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Abstract

Visual Servoing in Robotic Manufacturing Systems for

Accurate Positioning

Zheng Li

Automated robotic manufacturing systems require accurate robot positioning. Visual
servoing is an increasing popular method to enhance such positioning accuracy. Based on
the error signal definition, visual servoing is classified into three approaches, Position
Based Visual Servoing (PBVS), Image Based Visual Servoing (IBVS) and Hybrid Visual
Servoing (HVS)

In this research, firstly, a novel Neural Network (NN) based hand-eye calibration is
introduced in PBVS. A MultiLayer Perceptron NN is used to approximate the nonlinear
coordinate transform from image coordinates to real world coordinates in visual servoing.
The main advantages of NN based hand-eye calibration are that it can solve the hand-eye
calibration problem without estimating the hand-eye transformation and can improve the
object tracking accuracy as well. The experimental results in an industrial manufacturing
robot show that the proposed calibration method outperforms the current solving
transformation matrix method and free hand-eye calibration method for 2D object
tracking.

Secondly, a new approach to switching control of IBVS with laser pointer is proposed.
The simple off-the-shelf laser pointer is applied to realize the depth estimation. The
proposed system is robust to the camera calibration and hand-eye calibration error, and is

object model free as well. Comparing with traditional IBVS, it avoids image singularities

il



and image local minima, and is successful for only partial image features in the field of
view. Moreover, the trajectory of the robot end effector is shortened. The experimental
results are given to verify the effectiveness of the proposed method in a robotic

manufacturing system for assembly.
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CHAPTER1 INTRODUCTION

1.1 Introduction

The task in visual servoing is to use machine vision system to control the pose of the
robot’s end effector relative to a target object, thereby to compensate for the robotic
positioning errors. This chapter introduces the basic concepts and components of visual
servoing system, together with an overview of the background. The motivation, objective

and contribution of this study are also summarized.

1.2 Background and Previous Work

Automated robotic manufacturing systems such as robotic assembly, drilling, welding,
painting, shot peening, and surface finishing (deburring, polishing, grinding), all require
accurate robot positioning [1]. Some pictures of robotic manufacturing system are shown

in Figure 1-1.

POLISHING

(a) Welding[2] (b) Drilling[3] (¢) Polishing

Figure 1-1 Robotic manufacturing systems



For a conventional robot manipulator, the accurate position is only derived from the
feedback control system of the joints. The repeatability may reach within 0.1 mm.
However, several uncertainties may affect the precision, such as poor robot calibration
and the changing of load. Furthermore, conventional robot does not have the ability of

self teaching.

Figure 1-2 Robot pailletizing operations [7]

Take the operation shown in Figure 1-2 as an example. The equipment setup with the
robot manipulator is included as part of the production line. Before this robot performs
palletizing operations, it is necessary to determine the values to be assigned to the
respective position variables “pHome”, “pPick”, “pPlacel” and “pPlace2” for the
program [7]. However, in case where either the position of the pallet or conveyor is
changed to a new position, the robot will not achieve the task any more. Another example

is related to robotic drilling. Suppose that there are hundreds of holes to be drilled on a



board. By using a conventional robot system, we have to teach robot the exact position of
every hole to be drilled, which is very tedious and time consuming.

In these situations, a new type of sensor needs to be added to the conventional robot
system. One of the effective sensors is visual sensor, such as camera. With the fast
development of hardware and computing power, more and more industrial customer
choose visual feedback to increase the robot positioning accuracy and realize some non-
contact measurement of the environment as well. A robot manipulator together with a
vision system can be used to imitate the motion of human beings. The accuracy of the
resulting operation depends both on the accuracy of the visual sensor and the robot
manipulator [4][5]. Take the robotic drilling with visual servoing as an example, a large
number of marks are preinstalled or painted on the board at the manufacture phase. The
vision system will detect the marks and guide the robot manipulator to achieve the
drilling task. Although the vision system increases the cost, it improves the positioning
efficiency, increases the accuracy and saves the manpower.

The term of visual servoing is first introduced in [9], which denotes that the vision
based control system can provide closed loop position control for robot end effector. It is
the fusion of many related areas including image processing, kinematics, dynamics, real-
time computing, machine vision, and control theory [4][5]. The related background
knowledge and previous related works of visual servoing are introduced in this section,

including the classification of visual servoing and a review of hand-eye calibration.

1.2.1 Classification of Visual Servoing

There are several types of architecture of visual servoing system, depending on the

classification method.



According to the position of the camera, it can be classified into two architectures:
eye in hand while the camera is rigidly mounted on the robot end effector to observe the
object only, and eye to hand while it is fixed in the workspace to observe both the robot
and the object [10][11]. Here, hand is used to denote robot end effector, and eye is the
camera. Obviously, the transformation between hand and eye is constant in architecture
one. On the contrary, the transformations from eye to world reference frame and stable
object frame. are constant in architecture two. In [4], authors present the first architecture
as endpoint open loop (EOL) system, and endpoint closed loop (ECL) system. Although
the ECL system will give the relative accurate results, the losing field of view problem
cannot be solved.

The second major classification of visual servoing distinguishes direct visual servoing
from look-and-move architectures [12][13]. As the name implies, direct visual servo
controller directly computes the torque inputs of joints, hence it uses the vision feedback
alone to stabilize the whole system. The robot dynamics needs to be considered. In
contrast, the look-and-move structure uses the vision based controller to generate the
inputs of the joint controller of robot. Therefore the stability of the whole visual servoing
system is dependent on both the low level robot joint controller and the visual controller.
There are many advantages of look-and-move approach. As we know, the vision system
is hard to provide a high sample rate because of the limitation of camera. The low level
joint controller with a high sample rate can easily satisfied the stability of the robot, thus
a lower sample rate of the outer loop, vision feedback, can still fulfill the task. Moreover,
most of commercial robots do not provide the customers access to the joint control, and

already have the controller of joints that makes the visual servo system simple and



shortens the developing period [4]. In the research, we adopt the look-and-move structure
exclusively, and in this thesis, all mentioned visual servoing denotes look-and-move
structure.

The last classification of visual servoing provided here is dependent on the error
signal definition. The error for Position Based Visual Servoing (PBVS) is defined in 3D
Cartesian space, and the error for Image Based Visual Servoing (IBVS) is defined in
image plane. Hybrid Visual Servoing (HVS) is to use a hybrid of Cartesian and image
space sensory feedback signals to control both the Cartesian and image trajectories
simultaneously [4][6]. The advantages and disadvantages of PBVS, IBVS and HVS are
given in following sections in detail. Some performance tests for visual servoing control

systems are provided in [34][35][39].

> PBVS

During the servoing, PBVS calculates the relative position and orientation, which are
known as the pose of the object with respect to camera. The error between the desired
and current pose is defined in 3D Cartesian space. The robot end effector trajectory is
controlled to move approximately along straight lines in the Cartesian space. Because
PBVS separates the pose estimation from the controller design, it allows the integration
of measurements from multiple sensors. However, it needs accurate camera calibration
and hand-eye calibration, and perfect target geometric model to achieve the pose [14][15].
Furthermore, since there is no control of the image trajectories, the image boundary

constraint may be violated, which may lead to potential failure of servoing.



> IBVS

Since IBVS was introduced in 1980, it attracts the attention of many researchers and
has been tremendously developed in recent years. The method is based on the principle
that when the image feature error is approaching to zero, the kinematic error will
approach to zero too. In IBVS the error for the controller is defined directly with respect
to image feature parameters. Comparing with PBVS, the advantages of IBVS are obvious.
First it is object model free, and robust with respect to camera modeling and hand-eye
calibration errors [84]. Second the image feature point trajectories are controlled to move
approximately along straight lines in the image plane so that it is able to prevent the
image features from leaving the Field of View (FOV). However, the drawbacks of IBVS
still exist. Since the control law is merely in the image plane, the trajectory of the end
effector is not a straight line any more, and even odd in some cases. In other words, in
order to make the image feature error reduce to zero as soon as possible, unnecessary
motions of end effector are performed. Moreover it is stable only in a region around the
desired position, and there may have image singularities and image local minima leading
to potential failure [16][17]. Image local minima are first introduced in [16], which may
lead to IBVS failure. Koichi Hashimoto et al [62] introduced a potential method to solve
the image local minima. The main idea of their algorithm is minimizing the potential
function. If the potential has local minima, the algorithm generates an artificial potential
and then controls the camera base on the artificial one.

To avoid the weakness of IBVS and achieve a more functional visual servoing system,
researchers have provided some improved algorithms. In [19], to solve the depth

estimation problem and calculate an exact image Jacobian matrix, stereo based visual



servoing is proposed. However this kind of system increases the computational cost.
R.Mahony et al [20] introduced a method of choosing other type of image features
instead of point for IBVS and focusing on the depth axis control. P.Y.Oh et al [21]
presents partitioning DOF method for IBVS. The experimental results are given by
tracking people. In [22], another partitioned approach to visual servo control is
introduced, which decouples the z-axis rotational and translational components of the
control from the remaining DOF. The method in [23] is based on a cylindrical coordinate
system that can shift the position of the origin.

Lately some active visual servoing systems are introduced. In [24], Pages et al. derive
the image Jacobian matrix related laser spot. However, the method needs the information
of the planar object. In their algorithm, it is only a fit for the situation that the camera is
located near the desired position. Another approach using laser pointer in visual servoing
is presented in [25][26]. Krupa et al. develop a vision system with static camera, which
retrieves and positions surgical instruments for operation. A laser pointer is used to
project laser spot on the organ surface to control the depth. However, the servoing is only

3DOF and the camera is motionless, so the system cannot provide much flexibility.

> HVS

As the shortcomings of PBVS and IBVS mentioned above, some new approaches that
integrate the two methods are developed. The main idea is to use a hybrid of Cartesian
and image space sensory feedback signais to control both the Cartesian and image

trajectories simultaneously.
One of the hybrid visual servoing is 2.5D visual servoing [27][28][29]. Inheriting the

merits of position based and image based methods, it needs neither target model nor



accurate camera calibration and hand-eye calibration. The Cartesian and image
trajectories are controlled simultaneously so that they are approximate to straight line in
3D Cartesian space and image plane respectively. It avoids the image singularity and
local minima. One of the drawbacks of this method is that it is more sensitive to image
noise than IBVS, since this scheme directly uses visual features as input of the control
law, without any supplementary estimation step [28]. Also note that only one of the
image features is chosen for the image Jacobian matrix, which will be susceptible to
noise. Another hybrid method is presented in [32][33], which uses a high level decision
maker to select from two visual servo controllers: homography based controller and
affine approximation controller. Recently, a hybrid motion control and planning strategy
for image constraints avoidance are presented in [36][37][38]. This motion control part
includes a local switching control between the IBVS and PBVS for avoiding image
singularity and image local minima. In addition, the planning strategy is composed of an
artificial hybrid trajectory planner.

