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Abstract

Nonlinear Finite Element Analysis and Design Optimization of
Thin-Walled Structures
Peyman Khosravi, Ph.D.

Concordia University, 2007

In this study, an eflicient, accurate and robust methodology for nonlinear
finite element analysis and design optimization of thin-walled structures
is presented. Main parts of this research are: formulation and develop-
ment of an accurate and efficient shell element, a robust nonlinear finite
element analysis technique, and an efficient optimization methodology. In
the first part, a new three-node triangular shell element is developed by
combining the optimal membrane element and discrete Kirchhoff triangle
(DKT) plate bending element, and is then modified for laminated com-
posite plates and shells so as to include the membrane-bending coupling
effect. Also, a moderately thick shell element is developed in a similar
manner by combining the discrete Kirchhoff-Mindlin triangular (DKMT)
pléte bending element and the optimal membrane element. Using ap-
propriate shape functions for the bending and membrane modes of the

element, the “inconsistent” stress stiffness matrix is formulated and the
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tangent stiffness matrix is determined. In the second part, a robust non-
linear finite element analysis program based on the corotational technique
is developed to analyze thin-walled structures with geometric nonlinearity.
The new element is thoroughly tested by solving few popular benchmark
problems. The results of the analyses are compared with those obtained
based on other membrane elements. In the third part, optimization al-
gorithms based on the optimality criteria are developed and then com-
bined with the nonlinear finite element analysis to optimize different types
of thin-walled structures with geometric nonlinearity. The optimization
problem considers the thickness or geometry design variables, and aims to
maximize the critical load of the structure subject to constant total mass,
or minimize the total mass subject to constant applied loads. The op-
timization results based on the developed design optimization algorithm
are compared with those based on the gradient-based sequential quadratic
programming method to demonstrate the efficiency and accuracy of the
developed procedure. An application of the thickness optimization for
locating the potential places to add the stiffeners in stiffened panels is
also presented. Also a method is presented to efficiently incorporate the
effects of local buckling and mode switching during optimization process

for stiffened panels.
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Chapter 1

Introduction

1.1 Background and motivation

Structural optimization improves a design by changing the geometrical properties of
the structure considering a set of design constraints. In structural optimization, the
thickness, shape or topology of the structure is iteratively changed until an optimal
design is achieved [1-7]. Over the past decades, the scope of structural shape opti-
mization has widened considerably, and optimization of structures to have minimum
mass or maximum load capacity remains an active area of research.

Thin-walled structures consist of components in the form of plates or shells with
small thickness compared to other dimensions. These structures, which are the most
efficient among all of the structural systems, may display nonlinear behavior under
applied loads. This kind of nonlinearity, which is due to the large deformations in
the structure, is called “Geometric nonlinearity”.

Optimization of geometrically nonlinear structures based on the nonlinear mathe-
matical programming techniques involves many evaluations of the objective function

and constraints at each optimization iteration before a new search direction and
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Figure 1.1: Design optimization algorithm for nonlinear structures

step size can be established. This makes the design optimization of nonlinear struc-
tures extremely difficult and computationally very expensive as nonlinear analysis
by itself is a highly iterative process (Figure 1.1). Developing design optimization
techniques that combine together efficiently the iterative optimization process and
iterative analysis of nonlinear structures is a challenging and complex task which has
not yet received sufficient attention.

Most of the works on the optimization of nonlinear structures subject to system
stability constraints have been performed on truss structures considering the cross-
sectional areas of the members as the design variables. Relatively few research works
have been reported on plate and shell structures, primarily because of the complexity
of the buckling analysis. In most of the works, the system stability requirement is
posed as a linear buckling analysis in order to increase the efficiency of the opti-

mization process [8-15]. Such an analysis is restricted to small deformations where
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linear buckling analysis reduces to the solution of a generalized eigenvalue problem.
In the case where the non-linear behavior results in large changes in the geometry of
the structure, this definition of system stability may not be conservative [16-18]. As
a result, optimization based on the assumption of linearity can lead to unsafe and
infeasible designs due to instability problems [19, 20].

Regarding the finite element analysis of plate and shell structures, one of the most
popular approaches is to use an assemblage of flat triangular elements as an approx-
imation to the curved surface. A flat shell element can be obtained by combining a
membrane and a plate bending element [21-23]. A similar approach has been even
applied to curved rods approximated by straight beam elements [24]. The formulation
of such flat elements is simple, and computationally more efficient than the curved
elements. Most of the flat shell elements available in the literature have been also
used for nonlinear analysis because flat elements are not as expensive as the curved
elements particularly in iterative nonlinear solutions.

The CST (Constant Strain Triangle) and LST (Linear Strain Triangle) elements
are the simplest membrane elements which have been combined frequently with suit-
able plate bending elements for analysis of plates and shells. Due to the lack of a
drilling (or in-plane rotational) degree of freedom, these elements cause rotational
singularity in the stiffness matrix. It happens when all the elements sharing one node
are coplanar and the local coordinate systems of the elements coincide with the global
coordinate system. In this case the global stiffness matrix becomes singular. One way
to overcome this problem is to assume a small fictitious stiffness for rotational degree

of freedom. Another approach is to use membrane elements with rotational degree



of freedom.

Another problem regarding the flat shell elements is their aspect ratio sensitivity.
When modeling a thin-walled structure, it frequently happens for some elements to
have a very high or a very low aspect ratio (for example in modeling a stiffened
plate). In this case the response of these high or low aspect ratio elements can affect
the response of the whole structure significantly. In such cases, the solution converges
to the exact result only when a fine mesh is used. However, increasing the number
of elements, increases the computational time as well, especially when dealing with
nonlinear analysis.

Considering the issues mentioned above, the main objective of this research is
to develop an efficient, accurate and robust methodology for design optimization
of nonlinear thin-walled structures. Specifically this research aims to develop an
accurate and efficient shell element, a robust nonlinear finite element approach, and

an efficient optimization algorithm.

1.2 Literature survey

1.2.1 Facet triangular elements

Allman [25] derived the first successful triangular membrane element with in-plane
rotational degree of freedom. He later proposed a more complete formulation for this
element [26]. Since then, other elements with drilling degree of freedom have been
derived but as mentioned before, most of them suffer from aspect ratio locking which
means that the response of the element is highly dependent on its geometrical aspect

ratio.



Recently, Felippa [27] developed an optimal membrane element (called OPT) with
drilling degree of freedom. This element is called “optimal” because for any arbi-
trary aspect ratio, its response for in-plane pure bending is exact. This element
is a LST3/9R membrane element (linear strain triangular membrane element with
3 corner nodes and 9 degrees of freedom, 3 per node, including rotational degree
of freedom) and its formulation is based on ANDES (Assumed Natural DEviatoric
Strain) template. A template is a general formulation which can produce a group
of elements by assigning different values to some free parameters. A special set of
values for these free parameters gives the optimal membrane element which is not
sensitive to the aspect ratio. The interesting point about template formulation is
that most of the elements which have already been published can be reproduced by
assigning appropriate values to the free parameters. Felippa [27] also showed that
another LST3/9 membrane element with drilling degree of freedom can be generated
by retrofitting a “parent” element, in this case the LST6/12 element with 6 nodes
and 2 translational degrees of freedom per node. This element is called LST3/9Ret or
LST(Ret) membrane element. He also showed that behavior of the Allman membrane
element may be improved when its strains are filtered to a linear variation by reduced
integration rule [27]. This special case of the Allman element is called Allman(3M).
Although OPT, LST(Ret) and Allman(3M) membrane elements have the same num-
ber of nodes and degrees of freedom (including the drilling degree of freedom), only
the OPT membrane element shows the aspect-ratio-independent behavior. All of
these elements are again applications of the ANDES template.

