., ¢y, xm. the ez-

trinsic LLRs which are produced by the demodulator /demapper, can be written as

Lel,ci =In (45)

ZCECM P(I‘[C) - eXp ZkGFk,c Lﬂl(ck)
ZCGCI‘,O P(ric) . exp ZkEFch Lal(Ck)
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where C;1 is the set of 2¥*™ bit vectors ¢ having ¢; = 1. In other words, C;; =

{cle; = 1} and C; 5 = {c|e; = 0}. D'y is the set of indices k with T'y = {1 < k

A

Ny xm and k#i}.
Instead of using a priori LLRs in equation (4.5), we can use the a priori probability

information provided by BCJR decoder as follows

Ny xm
ZCEC,—J P(r|c) - Hl:l)fl;ék P(ey)
Ny
Zcecm P(r|c) - lelx,l?ék P(ck)

where P(cy) is the probability provided by BCJR decoder.

Lel,c,- =In (46)

An essential part for computing LLR values for demodulator/demapper using
equations (4.5) or (4.6) is the likelihood function p(r|c). It should be noted that our
mapping scheme is multi-dimensional as described in Chapter 3. Therefore p(r|c) can

be found from equation (4.1) as,

_ _ 1 Ir — Hs||?
P(r| s = p(c)) = m " eXp (“——50—2—) (4.7)

where 02 = —]\;—"(double—sided noise power spectral density).

Using equation (4.7), we can rewrite the equation (4.6) as follows

Zse¢g P(r|s) - H{itlxl,;k Plex)
S ey PUElS) TR, Pler)

where ¢} denotes the symbols whose labels have the value b (“0” or “1”) in their i-th

Leie, =In (4.8)

position. P(c;) is denoted as the a priori probability of the bit ¢; (the k-th bit of
the signal s label).
The extrinsic information from the demodulator/demapper is de-interleaved and

sent to the BCJR decoder. In fact the de-interleaver between the demodulator and

72



decoder in the receiver is the counterpart of the interleaver in the transmitter. There-
fore the LLR values associated with coded bits move to the original position of bits
before being interleaved.

The computation of the extrinsic LLR values at the outer decoder, unlike the
demodulator/demapper, is only based on a priori information obtained from the
inner demodulator/demapper. This extrinsic LLRs can be computed as

b;
Lezp, =In %Z:—z—-é—i—i%% — L2y, (4.9)

a2
where LZ’Q is the vector of the given a priori bit LLRs. The associated MAP algorithm
has been discussed in detail in Chapter 2. Variables with subscript “2” are associated
with outer decoder. In fact the output eztrinsic LLRs from the inner demodulator

after interleaving, are used as the a priori information for the outer decoder.

4.3 Sphere Decoder

It is shown that the best approach for computing the extrinsic information in equation
(4.8) is Maximum Likelihood detection approach. ML promises the optimal perfor-
mance. In the ML approach, all the constellation points are considered in computing
the extrinsic information. The major concerns in computing the exirinsic LLRs using
ML approach, is the complexity. The complexity is growing exponentially with the
length of the bit vector ¢ or in other words the size of multi-dimensional constellation.”
To compute‘the extrinsic information for each ¢;, 2V*™ calculations should be done,

where m is the size of conventional constellation and N; is the number of dimensions
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or transmit antennas. Therefore, ML detection is no feasible. For example in 8 di-
mensional 16QAM constellation, 232 ~ 2 x 10° calculation should be performed to
compute eztrinsic information for each bit.

To make its use possible, the ML detection algorithms with reduced complexity
have been proposed, such as List Sphere Decoding (LSD) algorithms [31][32][33]. This
has been discussed in more details in Chapter 2.

In the proposed receiver in Fig. 4.1, LSD is used as a inner decoder. Therefor, we

can rewrite equation (4.8) as follows,

Yecy Prls) - TIN5  Pler)
Ysery Plrls) - TIL i Pler)

where L} denotes the symbols in the list whose label have the value b (“07,“1”) in

Lel,ci =1In

(4.10)

their -th poéition. If there are no entries in £ with ¢; = b then radius, d, should be
increased. The list size N, measures how well equation (4.10) approximates equation
(4.8). On the other hand the size of the list affects the performance. There is always
trade-off between the performance and the list size (complexity). Increasing N,
results in better performance but higher complexity.

