Requirements Specification of Business
Transactions in Use Cases

Kianoush Torkzadeh

A thesis
in
Department
of

Computer Science and Software Engineering

Presented in Partial Fulfillment of the Requirements
for the Degree of
Master of Computer Science at
Concordia University
Montreal, Quebec, Canada

June 2007

© Kianoush Torkzadeh, 2007

Library and
Archives Canada

Bibliothéque et
* Archives Canada
Direction du
Patrimoine de I'édition

Published Heritage
Branch

395 Wellington Street

395, rue Wellington
Ottawa ON K1A ON4

Ottawa ON K1A ON4

Canada Canada
Your file Votre référence
ISBN: 978-0-494-34653-2
Our file Notre référence
ISBN: 978-0-494-34653-2
NOTICE: AVIS:

L'auteur a accordé une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par télécommunication ou par I'Internet, préter,
distribuer et vendre des theses partout dans

le monde, a des fins commerciales ou autres,
sur support microforme, papier, électronique
et/ou autres formats.

The author has granted a non-
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non-
commercial purposes, in microform,
paper, electronic and/or any other
formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

L'auteur conserve la propriété du droit d'auteur
et des droits moraux qui protége cette these.
Ni la thése ni des extraits substantiels de
celle-ci ne doivent étre imprimés ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,

their removal does not represent
any loss of content from the

thesis.

Canada

Conformément a la loi canadienne
sur la protection de la vie privée,
guelques formulaires secondaires
ont été enlevés de cette these.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

Abstract

Requirements Specification of Business Transactions
in Use Cases

Kianoush Torkzadeh

Functional requirements and the involved user interaction are dependent on the chosen
concurrency management strategy of the encompassing business transaction. Use cases
are the specification technique of choice for functional requirements documentation.
Unfortunately, the current state of the art in use case writing does not provide a proper
means to express business transaction specifications. In order to overcome this
shortcoming we adapt the use case notation to allow business transactions to be defined
in terms of its boundaries, affected resources and the chosen concurrency management
strategy. The practicality of our extension is illustrated by a comprehensive case study.
Lessons learnt from the case study are presented in the form of a set of heuristics and

practical guidelines.

iii

Acknowledgments

I would like to express my deep and sincere gratitude to my supervisor, Dr. Patrice
Chalin. His wide knowledge and his logical way of thinking have been of great value to
me. His understanding, encouragement and personal guidance have been instrumental in

the writing of the thesis.
I warmly thank Daniel Sinnig, for his valuable advice and friendly help.

I owe my loving thanks to my wife Laleh Mousavi Eshkevari. Without her
encouragement and understanding, it would have been impossible for me to finish this

work.

In addition, I would thank all DSRG members in my lab, for providing valuable

comments for my research work.

v

Table of Contents

ADSEEACT . eeieeiesiiiiesitestieiisneesissessssssssesssssesssesssesassenssesanesssessassrsesssensssssssnsssasssassnnanssaes iii
ACKNOWICAGIMENTS ...oeeeerreriirerneiiinisttrtennnceresssenas s ees e e e s bsssse s s se e s s sssene s bsnnnesenes iv
Table Of COMLENTS c..oueeivieiireriiriiiecciieittisretissrecsse s sssse s s csssssessssssssssesssassossnssonsss v
LSt Of FIZUTESaucciririnreerirrnniensssseiicisssnneisssssesssssssensmssssssssesssssnesssssnsessssssssssosssssssssssenssssseses vii
LSt OF TADIES ..coiriiiiiiiniiciieniiisnisncsnictssss it s sassssrsssssssassesssessssssesssesssssessssonssssssssasessns viii
1 INEOAUCLION. ...ttt st s sersssisssesseesaresasess s sssassssssasesssanesoveen 1
1.1 Context and Problem Statement..............oooieriiieiiiniiie e 1

R 003 1150 10015705 113 OO RO 2

FL 3 OULHNE. c. .ttt et sttt n et e 4

2 Background and Related Work........oiiiiieeecenece st 5
2.1 USE BSOS c.uriiintieeireeie it ettt et et e ettt e et ee s ee e b e e e e st e et e e et et ene e e ehbeeananbeaan 5
2.2 Transactions (System Transactions)ccccocoiviiriiieiiircreeieeeereeee et 8

2.3 BUsiness TranSactiONS.........coouieiiriieiie ettt site et et stieete et e aeeseeenae e eans 9
24 SABAS ..ot bt 9
2.5 Concurrency Management.......coocueeviiiriiiiieerieriiieeeercecen sttt ere e s 10
2.5.1 Pessimistic Concurrency Management.............ccocoovovveiniiiiiiieinieieee 11

2.5.2 Optimistic Concurrency Managementcccceeeeeeveioniiveeeeeeeiee e 12

2.5.3 Pessimistic and optimistic strategies: a COMpPAarisonc.ccoccoeeeerecenn. 13

2.0 Related WOTK ..co..ooeiiiiii et s 14

3 Requirements Specification of Business Transactionscccceceinscrneciinsecensensen 16
3.1 MOtIVating SCENMATIO......covriiiiiiiiie ettt ettt s e e es 16
3.2 TermMINOIOZY ..ottt ettt 18

3.3 Business Transaction TemPIateccoververieiiiririe et 19

3.4 Use Case EXAMPIEoooiriirieieiceee ettt 24

3.5 5288 TemPIAte....ooieeee e s 29
3.6 Saga EXAMPIe....oouiiriiiieeeieciie et 30
3.7 SUININEATY -..eceictieiiieeesteeeeteeeresensaesesseesrsressrseesasseeassenasessassrassrsseesheseesrneessnsaseasssens 38

4 a8 STHAY covvvriernrrrensenrsrsssersissessesssssssssssossrnsossrrsossasesssassssssssssssssossssssssssossssssnssssasnssos 40
4.1 Domain Model and Use Case Briefs...........cccoooieiiiiiiiiiiiie e 41
4.1.1 Domain model........ccccoociiiiniiiiic e 41

1.2 ACTOTS ittt ettt sttt e et sttt e s e s s 42
4.1.3USeCase DIIESS ...coooiiiiiiiii e e s 42

4.1.4 Non-functional reqUIrEmMentsccoceererreerirneniiierieeeee e 43

4.2 Selected Use Cases in Detail..........ooooiiiiiiiiiiiiiciecceccc 44
4.2.1 Use Case: Edit Student Information (OptimistiC)........ccveeveveeriveeenivnerronneennnn 44

4.2.2 Use Case: Import Student Registry (pesSImistic)c.ccceveriricnirieinennnne. 46

4.2.3 Use Case: Delete Students from Student Registry (hybrid)............ccocoee.e. 47

A3 SUITIITIATY -ttt e et e et e e et e e et e e re e e e ettt e e et te et aeatteaaeeeaeaeaaeeeeeetereereeaeaeeeraeaennns 50

5 Writing Effective Transactions within Use Cases: Heuristic Guidelines 51
5.1 Finding Transactional RESOUICEScevvuiviiiiiiiiiie et 51
5.2 Finding Transaction BOUNAATIIES.............coovvereieemiiiieniireeeesieeeireeesieaessaeesneeaeenns 52
5.3 Choosing a Concurrency Management StTrategy.........coccovvvrervrnirevrcinienreecceneen. 54

5.3.1 Optimistic Concurrency Managementc..ccoveeveeeeieeienenicnenneenenncns 55
5.3.2 Pessimistic Concurrency Management..........c..coeveeuerineerrerinecrueeeennee e 55
533 HYDIIA oot s 56

6 Conclusion and Future Workiiinniiinncinniinneinsecssnsesssenissssessssssesssess 57

RETEIENCES cvrutsnesnsssnsseessnnsnnsresseesesssssnsnessacssessassesssessasssnssressansnssnssanssansssssnnssnsssessassasssnassas 59

Appendix A. Use Case Model: Course Management SyStenccuecensnerssinensssseessnnes 63

Appendix B. Domain Model.......iieiniiiinscriiinenieciiseiisinssnicnnesssnisssssmsssseoses 81

Appendix C. An XML UCM Meta-model for use cases with Eclipse.......c..ceeevruneen.. 83

Vi

List of Figures

Figure 1. Traditional use case StUCUIEcccoeiiriiiiiii e 7
Figure 2. Saga's compensation hierarchy.........ccoocooiiiriiiiiiiiii e 10
Figure 3. Example of pessimistic concurrency management........ccocceeeeernereneieeeennneenene 12
Figure 4. Example of optimistic concurrency managementcccceeveereerveerrreeeeeennnen 13
Figure 5. Use case template of a business transactionc.ocecveeeevreirreecieeneennecieennne 21
Figure 6. Excerpt of the domain modelc..c.oociii 25
Figure 7. Use case: add student to class HiSt........cocooiviiiiiiiiciiic e 28
Figure 8. Saga template..........coooiiiiiiiiiiceere e e 29
Figure 9. Domain model of trip organizer Systemcccocevviicvnininiiinice e 31
Figure 10. Saga use case example: plan and book a trip package ... 31
Figure 11. Use case: cancel flight 1eServationccccoccvviriiiiiniiniinienienceee e 35
Figure 12. Use case: cancel hotel reservation...........cccooce e iinnceircnceec s 36
Figure 13. Use case: cancel Car reSErVatIONceoveeriiieeniiinieieeeeeeeeiiee e eeerneessree e 37
Figure 14. Saga compensation diagram for saga eXxample........cc.cocevevivoininiienennennnnne. 38
Figure 15. Domain model of course management Systemc..cccovereciierinneccnnieeenne. 41
Figure 16. Use case: edit student information in student registry...........ccococovvinincnenn. 45
Figure 17. Use case: import student TegIStryccooveiiiouiriieiiieniiiiceiiccenec s 46
Figure 18. Use case: delete students from student registry............cccooevverviinicncceieeene, 48
Figure 19. Main success scenario of “add student(s) to class list” without transactional
DOUNAAIIES «.coeeiiieiieecee e e et 53
Figure 20. Main success scenario of “add students(s) to class list” with transactional
BOUNAATIES ..ot e s 54
Figure 21. Example of a simple domain modelcc.oocooiiiniiiiie 82
Figure 22. Example of a rich domain model...........ccoccoonniniiinniiiie e, 82
Figure 23. Structure of the packagec..cooueiiiii e 84
Figure 24. Structure 0f the USE CASEcc.vvviiiiieiieitie e 85
Figure 25. Structurc of the main SUCCESS SCENATIOvvvererievirrereererirreteeeeeteeeaeerereeaneene 86
Figure 26. Structure of the EXtENSIONSceevviiiiirieieeeirteesiiereeeseeesseeeseaeees e eaeesaeeeeane 87
Figure 27. Structure of the eXtenSION..........ccoeiiiiiiiiiiiii 88

Vil

List of Tables

Table 1. A comparison between pessimistic and optimistic concurrency management... 14

Table 2. Actors and their reSponSIDIIIESeeieeeiieiieeee et 42
Table 3. Use case briefs of course management SyStemccccovvvreieernircincncerreeniiennns 43
Table 4. List of DTD €lementsccoeoiiiiiiiieiie et 83

Vil

1 Introduction

1.1 Context and Problem Statement

An Enterprise Application (EA) is a software system that implements numerous business
services, which are simultaneously accessed by a large number of users. Typical
examples of the kinds of services provided by EAs include high level business operations
such as managing a bill of materials or production planning, to lower level functions such
as retrieving a list of employees and confirming a vacation request. EAs play a crucial
role in our modern economy. For example, in the third quarter of 2006 alone, US retail e-

commerce sales totaled over 27 billion dollars [US Census 2006].

The complexities of EAs are multi-dimensional. This makes EA requirements
specification and design a particularly challenging task. For example, EAs implement the
business logic of the surrounding organization. The logic must follow business rules that
often have evolved over years and feature a multitude of exceptional cases. Also, an EA
offer users concurrent access to its services. The ability to deal with concurrent user
access to data is one of the most tricky and error prone aspects of EAs [Fowler 2003].
When multiple clients attempt to access the same data concurrently special care must be
taken in choosing appropriate concurrency control mechanisms and conflict resolution

strategies.

To help tackle the challenging issue of concurrency management, software engineers
have leammed to make use of an abstraction known as business transactions [Fowler

2003]. A business transaction is a logical unit of interaction between two (or more)

business entities. Similar to a system transaction—i.e., an internal query to a database
system—business transactions are bound to the ACID properties (Atomicity,
Consistency, Isolation and Durability) [Ramakrishnan & Gehrke 2002]. Partial
executions are not desirable and when they cannot be avoided, they require the execution
of recovery actions. In contrast to system transactions, business transactions may stretch
over a long period (hence are sometimes referred to as long-lived transactions) and the

execution of their actions may depend on the interaction of associated actors.

In this thesis, we argue that functional requirements and the involved user interaction are
dependent on the chosen concurrency management strategy of the encompassing business
transaction. Use cases are the specification technique of choice for functional
requirements documentation. A use case captures the interaction between actors and the
system under development. A use case is organized as a collection of related success and
failure scenarios that are all bound to the same goal of the primary actor [Larman 2005].
Unfortunately, the current state of the art in use case writing does not provide a proper

means to express business transaction specifications.

The main goal of this thesis is to overcome this shortcoming by demonstrating how
business transactions can be documented in use case specifications. In particular, we
adapt the use case notation to allow business transactions to be defined in terms of its

boundaries, affected resources and the chosen concurrency management strategy.

1.2 Contributions

The main contributions of this thesis are to:

e Demonstrate that analysis and modeling of business transactions is a domain activity.

¢ Present an adaptation to the use case notation for capturing business transactions.

e Validate the proposed adaptation by applying it to a comprehensive case study of a
Course Management System.

¢ Describe a set of heuristics that will be useful in the analysis and modeling of

business transactions at the requirements level.

Next, we describe each of the main contributions in greater detail.

Analysis and Modeling of business transactions is a domain activity. Unfortunately,
most literature deals with business transaction modeling from a design perspective only
[Ariafai et al. 2006, Butler et al. 2005, Subrahmanyam & Richard 2000] and a false
impression 1s given in which transaction modeling is solely a responsibility of the
software designer. In this thesis, we demonstrate that the choice of concurrency
management strategy depends on the domain and hence should be modeled during
requirements elicitation and documentation. Failing to do so can have a significant

negative effect on the usability of the system.

Specifying business transaction within use cases. The state of the art in use case
writing does not provide us with constructs for specifying business transactions.
Therefore, we define a use case meta-model which includes both traditional use case
constructs and constructs for indicating transaction boundaries, the chosen concurrency
management strategy, and the involved transactional resources. In this vein, we also
define how sagas (sets of business transactions with relaxed ACID properties) can be

modeled within use case specifications.

Case study and heuristics for modeling business transactions. We plan to validate our
research by carrying out a comprehensive case study. Experiences and lessons learnt
from the case study are distilled into a set of heuristics and practical guidelines, which

assist the software engineers in:

e Choosing the proper concurrency management strategy.
o Identifying transactional resources.

e Determining transaction boundaries.

In addition, we compile a list of typical use case extensions that are likely to appear for a

particular concurrency management strategy.

1.3 | Outline

The remainder of this thesis is structured as follows. Chapter 2 reviews background
information and relevant related work. In Chapter 3, we define our extension for use
cases which allows modeling business transactions and sagas. Chapter 4 presents a case
study whose main goal is to investigate the practical applicability of the proposed
extension. Chapter 5 summarizes the lessons learnt from the case study and provides a
set heuristics and practical guidelines. Finally, in Chapter 6 we conclude and provide an

outlook to future avenues.

