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Abstract

Tracking Epileptic Patients in Digital Videos for Automated Video
EEG Monitoring

Pramit Singh

Video EEG monitoring is considered to be the most successful application for the
diagnosis of the epileptic patients. The movements of the patient are recorded in the form
of a digital video along with the EEG, over a significant duration of time. This enables
the analysis of the behavior of the patient during the seizures, and is critical in
determining the area of the brain that is responsible for the seizures. As the video
recording is extensive in time, automatic tracking of the patient is a practical need. This
would not only make the monitoring process error free, but would also lower the costs
associated with the need for the human intervention. The aim of this thesis is to develop a
system to automate the video EEG monitoring of the epileptic patients. Due to the prior
information available about the physical environment of the patient, feature-based
tracking method is preferred in this thesis over the motion-based techniques. The
available features are identified and analyzed for developing the tracking algorithm. The
skin color is used as one of the features and a new skin color detection filter, which is
shown to perform reasonably well for detecting the human skin color, has been
developed. The cap worn by the patient to support the electrodes on the head is developed
into a second feature by drawing a pattern on the cap. A pattern recognition technique

using the Hough transform for line detection is proposed to detect this feature. The two

i



features are jointly used together to develop an algorithm for locating the patient in the
room. The tracking performance of this proposed feature-based algorithm is tested
extensively under varying conditions and is shown to provide reasonable performance so

that it can be used for practical implementation in a tracking system.
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Chapter 1

Introduction

1.1 Background and motivation

Epilepsy is a name given to the collection of disorders of the brain that is often
characterized by recurrent seizures caused by synchronized electrical neuronal activity.
Around 50 million people in the world are known to be affected by epilepsy. Proper
diagnosis of epilepsy is important to differentiate between epileptic and non epileptic
seizures and more importantly, to determine those areas of the brain tissues that may be
responsible for the seizures. Electroencephalography (EEG), magnetic resonance imaging
(MRI), single photon emission computed tomography (SPECT), positron emission
tomography (PET) and magneto encephalography (MEG) are some common diagnostic
tools for epilepsy but long term video-electroencephalography monitoring is the most
comprehensive and the most commonly used technique for the diagnosis of the condition.
Electroencephalography is a method of recording the electrical activity of the brain using
electrodes connected to the scalp. The signals received from these electrodes are known
as the EEG signals. The EEG recorded from the electrodes placed on the scalp is a
collection of the total activity of many neurons in the brain. Long term video-EEG
monitoring involves simultaneous recording of the EEG and capturing the movements of
the patient in a video over a period of 5-6 days or longer [1]. The doctors view the video

and the EEG data simultaneously in order to observe the patient’s behavior during the



seizure. By correlating the clinical behavioral manifestation from the video with the EEG
helps the doctors in determining whether the electrical activity associated with the brain
is actually an epileptic seizure and more importantly, in the localization of the seizure
origin by identifying the region of the brain that may be responsible for the seizures [2].
The present EEG-video monitoring setup requires a patient to stay in a hospital room,
where the EEG maybe recorded for a period of 5-6 days or more. During this period, the
patient’s behavior and movements are recorded in the form of a digital video captured by
a video camera placed in the room. The video camera is typically controlled manually by
a technician and often the camera goes unattended resulting in a loss of valuable data. It
is important to keep the patient in full view at all times as seizures occur unexpectedly,
and the clinical component of the seizure needs to be captured. As long term data is being
recorded, the patient is expected to move about in the room, and this requires continuous
adjustments in the position of the camera. Sufficient video EEG data is required by the
doctors to analyze the epilepsy in the patient and if the video segments during occurrence
of seizures are lost, then it would unnecessarily prolong the stay of the patient at the
hospital. Thus, continuous human intervention to control the camera makes the video-
EEG monitoring a very expensive process, as it requires a technician to be present all the
time and any error on the part of the technician would require an extended stay of the
patient in the hospital resulting in added costs.

If the human intervention is replaced by an automated system to track the patient [3], then
no technician would be required to control the camera and the tracking process would be

free of human errors. It would thus significantly reduce the cost of the video-EEG



monitoring, thereby making it more affordable to the patients and more importantly, for

providing a better and faster diagnosis of the condition.

1.2 The Objective

The previous discussion on the problems with the current video EEG monitoring setup

underlines the need for an automated system. Figure 1.1 shows a possible system.

Captured video frames

A

Analysis Software
Process the incoming video
frames to find the exact
location of the patient in the
frame.

Feedback for the control system
containing information about
the location of the patient

Video Camera
Capture the digital video
at the location specified

by the control system.

Control signals to
adjust the focus and
angle of camera to
keep the patient in
full view

Control System
Analyze the adjustments
needed in the camera
based on the feedback
provided.

Figure 1.1. A system to automate the video EEG monitoring process.

The video camera in the hospital room captures the frames of the environment. These

video frames are processed by the analysis software, which comprises of algorithms to

process the video frame and determine the coordinates of the patient’s location in the

video frame. Depending upon the location of the patient in the current frame, the control

system determines the adjustments needed in the angle of the camera so that the patient



remains in full view of the camera for the next frame. The adjustments in the camera can
thus be made automatically through signals from the control system to the camera.

The core of this system lies in the algorithms of the analysis software, which process each
video frames to determine the current location of the patient in the room. The objective of
this research is to develop an algorithm that can be used to track the patient in the video

frame.

1.3 Object Tracking

Tracking and recognizing objects in digital videos is one of the most popular, yet
complex tasks in video processing. With the advancements in technology and security
requirements, the tracking problem is having increasingly wide applications in daily life
[4] — [6]. The applications of tracking are broadly classified based on the requirements
such as the motion capture, recognition from motion, surveillance and targeting [7].

Motion capture is a technique for tracking a person or object so that its motion can be
recorded and artificially recreated, as and when required. This has applications in
animations, Hollywood stunts, etc. Recognition from motion is useful when the motion
characteristics of an object are unique. This record of expected motion can help in
identifying the objects at other places. Surveillance of objects is important for security
reasons at airports, car parking, highways, etc. Apart from commercial use, object
tracking is also useful in military applications for target locating and target striking.

With limitless applications of object tracking in digital videos, it is obvious that the
amount of research that has been carried out in this field has been enormous. Object

tracking problem has been widely considered through methods like frame difference,



motion detection, phase correlation, feature extraction, etc. In motion detection-based
methods, the first step is the estimation of the motion vectors [8]. Gradient-based
methods, such as the optical flow detection for estimating the motion vectors, are highly
accurate [9], but generally come with increased computational overhead than the block-
based matching techniques. An accurate knowledge of all the motion vectors in a
sequence provides the means to segment the image into pixels associated with a moving
object and those associated with the rigid background.

In a typical block-based method, which is considered to be the most efficient, the motion
estimate is found by a spatial-domain search procedure [10]. The object block of the
current frame is placed and moved around in the previous frame using a specific search
strategy. A criterion is defined to determine how well the block matches the
corresponding block in the previous frame. Thus, the direction of motion can be
analyzed. Other motion estimation algorithms like the phase correlation method [11],
measure the movement between two fields directly from their phases, thereby providing a
faster method for the calculation of the motion vectors. Other motion estimation
algorithms have been developed with slight variations, giving improved performance
depending upon the area of application [12].

For tracking human targets in a video, detecting the shape and position of the target is the
fundamental task. Since the shape of the human object is subject to a deformation and
random motion in the two dimensional image space, techniques like active shape models
have to be implemented. Active shape models (ASM) fall into the category of deformable
shape models with a priori information about the object [13]. Active shape models define

the shape of the object using a set of most prominent points. The locations of these points



are updated with the movements of the object to form a training set. The object shapes
are recognized by locating the prominent points and comparing their locations to the
training sets.

Most motion-based techniques involve keeping track of the motion of the target and
maintaining a hold on the target. Another solution to track an object is the feature-based
tracking. The feature-based tracking requires the recognition of patterns or specific
features like shape, size, color etc. of the target object. This object-specific information
is useful in tracking the target and in regaining its location whenever the tracking is lost.
Feature-based tracking can either be used alone or in combination with motion-based
techniques depending on the computational complexity involved at different stages of the
feature recognition.

With the numerous techniques available for solving the tracking problem, it is very easy
to get lost in the web of the available algorithms. Therefore, it becomes very important to
analyze the problem properly and understand the constraints involved, so that an
optimum technique can be developed by exploiting the algorithms that would work best

under a given set of circumstances.

1.4 Analyzing the problem

Object tracking algorithms have been developed for various areas of application with
considerable accuracy, but exploitation of the available features in conjunction with real
time performance has eluded the researchers for years. Motion-based techniques fail to
give a reliable answer consistently at all times and are known to suffer from the problem

of loss of tracking, for example, due to the effect of shadow movements, etc. When the



object to be tracked has a sufficiently large set of detailed features that can differentiate it
from the background, then the feature-based tracking is expected to be more reliable as it
does not depend upon any redundant information.

The problem at hand is to identify and track a patient in a video, when the EEG of the
patient is simultaneously being recorded. The EEG recording is done using a set of
electrodes attached to the patient’s scalp. These electrodes are connected through wires to
the EEG recording device. To hold the wires and the electrodes, the patient is required to
wear bandages or a cap that fits snugly onto the head. Figure 1.2 shows a person under
video-EEG monitoring. Since it is a human being that is being tracked, human shapes and
skin color are very obvious features to be used. Another potentially distinctive feature is
that the human being tracked is a patient and is wearing a cap with wires hanging from
the head. The environment in which the video-EEG is performed is that of a hospital, and
hence the patient maybe expected to wear some specific clothing (i.e. hospital gown etc.).
All these features make a very strong case for exploiting the feature-based tracking as a

solution to the problem at hand.

Figure 1.2. A person under video-EEG monitoring, with electrodes on scalp and wires
hanging through the electrodes- potential features that can be exploited for patient
tracking.



Typically, patients monitored for long term video-EEG are limited in the range of
activities and movements when confined to their rooms. The motion is not expected to be
fast, and this is yet another reason the feature-based tracking may be a better choice. The
patient’s movements are expected to be slow; therefore, the tracking algorithm can be
complex and computationally expensive in order to maintain accuracy at the expense of
speed.

The tracking environment is that of a hospital, where the patient has to stay for several
days. The illumination conditions in the room are expected to change over the day, as the
patient may prefer a lower level of illumination while sleeping. The illumination
conditions may also change, when the source of light changes from the natural to
artificial. These changing illumination conditions are expected to pose a big challenge, if
the features to be exploited are significantly dependent upon the illumination levels. The
presence of visitors in the room implies that the algorithm should be able to make a
distinction between a patient and the other people in the room. The human shadows make
shapes similar to those of the human bodies; therefore the algorithm should be able to
make a distinction between shadows and real body parts. Since feature-based methods
rely upon a combination of features to make decisions, they are expected to be more
reliable than the motion-based methods.

The availability of several features is a good reason to exploit them for tracking the
patient. Results from companies like Stellate, where this tracking problem has been

studied, indicate that the motion-based algorithms like Cam shift [14] have failed to



provide a reliable answer. Thus, with a known target to be tracked under an expected
environment, feature-based tracking is expected to perform well and thus is the focus of

this research.

1.5 Overview of the research

The aim of this research is to detect the accurate location of the patient in the room so
that a feedback can be provided to the system that controls the movement and focus of
the camera. This is to ensure that the patient stays in full view of the camera at all times.
In this work, this is achieved by exploiting the various features identified with the patient
and his environment. Specifically, the presence of the human skin, the shape of the
human head, the clothes and the cap supporting the electrodes will be exploited as the
features. Skin-color filters are developed for the purpose of detecting the human skin
color and an effort is made to detect the human head using elliptical shapes. The
combination of the human skin color identification along with the elliptical-shaped head
provides one possibility of locating the human head in the video frames. We also
investigate the possibility of using the patient clothing by analyzing the texture of the
clothes using various algorithms. However, as will be seen in Chapter 2, due to some of
the limitations of the detection of the elliptical shapes, the performance of the detection
of the human head is not satisfactory and the recognition of the texture of the clothes is
not found to be a very feasible solution. This opens up the need of developing some other
feature, possibly some pattern on the cap supporting the electrodes.

For this purpose, we create a new feature by placing a pattern on the cap. This pattern

along with the skin color filter provides a solution to the tracking problem. The



performance of the final tracking process is measured by counting the percentage of the
time the algorithm is able to locate the patient accurately under different conditions. The
performance is tested under challenging conditions, like the presence of multiple people
in the room and changing the illumination conditions. Since the movements of the patient
are expected to be very slow, the processing of one frame per second is assumed to be
sufficient. The success rate of tracking of the algorithm thus developed is found to be

quite high.

1.6 Organization of the thesis

Chapter 2 starts with a discussion of the algorithms that are investigated to recognize the
features that help in identifying the patient in video frames. The initial work that involves
experiments using methods such as texture recognition and the use of the skin color filter,
along with the detection of an elliptical shape for recognizing the human head has been
discussed. The development of the skin color filter itself is discussed in detail in Chapter
3. Chapter 4 introduces the Hough transform for line detection, which is the method that
is finally used for recognizing the pattern artificially created on the cap supporting the
electrodes on the head of the patient. By using the algorithms for detecting the human
skin color and a pattern of straight lines, the development of the final algorithm and the
performance assessment of the method is done in Chapter 5. Chapter 5 starts with a
discussion on the development of the special feature that involves a pattern of straight
lines on the cap supporting the electrodes. The details of the final algorithm are then
explained which uses the skin color detection along with Hough transform for detecting

the pattern on the cap to locate the patient in the room. The final algorithm is tested under
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different conditions and its performance analysis is presented. Chapter 6 contains some

conclusions and scope for further research.

1.7 Summary

In this chapter the problem of tracking an epileptic patient in real time videos has been
presented. The possible solutions to this problem have been discussed and with the given
physical environment and expected performance, the feature-based tracking has been
mentioned as the method that can provide better results than the motion-based
techniques. For the considered application the available features which can be exploited
have been listed and possible techniques to identify these features have been discussed in
brief. In the Chapters to follow, these techniques are presented in detail along with their

limitations and performance evaluation.
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Chapter 2

Possible Techniques and Algorithms

2.1 Introduction

As mentioned in Chapter 1, the purpose of this research is to develop an algorithm that
can determine accurately the location of the patient in the room so that the video camera
can make adjustments to keep the patient in full view all the time. Following the
discussion in the previous chapter, the feature-based tracking is assumed to be the best
possible solution to this problem. To achieve feature-based tracking, the available
features are identified and techniques are developed to parameterize these automatically.

The potential features like human skin color, the elliptical shape of the head, and the
texture of the patient’s clothes are tested using different algorithms. Techniques like the
tree-structured wavelet transform and polarograms are studied for recognizing the texture
of the patient’s clothes. A skin color filter is developed for recognizing the potential
human skin areas, and will be discussed in Chapter 3. Least mean square fitting of
ellipses is used to recognize the human head in the form of an elliptical shape. A
combination of the elliptical fitting and the human skin color filter is tested for detecting
the human faces.

This chapter discusses these techniques and algorithms implemented to conduct

research in the area of tracking in the initial stages and to understand the limitations of
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the tracking problem at hand. The chapter starts with a discussion of the texture
recognition as a feature and then moves on to the development of a new face detection
algorithm that uses the skin color as a feature, which is implemented for the purpose of

finding the location of patient in the video frame.