In summary, the classification of visual servoing in the literature survey is shown in

Table 1-1.
Table 1-1 Classification of visual servoing
Methods for Classification Class
Eye in hand
Position of the camera
Eye to hand

. _ Direct visual servoing
The control input signal

Look-and-move

PBVS
Error signal definition IBVS
HVS




1.2.2 Review of Hand-Eye Calibration

In order to control the displacements of a robot by a camera mounted on its hand, it is
important to determine the relative positions and orientations of the camera and hand
frames. This problem is known as the hand-eye calibration problem [40][42].

Hand-eye calibration is an offline procedure and is the fundamental step of accurate
PBVS. In other words, if hand-eye calibration was inaccurate, so would be the calculation
of object position. Generally the hand-eye calibration problem is solved using techniques
of camera calibration and robot motion control. As the preliminary step of hand-eye
calibration, camera calibration is to estimate the value of extrinsic and intrinsic
parameters of camera, which will be discussed in detail in Chapter 2. When the camera
observing the object is fixed, standard camera calibration models, dependent on the
camera position, can be obtained using least squares method [41]. When the camera is
moving with the robot end effector in eye in hand configuration, there are some
techniques to solve the hand-eye transform, such as solving for transformation equations
of the form AX=XB and free hand-eye calibration based on the Tsai’s camera calibration

technique. Both of these methods will be introduced as follows in detail.

1.2.2.1 Solving AX=XB

Most of existing solutions for hand-eye calibration lead to solving for homogeneous
transformation equations of the form AX=XB [42][43][44]or AX=ZB [45], where X and
Z represent hand/eye and robot/world transformations respectively. A is a relative
transform between two different end-effecter frames, and B is a relative transform

between the two camera frames which is obtained from camera calibration.



In [44], a formalism of hand-eye calibration with a lens distortion model and an
algorithm for optimizing intrinsic camera parameters using extended Kalman filter is
introduced. A calibration pattern board is located at three depths, and at each depth,
images are taken at five viewpoints. The intrinsic camera calibration parameters are
optimized over the entire viewpoint extrinsic camera parameter set. The transformation
matrices for hand-eye calibration, including the transformation from the camera to the
end effector and the transformation from the robot base to the world reference frame, are
estimated. By solving the equation of AX=XB and using the Broyden-fletcher-Goldfarb-

Shanno optimization algorithm [46], rotational and translational components R, T of

those transformations are calculated.

1.2.2.2 Free Hand-Eye Calibration

Another solution is Free hand-eye calibration [1] which is based on the Tsai’s camera
calibration technique [41]. It is assumed that the robot end effector moves in the plane
parallel with 2D work space. The strategy solves the hand-eye calibration problem for
robotic object tracking, without estimating the hand-eye transformation matrix. It first
uses Tsai calibration technique to calibrate the camera. Tsai's calibration method uses a
pinhole model of 3D-2D perspective projection with a first order radial lens distortion
parameter. This camera model is described by five intrinsic and six extrinsic parameters.
As the robot end effector moves from point A along only X and Y axis in the robot
reference frame to point B, the coordinates of point B is obtained by applying the result

of camera calibration and taking into account the moving of the end effector as an

offset, (X,,Y;)=(X Y )+(X,,Y,), where (X ,Y,) and (X,,Y,) are the real world
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coordinates of the points, and (X,,Y,) is the offset. This process is repeated after each

robot end effector movement for object tracking and avoids computing the hand-eye

relationship.

1.3 Motivation, Objective and Contribution

One of the most related areas of visual servoing is computer vision, which is defined
in [57] as a set of computational techniques aimed at estimating or making explicit the
geometric and dynamic properties of the 3-D world from digital images. According to
this definition, the mapping from image to real world is the problem that needs to be
solved first and foremost. It is well known that the mapping is nonlinear especially taking
the image distortions into account. Tsai [41] and Zhang [47] develop nonlinear methods
to model the camera. However, practically no perfect model is able to describe a vision
system due to the assumption of derivation. Therefore, the mathematical model of camera
could not always satisfy the high precision. On the other hand, although solving AX=XB
and free hand-eye calibration give acceptable results, the tracking precision is still under
improvement. Thus the first objective of this research is to design a new algorithm to
increase the precision of hand-eye calibration to improve the accuracy of PBVS. It is
noted that the mapping from object image coordinates to real world object coordinates,
while the camera moves with the robot, is highly non-linear. Neural networks are the
prime candidates to approximate nonlinear mapping due to their universal approximate
ability.

The second objective is to improve the classical IBVS to achieve better performance

of visual servoing. It is well known that traditional IBVS has some weakness including
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image singularities, image local minima and relative long trajectory in Cartesian space.
Recent research efforts on the problem have been thus concentrated on avoiding these
disadvantages. The second part of this research is to develop a new visual servoing
system to avoid the disadvantages of traditional IBVS and control the position of the end
effector with respected to the static object as required by the task.

According to the above objectives, the research contributions including two novel
methods for visual servoing in robotic manufactory systems are presented as follows.

1. A novel NN Based Hand-Eye Calibration is developed.

e A MultiLayer Perceptron (MLP) NN is designed to approximate the highly
nonlinear coordinate transform from object image coordinates to real world
object coordinates as the camera moves with the robot.

e The proposed method is simulated in Matlab/Simulink to track a moving
object whose trajectory is a synthetic sinusoid in the 2D workspace.

e Experiment of 2D object tracking is implemented, and the comparison with
other existing methods is provided.

2. A new approach to IBVS with laser system is proposed.

* A laser pointer is adopted to attain the depth by laser triangulation and is
chosen as an image feature that is highly easy for image processing.

o A three stages switching IBVS with laser controller is designed.

o The proposed method is simulated in Matlab/Simulink by achieving four

representative tasks. The analysis and comparison are provided.
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e One of the applications of the IBVS with laser pointer system for robotic
assembly is implemented in a robotic manufacturing system. Both good and
bad calibration results are tested in the system to validate the practicability.

Publication related to the research is [56]

e Z. Li, W. F. Xie and N. Aouf, “A Neural Network Based Hand-Eye
Calibration Approach in Robotic Manufacturing Systems”, CSME 2006,
Calgary, May 2006.

Papers intend to be submitted are

e “A New Approach to Switching Control of Image Based Visual Servoing with
Laser Pointer,” IEEE Transactions on Industrial Electronics.

e “A Novel Image Based Visual Servoing with Laser Pointer System,” IEEE

International Conference on Systems, Man, and Cybernetics, 2007

1.4 Thesis Organization

The dissertation is composed of six chapters. The introduction chapter introduces the

basic concepts and relative background. Motivation, objective and contribution are

presented as well.

Chapter 2 introduces a novel NN based hand-eye calibration method in robotic

manufacturing system. A MLP NN is used to approximate the nonlinear coordinate

transform from object image coordinates to real world object coordinates in robotic visual

servoing.

Chapter 3 includes the simulation and experimental results of NN based hand-eye

calibration. The analysis and comparison are given to validate the proposed method.

Chapter 4 introduces a new approach to switching control of IBVS with laser pointer.
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The simple off the shelf laser pointer based triangulation method is applied to realize the
depth estimation.

Chapter 5 includes the simulation and experimental results of IBVS with laser pointer
system. The analysis and comparison are given to verify the effectiveness of the proposed
method.

Chapter 6 contains the conclusion and a summary of the future work.

Appendix A gives the UPJ robot model in Matlab Robotics Toolbox.

Appendix B contains the pseudocode for NN training by Matlab Neural Network
Toolbox.

Appendix C presents the user interface and the flow chart of teaching and assembly

procedures.

1.5 Summary

In this chapter, basic concepts and components of visual servoing system are
introduced. The background of visual servoing, including the -classification, the
advantages and disadvantages of each class, is addressed. An overview of hand-eye
calibration is presented as well. The motivation, objective and contribution of this
research have also been included to address the purpose and current achievements of the

research.

14



CHAPTER2 NN BASED HAND-EYE CALIBRATION

2.1 Introduction

In this chapter, a novel NN Based Hand-Eye Calibration is introduced in robotic
manufacturing system to achieve a more accurate performance of the vision system. A
MLP NN is used to approximate the nonlinear coordinate transform from object image
coordinates to real world object coordinates in visual servoing. Based on the Levenberg-
Marquardt (LM) optimization technique, the back-propagation algorithm is adopted to
train NN. The inputs of the NN are the image coordinates and the robot end effector

position with respect to the robot base. The outputs are the real world object coordinates.

2.2 Mapping from Real World Point to Image Point

The configuration for hand-eye calibration is shown in Figure 2-1, which is composed
of a 6DOF robot, a camera mounted on the robot end effector and a calibration pattern in
2D workspace. It is assumed that there are only three translational motions of the robot
end effector.

First the camera model is derived. The camera model is used to link the position of
scene points with that of their corresponding image points [57]. The most common
geometric model of an intensity camera is the perspective model. We define the camera

focal length A, the image center pixel coordinates (u,,v,), the lens distortion coefficient

ki, and the effective size of the pixel in the horizontal and vertical direction(s,,s,), as
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intrinsic camera parameters, which link the pixel coordinates of an image point with the

corresponding coordinates in the camera reference frame.

\ Robot End-Effector

Robot L
| |
v EHC \“ ajilera
WHC
Calibration pattern 2D Workspace
e 7
a4 /
Ay
sl L7 e
S LSS S LSS
A ~

World re'ference frame

Figure 2-1 Robotic eye in hand system configuration
The perspective cameral model is shown in Figure 2-2. Referring to Figure 2-2 and
using perspective projection with pinhole camera geometry, one can obtain the

transformation from camera coordinates (x,,y,.,z.) to undistorted image

coordinates (x,,y,,z,):

X, = /l);cf— (2_1)
yu=Ae 22)
2, = A 23)
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Figure 2-2 The perspective camera model
When the geometric distortion introduced by the camera is taken into account, the
relationship between undistorted (x,,y,) and distorted image coordinates (x,,y,) is
presented as:
X, =X, +hx,(xg+ D) 24
Yo =Yg +hy (xi+y2) (2-5)

The transformation between the pixel indices and the coordinates with respect to the

camera reference frame is presented below:

Xy =~(U=1)8, 2-6)

Yo =—-(v-v, )sy (2-7)
The transformation between the camera reference frame and the image reference

frame can be defined as
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-— 0 9y,
(2-8)

When the radial distortion is neglected, the transformation between pixel indices

(u,v) and the coordinates with respect to the camera reference frame (x.,y.,z.) is

presented as:

=

N

2-9)

1
<
(SR
I
=
2
A

Ny

1

The relationship among the world reference frame, robot reference frame, robot end

effector frame, and camera reference frame is shown as follows:
"H.="H,”H,"H,_ (2-10)

where " H, and “H . are fixed during the robot end effector moving.