2 Background and Related Work

In this chapter, we review some important definitions that are required to understand the
rest of the thesis. We define use cases as a basic technique to capture the system
requirements and explain its role in the software design life cycle. Then we introduce
transactions, business transactions and sagas followed by the definition of different types
of concurrency management. The rest of this chapter is dedicated to related work. We
cover existing approaches to modeling concurrency management and transactions in the

requirements phase.

2.1 Use Cases

Use cases were introduced roughly 15 years ago by Jacobson. He defined a use case as a
“specific way of using the system by using some part of the functionality” [Jacobson
1992]. More recent popularization of use cases is often attributed to Cockburn [Cockburn

2001].

Use cases are typically employed as a specification technique for capturing functional
requirements. Each use case consists of interactions between actors and the system under
development. Actors represent users or entities (e.g. secondary systems) that interact with
the system. By definition, actors are outside of the system boundary. A distinction is
made between primary and secondary actors. A primary actor, typically a user, initiates
the use case in order to accomplish a pre-set goal. Secondary actors support the execution

of the use case through interactions with the primary actor [Gomaa 2005].

Figure 1 depicts a template for a fully dressed use case as defined by Cockburn
[Cockburn 2001]. As is illustrated, every use case starts with a header section containing
various properties. The “primary actor” property identifies the actor who initiates the
mteraction specified by the use case. The “goal” property captures the very intent the
primary actor has in mind when executing the use case. “Level” indicates the goal level
of the use case. While different goal levels exist, the most important ones are summary,
user-goal and sub-function. The user-goal level use cases refer to “elementary business
processes”. Summary level use cases provide a context for user-goal level use cases.
They also show the life cycle of related use cases and, in effect, act as a use case table of
contents. User-goal use cases at times employ sub-function use cases to achieve their
objectives [Cockburn 2001]. Sub-function use cases are those that are too “small” to be

considered elementary business processes.

The core part of a use case 1s its main success scenario. It indicates the most common
way in which the primary actor can reach his/her goal by using the system and interacting
with secondary actors. A use case is completed by specifying use case extensions.
Extensions constitute alternative scenarios, which may or may not lead to the fulfillment
of the use case goal. They represent exceptional and alternative behavior (relative to the
main success scenario) and are indispensable to capturing full system behavior. Each
extension starts with a condition (relative to one or more steps of the main success
scenario), which makes the extension relevant and causes the main scenario to “branch”
to the alternative scenario. The condition is followed by a sequence of action steps, which

may lead to the fulfillment or the abandonment of the use case goal and/or further

UsE CASE: TITLE

PROPERTIES
e Primary Actor:
e Goal:
e Level:
e Precondition:

MAIN SUCCESS SCENARIO
step 1.
step 2...
step n.

EXTENSIONS

2a. Condition

— extension steps ...
2b. Condition

— extension steps ...

Figure 1. Traditional use case structure

extensions. From a requirements point of view, exhaustive modeling of use case

extensions is an effective requirements elicitation device.

The complete set of use cases for a system is captured in a Use Case Model (UCM). The
UCM documents the majority of software and system requirements and as such, it is the
main part of the contract (of the envisioned system behavior) between stakeholders
[Cockbum 2001]. Moreover, it is useful in determining the boundary of the system. Only
behavior defined by the use case model is part of the envisioned system. Interactions that
are not specified are deemed outside of the system’s boundary {Overgaard & Palmkvist
2004]. Use case modeling is a crucial activity in the software development life cycle (e.g.
Rational Unified Process) and has significant benefits for both software developers and
customers to achieve a common understanding of the functionalities of the system under

development [Merrick & Barrow 2005, Toerner et al. 2006, Whittle & Jayaraman 20061].

Transactions play a crucial role in software systems; next, we define transactions and

their properties.

2.2 Transactions (System Transactions)

Transactions (or system transactions) are important concepts for handling concurrency
management of enterprise applications (EAs) [Fowler 2003]. A transaction is defined as a
sequence of interactions between software systems which has well-defined start and end.
Every transaction must obey to the following properties (which we refer to as A.C.1.D.)

[Banagala 2006]:

Atomicity. Either al/ the steps of the transaction are executed or none. A transaction step
is said to be executed if it has a permanent (externally visible) eftect on the state of any of

the system’s resources.

Consistency. The system must be in a consistent, non-corrupt state at the start and the
finishing point of the transaction. In other words, a transaction must maintain the
consistency of data in data repositories. For example, in moving money between two
different accounts, the transaction must ensure that the debited amount equals the

credited amount.

Isolation. The results of an individual transaction must not be visible to any other

transaction until the transaction commits successfully.

Durability. This property ensures that all updates are persisted when the transaction has
committed successfully. In other words, any result of a committed transaction must be

made permanent.

2.3 Business Transactions

Business transactions are logical units of interaction performed between two or more
business entities [Gallina & Mammar 2006]. Similar to system transactions (described in
the previous section) business transaction have the ACID properties. In contrast to system
transactions, business transactions are typically at a higher level of abstraction and as
such that they are meaningful to users. System transactions are internal to software
systems and hence essentially invisible to users. Business transactions may stretch over a
long period (long running transactions) and the executions of their actions may depend on
the interaction of associated actors. Examples of use cases will be given in the following

chapters.

24 Sagas

“Long lived transactions (LLTs) hold on to the database resources for relatively long
periods of time, significantly delaying the termination of shorter and more common
transactions” [Garcia-Molina & Salem 1987]. Similar to a LLT, a saga consists of
sequence of sub-transactions that can be interleaved with sub-transactions of other sagas
[Garcia-Molina & Salem 1987]. Sub-transactions within a saga are related to each other
and should be executed as a unit. When a saga fails, compensation actions are performed
starting from the saga’s failure point. The purpose of compensation actions is to undo (if
possible) the effects of the transactions that have been already committed. Figure 2 shows
a saga with four sub-transactions. It depicts the compensation actions to be invoked,
depending on when the saga aborts. For example, when saga aborts during the execution

of transaction D, compensation actions need to be carried out for the transactions C, B, A

(in that order). It is important to note that undoing the effects of a transaction is not

always possible. In such a case, a compromise solution needs to be negotiated.

Note that a saga is like a transaction for which we have relaxed the atomicity and
isolation properties of transactions, since the saga’s sub-transitions are interleavable.
Consequently, sub-transactions (within different sagas) can commit and roll back
independently. Thus, resources may be released prior to the end of the saga, and the
liveliness of the system, in terms of maximizing the degree of concurrent executions, is

significantly increased [Garcia-Molina & Salem 1987].

Compensation

actions
A

Saga Abort . . -

Compensation

actions for A . .

Compensation
actions for B .

Compensation
actions for C

Time

\

Starttrans A Starttrans B Starttrans ¢ Starttrans D

endtransA endtrans B endtrans C End trans D

Figure 2. Saga's compensation hierarchy

25 Concurrency Management

One of the most complicated aspects of software development is dealing with
concurrency. In order to avoid inconsistencies due to concurrency conflicts, a

concurrency management strategy is needed. When modeling business transactions, the

10

transaction boundaries, the chosen concurrency management strategy and affected

domain objects are important concepts.

A business transaction might deal with one or more domain model objects. Specifying
these objects enables software engineers to determine when and which resources should
be involved in the business transactions and gives a better understanding of concurrency

management.

In general, we distinguish between three basic types of concurrency management: (1)
pessimistic concurrency management, (2) optimistic concurrency management and (3)

hybrid concurrency management.

2.5.1 Pessimistic Concurrency Management

In a pessimistic concurrency management strategy, resources are locked at the very
beginning of the transaction. The main idea of pessimistic concurrency management is to

prevent conflicts.

Figure 3 illustrates the interaction involved in pessimistic concurrency management in a
sequence diagram. Two users (John and Daniel) intend to concurrently edit a shared
resource, R. The transaction for John starts with the get(R) message being sent to the
enterprise application (EA). As a result, a lock is put on resource R. Hence, R will be
unavailable for other users including Daniel. The gray bar on the right hand side shows

the duration of the lock on the resource R. John updates information in R. Finally, a

message informs John that the update was successfully done.

11

update(R)

. Enterprise
John Daniel Application
i ¥ 1
1 i 1
1 ' I
: | getR))
1]]
t 3
'
/ i e
Transaction / . , retun(R) -
Boundary VN T TTTTTTTTTTTTTTTTIT T M
for Daniel -~ ! ! e
= 1=~ - : gel(R) | 8
| -—— ; e
! Error: Resource(R) is unavailable [t 5
| ~Jd b L ______ =)
=
| 8.
=
pe il
X
2

ceeemee]

1

1

I

1

3

1

t

¥

:

P \ :

7/ \]

4 Updated successfully
R | T b e o e

Transaction !
Boundary: !
- for-John '

Figure 3. Example of pessimistic concurrency management

-_—————

2.5.2 Optimistic Concurrency Management

In optimistic concurrency management, locking is done just before the last step of the
transaction—i.e. the commit step. The main idea of optimistic concurrency management
maximize system availability while ensuring that resource update conflicts are
appropriately detected and resolved. Resources are only locked for the short time span of
commit step of the transaction. Figure 4 provides an example of an optimistic
concurrency management scenario. Similar to the previous example, we assume that
there are two users (John and Daniel) who intend to concurrently edit resource R. The
transaction for John starts with the request get(R). Unlike the previous example, the

system only locks R when John calls update(R). Hence, when Daniel attempts to update

12

R a conflict is detected and reported. In this case, an error message informs Daniel that

the information of R has already been changed.

- . Entergrise
John Daniel Application
\

I
get(R)
: >
/ :
/ refurn(R)
{ S RaEEEt Rt T EE PR
' get(R) |
I L !
: /
| / return(R)
] I Koo R
I | . :
! | ™ edit(R) :
J 1
I I -~ v
I ™ i - : Locked
I ‘) eaitR) | | Pydonn
p LoL
s\ | te(R | !
/ 1
, \ = update(R) o /
Transaction B I %
- Boundary § &
for dobn Uldated Successfully =3
A gl i
/,,”’\ [R has been [\4\
- \ ; hanged by John
Transaction: i ~ \ update(R) . B
Boundary. . B
for:Daniel 4
Locked
by Daniet
t
|

Figure 4. Example of optimistic concurrency management

Atkins and Coady define hybrid concurrency management as being concurrency
management where locking is done neither at the beginning nor at the very end of the

transaction [Atkins & Coady 1992].

2.5.3 Pessimistic and optimistic strategies: a comparison

Table 1 compares optimistic and pessimistic strategies [Atkins & Coady 1992].

13

It concerns conflict It concerns conflict prevention
detection [Fowler 2003]. [Fowler 2003].
Locking duration Immediately before the
within business commit step of the
transaction transaction.

Intention

Before the first step of the
transaction.

Not applicable. All resources are
already locked. Other
transactions cannot have access
to the locked resources.

Conflicts between | Are identified at the end
concurrent of a transaction's
transactions execution.

The amount of wasted The amount of wasted work is

Efficient when work is not comparatively . .
. comparatively significant.
considerable.
Appropriate when
the chance of Low High
conflict is ...

Table 1. A comparison between pessimistic and optimistic concurrency management

2.6 Related work

The importance of modeling transactions and concurrency management in the early
development stages has been identified by various authors. Fowler emphasizes that the
choice of concurrency control strategy depends to a great extent on the likelihood and the
consequences of a concurrency conflict, which in turn are to be determined during
requirements specification [Fowler 2003]. Banagala points out that understanding and
modeling business transactions is a crucial activity during the analysis phase [Banagala
2006]. In his work, the author demonstrates how business transactions can be modeled
during the analysis stage by proposing an enhancement to Jackson’s problem frames
approach [Jackson 2001]. Bennett et al. propose a framework for the analysis and the
design of long running business processes and their entailed business transactions
[Bemnett et al. 2000]. A business process is modeled by a set of interrelated tasks

resulting in a task dependency graph. During the design phase, one or more tasks are

14

mapped to a node in the Unit of Work tree, where each Unit of Work represents a
transaction. Unfortunately, the proposed framework is not very well integrated with

standard functional requirements documentation techniques such as use cases.

Within the context of transactional business software, Correa and Werner assert that
scenario specifications (in form of use cases) and the specification of business rules and
transactions are closely related [Correa & Werner 2004]. As such, an in-depth
understanding of the underlying transaction is indispensable for the specification of
interaction details. Based on this assertion, the authors propose an approach where
preliminary use case specifications are enriched with OCL (Object Constraint Language)
annotations. These OCL annotations specify business rules as well as pre- and post

conditions of business transactions.

In context of web services development, Alrifai ef al. propose a web-service transaction
protocol, based on transaction dependency graphs [Alrifai et al. 2006]}. The protocol
ensures the consistency of data while different business transactions are dealing with the

same data concurrently.

In this thesis, similar to the approach of Correa and Werner [Correa & Werner 2004], an
extension for use case models is defined. In contrast to their work, however, our approach
1s not based on an external notation but is integrated with the use case model.
Additionally, our approach closely incorporates references to domain objects and

supports modeling of transactional resources.

15

3 Requirements Specification of Business Transactions

In this section, we propose a means of integrating business transaction requirements
within use cases. First, a motivating example is presented. Next, we define a new use
case template whose use can help in the specification of business transactions within use

cases. Finally, we propose a similar template for writing sagas, followed by an example.

31 Motivating Scenario

A Flight Reservation System is a common web-based enterprise application. In the
motivating example presented below, we describe an application that deals with several
flight companies, which have various classes of flight with different prices. Users employ
the system to book their flights concurrently. The number of empty seats in a flight is a
dependant variable of the plane type and the flight class. In what follows, a scenario
describes a situation in which two different users employ the system to book a seat in a

same flight:

Using the flight reservation system “Get-You-There”, a customer named Paul wants to
book a flight from Montreal to Vancouver. Afier entering his flight criteria, the system
suggests a set of suitable flights. Paul selects a flight and, out of excitement for having
obtained a great air fare, runs into the kitchen to tell his wife about his good fortune. In

the mean time, Frank, who is also interested in flying from Montreal to Vancouver,

coincidentally selects the same flight as Paul. Frank lives alone and, without any delays,
proceeds to select an appropriate seat and purchases the flight using his credit card.

After successful validation of his credit limit, the system issues an electronic ticket. While

16

Frank already enjoys a cool beverage to celebrate his upcoming vacation, Paul returns
to his computer in order to finalize his booking. He selects a seat and submits payment
information. Unfortunately, in Paul’s case, the system indicates that the selected flight in
the desired booking class is already fully booked. As it turns out, Frank's booking
preempted Paul's and in doing so, Frank booked the last available seat in the booking
class. Paul, frustrated, returned to the kitchen to tell his wife that he will never use the

system again.

Apparently, the business transaction was implemented using an optimistic concurrency
management strategy, and hence, no lock was set on the corresponding flight data upon
initiation of a business transaction. As a result, the system gave the impression to all
interested customers that a sufficient number of seats were available, even though the
number of potential customers was greater than the number of available seats. If the
system had been designed using a pessimistic strategy, Paul’s disappointment would have
been avoided, as all resources would have been locked in Paul’s favor until the business
transaction had finished. Hence, Frank would not have had the chance to book the same
flight. Which approach is best? It is up to all stakeholders, especially, targeted end users
to decide; e.g. if the full consequences of either strategy were known to end users, they
might in fact propose a third alternative where customers are aware of the number of

remaining seats as well as the number of customers in contention for them.

Therefore, managing concurrency issues in the requirements phase can reduce the effort
to deal with them in the design and implementation phases by placing the effort where it

can yield the most benefit—i.e. as early as possible.