There are several triangular plate bending elements to select from and combine
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with a membrane element. The BCIZ element [28] is one of the simplest Kirchhoff
plate bending elements. It was developed by Bazeley and co—workers [28] and was
called after the authors’ initials. Batoz et al. [29] studied several triangular Kirchhoff
plate bending elements and showed that Discrete Kirchhoff Triangle (DKT) [30] is the
most reliable triangular element for the analysis of thin plates. Katili [31] developed
a discrete Kirchhoff-Mindlin triangular plate bending element called DKMT which is
capable to include the transverse shear effects. This element coincides with the DKT
element in case that transverse shear effects are negligible, and does not suffer from
shear locking problem in case of thin plates. As a result, it seems that both thin and

thick laminated composite plates can be modeled with this element.

1.2.2 Geometrically nonlinear analysis

There are three different approaches that can be used for nonlinear analysis. In the
Total Lagrangian (TL) approach, equations are formulated with respect to a fixed
reference configuration which is usually the initial configuration. In Updated La-
grangian (UL) approach the reference configuration is the last converged solution.
The Corotational (CR) approach is the most recent formulation developed for geo-
metrically nonlinear structural analysis. In this method the finite element equations
are referred to two systems: a fixed configuration and a corotated configuration.
The main advantage of corotational formulation is its effectiveness for problems with
large-rotations but small strains, since it uses the existing small-strain FEM elements
during the analysis [32]. The corotational formulation has not yet penetrated major

commercial FEM codes.



Important works related to the development of the Corotational approach are
those by Wempner [33], Belytschko and Hsieh [34], Bergan and Horrigmoe [35], Ar-
gyris [36] (regarding the large rotations), Rankin and Brogan [37], Szwabowicz [38],
Rankin and Nour-Omid [39] and Nour-Omid and Rankin [40] (regarding the projector
matrix), Crisfield [41], Peng and Crisfield [42], Pacoste [43], and Battini and Pacoste
[44, 45]. Felippa’s comprehensive paper on this approach [46] is also a valuable ref-
erence.

Among the first publications on the non-linear large deflection post-buckling
behavior of unstiffened rectangular plates are the publications by Marguerre [47],
Kromm and Marguerre [48] and Levy [49]. Paik [50] captures the non-linear large
deflection response of un-stiffened plates by an incremental Galerkin method, an
approach previously outlined by Ueda [51]. Paik also considers stiffened plate with
stiffeners “smeared” on the main plate [52, 53]. In this case the stiffened plate is mod-
elled as an orthotropic un-stiffened plate. Byklum [54-56] studied stringer-stiffened
plates with large deflections. In those studies, stringers are not smeared on the plate
but considered as structural elements.

The effect of imperfections on the limit load of the structures was first inves-
tigated by Koiter [57], and then by other researchers [58-67]. Ohsaki and Uetani
[68] presented a numerical approach for sensitivity analysis of buckling loads corre-
sponding to a minor imperfection, and applied it for optimization of imperfection
sensitive structures [69]. Random nature of the initial imperfections attracted many
investigators like Fraser and Budiansky [70], Roorda [71] and Amazigo [72], to ap-

ply probabilistic approaches in this field. Reliability of imperfection sensitive shells



was investigated by Cederbaum and Arbocz [73]. Godoy [74] studied the Interactive
buckling of fiber-reinforcement thin-walled columns.

The problem of interaction of an Euler buckling with local plate buckling was
studied by several researchers [75-77]. Tvergaard [78] presented a detailed analysis
of stiffened plates under interactive buckling. Byskov and Hutchinson [79] used an
asymptotic approach for the same problem. Interaction of local and overall buckling
in stiffened panels and shells was studied by Koiter and Pignatrao [80, 81].

Comparisons between studies on the ultimate strength for stiffened panels have
been presented in [82-85]. Experimental investigation for stiffened panel collapse
behavior can be found in [86-88]. An extensive contribution to the ultimate strength
design for ship stiffened panels has been provided in [89-92]. Paik et al. [93] studied
the local buckling of stiffener webs. The effect of combined axial compression and
lateral loads has been studied by Hughes and Ma [94, 95] and Hu et al. [96]. Also
closed form solutions, simple physical models and finite strip methods have been
extensively used for design optimization of stiffened panels [97-102].

A variety of methods and programs are available for the analysis of stiffened pan-
els, ranging from simple closed form solutions to complicated 3-D discretized solu-
tions. The more complicated or detailed modeling usually employs discretized models
such as finite element and boundary element analysis. To avoid the complexity, some
researchers perform approximate analyzes, using simplifying assumptions based on
the repeating stiffener pattern. The analysis costs typically increase with the level of
details considered in the analysis, and the method of analysis (e.g., exact modeling

the stiffeners instead of assuming them as smeared, or nonlinear analysis instead of



linear analysis).

1.2.3 Structural design optimization

Research works on shape optimization can be found in [103-111]. Computation of the
sensitivities of limit points of non-linear structures can be found in [111-118]. There
are also works dealing with bifurcation points, but some of them do not specifically
address finite element applications [119, 120}, while others are restricted to the semi-
analytical approach [16, 17].

In most recent works reported in the literature, the optimization algorithms were
mainly based on the optimality criterion technique because of its computational ef-
ficiency. For example the optimality criterion method has been employed to mini-
mize the weight of the truss and beam structures under the stress and displacement
constraints [121-124], stability constraint [106, 125] or frequency constraint [126].
There are different forms of optimality criteria available in the literature. Those with
the most application are “Fully Stress (FS)” design, “Simultaneous Failure Mode
(SFM)” design, “Uniform Strain Energy Density (USED)” design, and “Constant
Internal Force Distribution (CIFD)” design [127]. Modern optimality criterion al-
gorithms would involve the case of satisfying the multiple constraints (scaling) and
Karush-Kuhn-Tuker (KKT) [128] condition (resizing) alternatively.

Gallagher [129] showed that F'S design is inadequate for minimum weight design of
structures. Prager and Taylor [130] showed that the optimum structure with uniform
material properties and linear relation between the stiffness and volume, has uniform

energy density distribution. A similar criterion was proposed by Venkayya and co—



workers [131, 132] for discretized structures which states that “the average strain
energy density is the same for all elements of the optimum structure.” Venkayya
[133] made a more general form for the optimality criteria stating that “the ratio of
strain energy to strain energy capacity is constant for every member in the optimum
structure.”

Berke [134] proposed an algorithm to satisfy the optimality criteria considering
that if a criterion works for statically determinate structures, then it would converge
in a few iterations for most indeterminate structures (in the same manner as FS
criterion). Berke’s work was extended to multiple constraints by Gellatly and Berke
[135, 136] who proposed the envelope method for multiple displacement constraint
structures. Nagtegal [137] directly used the displacement constraint equations to
formulate an iteration scheme using the Lagrange multiplier. Berke and Khot [138]
proposed an iteration scheme for large scale structures. Khot et al. [139] applied
classical optimality criteria method for both stress and displacement constraints. For
more detailed literature survey on optimality criteria methods, the reader is referred
to a recent paper by Ldgé [127].