Choosing the radius of the sphere is one of the major concerns in LSD. If the
radius d is chosen to be too small, only a few points will be found inside the sphere
regardless of how large N, is. On the other hand if d is chosen to be too large, sphere
contains many candidates and this slows down the LSD. Choice of the radius has
been discussed in detail in Chapter 2. As it is suggested in [31] during our simulation

we find the satisfactory radius by trial and error.
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4.4 Simulation Results and Discussion

In this section, simulations are carried out to demonstrate the error performance of
the proposed system. Three kinds of proposed constellations/mappings in the table

3.6 are tested. These constellations/mappings are applied to the proposed MIMO

transceiver in Fig. 4.1. For simulations, a simple 8 state, rate % convolutional code
with g1 = [1101] and g, = {1111] is used. Bit-interleaver permutes a 5000-bit block.
A MIMO system is considered without any special space-time coding. The MIMO
system benefits from spatial multiplexing or in other words uses a V-BLAST method
to assure high data rate communications. At the receiver side, the inner detection is
based on List Sphere Decoder as discussed in the previous section. Three kinds of

channels are assumed.
e AWGN channel where H =1

e Fast fading channel where the channel randomly changed from one symbol in-

terval to another.

e Slow fading channel where channel keeps constant for a 5000-bit block, and it

is randomly changed from one block to another.

The entries of H (h;;) are assumed to be i.i.d. symmetrical complex Gaussian
random variables with zero mean and unit variance. It is assumed that the channel
state information or channel matrix H is perfectly known at the receiver. The radius
for LSD is assumed to be fixed. Therefore, the list size may be variable. 2-dimensional
QPSK is applied to a 2 x 2 MIMO system. The comparison between conventional
mapping and proposed mapping are illustrated in Figs. 4.2-4.4. 1t is illustrated

that our proposed multi-dimensional constellation/mapping scheme outperforms the
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conventional one by 2.7 dB, 3.5 dB and 1.3 dB over AWGN, fast fading and slow
fading channels, respectively.

The figures show that at lower SNR, conventional mapping schemes perform
slightly better than proposed one. This applies to all three constellations/mappings
which are illustrated. It should be noted that the demonstrated SNR in Figs. 4.2
- 4.10, is measured at the transmitter. Also, it should be mentioned that the com-
parisons between proposed constellations and mappings are made at bit error rate of
1075,

Figs. 4.5 - 4.7 are depicted simulation results for 2 x 2 MIMO system using 2-
dimensional 8QAM. Simulation results show that our proposed constellation/mapping
scheme outperforms the conventional one by 2.5 dB, 2.7 dB and 1.6 dB for AWGN,
fast fading and slow fading channels respectively. At the end, 3-dimensional QPSK
is applied to a 3 x 3 MIMO system. Also, Figs. 4.8 - 4.10 show that the proposed 3-
dimensional QPSK mapping outperforms the conventional QPSK mapping over 3 x 3
MIMO system. Simulation results show that, we have 3.3 dB, 2.4 dB and 1.8 dB
improvement for AWGN, fast fading and slow fading channels respectively.

In the Chapter 3, it has been mentioned that for the same data rate, 3-dimensional
QPSK is preferred to 2-dimensional 8QAM , since the symbol-wise mutual informa-
tion of 3-dimensional QPSK is higher than 2-dimensional 8QAM, as shown in Fig.
3.10. This is confirmed by the simulation results which the desirable BER can be
achieved at lower SNR by applying 3-dimensional QPSK. Also in the table 3.6, it
can be noticed that the cost function (4) for 3-dimensional QPKS is the least be-

tween all proposed constellation/mappings. The lower value for ¢ should result in
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better performance which is demonstrated by simulation results of proposed constel-
lations/mappings. Simulations show that significant improvement can be achieved
over AWGN, fast fading and slow fading channels. This suggests that equation (3.15)
which was obtained for slow fading channel can be used for AWGN and fast fading as
well. Moreover, it is demonstrated by simulations that mutual information proposed