17

The main benefits of modeling business transactions, sagas and associated concurrency

management can be summarized as follows:

Domain specific. In our opinion, concurrency management is, to a great extent, a
domain issue and hence should be analyzed and documented during requirements
activities. In contrast to low-level system transactions, the nature of business
transactions, sagas and their corresponding compensation actions depend on the
application domain and the needs of stakeholders.

Elicitation of requirements. Functional requirements and the involved user
interaction are dependent on the chosen concurrency management strategy. For
example, the functional requirements for optimistic concurrency management focus
on conflict resolution whereas the functional requirements for pessimistic
concurrency management are based on conflict prevention. Which strategy is chosen

will affect how users will be able to interact with the system.

The main goal of this thesis is to provide support for modeling of business transactions

and sagas at the requirements level, specifically through use cases. In particular, we

define an extension to use cases to support the specification of business transactions and

sagas as well as the corresponding concurrency management strategy. As discussed in the

previous chapter use cases are the vehicle of choice for documenting functional

requirements, which in turn are closely related to the chosen concurrency mechanism.

3.2

Terminology

The main terms used in our extension to use cases are defined as follows:

18

33

Transaction denotes a use case step, whose substeps are the activities of a business
transaction. Each such transaction is attributed a set of transactional resources.
Transactional Resource (TRs) denotes a domain entity that is directly or indirectly
either created, read, modified or deleted by a use case step within the scope of a
transaction. It is important to note that since we are dealing with requirements, a
transactional resource refers to a domain concept and not to a design or
implementation level class.

Resource Lock. Before a transactional resource can be altered, the system needs to
gain exclusive access to it. This is achieved by means of a resource lock. In this
thesis, we employ exclusive read/write lock mechanism to lock transactional
resources.

Commit and Abort. The last substep of a transaction is a commit. In committing a
transaction, its effects become permanent and visible to others. For various reasons
(some of which will be explored later), a transaction can be aborted in which case any
intermediate substeps are “undone™ so that the system is left with no trace that the
transaction was ever initiated. An aborted transaction has no net effect. In our
approach, the main success scenario of the use case contains a COMMIT step and a
TRANSACTION ABORT can only occur in the corresponding use case extensions; both

lead to the release of the resource locks.

Business Transaction Template

In this section, we define a “template” for the specification of business transactions inside

use cases. As depicted in Figure 5, business transaction modeling is captured in the main

success scenario as well as in use case extensions. Note that for sake of readability, we

19

have collapsed sequences of zero or more steps (written as step*) whose details are not
relevant to our presentation into a single numbered step—e.g. steps 1 and 3 of the main

Success scenario.

20

USE CASE:

PROPERTIES:

e Primary actor:

¢ Goal:
Level:
Minimal Guarantee:
Frame:
Precondition:

MAIN SUCCESS SCENARIO
1. step*.
2. TRANSACTION.
Transactional Resources (TRs): list of TRs.

2.1 step™® (possibly accessing TRSs).
2.2 BEGIN RESOURCE LOCK of type: [exclusive read | exclusive write | read/write].
2.3 step* (possibly accessing, changing TRs).
2.4 COMMIT.

3. step*.

EXTENSIONS
(2.1-2.3)Primary actor indicates that he/she wishes to abort the transaction:

— step®.

— TRANSACTION ABORT.

— step™*.

(2.1-2.4) System detects that Transactional Resources have been changed by
another transaction:

— step* (conflict resolution).

— TRANSACTION ABORT (optional).

— step* (resume in Main Success Scenario if transaction was not aborted).
(2.2) Transactional Resources are already locked:

— step* (conflict resolution).

— TRANSACTION ABORT (optional).

— step* (resume in Main Success Scenario if transaction was not aborted).
(2.3) Response timeout: (optional: applicable in pessimistic/hybrid concurrency
management)

— step*.

— TRANSACTION ABORT.

— step*.

(2.4) Failure persisting data:

— step™ (recovery).

— TRANSACTION ABORT.

— step*.

Figure 5. Use case template of a business transaction

21

Main Success Scenario. The start of a transaction is indicated by the keyword
TRANSACTION followed by the list of transactional resources used in the transaction. The
main success scenario can have only one transaction and does not support nested
transactions (a main success scenario containing more than one transaction is called a
saga—sagas are covered in Section 2.4). The transaction will contain a sequence of
substeps consisting of user interactions and internal system computations including
accessing and modifying the transactional resources. Note that modification of
transactional resources remain invisible to others (by nature of the isolation principle of
transactions). Two internal system steps are present in every business transaction: the
first is denoted by BEGIN RESOURCE LOCK and it indicates the obtaining of exclusive
access to the transactional resources; the second, a COMMIT, marks the successful
termination of the transaction. Note that depending on when the transactional resources
are locked, either an optimistic, a pessimistic, or a hybrid concurrency management

strategy is defined. Specifically, we have a

e Pessimistic strategy when there are no steps in 2.1; i.e. the transaction actually starts

with BEGIN RESOURCE LOCK.

o Optimistic strategy when there are no steps between the lock and the commit (i.e. 2.3

is empty).

e Hybrid strategy otherwise.

While general guidelines are applicable, the decision as to the most appropriate choice of
locking strategy can be made by domain experts [Fowler 2003]. Domain experts are also

those who are in the best position to decide what should be done during transaction

22

conflicts or failures as well as the most suitable resolution and recovery actions—we

discuss these next.

Extensions. As depicted in the template (Figure 5), there also exists a set of extensions
associated with a business transaction. As will be clarified below, not all extensions

shown in the template are applicable in all cases.

(2.1-2.3) Primary actor indicates that he/she wishes to abort the transaction. At any
time between the start of the transaction and the COMMIT step, the user may request that
the transaction be aborted. The extension steps that follow a request for abort generally
consist of the system asking for confirmation, the user acknowledging, and the
transaction being aborted—of course, more complex interactions are possible. As was
mentioned earlier, the TRANSACTION ABORT causes the transactional resources to be

released and to be left unchanged.

(2.1-2.4) System detects that Transactional Resources have been changed by another
transaction. When locking is not pessimistic (i.e. there are one or more steps in 2.1),
transactional resources may be changed concurrently by multiple transactions due to the

absence of a resource lock during the step(s) of 2.1.

In order to avoid lost updates and inconsistent reads [Fowler 2003], the system must
ensure that transactional resources have not been updated by another transaction prior to

the COMMIT step. To offer maximum flexibility to designers, the system is given the

freedom to report the detection of changed resources at any point from 2.1 to 2.4. When a
conflict is detected, conflict resolution measures are taken: in the simplest case, this

involves notifying the user and aborting the transaction. Making the right choices with

23

respect to conflict resolution is a good example of key opportunities for requirements

elicitation.

(2.2) Transactional Resources are already locked. This extension occurs if the system
fails to obtain a resource lock because one or more of the transactional resources have
already been locked by another transaction. Under such circumstances the transactional
resources cannot be modified and the transaction must be aborted or the primary actor

given the opportunity to indicate that a resource lock be reattempted.

(2.3) Response time-out. A common transaction failure scenario pertinent to the
pessimistic concurrency management strategy is a response time-out. Such an extension
is necessary to ensure that resources are not locked indefinitely, should the user be unable
to complete the transaction—e.g. the client is operating from a remote site and their

network connection to the application server is lost.

(2.4) Failure persisting data. During the commit step of the transaction it is possible that
the system fails to persist the changes made to the transactional resources, hence recovery
actions become necessary. These actions may either lead to an attempted re-execution of

the commit step or to the transaction being aborted.

34 Use Case Example

An example of a use case, which follows our template, is given in Figure 7. This “Add
Student to Class List” use case is an excerpt from an ongoing research project (see
appendix A) in which we are developing a Course Manager application. We have

modified the use case step numbering to conform to the template so as to make reference

24

to the template easier. Moreover, for the sake of brevity, only the main success scenario

and the extensions are shown in full, the header section of the use case is partly omitted.

As is usual, the use case has been carefully written to exclude user interface details
[Cockburn 2001, Lilly 1999]. That is, the various interaction steps are described at high
enough a level of abstraction to be applicable to several kinds of user interfaces, any of

which could be adopted for the system.

An excerpt from the system Domain Model showing the concepts relevant to our
example use case 1s given in Figure 6. From this diagram we can learn that there is a
single application-wide Student Registry associated with all Students—hence, in
particular, there exists no student who is not part of the Student Registry. A Student can
be a member of one or more Class Lists and each Class List is associated with the

offering of a course for a particular term.

Student Registry 1 Course Offering
1
* 1
Student Class List
id * *
name

Figure 6. Excerpt of the domain model

25

In the use case, the trigger for the main success scenario 1s the primary actor’s request to
add a student to a class list. The next step defines the business transaction for the use case
and declares the Student Registry and all Class Lists as transactional resources. As a first
transaction substep the primary actor identifies a Class List and the Student to be added.
This 1s followed by an input validation step performed by the system. Note that the use
case does not constrain how the Class List and Student are identified since the exact
mechanism by which this will be done (e.g. free form data entry on the course title, use of
simple pattern matching on the student name, or fixed-content pull down lists) will be
determined during user interface design. While for some Uls input validation may be
trivial (e.g. when data selection is from a fixed-content pull down list), it is a step which
is generally necessary. Failure in validating the input results in extensions (3.1a) or
(3.1b), both of which allow the user to repeat the input step. Note that in step 3.1 we use
the alias <Alice> to represent the student to be added; we find that this makes the use

case more readable and less verbose than “the student to be added”.

Next, the system attempts to lock the transactional resources. The situation where
transactional resources are already locked is covered in extension (3.2), which, upon
acknowledgement of the primary actor, will return to step 3.2 in the main success
scenario to re-attempt to gain a lock. After obtaining the resource lock, the system adds
<Alice> to the Class List. On a successful commit, the system notifies the primary actor

of the success of the transaction and this marks the end of the main success scenario.

A failure in persisting the data—e.g. a remote database becomes inaccessible—during the

commit step leads to an extension of step (3.4) which aborts the transaction and ends the

" Even in the case of fixed-content pull down list validation is necessary if the enterprise application is made accessible by means of
the web.

26

use case—of course other more complex recovery schemes are possible but since such
events are deemed very unlikely, our efforts were better spent refining other more likely

scenarios.

At any time during the transaction the system may detect a concurrency conflict in which
a transactional resource has been changed by another transaction. In such a situation
(extension 3.1-3.4) the conflict is also resolved by notifying the primary actor and giving

him/her a chance to try again as of step 3.1.

Finally, we point out that the example use case makes adopts an optimistic concurrency
management strategy. As such, the transactional resources are not locked immediately as
of the start of the transaction. Instead, despite the possibility of a concurrency conflict
(extension 3.1-3.4), the primary actor is prompted to identify <Alice> and a Class List.
As a direct consequence, there is no need for our sample use case to have a time-out
extension. The transactional resources are only locked for a minimal period of time,
which leaves essentially no room for user interaction—hence, a time-out is unnecessary.
The main reason for the adoption of optimistic concurrency management is the low
probability of a conflict and the relatively low cost in its resolution—the primary actor

merely repeats use case step 3.1.

27

Use CASE: ADD A STUDENT TO CLASS LIST
Primary Actor: Instructor. [Other use case properties omitted.]
Frame: Student Registry, all Class Lists.

MAIN SUCCESS SCENARIO
1. (Trigger) Primary actor indicates that he/she wishes to add a Student from the
Student Registry to a Class List.
2. System acknowledges the primary actor's request.
3. TRANSACTION. TRANSACTIONAL RESOURCES: the Student Registry and all Class
Lists.
3.1 At the System’s prompt, the Primary actor identifies a Class List and the student to
be added (whom we will call <Alice>); System ensures that the provided information
is valid by: ... [validation details omitted] .
3.2 BEGIN RESOURCE LOCK: exclusive read/write.
3.3 System adds <Alice> to the Class List.
3.4 COMMIT.
4. System notifies primary actor that <Alice> has been successfully added.

EXTENSIONS
(3.1-3.3) Primary actor indicates that he/she wishes to abort the transaction:

— TRANSACTION ABORT.

~ Use case ends unsuccessfully. Transactional resources remain unchanged.
(3.1-3.4) System detects that Transactional Resources have been changed by
another transaction:

— System notifies primary actor that TRs have been changed by another transaction.
— Use case resumes at 3.1.

(3.1a) The id given for <Alice> is not in the Student Registry:
— System informs primary actor that information of <Alice> is invalid—e.g. invalid

student id.
— Use case resumes at 3.1.

(3.1b) <Alice> is already in the Class List:

— System informs primary actor that <Alice> is already in the Class List.
— Use case resumes at 3.1.

(3.2) Transactional Resources are already locked:

— System notifies primary actor that TRs are already locked by another transaction.
— System asks the primary actor if he/she wishes the system to retry obtaining a lock.
— Primary actor acknowledges. [Extension to this step is not shown.]

— Use case resumes at 3.2,

(3.4) Failure persisting data:

— System notifies primary actor that the transaction could not be completed because the
changes could not be persisted.

— TRANSACTION ABORT.

— Use case ends unsuccessfully. Transactional resources remain unchanged.

Figure 7. Use case: add student to class list

28

MAIN SUCCESS SCENARIO
I. steps*
2. SAGA
2.1 TRANSACTION A
2.2 TRANSACTION B
23 ...
2.X TRANSACTION Z
3. steps*

EXTENSIONS

(2.1) Transaction aborts:
— steps*
— SAGA ABORT

(2.2) Transaction aborts:

— steps* (compensation actions for Transaction A)
— SAGA ABORT

(2.X) Transaction aborts:

— steps* (compensation actions for Transaction ..., B, A)
~ SAGA ABORT

Figure 8. Saga template

3.5 Saga Template

A saga consists of a sequence of two or more subordinate transactions. Sub-transactions
within a saga are related to each other and should be executed as a unit. In the case of a
partial execution, compensation actions are invoked starting from the point where the
saga failed. In what follows, we define a template for representing sagas in use cases. As

depicted in Figure 8, a saga specification is captured in the main success scenario as well

as in use case extensions.

Main Success Scenario. The start of a saga is indicated by the keyword SAGA. Within a
SAGA step, a sequence of transactions is given. Each transaction is defined according to

the template given in Figure 5, including all relevant extensions.

29

Extensions. The main issue to be dealt with in the extensions of a saga is the
compensation actions necessary for any previously committed transaction. A
compensation action tries to undo the changes in order to recover the state prior execution
of the saga. In some circumstances, it may not be possible to undo all the changes. In this
case, the compensation action attempts to offer the primary actor some form of
reimbursement for the loss of time, money or effort due to the failure to complete the
saga. As illustrated, compensation actions are invoked in reverse order of their

transaction counterparts, starting from the point where the transaction failed.

3.6 Saga Example

In what follows, we propose a "Trip Organizer System" as a means of illustrating a saga.
Suppose the system allows users to organize their business or personal trips by choosing
a travel package. We assume that users interact with the system online by specifying the
origin, destination, date and the period of their trip. In response, system presents a
collection of packages for the trip. Each package consists of a flight, a hotel and rental
car. The payment method is by credit card. The system also creates an Account (initially
with zero balance) that will be used when a user wants to cancel a travel package. User
has an option to keep the travel package price as a credit for his/her future travels. In
addition, system can use the account for offering promotions to its clients. Figure 9

illustrates the domain model of the "trip organizer system".

30

consists of

- Flight
flight-id
User . Travel Package
reviews Hotel
consists of
purchases ! hotel-id
. Car
has manage consists of B
car-id
Account
balance

Figure 9. Domain model of trip organizer system

In what follows we present a set of use cases, which capture the before-mentioned saga.