A sequence of three rotations roll, pitch, yaw (¢,6,) and three translations

(T.,T,,T,) are used to represent H ,, as follows:

B B
R; TE} @2-11)

BH:
1o 1

in which
(2-12)

BTEz[Tx Ty T'z][

cos(@) cos(@) cos(¢)sin(@) sin(y) — sin(@) cos(y) cos(¢@) sin(&) cos(y) + sin(¢) sin(i)

sin(@) cos(d) sin(¢) sin(@)sin(y) + cos(¢@) cos(yr) sin(@) sin(@) cos(y) — cos(¢) sin(y)
cos(8) cos(y)

—sin(@) cos(d) sin(y)
(2-13)

BRE =
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where T, is the three translational motions of the robot end effector and *R, is the

rotation matrix neglected in the mapping.

Thus (2-10) can be rewritten as

B B ) w WT
WHC=WHB|: IJE VII‘E}ILchl: :){C 1C:| (2_14)

where " H yand “ H . are unknown.

The transformation " H . that consists of the rotation matrix

WRC= yy Ty Ty (2-15)

o Iy Iy
and the translation vector
Y=l 1, 0f (2-16)
are represented by the extrinsic camera parameters [z, ¢, ¢, ¢, ¢, ¢.], which
define the translations and orientations of the camera reference frame with respect to the
world reference frame.
From (2-1) to (2-14), we have the mapping from a 3D point (x,,y,,z,) in the world

reference frame to the camera reference frame

X =1 Xy T HaVw T a2y 1,

u

2-17)
Xy + oYy + 132y +1,

y Z;erlxw"'rzzyw”"rzazw""ty (2-18)
u
Xy T oYy t a2y +1,

When the camera radial distortion is introduced, substituting (2-6) and (2-7) into (2-4)

and (2-5) yields
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x, = —(u—uy)s, —k,(u—uy)s, [(u—u,)’s’ +(v-—v0)2si] (2-19)
Yu = —(V—VO)Sy —kl(v—VO)sy[(u *uo)ZSf +(V_V0)2s,2;] (2-20)
Then substituting (2-19) and (2-20) into (2-17) and (2-18), we have

VoX, + 1 + 1.2, +1
A T ZII T (g )s, =y = 1), [ = 1) 52+ (0 =) 5] ]
Xy + Yy +haZy +1,

(2-21)

FnXy T Yy trsZy 1,

2.2 2.2
N . ==(=vy)s, —k(v=vy)s [(u—uy) s, +(v—-v,)7s,]
Py Xy 1Yy traZy T

(2-22)
Equations (2-21) and (2-22) describe the mapping function, from (7,,7,,T,) in the
robot reference frame, the depth z, , and the object image pixel coordinates (u,v)to real

world object coordinates (x;, ,y, ). Define the mapping function f'as follows,

X
[ W:|=f(Tx,Ty,Tz,u,v,zW) (2-23)
Yw

It is noted that the mapping from object image coordinates to real world object
coordinates, while the camera moves with the robot, is highly non-linear. Neural

networks are the prime candidates to approximate such nonlinear mapping due to their

universal approximate ability.

2.3 NN Based Hand-Eye Calibration

According to the derivation of mapping from real world point to image point when
camera is mounted on the robot end effector, a new hand-eye calibration method is

proposed to solve the hand-eye calibration problem using a neural network. This
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approach avoids the calculation of geometrical transformations, such as solving AX=XB
equation.
2.3.1 NN Architecture

For a fixed camera position, a neural network structure, with inputs as the image
coordinates and outputs as the real world coordinates, can solve the camera calibration
problem. However, for a camera mounted on the robot end effector, this neural network
structure is not able to predict accurately the object real world coordinates because the
camera position changes with the robot motion. Thus, besides the image coordinates, the
robot end effector position with respect to the robot base must be taken into consideration
to solve mapping problem.

A MLP NN shown in Figure 2-3 is used to approximate the nonlinear coordinate
transform. The MLP structure is composed of one input layer, one hidden layer and one

output layer. The inputs of the network are the image coordinates (u,v) =(x,,y, )and
the robot end effector position with respect to the robot base(7,,T,,T,) = (x,,y,,z,) - The

outputs of the network are the real world coordinates (X,,Y,). The activation function

used for the hidden layer nodes is hyperbolic tangent sigmoid:

fimy ="
e

; (2-24)
+ e

where n is the net input.

The activation function used for the output layer nodes is linear transfer function:
fo(my=n (2-25)
The number of nodes for hidden layer is fixed at twenty, which is obtained by trial

and error.
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Input Hidden Output
layer layer layer

Figure 2-3 Distributed NN structure
Multiple viewpoints are generated at the same heights in the world reference frame
(My viewpoints in total) by moving the camera, and then an image of the planar
calibration pattern is taken at each position. The pattern comprises N, corners of black

and white squares. Based on (2-21) and (2-22), to minimize the world coordinates error

between the measurement coordinates {(X 0);,(1’0)"].} and the outputs of the NN

(X, ) (I;O)j.} , the objective function is defined as:

) M,.N,; ) A~ .\ ) A
minE = 3 {06, &) + (00, -, (2-26)
L
i=1,2,3..., My
i=1,2,3...,N

where N' denotes the number of corners in one viewpoint. Therefore, the total number of

training data pairs is
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N, = ﬁ; N (2-27)

! i=1

The NN training algorithm is chosen as back-propagation, based on the Levenberg-
Marquardt (LM) optimization algorithm. The algorithm is a variation of Newton’s
method. It was designed to minimize functions that are sums of squares and fit for neural
network training for which the performance index is the mean squared error [58]. This
algorithm is designed to approach second-order training speed without having to compute
the Hessian matrix.

Define N, and M as number of input/target pair and number of NN output

respectively. One can convert (2-26) into matrix form as:

N, N, M 5 N, xM
mnE=>)ele =>> () = >) (2-28)
g=1 g=1 j=I i=1

where e,  is the jth element of the error for the ¢™ input/target pair, and v; is the "

element of the error.

LetN =N, xM, the above equation can be rewritten as:

N
E(x) =) v} (x) (2-29)
i=]
which is a sum of squares function and is to be minimized with respect to the parameter
vector x. According to this performance index, Newton’s method would be
X =X, —(V2FX)) VF(x) (2-30)

then the jth element of the gradient would be

vFe), =20 253y, 0 2 @-31)
i=1 L

ox 0

J J

The gradient can therefore be written in matrix form:
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VE(x) = 237 (X)v(x)

where
_avl(x) v (x) v, (x)
ox, ox, ox,
v W mE
JxX) =| ox ox, ox,
oy y®) @)
| Ox ox, ox, |

is the Jacobian matrix.

The k, j element of the Hessian matrix is

VF =
[V2F(x)],, Eo——

%, Ox ; ~ ;

which is expressed in matrix form:
VF(x) = 23" (x)J(x) + 2S(x)

where

S(x) = ivi (X)V?,(x)

_PF®) {av, ®)

!

v; (%)

azvi (x)
0x,0x

|

(2-32)

(2-33)

(2-34)

(2-35)

(2-36)

S(x) is small enough to be neglected. Then the Hessian matrix is approximated as

VIF(x) = 23" (x)J(x)

(2-37)

Substituting (2-32) and (2-37) into (2-30), one obtains the Gauss-Newton method:

X1 =X — [JT(Xk)J(Xk)]—lJT(Xk)V(Xk)

The LM algorithm is presented as:

X =X, “‘[JT(Xk)J(Xk) + ,UkI]_lJT(Xk)V(Xk)

which also can be presented as:
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Ax, = —[JT(Xk)J(xk)+:ukI]—IJT(xk)V(xk) (2-40)

While the scalar p, is increased, the above equation approaches:

1
X, EX, ——JT(xk)v(xk) =X, —
k Hy

VE(x) (2-41)

which is the steepest descent algorithm with small learning rate.

While gz, is decreased to zero, the algorithm becomes Gauss-Newton method

[58][59].

2.3.2 NN Based Hand-Eye Calibration Procedures

In this strategy, we consider a simple form involves robot end effector motion in a 2D
plane parallel with 2D workspace.The following three calibration steps are taken.
Step1: Data collection.

The training set of the NN is attained by extracting a series of easily detectable
features and their corresponding precise positions in world reference frame. In addition,
the robot end effector positions can be obtained from robot controller. There are many
kinds of targets for camera calibration, such as single plane of square boxes, plane of
circles, orthogonal planes of square boxes and so on. A calibration pattern board with
black and white checks is chosen, partially shown in Figure 2-4. The major advantage of
this type of pattern is that the corners of each black and white check are easily to be

extracted by corner detection.
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Figure 2-4 Calibration pattern
Locate the calibration pattern board shown in Figure 2-4 on the table and define the
world reference frame coincided with robot reference frame. Since the robot end effector
moves in the plane parallel with 2D workspace, we can thereafter move the camera just
along X and Y axis in robot reference frame to different viewpoints. This procedure is

demonstrated in Figure 2-5.

B

Figure 2-5 Robot end effector trajectory of all the view points
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For each viewpoint, image of the calibration pattern are taken. The workspace plane
is partitioned, for training data acquisition, into discrete locations to which the robot
moves. For each robot position, a large number pairs of image coordinates points and real
world coordinates points are selected. The collected data has to be dense and cover the
workspace in which the object is moving.

Step2: NN Training.

The training performance of the neural network is greatly improved by normalizing

the data outputs as:

(Xo,Y,) = (X, /max(X,), ¥, / max(¥,)) (2-42)
where max(X,) and max(Y,) represent the limits of the workspace real world

coordinates.

The performance index used for MLP training is the mean squared error. If each
target occurs with equal probability, the mean squared error will be proportional to the
sum squared error over all targets in the training set, which is presented in (2-29). The
Levenberg Marquardt iterations composed of four steps are presented below [58]:

(1) Introduce all inputs to the neural network and compute the corresponding

outputs and the errors. Then compute the sum squared errors for all inputs using
(2-29).