Layout optimization problems for rib reinforcement were considered almost two
decades ago by Bendsge and Kikuchi [140]. An overview of the research in layout and
topology optimization is given in the paper by Rozvany et al. [141]. Stok and Mihelic
[142] presented a method to identify the rib location by performing thickness distri-
bution. Chung and Lee [143] employed topology optimization technique to identify
the size of the ribs for a pre-determined rib layout. Lee et al. [144] have used the

modal design sensitivity analysis for topology optimization of an automobile hood.
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Lam and Santhikumar [145] developed a method to find the optimum locations of the
ribs subject to design constraints using thickness optimization with uniform strain
energy density criterion. All of the above mentioned studies on the stiffened panels
are based on the linear analysis, however as mentioned before, many plate and shell

structures display nonlinear behavior under applied loads.

1.3 Objective and scope of present research

The objective of this thesis is to present an efficient, accurate and robust methodology
for nonlinear finite element analysis and design optimization of thin-walled structures.
Two new triangular thin and thick shell elements are developed and modified for
laminated composite plates and shells. A finite element code based on the corotational
approach combined with the Newton-Raphson technique is developed and used with
optimality criteria to analyze and optimize geometrically nonlinear structures. The
optimality criteria presented in this study are the new criteria, derived for problems
with geometric nonlinearity considering the thickness or geometry design variables.
The aim of the optimization is to maximize the critical load of the structure subject
to constant total mass, or minimize the total mass subject to constant applied loads.
Application of the thickness optimization in optimum design of stiffened panels, and a
methodology to efficiently incorporate the effects of local buckling and mode switching
in optimization of stiffened panels are also presented.

It should be mentioned that triangular facet shell element is used in this study due
to its computational efficiency. This speeds up the optimization process especially

for geometrically nonlinear structures, where a large number of analyzes is performed
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before converging to the optimal design.

The present work consists mainly of the following four parts (Figure 1.2):

A) Developing new shell elements with drilling degree of freedom, and without
aspect ratio sensitivity.

B) Programming a finite element analysis code for analysis of geometrically non-
linear structures using corotational approach and new shell elements.

C) Developing optimality criteria for shape optimization of thin-walled structures.

D) Applying the new shell elements and optimality criteria for nonlinear analysis
and design optimization of selected plate and shell structures.

In part A a new shell element is developed by combining the DKT plate bending
element and the OPT membrane element. Also, a thick composite shell element is
developed in a similar process by combining the DKMT plate bending element and

the OPT membrane element. The membrane-bending coupling effect of the laminated
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composite material is considered in the formulation. Shape functions of BCIZ and
LST(Ret) elements with the same degrees of freedom as that of the DKT and OPT
elements are used in order to formulate the inconsistent stress stiffness matrix and
tangent stiffness matrix.

In part B, the shell elements derived in part A are used in a finite element analysis
code based on corotational approach, to analyze plate and shell structures.

The objective of part C is to develop optimality criteria for design optimization
of thin-walled structures undergoing large deflections. In this part a methodology is
developed for shape optimization of plate and shell structures with geometric nonlin-
earity using finite element method. Optimality criteria are presented and combined
with nonlinear finite element analysis to optimize thin-walled structures. Also a
method is presented to find the optimum location of the ribs in stiffened panels, and
to efficiently incorporate the effect of possible buckling modes as the initial imperfec-
tion.

In part D, first, the shell elements derived in part A are validated for nonlinear
analysis of plate and shell structures. The results of nonlinear analyzes obtained using
the proposed elements are compared with analytical solutions, those available in the
literature, and with solutions obtained using LST(Ret) and Allman(3M) membrane
elements in the formulation. Then, the optimality criteria presented in part C are
used along with the nonlinear analysis program to perform shape optimization on
plate and shell structures. Results are also compared with those obtained using the

gradient-based Sequential Quadratic Programming (SQP) method of optimization.
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1.4 Thesis organization

This thesis consists of six chapters. The present chapter (chapter 1) provided the
background and motivation of this study. In this chapter, a systematic literature re-
view on different aspects of the thesis with most important and relevant contributions
to the field was presented.

In chapter 2 a new facet shell element is developed by combining the DKT plate
bending element with the optimal triangular membrane element (OPT). Membrane-
bending coupling effect for the case of laminated composite material is considered
in the formulation. An extension of the new element for the analysis of moderately
thick shells is also presented by combining the DKMT and OPT elements in a similar
manner.

In chapter 3, different solution strategies for nonlinear equilibrium equations are
presented. Computation of the critical points, and general aspects of the corotational
approach for analysis of the geometrically nonlinear structures modeled by triangular
shell elements are also explained.

In chapter 4, the general form of the shape optimization problem and its solu-
tion using the gradient—based optimization algorithm are explained. The alternative
method of optimality criteria for two cases of load—capacity maximization under con-
stant mass (along with its application on the design of stiffened panels), and mass
minimization under constant load are presented. The shape optimization methodol-
ogy is also modified to consider the effect of local buckling in stiffened panels.

Chapter 5 presents a large set of numerical examples on geometrically nonlinear

static analysis and shape optimization of thin-walled structures. The results are com-
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pared with those available analytically, those obtained using other elements, or those
found using gradient—based optimization method. Finally, discussions, conclusions,

future Work and publications are presented in chapter 6.
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Chapter 2

Finite Element Formulation of the
New Shell Element

2.1 Introduction

In this chapter a new shell element is developed by combining the DKT plate bend-
ing element and the optimal triangular membrane element (OPT). The membrane-
bending coupling effect of the laminated composite material is considered in the
formulation. Shape functions of BCIZ and LST(Ret) elements with the same degrees
of freedom as that of the DKT and OPT elements are used in order to formulate the
inconsistent stress stiffness matrix and tangent stiffness matrix. Finally, an exten-
sion of the new element for analysis of the moderately thick shells is presented by

combining the DKMT and OPT elements in a similar manner.

2.2 Definition of geometric parameters

The geometry of the flat triangular shell element is shown in Figure 2.1. Thickness
of the element is represented by t. Node numbering is counterclockwise and there

are 6 degrees of freedom at each node (3 translations and 3 rotations). Local and
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Figure 2.1: Geometry of the triangular element

global coordinate systems are ryz and XYZ, respectively. (; and (3 are the area

co-ordinates and (; = 1 — (; — (5. Coordinate differences are abbreviated as

Tig =Xy — i, Yij = Yi —Y; (2.1)
Area and volume of the element and the length of the side i J are represented by

A,V and [;;, respectively:

1 /
A= 5(2/21 Ty —Taipng) , V=At, ly= x?j + 922] (2.2)

2.3 Formulation of OPT membrane element

The degrees of freedom of OPT membrane element are collected in the nodal dis-

placement vector as
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{dm} - {’lL] U1 Qzl Ugy Vg 922 Uz V3 gzg}T (23)

Formulation of the stiffness matrix of OPT membrane element is based on the

following decomposition [27]

Km - Kbasic + Khigher order (24)

where Kposic and Kpigher order are the basic and the higher order membrane stiffness
components, respectively. The final form of K, is a template with 11 free parameters:
1