Figure 10. Saga use case example: plan and book a trip package

USE CASE: PLAN AND BOOK A TRIP PACKAGE

Primary Actor: User of the system who wants to organize a trip

Goal: Primary actor successfully purchases a travel package including a flight, hotel
reservation and car reservation by using the system.

Level: User Goal.

Minimal Guarantee: No action, no purchases.

Frame: Account, Flight, Hotel, Car.

Precondition:
e Primary Actor is authenticated

MAIN SUCCESS SCENARIO

I. Primary Actor indicates that he/she wishes to plan and book a trip by using the
system.

2. System acknowledges the Primary Actor's request.

3. SAGA
3.1 TRANSACTION: Reserve Flight. TRANSACTIONAL RESOURCES: Flight, Account.

3.1.1 In response to a system prompt, the Primary actor provides information needed for
the flight reservation including origin, destination, dates, name of passenger(s) and
flight class.

3.1.2 System provides list of available flights and their cost.

3.1.3 Primary actor indicates his/her choice of flight.

3.1.4 Primary actor provides his/her credit card information.

31

3.1.5 BEGIN RESOURCE LOCK: exclusive read/write.

3.1.6 System validates the credit card information and deducts the corresponding
amount from the Account (up to a balance of 0) and applies remaining charges to the
credit card.

3.1.7 System reserves the flight.

3.1.8 COMMIT.

3.2 TRANSACTION: Reserve Hotel. TRANSACTIONAL RESOURCES: Hotel, Account.

3.2.1 In response to a system prompt, the Primary Actor provides information needed
for the hotel reservation including, hotel type, number of guests and number of
rooms.

3.2.2 System provides a list of available hotels at the destination along with their room
rates.

3.2.3 Primary Actor selects hotel(s) and room(s) for the period of time that he/she
wishes to reserve.

3.2.4 BEGIN RESOURCE LOCK: exclusive read/write.

3.2.5 System validates the credit information and deducts the corresponding amount
from the Account.

3.2.6 System reserves the hotel room(s).

3.2.7 COMMIT.

3.3 TRANSACTION: Reserve Car. TRANSACTIONAL RESOURCES: Car, Account.

3.3.1 In response to a system prompt, the Primary Actor provides the information
needed for the car reservation including the type of car, and the rental period.

3.3.2 System provides the list of car rental companies and their available cars for the
given period.

3.3.3 Primary Actor selects a car from the given list.

3.3.4 BEGIN RESOURCE LOCK: exclusive read/write.

3.3.5 System validates the credit information and deducts the corresponding amount
from the Account.

3.3.6 System reserves the chosen car for the specified period.

3.3.7 COMMIT.

4. System notifies the Primary Actor that the travel package has been approved and
issues the tickets and necessary documents.

EXTENSIONS

(3.1.1-3.1.5) a. Primary Actor indicates that he/she wishes to abort the saga:

— TRANSACTION ABORT (RESERVE FLIGHT).
— SAGA ABORT.
— Use case ends.

(3.1.2) a. No flight is available for the specified period:

— System notifies the Primary Actor that the there is no flight available for the specific
period.
— Use case resumes at 3.1.1.

(3.1.3) a. Primary Actor indicates that he/she wishes to change the flight reservation
parameters (e.g. date, flight class):

— Use case resumes at 3.1.1.
(3.1.5) a. Transactional resources are already locked:
— 1. System notifies the Primary Actor that TRs are already locked by another transaction.

32

— 2. System asks the Primary Actor if he/she wishes the system to retry obtaining a lock.
— 3. Primary Actor acknowledges.
— 4. Use case resumes at 3.1.5.

(3.1.8) a. Failure persisting data:

— System notifies the Primary Actor that the transaction could not be completed because the
change could not be persisted.
(3.1.3-3.1.5) a. System detects that the flight is already booked by another
transaction:
— System notifies the Primary Actor that the flight is booked by another transaction and
requests that another flight be chosen.
— Use case resumes at 3.1.2.

(3.1.5a.3) a. Response time-out:

— TRANSACTION ABORT (RESERVE FLIGHT).
— SAGA ABORT.
— Use case ends.
(3.2.1-3.2.4) a. Primary Actor indicates that he/she wishes to abort the saga:
— TRANSACTION ABORT (RESERVE HOTEL).
— CANCEL FLIGHT RESERVATION.
SAGA ABORT.
— Use case ends.

(3.2.2) a. No rooms are available for the specified period:

1

— System notifies the Primary Actor that the hotel does not have available rooms.

— Use case resumes at 3.2.1.
(3.2.3) a. Primary Actor indicates that he/she wishes to change the hotel reservation
parameters:

— Use case resumes at 3.2.1.
(3.2.4) a. Transactional resources are already locked:

— 1. System notifies the Primary Actor that TRs are already locked by another transaction.

— 2. System asks Primary Actor if he/she wishes system to retry obtaining a lock.

3. Primary Actor acknowledges.
4. Use case resumes at 3.2.4.

(3.2.4a.3) a. Response time-out:

— TRANSACTION ABORT (RESERVE HOTEL).
CANCEL FLIGHT RESERVATION.

SAGA ABORT.

Use case ends.

(3.2.7) a. Failure persisting data:
— System notifies the Primary Actor that the transaction could not be completed because the
change could not be persisted.
— TRANSACTION ABORT (RESERVE HOTEL).
— CANCEL FLIGHT RESERVATION.
~ SAGA ABORT.
~ Use case ends.

33

(3.3.1-3.3.4) a. Primary Actor indicates that he/she wishes to abort the saga:

— TRANSACTION ABORT (RESERVE CAR).
— CANCEL HOTEL RESERVATION.

~ CANCEL FLIGHT RESERVATION.

— SAGA ABORT.

— Use case ends.

(3.3.2) a. No car rentals match the given reservation parameters:
— System notifies the Primary Actor.
— Use case resumes at 3.3.1.

(3.3.3) a. Primary Actor indicates that he/she wishes to change the car reservation
parameters:

— Use case resumes at 3.3.1.
(3.3.4) a. Transactional resources are already locked:

~ 1. System notifies the Primary Actor that TRs are already locked by another transaction.
— 2. System asks Primary Actor if he/she wishes system to retry obtaining a lock.

3. Primary Actor acknowledges.

— 4. Use case resumes at 3.3.4.

(3.3.4a.3) a. Response time-out:

~ TRANSACTION ABORT (RESERVE CAR).
— CANCEL HOTEL RESERVATION.

— CANCEL FLIGHT RESERVATION.

— SAGA ABORT.

— Use case ends.

(3.3.7) a. Failure persisting data:
— System notifies the Primary Actor that the transaction could not be completed because the
change could not be persisted.
— TRANSACTION ABORT (RESERVE CAR).
—~ CANCEL HOTEL RESERVATION.
— CANCEL FLIGHT RESERVATION.
— SAGA ABORT.
—~ Use case ends.

In the Figure 10, when the saga is aborted, compensation actions are performed which
cancel the bookings. The compensation actions are captured in their own uses cases—

these are described next.

34

Use CASE: CANCEL FLIGHT RESERVATION
Primary Actor: User of the system who wants to organize a trip
Goal: Primary actor successfully cancels the flight reservation.
Level: subfunction
Minimal Guarantee: No action, no flight cancellation.
Frame: Account, Flight, Payment list.
Precondition:
e Primary Actor is authenticated

MAIN SUCCESS SCENARIO
1. TRANSACTION: CANCEL FLIGHT RESERVATION
TRANSACTIONAL RESOURCES: Flight, Payment list, Account.
1.1 System informs the Primary Actor that he/she has the option to either (i) keep the
full payment as a credit for future vse or (ii) get a refund with a 5% cancellation fee.
1.2 Primary Actor indicates that he/she wishes option (i1).
1.3 BEGIN RESOURCE LOCK: exclusive read/write.
1.4 System cancels the flight reservation, and credits the Primary Actor’s credit card for
the full amount less 5%.
1.5 COMMIT.
2. System notifies the Primary Actor that the flight booking has been successfully
canceled and credited according to the chosen option.

EXTENSIONS

(1.1-1.3) a. Primary Actor indicates that he/she wishes to abort the transaction:
— Use case ends unsuccessfully. Transactional resources remain unchanged.

(1.2) a. Primary Actor indicates that he/she wishes option (i):

— 1. BEGIN RESOURCE LOCK: exclusive read/write.

— 2. System cancels the flight reservation.

— 3. System transfers an amount equivalent to the price of the flight booking to the
Account of the Primary Actor.

— 4. Use case resumes at step 1.5.

(1.2a.1) a. Transactional resources are already locked:

System logs the error and marks it to be dispatched manually.

System suspends the Account of the Primary Actor.

System notifies the Primary Actor that an error occurred and that his/her Account is
temporarily suspended and that he/she should notify customer service.
TRANSACTION ABORT .

Use case ends unsuccessfully. Transactional resources remain unchanged.

(1.3) a. Transactional resources are already locked:

— 1. System notifies that TRs are already locked by another transaction.

— 2. System asks the Primary Actor if he/she wishes the system to retry obtaining a lock.
— 3. Primary Actor acknowledges.

— 4. Use case resumes at 1.3.

(1.3a.3) a. Response time-out:
— TRANSACTION ABORT. Use case ends unsuccessfully. TRs remain unchanged.

Figure 11. Use case: cancel flight reservation

35

USE CASE: CANCEL HOTEL RESERVATION
Primary Actor: User of the system who wants to organize a trip
Goal: Primary actor successfully cancels the hotel reservation.
Level: subfunction
Minimal Guarantee: No action, no hotel cancellation.
Frame: Account, Hotel, Payment list.
Precondition:
e Primary Actor is authenticated

MAIN SUCCESS SCENARIO
1. TRANSACTION: CANCEL HOTEL RESERVATION
TRANSACTIONAL RESOURCES: Hotel, Payment list, Account
1.1 System informs the Primary Actor that he/she has the option to either (i) keep the full
payment as a credit for future use or (ii) get a refund with a 5% cancellation fee.
1.2 Primary Actor indicates that he/she wishes option (i1).
1.3 BEGIN RESOURCE LOCK: exclusive read/write.
1.4 System cancels the hotel reservation, and credits the Primary Actor’s credit card for
the full amount less 5%.
1.5 COMMIT.
2. System notifies the Primary Actor that the hotel has been successfully canceled.

EXTENSIONS

(1.2) a. Primary Actor indicates that he/she wishes option (i):

1. BEGIN RESOURCE LOCK: exclusive read/write.

— 2. System cancels the hotel reservation.

— 3. System transfers adds the payment to the Account of the Customer
— 4. Use case resume as step 1.5.

(1.2a.1) a. Transactional resources are already locked:

System logs the error and marks it to be dispatched manually.

System suspends the Account of the Primary Actor, notifies that an error occurred and
his/her Account is temporarily suspended.

TRANSACTION ABORT.

— Use case ends unsuccessfully. Transactional resources remain unchanged.

(1.1-1.3) a. Primary Actor indicates that he/she wishes to abort transaction:

— TRANSACTION ABORT.
— Use case ends unsuccessfully. Transactional resources remain unchanged.

|

(1.3) a. Transactional resources are already locked:
— 1. System notifies that TRs are already locked by another transaction.
2. System asks the Primary Actor if he/she wishes the system to retry obtaining a lock.
3. Primary Actor acknowledges.
— 4. Use case resumes at 1.3.
(1.3a.3) a. Response time-out:

— TRANSACTION ABORT.
— Use case ends unsuccessfully. Transactional resources remain unchanged.

Figure 12. Use case: cancel hotel reservation

36

USE CASE: CANCEL CAR RESERVATION
Primary Actor: User of the system who wants to organize a trip
Goal: Cancel a car reservation and gets a refund with 5% cancellation fee.
Level: subfunction
Minimal Guarantee: No action, no car cancellation.
Frame: Account, Car, Payment list.
Precondition: Primary Actor is authenticated.

MAIN SUCCESS SCENARIO
1. TRANSACTION: CANCEL CAR RESERVATION
TRANSACTIONAL RESOURCES: Car, Payment list, Account
1.1 System informs the Primary Actor that he/she has the option to either (i) keep
the full payment as a credit for future use or (ii) get a refund with a 5%
cancellation fee.
1.2 Primary Actor indicates that he/she wishes option (ii).
1.3 BEGIN RESOURCE LOCK: exclusive read/write.
1.4 System cancels the car reservation, and credits the Primary Actor’s credit card for
the full amount less 5%.
1.5 COMMIT.
2. System notifies the Primary Actor that the car has been successfully canceled.

EXTENSIONS

(1.2) a. Primary Actor decides to keep the payment as a credit for future use:
— 1. BEGIN RESOURCE LOCK: exclusive read/write.
— 2. System cancels the car reservation.

3. System transfers adds the payment to the Account of the Customer

— 4. COMMIT.

5. System notifies the Primary Actor that the car reservation fee is kept as a credit in
his/her Account.

(1.2a.1) a. Transactional resources are already locked:

— System logs the error and marks it to be dispatched manually.

— System suspends the Account of the Primary Actor.

— System notifies the Primary Actor that an error occurred and that his/her Account is
temporarily suspended.

— TRANSACTION ABORT. Use case ends unsuccessfully. TRs remain unchanged.

(1.1-1.3) a. Primary Actor indicates that he/she wishes to abort transaction:
— TRANSACTION ABORT. Use case ends unsuccessfully. TRs remain unchanged.
(1.3) a. Transactional resources are already locked:

— 1. System notifies that TRs are already locked by another transaction.
— 2. System asks the Primary Actor if he/she wishes the system to retry obtaining a lock.
— 3. Primary Actor acknowledges.
— 4. Use case resumes at 1.3.
(1.3a.3) a. Response time-out:

— TRANSACTION ABORT. Use case ends unsuccessfully. TRs remain unchanged.

Figure 13. Use case: cancel car reservation

37

Compensation Transactions

Saga

t1 § - - -Starttrans2.1- - -

v . Endoftrans 2.1

Start trans 2.2

3 F-- Endoftrans 2.2

t Start trans 2.3

t4 § - - Endoftrans2.3 - -
Travel is
organized

Time

Figure 14. Saga compensation diagram for saga example

Figure 14 graphically illustrates the compensation activities related to the transactions of
the saga in the given example. The arrows from the Saga to the compensation actions are
adorned with expressions of the form [t,,t,) showing the relevant time interval during
which the corresponding compensation action would be triggered (i.e., the time between

t» and t,, including t,, but excluding t,,).

3.7 Summary

We have presented an extension for use cases to capture business transaction
requirements as well as sagas. The challenge at hand was to define a well-integrated
extension that preserves the intuitive nature of use cases. As a first step, we established a

vocabulary that could be easily understood by most stakeholders. The vocabulary

38

captures all relevant core concepts for modeling business transactions at the requirements

level.

39

4 Case Study

In this chapter, we introduce the case study of a “Course Management System”. The
system is a web-based application that can be employed in universities to manage
courses, classes and assignments. The major features of the course management system

are as the follows:

e Register and manage students in the Student Registry.
o Define and manage courses and classes.

e Assign students to classes.

¢ (Create and manage groups of students within classes.
e Submission of individual/group assignments.

* Submission of assignments grades and sending feedback to students.

The purpose of the case study is to demonstrate how the templates introduced in Chapter
3 are used to specify business transactions. In particular, we wish to demonstrate that
software engineers will be able to write pessimistic, optimistic, and hybrid concurrency
management strategies with the provided use case templates. We start by providing a
domain model, an actor goal list and set of use case briefs. We then demonstrate (using a

set of selected use cases) how business transactions are captured in use cases.