(i) Compute the Jacobian matrix by (2-33). Calculate the elements of the Jacobian

matrix.

(iii) Solve (2-40) to obtain Ax,

(iv) Recalculate the sum squared errors usingx, + Ax, . If the new value is smaller

than the value in Step(i), then divide u by a factor 9. Let x,,, =x, +Ax, and
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go back to Step(i). In contrast, if the sum squared error is not reduced, multiply
u by 9 and go back to Step(iii).
Step3: NN Generalization

One of the major advantages of neural networks is their ability of generalization.
Generalization of NN stands for the ability to have the outputs of the network when the
inputs are not in the training set. In our case, once the NN has been trained, it serves as
real world coordinates predicator for each robot position within the training area.

The NN generalization is carried out by inputting a number of image coordinates and
relevant robot end effector positions and checking the NN outputs, real world object
coordinates.

Once the object is detected, the neural network predicts the real world object
coordinates, which are sent to the robot for tracking. Before being sent to the robot, the
real world object coordinates obtained from the neural network are scaled back as follows:

Xy, ¥y) = (X, - max(X, ), ¥, - max(¥,)) (2-43)

2.4 PBVS Using NN Based Hand-Eye Calibration

We consider a simple form of visual servoing, which involves robot end effector
motion in a plane parallel with 2D workspace. This can be used for tracking planar
motion such as a conveyor belt. We begin by considering point to point positioning task,
which indicates bringing a point P rigid linking the robot to a stationary point S in the
workspace [4].

The control diagram is presented in Figure 2-6.
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extraction

Figure 2-6 Control diagram of PBVS using NN based hand-eye calibration
Since the robot end effector has three translational DOF, the control input to be
computed is the desired end effector translational velocity, as denoted by u. Normally, by
using traditional hand-eye calibration, the kinematic error function can be defined in end
effector frame as
Ee=fP-£§ (2-44)
Thus the proportional control law can be express as:

u=-K’¢=-K(*P-*H,.°S) (2-45)

where K is the proportional gain and “S is point S with respect to camera reference
frame.

By applying NN based hand-eye calibration, one chooses “P as the projecting point
of the end effector on the 2D workspace, " P . Therefore, the kinematic error function
defined in end effector frame can be transformed to world reference frame as:

e ="e ="P-"S (2-46)

where ”'S is the real world coordinates that have been achieved from the trained NN.

The proportional control law may be express as:
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u=-K"e¢e=-K("P-"8) (2-47)

The control is achieved by a sequence of independent steps. Firstly, a desired end
effector position is generated as a reference signal. Secondly, the position of the end
effector with respect to the fixed point in the workspace is estimated. The third step is to
use the Cartesian control law to calculate the Cartesian motion required to move the end
effector to the desired position. Finally the robot is moved by the calculated control

signal. These steps will be repeated until the end effector is at the desired position.

2.5 Limitation

It is assumed that the robot end effector moves just in a plane parallel with 2D
workspace. When the object has 6DOF pose with respect to the camera or the robot end
effector moves with 6DOF, the NN based hand-eye calibration will become ineffective.

As discussed previously, accurate hand-eye calibration is the foundation of PBVS.
However, PBVS has inherent limitations. For example, when the object model is not
available, PBVS method does not work any more. This limitation restricts many
applications of visual servoing. On the contrary, considering one of the advantages of
IBVS is object model free, we will develop a novel IBVS in the second part of the

research.

2.6 Summary

In this chapter, a novel NN Based Hand-Eye Calibration is introduced in robotic
manufacturing system. A MLP NN is used to approximate the nonlinear coordinate
transform from object image coordinates to real world object coordinates in robotic visual

servoing. Calibration steps are presented in detail and point to point PBVS using NN
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based hand-eye calibration method is briefly introduced. Finally the limitations of the

proposed algorithm are given as well.
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CHAPTER 3 SIMULATION AND EXPERIMENTAL
RESULTS OF NN BASED HAND-EYE
CALIBRATION

3.1. Introduction

In this chapter, simulation and experiment are carried out to evaluate the performance
of NN based hand-eye calibration.

Simulation results are given in the first part. The proposed method is trying to control
the robot end effector to track a moving object whose trajectory is a synthetic sinusoid in
2D workspace. The error analysis is given subsequently.

In the experiment, some random points in a 2D workspace are chosen to simulate a
moving object. The proposed method is used to detect the position of these points and
track the virtual path. The error analysis and comparison with other methods are

presented in the end.

3.2. Simulation Results of NN Based Hand-Eye Calibration

The proposed algorithm is simulated in Matlab Neural Network Toolbox [72] and the
Robotics Toolbox [69]. The simulation is based on the robot model of Motoman UPJ, the
camera model of Sony XC55 and a pattern of black and white checks whose side lengths
are equal to 10mm. The robot model is presented in Appendix A and the camera model

is given in Table 3-1.
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All the viewpoints demonstrated in Figure 2-5 is generated by fixing Z = 300mm and
moving the robot end effector along X and Y axis at intervals of 20mm. The 2D
workplace is in the range of 700x 700 mm. The camera reference frame is assumed

coincident with robot end effector frame.

Table 3-1 Camera parameters

Focal length 6mm
Effective size 0.0074x0.0074mm
Image size 640 x 480 pixel

Principal point [320 240] pixel

The training is carried out by Matlab Neural Networks Toolbox. The performance

function is Mean squared error, the number of hidden layer nodes is fixed at twenty, the

learning rate is 0.03, and the performance goal is 10, The training curve is shown in

Figure 3-1.

Performance is 9.87466e-009, Goal is 1e-008

Training-Blue Goal-Black
S

1 1 1 1 1 L
50 100 150 200 250 300 350
350 Epochs

Figure 3-1 Training curve
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To evaluate the performance, a synthetic sinusoid is to simulate a moving object in
2D workspace, whose equation is given by:

Y =100sin(107zX) (mm) |
X €[200 400] (mm) (3-1)
Z=0

in which the step of X is Smm.
The Cartesian trajectory for tracking the sinusoid is shown in Figure 3-2, where “0”

and “*” denote initial position and final position respectively.

Figure 3-2 Cartesian trajectory for object tracking

The X-Y projection of 3D Cartesian trajectory shown in Figure 3-2 is represented in

Figure 3-3, where all “-” are synthetic target points composing the sinusoid.
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Totally 41 points are selected for tracking. Figure 3-4 presents the 2DOF camera
Cartesian velocity for tracking first three points. The time for tracking each point is 10
seconds. Table 3-2 gives the tracking error of NN based hand-eye calibration method. It
is noticed that very accurate results, which are under 0.01lmm, have been achieved by the

proposed method.

Table 3-2 Tracking error of NN based calibration method

Mean Error (mm)

X Y VX472

NN based hand-eye calibration 0.0048 | 0.0098 0.0050

Method

3.3 Experimental System Introduction

% Fotation around
Zeaxis i

< ¥ R B Rotation around
(D Motion along @éﬁ’ ) ol Y-axis
the X-axis ¥ o ~a
20 TS N
#, e A
% @ Rotation around @ Motion along
Teaxis the Yeaxis

Figure 3-5 Coordinate frame for Motoman UPJ
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The definition of coordinate frame for 6DOF Motoman UPJ robot manipulator is
presented in Figure 3-5. The detailed experimental setup is shown in Table 3-3.

Table 3-3 Experimental system

Robot manipulator Motoman UPJ (6DOF)
A compact, high-speed robot that requires minimal
installation space and offers a range of payloads for

handling the smallest items [7]

Robot controller JRC
This controller offers flexibility and high performance, and
is ideal for robotic applications such as small part handling

and assembly [7]

Camera Sony XC55
Monochrome CCD camera, which uses square pixels most

suitable for machine vision [78].

Frame grabber Matrox Meteor-II/Multi-Channel
PCI form factor. Can capture from standard analog
monochrome camera and transfer acquired images to PC

memory for processing [79]

Camera adaptor Sony DC-700
A small, lightweight camera adaptor integrated power

supply and compatible with Sony XC-Series camera [83]
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Figure 3-6 Sony XC55 monochrome CCD camera
The picture of used camera-- Sony XC55 monochrome CCD camera is demonstrated
in Figure 3-6. The diagram of the experimental system is described in Figure 3-7, which
is a typical look-and-move based architecture. Through the camera adaptor and frame
grabber, the image is transformed into computer as vision feedback. Via image
processing and the control law, the output of the visual servo controller is calculated and

sent to the robot controller, which is a low level joint controller.

Teach pendent

Control law

Image processing

Frame grabber

T Camera adaptor

Figure 3-7 Schematic representation of the experimental system
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3.4 Experimental Results of NN Based Hand-Eye Calibration

Partial calibration pattern is shown in Figure 3-8. Because of the lens distortation, a

straight line in the real world becomes a curve in the image plane.

Figure 3-8 Calibration pattern in the image
The NN based hand-eye calibration algorithm has been tested on an experimental

system shown in Figure 3-9.

Figure 3-9 Robotic manufacturing system setup for hand-eye calibration
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Referring to Figure 3-10, ten testing positions of robot end effector for generalization
are chosen. The number of pairs (x,,y,,%,,,),(X,,Y) used for training is

approximately 16000.

200

150 i L X - - L] L] T
E’ 100 | » - >< » . . |
.9 - > - >< » *
=
< SU - * . L] L] . -
S~
=4 * L] . .X ’
: x
‘:: U L] L * * . T
[
[a]
q:) 50 . * * . »
‘g * L4 * . . * *
5 X
—8 100 F + - * * 0} -1
[+ *

A80r . Training Positions ]

X Testing Positions
=200 T 1 Il L
150 200 250 300 350 400

Rabot reference frame X Axis (mm)

Figure 3-10 Training and testing positions of robot end effector
As shown in Figure 3-11, which is part of the calibration pattern, the six crosses are
random actual real world coordinates, and the four spots around each cross denote the
calculated real world coordinates from four robot end effector positions. For each
position, the camera can only see partial calibration pattern, thus there are four spots
instead of ten. The test result indicates that when camera located at different position
gazes at same point, the calculated real world coordinates of the point all approximate to

the actual coordinates.

40



98r y

961 .>{

Séa
S

a0

Real World Y Axis (mm)

88

%

”

%ée

86

T
!

| b { | | | I t | | b

78 80 8 84 8 8 90 92 94 9% 98
Real World X Axis (mm)

Figure 3-11 Neural Network test result

In order to test the calibration result, we simulate object tracking, which aims at
detecting the position of a moving object from a video sequence.