K%Q%Jh“w%):iﬂjﬂﬁ+:/leBdV (2.5)
14

where F is the elasticity matrix in xyz system and is described as

E]l E12 E13
E = EQ] EQQ E23 (26)
E31 E32 E33

For an isotropic material with the Poisson’s ratio v and the Young’s modulus E,,

the elasticity matrix can be written as

1 v 0
b,
E=—""lv 1 0 (2.7)
7o o0 L
Matrix B is defined as
B=T,(Q1 G+ Qs+ Qs G) Th, (2.8)

L, T, Tp, and ()1_3 are constant matrices over the element and are defined as
27]
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(2.9)

(2.10)

The exact integration of K, is obtained using three numerical integration Gauss

points (mid point rule). Final form of K, may be written as [27]

1 3 . -
Km = ’V‘ LELT + Zﬂo Tej; KB Teu
where
K@ = At(QI Enat Q4 + Qg; Enat QS + Qg Enat QG)
and
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En(Lt = TeT E Te ) Q4 - (Ql + Q?) ) QS = (Q? + QS) ) QG = %(Q?) + Ql) (2]‘5)

DO | bt
[N

op and f3; through Sy are free dimensionless parameters, and (y is an overall
scaling coefficient.

It is possible to generate a group of elements by assigning different values to
these free parameters. Among these, the two important cases are Allman(3M) and
LST(Ret) membrane elements. Allman(3M) is a special case of Allman membrane
element with its strains filtered to a linear variation by reduced integration rule in
order to improve its behavior. It is an instance of the ANDES template by assigning

the following values to the free parameters [27]:

4 1 5 3
0?52175025751:1752:1/33:'2‘;@1:07
1 3 5}
By = —fe=1.0r = —= Py = —= g = —2 2.1
75 Bs . B 4/[38 259 1 (2.16)

Similarly assigning the following values to the free parameters leads to the LST(Ret)

membrane element:

4 1 2
Ob—;3,[30:5751——/32—?@:54:07
4 2 2
By = —fs =~ Br=—=.0s = 0,0 = - 2.17
B Be 3,57 578 0, By 3 (2.17)

Felippa [27] has shown that for an isotropic material with Poisson’s ratio v, the
following values for the free parameters lead to the optimal membrane element. For
this particular element, the strain energy for inplane bending computed by finite

element method is exact for any aspect ratio:

20



[\C) S

1
ap,= =, o= 5(1 —4P), Bras =1, =2 31=0, Bors=—1, Bo=-2 (2.18)

For non-isotropic materials, all the values except 3y remain the same. In this case
only suboptimal performance can be expected, but it is guaranteed that the element
does not lock as the aspect ratio increases or decreases. The following average value

for Oy has been proposed for non-isotropic materials [27]:

256det(E)

Bo = max( W

—1.5,0.01) (2.19)

where W is presented as the following expression:

W = —6E3, + 52 Eyy — 5E2,Eyy — Foy(T5E% + 14E)3Eys + 3E2,)+
2F19(TE2, + 46 3Eys + TEZ) — E1 (5E%, + 3E2, — 6F19Foy —
S5EZ, + 14E13Ey3 + T5ES) + (3E%, + 82F1, By + 3E2, — 4(6E%, +

5EZ, — 6F13F; + 5E3)) Ess + 4(5E1 — 6E1y + 5Ex0)E, (2.20)

2.4 Formulation of the DKT plate bending ele-

ment

The degrees of freedom of the DKT plate bending element are collected in the nodal

displacement vector as

{db} = {wl ex] le Wy 91-2 9y2 wWs 91-3 9?/3 }T (221)

The stiffness matrix of DKT element has been formulated by Batoz et al. [30] as
21



g Tpl=G
Kb = / Bg D* Bb dA = 214/ / Bg D¢ Bb dcg d§3 (222)
A 0 0

where D¢ is the flexural rigidity of the plate which in the case of an isotropic

material with Poisson’s ratio v and Young’s modulus F, can be described as

} (2.23)
ys1 H + yiaHY

—$31H2T — .’)$'12HZ (224)
—x31Hf—x12H§+y31H§+yleZ

3 1
De — _Eilf_ v
12(1 — v?) 0

O = )
oy

w‘IOO
”

and By is defined as

1

B, = —
T 94

where vectors H, through Hy are functions of (; and (3 and are written as [30]

Pe(1 —2C) + (Ps —~ Ps)(3 to(1 —2G2) + (t5 — t6)¢3
g6{1 — 2(2) — (g5 + g6)(3 T+ re(1 —2¢2) — (rs +76)(3
—4+6(C2 + (3) +16(1 — 2¢2) — (3(r5 + 76) —q6(1 — 2¢2) + (3(gs + g6)
—Ps(1 - 20) + (3(Py + Fs) —tg(1 — 2¢2) + (3(ts + t6)
Hy, = gs{1 — 2¢2) — (3(gs — q4) Hy = ¢ —14r6(1 —2(2) + (3(rg —76)
=2+ 602 +16(1 — 2¢2) + (3(ra — 76) —q6(1 — 2¢2) — (3(q1 — ge)
~(3(Ps + Py) —C3(ts +14)
(3(q4 — gs) Cs3{rq —75)
—(3(rs — 74) —C3(q1 — g5)
—P5(1—2¢3) — (Ps — Ps)(2 —t5(1 —2¢3) — (te — t5)(2
a5(1 — 2¢3) — (g5 + 46)C2 1+r5(1 —2¢3) — (rs + 76)C2
—4+6(Ca + (3) +7r5(1 — 2¢3) — C2(r5 + 76) —q5(1 — 2¢3) + Ca(gs + gs)
Co(Py + Fs) Ca(ty + t6)
Hjy = C2(q4 — ge) Hy = Ca{ra — 76)
—Calre —74) —C2(q1 — g6)
Ps(1—2G3) — G(Ps + Fy) t5(1 = 2G3) — Calts +t4)
gs(1 —2¢3) + G2(qa — g5) =1+ 75(1 = 2¢3) + Ca(ry — 75)
=24 6(3 +r5(1 —2¢3) + C2(ra — 15) —g5(1 = 2¢3) — C2(g4 — gs)
(2.25)
where
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P = —6z5/12  qp = 3xiui5/1;

. 2 9.2 2

k=4,56 for ij =23,31,12

Since the thickness and material properties are constant over the element, the
exact integration of Kj is obtained using three Gauss points located at the mid-

nodes.

2.5 Shell element formulation

The shell element formulated in this study is a triangular flat element with 18 degrees

of freedom:

{d} :{’U,l vy W 91’1 Hyl 021 Ug Vg Wy 91’2 ng 922 ...923}T (227)

We rearrange this vector to separate membrane and bending degrees of freedom:

{d.} | _ {u; v1 021 uy vy Ozy ... O25}7 (2.28)
{dp} [ | {wi Oz Oy, wy Oxy Oys ... Oys}t :

Strain-displacement relationship can be written as

({ed V(b By | () ) (0]

The exact expression for the relationship between the strains and nodal displace-
ments in the OPT membrane element is still unknown. In this study, the following

expression is considered for B,, based on the formulation of membrane stiffness:
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B,, = fo (Q1 G+ Q2 G+ Qs C3) Ty (2.30)

It can be easily shown that the integral fv BT E B,,dV equals to the stiffness
matrix of OPT. It is important to note that the integral of the higher order strains
over the element is zero. Such an element is called energy orthogonal element.