2.2 Texture recognition

Though the texture has not yet been formally defined in the literature, it can be
understood as the visual and sensational properties of any surface. Each surface is
expected to have a unique texture and thus can be differentiated from other surfaces. If
the texture of a surface can be analyzed, then the recognition of that surface can be done
automatically. This leads to the development of texture recognition algorithms aimed
towards measuring the properties of surfaces in order to recognize textures on the basis of
such properties.

Like any other surface, each type of clothing has a unique texture and can be
differentiated from other clothes by virtue of its texture. If the patients are made to wear
particular clothes whose texture or pattern is known, then this can be extracted as a
feature to become a permanent part of the tracking environment. The tracking algorithm
could either involve pattern recognition or texture analysis of the clothes or both. The
problem of recognizing some specific pattern on the patient’s clothes does not seem to be
feasible, since the pattern is subject to deformation as the field of view changes with the
motion of the patient. Recognizing the texture of the clothes can be a practical option as it

does not change with the motion of the target. For the recognition of the texture, we
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attempt to use the wavelet and Fourier transform-based methods. These are discussed

below.

2.2.1 Tree structured wavelet transform

The tree-structured wavelet transform for texture recognition was introduced by Chang
and Kuo [15]. In their introductory paper on tree-structured wavelet transform, they have
made a performance comparison of their wavelet transform-based texture recognition
method against other methods based on discrete cosine transform, discrete sine transform,
discrete Hartley transform, pyramid structure wavelet transforms, Gabor filters and Laws
filters. They showed their method to be computationally less expensive while giving
better recognition results [15].

The commonly used pyramid-structured wavelet decomposition of images, which has
been widely used for image compression and other areas of research like data hiding,
video coding, image watermarking, etc., is not suitable for texture recognition. The
texture information is known to lie in the mid frequency regions [16], thus the pyramid
structured wavelet decomposition, which iteratively decomposes the low frequency
regions, is ineffective. In the tree-structured wavelet transform, the decomposition is
done based on energy levels of the decomposed bands. Instead of decomposing the low
frequency regions at each level of decomposition, the regions with high energy are
determined for further decomposition. This unfolds the spectrum of the texture

sequentially.
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The tree-structured wavelet transform for texture recognition can be understood with the

aid of a simple example shown in Figure 2.1.
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Figure 2.1. Tree structured wavelet decomposition of a texture image by decomposing the
bands successively based on their energy levels. (a), (b), (c) and (d) show the stages of
successive decomposition.
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In the first step, the texture image under test is decomposed using wavelets into four sub
bands as shown in Figure 2.1 (a). An energy threshold is chosen depending upon the level
of accuracy desired for the recognition process. Only the sub bands with energy greater
than the threshold are decomposed. In our example, the sub band Al is found to be above
the threshold level and thus is decomposed in the second iteration (see Figure 2.1(b)).
The decomposed sub band energies are again tested and further decomposition is done
accordingly. In our example, both B2 and D2 are found to lie above the threshold and
thus are decomposed independently, as shown in Figure 2.1(c). This iterative process is
continued until there are no more sub bands with energy greater than the threshold or no
further decomposition of sub bands is possible. In our example C3 is again found to be
above the threshold and is then decomposed (see Figure 2.1(d)).

Figure 2.2 (a) shows the final decomposed bands obtained after the tree-structured
wavelet transform. The decomposition of the wavelet sub bands is successive, and hence
can also be seen as a tree structure as shown in Figure 2.2(b). The branches of the tree
progress downwards under the roots which are being decomposed. The tree stops
growing when sufficient number of branches have grown or there is no more energy in

the roots to grow more branches.
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Figure 2.2. (a) Decomposed bands for the texture image obtained after the tree-structured
wavelet decomposition. (b) Tree-structured representation of the wavelet decomposition.

The textures are assigned unique codes corresponding to the location and the level of the
decomposition of these bands. The length of the code and the code sequence depends
upon the location of the smallest band with energy greater than the threshold. For
instance, at the end of the decomposition process for our example in Figure 2.2, the band

shown in black in Figure 2.3 has the highest energy. The location and size of this band
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obtained after the tree-structured decomposition process is unique for a texture and can
be used to identify the texture. Figure 2.4 shows the code assignment process by using

the tree. The code for the texture sample comes out to be ADCC.
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Figure 2.3. The band of highest energy after the decomposition process shown in black.

Figure 2.4. Code assignment using the tree for a texture.
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The texture recognition is performed by calculating the code for a given texture image

and comparing the code obtained with a priori known codes for the texture to be detected.

2.2.2 Polarograms

Polarogram technique is another method for recognizing textures. As each texture is
unique, so is its frequency spectrum. The major problem with tree-structured wavelet
transform-based method is the orientation of the texture sample. The tree-structured
wavelet transform of the texture would give different codes for different orientations of
the same image sample, making the recognition process complicated for practical
applications. The orientation problem can be addressed by the polarogram technique [17],
which computes the Fourier spectrum of the sample and represents it in polar plane. The
spectra in polar planes are called polarograms.

Figure 2.5(a) shows a sample texture image and a rotated version of this image is
shown in Figure 2.5(b). Their respective polarograms shown in Figure 2.5(c) and Figure
2.5(d) indicate that the polarogram of a rotated sample is also the rotated version of the
polarogram of the original sample.

The frequency spectra for the standard textures are generally known a priori. The texture
recognition step matches the polarogram obtained for the image sample under test with
the standard polarogram for the texture that is being searched. This matching is
performed by rotating the polarogram obtained in steps of one degree and matching each
rotated version of the polarogram with the standard polarogram. If the error is found to be

within acceptable limits, then a successful recognition of the texture can be assumed.
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Figure 2.5. (a) The texture image. (b) Fourier transform of the texture image shown in
(a). (c) Rotated version of the texture image shown in (a). (d) Fourier transform of the
texture image shown in (c).

The polarogram technique can also withstand the rotations of the source of the
illumination. Figure 2.6(a) shows a texture sample with another sample of similar texture
shown in Figure 2.6(b), having the illumination source rotated by 45 degrees as shown by
the arrows. The polarograms for these two samples indicate a rotation by 45 degrees in

the spectrum.
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(b) (d)

Figure 2.6. (a) Standard texture image. (b) Polarogram of the texture image shown in (a).
(c) Texture image shown in (a) with the source of illumination rotated by 45 degrees. (d)
Polarogram of the texture image shown in (c).

Thus, the polarograms are better suited for practical applications, where both the rotation
of the textures and a change in the direction of the illumination source maybe expected.
Though the polarograms and the tree-structured wavelet transform are reliable techniques
for the texture recognition, the major drawback for real time use is the video resolution.
A highly detailed frequency spectrum is required for the polarograms and a high

resolution of the sample is important to grow accurate trees in the tree-structured wavelet

transform. In our application, the video frames would not be able to provide a very high
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resolution for the patient’s clothes, as the videos themselves are of low resolution frames
and the patient’s clothes are likely to constitute a very small part of the video image.
Other things, like creases in the clothes, can also lead to frequency components that may
not be present in the original texture sample. Reconstruction of the original pattern with a
small sample of the clothing may be a possibility, but it is a complex image mosaicing
problem and is too complicated to be used for real time tracking problems. Thus, the
texture of the clothing of the patient as a feature does not seem to be a suitable one for the

purpose of feature-based tracking.

2.3 Ellipse detection in combination with skin filters

Among the natural features that can be used for tracking a human being are the body
shapes. Since the aim of this tracking problem is to locate the patient in the video frames,
shapes of the body parts may be a good choice as a feature to be detected. The patient is
expected to either move about inside the room or be lying in the bed. While in bed, much
of the body is likely to be covered by blankets. However, the patient’s head is likely to be
in the field of the view of the camera much of the time and thus, can be a very useful
feature for the tracking purpose. In any case if the patient is lying in the bed then there is
no need for tracking. The intention in this case is to monitor the potential movements of
the patient around the room.

The human head being of a spherical shape can be expected to be of an elliptical shape
from any field of view in two dimensions. The shape and size of this ellipse will vary
depending upon the position of the patient and his distance from the camera. Therefore, a

method to detect elliptical shapes in the video frames may be used to locate the patient
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within the image. In addition to the human head, the video images may contain other
elliptical shapes. Thus, it will be necessary to distinguish the human head from other
elliptical shapes. The most obvious distinction is the presence of the human skin within
the detected ellipse corresponding to the human head. This can be achieved with the help
of a skin color filter. The skin color filter should be able to extract all the possible skin
3colors in the frame and if a significant amount of the skin color is found inside the
detected ellipse, it can be assumed to be the human head. In certain conditions, other
body parts may also be detected as elliptical shapes due to the presence of some other
objects in their vicinity or due to excessive noise in the captured image. In these cases,
the ellipse with the most skin color can be assumed to be the head, since the head is
expected to contain the most skin color compared to other body parts, which are usually
covered.

Thus, the detection method comprising of the elliptical shape containing the skin color
within it can be done in two ways. One method can be to identify the ellipses within the
frame and then, the ellipse with most skin color within it can be assumed to be the
location of the patient’s head. Another approach maybe to filter the frame with the skin
color filter to isolate the region of interest and then find the elliptical shapes in these skin
color regions. The best ellipse found around the skin regions can be assumed to be the
head.

The development of a robust skin color filter is a very important step in the success of
this detection method. The details of the skin filter are given in Chapter 3, while the
present discussion is concerned with the details of the detection of the elliptical shape and

the face detection algorithm using a combination of the ellipse detection algorithm and
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the skin filter. The ellipse detection algorithm works on the pixels defining the shape to
find the best fitting ellipses. The pixels are the data points and can be obtained by
performing edge detection on the original image. Thus, the edge detection is the first step

in ellipse detection and is discussed next.

2.3.1 Edge detection

In digital images, edges are strong contrast of intensity. They are a set of connected
pixels that lie on the boundary between two regions. Extracting the edge information in
an image helps in recovering the shapes of the objects, in addition to removing the excess
information. The edge detection works on an image to yield the feature boundaries which
can be used for ellipse fitting.

In one dimension, an edge can be defined as a sharp transition from one intensity to
another as shown in Figure 2.7(a). However, in practice, there is a blurring on a soft or
gradual transition from one intensity to another. This slow change in intensity can be
represented by a ramp as shown in Figure 2.7(b).

The slope of this ramp is proportional to the change in intensity at the edge. The points
constituting the ramp along with the neighbouring regions of zero slope, denote the
intensity values at those pixels. The graphical representation of the intensity values is

called the intensity profile.
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Figure 2.7. (a) A sharp edge and its intensity profile. (b) A blurred edge having a ramp-
like intensity profile.

The thickness of an edge can be determined by the length of the ramp. If a pixel lies
within the region of the ramp, then it can be assumed to be a part of the edge. The first
order derivative of the ramp can be used to determine the presence of a point on an edge.
Figures 2.8(b) and 2.8(c) respectively show the first and second order derivatives of the
intensity profile shown in Figure 2.8(a). The first order derivative is zero when there is

no change in intensity, and is a positive constant for the length of the ramp.
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Figure 2.8. (a) Intensity profile as in Figure 2.7(b). (b) First order derivative of the
intensity profile shown in (a). (c) Second order derivative of the intensity profile shown
in (a).

As shown in Figure 2.8(c), the second derivative results in spikes at positive and negative
transitions of the first derivative. The positive transition occurs when the intensity profile
goes from the darker to the lighter intensity region and vice versa for the negative
transition. Thus, we can determine whether the edge point lies closer to the darker
intensity region or the lighter one.

The benchmark edge detection techniques, such as the Canny edge detection [18], Sobel
edge detection [19] and Deriche operator [20], are all based on this basic concept of edge
detection. Methods like Sobel edge detection are simple to implement, however, the
Canny and Deriche edge detection methods are computationally more expensive and

involve parameters that can be adjusted depending on the types of shapes to be detected.
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The purpose of edge detection is to obtain data points corresponding to the edge
contours of the shapes in the image. These can be subsequently used to detect the
elliptical shapes. A fast and simple technique that can detect enough data points for
ellipse modelling is needed. The Canny edge detection technique being complex and
computationally expensive is not suitable for real time applications. The Sobel edge
detection method being less complex and faster in processing is better suited for real time
applications. The Sobel edge detection technique is therefore chosen over the Canny edge

detection method for the considered application.

2.3.1.1 Sobel Edge Detection

The theoretical concept of edges in one dimension can be extended to two dimensions as
well. To detect the edges, there needs to be an accurate approximation for the derivative
in two dimensions. The Sobel edge detector performs this function by using two
convolution masks that slide through the image to calculate the gradient at each point.
The two masks are 3x3 in size and work along the x and y directions to calculate the
gradient in the x and y directions respectively, i.e., along the rows and the columns. The

two masks together are known as Sobel operators. Figure 2.9 shows the Sobel operators.
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Figure 2.9. Sobel Operators
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At any point, the magnitude of the gradient is calculated as

G =G + |G|
Thus, the gradient in the x direction is calculated by placing the center of G, on any pixel
and the output is calculated by adding the pixels in the mask weighed by the content of
the mask as defined in G,. The gradient in the y direction can be calculated in a similar
way and the addition of these two gradients yields the two dimensional gradient of the
image. Thus, the edges in both the directions are detected.

Figure 2.10 shows a sample image and its edge-detected output using the Sobel operator.

Figure 2.10. A sample image and its edge detected output using Sobel Operators.

The edge detected image is a binary image containing the data points which define the
outline of the shapes present in the frame. The data points of these contours can now be

used for the ellipse detection using the least mean square fitting of ellipses.

2.3.2 Least mean square fitting of ellipses

The research in the area of ellipse detection has been mainly focused on Hough-transform
based techniques [21, 22] and the least mean square fitting of ellipses. The Hough-
transform based techniques need a large amount of data to make a reliable detection. On

the other hand, least mean square fitting methods can model ellipses even with a fewer
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data points, though the accuracy of the modeling may deteriorate as the number of points
is reduced. The data points can be obtained from a video frame by one of the edge
detection processes. As was seen from the discussion in Section 2.3.1, the edges can be
detected reliably using the Sobel edge detection method. The output of the edge detector
includes the data points for all the major shapes in the frame, including the elliptical
shaped head.

The ellipse detection on data points is performed using the direct least square fitting of
ellipses (DLSFE) algorithm introduced by Fitzgibbon et al [23]. The algorithm while
being computationally efficient is also highly robust with respect to noise. The idea
behind the least-mean square fitting is to minimize the distance between the data points
and the ellipse. The algorithm tries to achieve this by controlling the parameters in the
general equation of an ellipse.

The notations and equations below are as described in the original paper on the direct
least mean square fitting of ellipses [23]. The general equation of a second order curve

can be represented by a second order polynomial,

Flkz)=kz=al’+bxy+c/’ +dx+ey+f=0 2.1

where
k=f[abcdef] (2.2)

and
z=[x"xyy’ xy 1]’ (2.3)
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The geometric distance of any point from the curve is defined as the minimum distance
of that point from the curve. If the geometric distance of any point (x; y;) to the curve

F(k, z) = 0 be given as d;, then

Sum of squared distances = idiz (2.9)

i=l
where 7 is the total number of available data points. Minimization of (2.4) leads to the
least square fitting of a curve.
For a second order curve to represent an ellipse, the quadratic constraint given by b -
4ac < 0 needs to be satisfied. Bookstein [25] showed that minimization of (2.4) subject to
a quadratic constraint can be performed by considering the generalized eigenvalue system

and using the lagrange multiplier A as,
D'Dk = JCk 2.5)

where, D=[X*X X*Y Y*XY X Y 1] (2.6)
and *.*’ denotes element by element multiplication. The vectors X, Y are defined as the

datapoints as,

X=[x1x:%3 . %n]" and Y=[y,y2y5 . yu] 2.7

D is called the design matrix, C is a constraint matrix and k is as defined in (2.2).
The inequality constraint, &’ — 4ac < 0 is difficult to solve as the solution is not

guaranteed [26]. Most of the least square fitting algorithms for ellipses and two
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dimensional curves in general, differ only in the constraint applied to the parameters. The

Fitzgibbon-Pilu-Fisher algorithm [23] reduces it to the equality constraint,

dac-b’ =1 (2.8)

In matrix form, this constraint can be stated as,

K'Ck=1 2.9)
where

'002000}
0 -1 0000
2 0 00 00
C =

0 0 0000
0 0 0000
0 0 00 0 0

Thus, from (2.5), (2.6) and (2.8), the least mean square problem reduces to solving the

system D'Dk = ACk with the constraint k' Ck = 1

Equations (2.5) and (2.9) thus form a system of simultaneous equations given by,
Sk = ACk (2.10)

KCk=1 (2.11)
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where
S=D'D

is called the scatter matrix.