in the Chapter 3, is a good measure to compare constellations/mappings.
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Figure 4.2: BER comparison between the proposed 2-dimesional QPSK and conven-
tional QPSK schemes, using 2 x 2 MIMO system over AWGN channel
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Figure 4.3: BER comparison between the proposed 2-dimesional QPSK and conven-
tional QPSK schemes, using 2 X 2 MIMO system over slow fading channel
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Figure 4.4: BER comparison between the proposed 2-dimesional QPSK and conven-
tional QPSK schemes, using 2 x 2 MIMO system over fast fading channel
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Figure 4.5: BER comparison between the proposed 2-dimesional 8QAM and conven-
tional 8QAM schemes, using 2 x 2 MIMO system over AWGN channel
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Figure 4.6: BER comparison between the proposed 2-dimesional 8QAM and conven-
tional 8QAM schemes, using 2 x 2 MIMO system over slow fading channel
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Figure 4.7: BER comparison between the proposed 2-dimesional 8QAM and conven-
tional 8QAM schemes, using 2 x 2 MIMO system over fast fading channel
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Figure 4.8: BER comparison between the proposed 3-dimesional QPSK and conven-
tional QPSK schemes, using 3 x 3 MIMO system over AWGN channel
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Figure 4.9: BER comparison between the proposed 3-dimesional QPSK and conven-
tional QPSK schemes, using 3 x 3 MIMO system over slow fading channel
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Figure 4.10: BER comparison between the proposed 3-dimesional QPSK and con-
ventional QPSK schemes, using 3 x 3 MIMO system over fast fading
channel
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4.5 Summary

The design of the MIMO receiver is crucial, since it should contribute to a good error
performance while keeping the complexity reasonable. In this chapter, it was shown
that, one of the receiver schemes promising desirable error performance for a MIMO
system is iterative decoding. A simple approximation for calculating the eztrinsic
information at the demodulaotr/demapper was also proposed. In the receiver sphere
decoder and list sphere decoder was used to decrease complexity.

Moreover, simulation results are illustrated. Three different type of proposed
constellations/mappings are applied to the MIMO system. The results show that,
proposed constellations/mappings improves the error performance significantly. Also,
simulation results show the effect of the cost function value on the error performance.
Simulations demonstrated that mutual information is a good measure for comparing

different constellations/mapping.
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Chapter 5

Summary and Conclusions

In this thesis, the design of constellation/mapping for MIMO-BICM-ID system is
studied. Based on minimizing pair-wise error probability, a design criterion is pro-
posed to find the optimal constellation/mapping for MIMO-BICM-ID. To reduce
computational complexity of exhaustive search, Binary Switching Algorithm is im-
proved to find the optimal solution. Using the design criterion and employing the
Binary Switching Algorithm, some optimal constellations/mappings are found for
2-dimensional and 3-dimensional cases, such as 2-dimensional QPSK, 2-dimensional
8QAM and 3-dimensional QPSK.

A measurement based on mutual information is developed to evaluate the proposed
constellations/mappings. The Monte-Carlo numerical results show that the proposed
constellations/mappings sacrifice bit-wise mutual information without a priori infor-
mation but gain significantly when @ prieri information feedback is perfect. This
suggests that the proposed schemes can achieve better performance if applied to a
MIMO-BICM-ID system.

To manage the computational complexity at the receiver, an iterative receiver

88



based on List Sphere Decoder is employed. The MIMO transceiver with the proposed
constellations/mappings can achieve the promised error performance. Simulations
were carried out and results show that the proposed mapping schemes outperform
the conventional ones significantly at high signal to noise ratio. Although, the design
criteria is based on slow fading channel, simulation results also show that proposed
mapping schemes perform well over slow as well as fast fading channels.

System simulations were carried out specifically for 2-dimensional QPSK, 2-dimensional
8QAM and 3-dimensional QPSK constellations/mappings. Results show an improve-
ment of 1.3 dB, 1.6 dB and 1.8 dB compared to conventional constellation mappings
over slow fading channels, respectively. This improvement increase to 3.5 dB, 2.7 dB

and 2.4 dB for fast fading channels.

5.1 Future Work

Some future works of this thesis can be developed as follows:

Apply the global optimum search instead of locally optimum Binary Switching
Algorithm.

The Design criteria for fast fading channel should be developed.

Optimal constellations/mappings for other space-time codes should be studied.

Optimal constellation/mapping for more dimensions and higher order constel-

lations can be investigated.
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