The force-strain relationship for a thin laminated plate based on the classical

laminate theory is [146]

Nz N 4 5; \
V. ! fem}
wa — A® B* ’)/;y _ Em

Y Mo (T [Be De] Y W (= [D.] . (o) (2.31)
M, K;Z

\ Mwy y, \ K;y 7

where {¢,,} and {¢,} are the membrane and flexural strains in the mid-surface of

the plate. {N, N, N, }7 and {M, M, M,,}" are force resultants and moment

resultants, respectively. A¢ | B¢ and D¢ are the stretching stiffness matrix, membrane-
bending coupling stiffness matrix, and bending stiffness matrix, respectively [146]:
= 2 (2 = 2o 1)E’“

Be = 212(% Zk )ES ky

Zk:l 3(Zk Zk DE;

k= 1, vy (n = number of layers)

(2.32)

where E¥ is the elasticity matrix in 2yz system for the k" layer, and 2 is measured

from the midplane surface.

Stiffness matrix of the shell element corresponding to the displacement vector

{ {{Ccllm}} } can be described as
b
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T e
K:/BOT D, B, dA = K [BI.B .BbdA} B [Km Kmb}
A

[ BT.B*.B,, dA K, Ky Kb
(2.33)

It is obvious that the stiffness matrix is symmetric since K7, = Kj,,. This stiffness

matrix is rearranged corresponding to the nodal displacement vector {d}.

2.6 Extension to the thick shell element

The shell element derived in the previous section can be extended to the case of thick
shells by switching the DKT bending element to DKMT (Discrete Kirchhoff-Mindlin
Triangle [31]). The DKMT plate bending element has been formulated based on
a generalization of the discrete Kirchhoff technique to include the transverse shear
effects [31].

In the most general case, the force-strain relationship for a thick composite flat

shell element is [146]

( N‘r A ( 8‘(T) 3\
Ny o
| [ A B D] |
wo (= BT DT [0 50 (2.34)
v Olas [Olas  Fe "y
M,, Kay
Qy 5/112
L @z ) \ Yzz )

{N} {em}
{M} > =[Do)sxs - {es} (2.35)
{Q} {7}

where {¢,,} and {g,} are the membrane and flexural strains at the mid-surface

of the plate, respectively, and {7} is the transverse shear strains. {N} , {M} and



{@Q} are in-plane force resultants, moment resultants, and transverse shear resultants,
respectively. A°, B, and D¢ are the same parameters defined in Equation (2.32) in

terms of EF, and F* is the shear stiffness matrix defined as [146]:

=50 (5/6)(zk — 2-1)CE (2.36)

ij
k=1,...,n (n=number of layers)
where the coefficient (5/6) is the shear correction factor, and z is measured from the
midplane surface. Efj and C’fj are the components of the plane stress reduced stiffness

and 3D stiffness matrices in zyz system for the k** layer:

- ] (D) e

Strain-nodal displacement relation may be written as

{en} B [y | {1

_ ; _ {dn}
RS AR R B

where B, and B are the strain-nodal displacement matrices for bending and
shear modes of deformation in DKMT element, respectively [31].
Finally, the stiffness matrix of the thick shell element corresponding to the dis-

placement vector { {dn} } can be described as

{dv}

[ BT .A°.B,, dA [ BT .B.B; dA
K:/ BT 'D,.B,.dA=
A [ B:T.B¢.B,, dA [(BgT.D°.Bg + BT .F°.B?) dA
(2.39)
| B Koy
_ [ ot ] (2.40)
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where K, and K, are the stiffness matrixes of OPT membrane and DKMT plate
bending elements respectively [27, 31], and K, and K, are the membrane-bending
coupling stiffness. Similar to the case of the thin element, the integrals in the stiffness

matrix can be evaluated exactly using three Gauss points.

2.7 Stress stiffness formulation

In order to have the tangent stiffness, it is necessary to add the stress stiffness [K,]
(also called as geometric stiffness) to the linear conventional stiffness matrix. An
expression for the stress stiffness is obtained by considering the work done by the
membrane forces N, N, and N,, as they act through displacements associated with
small lateral and in-plane deflections [147]. We start by the Green-Lagrange mem-

brane strains associated with the deflections u, v and w:

e 5 (W g+ )

_ / 1 12 2 12
cv B ’ t/]T/ N §§wy/ M Uy —’; "y ) 1o (2'41)
Vay uy, + vy, + (uluy, + vy, o+ wl )

Wl

where “ 7

and “}” denote the derivatives with respect to x any y, respectively. The
initial terms in this equation are the customary engineering definitions of strains,
and the added terms in parentheses are the nonlinear strains arise from higher—order

terms. Work is done, and strain energy e is stored, as constant membrane forces act

through these strains:

€ T N,
e= // €y N, pdzdy=ep+e, (2.42)
Yay N.

zy

ey, is the work done by the membrane forces acting through displacements asso-

ciated with the engineering strains u, v;, u, + v;. This part of work leads to nodal
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loads associated with N,, N,, N;,. The second part of the work, e,, is related to
stress stiffness [K,], which is the work done by the membrane forces acting through

displacements associated with higher-order contributions to strains:

r T (

U,; u; A
| 2 I I R P B
e =3 / / K Oz [N [Olaxe | § 07 pdedy (2.43)
b L Ol Olxe V] ||
\ wzl/ / \ w; 7/
1 | Ve Nay
where [N] is [ N, N, }

If the element is isoparametric, shape functions are expressed in terms of natural

coordinates (; , ; and (3. In this case we invoke the Jacobian matrix [J]:

( u% ) u:@ )
i 1 O e ] ] 7 ()
(e T 0|0 % tien{ (5] ) e
w, o w,
L Wy ) [ we, )

TI y/ [J]—l [O]QXQ {O]QXQ

where [J] = [ x,cz 1§2 }, and [J;] = | [0]ax2 [J]7! [O]ax2 |. Components of [G]
o % (022 (O] [J)7)

are derivatives of shape functions with respect to (3 and (3:

NYYe, Ny, - NgY, 0 0 0
NtYe, Nidey - Ngley O 0 .0
NY)e, N3, -+ ) 0 0 . 0
Gl=1 Ny Ny it 2.45
G] N NDL - NDL 0 09 ... 0 (2.45)
0 0 - 0 NPy NP, o N,
0 0 - 0 NP NP o NEY

where u = Y20, Ni{dn} s v = 30 No{dn} s w =30, NP {ds}-
Formulation of OPT membrane and DKT (and also DKMT) plate bending ele-

ments are based on the assumptions on strains. Therefore the internal displacements
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u, v, and w are not known. One solution is using the shape functions of other el-
ements with the same degrees of freedom. BCIZ is a plate bending element with
the same nodes and degrees of freedom as the DKT and DKMT elements. Its shape
functions were originally developed for the quadratic strain triangle [148] but then

used for the plate bending formulation :

( CF(3 —2G1) + 261G )

(i (Y1262 + y13G) — 0.5(y12 + ¥13)$162Cs

(P (212G + 213G3) + 0.5(z12 + 213)1(2C3
GG —20) + 206G

w = { —(22(?123@ + y21C1) - 0.5(923 + ?le)Q(zC:a -{db} (2-46)