First the path of object is planned by choosing some random points in the 2D
workspace to simulate a moving object, and then the robot end effector is set to the initial
position where the robot end effector is perpendicular to the 2D workspace and directly
above the first point. After taking a picture for those points, we acquire pixels coordinates

of the second point (x,,,y,) from the image, and robot end effector position (x,,y,)

relative to the robot base from the robot controller. Based on pixels coordinates and end

effector position, the trained NN gives the real world coordinates (X,,Y;) of the second

point. Using the difference value between the second real world coordinate and the first

one as an offset, one can obtain the new robot end effector coordinate. Finally we move
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the robot end effector along only X and Y axis in robot reference frame directly above the
calculated position of the second point. This procedure is repeated for the chosen points
one by one in the planned path. The robot end effector is moved along the planned path
as the object tracking.

In Figure 3-12 to Figure 3-15, the spots represent the chosen points and the plus signs
represent the robot end effector positions after tracking the target points, which can be
regarded as the projection in the world reference frame.

Figure 3-12 and Figure 3-13 represent the experimental error analysis and the
tracking path when using neural network strategy for object tracking. The calculated end

effector path is almost coincident with the desired target path.
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Figure 3-12 Desired points and calculated points by NN based hand-eye calibration
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Figure 3-13 Tacking path by NN based hand-eye calibration
The proposed method is compared with free hand-eye calibration and Motai’s hand-
eye calibration methods. The performances of those two methods are evaluated by

tracking the testing points as well.
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Figure 3-14 Tacking path by free hand-eye calibration
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Figure 3-15 Tacking path by Motai’s hand-eye calibration
From Figure 3-14 and Figure 3-15, it can be found that there are certain extent errors
between the desired target paths and the calculated ones.

Table 3-4 Error comparison of three types of calibration methods

Mean Error (mm)
Method
X | Y VX +Y
Free Hand-Eye Calibration 2770 | 2.46 3.79
Motai Hand-Eye Calibration 0.78 | 1.45 1.73
NN based Hand-Eye Calibration | 0.28 | 0.43 0.58

Table 3-4 summarizes the errors for all the testing points of different methods. From
experimental results, it is noted that the proposed neural network strategy gives the best
results comparing with the methods of free hand-eye calibration and Motai’s hand-eye

calibration for 2D object tracking. Positioning errors are reduced to less than one
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millimeter of absolute precision for moving object tracking. The visual positioning

algorithm proposed is of very good quality.

3.5 Summary

In this chapter, NN based hand-eye calibration has been simulated using Matlab

Toolbox and experimentally tested on robotic manufacturing system.

By using position based visual servoing and tracking a synthetic sinusoid in 2D
workspace for simulation, NN based hand-eye calibration method present an accurate
result, whose mean tracking error is under 0.01mm.

The experimental results show that its precision of 2D tracking outperforms the
current solving homogeneous transformation matrix method and free hand-eye

calibration method. Positioning errors are reduced to less than one millimeter.
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CHAPTER 4 IBVS WITH LASER SYSTEM

4.1 Introduction

It is well known that traditional IBVS has some weakness, including image
singularities, image local minima and relative long trajectory in Cartesian space. In this
chapter, a new approach to switching control of IBVS with laser system is introduced to
conquer those disadvantages.

The objective of the research is using an eye in hand system with laser pointer to
control the position of the end effector with respected to the static object as required by
the task. The simple off the shelf laser pointer based triangulation method is applied to
realize the depth estimation. Furthermore, the laser spot can be considered as an image

feature easing the image processing. The switching rules are introduced in detail.

4.2 Traditional IBVS

A review of the establishment of the image Jacobian matrix and the control law are
briefly given in this section.

First of all, the velocity screw of the camera is defined as
fz[cvc CwC]T =[vx v, vV, @, ® a)z]T @-1)

y z * Y

The image feature is represented as

f=lu v (4-2)

and

f=le ] 4-3)
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represents the corresponding image feature velocity.

The depth of each feature point is defined as

z=lz, - 2] (4-4)
/ ! p(“a V) /
AN
Camera
reference

frame

. 3D Workspace
g p xc 2 yc 2 Zc )

World reference frame

Figure 4-1 Reference frames and object coordinate
In order to create the feedback control for robot based on the velocity of feature
points, the relationship between motion of the image features and the motion of the

camera is given by

f=3,,(f,Z)F (4-5)
where
Fing (S152))
3, (f2)= 3 (4-6)
Jimg (fn b Zn )

is the image Jacobian matrix. To derive this matrix first we define a point

CpO = [xc Yo 2. ]T (4_7)
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where (x,,,,z2,) is the camera coordinates. The time derivative of © p,, is given as

. dc
€ po = a{:O
d
= “d't"{CRW(Wpo - Wpc)}
=Ry, ("po="p)+ Ry ("bo="pc) (4-8)

where “ R, is the rotation matrix from camera reference frame to world reference frame,
and as shown in Figure 4-1, ¥ p,, is the relative distance of the feature point with respect
to world reference frame and " p,. is the location of the camera reference frame written

in world reference frame. For a stationary target, * p,, is set to zero.

Considering the property of the skew-symmetric matrix
‘R,=“R, sk’ ("w,), 4-9)
one can deduce © p, as follows
“Po="Rysk’ ("o )"po~"pc )R, " pc
=Ry, {-sk(" 00 )("po="pc)} —“Ry v
=Ry =" 0c x("po="pc)} ~ve
=—CRW Wa)c X {CRW(WPO -" pc )} —CVC
=@, x po—"vc

=sk(“py) @ x pp—vc

C Cvc
=1 sk(°py)) [w }

C
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Cv
=0 -1 0 =z 0 —xc{i C} (4-10)

When neglecting the camera distortion, one has the transformation between pixel

indices (u,v)and the coordinates with respect to the camera reference frame (x,,y,,z,)

presented in (2-8). The time derivative of (2-8) is given as

p _A 0 |— 0 —-=%|x
Sy z, z; | .

H= 2 . ¥, (4-11)
Ilo &0 — X,
s, z, ozl L%

ar -
IEEN R
u _ Sx Zc Zc C
|ivj| 0 _i 0 _1_ __y_c_ Po
S)’___ Zc Zcz_
a 0 1 0 _x_g -1 0 0 0 -z, ¥, e
T | ; 0 -1 0 2z 0 -x [CVC}
0 =710 = -%lo 0o -1 -y x o}
L Y L 4 ¢
r kil 2
LoolL o -a% Azde papfe p2el
— Sx Z. Z, Z, Z; Z, |: vC:|
= ] , .
—lo 2 —ae —pepfe pRde % L
L sy..._ Z. Z, Z, z, z,
1 O—_l 0 % xy, A+xl
S, z, z, A A Vi “ve
- 1 A - -x} x ¢ (4-12)
0 - 0 i _yi i i X, a)c
L Sy )l z, z, A A
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T . . . . .
where [x,. y,.] are the image coordinates in camera reference frame. Considering the

effective size of the pixel (s,,s,) are constant coefficients, we set them equal to one to
make the equations clear. The transformation between [x, [ and the pixel indices

[u v]T has been presented in (2-6) and (2-7). Rewriting them to matrix form gets

X, -1 0 u
= v (4-13)
Y 0 -1 v,
1
For one feature point, the velocity of it seen from the camera reference frame is

presented as follows

—ﬂ' X X Vi 12+x12
7 ) PR
3, (f,Z)=|“ " ]
g (J1sZ;) N T ) i (4-14)
.z Z yl A "

The control law can be established by considering the simplest proportional control as

e=KI, (f.D)f (4-15)

+

where K is the proportional gain, J; (f,Z)is the pseudo inverse of the image Jacobian

and e =7 is the vision based task which is being regulated to zero.
Since generally the input of the robot controller is the joint angle, the relationship
between camera velocity and the joint velocity needs to be derived. First of all, the

camera velocity can be transferred to end effector velocity as follows,

[EvE } _ [ERC —ERCsk(CTE)}I: Cvc} “16)
E E C
Wy 0 R, @
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E

where [E v, o ]T is the velocity screw of end effector in end effector frame, * R, is

the rotation matrix from end effector frame to camera frame, and “7), is the translational

vector from camera frame to end effector frame.
The joint velocity is related to the end effector velocity by robot Jacobian matrix
represented as:
q'=J;{ ”} (4-17)
Wy
where J;' is the inverse robot Jacobian matrix in end effector frame. According to (4-16)

and (4-17), the camera velocity in camera frame is transferred to robot joint velocity.

4.3 Depth Estimation

Refer to (4-14), J,.(f,Z) is a function of features and their depth. A number of

img
depth estimation methods have been proposed for IBVS. One of the solutions is choosing
the desired image features and their depth for a constant image Jacobian, however it is
proved stable only in a neighborhood of the desired position. Another solution is on line
estimate depth of every feature point [39]. In this research, considering one of the
methods to measure the distance from camera to targets is through the use of laser
triangulation, we solve the depth estimation by a simple off the shelf laser pointer.
Moreover the laser spot can be chosen as an image feature. It is highly easy for image
processing by using a fixed-level thresholding.

Assume that the laser beam is lying in the same plane with the camera optical axis. In

this configuration, no matter how camera is moving, the trajectory of the laser spot in the

image is a straight line passing the principal point in image. If we consider the laser
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pointer as a camera and the laser beam is its optical axis, the straight line in the image

will be the epipolar line of the imaginary stereo configuration.

/ (u,v) ) / Laser Pointer
( Image plane

A

Len

a
P IObj ect

Figure 4-2 Calculate the Depth of a Point by Using Triangulation

As shown in Figure 4-2, d denotes the horizontal distance between the laser beam
and the optical axis of lens of the camera, and a is the angle the laser beam makes with
the horizontal. Both of them are fixed when the ranging system is installed. P is the
intersecting point of the laser beam and the object surface.

Apply the trigonometry to derive a function of depth with respect to pixel

indices (u,v) . The triangle inside the camera gives

J(u—u0>2s§+(v—vo)2s§)

=tat
P =tatan( 7

(4-18)

where (u,v) is the pixel index of a point, (u,,v,) is the principal point, and (s,,s )is the
effective size of the pixel.
Applying the Law of Sines to the triangle (lens-P-laser) yields

.Z = .d 4-19)
sina  sind
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in which @ is the inclination of incident ray and reflected ray, and Z is the distance
between P and the camera lens. & is obtained as:
0=180°-a—-(90°-p)=90°+f -« (4-20)
Substituting (4-20) into (4-19) gives

_dsina_ dsina
sinf  cos(a — f3)

(4-21)

Here the Z can be used to approximate the depth of each feature point in the object

surface,

4.4 Image Based Visual Servoing with Laser Pointer

It is well known that, for IBVS, since the control law is only in the image plane,
unnecessary motions of end effector are performed. Furthermore there may have image
singularities and image local minima which may lead to potential failure. In this section,
a new approach to IBVS with laser pointer is presented in detail to conquer the above
drawbacks.