40

4.1 Domain Model and Use Case Briefs

4.1.1 Domain model

Figure 15 illustrates the domain model of the Course management system, portraying
relevant entities of the problem domain. As can be seen, a Registrar Employee manages
the Student Registry which consists of a set of Students. There is only one Student
Registry. Students who are associated to particular Course Offering form a Class List.
Courses are taught by Instructors. Both an Instructor and a Teaching Assistant are a
specialization of an Approver. Students can form Teams within Classes. Initially, a Team
i1s a Non-confirmed Team. An Approver approves a Non-confirmed Team if the team

meets the requirements of an approved Team (e.g. number of students) then it can be

Registrar Employee Student Registry 1 Student

manages 1 «| first name
last name R
email address

, | Class List

1

<<historical>>
Team

Course Offering

course name

1 teaches + |section
term
year

I

Approver

Instructor

approves

name
email

user name
password

Non-confirmed Team Confirmed Team

Teaching Assistant

Figure 15. Domain model of course management system

41

updated to a Confirmed Team.

4.1.2 Actors

A list of Course Management System actors and their general responsibilities is presented

in Table 2.

Regisfrar Employee | e Views and/or updates thbev Student Registry.
Instructor e Create and manage Class Lists.
o Import Class List
Approver e Manage Teams
Student e Invite other Students to form a Team.

e Confirm the Team membership.

e Submit individual/team assignments.
Teaching Assistant e Mark the assignments

e Make comments on assignments.

Table 2. Actors and their responsibilities

4.1.3 Use case briefs

The expected functionality of the application is documented in the use case model. In
order to provide a comprehensive overview, we first summarize each user-goal level use
case in the form of use case briefs. The detailed use cases can be found in the next section

and in the Appendix. Use case briefs are given in Table 3.

42

cto

Add Students to Student Registry.

Add Students to Regisfrar
Student Registry | Employee
Edit Student . Edit information of one Student in the Student
. Registrar .
Information in Emplovee Registry.
Student Registry pioy
Review Student Registrar | Review information of Students in the Student
Information Employee | Registry.
Import Student Registrar | Import the Student Registry from a file.
Registry Employee
Import Class List | Instructor | Import the entire Class List from a file.
Add Students to a Add Student(s) from Student Registry to a Class List.
. Instructor
Class List
Remove Student Remove a Student from a Class List. Note that the
. Instructor | Student information will be unchanged in the Student
from Class List .
Registry.
Review class list | Instructor | Instructor reviews the information of Class Lists.
Student can accept an invitation for joining to a Non-
Accept Team Confirmed Team. If the invitation is accepted, the
Memrl)a cshi Student Student will be a member of the Non-Confirmed
o t:ﬁinp Team. Otherwise, the Student will be available for
other Teams to be invited. A Student should not be a
member of more than one Team at a time.
. A Student can invite other Students to form a Team
Invite Student(s) Student | (for the purpose of working together on a grou
to form a Team " the puip working fog group
assignment).
Approver asks the System for the list of Non-
Review and confirmed Teams (for a given Course Offering). If
Approve Non- Approver | Non-Confirmed Teams meet the requirements of a

confirmed Teams

Confirmed Team, the Approver updates their status as
a Confirmed Team.

Table 3. Use case briefs of course management system

4.1.4 Non-functional requirements

As the emphasis is on business transactions within use cases, we do not describe the non-

functional requirements of the system in detail. The non-functional requirements of the

Course Management System, such as performance issues, reliability, fault tolerance, etc.

are compiled in a supplementary specification document that is not in the scope of the

thesis.

43

4.2 Selected Use Cases in Detail

In this section, we highlight some important use cases of the Course Management
System. These use cases have been chosen so as to showcase different types of

concurrency management strategies.

Note that in the previous chapters, we numbered the use case main success scenario and
extension steps. In this chapter, we use the same use case template given in Chapter 3 but
replace step numbers with labels as the step identifier. Thus, each step has either an
exclusive label, for cross reference, or no label at all, if there is no extension applicable
for the step. We choose labeling because it is more convenient for users to remember the
position of the extensions. A label starts with "{" and ends with "}" and is written in blue

italic text.

The following three use cases are subfunction use cases of the “Manage Student

Registry” user goal use case given in the Appendix A.

4.2.1 Use Case: Edit Student Information (optimistic)

The Registrar Employee manages the information of Students in the Student Registry.
Figure 16 shows the “Edit Student Information™ use case. The transaction starts when the
primary actor identifies the Student whose information he/she wishes to edit. This
Student forms the only transactional resource of the use case. The system then provides
the information of the Student to be edited. The primary actor modifies the information
and asks the system to finalize the update. The system locks the Student information,

commits the changes and the transaction terminates successfully. Note that in the given

44

scenario, an optimistic concurrency strategy has been adopted as the locking occurs at the

very end of the transaction, just before committing step.

Figure 16. Use case: edit student information in student registry

USE CASE: EDIT STUDENT INFORMATION IN STUDENT REGISTRY

PROPERTIES
Primary Actor: Registrar Employee
Goal: Registrar Employee successfully edits the information of one Student
Level: subfunction
Frame: One Student (the one whose information is to be updated).
Precondition: Primary Actor is authenticated and Student Registry is not empty.

MAIN SUCCESS SCENARIO

{Trigger! Primary Actor indicates that he/she wishes to edit the information of one
Student in the Student Registry.

System acknowledges the Primary Actor's request.

TRANSACTION. TRANSACTIONAL RESOURCES: a Student whose information is to be
updated. We refer to this Student as <John>.
{Select} Primary Actor identifies <John>.
{Edit} Primary Actor provides updated information for any of the attributes of <John>

except his ID and System ensures that the provided information is valid.

{Lock} BEGIN RESOURCE LOCK: exclusive read/write.
System updates the Student Registry with the new Student information.
{Commit} COMMIT.

System notifies Primary Actor that changes were made successfully.
Use case ends successfully.
EXTENSIONS

{Trigger} to (excluding){Lock}a. Primary Actor indicates that he/she wishes to
abort the transaction:

— TRANSACTION ABORT.
— Use case ends unsuccessfully. Transactional resources remain unchanged.

{Select}a. <John> does not exist in the Student Registry:

— System informs Primary Actor that <John> does not exist in the Student Registry.
— Use case resumes at {Select}.

{Edit}a. Information concerning <John> is invalid:

— System informs Primary Actor that information is invalid (and states why).
— Use case resumes at {Edit}.

{Edit} to (excluding){Lock}a. <John> is no longer in the Student Registry:

— System notifies Primary Actor that <John> is no longer in Student Registry.
- Use case resumes at {Select}.

{Edit} to (excluding){Lock}b. <John>'s information has been changed by another
Registrar Employee:

45

— System notifies Primary Actor that information of <John> has been edited by another
transaction and that current changes will be discarded.
— Use case resumes at {Edit}.

{Lock}a. Transactional resources are unavailable:

~ System notifies Primary Actor that the transactional resources are currently unavailable.
— TRANSACTION ABORT.
— Use case ends unsuccessfully. Transactional resources remain unchanged.

{Commit}a. Failure persisting data:

— System notifies primary actor that the transaction could not be completed because the
changes could not be persisted.

— TRANSACTION ABORT.

— Use case ends unsuccessfully. Transactional resources remain unchanged.

4.2.2 Use Case: Import Student Registry (pessimistic)

Sometimes a Registrar Employee needs to import Student Registry from an external file
(e.g. after backup recovery). Student Registry can be either as a text or as an xml file.
Registrar Employee specifies the source file and imports the Student Registry directly
from the file. The use case covering this functionality is given in Figure 17. The Student
Registry, all Class Lists, all Students and all Teams are locked at the beginning of the
transaction. We employ pessimistic concurrency management for this example, because
the chances of a conflict between this transaction and other transactions that are dealing

with the same TRs are relatively high.

Figure 17. Use case: import student registry

USE CASE: IMPORT STUDENT REGISTRY

PROPERTIES
Primary Actor: Registrar Employee
Goal: Import the content of the Student Registry from an external source file.
Level: subfunction
Frame: Student Registry, All Students, All Class Lists, All Teams,

PRECONDITION
e Primary Actor is authenticated

MAIN SUCCESS SCENARIO
{Trigger} Primary Actor indicates that he/she wishes to import the content of the
Student Registry from a particular file.

46

System acknowledges the Primary Actor's request.
TRANSACTION. TRANSACTIONAL RESOURCES: Student Registry, all Students, all Class

Lists, all Teams.

{Lock} BEGIN RESOURCE LOCK: exclusive read/write.

System asks for confirmation to import the Student Registry from the file.
{Confirm} Primary Actor confirms.

{Commit} COMMIT.

System notifies Primary Actor that the Student Registry has been successfully
imported (with its former contents, if any, replaced by the content of the student
information in the contained file).

Use case ends successfully.

EXTENSIONS
{Trigger} to (excluding){Lock} a. Primary Actor indicates that he/she wishes to
abort the transaction:

— TRANSACTION ABORT.

— Use case ends unsuccessfully. Transactional resources remain unchanged.
{Lock} to {Commit} a. Primary Actor indicates that he/she wishes to abort the
transaction :

System suspends the current operation and asks for confirmation.
Primary Actor confirms.

— TRANSACTION ABORT.

— Use case ends unsuccessfully. Transactional resources remain unchanged.

{Confirm} a. Primary Actor cancels:

— TRANSACTION ABORT.
— Use case ends unsuccessfully. Transactional resources remain unchanged.

{Lock} a. Transactional resources are unavailable:

— System informs Primary Actor that the transactional resources are not currently available.
— TRANSACTION ABORT.
— Use case ends unsuccessfully. Transactional resources are unlocked and remain unchanged.

{Lock} to TRANSACTION a. Response timeout:

— TRANSACTION ABORT.
— Use case ends unsuccessfully. Transactional resources remain unchanged.

{Commit} a. Failure persisting data:

— System notifies primary actor that the transaction could not be completed because the
changes could not be persisted

— TRANSACTION ABORT.

— Use case ends unsuccessfully. Transactional resources remain unchanged.

4.2.3 Use Case: Delete Students from Student Registry (hybrid)

Generally, student information is not removed from the Student Registry but occasionally

an entry is created by mistake. Under such circumstances, we need to be able to delete the

47

student record. The use case described in this section covers this functionality. When the
transaction starts, the primary actor selects one or more students that he/she wishes to
delete. Only Students who are not a member of a Team or a Class List can be deleted. In
order to validate this condition the System needs to lock the Student Registry, all Teams,
all Class Lists and all Student records that have been selected for deletion. This
transaction makes use of a hybrid concurrency management strategy: locking is done
neither at the very beginning (pessimistic) nor at the very end (optimistic) of the

transaction.

Figure 18. Use case: delete students from student registry

USE CASE: DELETE STUDENTS FROM STUDENT REGISTRY

PROPERTIES
Primary Actor: Registrar Employee
Goal: Remove one or more Students from Student Registry
Level: subfunction
Frame: Student Registry, All Students, All Class Lists, All Teams.

PRECONDITION
o Primary Actor is authenticated
¢ Student Registry is not empty

MAIN SUCCESS SCENARIO

{Trigger} Primary Actor indicates that he/she wishes to delete one or more Students
from the Student Registry.

System acknowledges the Primary Actor's request.

TRANSACTION. TRANSACTIONAL RESOURCES: Student Registry, all Students who have
been identified for deletion (we will call these Students as <Students to be
deleted>), all Class Lists, all Teams.

{Select} Primary Actor identifies the <Students to be deleted> from the Student Registry.

{Lock} BEGIN RESOURCE LOCK: exclusive read/write.

{Member} System ensures that <Students to be deleted> are not members of any Class List
and/or Team.

System asks for confirmation to delete <Students to be deleted> from the Student Registry.

{Confirm} Primary Actor confirms.

{Commit} COMMIT.

System notifies Primary Actor that the <Students to be deleted> have been successfully
deleted.

Use case ends successfully.

48

EXTENSIONS

{Trigger} to (excluding){Lock}a. Primary Actor indicates that he/she wishes to
abort the transaction:
— TRANSACTION ABORT.
— Use case ends unsuccessfully. Transactional resources remain unchanged.
{Lock} to {Commit}a. Primary Actor indicates that he/she wishes to abort the
transaction:
— System suspends the current operation and asks for confirmation.
— Primary Actor confirms.
— TRANSACTION ABORT.
— Use case ends unsuccessfully. Transactional resources remain unchanged.
{Select} to (excluding){Lock}a. One or more of the selected Students do not exist:
— System notifies Primary Actor that one or more <Students to be deleted>s have already
been deleted by another user.
— TRANSACTION ABORT.
— Use case ends unsuccessfully. Transactional resources remain unchanged.
{Select} to (excluding){Lock}b. The information of one or more Students have
changed:
— System notifies Primary Actor that the information of one or more Students of <Students to
be deleted> has changed.
— System provides the names of <Students to be deleted> whose information has changed
and asks the Primary Actor if he/she still wishes to delete the Students.
— {Delete_edited student} Primary Actor confirms.
— Use case resumes at {Lock}.

{Select} to {Delete_edited_student}a. Primary Actor cancels:
— TRANSACTION ABORT.
— Use case ends unsuccessfully. Transactional resources remain unchanged.
{Lock}a. Transactional resources are unavailable:
— System informs Primary Actor that the transactional resources are not currently available.

— TRANSACTION ABORT.
— Use case ends unsuccessfully. Transactional resources remain unchanged.

{Member}a. At least One Student of <Students to be deleted> is member of
one/more Class Lists:

— System notifies Primary Actor that at least one Student of <Students to be deleted> is
member of one/more Class Lists and/or Teams and identifies the names.

— TRANSACTION ABORT.

— Use case ends unsuccessfully. Transactional resources remain unchanged.
{Confirm}a. Primary Actor cancels deletion:

— TRANSACTION ABORT.

— Use case ends unsuccessfully. Transactional resources remain unchanged.
{Lock} to TRANSACTION a. Response timeout:

~ TRANSACTION ABORT.
— Use case ends unsuccessfully. Transactional resources remain unchanged.

49

{Commit}a. Failure persisting data:

— System notifies primary actor that the transaction could not be completed because the
changes could not be persisted.

— TRANSACTION ABORT.

- Use case ends unsuccessfully. Transactional resources remain unchanged.

4.3 Summary

In this chapter, we illustrated using realistic scenarios how our template could be usefully
applied to capture the requirements of business transactions. All use cases described in
this chapter have been chosen from Course Management System use case model which is
given in Appendix A. In the next chapter, we share observations about how best to gather

requirements of business transactions in order to be most effective at writing use cases.

50

5 Writing Effective Transactions within Use Cases:
Heuristic Guidelines

This chapter presents a set of heuristic guidelines for capturing business transaction
requirements within use cases. The presented guidelines are a reflection of our
experiences gained from modeling the transactional and concurrency aspects of the
Course Management System. In particular, we describe a guideline for each of the

following tasks:

¢ Finding transactional resources.
e Finding transaction boundaries.

e Choosing an appropriate concurrency management strategy.

5.1 Finding Transactional Resources

Choosing the right set of transactional resources (TRs) for a given transaction can be
difficult. The main challenge is in identifying all relevant resources while avoiding the
inclusion of unnecessary resources since the latter is likely to lead to reduced system
availability. As was mentioned in Chapter 3, TRs are domain concepts taken from a
system’s Domain Model. With a detailed Domain Model at hand, we have found the

following heuristic helpful:

e Identify every domain object that is directly manipulated by the business transaction

as a transactional resource.
o [If ‘A’ has already been identified as a transactional resource then every domain entity

that 1s directly related to ‘A’ by virtue of an aggregation or composition relationship

51

(in a domain model typically signified by <<is part of>>, <<consists of>>, <<has>>

stereotypes) is a prime candidate for inclusion as a transactional resource as well.