(3 (223Cs + T21Gr) + 0.5(xa3 + £21) (123
(3(3 — 2C3) + 2G1aC3

—C3(y31¢1 + y3262) — 0.5(ya1 + ¥32)C1 G2

[ Gz + 23200) +0.5(x1 + 32)C1CCs

Similarly the shape functions of LST(Ret) [27] with the same nodes and degrees

of freedom as the OPT membrane element are considered to relate deflections u, v

and w to the nodal membrane deflections as

{ U }: [Q 0 Oszcl (y12Ce — y31G3) -+ G 0O %Q(y:}lg — Y23C2) } {dn}
v 0 ¢ a”;’ (1201 — 213C3) -+ 0 (3 abT@(iCBQ —x58) | "

(2.47)

The final expression for stress stiffness matrix [K,] corresponding to the nodal

{dm} } :

displacement vector is
P { {dv}

NI [Olaxz [0)2x2
Joxa  [N] [Olaxo | [H][G] dCod(s (2.48)
|

1 1—(s3 [
K] =24 / / G O -l

0

This integral can be evaluated exactly using seven Gauss points in the area coor-

dinate system [147]. [K,] is then rearranged corresponding to the nodal displacement
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vector {d}.
Using the stress stiffness, linear buckling analysis is performed by solving the

following eigenvalue problem:

det([K] + N K,]) = 0 (2.49)

where the smallest eigenvalue A defines the smallest level for which the buckling
happens:

{Load}., = M Load} .y (2.50)

Membrane forces used in computing the stress stiffness are found from the resul-
tant strains of linear analysis under reference load.

In the case of nonlinear analysis, an iterative method such as Newton-Raphson
scheme, along with the tangent stiffness matrix is used to find the load—displacement

equilibrium path. This will be explained in the next chapter.
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Chapter 3

Solutions of Nonlinear Finite

Element Equations

3.1 Introduction

For nonlinear problems, the stiffness of the structure, the applied loads, and/or
boundary conditions can be affected by the induced displacements. As a result, the
equilibrium of the structure must be established in the current configuration (which
is unknown). At each equilibrium state along the equilibrium path, the resulting
set of simultaneous equations are nonlinear. Therefore, a direct solution will not be
possible and an iterative method is required. Several strategies have been devised
to perform nonlinear analysis. As opposed to linear problems, it is extremely dif-
ficult, if not impossible, to implement one single strategy of general validity for all
problems. Very often, the particular problem at hand will force the analyst to try
different solution procedures to succeed in obtaining the correct solution. For ex-
ample, “Snap-through” buckling problems of frames and shells (Figure 3.1) require
deformation-controlled loading strategies such as “Displacement” and “Arc-length”

based controls rather than force-controlled ldading.
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snap-through

snap-back

Load (P)
Load (P)

Deflection (W) Deflection (W)
Figure 3.1: Snap-through and snap-back behaviors.

In this chapter, different solution strategies for nonlinear equilibrium equations
are presented. Also, computation of the critical points, and general aspects of the
corotational approach for analysis of the geometrically nonlinear structures modeled

by triangular shell elements are explained.

3.2 Concept of “time” in static analysis

For nonlinear static analysis, the loads are applied in incremental steps through the
use of “time”. The “time” value represents a pseudo-variable which denotes the
intensity of the applied loads at a certain step. While, for nonlinear dynamic analysis
and nonlinear static analysis with time-dependent material properties (e.g., creep),
“time” represents the real time associated with the load application. The choice of
“time” step size depends on several factors such as the level of nonlinearities of the

problems and the solution procedure.
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4 Load {R}
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fu,}

Displacement {u}

Figure 3.2: Tangent and secant stiffness matrices.

3.3 Tangent and secant stiffness

In nonlinear finite element analysis, the linear stiffness equation [K]{u} = {R} with
stiffness matrix [K], nodal displacement vector {u} and vector of applied load {R},
changes to [K(u)[{u} = {R}. Stiffness matrix [K(u)] is a function of {u} and is
called the “Secant stiffness matrix” and is shown as [Kg].

Slope of the tangent to the load-displacement curve at any point is called the

“tangent stiffness matrix” shown as [K]:

[K] U (3.1)

T ou ou = [A]m - 5&; - [KS]Z] + ; Au;

Figure 3.2 shows the secant and the tangent stiffness matrices at {u} = {uo}.

3.4 Static analysis

There are different numerical procedures that can be incorporated in the solution of

nonlinear problems using the finite element method. A successful procedure must
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include the following:

e An iterative method to satisfy the nonlinear equations governing the equilibrium

state along the path.

e A control technique capable of controlling the progress of the computations

along the equilibrium path of the system.
e Termination schemes to end the solution process.

In the following sections, these concepts are explained in more details.

3.5 Iterative methods for solving nonlinear equa-

tions

In nonlinear static analysis, the basic set of equations to be solved at any time step
t+ At, is

RUHAN _ petan _ g (3.2)

where

R+AY = Vector of externally applied nodal loads.

FU+88 — Vector of internally generated nodal forces.

Since the internal nodal forces F**2Y depend on nodal displacements ©*+2% at
time ¢t + At, an iterative method must be used. The following equations represent the
basic outline of an iterative scheme to solve the equilibrium equations at a certain
time step t + At:

AR(ZFI) — R(t+At) . F((fj—]A)t) (33)

K((:le)t)AU(i) = AR(ifl) (34)
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(t+AL)  (t+A1)

Uy =gy + Aug (3.5)
(t+AL) (1), (t+At) t
ugy = u FgtY = FO (3.6)

where
RUF2Y — Vector of externally applied nodal loads. This vector shows the current
load level and is constant during the iterations converging to this load level.

F ((Z.tjﬁt) = Vector of internally generated nodal forces at the beginning of iteration

(2).
AR(;_1y = The out-of-balance load vector at the beginning of iteration (z).

Ay = Vector of incremental nodal displacements during iteration (z).

7LE:;'Ai) = Vector of total displacements after iteration (z).
K ((fj]A)t) = Tangent stiffuess matrix at the beginning of iteration (7).

There exists different schemes to perform the above iteration. In the following, a

brief description of some methods of the Newton type will be furnished.
3.5.1 Direct iteration

In the direct iteration method, the nonlinear equilibrium equation is solved using
the secant stiffness matrix (Figure 3.3). Starting from a previously converged point
(R® 4®), the new displacement is found using the initial tangent stiffness. Then, the
secant stiflness is updated, and the new displacement is found using the new secant
stiffness. This is continued until convergence under loading R**+2Y is achieved. Then,

loading is increased to the next level and iteration begun again.
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Figure 3.3: Direct iteration method.
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Figure 3.4: Newton-Raphson iterative method.
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3.5.2 Newton-Raphson (NR) scheme

In this scheme, the tangential stiffness matrix is formed at each iteration within a
particular load step (Figure 3.4). The NR method has a high convergence rate and its
rate of convergence is quadratic for relatively smooth non-linear response. However,
since the tangent stiffness matrix should be computed at each iteration, this method
can be expensive for large systems. In such cases it may be advantageous to use
another iterative method.