Let (4, u;) be the solution to (2.10), then for any j, (4, ju;) should also satisfy (2.10).

Thus (2.11) yields,

FulCui=1,

and using (2.10), gives,

. \/ i \//li
J= == (2.12)
Hi C,u, ﬂiS,Ltt

With & = ju,; , the system of equations given by (2.10) and (2.11) can be solved. The
solution yields six eigenvalue-eigenvector pairs (4; ;). Only that pair for which the term
under square root in (2.12) is positive yields the correct solution. S is positive definite,
thus the value under square root in (2.12) depends upon 4. In [27], it was shown that the
minimization of || Dk ||* with the constraint 4ac — b° = I yields only one solution. In
view of the type of constraint that has been applied, the solution is an ellipse. Therefore,
there is only a single value of ; that is the solution and provides the parameters for the
fitted ellipse.

Figure 2.11 shows three different examples of direct least square fitting of ellipses on
three different data sets. The Sobel edge detection process on the original image yields

the contours in the image. The subset of contours defining the human head within each
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image has been extracted manually by selecting the small region containing the head
from the edge-detected image. Figure 2.11 (a) has been obtained from an image where
the facial features of the face are also visible. The facial features produce more contours
in the edge detection stage and therefore, the number of data points available for ellipse
detection algorithm is large. Figure 2.11 (b) shows a side view of the human face. The
contour obtained from the edge detection stage contains fewer points and no facial
features can be seen. The amount of noise or spurious edges is also significantly less in
this image. Figure 2.11 (c) shows the contours of the back view of the head. In each of

these images, the contours marked in red are the ellipses detected by the DLSFE.

(a) (b) (©)

Figure 2.11. (a), (b) and (c) Ellipse detection on data points obtained by edge detection
process on human head images extracted from frames having epileptic patients in field of
view.

As seen from Figure 2.11, the ellipses are detected using all the data points available to
the ellipse detection algorithm. This means that all the points would contribute to the
ellipse parameters, whether or not they actually form a part of the elliptical shape. With a
large number of noise pixels associated with facial features in Figure 2.11 (a), the fitted
ellipse is also seen to be concentrated inside the head. With almost negligible noise in
Figure 2.11(b), the ellipse is still not perfectly fitting the head due to some pixels

associated with the shoulder region at the bottom, which tend to pull the ellipse towards
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these points. Similar effect of the concentration of the pixels can be seen in Figure
2.11(c). This indicates that the least mean square ellipse fitting depends mainly on the
concentration of the pixel population. The elliptical shapes, though visible, are not
detected perfectly due to the presence of other pixels that contribute equally towards

minimizing the mean square error.

2.3.3 Detecting human faces using ellipse detection and skin
filters

The face detection algorithm being developed is based on the detection of elliptical
shapes in the image. The human faces can be detected in the images using the ellipse
detection and skin color filters in two ways as shown in Figures 2.12(a) and 2.12(b). In
the first approach, as shown in Figure 2.12(a), edge detection is first performed and this
provides the necessary data points for the ellipse modeling. The second stage is to detect
edges, which can be used for detecting elliptical shapes. The next stage involves
identifying the skin color. The ellipse with the maximum skin color present inside it is
assumed to be the human face. Thus, the first method searches for the best fitted ellipses
in the image and then looks for the amount of skin color within them. In the second
approach, as shown by Figure 2.12(b), the skin color filtering is performed first in order
to locate all the possible regions, where human face could be present. Ellipse fitting is

then performed in the detected skin regions. This indicates the presence of a human face.
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Figure 2.12. (a) Face detection with ellipse fitting followed by skin color detection.
(b) Face detection with skin filtering followed by ellipse fitting.
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Once an elliptical fit is found for the edges, the quality of the fit can be measured by
calculating the mean square error of the fit. For any data point, the minimum distance of
the point from the fitted ellipse is the error in the fit for that point. Thus, if d is the
distance between any data point and the fitted ellipse, then the mean square error for n

data points can be calculated as

1 n
Mean square error=— Zdl-z
n i

This mean square error is the criteria for defining the quality of fit.

In the first approach, to detect the shapes that best represent the ellipse in the image, step
by step search of the ellipses is performed in the complete image. Ellipses can be
searched in small windows, whose size is large enough to accommodate the human head.
These small windows would run through the whole image in small steps starting from the
first row and first column to the last column in first row, and then stepping onto the next
row and so on. The step size can be as small as one pixel or as big as the size of the
window, depending upon the level of accuracy and the speed of search desired. The
ellipses with small mean square error can be candidates as possible locations for the
human head. The human head is expected to contain traces of the skin, and therefore, a
top to bottom search in the candidate ellipses for the skin color is done. From the
candidate ellipses, the one with sufficient skin color within it can be assumed to be the
human head.

The second approach is to locate the skin areas first. The windows large enough to
accommodate human head can be selected around the centroids of the detected skin areas.

The ellipse with the minimum mean square error of fit is expected to correspond to the
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human head. This approach is more practical and computationally less expensive, as it
does not involve processing each and every possible location for the ellipses. The regions
of interest where the human head may be present are reduced significantly by first
performing the skin filtering. Therefore, this approach is more suitable for detecting
human faces than the first approach, as the sliding window is no longer required and not
every possible region needs to be examined for the ellipses. Therefore, we use this second

approach as the algorithm to detect the human head.

2.3.4 Performance Evaluation

The performace evaluation of the algorithm introduced above needs to be done in order to
determine its suitability for locating human faces in video images. The evaluation is a
simple process with a hit or miss criteria for the target, namely, the face. For each video
frame under consideration if the subject head is not correctly identified, the algorithm is
considered to have failed, i.e., missed the detection of the human face. Conversely, if the
human face is correctly identified, then the algorithm is deemed to have been successful.
Since the evaluation of success or failure must be done manually one frame at a time, it is
not practical to make a decision on each and every frame in the video. The application for
which this algorithm has been developed is related to the tracking of patients in a hospital
environment, where the movements of the patients are expected to be slow. Therefore, we
can assume that there will not be any significant change in consecutive video frames, and
the processing of one frame per second may be sufficient for this application. Thus, in
order to keep the evaluation process simple and consistent with the application at hand,

we will process every 25" frame in the video. The output of the detection of the human
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head is shown by a crosshair on the image at the location of the head. If the location of
crosshair is on the human face in the frame, then the detection is considered to be
successful; otherwise, it is deemed to have failed. Table 2.1 summarizes the evaluation
results for the human face detection algorithm tested on video ellipse.avi
[DVDROM:\chapter2\ellipse.avi]. The video under test has been taken under good
lighting conditions with slow movements of the patient. Attempts have been made to

capture almost all the possible views of the face in order to make the video data robust.

TABLE 2.1
RESULTS OF THE TRACKING PROCESS FOR EACH FRAME BEING PROCESSED IN THE VIDEO
ELLIPSE.AVI.
Frame Number Tracking successful?

1 Yes
25 Yes
50 No
75 Yes
100 No
125 Yes
150 No
175 No
200 No
225 Yes
250 Yes
275 Yes
300 Yes
325 No
350 No
375 No
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400 No
425 Yes
450 Yes
475 Yes
500 Yes
525 No
550 No
575 No
600 No
625 Yes
650 Yes

From the data in Table 2.1,

Total number of frames processed = 27

Total number of frames with successful tracking = 14

Thus, the percentage success = 51.85%

The results indicate that a tracking success of around 52% is achieved, and this cannot be
considered satisfactory since for almost half the time the algorithm fails to detect the
location of the face. The reason for this low success rate lies in the functioning of the
ellipse detection algorithm. The ellipse detection algorithm works on the least mean
square error criteria. It, therefore, finds an ellipse even if very little data is available.
Even if there are only a few pixels cluttered in a small area, the method will always fit an
ellipse to this data. For such kinds of data, the data points lie close together, their distance
from the estimated ellipse is not very large resulting in the overall mean square error to

be very small Additionally, the presence of noise after the edge detection stage causes
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distortion of the fitted ellipse. The degree of distortion depends upon the number and
location of the noisy data points. This distortion causes an increase in the mean square
error even for valid elliptical shapes. The combination of these two factors can cause
errors in the detection of the elliptical shapes, when the mean square error is the criterion
is used to find the best fit.

It is not possible to filter out the data points corresponding to the contours of facial
features and the noise in the vicinity of the elliptical contour of the head. These points
contribute equally in filtering the ellipse, resulting in a poor fit. Thus, it becomes very
difficult to improve the detection performance. These problems involved in the detection
of the elliptical shape of the head make it difficult to use it as a feature for the patient

tracking problem at hand.

2.4 Summary

In this chapter we have described the algorithms that were developed and experimented
with in the initial stages of the research performed in solving the problem of tracking the
patient. The ideas and methods seemed to be feasible until they were analyzed or tested in
the context of the final problem at hand. Though these methods were not successful for
tracking the patient, they cannot be regarded as complete failures. The experiments done
in this phase have provided a better understanding of the limitations of the project and
also provided ideas to investigate other possibilities.

The concept of utilizing the texture was investigated for possible use as a feature, but
due to limitations, as explained in this chapter, could not be implemented. The ellipse

detection in combination with the use of the skin filters did not yield the desired
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performance, but the skin filter developed in the process was helpful in providing some
information about the location of the patient. This skin filter is discussed in detail in
Chapter 3 and is the backbone of the tracking algorithm to be discussed in Chapter 5. It
not only results in very accurate skin color detection, but also reduces the computational
burden for the second stage of the tracking algorithm that detects an additional feature
from the patient. The use of the skin filter has allowed us to define the regions of interest
in the image that may contain the human face. This information can be used in other
detection methods.

Therefore, the methods discussed in this chapter are very crucial not only in the
development of the final tracking algorithm, but also in the understanding of the

limitations of the tracking problem at hand.
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Chapter 3

Skin Color Detection in Digital Images

3.1 Introduction

The skin color is an obvious feature to be used for human target detection. The fact that a
patient is the primary target makes the human skin color an obvious feature to be
exploited. The human skin color if determined accurately will give possible locations of
the human face. The combination of the human skin color location along with some other
features can help in determining the exact location of the patient’s face. Therefore,
detecting the human skin color is the first step in the tracking process, and this can be
followed by some other feature detection step as a second stage. This chapter discusses
the existing algorithms for the skin color detection, their limitations and scope for
improvements and finally, introduces a new algorithm for detecting the skin color

accurately.

3.2 Background

Color is an important feature of the human face and is a basis of various computer
vision algorithms. Using the skin-color as a feature for tracking a face has several
advantages. Algorithms exploiting the color as a feature are usually faster in terms of

the processing time than the ones relying on other physical features. Under static
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lighting conditions, color as a feature becomes orientation invariant. This is helpful for
algorithms based on motion estimation as only a translation model is needed for motion
estimation. The color information is also robust in terms of orientation and scaling.

Identification of the human skin using the color as a feature also needs to overcome
certain challenges. The color representation of a face obtained by a camera is
influenced by factors like the object movement and illumination intensity. Different
cameras produce significantly different color values even for the same person under the
same lighting conditions, and the skin color differs from person to person. In order to
use the color as a feature for face identification, these problems need to be solved.

There are several algorithms that address the issue of skin detection. David O’Mara
[28] has tried to build skin pixel classifier to identify pixels as either skin or non-skin.
The skin classifiers have been built from datasets containing different shades of skin
colors across different ethnic groups. However, the classifier has been built only in a
specific color space and the final performance of the classifier suffers from the
appearance of the “blue skin”. Jay Kapur’s model [29] based on Fleck and Forsyth
algorithm [30], converts the basic color information of the image to a space where the
texture amplitude, hue and saturation values of the image are computed. This conversion
is based on a variant of the formula given by Fleck and Forsyth [30]. In Kapur’s model,
the filtering is done with respect to the texture, hue and saturation in their respective color
planes. The filtered regions are expected to be areas containing the skin.

Though these algorithms claim to detect the skin regions accurately, sufficient
performance analysis has not been done for a proper evaluation. It is important to test

these algorithms in different conditions and on a varying set of images obtained under
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different source/lighting conditions so that their limitations can be well understood.
Practical results, as discussed later in this chapter, indicate that these algorithms detect a
range of colors that is much wider than the skin colors.

In this thesis, we have tried to develop a robust skin detection algorithm that improves
the detection performance. The new algorithm combines the basic complementary
features of the O’Mara’s classifier [28] and Fleck and Forsyth algorithm [29], as they
complement each other. These two algorithms are used as independent stages in the new
filter. A third stage filtering has also been introduced to suppress the detection of the non-
skin colors which both of the above mentioned algorithms fail to exclude.

This chapter starts with a discussion of the color space models. The Fleck and Forsyth
algorithm as well as the O’Mara’s skin classifier along with the drawbacks is then
presented, leading to the development of the new algorithm. Finally the improved
performance of the proposed algorithm as compared to that of the Fleck and Forsyth

algorithm as well as that of O’Mara’s model is presented.

3.3 Color Models for skin classification

3.3.1 RGB Model for skin color

Red, Green and Blue are the primary colors that can create a complete range of colors
when mixed in the appropriate proportions. These are the basic colors and can be easily
displayed on color monitors. Figure 3.1 shows the RGB color space as a solid cube in
the three dimensional space. Each of the red, green, blue components are represented by

real numbers in the range (0, 1). Computers generally display RGB using 24 bits with 8
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bits for each of the three colors. Thus, R, G and B components can have 28 different
values from 0 (the lowest intensity) to 255 (the highest intensity). In the RGB space,
the colors are displayed by varying the intensities of the red, green and blue
components. Thus, with a 24 bit representation there are 16,777,216 (256 red x 256

green x 256 blue) possible colors.

Blue c
0.0,1) yan
Magenta White
N
&
ol
- Black (0,1.0)
(1,001
Red Yellow

Figure 3.1. The RGB space as a solid cube.

The human skin color can be modeled in the RGB space by specifying the ratio in
which the R, G, B components are combined. As there are variations in the skin color
across the different ethnic groups, as well as within the same ethnic group, a range of
colors needs to be defined in the RGB space to represent this variation. However, RGB
space is not a good choice for the skin color identification, as it is very sensitive to the
level of the illumination. Slight changes in the illumination may vary the RGB values

greatly. This makes the RGB space doomed for failure, as the presence of the shadows
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and the different lighting conditions have a severe impact in the RGB model for the
skin.

In spite of the drawbacks in the RGB model for the skin color detection algorithms,
some researchers have still chosen to use the RGB model. Satoh, Nakamura and Kanade
[31] have used the Gaussian model in the RGB space to detect faces using the skin color.
Guillamet and Vitria [32] have mapped the RGB color space to a higher dimensional
space and used the principal component analysis to detect the skin.