In the use case: “Delete Students from Student Registry”™ (Figure 18 on page 48), the
Registrar Employee wishes to delete Students from the Student Registry. The Students
who are about to be deleted are the objects that are directly manipulated by the
transaction. If we use Students as a starting point, the following additional TRs can be
easily identified through consultation of the corresponding domain model (depicted in

Figure 15 on page 41):

o Team: A Student is (potentially) part of a Team
¢ Student Registry: The Student Registry consists of Students

e Class List: Each Student has a Class List.

5.2 Finding Transaction Boundaries

Determining the boundaries of a transaction, that is, determining when a transaction
begins and when it commits, is not always obvious especially when optimistic
concurrency management is used. A business transaction does not always begin and end
with a system step that modifies transactional resources. Instead, a business transaction
may start with a user interaction. A general heuristic to determine which steps belong to

the business transaction is as follows:

e Assume (regardless of the envisaged concurrency management strategy) a pessimistic
concurrency management strategy and determine the steps for which the transactional

resources need to be locked such that a concurrency conflict is impossible.

52

* Add all interaction steps between the Primary Actor and the system that lead to the

1dentification transactional resources.

Set the transaction boundaries as follows: the transaction starts immediately prior the first

identified step and commits immediately after the last one.

MAIN SUCCESS SCENARIO

{Trigger} Primary Actor indicates that he/she wishes to add one or more Students to
the Class List (We will call these Students <Students to be added>.)

System acknowledges the Primary Actor's request.

{Select} Primary Actor Select a Class List.

{Enter _Info} Primary Actor provides information of <Students to be added> and the
System ensures that the provided information is valid.

{Add} System adds <Students to be added> to the specific Class List.

System notifies Primary Actor that <Students to be added> have been successfully
added.

Use case ends successfully.

Figure 19. Main success scenario of “add student(s) to class list” without
transactional boundaries

As an example, we apply the given guideline to determine the transactional boundaries of
the use case: “Add Student(s) to the Class List”, of Section 4.1.3. Figure 19 depicts the
main success scenario of the use case. It is assumed that the transactional boundaries are
not yet determined. In order to find the transactional boundaries we assume a pessimistic
concurrency scheme and determine the steps that need to be locked in order to rule out
concurrency conflicts. In this case, the steps with the labels {Enter Info} and {Add} are
identified. Next, we determine the interaction steps that may not cause any concurrency
conflicts, but which are needed for the successful commit of the busincss transaction. In
this case, the step labeled {Select} is identified. According to the last instruction of the

guideline, we can conclude that the transaction starts just before {Select} and ends after

53

{Add}. Figure 20 illustrates the main success scenario of the use case with identified

transactional boundanies.

MAIN SUCCESS SCENARIO

{Trigger} Primary Actor indicates that he/she wishes to add one or more Students to
the Class List (We will call these Students <Students to be added>.)

System acknowledges the Primary Actor's request.

TRANSACTION. TRANSACTIONAL RESOURCES: All Students, all Class Lists.
{Select} Primary Actor Select a Class List.
{Enter_Info} Primary Actor provides information of <Students to be added> and the

System ensures that the provided information is valid.

BEGIN RESOURCE LOCK: exclusive read/write.
COMMIT.

System notifies Primary Actor that <Students to be added> have been successfully
added.

Use case ends successfully.

Figure 20. Main success scenario of “add students(s) toe class list” with transactional
boundaries

5.3 Choosing a Concurrency Management Strategy

In this thesis, we have discussed three different concurrency management strategies,
namely optimistic, pessimistic and hybrid concurrency management. The selection of one
or the other strategy directly affects when, during the lifetime of a transaction, the
transaction resources are to be locked. Within our use case template the locking of
transactional resources is denoted by BEGIN RESOURCE LOCK. The beginning and the end

of a transaction are denoted by steps TRANSACTION and COMMIT respectively.

The choice as to which concurrency management strategy is most appropriate depends on

domain related aspects such as the likelihood of a conflict and its impact. In what

54

follows, we present a set of selection guidelines for each concurrency management

strategy.

5.3.1 Optimistic Concurrency Management

An optimistic concurrency strategy is applicable when the likelihood of a concurrency
conflict is relatively low and when the cost of recovering from a conflict is small [Fowler
2003]. Optimistic concurrency management allows different transactions to have access
to data of the same transactional resources until one of them attempts to lock the
transactional resources [Fowler 2003]. As a result, the liveliness of the system is
increased, but, on the downside, more conflicts are possible. A use case specifies an
optimistic concurrency strategy if the locking of transactional resources happens at the

end of the transaction, just before the COMMIT step.

5.3.2 Pessimistic Concurrency Management

In contrast pessimistic concurrency management is appropriate when the likelihood of a
conflict is high or if the cost recovering from of a conflict is unacceptable [Fowler 2003].
In a pessimistic concurrency strategy, all transactional resources are locked at the
beginning of transaction. As a result, concurrency conflicts are prevented as “lost
updates” or “inconsistent reads” are not possible. Technically, a pessimistic concurrency
strategy is easier to implement as cumbersome conflict resolutions can be omitted. On the
downside, a purely pessimistic concurrency management significantly affects the
performance and availability of the system and as such, is rarely the preferred strategy
multi-user systems. A use case specifies a pessimistic concurrency management scheme

if the first TRANSACTION substep is a BEGIN RESOURCE LOCK.

55

5.3.3 Hybrid

We use a hybrid concurrency management strategy when neither an optimistic scheme
nor pessimistic concurrency management scheme 1s applicable. In other words, the
transactional resources are locked neither at the very beginning nor at the very end of
transactions.

Often hybrid concurrency management is more practical than purely pessimistic or
optimistic strategies. It offers a compromise between conflict prevention and conflict
detection and thus gives us the possibility to balance usability vs. availability of

application.

56

6 Conclusion and Future Work

The main motivation behind our research was the observation that business transaction
modeling, and the associated concurrency management, is to great extent a domain
activity and hence, should be tackled in the requirements phase. The state-of-art in
writing use cases (commonly used to capture functional requirements), has not provided a
proper means for an integrated specification of functional requirements and business
transaction requirements. In this thesis, we have tackled this shortcoming by defining an
extension for use cases that covers the modeling of business transactions and sagas. We
have presented what we believe to be a well-integrated extension, which preserves the
mtuitive nature of use cases. The use case extension is relevant for the requirements
specification of any (interactive) application where a common data store is concurrently
accessed by multiple actors. As a prominent example of this, we highlighted enterprise
applications for which modeling and processing business transactions is one of the most
complex and most crucial aspects. In an enterprise application development, functional
requirements and the strategy to manage concurrency are closely related. Our approach
closely incorporates references to domain objects and support modeling of transactional

recourses.

As a first step in the core contribution of this thesis, we set up a vocabulary which
captures all relevant core concepts for modeling business transactions at the requirements
level. Then, we present templates for the modeling of business transactions and sagas
showing how their specification is expressed through the main success scenario as well as

use case extensions. The usage of the templates is illustrated through detailed examples.

57

Finally, we introduced guidelines to assist software engineers in identifying (1)
transaction boundaries, (2) transactional resources, and (3) the most appropriate
concurrency strategy to be used in the writing of business transactions within the given
use case template. Through the templates, we point out some common (though optional)
use case extensions, to help software engineers remember important alternative behavior
that arises, e.g., from the choice of particular concurrency management strategy. We have
ensured that our proposed extension to use cases is both expressive and flexible enough
by applying it to a comprehensive case study: a use case model of a Course Management
System (given in Appendix A). As a secondary artifact of the research conducted in the
context of this thesis we provide, in Appendix C, the XML use case meta-model that was

used in the creation of the Course Management System.

As future work, we are aiming to further extend the presented meta-model such that it
explicitly incorporates nested transactions in sagas. Another future avenue deals with the
refinement of the current all-or-nothing philosophy of the resource lock step. Such a
refinement can be performed in two dimensions: (1) allow delayed locking of
transactional resources—for example, transactional resource “A” might be locked at the
beginning of the transaction whereas transactional resource “B” is locked at the end of
the transaction; (2) combine different types of locks—e.g., a transaction resource “A”
may require an exclusive read/write lock whereas transaction resource “B” may only
require an exclusive read lock. Finally, we wish to further validate our work by applying

it to other case studies.

58

References
[Abbot 83]. Abbott, R. Program Design by Informal FEnglish Descriptions.

Communications of the ACM, vol. 26(11), 1983.

[Alrifai et al. 2006]. Alrifai, M., P. Dolog and W. Nejdl, Transactions
Concurrency Control in Web Service Environment, in Proceedings of

ECOWS 06, pp. 109-118, 2006.

[Atkins & Coady 1992]. Atkins M.S. and Coady M.Y. Adaptable Concurrency
Control for Atomic Data Types. in ACM Transactions on Computer Systems - Vol

10, Num 3, 1992.

[Banagala 2006]. Banagala, V. Analysis of Transaction Problems Using the
Problem Frames Approach. in International Conference on Software Engineering

(ICSE). Shanghai, China, 2006.

[Bennett et al. 2000]. Bennett, B., Hahm, B., Leff, A., Mikalsen, T., Rasmus, K.,
Rayfield, J., Rouvellou, 1., 4 Distributed Object Oriented Framework to Offer

Transactional Support for Long Running Business Processes. in Middleware

2000.

[Butler et al. 2005]. Butler, M., C. Ferreira, and M. Ng, Precise Modelling of
Compensating Business Transactions and its Application to BPEL. Journal of

Universal Computer Science, 11(5), 2005.

59

[Cockburn 2001]. Cockburn, A., Writing Effective Use Cases. Agile software

development series, Boston: Addison-Wesley, 2001.

[Correa & Werner 2004]. Correa, A.L. and C.M.L. Wemer. Precise specification
and validation of transactional business software. in Requirements Engineering

2004. Kyoto, Japan, 2004.

[Gomma 2005]. Gomaa, H. Designing software product lines with UML: from use

cases to pattern-based software architectures. Addison-Wesley, 2005.

[Fowler 2003].Fowler, M., Patterns of Enterprise Application Architecture,

Boston, MA: Addison-Wesley, 2003,

[Gallina & Mammar 2006]. Gallina, B., N. Guelfi, and A. Mammar, Structuring
Business Nested Processes Using UML 2.0 Activity Diagrams and Translating

into XPDL, Passau, Germany, 2006.

[Garcia-Molina & Salem 1987]. Garcia-Molina, H. and K. Salem. Sagas. in 1987
ACM SIGMOD international conference on Management of data. San Francisco,

California, United States: ACM Press, 1987.

[Jackson 2001]. Jackson, M., Problem Frames, London: Pearson, 2001.

[Jacobson 1992]. Jacobson, 1., Object-Oriented Software Engineering : A Use

Case Driven Approach. New York: ACM Press (Addison-Wesley Pub), 1992.

60

[Larman 2005]. Larman, C., Applying UML and Patterns : An Introduction to
Object-Oriented Analysis and Design and the Unified Process. 3rd ed., Upper

Saddle River, NJ: Prentice Hall PTR, 2005.

[Lilty 1999]. Lilly, S. Use Case Pitfalls: Top 10 Problems from Real Projects

Using Use Cases. in TOOLS USA. 1999.

[Merrick & Barrow 2005]. Merrick, P. and P. Barrow, The Rationale for OO
Associations in Use Case Modelling. Journal of Object Technology,. 4(9): p. 123-

142, 2005.

[Overgaard & Palmkvist 2004]. Overgaard, G. and K. Palmkvist, Use Cases Pat-

terns and Blueprints, Addison-Wesley, Indianapolis, 2004.

[Ramakrishnan & Gehrke 2002]. Ramakrishnan, R. and J. Gehrke, Database

Management Systems 3rd edition. McGraw-Hill, 2002.

[Subrahmanyam & Richard 2000]. Subrahmanyam, A., K. A., and B. Richard,

Professional Java Server Programming J2EFE Edition, 2000.

[Toerner et al. 2006]. Toerner, F., et al. An Empirical Quality Assessment of
Automotive Use Cases. in 14th IEEE International Requirements Engineering

Conference 2006. Minneapolis, Minnesota, USA, 2006.

[US Census 2006]. US Census Burcau, Quarterly Retail E-Commerce Sales. 3rd
Quarter 2006. US Census Burecau News, November 17, 2006

(http://www .census.gov/mrts/www/data/html/06Q3.html).

ol

[Whittle & Jayaraman 2006]. Whittle, J. and P.K. Jayaraman. Generating
Hierarchical State Machines from Use Case Charts. in 14th IEEE International

Requirements Engineering Conference 2006. Minneapolis, Minnesota, USA,

2006.

62

Appendix A. Use Case Model: Course Management
System

In this appendix, we present the use case model of the Course Management System that
was introduced in Chapter 4. The use case model includes a domain model list, based on
Figure 15, and three packages. All the use cases are written in XML in conformance to
the UCM meta-model given in Appendix C and translated automatically into HTML
using an XSL transformation script. In the HTML version, all definitions are hyperlinked,
facilitating navigation. As a final note we point out that our transaction template has
evolved over time and that the use case model does not reflect the most recent syntactic

conventions, though it is accurate structurally.

DOMAIN MODEL LIST
This section lists the key conceptual classes of the Domain Model that are used in this

Use Case Model.

+ Student Registry: The central registry that contains the information of all
students in the institution.

e Student: A student of the university.

o Class List: List of Classes

o Team: A group of 4-6 Students

¢« Non-confirmed Team: a Team which is not confirmed by approver

o Confirmed Team: a Team which is confirmed by approver

63

PACKAGE: MANAGE STUDENT REGISTRY
ACTOR LIST

Registrar Employee: Registrar employee who has the authority to make changes to the
student registry.

USE CASE: MANAGE STUDENT REGISTRY
PROPERTIES

o Primary Actor: Registrar Employee
e Goal: Registrar Employee views and/or updates the Student Registry.
¢ Level: user-goal
e Frame:
o Student Registry
o All Students
o All Class List Lists
o All Teams
e Precondition:
o Primary Actor is authenticated.

MAIN SUCCESS SCENARIO

« Primary Actor indicates that he/she wishes to view or update the Student Registry.
» System acknowledges the Primary Actor's request.
« Primary Actor repeatedly perform(s) the following step(s) until he/she is done
viewing/updating the Student Registry
o Primary Actor chooses one of the following:
= Add Students to Student Registry.
= Delete Students from Student Registry.
= Edit Student Information in Student Registry.
= Review Student Information.

USE CASE: ADD STUDENTS TO STUDENT REGISTRY
PROPERTIES

o Primary Actor: Registrar Employee
o Goal: Registrar Employee successfully adds Students to Student Registry .
« Level: subfunction
e Frame:
o Student Registry
o All Students
e Precondition:
o Primary Actor is authenticated

64

MAIN SUCCESS SCENARIO

{Trigger} Primary Actor indicates that he/she wishes to add one or more Students
to the Student Registry (We will call these Students <Students to be added>.)
System acknowledges the Primary Actof’s request.

{Begin Transaction}Transactional resources:Student Registry, all Students.

o {Enter Validate Info} Primary Actor provides information of <Students to

be added> and the System ensures that the provided information is valid.

o {Lock} exclusive read/write.

o {Commit} System adds <Students to be added> to the Student Registry.
System notifies Primary Actor that <Students to be added> have been successfully
added.