The Newton-Raphson (NR) method is based on the following equation resulted

from Equations (3.3) and (3.4):

K((::L.St)Au(i) — Rt+an _ F((itj]?i) (3.7)

and the displacement increment Awy; is used to obtain the next displacement approx-
imation using Equation (3.5). The iteration is continued until the out-of-balance load
vector AR(;_1) or the displacement increment A,y are sufficiently small. A complete

explanation for the convergence criteria will be later presented in this chapter.

3.5.3 Modified Newton-Raphson (MNR) scheme

In this scheme, the tangential stiffness matrix is formed at the beginning of each load
step and used throughout the iterations (Figure 3.5). This method is not compu-
tationally as expensive as the Newton-Raphson method, but it needs usually more

number of iterations to converge.
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Figure 3.5: Modified Newton-Raphson iterative method.
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Figure 3.6: Quasi-Newton iterative method.
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3.5.4 Quasi-Newton (QN) scheme

Unlike the NR and MNR iterative schemes, the QN family of schemes employs a
lower-rank matrix to update the stiffness matrix (or its inverse) and to provide se-
cant approximation from iteration (i — 1) to iteration (i) (Figure 3.6). Defining a

displacement increment as
_(1+AD (t+At)
ow = Uy Uy (3.8)

and an increment in the out-of-balance loads;
Yay = ARi-1) — ARy (3.9)
the updated iterative matrix should satisfy the QN equation:

K75 =0 310

Among the quasi-Newton methods available, the BFGS (Broyden-Fletcher-Goldfarb-

Shanno) method appears to be most effective. For further explanation the reader is

referred to Ref. [22].

3.6 Incremental control techniques

Different control techniques have been developed in existing works to perform non-
linear analysis. These techniques can be classified as: force control, displacement,

control, and arc-length control (see Figure 3.7).

3.6.1 Force control

In this technique the applied load in each step is held constant (as in proportion

to the total applied load). The load level is then increased to the next level after
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Figure 3.7: Incremental control techniques: force control (a), displacement control
(b), and arc-length control (c).

convergence is achieved.

The force control technique can trace the load-displacement curve before the oc-
currence of a limit point (see Figure 3.7a). In such cases, to trace the complete
load-displacement curve, it is necessary to use other path following techniques such

as the displacement control, or arc-length control techniques.
3.6.2 Displacement control

In this technique, one of the displacement degrees of freedom is considered as the
control parameter. This control parameter is then incrementally changed, and by
each change, the corresponding load level multiplier A and the point of the load-
displacement path is found by an iterative method. This method is capable to handle
problems with snap-through (for example a shallow shell under downward load), but
again fails in snap-back problems (Figure 3.7b). Further explanation can be found in

Ref.s [149, 150].

42



3.6.3 Arc-length control

The major difference between force control and arc-length control is that in the case
of force control the applied load in any given step is held constant, whereas in the
case of arc-length control the applied load is allowed to vary in any given step. In
other words, the load factor A does not remain constant in a step in the case of arc-
length control. Let a known equilibrium configuration exist at some instant ¢, the
total load Ag applied to arrive at this configuration be R® and u® be the solution
at this instant (Figure 3.8). Let A)g be a constant incremental load parameter. The
solution for the first incremental step is obtained from K ((é;rAt).Au(l) = A)g ¢q. In the

subsequent iterations the correction to the solution is obtained from

—1
Dug) = (K ffflA)t)) (R = FEDY +0M0-q) = 08+ 6 duy (3.11)

ARG_1)

Since the change in the load factor, 6\, is an unknown, an equation in addition to
the equilibrium equations is required to determine the change in the load factor in

each step. This is achieved by imposing a constraint
(Ouly.6um) = AP (3.12)

where du(;) = Aug)+0u—-1) is the total change of u at the end of the current iteration,
and du(y = Augy and Al is called the arc-length.

The arc length Al is determined in the first step as:

Al = A /5u{1).6u(1) (313)

where

-1
Sugy = dugy = (K§™) (A g) (3.14)
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Figure 3.8: Arc-length control technique.
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and parameter Al is kept constant during iterations.
When Aug from Equation (3.11) is substituted into the constraint equation

(Equation (3.12)), the resulting quadratic equation is given by
a15)\%i) + CLQCS)\(i) + as = 0 (315)

where
a; = ouy oy
az = 2(01 + dugi—1y) " duy (3.16)
az = (60 + dug_1))T (60 + dug_qy) — Al?

Out of the two roots of Equation (3.15), the one which results in the least root

mean square error between the solution at the end of the previous iteration ugff)t)
and the solution at the end of the current iteration uEE;LAt), is selected.

The arc length may also be adjusted such that a more or less constant number of

iterations is required to obtain convergence, using the following relation:
All = Ali—lNd/Nz'-l (3].7)

where Al; is the constant arc length to be used in the current step, Al;_; is the
constant arc length used in the previous step, N;_1 is the number of iterations needed
in the previous step and Ny is the desired number of iterations to be performed in

any step to obtain convergence based on the chosen convergence criterion.

3.7 Convergence criteria

For any incremental procedure based on iterative methods, to be effective, practical
termination schemes should be provided. At the end of each iteration, a check should

be made to test if the iteration converged within realistic tolerances or it is diverging.
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Very loose tolerance will initiate inaccurate results, while very strict one can need-
lessly make the computational cost high. On the other side, bad divergence check
can end the iterative process when the solution is not diverging or allow the process
to continue for searching unrealizable solution. In the following, three convergence

criteria for terminating an iterative process will be discussed.

3.7.1 Displacement convergence

This criterion is based on the displacement increments during iterations. It is given
by

AU | < eq| AU (3.18)
where | | denotes the Fuclidean norm, and ¢, is the displacement tolerance.
3.7.2 Force convergence

This criterion is based on the out-of-balance (residual) loads during iterations. It
requires that the norm of the residual load vector to be within a tolerance ¢, of the

applied load increment, i.e.

[RUHAD _ BHAD] < ¢ | RO+80 _ F0) (3.19)

where € is the force tolerance.
3.7.3 Energy convergence

In this criterion, the increment in the internal energy during each iteration, which
is the work done by the residual forces through the incremental displacements, is

compared with the initial energy increment. Convergence is assumed to reach when

46



the following is satisfied:

(AU@)T(R(HN) . F((itjst)) < é_e(AU(l))T(R(t—l—At) N F(i)) (3‘20)

where €, is the energy tolerance.

3.8 Corotational nonlinear analysis

In this section, the general aspects of corotational approach combined with Newton—
Raphson iterative method for the aﬂalysis of geometric nonlinear shells modeled by
triangular elements are explained. In corotational approach the total motion of an
element is decomposed into a rigid body motion and a pure deformation. Then the
contribution of the rigid body motion to the total deformation of the element is re-
moved before performing the element computations. This will enable to upgrade the
structural elements to treat problems with large rotations but small strains. This is
the case with many thin-walled plate and shell structures undergoing large deforma-
tions.