The proposed algorism is composed of three sub-controllers, which are driving the
laser spot on the object, combining IBVS with laser spot for servoing, and applying a
constant image Jacobian at the desired camera configuration to reach the desired position.
The system configuration is shown in Figure 4-3, which is composed of 6DOF robot, a
camera mounted on the robot end effector and a laser pointer rigidly linked to the camera.

The object is assumed to be static with respect to robot reference frame.
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Figure 4-3 IBVS with laser system configuration

The block diagram of IBVS with laser pointer control system is presented in Figure

4-4.
End effector
Desired  + IBVS with Laser |Ag | Robot Robot | Position
features Controller | Controller | "
Feature | Camera |

extraction |

Figure 4-4 Block diagram of IBVS with laser control system
Stage 1: Drive the Laser Spot on the Object
To project the laser spot on the object, there are two kinds of situations need to be

considered. One is that all features are in the field of view (Stage 1.A), and the other is
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that partial object is in the field of view (Stage 1.B). Both of them will be discussed
below in detail. In Stage 1.C, the velocity transformed from camera frame to end effector

frame is derived.

Stage 1.A: All Features in the Field of View
Equation (4-5) can be decomposed into translational and rotational component parts

as shown below

F=ln 2 .. [} (4-22)

2

where J,_(f,Z) and J, (f)are stacked by J; _(f;,Z,)andJ! (f,) givenby

img img img img

X

° 7%
iy (4-23)
zZ, z,

4

A
Z,
Tong (fi:Z) =] "
0

2
XV, A*+ X;

r A A
J! )= 4-24
img (.f; ) _ 12 _ yi2 xiyi ( )

A A :

It is noted that J; is related to both the features and their depth, and J;,  is only a

function of the image features. Since the laser pointer is mounted on the robot end
effector, it is possible to control it by performing 3DOF rotational motion. It is known
that 2DOF of rotational motion is enough for a laser pointer to project its dot image on
the desired target. Here the reason of using 3DOF instead of 2DOF is that the rotation
along the camera Z axis can be used to solve the rotation problem such as 180 deg around
the optical axis, which is well known causing the image singularity presented by

F.Chaumette [16]. Since each feature point expects to move to the symmetrical point with
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respect to the image center with shortest path in image, it will lead to a pure backward
translational camera motion along the optical axis to infinity. Consequently, equation

(4-14) becomes

000 0 A4 0
} (4-25)

J,..(fi.2,)=

s )[000—100
which is rank 2 and will cause image singularity. To avoid this particular condition,
imaginary desired features are designed. According to the desired image including object

features and the desired laser spot, a new image can be designed, which is shown in

Figure 4-5. Let the distance between desired and current laser spot be d,, then the
imaginary object features are obtained by shifting all desired object features d, to the

current laser spot.

Sony XC55 Camera

0 T T T T T T
*  Desired features
50 - o1 Desired laser spot |
% Imaginary features
1001 ¢ Current laser spot |7
150 - 4
4 3 4 3
200} % o A * i
§ . d _
o 250r v -
>
1 21 2
350 .
400} .
450 e
1 1 i | 1 1
0 100 200 300 400 500 600
u (pixels)

Figure 4-5 Example of creating imaginary features
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Figure 4-6 Image trajectory of driving the laser spot on the object
It is assumed that the height of the object is relatively small. Therefore, when the
laser spot moves from the platform to the surface, there is no big discrepancy of the laser
spot in the image.
The control goal is to minimize the summation error between final features and the

imaginary features, as presented below
min{y (f, — 1)} (4-26)
where f, is the imaginary desired features.

The switching rule is described as: when the error norm falls below a predetermined
threshold value, the controller will switch from first stage to second stage. The switching

condition is given by

VAl B (4-27)
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where f; is the predetermined threshold value. Figure 4-6 presents a desired image of

this stage as an example.
Therefore the relationship between the motion of the image feature and the rotation
DOF of camera is presented as
. Cv
f=lo n@uﬂ{CC} (4-28)
Wc

The proportional control law is given by
€= KI [0 Jlrmg (f)]+f

=k 3, N - 1] (429)
where K, is the proportional gain.

Notice that the function of this control law not only drives the laser spot on the object
but also solves the image singularity problem. As mentioned in [16], a pure rotation of
180 deg around the optical axis will lead to image singularity and will cause a pure
backward translational camera motion along the optical axis. In the proposed algorism,
the rotation of the camera is mainly executed in the first stage of control, which is 3DOF
rotational motion. The second stage of control is primarily a translation. Hence, the

backward translational camera motion will be avoided.

Stage 1.B: Partial Object in the Field of View
When only partial object is in the field of view, some features are not available.
Therefore, the idea is to control 2DOF rotational motion of camera to project the laser

spot on the centroid of the object in image plane until all the features are in the field of
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view. The area centroid is the centroid of the area occupied by pixels satisfying the

required threshold. According to this idea, Equation (4-5) can be rewritten as:
a)x
f=3,0 (4-30)
wy

where J; (f) isstacked by J, (f;) given by

img

_ X A+ th
= A A 4-31
lmg (f) ﬂz _yiz xiyi ( )
A A

As mentioned before, 2DOF of rotational motion is enough for a laser pointer to
project its dot image on the desired target. Thus the other elements of the camera velocity
screw are set to zero.

The proportional control law is given by
Kpim (N (4-32)

where K, is the proportional gain, J; . (f)is the pseudo inverse of J; (/).

img

To attain the area centroid of the partial object in image, generally we calculate the
first order moments. Let R present the region of the partial object in a binary image
I(k,j), which can be obtain by fixed-level thresholding. For a digital image, the

moments of the region R are defined as:

my,= Y x*y’ (4-33)
(x,y)eR
k=20, j=0
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where (x,y) represent the row and column of a pixel in the region R respectively.

According to the moments definition, we have the area of the region R and the centroid

of R as:
A, =my, (4-34)
My
f= B: } -| o (439)
ye
my,

where f, is the centroid of the partial object in image and the desired feature as well.
Thus we have the proportional control law shown as following:
e=Kpdin () 1. -] (4-36)
When all the feature points are in the field of view, the control law will switch to

(4-29).

Stage 1.C: Transform Velocity from Camera Frame to End Effector Frame

In the real case, performing 3DOF rotational motion of the camera will cause the
robot end effector unnecessary movement. To solve this problem, consider that the
camera velocity can be transferred to end effector velocity as shown in (4-16).

It is assumed that the optical axis of the camera is coincident with the Z axis of the
end effector. In order to perform only 3DOF rotational motion of the end effector, the
“v, needs to be set to zero. According to (4-16) the linear velocity screw of camera in
camera frame can be calculated as follows:

Ey, =R v~ R sk(“T,) o,

=ERCCVC—ERC CTEXCa’C =0 (4-37)
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Therefore,

Ve =Tyx @ (4-38)

where Ca)c has already been calculated in (4-29) or (4-36).

Stage 2: Using Object Features and Laser Spot for Image Jacobian

The key problem for Stage 2 of IBVS with laser pointer algorism is how to obtain the
image Jacobian to relate the motion of the laser image feature and the motion of the laser
spot. According to the derivation of traditional image Jacobian matrix, the target is
supposed to be stable. In our system, since the laser pointer moves together with the
camera, normally the laser spot is not stationary. However, during the motion of the
camera, the laser spot on the target surface can be focused on the approximately same
point by controlling three rotational DOF of the robot end effector. Hence the laser spot
on the target can be considered as a stationary point adapting to image Jacobian matrix of
traditional IBVS. Based on above scheme, the algorithm is presented in detail as follows.

Let

=l - n T (4-39)

represent the image feature including the laser spot f' = [x’ y ]T . The modified
relationship between the motion of the image feature and the motion of camera is given
by

f=3,,(f,2) (4-40)

where J, _(f,Z) can also be decomposed into translational and rotational component

img

parts as shown below
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Vg (o f22) 0

Jg (f52) = 0 3 (4-41)
In equation (4-41),
Ting (1152)
Ve (Fir /'3 2) = ” (f 2 (4-42)
Vg ('3 2)
in which I}, (f;,Z) and J;, (f',Z)are presented in (4-23). The image Jacobian matrix

Ji.(f') in (4-41) is calculated by (4-24).
The switching rule is described as: if the error norm of current laser spot and desired

laser spot falls below a threshold, the IBVS with laser controller will switch from second

stage to third stage, which is given by
| -7 < Ay (4-43)
where f is the desired laser spot feature and f; is the predetermined threshold value.

This threshold is directly related to the depth that will affect the stability of the controller.
Thus the selection of this threshold needs to be relatively small.

The proportional control law is given by

e=KI; (f.2)f (4-44)

img
where K is the proportional gain, J;,(f,Z)is the pseudo inverse of J,,. (f,Z).
Referring to (4-41), f is the desired feature motion in the image, which can be
defined as an error function

e(f)=ti—f (4-45)

where
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fo=lta S 1 T (4-46)

is the desired image feature, in which the function of the last element can be defined as
Fho ) = O o+ x,) n(yy +0+ p,) 1) (4-47)
The function also can be defined as the center of gravity of the planar surface in the
image plane. In (4-47), [xn Yy ]T is the current image feature.

Thus equation (4-44) can be rewritten as follows

N\t

(3 (D) 0 fo=f

e=K J;mg(fn’z) 0 Joa = Ta (4-48)
3 (f'52) 0 fi-f
0 e U)W S )= 1

where the constant gain matrix K can be presented as

KI 0
K= (4-49)
0 K1

in which K| and K, are the proportional gains for camera translational and rotational

velocity respectively.

The example of an image trajectory in this stage is shown in Figure 4-7.
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Figure 4-7 Image trajectory of the second control stage

Stage 3: Using Constant Image Jacobian

In this section, the third control stage is being introduced. In the proposed IBVS with
laser algorithm, if the laser spot in the image plane is around its desired position, as
presented in (4-43), the depths of the points will be approximate to the desired ones as
well (essentially planary object). The IBVS with laser controller is switched to third stage,

which uses traditional IBVS with constant image Jacobian.