It is to be noted that the effect of the illumination and color variance can be reduced by
normalizing the RG space [33]-[37]. Yang, Lu and Waibel [36] have utilized the
multivariate Gaussian distribution in normalized RG space to model the skin color.
Despite considerable efforts, the RGB model is still considered insufficient for modeling

the skin color.

3.3.2 HSB Model

The Hue, Saturation and Brightness (HSB) space is different from the RGB space in the
sense that the parameters involved are close to the human perception of the colors. The

hue and saturation, called chromaticity, can be directly calculated from the RGB values

[38] as

~(R=G)+(R=B)
h = arccos| 3.1
J(R-G)*+(R-B)(G - B)

3
l-—  min(R.G.B). 3.2
s=l-r oy g MR G.B) (3:2)
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where R,G and B are the red green and blue components of the colors as defined in
previous section.

For any color defined in terms of the R, G and B components, the component with the
highest value is taken to be the brightness. Another popular variation of this space is the

HSI space, where the intensity / is given as

1=%(R+B+G) (3.3)

As shown in Figure 3.2, the HSB space can be seen as a cone in the three dimensional
space. Hue is the angle around the cone. The range of hue is defined to be [0, 1].
Saturation is the radius of the base of cone. The pure colors lie along the edge of the
cone, whereas the fading colors lie near the center. The range of saturation is [0, 1]. The

height of the cone determines the brightness. As the height increases, the brightness

increases towards the white.

Green 0.25 Yellow Hue

Cyan 0.0 Red

Magenta

Figure3.2. HSB model as a cone in the three dimensional space
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The hue and saturation are very popular parameters for defining the skin color, since
they decouple the color and the intensity [39]-[41]. There are numerous skin color
detection algorithms that are based on the hue and saturation models. Zarit, Super and
Quek [42], and Terrilon, Martin and Akamatsu [43, 44] have shown that the HSI space
has the least overlap between the skin and the non-skin colors.

The hue and saturation become unstable at extremely low and high intensity
conditions. Therefore, the skin color models developed in the HSI space discard the
extreme values [45]. Gevers and Smeulders [46] discovered that the hue and saturation
are invariant to the viewing direction, surface orientation, illumination direction and
illumination intensity. In contrast, these properties do not hold true in the RGB color
space. Thus, the hue and saturation-based models are better suited for the skin color
modeling and a majority of the modern skin identification algorithms are built upon this

model.

3.4 Overview of David O’mara and Fleck & Forsyth models.

The David O’Mara and Fleck & Forsyth models for finding the skin in images [28, 30]
have been found to be most practical for the skin classification and detection. These
two methods form the basis of our skin detection algorithm. As the HSI space is better

suited for detecting the skin colors, these two algorithms work in this space.

3.4.1 Fleck & Forsyth Algorithm

The Fleck & Forsyth algorithm, better known as the naked people skin filter is modeled

keeping in mind the texture and color of the skin [30]. The human skin color is created
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by a combination of blood (red) and melanin (yellow, brown). The skin colors lie
between these two extreme hues. Saturation increases when the skin color gets deeper
due to the addition of melanin and the texture of the skin (explained later in this section)
is mainly of low amplitude. Fleck and Forsyth algorithm exploits these properties for skin
color detection.

The image under test in the RGB format is converted into log opponent values {47] as

I, = L(G) (3.4)
R, =L(R) - L(G) (3.5)
B,=L(R) + L(G) - 2 L(B) (3.6)
where
L(x) = 105*logo(x) (.7

where I, (intensity), R, and B, are the logarithms of the opponent color space [48] and are
therefore called the log opponent values. It is assumed that some cameras have poor R
and B resolution, and hence, the green channel is chosen for calculating the intensity (/g).
The factor of 105 has been used to magnify the effect of ‘log’ and to restrict the values to
the range [0, 255]. The log transformation makes the R, and B, values illumination
independent [49].

The texture amplitude, hue and saturation are calculated from the /g, R,, B, values. To
calculate the texture amplitude, median filtering is performed on the intensity image (/)

which considers each pixel in an image and replaces it with the median value in the
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specified neighborhood. The neighborhood search around each pixel is performed in the

radius 4*SCALE [31], where the factor SCALE is defined as,

SCALE = height of the image + width of the image (3.8)

320

The result is then subtracted from the original image. The absolute difference thus
obtained is then median filtered with the neighborhood radius as 6*SCALE [31]. The

resulting image is termed as the texture amplitude image. The hue, H, is calculated as

H =tan" Ry

y

and saturation, S as,

S=+R’+B’°

The skin color detection takes place in two stages. In the first stage, all the possible skin
regions are identified. The second stage is the refinement stage, where the pixels that may
overlap into the range of some other materials are excluded.

The algorithm uses the following two rules for the skin color detection.
Rule 1. Texture amplitude <5

110 <hue <150

20 < saturation < 60
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Rule 2. Texture amplitude < §
130 <hue <170
30 < saturation < 130.

These two rules in combination represent a diagonal region in space from low saturated
red towards saturated yellow. The output regions of these filters are thus assumed to be
potential skin regions, as the skin is a combination of blood (red) and melanin (yellow).

Refinement is done based on the potential regions of the skin discovered in the first
stage. A pixel is taken to be a valid skin color if at least one eighth of the pixels in its
circular neighborhood of radius 24*SCALE pixels are identified as the potential skin by
the first stage filtering. The factor SCALE can be seen as a normalization factor, since the
visible skin areas cannot be above a certain level. The refined image is the final output of
the algorithm.

The Fleck and Forsyth algorithm performs well by detecting all the possible skin
regions. The algorithm was further modified for better performance by Kapur [29] and
was used for the purpose of face detection. However, there is no assessment of the
performance under changing illumination conditions and under different light sources.
The skin filter based on the Fleck and Forsyth algorithm was applied on our test videos.
Figure 3.3 shows three sample frames of the first stage of the method. The images on the

left are the original frames and those on the right side represent the outputs of the Fleck

and Forsyth algorithm.
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Non skin
regions

Figure3.3. Frames 100, 200 and 300 from video skinfilter testl.avi and their
corresponding outputs from Fleck and Forsyth algorithm

Examining the outputs of the algorithm (right panel), it is clear that though this model
does well to identify all the skin regions, it fails to suppress the non-skin regions as
identified by the circled areas in the output. Due to these spurious detections, this

algorithm alone is not sufficient for classifying the skin color. Given the high sensitivity
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for identifying the skin colors, it can be used as a prefilter to suppress most of the non-

skin regions and thus, improve the performance of other skin-color detection algorithms.

3.4.2 David O’Mara skin classifier approach

David O’Mara’s algorithm investigates the chromaticity of the skin over different
ethnic groups and tries to compare their their skin color distribution. By investigating
the skin color over a wide range of images of various ethnic groups, statistical
parameters for the skin color distribution are calculated and standardized. The
identification of the skin on the test images is performed by comparing the parameters
of the various colors in the image against the database of the known parameters for the
skin color.

The Pilot European Image Processing Archive (PIEPA) [50] is a database of images
of faces of people from different ethnic groups. These images are taken under unknown
lighting conditions with different cameras. Manual segmentation of the skin areas in
these images yields a standard training set for the calculation of the statistical
properties of the human skin color. Figure 3.4 (obtained from [28]) shows the overall

distribution of the hue and saturation of the segmented skin regions in this training set.
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num. pixels

Saturation

Figure3.4. Distribution of hue and saturation for manually segmented skin regions in
the training set [28]

The statistical parameters for this training set are summarized in Tables 3.1 and 3.2
(based on data available in [28]). These values indicate the variation in the distribution
of the skin color across the different ethnic groups. The results indicate that mean hue
lies around 0.5 and mean value of saturation is around 0.27. These mean values are

assumed to be standard values for the human skin color.
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TABLE 3.1

STATISTICAL VALUES OF SKIN HUE CALCULATED ON THE TRAINING SET [28]

Hue Mean Median Max Min
Combined 4606 4074 9984 0
Asian 314 .0833 9982 0
Afro-Caribbean .5624 7381 997 0
White 4271 .0486 .9984 0
TABLE 3.2

STATISTICAL VALUES OF SKIN SATURATION CALCULATED ON TRAINING SET [28]

Saturation Mean Median Max Min
Combined 2615 2532 1 0
Asian 283 2785 1 0
Afro-Caribbean 2237 2059 1 0
White 3197 3226 1 0
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The colors can be fully represented in a statistical model using the covariance matrix of
chromaticity, mean chromaticity and Mahalanobis threshold [28]. To represent the
human skin color, the mean value of chromaticity is averaged over all the ethnic
groups. Let the total number of pixels in the training set be n, then the covariance

matrix for this training set can be calculated as [28]

Co Cin Chs
Chs Cs:
where

Chn =~ D" AhiAhi
n

i=l

Chs = L iAhi Asi
i=1

_-;l—.
Css =liASiASi
noi

and the distances to mean hue and saturation are defined as

hi—h iff | (hi—h)|<0.5,
Ahi={ hi=h +1  iff (hi=h)<=0.5,

hi—h =1 iff (hi—=h)|2 0.5

and Asi=si—s
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where h; and s; are the hue and saturation values for any point in the training data, and

h and s are the mean hue and saturation for the training data. The chromaticity matrix
and the mean values of chromaticity thus obtained for the training set are considered as
standard for the human skin color. The identification of the skin color in an image
under test is done by comparing the “distance” of each pixel from the standard values.

The distance is calculated using the Mahalanobis distance formula [28]

Dy =+ ([F—m)TC-1(p—m),

where p =(h,s) is the chromaticity of the point which is under test, m is the standard

mean chromaticity and C’ is the inverse of the standard covariance matrix. If the
Mahalanobis distance for the pixel under test lies below the specified threshold, then it
is taken to be a skin color pixel.

The O’Mara’s model was tested on our test videos. Figure 3.5 shows the sample
frames from the video skinfilter testl.avi. Images on the left are the original frames and
the ones on the right are the output of the O’Mara’s skin filter.

The output of the O’Mara’s model shows that the model works well for identifying the
skin. However, the non-skin regions being detected (circled areas in Figure 3.5) suggest
significant false detections. There are many colors other than the skin color, which have
been identified by this filter. This is undesirable in applications, where high accuracy is

needed.
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Non skin
regions

Figure3.5. Frames 100, 200 and 300 from video skinfilter testl.avi and their
corresponding outputs from David O’Mara’s algorithm.

3.5 The proposed skin filter

O’Mara model builds classifiers based on huge databases of skin images under different
lighting conditions [28]. The Fleck & Forsyth model is based on the theoretical

expectation of the skin appearance [29]. Though both these models detect the skin color
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well, they also identify various non-skin colors. We combine the two filters and use them
effectively to build a very robust skin color detection filter.

The significant problem with O’Mara’s classifiers is that it fails to exclude the blue
shades, which lie close to the human skin. One possible reason could be that the
classifiers are built from real world images taken under different lighting conditions,
where the effects of the flash and the camera’s perception under low illumination
conditions cannot be excluded. Moreover, the classifiers also fail to avoid yellow and
orange shades.

Though the Fleck & Forsyth model very precisely limits the skin into the bounds of
hue, saturation and texture, it fails to address the problem of illumination. Changing
lighting conditions is the biggest challenge for the skin filters and the performance of the
Fleck and Forsyth algorithm deteriorates significantly under changing lighting conditions.
Furthermore, this model also fails to suppress the various shades of the non-skin color.
The frames displayed in Figure 3.3 and the attached results on the test videos
[DVDROM:\chapter3\readme.doc] indicate the identification of the non-skin colors by
this algorithm.

These two models individually are not sufficient for the purpose of the final tracking
algorithm in our application. However, since the drawbacks of these two algorithms in
terms of the spurious identifications are different, the two algorithms complement each
other well. The basic idea of limiting the hue and saturation into predefined planes in the
Fleck and Forsyth algorithm can improve the performance of the O’Mara’s model.
Therefore, we introduce a new algorithm which combines the O’Mara’s and Fleck &

Forsyth algorithms as two independent stages of filtering. The Fleck and Forsyth
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algorithm tries to identify the skin regions in the original image. The identified regions
are used as the input to the O’Mara’s algorithm for further refinement in the detection.
Our test videos [DVDROM:\chapter3\readme.doc] indicate that the weakness of the
O’Mara’s model is filtered out in the first stage by the Fleck and Forsyth approach by
suppressing the yellow and orange shades. The undesirable gray and brownish shades
identified by the Fleck and Forsyth algorithm are suppressed by the O’Mara’s model in
the second stage. As Fleck and Forsyth algorithm is expected to suppress more non skin
colors than David O’Mara’s algorithm, therefore by using Fleck and Forsyth algorithm as
first stage, better computational efficiency is achieved. This combination of the two

algorithms is shown in Figure 3.6

Input Image

Stage 1 - Fleck & Forsyth
Algorithm
(Weakness: - fails to filter gray
and brownish shades

Yellow and Orange
shades filtered out

) 4

A 4

Stage 2 - David O’Mara’s
Algorithm
(Weakness: - fails to filter
yellow and orange shades along
with grayish blue regions.

Most Gray shades left over
from first stage filtered out

\ 4

v

Output Image

Figure 3.6. A combined skin color filter using the Fleck and Forsyth and O’Mara’s
algorithms as two independent stages arranged in cascade.
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While the combination of the two algorithms gives a near perfect skin color
identification, still some non-skin colors find their way through. This small range of non-
skin regions that sneak through both the Fleck and Forsyth and David O’Mara’s models
can be filtered either in the RGB or the HSV space. However, to avoid a possible overlap
with the range of the HSV space defined in the Fleck and Forsyth algorithm, filtering in
the RGB space is preferred. This RGB space filter is designed by analyzing the range of
non-skin colors present in the output of the combined two stages of filtering by the Fleck
and Forsyth and David O’Mara’s algorithms. The constraints set on the R, G and B values

arc

190> R > 35, 130> G >30, 105> B >15
This range of R, G and B values is found to block the non-skin color regions present in
the output obtained from the combination filter of Figure 3.6. The improvement in the
performance achieved by adding this third stage filter can be seen by the example in

Figure 3.7.

(a) (b) (c)
Figure 3.7. (a) Original video frame. (b) Output obtained after two stages of filtering

consisting of Fleck and Forsyth and David O’Mara’s algorithm. (¢) Output obtained by
adding a third stage filter.
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Figure 3.7 shows a frame from the video skinfilter evaluation3.avi. The figure on the
extreme left shows the original video frame. The figure in the middle shows the output of
the combined filtering by the Fleck and Forsyth and David O’Mara’s algorithm, and the
image on the extreme right is the output achieved by adding the third stage filtering in the
RGB space. The middle frame indicates that the two stage filtering by the Fleck and
Forsyth and David O’Mara’s algorithms fails to suppress the non-skin color pattern on
the clothes of the lady. However by adding the third stage filter in the RGB space, the
effect of this non-skin color is reduced significantly as seen in the frame on the extreme
right. This indicates an improvement in the performance of the combined filter by adding
the third stage filter.

The final skin color identification now involves three filters working in cascade. The
first stage is the Fleck and Forsyth algorithm in the HSV space, the second stage is the
O’Mara’s algorithm which works with the skin classifiers, and the third stage consists of
a filter that works in the RGB plane. By working in cascade, the shortcomings of each of
the stage are overcome in the next stage and therefore, the three stage solution provides a
significant improvement in terms of limiting the detection of the non skin regions.