Use case ends successfully.

EXTENSIONS

{Trigger} to (excluding){Lock}a. Primary Actor indicates that he/she wishes to
abort the transaction:

o Transaction Abort.

o Use case ends unsuccessfully. Transactional resources remain

unchanged.
{Enter_Validate_Info}a. Information of <Students to be added> is invalid:

o System informs the Primary Actor that information of <Students to be

added> is invalid (and states why).

o Use case resumes at {Enter Validate Info}.
{Enter_Validate_Info} to (excluding){Lock}a. Among the <Students to be
added> , one or more Student IDs is/are already in use in the Student Registry:

o System informs Primary Actor that <Students to be added> with the

provided Student ID already exists in the Student Registry.

o Use case resumes at {Enter Validate Info}.

{Lock}a. Transactional resources are unavailable:
o System notifies Primary Actor that the transactional resources are
currently unavailable.
Transaction Abort.
o Use case ends unsuccessfully. Transactional resources remain
unchanged.
{Commit}a. Failure persisting data:

o Transaction Abort.

o Use case ends unsuccessfully. Transactional resources remain

unchanged.

USE CASE: DELETE STUDENTS FROM STUDENT REGISTRY

PROPERTIES

Primary Actor: Registrar Employee
Goal: Registrar Employee successfully deletes Students from Student Registry

65

« Level: subfunction
o Minimal Guarantee:
« Frame:
o Student Registry
o All Students
o All Class Lists
o All Teams
¢ Precondition:
o Primary Actor is authenticated
o Student Registry is not empty

MAIN SUCCESS SCENARIO

s {Trigger} Primary Actor indicates that he/she wishes to delete one or more
Students from the Student Registry.

» System acknowledges the Primary Actor's request.

e {Begin Transaction}Transactional resources:Student Registry, all Students who
have been identified for deletion (we will call these Students as <Students to be
deleted>), all Class Lists, all Teams.

o {Selection} Primary Actor identifies that he/she wishes to delete <Students
to be deleted> from the Student Registry.
{Lock} exclusive read/write.
{Member} System ensures that <Students to be deleted> are not members
of any Class List and/or Team.

o System asks for confirmation to delete <Students to be deleted> from the
Student Registry.

o {Confirm} Primary Actor confirms.

o {Commit} System deletes <Students to be deleted> from Student Registry.

» System notifies Primary Actor that the <Students to be deleted> have been
successfully deleted.

« Use case ends successfully.

EXTENSIONS

o {Trigger} to (excluding){Lock}a. Primary Actor aborts the transaction:

o Transaction Abort.

o Use case ends unsuccessfully. Transactional resources remain

unchanged.

» {Lock} to {Commit}a. Primary Actor aborts the transaction:

o System suspends the current operation and asks for confirmation.

o {Confirm_Delete} Primary Actor confirms.

o Transaction Abort.

o Use case ends unsuccessfully. transactional resources remain unchanged.
o {Selection} to (excluding){Lock}a. One or more of the selected Students do not

exist:

66

o System notifies Primary Actor that one or more <Students to be deleted>s
have already been deleted by another user.
Transaction Abort.
Use case ends unsuccessfully. Transactional resources remain
unchanged.
{Selection} to (excluding){Lock}b. The information of one or more Students
have changed:

o System notifies Primary Actor that the information of one or more
Students of <Students to be deleted> has changed.

o System provides the names of <Students to be deleted> whose
information has changed and asks the Primary Actor if he/she still wishes
to delete the Students.

o {Delete _edited student} Primary Actor confirms.

o Use case resumes at {Commit}.

{Selection} to {Delete_edited_student}a. Primary Actor cancels:

o Transaction Abort.

o Use case ends unsuccessfully. Transactional resources remain
unchanged.

{Lock}a. Transactional resources are unavailable:

o System informs Primary Actor that the transactional resources are not
currently available.

o Transaction Abort.

o Use case ends unsuccessfully. Transactional resources remain
unchanged.

{Member}a. At least One student of <Students to be deleted> is member of
one/more Class Lists:

o System notifies Primary Actor that at least one student of <Students to be
deleted> is member of one/more Class Lists and/or Teams and identifies
the names.

Transaction Abort.
Use case ends unsuccessfully. Transactional resources remain
unchanged.

{Confirm}a. Primary Actor cancels deletion:

o Transaction Abort,

o Use case ends unsuccessfully. Transactional resources and <Students to
be deleted> remain unchanged.

{Lock} to (excluding){Begin Transaction}a. Response time-out:

o Transaction Abort.

o Use case ends unsuccessfully. Transactional resources remain
unchanged.

{Commit}a. Failure persisting data:

o Transaction Abort.

o Use case ends unsuccessfully. Transactional resources remain
unchanged.

67

USE CASE: EDIT STUDENT INFORMATION IN STUDENT REGISTRY

PROPERTIES

Primary Actor: Registrar Employee
Goal: Registrar Employee successfully edits the information of one Student
Level: subfunction
Minimal Guarantee:
Frame:

o One Student (the one whose information is to be updated)
Precondition:

o Primary Actor is authenticated

o Student Registry is not empty.

MAIN SUCCESS SCENARIO

{Trigger} Primary Actor indicates that he/she wishes to edit the information of one
Student in the Student Registry.

System acknowledges the Primary Actor's request.

{Begin Transaction}Transactional resources: a Student whose information is to
be updated. We refer to this Student as <John> .

o {Select_Student} Primary Actor identifies <John>.

o {Edit Validate Info} Primary Actor provides updated information for any
of the attributes of <John> except his ID, and System ensures that the
provided information is valid:

o {Lock} exclusive read/write.

o {Commit} System updates the Student Registry with the new Student
information.

System notifies Primary Actor that changes were made successfully.
Use case ends successfuily.

EXTENSIONS

{Trigger} to (excluding){Lock}a. Primary Actor aborts the transaction:
o Transaction Abort.
o Use case ends unsuccessfully. Transactional resources remain
unchanged.
{Select_Student}a. <John> does not exist in the Student Registry:
o System informs Primary Actor that <John> does not exists in the Student
Registry.
o Use case resumes at {Select_Student}.
{Edit_Validate_Info}a. Information of <John> is invalid:
o System informs Primary Actor that information is invalid (and states why).
o Use case resumes at {Edit_Validate Info}.
{Edit_Validate_ Info} to (excluding){Lock}a. <John> is no longer in the
Student Registry:

68

o System notifies Primary Actor that <John> is no longer in Student
Registry.
Transaction Abort.
Use case ends unsuccessfully. Transactional resources remain
unchanged.
{Edit_Validate_ Info} to (excluding){Lock}b. <John>'s information has been
changed by another Registrar Employee:

o System notifies Primary Actor that information of <John> has been edited
by another transaction and that current changes will be discarded.
Transaction Abort.

Use case ends unsuccessfully. Transactional resources remain
unchanged.
{Lock}a. Transactional resources are unavailable:

o System notifies Primary Actor that the transactional resources are
currently unavailable.

o Transaction Abort.

o Use case ends unsuccessfully. Transactional resources remain
unchanged.

{Commit}a. Failure persisting data:

o System notifies primary actor that the transaction could not be completed
because the changes could not be persisted
Transaction Abort.

Use case ends unsuccessfully. Transactional resources remain
unchanged.

USE CASE: REVIEW STUDENT INFORMATION
PROPERTIES

Primary Actor: Registrar Employee
Goal: Review the Students in Student Registry .
Level: subfunction
Precondition:
o Primary Actor is authenticated.

MAIN SUCCESS SCENARIO

{Trigger} Primary Actor indicates that he/she wishes to review the Student
Registry and System acknowledges the Primary Actor's request.
{Begin Transaction}Transactional resources:Student Registry, all Student s who
have been identified for Reviewing. We will call these students <Students to be
reviewed>.
o {Selection} Primary Actor identifies the <Students to be reviewed> by
providing the selection criteria.
{Lock} read.
o {Create View} System provides information of <Students to be reviewed>
from the Student Registry.

69

o {Commit}
e {Navigation} Primary Actor reviews and paging through the <Students to be
reviewed>.
+ Use case ends successfully.

EXTENSIONS

o {Trigger} to (excluding){Lock}a. Primary Actor indicates that he/she wishes to
abort the transaction:
o Transaction Abort.
o Use case ends unsuccessfully. Transactional resources remain
unchanged.
« {Lock}a. Transactional resources are unavailable:
o System notifies Primary Actor that the transactional resources are
currently unavailable.
o Transaction Abort.
o Use case ends unsuccessfully. Transactional resources remain
unchanged.
o {Create View}a. System fails to retrieve persistent data:
o System notifies Primary Actor of the failure.
o Transaction Abort.
o Use case ends unsuccessfully. Transactional resources remain
unchanged.
o {Navigation}a. Primary Actor indicates that he/she wishes to change the selection
criteria for <Students to be reviewed> :
o Use case resumes at {Begin Transaction}.
o {Navigation}b. Primary Actor or the System refreshes/reloads the information of
<Students to be reviewed> (due to freshness time outs, data chunk reload, etc).
o {System_Transaction}Transactional resources: Student Registry ,
<Students to be reviewed> .

= {System_Begin Resource Lock} System locks transactional
resources.

» {System_Create View} System provides information of <Students
to be reviewed> from the Student Registry based on the given
selection criteria.

» Use case resumes at {Navigation}.

PACKAGE: MANAGE CLASS LIST
ACTOR LIST

o Instructor: Instructor who manages the Class List.

70

USE CASE: IMPORT CLASS LIST
PROPERTIES

¢ Primary Actor: Instructor
¢ Goal: Primary actor successfully adds Class List .
s Level: user-goal
o Frame:
o Student Registry
o All Students
o All Class Lists
o All Teams
« Precondition:
o Primary actor 1s authenticated
o Student Registry is not empty

MAIN SUCCESS SCENARIO

o {Trigger} Primary Actor Primary actor indicates that he/she wishes to create a Pre-
Registered Class List.
¢ System acknowledges the Primary Actor's request.
e {Begin Transaction}Transactional resources:all Student, , all Class Lists , and all
Teams. .
o {Enter Validate Info} Primary Actor provides information of Class List
and the System ensures that the provided information is valid by valid by
(1) checking that all mandatory information has been provided, (2) that the
information has the right format, (3) and the information is within the
allowed boundaries.
o {Lock} exclusive read/write.
o {Commit} System imports Class List
« System notifies Primary Actor that Class List has been successfully imported.
¢ Use case ends successfully.

EXTENSIONS

o {Trigger} to (excluding){Lock}a. Primary Actor indicates that he/she wishes to
abort the transaction:
o Transaction Abort.
o Use case ends unsuccessfully. Transactional resources remain
unchanged.
« {Enter Validate Info}a. Information of Class List is invalid:
o System notifies Primary Actor that information of Class List is invalid
(and states why).
o Use case resumes at {Enter Validate Info}.
o {Lock}a. Transactional resources are unavailable:
o System notifies Primary Actor that the transactional resources are
currently unavailable.

71

o Transaction Abort.
o Use case ends unsuccessfully. Transactional resources remain
unchanged.
» {Commit}a. Failure persisting data:
o Transaction Abort.
o Use case ends unsuccessfully. Transactional resources remain
unchanged.

USe CASE: ADD STUDENT(S) TO A CLASS LIST
PROPERTIES

e Primary Actor: Instructor
+ Goal: Instructor successfully adds Students to Class List .
* Level: user-goal
o Frame:
o Student Registry
o All Students
o and All Teams.
s Precondition:
o Primary Actor is authenticated
o Class List exists, already

MAIN SUCCESS SCENARIO

o {Trigger} Primary Actor indicates that he/she wishes to add one or more Students
to the Class List (We will call these Students <Students to be added>.)
¢ System acknowledges the Primary Actor's request.
» {Begin Transaction} Transactional resources:All Students, all Class Lists.
o {Select Class_List} Primary Actor Select a Class List.
o {Enter_Validate Info} Primary Actor provides information of <Students to
be added> and the System ensures that the provided information is valid.
o {Lock} exclusive read/write.
o {Commit} System adds <Students to be added> to the specific Class List.
» System notifies Primary Actor that <Students to be added> have been successfully
added.
» Use case ends successfully.

EXTENSIONS

o {Trigger} to (excluding){Lock}a. Primary Actor indicates that he/she wishes to
abort the transaction:
o Transaction Abort.
o Use case ends unsuccessfully. Transactional resources remain
unchanged.
+ {Enter_Validate_Info}a. Information of <Students to be added> is invalid:

72

o System informs the Primary Actor that information of <Students to be
added> is invalid (and states why).
o Use case resumes at {Enter Validate Info}.
o {Enter_Validate Info} to (excluding){Lock}a. Among the <Students to be
added> , one or more Student 1Ds is/are already in Class List:
o System informs Primary Actor that <Students to be added> with the
provided Student ID already exists in the Class List.
o Use case resumes at {Enter Validate Info}.
« {Lock}a. Transactional resources are unavailable:
o System notifies Primary Actor that the transactional resources are
currently unavailable.
o Transaction Abort.
o Use case ends unsuccessfully. Transactional resources remain
unchanged.
« {Commit}a. Failure persisting data:
o Transaction Abort.
o Use case ends unsuccessfully. Transactional resources remain
unchanged.

USE CASE: DELETE STUDENTS FROM CLASS LIST
PROPERTIES

« Primary Actor: Instructor
» Goal: Instructor successfully deletesStudent s from Class List
« Level: user-goal
+ Minimal Guarantee:
o Frame:
o All Students
o All Class Lists
o All Teams
» Precondition:
o Primary Actor is authenticated
o Student Registry is not empty

MAIN SUCCESS SCENARIO

o {Trigger} Primary Actor indicates that he/she wishes to delete one or more

Students from the Class List. will call these Students (<Students to be deleted>).

» System acknowledges the Primary Actor's request.
e {Begin Transaction}Transactional resources:all Students who have been

identified for deletion (we will call these Students as <Students to be deleted>),

all Class Lists, all Teams.
o {Select Class List} Primary Actor Select a Class List.

o {Selection} Primary Actor identifies that he/she wishes to delete <Students

to be deleted> from the Class List.
o {Lock} exclusive read/write.

73

o {Member} System ensures that <Students to be deleted> are not members

of any Team.

o System asks for confirmation to delete <Students to be deleted> from the

Class List.

o {Confirm} Primary Actor confirms.

o {Commit} System deletes <Students to be deleted> from Class List.
System notifies Primary Actor that the <Students to be deleted> have been
successfully deleted.

Use case ends successfully.

EXTENSIONS

{Trigger} to (excluding){Lock}a. Primary Actor aborts the transaction:

o Transaction Abort.

o Use case ends unsuccessfully. Transactional resources remain
unchanged.

{Lock} to (excluding){Commit}a. Primary Actor aborts the transaction:

o System suspends the current operation and asks for confirmation.

o {Confirm_Delete} Primary Actor confirms.

o Transaction Abort.

o Use case ends unsuccessfully. transactional resources remain unchanged.
{Selection} to (excluding){Lock}a. One or more of the selected Students do not
exist:

o System notifies Primary Actor that one or more <Students to be deleted>s

have already been deleted by another user.

o Transaction Abort.

o Use case ends unsuccessfully. Transactional resources remain
unchanged.

{Selection} to (excluding){Lock}b. The information of one or more Students
have changed:

o System notifies Primary Actor that the information of one or more
Students of <Students to be deleted> has changed.

o System provides the names of <Students to be deleted> whose
information has changed and asks the Primary Actor if he/she still wishes
to delete the Students.

o {Delete edited student} Primary Actor confirms.

o Use case resumes at {Commit}.