_i o X o _Xali A +x, ~y,
z, Z, A A ’
J img (fidaZ id) =" 2 “ 22 2 (4-50)
0 e A TV Xig Vid X
L Ziy Zi4 A A : _

where f,,and Z,, are desired features and their corresponding depth respectively. The

control law can be established as
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e=KI, (f0-Z)] (4-51)

The reason using constant image Jacobian instead of on-line updated image Jacobian
is to avoid the image local minima. It has been presented that the constant image Jacobian
at the desired camera configuration for IBVS can be used to reach the image global
minimum [16]. So, as for our algorithm, when the laser spot is located at the desired
position in the image, it is ensured that the current position is near a neighborhood of the
desired position. In this situation, the laser spot will not be considered as image feature
any more and the traditional IBVS with constant image Jacobian of desired image

features will be applied.
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Figure 4-8 Image trajectory of the third control stage
The control goal of this stage is to reach the global minimum. The condition can be
described as: if the feature error norm falls below a predetermined threshold, the whole

IBVS with laser controller will be stopped. This threshold directly affects the accuracy of
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the robot end effector pose with respect to object. The idea is choosing a relative bigger
value to increase the convergent speed, when the accuracy is guaranteed. The example of

an image trajectory in this stage is shown in Figure 4-8.

4.4 Summary

A new approach to switching control of IBVS with laser pointer is introduced in this
chapter. A simple commercial laser pointer is used to calculate the depth of image feature.
The control law and switching rules are introduced in detail.

The proposed system is derived from traditional IBVS. Therefore it inherits the
advantages of IBVS, which are object model free and robust to the camera calibration
and hand-eye calibration. In addition, by using laser pointer and partition DOF method,
IBVS with laser system avoids the inherent drawbacks of traditional IBVS, image

singularities and image local minima.
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CHAPTER S SIMULATION AND EXPERIMENTAL
RESULTS OF IBVS WITH LASER SYSTEM

5.1 Introduction

In this chapter, the proposed IBVS with laser system is simulated and experimentally
tested. The first part is the simulation results of IBVS with laser pointer system. Four
selected tasks are provided to cover most situations. The comparison with other methods
and the robustness test are presented as well. In the second part, the experiment is
through the robotic assembly to verify the effectiveness of IBVS with laser pointer
system. A plastic object will be assembled in a metallic part. Both the ideal condition of

the calibration and the robustness test are performed to fulfill the task.

5.2 Simulation Results of IBVS with Laser Pointer

The proposed algorithm has been simulated using Matlab and the Robotics Toolbox
[69]. The simulation is based on the robot model of Motoman UPJ, the camera model of
Sony XCS55 and a cube object, all of which have been presented in Figure 4-3. The
detailed camera parameters are shown in Table 3-1. The side length of the cube is 20mm
and the four coplanar corners are chosen as the targets. The d and « for the fixed laser-
camera configuration shown in Figure 4-2 are chosen as 30mm and 80deg respectively.
The camera reference frame is set to be coincident with the robot end effector frame.

Four tasks are selected to evaluate the proposed method. The first task is, as presented
in [1], a pure rotation 7 rad around the optical axis, which normally leads the traditional

IBVS failure. The second and third tasks are relative small and large pose discrepancy
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respectively. The initial image of the object in the last task is partially out of the field of
view. The detailed parameters are shown in table below.

Table 5-1 Initial and desired poses of tasks

Pose X(m)| Y(m) | Z(m) | ¢ (rad) | o (rad) | v (rad)
Initial “H, | 0.011 | -0.01 | 0.162 0 0 -7
Task 1
Desired “H,, | 0.011 | -0.01 | 0.162 n 0 -n
Initial “H_, -0.12 | -0.05 | 042 | -0.524 | 0.349 -2.793
Task 2
Desired “H, | 0.011 | 0.01 | 0.162 | -r/2 0 -n
Initial “H,, -0.07 | -0.08 | 0.44 | 0.175 -0.175 -2.444
Task 3
Desired “H,, | 0.011 | -0.01 | 0.162 n 0 -7
Initial “H, -0.17 | -0.05 | 042 | -0.524 [ 0.349 -2.793
Task 4
Desired “H, | 0.011 | 0.01 | 0.162 | -n/2 0 -7
Table 5-2 Desired feature sets
277 290
Desired object feat (pixel) >77 290
esired object features (pixe
Desired feature set 1 377 190
327 240
Desired laser spot features (pixel) [327 240]
377 290
Desired object feat (pixel) 577 190
esired object features (pixe
Desired feature set 2 327 240
277 290
Desired laser spot features (pixel) [327 240]

Two desired feature sets are created as shown in Table 5-2 to test two different

rotation tasks. Task 1 and task 3 are involved in desired feature set 2, and task 2 and task
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4 are involved in desired feature set 1. The predetermined threshold f; in (4-27) is set as

10 pixels and the condition of final feature error norm is set to 1 pixel. The f; in (4-43)

is tuned as 10 pixels, which is approximate to 10mm in the simulation environment. All

the proportional gains of control law are set to 1.

5.2.1 Results with Ideal Condition

Firstly, exact values of every transformation including camera model, hand-eye and
robot world transform are known to test thevIBVS with laser system.

The simulation result of Task 1 that is a pure 180 deg rotational motion around the

optical axis is shown in Figure 5-1.
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In Figure 5-1 (a), initial features have transformed to the symmetrical point with
respect to the image center, and initial and desired positions in image are overlaid. It can
be found that the relative orientation error in Figure 5-1 (b) is 7z rad. Instead of reducing
the image feature errors as fast as possible by traditional IBVS, the image feature errors
first increase a little then decrease (see Figure 5-1 ¢). Thus the image trajectory is a circle,
and there is no translational motion in Cartesian space rather than a pure backward
translational motion to infinity.

The second task is with a relative small pose discrepancy, which will be used to
compare different methods in the comparison subsection. The relative position and
orientation between initial position and desired position shown in Figure 5-2 (c) are

within 0.3m and 1 rad respectively.
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Figure 5-2 Simulation results of task 2
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From Figure 5-2 (e), we can notice that the end effector trajectory in Cartesian space
is closed to a straight line. In Figure 5-2 (b), it is easy to notice that the camera velocity in
Cartesian space consists of three segments corresponding three stages of the control
algorithm.

The third task is with a relative large pose discrepancy, in which the traditional IBVS
is failed. As shown in Figure 5-3 (c), the relative position errors and orientation errors are

up to 0.4m and 3 rad respectively.
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Figure 5-3 Simulation results of task 3
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The proposed method is successful for task 3, whose pose discrepancy is relative
large. From Figure 5-3 (b), notice that some image features errors increase during the first
stage. The reason is that the first stage’s control goal is to minimize the image features
errors with respect to imaginary desired features instead of the finally desired image
features. Therefore, to project the laser spot on the object will sometimes increase some
image features errors.

Through task 1 to task 3, all the object features are supposed to be located in the field
of view. However it is not all the cases. Sometimes only partial object in the field of view
and part of object features are lost. The task 4 is related to this situation, in which all the

other methods are failed. The image trajectory of this test is shown in Figure 5-4.

Sony XC&5 Camera

U T T i T T T
a0 7
100 - .
150 .
- 200} . \ jﬂﬂj J
4 -
k: N
2 2501 \‘; 7
= %_"‘*\.\*
300 - ' ' 7
350+ 7
< Initial features
A00F| ¢  Initial laser spot .
*  Desired features
480F| O Desired laser spot 1
1 ] i 1 I A
0 100 200 300 400 500 600
u (pixels)

Figure 5-4 Image trajectory of task 4
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5.2.2 Robustness Test

In this section, the robustness of the proposed algorithm has been tested. Camera

calibration error is added to intrinsic parameters with 20% which is shown in Table 5-3.

The actual value and applied value of transformation among camera reference, laser

pointer frame and robot end effector frame are also shown in Table 5-3.

Table 5-3 Actual values and applied values of system parameters

Parameters Actual value Applied value
Principal point (pixel) [320 240] [384 288]
Focal length (mm) 6 7.2
Effective size (mm) 0.0074x0.0074 0.0074 x 0.0074
C
H X Y Z 0 0 vlls0] o0 ]|o]10]0]30|10]10[0]12]2
(mm, deg)
E
Hc[XYZ‘”e‘/’]-zozozosssoooooo
(mm, deg)

Task 2 in Table 5-1 is chosen for robustness test. The simulation results are shown in

Figure 5-5.
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Figure 5-5 Robustness test of task 2
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As can be seen in Figure 5-5, although the image trajectory is distorted and robot end
effector trajectory is lengthened, the task is still able to be achieved. The proposed
algorithm is very robust to the camera calibration and hand-eye calibration error as
traditional IBVS. However, it is noted that because of bad calibration of camera-laser
configuration, the laser trajectory in Figure 5-5 (a) is not a line parallel with camera u

axis (see Figure 5-2 a for example) any more. Therefore, the proportional gain K, in

(4-49) needs to be increased to keep the laser spot focusing on the same point on the
target surface.
5.2.3 Comparison

Tasks in Table 5-1 are chosen to compare four different methods, which are proposed
IBVS with laser, 2.5D, traditional IBVS and PBVS. For traditional IBVS, on-line

updating image Jacobian method is applied with exact depth for each point.

HEVS with
" ilaseri.

Figure 5-6 End effector trajectories of task 2 in Cartesian space
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The simulation result of the end effector trajectories of task 2 is shown in Figure 5-6.
It is noted that the end effector trajectory of PBVS using DeMenthon’s pose estimation
method [14] (with four coplanar features and one ﬁoncoplanar feature) gives a straight
line in Cartesian space. However the image trajectory shown in Figure 5-7 has been out
of the field of view. During the simulation, in order to see the result of this PBVS method,
we did not stop the servoing when the features are lost the field of view. Minus pixels in
v axis of image plane are taken to finish the servoing. In the real situation, the servoing

will be failed when the vision feedback is gone.
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Figure 5-7 Image trajectory of task 2 using PBVS

82



SL

05~

D4~ e e T Cieve it
e : § i Laser T

0.3+ Sl

Y (m) 0.4 -04 X (m)

Figure 5-8 End effector trajectories of task 3 in Cartesian space
In Figure 5-8, only the results of IBVS with laser method and 2.5D method are given,
since the traditional IBVS fails for task 1 and 3 due to image singularity and large pose
discrepancy respectively.

Table 5-4 Length of Cartesian trajectory

IBVS with Laser (m) 2.5D (m) IBVS (m)
Task 1 0 0.01 failure
Task 2 0.348 0.308 0.404
Task 3 0.364 0.398 failure
Task 4 0.361 failure failure

For task 2, the length of Cartesian trajectory of the traditional IBVS is the longest.
Comparing IBVS with laser method and 2.5D method, one can see that for task 2, the

length of trajectory of the former method is longer than the later method. However, being
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opposite for task 3, it is noted that for 2.5D method, when large rotational discrepancy
exists, unnecessary motions of end effector are performed.
On the other hand, although the large rotational discrepancy does not affect the length

of trajectory for the IBV'S with laser method, the trajectory is still under improvement.