The primary aim of developing a skin filter in our patient tracking problem is to find
the potential regions, where the patient might be present. As the number of regions
identified by the skin filter increases, more time would be required for the next stage of
the tracking process to make a decision about the presence of the target. If the skin filter
identifies several colors other than the skin color, it would also increase the probability of
false target detections by the next stage of the tracking process. Therefore, the skin filter

needs to be highly accurate even if it comes at the expense of low percentage detections
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in the skin areas. The primary aim of the filter is to reduce the detection of the non-skin
colors while maintaining a relatively successful skin color identification rate.

In Figure 3.8 we compare some examples of the performance of the proposed filter with
those of the Fleck and Forsyth and O’Mara’s algorithms. The frames chosen for
comparison are the same as those in Figure 3.3 and figure 3.5. The output of the three
algorithms on the test videos has been added to the DVD

[DVDROM:\chapter3\readme.doc].

(a) Fleck & Forsyth Algorithm (b) David O’Mara’s Algorithm (c) The Proposed Algorithm

Figure 3.8. Comparison of the outputs of the three algorithms on frames 100, 200 and
300 from video skinfilter testl.avi.
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The results indicate that there is a considerable decrease in the artifacts being detected.
However the proposed three stage filtering also results in some decrease in the sensitivity,
as not all of the skin areas are detected. But, as discussed previously, the aim of
developing a skin filter is to block as many non-skin areas as possible, and the proposed

filter gives a significant improvement in the overall performance.

3.6 Evaluation of the proposed algorithm

Visual assessment of the outputs of test videos indicates that performance of our
proposed filter is better than the individual models developed by O’Mara or Fleck and
Forsyth. The evaluation of the complete test video indicates the improvement achieved in
blocking the non-skin colors. But, as our videos have been shot from same camera and
more or less under the same physical conditions (except lighting), a random test of the
filter for different video sequences from different sources becomes important. We have
tried the evaluation on four video clips. The first video clip is one of our test videos and
the remaining three are from the Bollywood and Hollywood movies. The videos differ
from one another in the lighting conditions, number of people present in the video,
ethnicity of the people, and indoor and outdoor conditions.

The evaluation process involves segmenting the skin area manually and comparing it
with the output of the skin filter. The manual segmentation of the skin was done based on
the visual perception of the human skin color. The segmentation was automated by
selecting a closed polygon connecting the points defining the major features (namely the
pixels) around the visible skin area. The polygon is formed by a program which inputs

the nodes defining the major feature around the desired area and outputs the polygon by
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joining all the input nodes. All such polygons in a frame containing the skin color are
selected independently and the total area thus selected forms a mask, which is assumed to
contain all the skin color regions in the frame. The area of a polygon is defined as the
total number of pixels that are included within that polygon. Thus, the total skin area
selected manually is equal to the number of pixels within all the selected polygons in a
frame. The evaluation is done by comparing the manually-selected skin area based on the
visual perception with the skin area detected by the skin color detection algorithm
proposed in the previous section.

The performance results are tabulated in terms of the following.

3) Percentage of missed detection: This is defined as the percentage skin area that
the skin filter is unable to identify in manually-selected skin areas.

. . Ski that the algorithm fails to identift
Percentage of missed detection = 1 areas gon arstoldently «

_ 100
Total skin area

4) Percentage of false detection: This is defined as the percentage of area in the

image that the skin filter identifies as skin but is actually not skin.

Total non - skin areas identified outside the selected region X

Percentage of falsedetection = - -
Total area outside the selected region

100

3.6.1 Results on Videos

Outputs of the skin color filter have been obtained for a simulated video and three
randomly selected videos from different sources. Some frame sequences have been

shown in Figure 3.9 - 3.12. In each figure, the frame on the extreme left is the original

65



frame, the frame in the middle shows green areas which are the manually selected regions
and the frame on extreme right is the output of the skin filter. The performance results
have been tabulated for each video under test in Tables 3.3 — 3.6. The test videos and the
outputs of the skin filter can be found in the attached DVD

[DVDROM:\chapter3\readme.doc].

3.6.1.1 Results for the video skinfilter_evaluationl.avi
Table 3.3 shows the results of video skinfilter evaluationl.avi and some example frames

from this video are highlighted in Figure 3.9.

(a) Original Frame (b) Skin mask (c) Output of the proposed filter
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Figure 3.9. Frames 1 to 600 in steps of 100 from video skinfilter evaluationl.avi and
their corresponding selected and detected skin regions.
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TABLE 3.3

RESULTS ON THE VIDEO SKINFILTER_EVALUATIONI.AVI

Frame Percentage false detection Percentage missed detection
number
Proposed David Fleck | Proposed David Fleck
Algorithm | O’Mara’s and | Algorithm | O’Mara’s and
model Forsyth model Forsyth
1 1.0072 6.4561 4.59 10.0663 3.9445 6.15
25 1.3701 8.2419 3.5485 | 10.4151 5.9842 5.4495
50 1.1159 5.1533 4.8590 - - -
75 1.1159 5.1533 4.8590 - - -
100 1.1159 5.1533 4.8590 - - -
125 1.2096 9.4238 2.3649 4.7636 4.2506 1.8322
150 9307 5.5199 3.9580 5.4252 1.5396 3.9956
175 7327 5.6794 2.3285 | 51.6631 6.9002 | 45.1168
200 .5449 55111 43476 | 21.9015 9413 19.7051
225 5127 5.2184 3.8030 | 35.6184 6.9965 | 30.3180
250 6462 4.4766 6.4290 | 33.8667 3.2533 | 30.7200
275 .6458 4.6286 6.9759 | 52.9664 44037 | 48.5015
300 4688 5.7282 8.0967 | 40.7869 5.5738 | 35.2131
325 4831 6.7943 9.7965 | 11.5147 9274 9.9691
350 .2406 6.4775 8.6738 | 40.4997 1.2783 | 37.1877
375 2848 6.9372 7.1973 | 39.7823 8.8271 | 31.9226
400 1615 5.2008 4.2217 | 52.0720 43561 | 50.2367
425 1.0924 4.8395 7.1413 | 31.2960 2.9455 | 27.8719
450 .9833 5.2467 5.0716 | 36.7911 23513 | 33.9142
475 .9030 6.0791 3.1514 | 37.4798 29595 | 35.1040
500 7598 5.6025 4.5267 | 16.4520 6.3817 | 13.4075
525 .8688 7.9707 3.4160 | 37.3320 3.6054 | 33.6611
550 7285 5.8454 4.5280 | 22.5098 3.3333 | 19.1765
575 .6299 8.4141 3.4880 53.0950 3.0078 49,7820
600 4740 7.5488 2.3090 | 42.8001 43898 | 37.1134
625 4567 6.9945 2.5758 | 46.0616 1.3699 | 43.3790
Average | .749338 6.1651 4.8890 | 31.9634 3.8922 | 28.2490
values
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The results indicate that the proposed algorithm reduces the false detections by about 5%
as compared to O’Mara’s algorithm, while keeping the missed detections around 32%.
With a success rate of 68% and false detections below 1%, the proposed algorithm is
highly successful in suppressing the non-skin regions, while maintaining sufficient
detection sensitivity for the application under consideration, where it is not necessary to

correctly identify the complete skin areas.

3.6.1.2 Results for the video skinfilter_evaluation2.avi
Table 3.4 shows the results on video skinfilter evaluation2.avi and some frames from this
video are displayed in Figure 3.10. This video has been chosen as it has extremely low

lighting conditions.

(a) Original Frame (b) Skin mask (c) Output of the proposed filter

Figure 3.10. Frames 1 and 25 from video skinfilter evaluation2.avi and their
corresponding selected and detected skin regions.
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RESULTS ON VIDEO SKINFILTER_EVALUATION2.AVI

TABLE 3.4

Frame Percentage false detection Percentage missed detection
number
Proposed David Fleck | Proposed David Fleck
Algorithm | O’Mara’s and Algorithm | O’Mara’s and
model Forsyth model Forsyth
1 5133 36.3168 9525 39.1568 15.2669 | 12.7301
25 .8385 38.4907 | 1.2477 | 32.9551 15.4200 | 13.6648
50 6108 36.1837 | 1.7242 | 41.8719 16.7080 | 15.2909
70 0744 23.3397 | 3.2888 | 42.7982 21.6952 | 15.2130
Average | .50925 33.5827 | 1.8033 | 39.1955 17.2725 | 14.2247
values

The average undetected area in the selected region is quite high for this video. This is due
to the extremely poor lighting conditions. Still the success rate of detection is around
61%, and the percentage false detection is still extremely low. Thus, the proposed filter

has been able to prevent false detections better than the other algorithms, and this has

been the primary aim of the proposed algorithm.

3.6.1.3 Results for the video skinfilter_evaluation3.avi

Results from video skinfilter_evaluation3.avi are shown in Figure 3.11 and summarized

in Table 3.5. This video has changing lighting conditions and multiple people are

involved. Further, the man in the video is wearing a shirt whose color resembles the skin

color.
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(a) Original Frame (b) Skin mask (c) Output of the proposed filter
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Figure 3.11. Frames 1-800 in steps of 100 from video skinfilter evaluation3.avi and their
corresponding selected and detected skin regions.

TABLE 3.5

RESULTS ON VIDEO SKINFILTER_EVALUATION3.AVI

Frame Percentage false detection Percentage missed detection
number
Final David Fleck | Proposed David Fleck
algorithm | O’Mara’s and Algorithm | O’Mara’s and
model Forsyth model Forsyth
1 .4997 6.8362 .9230 25.4736 4.0639 15.0661
25 5628 12.4083 .8791 20.6187 4.7905 11.2029
50 4791 13.4334 | .8545 19.3129 4.1361 10.0400
75 0 5.5802 0 0 0 0
100 2.89x10™- | 4.1050 .0064 97.9334 92.2424 96.1212
4
150 4323 11.1409 .5839 44.7876 20.6564 | 39.2664
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175 1.1143 15.6502 1.2746 | 30.6612 11.6804 25.3719
200 1.8270 21.8573 1.9644 | 41.8375 12.0159 33.3523
225 1.5281 25.2321 1.7896 | 46.8610 12.9433 44.5577
250 5683 23.7176 6670 66.3065 14.4907 54.6678
275 8374 23.9766 9812 52.0535 10.3484 42.3281
300 5573 20.9034 .6774 56.0999 17.9100 42.6913
350 4112 25.3484 .4609 60.3621 18.0172 49.2178
375 2902 34.6591 3519 86.5845 12.1973 79.5127
400 3973 30.6774 .5388 61.3482 5.3084 57.2764
425 2.8258 37.3562 38776 |45.2842 3.0398 40.0336
450 6435 .6247 7885 60.8112 4.6014 57.9720
475 1.1681 52.1976 1.4303 | 41.0831 1.4833 36.5298
500 .5842 4.7630 .8030 35.1104 3.2137 30.2578
575 4757 4.1759 .6814 37.5377 6.8623 31.7133
600 20.6302 49,0706 24.4421 | 29.3629 15.2571 13.7443
625 24.2488 5.2182 25.4734 | 25.4544 11.4406 14.3877
650 22.6490 40.3108 24.0796 | 25.8791 14.9620 11.4110
675 1.2054 10.1273 1.1021 | 29.8301 14.7969 13.7009
750 11.0339 19.2902 11.9832 | 26.1019 13.4183 12.4423
800 4.8394 30.8681 5.5611 49.0621 14.7921 32.6011
Average | 4.1378 20.9077 44500 |43.6113 13.6241 35.2160
values

The video skinfilter _evaluation3.avi has been chosen especially in view of the fact that
the color of the man’s shirt is extremely close to the skin color. As expected, the
performance degrades since the filter falsely detects the shirt along with the skin.
However, in the frames where the shirt cannot be seen, the performance is extremely
good. The video also has significant illumination variance across its frames and the filter
does well in these changing lighting conditions. The percentage false detections in this
video becomes comparable to that of the Fleck and Forsyth algorithm, since the latter
algorithm is able to block most of the non-skin colors. Therefore, the weakness of the
Fleck and Forsyth algorithm does not come to light in this particular example. The
output of the skin filter on the tested video frames is present in the attached DVD

[DVDROM:\chapter3\readme.doc].
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3.6.1.4 Results for the video skinfilter_evaluation4.avi
The results on video skinfilter evaluation4.avi are shown in Figure 3.12 and summarized
in Table 3.6. This video has been chosen, as it is shot under bright sunlight. This gives

entirely different illumination conditions than the previous videos.

(a) Original Frame (b) Skin mask (c) Output of the proposed filter

Figure 3.12. Frames 1 and 100 from video skinfilter evaluation4.avi and their
corresponding selected and detected skin regions.

TABLE 3.6

RESULTS ON VIDEO SKINFILTER EVALUATION4.AVI

Frame Percentage false detection Percentage missed detection
number

Proposed David Fleck | Proposed David Fleck

Algorithm | O’Mara’s and Algorithm | O’Mara’s and

model | Forsyth model Forsyth

1 2078 4.4306 .2963 25.0608 24.6959 | 2.6764
50 .0379 4.3550 .02402 | 18.8997 16.9476 2.9281
75 .0399 2.2292 .0723 50.5578 12.1251 32.5347
100 1247 1.0463 .5370 16.9209 11.4371 11.1241
Average | 0.1025 3.0152 0.2324 | 27.8598 16.3014 12.3158
values
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The average values for the false detection and undetected area in the selected region
indicate that the performance of the proposed filter improves, since the lighting
conditions are better in this video compared to the previous cases. The success rate of
detection is as high as 73% (see Table 3.6). The percentage false detection for the
proposed algorithm remains low inspite of the presence of the blue regions to which
O’mara’s model is extremely sensitive.

The tabulated evaluation results indicate that for O’Mara’s model, the percentage of the
undetected area in the selected regions remains low. This indicates that the O’Mara’s
model identifies wider range of colors as skin color. While this property is good for
problems where all the skin regions need to be identified, it also identifies numerous
regions which are non-skin. This is seen from the average percentage of false detection,
which is extremely high for the O’Mara’s model. This is highly undesirable in our
problem, as we need the algorithm to be extremely accurate. Both the Fleck and Forsyth
algorithm and the proposed algorithm have a much better performance in terms of false
detections. Though the average percentage undetected area remains high for the proposed
algorithm, it indicates that the algorithm is highly accurate in suppressing non-skin

regions while maintaining a reasonable performance for detecting the skin color regions.

3.7 Summary

In this chapter, a new method of detecting the skin color in images has been proposed.
The proposed method exploits the Fleck and Forsyth and O’Mara’s models along with a

filtering in the RGB space to detect the skin color. The performance of the proposed filter
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has been evaluated on several videos which indicate an improvement in the performance
achieved over the Fleck and Forsyth model or the O’Mara’s model used individually.
Based on the evaluation of the filter on random videos and our test videos, we may
conclude that an extremely robust skin filter has been developed. As the primary
objective of the skin filter is to help locate possible regions of interest, it needs to be
extremely sharp. Under hospital environment, where the presence of colors close to skin
color is remote, the proposed skin filter is expected to give excellent performance. The
filter is not designed to achieve extremely efficient successful detections, but to suppress
the spurious detections. The results obtained using this filter on a number of test videos
indicate that the filter provides acceptable performance in terms of the suppression of the
non-skin colors, while maintaining a desirable skin color detection rate of around 60%.
Thus, the proposed filter serves our needs well and should act as a strong backbone for

our final tracking algorithm.
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Chapter 4

Line Detection Using Hough Transform

The skin color filter presented in Chapter 3 provides significant information about the
possible location of the patient in the room. To confirm the presence of the patient at the
locations suggested by the skin color filter, some additional feature needs to be identified.
As discussed in Chapter 1, the patient needs to wear a cap that fits snugly onto the head
to hold the electrodes and the wires. There is a possibility of drawing patterns such as
circles, squares, straight lines, etc. on the cap which can be detected by using pattern
recognition techniques. While circles and squares are subject to deformation with the
change in field of view, the straight lines are expected to provide a similar cross sectional
view from all angles. Therefore a pattern of straight lines on the cap is more suitable as a
feature. Detection of this potential pattern requires a robust line detection technique.
Hough transform for line detection is a well known algorithm for detecting straight lines
and is the subject of this chapter.