{Selection} to {Delete_edited_student}a. Primary Actor cancels:

o Transaction Abort.

o Use case ends unsuccessfully. Transactional resources remain
unchanged.

{Lock}a. Transactional resources are unavailable:

o System informs Primary Actor that the transactional resources are not
currently available.

o Transaction Abort.

74

o Use case ends unsuccessfully. Transactional resources remain
unchanged.

« {Member}a. At least One student of <Students to be deleted> is member of
one/more Class Lists:

o System notifies Primary Actor that at least one student of <Students to be
deleted> is member of one/more Class Lists and/or Teams and identifies
the names.

Transaction Abort.
Use case ends unsuccessfully. Transactional resources remain
unchanged.

e {Confirm}a. Primary Actor cancels deletion:

o Transaction Abort.

o Use case ends unsuccessfully. Transactional resources and <Students to
be deleted> remain unchanged.

o {Lock} to {Begin Transaction}a. Response time-out:

o Transaction Abort.

o Use case ends unsuccessfully. Transactional resources remain
unchanged.

« {Commit}a. Failure persisting data:

o Transaction Abort.

o Use case ends unsuccessfully. Transactional resources remain
unchanged.

USE CASE: REVIEW CLASS LIST
PROPERTIES

o Primary Actor: Instructor
¢ Goal: Reviews a Class List .
¢ Level: subfunction
¢ Precondition:
o Primary Actor is authenticated.

MAIN SUCCESS SCENARIO

o {Trigger} Primary Actor indicates that he/she wishes to review the Class List and
System acknowledges the Primary Actor's request.
o {Begin Transaction}Transactional resources:All Class List s which have been
identified for Reviewing. We will call these <Class List to be reviewed>.
o {Selection} Primary Actor identifies the <Class List to be reviewed> by
providing the selection criteria.
o {Lock} exclusive read/write.
o {Commit} System provides information of <Class List to be reviewed>
from the Class List.
o {Navigation} Primary Actor reviews and paging through the <Class List to be
reviewed>.
» Use case ends successfully.

75

EXTENSIONS

o {Trigger} to {Lock}a. Primary Actor indicates that he/she wishes to abort the
transaction:
o Transaction Abort.
o Use case ends unsuccessfully. Transactional resources remain
unchanged.
» {Lock}a. Transactional resources are unavailable:
o System notifies Primary Actor that the transactional resources are
currently unavailable.
o Transaction Abort.
o Use case ends unsuccessfully. Transactional resources remain
unchanged.
+ {Commit}a. Failure persisting data:
o System notifies Primary Actor of the failure.
o Transaction Abort.
o Use case ends unsuccessfully. Transactional resources remain
unchanged.
» {Navigation}a. Primary Actor indicates that he/she wishes to change the selection
criteria for <Class List to be reviewed> :
o Use case resumes at {Begin Transaction}.
» {Navigation}b. Primary Actor or the System refreshes/reloads the information of
<Class List to be reviewed> (due to freshness time outs, data chunk reload, etc).
o {System_Transaction/Transactional resources: Class List .
» {System_Begin Resource Lock} System locks transactional
resources.
= {System_Create View} System provides information of <Class List
to be reviewed> from the Class List based on the given selection
criteria.
» Use case resumes at {Navigation}.

PACKAGE: MANAGE TEAMS
ACTOR LIST
» Student: Student who manages his/her Team membership.

+ Approver: Approver approves a Non-confirmed Team to make it as a Confirmed
Team.

USE CASE: ACCEPT TEAM MEMBERSHIP INVITATION
PROPERTIES
e Primary Actor: Student
« Goal: Primary Actor successfully Accept an invitation and becomes member of a

Team.
o Level: user-goal

76

o Frame:
o All Students
o All Teams
o All Class Lists
¢ Precondition:
o Primary Actor is authenticated
o Class List is not empty

MAIN SUCCESS SCENARIO

o {Trigger} Primary Actor indicates that he/she wishes to accept an invitation to
become a member of a Team.
» System acknowledges the Primary Actor's request.
o {Begin Transaction}Transactional resources:the Student who attempts to accept
an invitation(we call this Student as <John>), all Teams.
o {Select Invitation} Primary Actor identifies an invitation and asks System
to join the Team.
{Lock} exclusive read/write.
o {Check_Availability} System ensures that the identified Team is not a
Confirmed Team.
o {Member} System ensures that the <John> is not member of any other
Teams.
o {Commit} System adds <John> as a member of the Team.
» System notifies Primary Actor that the invitation 1s accepted and <John> becomes
a member of the Team.
+ Use case ends successfully.

EXTENSIONS

o {Trigger} to (excluding){Lock}a. Primary Actor indicates that he/she wishes to
abort the transaction:
o Transaction Abort.
o Use case ends unsuccessfully. Transactional resources remain
unchanged.
s {Check Availability}a. System indicates that the Team is a Confirmed Team
and the number of student in the Team is not full:
o System informs Primary Actor that he/she cannot be a member of the
Team and states why.
o Transaction Abort.
o Use case ends unsuccessfully. Transactional resources remain
unchanged.
+ {Member}a. System identifies that the Primary Actor is already a member of
other Team:
o System informs Primary Actor that <John> is already a member of other
Teams and provides the information of his Team.
o Transaction Abort.

77

o Use case ends unsuccessfully. Transactional resources remain
unchanged.
» {Lock}a. Transactional resources are unavailable:
o System notifies Primary Actor that the transactional resources are
currently unavailable.
o Transaction Abort.
o Use case ends unsuccessfully. Transactional resources remain
unchanged.
o {Commit}a. Failure persisting data:
o Transaction Abort.
o Use case ends unsuccessfully. Transactional resources remain
unchanged.

USE CASE: INVITE STUDENT(S) TO FORM A TEAM
PROPERTIES

o Primary Actor: Student
o Goal: Primary Actor successfully sends an invitation to Students to establish a

Team.
+ Level: user-goal
o Frame:

o Student Registry
o All Class Lists
o All Teams
e Precondition:
o Primary Actor is authenticated
o Class List is not empty

MAIN SUCCESS SCENARIO

o {Trigger} Primary Actor indicates that he/she wishes to send an invitation to
Students of a Class List to establish a Team.
+ System acknowledges the Primary Actor's request.
o {Begin Transaction}Transactional resources:Student Registry, all Class Lists, all
Teams.
o {Select Class List} Primary Actor identifies a Class List.
o {Lock} exclusive read/write.
o {Member} System provides information of Student of the selected Class
List who are neither in a Non-confirmed Team nor in a Confirmed Team.
o {Commit}
« Primary Actor selects the Students from the list and asks System to send them an
invitation by email.
« System sends the invitation by email.
« Use case ends successfully.

78

EXTENSIONS

{Trigger} to (excluding){Lock}a. Primary Actor indicates that he/she wishes to
abort the transaction:
o Transaction Abort.
o Use case ends unsuccessfully. Transactional resources remain
unchanged.
{Member}a. System indicates that the Team is a Confirmed Team:
o System System informs Primary Actor that he/she cannot be a member of
the Team and states why.
o Transaction Abort.
o Use case ends unsuccessfully. Transactional resources remain
unchanged.
{Commit}a. Failure persisting data:
o Transaction Abort.
o Use case ends unsuccessfully. Transactional resources remain
unchanged.
{Lock}a. Transactional resources are unavailable:
o System notifies Primary Actor that the transactional resources are
currently unavailable.
Transaction Abort.
Use case ends unsuccessfully. Transactional resources remain
unchanged.

USE CASE: REVIEW AND APPROVE NON-CONFIRMED TEAMS

PROPERTIES

Primary Actor: Approver
Goal: Primary Actor successfully approves a Non-confirmed Team to make it as a
Confirmed Team.
Level: user-goal
Frame:
o Student Registry
o All Class Lists
o All Teams
Precondition:
o Primary Actor is authenticated

MAIN SUCCESS SCENARIO

{Trigger} Primary Actor indicates that he/she wishes to approve Non-confirmed
Teams.
System acknowledges the Primary Actor's request.
{Begin Transaction}Transactional resources:all Class Lists, all Teams.
o {Lock} exclusive read/write.

79

o {Select Update} Primary Actor updates the Non-confirmed Teams as
Confirmed Teams.
o {Commit} System updates the information of selected Non-confirmed
Teams to Confirmed Teams.
« System notifies Primary Actor that the information of Non-confirmed Teams are
updated as Confirmed Teams.
e Use case ends successfully.

EXTENSIONS

« {Trigger} to (excluding){Lock}a. Primary Actor indicates that he/she wishes to
abort the transaction;
o Transaction Abort.
o Use case ends unsuccessfully. Transactional resources remain
unchanged.
« {Lock}a. Transactional resources are unavailable:
o System notifies Primary Actor that the transactional resources are
currently unavailable.
Transaction Abort.
o Use case ends unsuccessfully. Transactional resources remain
unchanged.
« {Commit}a. Failure persisting data:
o Transaction Abort.
o Use case ends unsuccessfully. Transactional resources remain
unchanged.
« {Lock} to {Begin Transaction}a. Respone time-out:
o Transaction Abort.
o Use case ends unsuccessfully. transactional resources remain unchanged.

80

Appendix B. Domain Model

This appendix offers some discussion surrounding the concept of “domain model”.
Fowler defines it as follows: “4 Domain Model is an object model of the domain that
incorporates both behavior and data A Domain Model creates a web of
interconnected objects, where each object represents some meaningful individual,
whether as large as a corporation or as small as a single line on an order form” [Fowler
2003]. A domain model consists of two different kinds of object: (1) objects that mimic
data in the business, and (2) objects represent the rules of the business uses [Fowler
2003]. Although an object oriented domain model looks like a database model, there is a
significant difference between them. Objects in database model are data. But we combine
data and process as a multi-valued attributes and uses inheritance in the domain model.

Fowler defines two different types of domain model [Fowler 2003]:

e Simple domain model.

e Rich domain model.

Simple domain model: looks like the database model. Typically one domain object

exists for each database table. Figure 21 depicts an example of a simple domain model.

81

Order OrderLine

Product

Figure 21. Example of a simple domain model
Rich domain Model: it is more complex and different from database model. It consists
of inheritance, design patterns, and strategies [Fowler 2003]. Figure 22 illustrates a

sample of a rich domain model.

Registrar Employee [‘ Student Registry 1 Student

L manages | 1 first name
last name -

email address

-

Class List

.

1

<<historical>>
Team

Course Offering

Instructor course hame
1 teaches + |section

: ———-—- term
year

Approver

name approves
email - o

user name ;
password !

Non-confirmed Team

Confirmed Team

Teaching Assistant

Figure 22. Example of a rich domain model

82

Appendix C. An XML UCM Meta-model for use cases
with Eclipse

We developed a use case meta-model, based on the template given in Chapter 3, in the
form of an XML DTD. Through this DTD, we define a use case model to consist of a
collection of packages where a package includes the details of its actors and use cases.
An XSL (eXtensible Stylesheet Language) transform can be applied to DTD conformant
XML use case models to obtain an HTML format as output. The complete list of DTD

elements are as following (Altova XMLSpy® 2007 was used to generate the DTD

documentation format given next):

Actor frame stepAnyOrder
actorIsA glossary stepChoice
actorList glossaryEntry stepEnd
actorRef goal stepGoto
condition level stepRef
description mainSuccessScenario stepRepeat
domainModelEntity minimalGuarantee stepSeq
domainModelList nameRef stepTransaction
domainModelRef package systemRef
event precondition textSection
extension primaryActor transactionalResources
extensionPair properties ucm
extensionPoint repeatCond useCase
extensionRegion resourceName useCaseRef
extensions step varDef

varRef

Table 4. List of DTD elements

In what follows, we present the detail of some important elements:

&3

Package

diagram
9 = sitributes

name

ol MR ANy SimpleType
required

properties Content complex

children textSection useCase actorList

element ucm

used by
attributes ~ Name Type Use Default
name xs:anySimpleT required
ype
id xs:anySimpleT
ype

source <xs:element name="package">
<xs:.complexType>
<xs:sequence>
<xs:choice minOccurs="0" maxOccurs="unbounded">
<xs:element ref="textSection"/>
<xs:element ref="useCase"/>
<xs:element ref="actorList"/>
</xs:choice>
</xs:sequence>
<xs:attribute name="name" type="xs:anySimpleType"
use="required"/>
<xs:attribute name="id" type="xs:anySimpleType"/>
</xs:complexType>
</xs:element>

Figure 23. Structure of the package

84

Use Case

diagram -
[sttributes

title

rsanySimpleTyps
required

uselase [

' - -
-2 ;mainSuccess Scenario

M -
-+ extensions

properties Content complex

children description properties mainSuccessScenario extensions

element package

used by
attibutes ~ Name Type Use Default
title xs:anySimpleT required
ype
id xs:anySimpleT
ype

source <xs:element name="useCase">
<xs:complexType>
<xs:sequence>
<xs:element ref="description" minOccurs="0"/>
<xs.element ref="properties” minOccurs="0"/>
<xs:element ref="mainSuccessScenario” minOccurs="0"/>
<xs:element ref="extensions" minOccurs="0"/>
</xs:sequence>
<xs:attribute name="title" type="xs:anySimple Type"
use="required"/>
<xs:attribute name="id" type="xs:anySimpleType"/>
</xs:complexType>
</xs:element>

Figure 24. Structure of the use case

85

Main Success Scenario

diagram

td

step [H

,siepAnyOrder
stepChoice

A

td

stepEnd [4]

jls
| B,
43
=z
g

2]

W

w

(4]
&

2)
3

3,

ve}
-
W

L'J
NT]

1 - ,stepﬁoto

a stepRepeat

tl

stepSeq

properties ~ content complex

children Step stepAnyOrder stepChoice stepEnd stepGoto stepRepeat stepSeq

stepTransaction

usedby element UseCase

source <xs:element name="mainSuccessScenario">
<xs:complexType>
<xs:choice maxOccurs="unbounded">
<xs:element ref="step"/>
<xs:element ref="stepAnyOrder"/>
<xs:element ref="stepChoice"/>
<xs:element ref="stepEnd"/>
<xs:element ref="stepGoto"/>
<xs:element ref="stepRepeat"/>
<xs:element ref="stepSeq"/>
<xs:element ref="stepTransaction"/>
</xs:choice>
</xs:complexType>
</xs:element>

Figure 25. Structure of the main success scenario

86

Extensions

diagram

properties
children
used by

source

extensions [

content complex

extension
element useCase

<xs:element name="extensions">
<xs:complexType>
<xs:sequence>
<xs:element ref="extension"
maxQOccurs="unbounded"/>
</xs:sequence>
</xs:complexType>
</xs:element>

Figure 26. Structure of the extensions

87

Extension

diagram
9 B atiributes I

—— I —Lextensionpoint
L—LextensionRegion

properties content complex

children extensionPoint extensionPair extensionRegion condition stepSeq

element extensions

used by
attributes ~ \ame Type Use Default
id xs:anySimpleT
ype

source <xs:element name="extension">
<xs:complexType>
<xs:sequence>
<xs:choice>
<xs:element ref="extensionPoint"/>
<xs:element ref="extensionPair"/>
<xs:element ref="extensionRegion"/>
</xs:choice>
<xs:sequence maxOccurs="unbounded">
<xs:element ref="condition"/>
<xs:element ref="stepSeq"/>
</xs:sequence>
</xs:sequence>
<xs:attribute name="id" type="xs:anySimpleType"/>
</xs:complexType>
</xs:element>

Figure 27. Structure of the extension

88