5.3 Experimental Results of IBVS with Laser System

In this section, the proposed IBVS with laser system has been tested on a robotic
manufacturing system. The detailed description has been presented in Table 3-3. The
good and bad calibration values are shown in Table 5-5. The d and « for the fixed laser-
camera configuration are set to 8mm and 72deg respectively.

Table 5-5 Good and bad calibration values of system parameters

Parameters Good calibration values Bad calibration values
Principal point (pixel) [326 228] [384 288]
Focal length (mm) 6.02 7.2
Effective size (mm) 0.0074x0.0074 0.0074x0.0074

‘U(X Y Z ¢ 6 y]
(mm, deg) Actual value is 8 0} 0 | O[-18] 0 6 {0 0 (O|-14| 0

measured by hand

M X Y Z 9 6yl
(mm, deg) Actual value is 715 (18 |-2] 0 [-179]1-20 202105 | 5 180

calculated by calibration

A commercial laser pointer FAY-IS3-1RD [80] is shown in Figure 5-9.
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Figure 5-9 Laser pointer
The robotic manufacturing system setup for testing IBVS with laser pointer is shown

in Figure 5-10.

Figure 5-10 Robotic manufacturing system setup for IBVS with laser pointer
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To verify the effectiveness of the proposed method, a plastic object shown in Figure

5-11 is chosen to be assembled in a metallic part. The four coplanar corners of the surface

are selected as the targets.

Figure 5-11 Components to be assembled

The detailed experimental setup is described in Table 3-3 and the diagram of the
experimental system is presented in Figure 3-7. The robot controller for UPJ robot is JRC.
One of the advantages of JRC controller is that it accepts the position and orientation
values and calculates the joint angle itself, which avoids the robot kinematic modeling
error. However, the drawback of the JRC controller is that it cannot be used for real time
control. In other words, during each iteration, when the designed IBVS with laser
controller generates a new value and send it to JRC controller, it will not respond it until
the prior poSition is reached. With this limitation of hardware, we have to divide the
calculated value of each iteration into a small value by a constant factor, and increase the
sampling time as well. In our experiment, we choose that constant factor as fifty, and the
sampling time as two seconds. Also due to this limitation we cannot present the camera
velocity curve in Cartesian space. The robotic assembly procedures are presented in

Figure C-3.
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The desired pose “H,, is set to [36 -66 123 0 0O 13.7] (mm, deg) by teaching

procedure presented in Figure C-2. The desired image shown in Figure 5-12 is taken at

this relative pose.

Figure 5-12 Desired image

The predetermined threshold f, in (4-27) is set as 10 pixels. The f, in (4-43) is

tuned as 10 pixels, which is approximate to 28mm in our experimental setup. All the
proportional gains of control law are set to 1.

When the condition of feature error norm falling below 3 pixels is achieved, the end
effector is brought to the desired pose with respect to the plastic object, which is a fixed
transformation for any object position. Therefore, commanding the robot end effector to
move that predefined transformation vector in end effector frame will perfectly let the
vacuum pump suck up the object. The assembled_components shown in Figure 5-11

present the accuracy of the proposed method.
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5.3.1 With Good Calibration Value

Firstly, the test of partial object in the field of view is performed.

(a) Initial image

(b) Image trajectory

Figure 5-13 Experimental results of partial object in the Field of View
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The initial image is demonstrated in Figure 5-13 (a). Only a small part (top right
corner) of the object is in the image and all the corner features are unavailable. The image
trajectory of this situation is shown in Figure 5-13 (b). Since part of object features are
out of the iniage during the beginning of servoing, we start to draw the trajectory only
from all the features are available.

Secondly, experiment of all features in the field of view is carried out. The initial
image is presented in Figure 5-14 (a). The object position is random. It can be found that
a distortion exist at the right side of the cross sign in Figure 5-14 (b). That is because the
laser spot accidentally projects on the object corner and affect the result of corner
detection. But it will not affect the eventual result. The end effector trajectory in

Cartesian space is given in Figure 5-14 (c).

(a) Initial image
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(b) Image trajectory

Cartesian space

mn

9

(¢) End effector trajectory
Figure 5-14 Experimental results with good calibration value
0



5.3.2 With Bad Calibration Value

To test the robustness of the IBVS with laser pointer system, camera calibration error
is added to intrinsic parameters with 20% which is shown in Table 5-5. The good
calibration value and bad calibration value of transformation among camera reference,
laser pointer frame and robot end effector frame are also shown in Table 5-5. The object
position is same with the experiment of good calibration value and the initial image is

shown in Figure 5-14 (a).

(a) Image trajectory
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(b) End effector trajectory in Cartesian space
Figure 5-15 Experimental results with bad calibration value
Although the image trajectory and robot end effector trajectory shown in Figure 5-15
is distorted comparing with the trajectories presented in Figure 5-14, the image features
still converge to the desired position and the assembly task is able to be achieved as well.
As can be seen in Figure 5-15, the proposed algorithm is very robust to the camera

calibration and hand-eye calibration error.

5.4 Summary

In this chapter, first the simulation results of IBVS with laser pointer system are given.
Four selected tasks covering most situations are tested. The simulation results show that
the new system inherits the advantages, improves the performance, and conquers the

weaknesses of the traditional IBVS.
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In the second part of this chapter, the proposed IBVS with laser method is
experimentally tested in a robotic manufacturing system. Since it is hard to quantify the
precision through measuring the relative pose of the object with respect to robot frame in
the experimental setup, a plastic object is chosen to be assembled in a metallic part to
verify the effectiveness. Both good and bad calibration results are applied to validate the

proposed system.
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CHAPTER 6 CONCLUSION AND FUTURE WORK

6.1 Introduction

In this chapter, the conclusions and contributions of this research are summarized
from the simulation and experimental results and some possible extensions and future

work are suggested as well.

6.2 Conclusions

This thesis presents two novel methods for visual servoing in robotic manufactory
system. The conclusions and contributions can be summarized from the simulation and
experimental results as follows.

1. A novel Neural Network (NN) Based Hand-Eye Calibration is developed.

e A MultiLayer Perceptron (MLP) NN is used to approximate the highly
nonlinear coordinate transform from object image coordinates to real world
object coordinates as the camera moves with the robot.

e The main advantages of NN based hand-eye calibration are that it can solve the
hand-eye calibration problem without the estimation of hand-eye
transformation and improve the tracking accuracy as well.

¢ By choosing some random points in the workspace to simulate a moving object,
we verify the effectiveness of the proposed calibration method for continuous

object tracking.
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The experimental results show that the proposed calibration method for 2D
object tracking outperforms the current solving homogeneous transformation

matrix method and free hand-eye calibration method.

2. A new approach to IBVS with laser pointer was developed

The proposed method is derived from traditional IBVS. Therefore it inherits
the advantages of IBVS, which are robust to the camera calibration and hand-
eye calibration, and is object model free as well.

Comparing with traditional IBVS, it avoids image singularities and image local
minima, and is successful for large pose discrepancy. Furthermore, the
trajectory of the robot end effector in Cartesian space is shortened.

By pointing the laser spot on the centroid of the object in image plane, the
proposed method is successful for the case that only part of the object is in the
field of view, in which all the other methods fail.

The success of the experiment of IBVS with laser system not only verifies the
algorithm but also validates the feasibility of this system to be applied in

industrial project.

6.3 Future Work

Although the proposed two novel methods of visual servoing in robotic

manufacturing system are effective, some improvements still need to be made in the

future work. The following points outline the suggestions.

1. Hand-eye calibration

Design a NN to be fit for the situation that the object has 6DOF pose with

respect to the camera.
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o Apply some other intelligent algorithms to solve the hand-eye calibration

problem, such as machine learning using Support Vector Machine (SVM).
2. IBVS with laser system

o Test the system on a robot manipulator supporting real time control, so that a
shorter sampling time could be applied to increase the real time ability and
reduce the whole processing time to fulfill the task.

o Improve the robot end effector trajectory in Cartesian space to be more closed
to a straight line as PBVS.

o During the experiment, the precision of assembly is partially based on the
accuracy of corner detection. Sometimes point feature is easy to be disturbed
by image noise. Therefore, some additional features are better to be chosen to

improve the robustness of image noise.
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Appendix A Robot Model in Matlab Robotics Toolbox
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Figure A-1 Motoman UPJ workspace and link dimensions [7]
The Motoman UPJ robot is modeled in Matlab Robotics Toolbox as follows:
L{1} = link([pi/2 0 0 029 0 0 ], 'standard");
L{2} = link([O 026 0 0 0 pi/2 ], 'standard’);
L{3} = link([pi/2 0 0 0 0 0 ], 'standard");
L{4} = link([pi/2 0 0 027 0 0 ], 'standard");
L{5} =link([-pi/2 O 0 0 0 0 ], 'standard");

L{6} = link([0 0 0 009 0 0 ], 'standard");
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L{1}.qlim =[-160 160]* pi/180;
L{2}.qlim = [-85 90 ] * pi/180;
L{3}.qlim =[55175] * pi/180;
L{4}.qlim = [-170 170] * pi/180;
L{5}.qlim = [-120 120] * pi/180;

L{6}.qlim = [-360 360] * pi/180;
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Appendix B MATLAB Code for NN Training

% NNData is a nx 6 matrix whose formatis lu v T. T x
X y w yW

% Input of the network

p=[NNData(:,1)'; NNData(:,2)"; NNData(:,3)'; NNData(:,4)'];
% Outnput of the network
t=[NNData(:,5)"/max(abs(NNData(:,5)")); NNData(:,6)"/max(abs(NNData(:,6)"))];
% Construct the network
net=newff(minmax(p),[20,2],{'tansig','purelin'},'trainlm");
net.trainParam.show = 10;

net.trainParam.Ir = 0.03;

net.trainParam.epochs = 500;

% Performance goal

net.trainParam.goal = le-8;

% Train the network

[net,tr]=train(net,p,t);

% Simulate the output of the network
[a,Pf,AfE,perf]=sim(net,p);
Xw=a(l,:).*max(abs(NNData(:,5));
Yw=a(2,:).*max(abs(NNData(:,6));;
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Appendix C Flow Chart of IBVS with Laser System

JRC Conteol

e
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Figure C-2 Teaching procedures
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