The chapter starts with an introduction of the Hough Transform in Section 4.1. The
Hough Transform for line detection is then discussed in Section 4.2 along with the
concept of Hough peaks and accumulators. The line detection process is then explained

with the help of an example in Section 4.3.
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4.1 Introduction

Detection of simple shapes like lines, ellipses, circles are basic to the problem of
computer vision. Most man-made objects can be identified using one or more of these
basic shapes. Mathematically, any basic shape can be defined in the two dimensional
space using variables and parameters. Hough transform is a benchmark tool in image
processing that recognizes patterns by interchanging the role of variables and parameters.
[51].

The Hough transform [52], was introduced in 1962 by Paul Hough, though the present
form owes its existence to Duda & Hart [5S3]. In 1981, Dana H. Ballard introduced the
transform in the field of computer vision [54] and due to its many desirable properties, it
soon caught the attention of the researchers, and became a focus of research in the 1980s.
During this period, the Hough transform was used to develop new algorithms in the field
of polyhedral object recognition [55], character recognition [56, 57], satellite image
processing [58], image segmentation[59, 60], motion estimation [61], recognition of 3D
objects [62], document processing [63], foil fencing [64], etc. Since then, the Hough
transform has been of wide interest for most of the researchers, who have been trying to
make significant improvements in these areas. Today, the Hough transform has found use
not only in computer vision, but also in areas like quantum gravity [65], pulsed phase
thermography [66], biometrics [67], and nano technology [68].

The Hough transform follows the principle of maximum likelihood detection. It is thus
suitable where more data points in the variable space are available. Rather than confining
to a small set of data and then trying to fit a curve by exploiting the remaining data

gradually, the Hough transform performs a global search. The fact that each data point is
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given an equal weight and the decision is based on the basis of an analysis of all the
available data, makes the method extremely robust. The main advantage of the Hough
transform technique is that it is tolerant to discontinuities in the feature boundaries and is
relatively unaffected by the image noise. This makes the Hough transform suitable for
practical scenarios, where the presence of the noise and the imperfect feature boundaries

are unavoidable.

4.2 Line detection using Hough Transform

In a two dimensional (x, y) space, where x and y are the variables, any line can be
represented in the form,
y=ax+b.

where (x, y) are the variables and (a, b) are the parameters that define a specific line. That
is, any line in the (x, y) plane or the variable space can be represented by specifying a
value of the parameters a and b. Changing the value of any or both of these parameters
yields a new line. This holds true for any two dimensional curve in the variable space as
each of them is represented by a unique set of parameters.

The idea behind the Hough transform is to interchange the roles of the variables and the
parameters. The points on the curves (i.e. any x; and y; on the line) are mapped onto the
parameter space, which gives a different perception of the curve that is much easier to
interpret and recognize. This section presents the line detection process using this

transformation.
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4.2.1 Hough - Line Transform

The Hough transform used for the line detection is explained below.
The equation of any straight line segment in an image is given as

y=ax+b 4.1
where x and y are variables and a and b are constants.
If (x; y;) be any point in the image, then as shown in Figure 4.1 (a), all the lines which
pass through this point have the form

yi=axit+b (4.2)
Infinitely many lines can pass through this particular point (x;y;) and the equation of

these lines can be determined by changing the values of the parameters a and b.

b= -ax,-+y,-

Line corresponding
to point (x;y;)

\ 4

\

(a (b)
Figure 4.1. (a) Infinitely many lines pass through (x; y;) for different values of a and b.

(b) The family of lines in the (x, y) space passing through (x; y;) represented by a single
line in the (a, b) space.
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Equation (4.2) can be rewritten as,

b=-ax; +y 4.3)
where x;, y; are now constants, and @ and b are the variables. This is an equation of a
straight line in the (a, b) space, as shown in Figure 4.1 (b).

If there are two points u and v in the (x, y) space, which are on the same line as shown
in Figure 4.2 (a), then for each of these points all the possible lines through them are
represented by a straight line in the (a, b) space as shown in Figure 4.2 (b). Therefore, the
line that passes through both the points u and v in the (x, y) space lies on the intersection

of the two lines u and v in the (a, b) space.

\ 4

(a) (b)

Figure 4.2. (a) Two points lying on the same line in (x, y) space. (b) Line through points u
and v in (x, y) space is now point of intersection of lines # and v in (g, b) space.

Similarly, as shown in Figure 4.3, all the points lying on the same line in the (x, y) space

can be represented by concurrent lines in the (g, b) space.
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Figure 4.3. All the points on a line in the (x, y) space are represented by concurrent lines
in the (a, b) space.
Hence, concurrent lines in the (a, b) space represent collinear points in the (x y) space.
Therefore, the straight lines in the (x, y) space can be detected by investigating the
concurrent lines in its transformed space, i.e., the (a, b) space. The lines in digital images
are represented by finite number of pixels. Therefore, the length of a line in the (x, y)
space of an image corresponds to the number of lines in (a, b) space passing through the
common point of intersection. This concept of detecting straight lines is called the Hough
line transform for the cartesian plane.

In the equation y = ax + b, a represents the slope of the line. In the specific case of
vertical lines, the slope is infinite and therefore the value of a is infinity. In the (g, b)
space, this value cannot be represented. To avoid this, the normal representation of a line

in the (x, y) space can be used :

xsin@+ycosf=p (4.4)
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where p is the perpendicular distance from the origin and 8 is the angle that the normal

makes with the y axis, as shown in Figure 4.4.

A

y

xsin@+ycosf=p

\ .......... (1 80 — 9)

»

X

Figure 4.4. Normal representation of a line.

The concept in Figure 4.2 can now be used to represent the transformation from the (x, y)
space to the (p, 6) space. For each point in the (x, y) space, there would be a curve in the

(p. 6) space as shown in Figure 4.5.

61p1)

x;sinf + y,cosf = p

x;8in6 + y,cos6 = p

A/
\ 4

(a) (b)

Figure 4.5. (a) Two points in the (x, y) space. (b) Curves in the (p, 8) space corresponding
to the two points in the (x, y) space

83



Similar to the representation in Figure 4.2 (b), the line passing through the two points in
the (x, y) space is the point of intersection of the two curves in the (p, 6) space (see Figure
4.5 (b)).

The advantage of using the (p, 8) space lies in the fact that the slope of the line in (x, y)
space is represented by the parameter  which can only take values in the range [-180°,
180°] and therefore, the problem of the slope tending to infinity is avoided and the lines
in the (x, y) space with infinite slope can now be represented in the (p, 8) space by a

single point at & = 90 degrees as shown in Figure 4.6.

» »
Lad L

X 90° 0

Figure 4.6. A vertical line in the (x, y) space can be represented in the (p, 8) space by a
point for which 8 = 90 degrees.

Since all points on a line in the (x, y) space map to a single point in the (p, 6) space, it is
possible to detect straight lines by using the concepts of the Hough peaks and

accumulators, as discussed in the next section.
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4.2.2 Hough peaks and accumulators

The Hough transform provides the transformation of a line in the (x, y) space to the (p, §)
space. Each point in the (x, y) space is represented by a curve in the (p, 8) space. If there
are n points in the (x, ) space that lie on a straight line, then as shown in Figure 4.7, there
would be » corresponding curves in the (p, 6) space, which are concurrent. The lines in
the (x, y) space are therefore the points of intersection of the curves in the (p, 6) space.
The number of curves passing through a particular point in the (p, 8) space thus
determines the number of points lying on a line in the (x, y) space. These points of
intersection of curves in the (p, 8) space are called Hough peaks and the intensity of a
Hough peak is defined as the number of curves passing through that point. The length of
a line in an image is determined by the number of pixels constituting the line. Since
longer lines have more curves associated with them, the Hough peaks corresponding to

longer lines are brighter.

(a) )

Figure 4.7. (a) Points lying on a line in the (x, y) space. (b) The corresponding curves in
(p, 6) space are concurrent.
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The concept of detecting straight lines in the Cartesian space can also be extended to the
(p, 6) space. The straight lines in the (x, y) space can be detected by examining the
presence of the concurrent curves in the (p, 8) space. The length of any particular line in
the (x, y) space corresponds to the number of curves in the (p, 8) space passing through
the common point of intersection.

However, in images captured in real environment, the points comprising the line
defining a feature boundary may not be aligned perfectly and are expected to deviate
from the expected slope of the line. This implies that the points lying on the line may not
be collinear as shown in Figure 4.8 (a). Due to this misalignment of segments of a line,
the curves corresponding to these points do not intersect at the same point and therefore

there may be several peaks for a single line as shown in Figure 4.8 (b).

A 4
\ 4

(a) (b)

Figure 4.8. (a) Lines obtained from real time images might not be perfectly straight. (b)
More than one peak is possible in the (p, 8) space for this line.
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However, as these points represent the same line, these peaks should lie close to each
other and within a relatively small region. Thus, to make the Hough transform practical
for line detection, the (p, ) parameter space needs to be quantized by dividing this space
into small cells. These cells are called the accumulator cells (Figure 4.9) as they
accumulate peaks for the segments of single lines. The size of these cells as shown in

Figure 4.9 depends upon the level of accuracy desired or expected.

A9
"4 ~
Pmax
} Ap
Pmin >
9min 9max

Figure 4.9. The (p, 6) parameter space subdivided into accumulator cells.

The accumulator cells are created in the area where the values of p and 0 are expected.
The values of 0 are expected to be between -180 to + 180 degrees and p cannot be greater
than the distance between the corners in an image. A range of acceptable error is defined
by specifying the size of the accumulator cells. Thus, the angle defining the slope of the

straight line is bound by the size of the accumulator cell, this is also called the margin of

error and is bound by,

Range of acceptable error :|AQ| < * GO (4.5)
n
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where, n is the number of accumulator cells. A similar expression holds true for p.

Range of acceptable error ;| Ap |< p Loa” Prin (4.6)
n

4.2.3 Using Hough peaks to detect lines

The line detection process is now explained with the help of an example. Figure 4.10
shows an image with random shapes. To obtain the points in the image which define the
contours of the shapes, edge detection is performed. The edge detected image (Figure
4.11) gives all the points (shown in white) that define the shapes in the image. The edge

detection process has already been explained in Chapter 2, Section 2.2.1.

/

N

N

\

/

Figure 4.10. Image under test having random lines and curves
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Figure 4.11. Edge detected logical image using Sobel operator gives the points in the
image which are candidates for straight lines.

For any point in the edge detected image, the (x, y) coordinates give the physical
locations of the point in the image. In the (p, 8) space, this point is represented by a curve
(see Figure 4.5) which lies within the range of 6 (-180 to +180- degrees). The curve
extends within this range and takes on different p values for each value of 6. At the start
of the line detection process, the value of each of the accumulator cells is set to 0. Since
the curve takes all possible 8 values within -180 to +180 degrees, the corresponding p
values for each of these 6 can be calculated using (4.4) and the accumulator cells

corresponding to these p values are then incremented.
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This process needs to be repeated for all the image points. At the end of this process, the
values in the accumulator cells indicate the number of points lying on the corresponding
line in the variable space and hence, the intensity of the peak. The accumulators with
intensity greater than a predefined threshold can now be used as candidate peaks. The
greater the intensity of a cell, the longer is the length of the line. Figure 4.12 shows the

peaks obtained for the data points in Figure 4.11.

Figure 4.12. The Hough peak detection step figures out the brightest peaks in the (p, 6)
space.

A practical problem in the real world images, as discussed earlier in the chapter, is that
the lines are not perfectly straight and have broken segments with poor alignment. Hence,
the peaks tend to lie in more than a single cell. To overcome this problem, the Hough
peak with the highest value is found and the immediate neighborhood peaks are then
suppressed. This can be repeated until the desired number of peaks are found. Once the

desired peaks are extracted, the original lines can be traced by examining the points in the
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(x, y) space corresponding to the curves in the (p, 8) space contributing to the peaks.

These points have been highlighted in Figure 4.13 (in red color).

Figure 4.13. Line detection performed based on the Hough peaks in Figure 4.12. Detected
lines in the image shown in red.

To detect specific patterns, some parameters like the minimum and maximum lengths of
the line, number of lines, specific orientation of the lines, etc. can be used. For patterns
such as parallel lines, the occurrences of the Hough peaks for a particular value of theta
can be sought. For lines perpendicular to each other, the respective angles of inclination
would be 90 degrees apart. Such a pattern can be detected by identifying the Hough peaks
for values of 0 that are exactly 90 degrees apart. Thus, the numerous patterns can be

easily created and detected using the line detection method.
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4.3 Summary

In this Chapter, the Hough transform for line detection is presented. The Hough line
detection transform provides a reliable platform to detect patterns containing straight
lines. Therefore, a feature containing straight lines can be developed for our application

and it is expected to be detected successfully using the method presented in this chapter.

92



Chapter 5

Tracking Patients using Hough Transform and

Skin color detection

5.1 Introduction

This chapter presents a new method to track the movements of patients undergoing EEG
monitoring. The new method exploits the skin color as a feature, along with the cap on
the patient’s head with a pattern drawn on it as a second feature. The pattern on the cap is
a set of straight parallel lines and is detected using the Hough transform for line
detection, discussed in Chapter 4. As shown later in this chapter, these two features are
sufficient to track the location of the patient in the room.

The chapter starts with a discussion of the cap worn by the patient (Section 5.2). This
includes the discussion of the cap as a possible feature followed by a discussion on
developing the pattern on the cap. The new algorithm for locating the position of the
patient is then discussed in Section 5.3, and Section 5.4 discusses the optimization of the
parameters involved in the different stages of the algorithm. The performance of the
algorithm tested under variable lighting conditions, in the presence of multiple people

and real time processing capabilities is presented in Section 5.5.
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5.2 The Electrode cap

5.2.1 The “electrode cap” as a feature

To monitor the EEG of epileptic patients, electrodes are placed on the head of the
patients. It is very common to make the patient wear a cap that keeps the bunch of loose
wires together as a single braid which otherwise could be a cause of inconvenience and
poor recording of EEG data. This cap will hereafter be referred to as the “electrode cap”.
The cap being a spherical feature is independent of the rotational issues usually involved
in the detection of features. As it is placed snugly on the head, there are no issues related
to the potential change in the shape of any patterns drawn on the cap or the cap itself. The
cap is thus a potentially strong area which can be developed as a significant feature.
Recall that in the case of the ellipse-based face detection algorithm, the skin filter
provides the possible regions of interest and the elliptical-shaped heads are searched in
the window surrounding the regions of interest. In a similar manner, the modified
electrode cap with some significant pattern on it can be searched for in the regions of
interest given by the skin filter. A specific color of the cap may allow it to be visibly
differentiable and can thus be identified by using pattern recognition techniques. The
electrode cap may thus make a suitable feature for the identification of a patient’s head in

the video frames.

5.2.2 Developing a pattern on the cap using straight lines

It is possible to draw patterns like lines, squares, circles, rectangles, etc. on the cap.

However, the pattern developed on the cap should remain independent of the direction of
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view and rotation or tilt of the head. This pattern also needs to be good enough to
withstand possible changes in the lighting conditions. Since the skin color filter alone is
not sufficient to differentiate the patient from other people in the image, we have to use
the pattern on the cap to identify the patient. Therefore, the pattern should be simple
enough so that it can be detected reliably by the available pattern recognition techniques.
A set of parallel lines is one possible pattern which is rotational, directional and
orientation independent. Thick lines going around the cap in a circular pattern on the cap
(see Figure 5.1), are expected give an impression of nearly straight parallel lines from any
field of view to the camera. Once the regions of interest (ROI) have been isolated by the
skin color filter, the parallel lines can be searched for inside the ROI windows. The target
can be successfully located, if enough lines are detected inside the window. Figure 5.1

indicates how the electrode cap is modified.

Figure 5.1. Simulation conditions with the patient wearing the modified cap.
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The image shows a simulation environment with a person wearing the modified electrode
cap. The base color of the cap has been kept black with white stripes to give the highest
possible contrast. The high contrast will allow the detection to be applicable in low
lighting conditions. The distance between the stripes has been kept large enough for the
stripes to be clearly differentiable from one another under all possible fields and distance
of view from the camera.

To develop the pattern on the cap, several combinations of painted lines were tried.
Vertical lines were painted on the cap, but that gave an impression of lines originating
from a common point at the top of the head and thus did not appear parallel. We tried
painting fewer but thicker lines, but this did not show any significant improvement in the
detection of the pattern. Increasing the number of painted stripes from three to four
lowered the distance between the lines, thereby bringing them too close together to be
differentiated from large distances. Therefore, three stripes seemed to be a suitable
choice. Each stripe is thick enough to provide two parallel lines one at the top edge and
the other at the bottom edge. Thus, three stripes allow six parallel lines to be detected.
Apart from this, the boundary of the cap that separates the cap from the facial skin also
appears to be a straight line. Depending upon the shape of the head, the top of the cap
creates a line against the background and leads to an additional parallel line. Thus, eight
parallel lines on the cap in the neighborhood of the skin color form a feature that is
unusual to be found anywhere inside a hospital environment, especially in a region of
interest window as small as the size of a human head. This pattern on the cap thus forms

a significant feature that can be used to identify the patient in the video frames.
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5.3 The Algorithm

The previous section explains how the electrode cap has been developed as a significant
feature by drawing a pattern on it. This pattern can be detected using the Hough
transform technique discussed in Chapter 4. The skin color filter along with the electrode
cap as a feature can now be used to detect the location of the patient. The proposed
algorithm for locating the patient in the given video sequence is explained through the

following steps.

ALGORITHM FOR LOCATING THE PATIENT IN THE GIVEN VIDEO SEQUENCE

STEP I: Extract an image frame from the video and perform skin color filtering as
described in Chapter 3.
STEP II: Locate the regions of interest using the centroids of the skin regions and

the appropriate window size.

STEP III:  Perform the edge detection on the original extracted frame as described in
Section 2.2.1

STEP IV: Search for parallel lines within the regions of interest identified in Step 2
and mark the region of interest with maximum detected lines as the

location of the patient.

The output obtained indicates the location of the patient by displaying the selected ROI

window in black color

97



The following example illustrates the algorithm.

Figure 5.2 shows a frame from the video evaluationl.avi
[DVDROM:\chapterS\readme.doc]. The skin color filter detects the skin regions as
shown in Figure 5.3 and the centroids of the three major skin regions are marked with

blue color asterisks in Figure 5.4.

Figure 5.2. Frame 100 from video evaluationl.avi

Figure 5.3. Output of the skin color filter
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Figure 5.4. Centroids of the three significant skin regions marked as blue color asterisks.

The centroids of the skin regions are the centers of the regions of interest (ROI). Once the
ROIs are located, windows large enough to contain the expected size of the head are
selected around the centroids of the ROIs. These windows are selected from the edge
detected image. In this example, these windows are selected manually around the
detected centroids keeping the area of the extracted window large enough to
accommodate the head. Figure 5.5 shows the output of the edge detection step and the
extracted ROI windows are shown in Figure 5.6. A set of parallel lines is then searched in
these windows using the Hough transform for line detection (as discussed in Chapter 4).
If a sufficient number of parallel lines is found in any of these windows, it can be

assumed to contain the patient’s head.
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Figure 5.5. Edge detection performed on original frame

(@

Figure 5.6. The extracted windows centered at the centroids of the three major skin color
regions (magnified for better visibility).

The Hough transform of these windows would detect the straight lines and the location of
Hough peaks would suggest whether the lines are parallel. Figures 5.7 shows the Hough

peaks for the three ROI windows of Figure 5.6.
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(c) Hough peaks for ROI window shown in Figure 5.6 (a)
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(d) Hough peaks for ROI window shown in Figure 5.6 (b)
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(c) Hough peaks for ROI window shown in Figure 5.6 (c)

Figure5.7. The Hough peaks for the ROI windows shown in Figure 5.6.

In Figure 5.7 (a), there is a cluster of peaks near zero degrees. The peaks indicate the
presence of straight lines and their presence near zero degrees indicates that they are all
inclined at same angle (zero degrees) and thus are parallel to each other. In Figures 5.7
(b) and (c), the peaks are not concentrated at any particular angle and hence the detected
straight lines are not parallel. This indicates the presence of the pattern of straight lines in
ROI window of Figure 5.6 (a).

The detected lines in the ROI window (see Figure 5.6 (a)) based on the Hough peaks (see

Figure 5.7 (a) are shown in Figure 5.8.
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Figure 5.8. The detected lines corresponding to the Hough Peaks

The presence of straight parallel lines in the vicinity of skin color signifies the presence
of the modified electrode cap in the frame. The location of the patient has thus been

identified successfully.

5.4 Finding the optimum parameters

To ensure the optimum performance of the algorithm, each independent stage in the
tracking process needs to be optimized, the independent steps being the skin filtering,
edge detection and Hough transform for line detection. The skin filter development and
optimization has already been discussed in Chapter 3. Sobel edge detection technique has
been used for the edge detection step (discussed in Chapter 2), which is expected to
detect all the possible edges in the image. The Sobel edge detection operators being
standard do not involve any parameters. Therefore, only the Hough line detection stage

needs to be optimized for detecting the parallel lines.
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5.4.1 The Hough Line detection parameters

The Hough transform involves several parameters. Minimum length of the line, minimum
gaps between adjacent line segments for them to be considered as part of a single line, the
size of the accumulator cells and the number of Hough peaks to be considered are some
major parameters involved in this stage.

The role of the accumulators for detecting straight lines has been discussed in Chapter 4,
A@ and Ap being the accumulator size parameters. The Af parameter specifies the
acceptable error in the orientation of the line being searched. The lines being detected
might not be perfectly straight and certain pixels on it would tend to deviate from the
median angle. The limitation of deviation, however, needs to be specified so that the
pixels from adjacent lines are not mistaken to lie on the line under observation. A Aé
value of 0.5 degree is considered to be a good measure of the deviation, as it is large
enough to account for the edge detection errors and small enough to constraint the
expected line within safe limits.

As parallel lines are being detected in a window, the Hough peaks are expected to be
within a certain angle bound by Af. This detection remains independent of the Ap factor
as it has no role in the detection of parallel lines. Therefore for detecting parallel lines,
this parameter is insignificant.

The minimum length of a line needs to be defined for it to be considered a line and not
merely a stray cluster of pixels. The length of the line is defined by the number of pixels
inside an accumulator cell having nearly equal p values for a particular theta. As
discussed in Chapter 4, the p values depend upon the dimensions of the area under

transformation, i.e., the size of the search window. As the length of the line depends upon
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the p values, and p depends upon the window size, the minimum or maximum length of
the expected line also depends upon the window size.

In the edge detection step of the real time images, not all the lines are likely to be
detected to their full extent. This can cause gaps in between the adjacent line segments.
These gaps, which may not be detected, can cause a line to be detected as several smaller
line segments. In order to avoid this, a maximum gap length needs to be considered.
Adjacent line segments having a gap length less than the threshold can be identified as
part of the same line. However this gap must be defined in terms of the parameter p,
which in turn depends upon the size of the window being considered. Thus, this
parameter again depends upon the size of the window.

The number of Hough peaks, that must be searched for, depend upon the number of
lines being searched. In the electrode cap, three painted stripes give an impression of six
possible lines. Therefore, at least six parallel lines should be detected which implies six
Hough peaks must be detected for any value of . However, due to the constraints such as
a single line being detected as broken line segments and the threshold gap length, it is
possible that a single line is detected as more than one line. Therefore, unless the
parameters like the gap length and the minimum line length have been made constant, the
number of Hough peaks to be detected cannot be specified. These parameters as
discussed previously, depend upon the window size around the ROL.

As described above, most of the Hough line detection parameters depend upon the
window size of the ROI in one way or the other. It can be concluded that if an optimum

window size is found, the Hough line detection parameters can therefore be optimized.
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5.4.2 The Window Size

Based on the discussion above, the optimum region of interest window size is important
as it defines the performance of the Hough line detection stage. The window size depends
upon the relative location of the patient from the camera. The performance of the Hough
line transform also depends upon the window size, and therefore this tradeoff must be
carefully balanced.

We address this issue by considering the performance parameters of the Hough line
transform to be constant. An optimum window size that would give the best performance
of the overall system can then be found. In other words, for any set of constant values of
the Hough parameters, there should be a specific window size that gives the maximum
number of line detections.

To evaluate the optimum window size, the Hough parameters values are taken as,

AG=0.5 degrees
Ap=0.5
Minimum line length= 10 pixels

Maximum gap between adjacent line segments = 4 pixels

The test videos contain simulated conditions with a person wearing the modified
electrode cap moving about the room. For each frame, the skin color filter gives the
centroids of the potential regions of interest. The coordinates of the centroid of the skin
color of the head are then isolated manually. Different window sizes centered at these

coordinates are then tested for the performance in terms of the number of lines detected.
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This step is done manually to remove the other detected regions (that are not part of the
head).

The region of interest windows are taken around the centroid of the identified skin
region. Since the cap lies on the head, it is actually the cap that defines the region of
interest. Therefore, the performance as a function of the window size and location is also
tested by shifting its location by 20 pixels above the centroid, where the cap is expected
to be located. For each location and size of the window, the number of lines detected is
observed. The location and size that gives the maximum number of line detections for the
above mentioned Hough line detection parameters, is taken to be the optimum size and
location of the window.

The evaluation is done on test videos evaluationl.avi and evaluation2.avi
[DVDROM:\chapterS\readme.doc]. In each of the videos an attempt has been made to
emulate the movements of the patient, the size of the room and the location of the
camera. The lighting conditions are bright and no other person is present in the room
except the patient. These conditions have been chosen to ensure that nearly perfect
conditions are provided for the calculation of the optimum window size. Every 25" frame
has been processed in the videos to have a consistency in the assessment. The size of
each extracted frame is 640 x 480 pixels.

Tables 5.1 and 5.2 summarize the results of the evaluation on these two videos. Column

1 shows the frame number and the location of the face centroid as detected by the skin
filter. Column 2 shows the number of peaks detected for each window size. The number

of peaks detected is the maximum number of peaks detected in the window for a
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particular 6. The second row for the various frame numbers indicates the results obtained
by shifting the window 20 pixels upwards.

For example, for frame 1 in video evaluationl.avi, the coordinates of the face centroid
are (201, 46) and the number of peaks detected for a window of size 30x30 centered at
the centroid is 4. The number of peaks detected for the same frame when the window is
shifted 20 pixels upwards is 10. If the patient is out of the video frame as in frame 725,

then this is denoted by marking the entries in the different columns by “X”.

TABLE 5.1

EVALUATION OF THE OPTIMUM WINDOW SIZE FOR VIDEO EVALUATION!.AVI

Frame number and Window size & number of
Coordinates of the face peaks corresponding to
centroid. possible parallel lines detected
under it.
30x 40x 50x 60x 70x
1, (201,46) 4 6 9 8 6
Peaks after shift 10 10 10 9 8
25,(195,62) 7 8 8 9 7
Peaks after shift 10 10 9 9 8
50,(206,127) 4 6 9 7 6
Peaks after shift 10 10 10 8 9
75, (194,210) 7 8 9 10
Peaks after shift 10 10 10 10 10
100, (216,295) 5 7 9 8 9
Peaks after shift 10 10 10 10 10
125,(201,380) 5 7 8 8 9
Peaks after shift 10 10 10 10 10
150,(420,315) 1 4 8 8 6
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Peaks after shift 10 10 9 9 7
175,(212,451) 2 2 3 5 4
Peaks after shift 10 10 10 9 7
200,(207,385) 5 4 5 5 6
Peaks after shift 9 9 10 8 9
225,(219,318) 6 7 8 10 8
Peaks after shift 10 8 9 10 10
250,(196,241) 3 5 9 9 9
Peaks after shift 10 |9 9 9 10
275,(193,167) 5 7 8 8 8
Peaks after shift 9 8 8 7 7
300,(185,165) 6 6 7 5 5
Peaks after shift 9 10 10 10 5
325,(201,121) 7 7 8 8 8
Peaks after shift 10 10 10 9 8
350,(218,65) 1 0 3 6 9
Peaks after shift 10 10 10 9 7
375,(193,178) 5 6 7 8 7
Peaks after shift 10 10 10 10 8
400,(190,266) 6 4 4 6 6
Peaks after shift 8 9 9 8 8
425,(191,354) 5 4 5 6 4
Peaks after shift 10 8 8 9 7
450,(200,417) 3 3 4 5 5
Peaks after shift 10 10 9 9 7
475,(191,422) 4 |4 7 14 s
Peaks after shift 9 9 8 6 6
500,(179,372) 4 3 4 4 4
Peaks after shift 10 |9 7 7 5
525,(180,370) 4 5 6 3 3
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Peaks after shift 10 10 7 6 5
550,(182,420) 4 3 4 4 4
Peaks after shift 10 9 8 7 6
575,(175,392) 3 4 5 4 4
Peaks after shift 10 10 9 8 5
600,(184,387) 2 4 5 7 4
Peaks after shift 10 10 10 8 5
625,(202,386) 1 2 6 8 7
Peaks after shift 9 10 9 9 9
650, (197,272) 7 8 10 10 10
Peaks after shift 9 10 10 10 10
675,(185,161) 7 8 9 8 9
Peaks after shift 10 10 10 10 10
700,(196,61) 7 6 8 8 8
Peaks after shift 10 10 8 7 6
725 X X X X X
Peaks after shift

Average values 482 |5.10]6.72 | 6.82 | 6.48
Average shifted values 9.72 1 9.58 [ 9.17 | 8.62 | 7.65
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TABLE 5.2

EVALUATION OF THE OPTIMUM WINDOW SIZE FOR VIDEO EVALUATION2.AVI

Frame number and Window size & the number of
Coordinates of the face peaks corresponding to
centroid. possible parallel liness

detected under it.

30x 40x 50x 60x 70x

1, (253,394) 5 4 8 7 7
Peaks after shift 10 10 9 9 8
25,(223,384) 7 8 9

Peaks after shift 10 10 9 10 10
50, (235,351) 6 6 5 5 5
Peaks after shift 10 8 9 9 8
75,(227,373) 5 6 7

Peaks after shift 10 10 9 10 10
100,(243,401) 6 9 10

Peaks after shift 10 10 10 10 10
125,(246,471) 9 7 10 {9 8
Peaks after shift 10 10 10 9 10
150,(262,552) 7 9 10 10 10
Peaks after shift 10 10 10 10 10
175,(265,601) 10 |9 10 10 10
Peaks after shift 10 10 10 10 10
200,(295,585) 5 7 8
Peaks after shift 10 10 10 9 9
225,(315,598) 4 3 4 4 5
Peaks after shift 10 10 10 10 9
250,(302,512) 6 6 7 9 8
Peaks after shift 10 10 10 10 10
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275,(323,424) 5 6 8 9 10
Peaks after shift 10 10 10 9 8
300,(307,332) 4 6 9 10 10
Peaks after shift 10 9 10 10 10
325,(292,356) 2 5 7 8 8
Peaks after shift 7 9 9 9 9
350 X X X X X
Peaks after shift X X X X X
375,(262,224) 2 3 5 8 9
Peaks after shift 5 6 9 10 10
400, (247,184) 5 7 7 8 7
Peaks after shift 9 8 8 10 10
425,(260,104) 4 6 5 6 5
Peaks after shift 10 10 10 9 6
450,(266,87) 7 8 10 10 10
Peaks after shift 10 10 10 10 10
475 X X X X X
Peaks after shift X X X X X
500,(260,96) 2 5 6 8 7
Peaks after shift 10 10 9 9 9
525,(257,145) 4 7 8 8 9
Peaks after shift 9 9 10 9 10
550,(251,247) 5 5 9 8 9
Peaks after shift 10 8 10 10 10
575, (250,337) 6 7 9 9 10
Peaks after shift 7 8 8 10 10
600,(242,414) 6 5 9 9 8
Peaks after shift 7 8 10 10 10
625,(238,512) 7 9 9 10 10
Peaks after shift 10 10 10 10 10
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650,(260,555) 6 3 4 5

Peaks after shift 10 10 10 |9 10
Average values 5 5.66|7.07 744|744
Average shifted values 9.36 1 9.3219.56| 9.6 |9.44

The results for these two videos in which various positions of the head are considered
indicate that the performance is better for the windows that are shifted 20 pixels upwards
in an attempt to get the window closer to the cap. It does not matter whether the head is
really close to the camera or not, windows of size 30x30 or 40x40 provide sufficiently
good performance by detecting almost equal number of lines on an average.

The results from Tables 5.1 and 5.2 indicate that on an average around 9 peaks are
being detected. To assume a safe value of the threshold, the value 8 is considered
sufficient for the algorithm. Therefore if at least 8 peaks are detected in an ROI window,
it can be assumed to contain the pattern of straight lines drawn on the cap. In the case
where more than one ROI window is found to contain more than 8 peaks, then the one

with the highest value is selected.

5.5 Evaluation of the algorithm

With the optimum window size and threshold for the peaks to be detected having been
found, the algorithm must be evaluated for its application in real time environment. The
algorithm should be able to keep track of the patient under different physical conditions
of the surrounding environment. As the performance of the skin filter and edge detection

stage of the algorithm is expected to vary under varying illumination conditions, the
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tracking performance of the algorithm also needs to be tested under varying conditions of
illumination. Besides the varying illumination conditions, the performance of the
algorithm also needs to be tested under situations, where people other than the patient are
present in the room.

The test videos taken for experimentation consider these varying conditions of the
surrounding environment. By defining a criterion for successful or unsuccessful tracking
for each of the conditions under test, the evaluation can be mathematically stated in the
terms of detection/tracking sensitivity (i.e. percentage of frames in which the patient is

successfully identified).

5.5.1 Evaluation under varying lighting conditions

As the performance of the skin filter is known to vary greatly under changing lighting
conditions, it therefore becomes important to evaluate the tracking performance of the
algorithm under different lighting conditions. Three videos testl.avi, test6.avi and
test2.avi [DVDROM:\chapterS\readme.doc] have been captured, respectively, under
good, medium and low lighting conditions. The algorithm is tested on the videos with the
processing rate of 1 frame per second. The output of these three videos is then manually
evaluated and for each frame being processed, the success or failure is recorded. The
algorithm detects the target by selecting one of the ROI windows. Success or failure is

defined as follows.

e If the output of the algorithm is the ROI window corresponding to the patient’s

head, it is considered a success.
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o If'the patient is not present in the frame and no target is detected, it is considered

a Success

o If the target detected is not the patient, it is considered a failure.

o If no target is detected even if the patient is present in the frame, it is considered

failure.

Tables 5.3, 5.4 and 5.5 summarize the evaluation process for videos testl.avi, test6.avi

and test2.avi respectively.

TABLE 5.3

RESULTS OF TRACKING PROCESS ON EACH FRAME BEING PROCESSED FOR VIDEO UNDER
GOOD LIGHTING CONDITIONS - TEST1.AVI

Frame Number

Tracking successful?

1 Yes
25 Yes
50 Yes
75 Yes
100 Yes
125 Yes
150 Yes
175 Yes
200 Yes
225 Yes
250 Yes
275 Yes
300 Yes
325 Yes
350 Yes
375 No
400 Yes
425 Yes
450 Yes
475 Yes
500 Yes
525 Yes
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550 Yes
575 Yes
600 Yes
625 Yes

Under good lighting conditions, the tracking has been unsuccessful for frame 375. In this
frame, the patient’s face is not visible at all to the camera. Thus, even though the patient
is in the frame, the skin color filter is not able to detect any skin regions of the face and

hence no ROI window is selected on the patient’s head.

From the data in Table 5.3,
Total number of frames processed = 26
Total number of frames with successful tracking = 25

Thus, the percentage success = 96.15%.

TABLE 5.4

RESULTS OF TRACKING PROCESS ON EACH FRAME BEING PROCESSED FOR VIDEO UNDER
MEDIUM LIGHTING CONDITIONS - TEST6.AVI

Frame number Tracking successful?

1 Yes
25 Yes
50 Yes
75 Yes
100 Yes
125 Yes
150 Yes
175 No
200 Yes
225 Yes
250 Yes
275 No
300 Yes
325 Yes

116




350 Yes
375 Yes
400 Yes
425 Yes
450 Yes
475 Yes
500 No
525 No
550 No
575 Yes
600 Yes
625 No
650 Yes
675 Yes
700 Yes
725 Yes

Under medium lighting conditions, the tracking is unsuccessful for frames 175, 500-550

and 625 due to the reason similar to that for the frame 375 of video testl.avi.

From the data in Table 5.4,
Total number of frames processed = 30
Total number of frames with successful tracking = 24

Thus, the percentage success = 80%

TABLE 5.5

RESULTS OF TRACKING PROCESS ON EACH FRAME BEING PROCESSED FOR VIDEO UNDER
LOW LIGHTING CONDITIONS - TEST2.AVI

Frame number Tracking successful?
1 Yes
25 Yes
50 Yes
75 Yes
100 Yes
125 Yes
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150 Yes
175 Yes
200 No
225 No
250 No
275 No
300 No
325 No
350 No
375 Yes
400 No
425 Yes
450 Yes
475 Yes

From the data in Table 5.5,
Total number of frames processed = 20
Total number of frames with successful tracking = 12

Thus, the percentage success = 60%

Thus, under low lighting conditions, there are numerous frames for which tracking is
unsuccessful. This can be related to the fact that as the lighting conditions are poor, the
skin color filter is not able to locate all the skin areas correctly. This results in false ROIs
being selected. Though the success percentage drops as the lighting conditions get worse,
even a 60% success rate is reasonable considering the fact that in real time applications,
the mobility of the patient would be extremely low under these low lighting conditions.
In good and medium lighting conditions, the algorithm has been able to give an

acceptable tracking performance.
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5.5.2 Evaluation in the presence of multiple people

The purpose of the algorithm is to track a patient using the pattern developed on the cap,
which differentiates the patient from other people. The performance of the algorithm
needs to be measured in terms of its ability to make this distinction. The test videos
test8.avi and test9.avi [DVDROM:\chapterS\readme.doc] have been captured under
simulation conditions, where multiple people are present. The performance evaluation is
made by evaluating the output of the algorithm on each of the frames having people other
than the patient. The tracking process is considered successful if the patient is
successfully identified in presence of other people. Success or failure is defined as
follows.

e If the patient is successfully located in presence of other people, then it is

considered a success.
o Ifthe target detected is not the patient, then it is considered a failure.
e If no target is detected even if the patient is present in the frame, it is considered

a failure.

As this evaluation is only for testing the performance in the presence of multiple
people, those frames which do not involve people other than the patient have not
been considered. This leaves fewer frames in the video sequence test8.avi for the
purpose of evaluation. Therefore, the evaluation has been performed for two videos,

test8.avi and test9.avi. The results are tabulated in Tables 5.6 and 5.7.
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TABLE 5.6

RESULTS OF TRACKING PROCESS ON EACH FRAME BEING PROCESSED FOR VIDEO UNDER
TEST WITH MULTIPLE PEOPLE - TEST8.AVI

Frame number Tracking successful?
175 Yes
200 Yes
225 Yes
250 Yes
275 Yes
300 Yes
325 Yes
350 Yes

From the data in Table 5.6,
Total number of frames processed = 8
Total number of frames with successful tracking = 8

Thus, the percentage success = 100%

TABLE 5.7

RESULTS OF TRACKING PROCESS ON EACH FRAME BEING PROCESSED FOR VIDEO UNDER
TEST WITH MULTIPLE PEOPLE - TEST9.AVI

Frame number Tracking successful?
150 Yes
175 Yes
200 No
225 Yes
250 Yes
275 Yes
300 Yes
325 Yes
450 Yes
475 No
500 Yes
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525 Yes
550 Yes
575 Yes
600 Yes
625 Yes
650 Yes
675 Yes

From the data in Table 5.7,
Total number of frames processed = 18
Total number of frames with successful tracking = 16

Thus, the percentage success = 88.88%

The results indicate that the percentage success rate remains high even in the presence of
multiple people. This explains the robust character of the tracking algorithm. The frames

where the target could not be detected were suffering from occlusion of the target.

5.5.3 Real time processing

The algorithm being developed for real time videos needs to have a processing speed
high enough for real time applications. From the discussion in Chapter 1, the movements
of the patient in the room are expected to be slow and limited. Therefore, the processing
speed can be compromised at the expense of accuracy. Even with this advantage it has to
be ensured that the algorithm does not have an extremely slow processing speed per
frame. From the discussion in Section 1.5, the tracking algorithm should be able to

achieve a processing speed of at least 1 frame per second. This processing rate is
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expected to be sufficient, as the movements of the patient about the room are not very
fast.

All the stages of the algorithm have been developed in Matlab. The algorithm was tested
for processing speed on 9 test videos. Every 25th frame in the videos was processed and

the processing time computed. Table 5.8 summarizes the results.

TABLE 5.8

REAL TIME PROCESSING COMPUTATIONS FOR VIDEOS TEST1.AVI - TEST9.AVI

Video name Number of frames Average processing time
processed per frame (in seconds)

testl.avi 26 994

test2.avi 21 9379
test3.avi 41 9576
test4.avi 38 9893

test5.avi 15 0.9892
test6.avi 30 .98392
test7.avi 18 95581
test8.avi 19 95934
test9.avi 28 9253

As seen form Table 5.8, the processing time per frame for all videos is below 1 sec. The
performance has been measured on P4 3.2 GHz machine with 1GB RAM running
windows XP professional. Matlab is known to have poor memory management
capabilities and is thus slow for real time video processing applications. A C++
implementation of the algorithm is expected to yield much higher processing speeds.

Even with Matlab, the processing speed of around 1 frame per second has been achieved.
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5.6 The tracking system

This research has focused on developing an algorithm for the analysis software (see
Figure 1.1) which can locate the patient in the room. The proposed algorithm can find the
location of the patient as the coordinates of the center of the ROI window, which is found
to contain the patient’s head. This location information can be transmitted to the control
system which can calculate the adjustments needed in positioning the camera to keep the
patient in full view in the next frame. Therefore, with this proposed algorithm, a tracking
system can be implemented to track the movements of the patient in the room

automatically.

5.7 Summary

This chapter has presented a new algorithm for tracking epileptic patients through digital
videos. The new algorithm is based on feature-based tracking, where the human skin
color and a pattern developed on the patient’s cap have been exploited as the features.
The cap worn by the patient has been introduced as a strong feature by developing a
pattern of straight lines on it and the Hough transform discussed in Chapter 4 has been
shown to detect this pattern successfully. The performance evaluation of the new
algorithm reveals that the algorithm performs reasonably well under major challenges,
like multiple people in the frames and changing lighting conditions for the simulated
data. The algorithm has been shown to have real time processing capability through

extensive simulations. Therefore, this algorithm can be used to develop a complete
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tracking system that can be installed in hospitals for automatic video EEG monitoring of

patients without the need of human intervention.
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Chapter 6

6.1 Concluding Remarks

In situations where the information about the target to be tracked is known a priori,
feature-based tracking is expected to be a reliable technique for developing a tracking
system. The primary contribution of this thesis has been to develop a feature-based
algorithm for tracking epileptic patients in a hospital room for the purpose of automating
the video EEG monitoring process.

First, the available features such as the patient’s clothing, the cap on the head of the
patient, the skin color and the elliptical shape of the human head have been identified and
the possible techniques for identifying them in the video frames have been discussed. The
texture of the clothes as a feature was not found to be suitable for practical applications
and hence was excluded from further consideration after a discussion of its limitations.
Two existing algorithms for detecting the human skin color in images have been
presented, and their limitations identified by testing them on video data. In order to
overcome these limitations, a new algorithm for detecting the human skin color, that
employs a combination of these two algorithms has been proposed. The improvement
achieved in the detection performance has been supported by making suitable
comparisons with the existing techniques.

An algorithm for identifying the elliptical shape of the head has been proposed. This

along with skin color filter was then used for detecting human faces in video frames. This
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human face detection technique was then tested for its detection performance, and found
to be unacceptable due to the limitations of the ellipse detection algorithm.

Since, the skin color alone is not sufficient to track a patient, the cap on the patient’s head
has been developed into a feature by drawing a pattern of straight parallel lines on the
cap. A pattern recognition technique based on the Hough transform for line detection has
then been presented to identify this feature. The combination of the skin color filter and
the Hough transform technique for detecting the pattern on the patient’s head have been
used to propose the final algorithm for identifying the location of the patient in a hospital
room.

This proposed algorithm was tested for its performance under conditions such as varying
illumination conditions, presence of multiple people in the room and real time processing
capabilities. The performance of the algorithm has been found to be acceptable for the

purpose of implementing a tracking system that can possibly be used commercially.

6.2 Future Work

A major limitation of the algorithm proposed in this thesis lies in its inability to locate the
patient at night, when the lights are switched off and infrared cameras are used to capture
the videos. Under these conditions, the skin color filter developed in this thesis is not
expected to work as the videos obtained will not have any color information. Further
research can be pursued in developing a color invariant feature that can possibly be used
along with the electrode cap as a feature to track the patient in the videos obtained under

infrared mode of the camera. Though the movements of the patient are limited under such
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extremely low lighting conditions, making the algorithm illumination independent will
eliminate the risk involved in losing any critical segment of the patient’s movements.

In this thesis the problem of tracking epileptic patients has been addressed using only
feature extraction techniques. The motion-based tracking techniques have not been
considered in this thesis. Such techniques can possibly be used in conjunction with
feature-based methods presented in this thesis to improve upon the performance of the
tracking system. The possibility of developing an algorithm based on both the feature and
motion-based algorithms should be studied. This may increase the real time computation

efficiency of the algorithm.
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