Figure 3.9 shows the undeformed (initial) and current configurations of a general
triangular shell element, moving in the global coordinate system g. The displacement
vector of node i with position vector X7 in the global coordinate is denoted by u?.
Ey is the local coordinate system in the initial configuration with the origin at node
1 and axis Fjp; along the side 1-2 and axis Fys perpendicular to the element plane.
In the current configuration, the position vector of node i is given by z7 = X7 + u?.
Using x7, local coordinate system E in the current configuration is established (again
with axis F; along the current side 1-2 and axis FE3 perpendicular to the current

element plane.)
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Figure 3.9: Corotational method

Rotations of each node in global system are expressed by a triad which is rigidly
tied to the node and rotates with the node from its initial state Sy (parallel to global
system ¢) to its current state S. Updating triad S for incremental rotations after
each iteration is performed by updating its transformation matrix. Based on the
definition, the transformation matrix for the coordinate system e is shown as T,
which transforms vector X, in global coordinate system into vector X, in coordinate
system e by the orthogonal transformation X, = 7. X.. Entries of this matrix are
direction cosines of coordinate system e with respect to global coordinate system.
Assuming éx, éy and éz as the incremental rotations of triad S resulted from the last
iteration computed in global coordinate system, Ts may be updated by the following

expression [37]:

(TS)'new = T~(TS)old ‘ (321)



where

~ ~ 0 —60z; 6
. €+ 0.562 T , z Y
T=T4 " 0 = /0% +62+02, Q= -
tiromwE W= Ve +6z bz 0 —Ox
—0y 0x 0

(3.22)

Pure nodal rotations in local coordinate system F may be computed by the fol-
lowing two steps [37]:

I) An orthogonal transformation matrix T, which describes rotation of nodal triad

Sp to S in local coordinate FE| is found by the following expression:
T =TiTsTg, (3.23)

where Ty, Ts, and T, are the transformation matrices for coordinate system F, triad
S, and coordinate system Fjy, respectively.
IT) Pure nodal rotations expressed in FE are equal to the components of an anti-

symmetric matrix Q3.5 (called spin tensor) as [37]

0 g5 gF
Q=1 0% o —p& (3.24)
—fE g 0

where € is found by the following expression using orthogonal matrix 7' computed in
step (I):

Q=2T 1) (T+ 1) (3.25)

Pure nodal displacements in E are computed by comparing the current configu-
ration with a “corotated” configuration (which is exactly similar to the initial con-
figuration and is considered in the E)FE, plane) with nodes 1,2 and 3, coinciding

points 1 and 1 and also sides 1 — 2 and 1 — 2, as shown in Figure 3.10. Pure nodal
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Figure 3.10: Coplanar corotated and current configurations
displacements at node ¢ in E may be expressed by the relation [37]
o
2
af =4 w2 p=TFw!+ X! —u—X{)— X" i=123 (3.26)
s
(]

where X is the initial coordinates of node i in Ey. @ components are shown in
Figure 3.10. Obviously EIE“ (the pure nodal translations in F3 direction) are zero,
since both corotated and current configurations are coplanar.

Finally the pure deformations at node i computed in local coordinate system E

can be expressed as

=< 4 i=1,2,3 (3.27)

JO8!
L 07 )

In case that these pure deformations are small, a linear theory may be adopted to
bring the nodes 1,2 and 3 of corotated configuration into their final positions 1,2 and
3 [43]. In this case the stiffness matrix of the corotated element in E (which is the
same as the stiffness matrix of initial element in £j) may be used to compute the local
element forces f. However, some difficulties are observed with this approach. The

computed local element forces f will be naturally related to the points 1,2, 3 rather
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than the actual nodal positions 1, 2, 3. In other words, f will not be a self-equilibrating
set of forces on the current configuration. Also these pure deformations are not really
pure (without rigid body motion), which can cause problem in case that the element
stiffness matrix does not have the correct rigid body properties. The problem is
even more severe in warping-sensitive elements like many four node quadrilateral
shell elements [39]. In order to overcome such difficulties, a projector matrix with a
number of interesting properties is used [39, 40]. The action of the projector matrix
on a non-equilibrated force vector brings it into equilibrium. Moreover, the rigid body
components of an incremental displacement vector are eliminated when multiplied by
the projector matrix. Finally it can transform a linear element stiffness matrix to one
with correct rigid body properties. Nodal deflections d, vector of the internal forces

f, and element stiffness matrix k£ can be modified using the projection matrix P as

[39)
d=Pd (3.28)
f="Pf (3.29)
k= PTkP (3.30)

The results of this transformation are to produce d as the vector of pure deformational
part of the nodal deflections, f as a self-equilibrating set of nodal forces, and k as a
stiffness matrix with correct rigid body modes. The potential energy of the element
associated with deformations d, stiffness matrix k, and nodal force vector f may be

expressed as

6= 30— d' (3.31)
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Considering that P is a projector matrix (i.e. P? = P), it can be seen that ¢ is
still equal to the energy computed by stiffness matrix k and nodal force f during the
pure deformations d, but now the nodal force vector f, strain energy ¢, and stiffness
matrix k correspond to the new (current) configuration, and nodal forces f are in self
equilibrium.

The general form of the projection matrix is P = I — ¥I'" where ¥ components
for each node is the cross-product operator (skew-symmetric matrix) corresponding
to the current relative position vector of the node, and I' represents the variation of
the base vectors of local system with respect to the displacements at all nodes [39].
For triangular element shown in Figure 3.10 with local coordinate axis F; along the

edge 1 — 2 we have [39, 43]

0 0 0 0 0 E2 T
Wigxws = | O3x3 Iaxz 0 0 —FEy I3z 0 0 —FE3 I3xs (3.32)
0 E} 0 ~E2 Bl 0
and
0 o It 0 0 —pri 00 2 !
ESE s By
lMgxs= 10 O B O3x3 0 0 I O3x3 0 0 0 0343 (3.33)
0 —& 0 0 L 0 00 0
2 2

where E}, E? E? are the coordinates of node 7 in E.

Figure 3.11 shows a typical algorithm for corotational nonlinear analysis with force
control. At each load level, the new local coordinate system E is established using
only the new nodal global positions. Then pure nodal deformations d in coordinate
system E are found using the method explained before. Nodal forces f = k d are
found in coordinate system F using the element stiffness matrix k. projector matrix

P is operated on k and f to get modified stiffness matrix & and force vector f. If
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Load step loop

For all element:

Local coordinate system E is established using
the new nodal global positions

I ]
] ]
] ]
! ]
] ]
I ]
] ]
] ]
) ]
] ]
E Pure nodal deformations d are found in E
! coordinate system E. Projector P is also !
] . ]
! computed for the current configuration !
I 1}
I ]
I |
I ]
] }
] ]
1 ]
1 H
1 1
1 1

Internal force vector f=k d is found. k and f* are
modified by projector P as: f=PTf , k=Pk P.
k and f* are transformed to global coordinate system

F=3f
AR=R-F
Y
Ku=AR
Y

Nodal coordinates and nodal triads are updated

Y
Yes| Load is increased
K)
Converged? l to the next level

NOY Y

Figure 3.11: Flowchart of the corotational nonlinear analysis

23



membrane forces are significant, particularly in compression, stress stiffness matrix
k, should also be added to the stiffness matrix at this stage. Transforming & and f to
the global coordinate system, the procedure is repeated for all elements to assemble
current structure stiffness X = Tk and balanced force F = £ f. Load imbalance
(residual) AR is found by subtracting F from the vector of applied loads R. Structural
stiffness equation K Au = AR is then solved for displacement increments Au. Nodal
global coordinates are updated adding the incremental nodal displacements to the
nodal coordinates, whereas rotational state of each node is updated by updating
nodal triad S. Convergence is checked, and if it is not satisfied the whole process
repeats, otherwise load R is increased to the next level. Similar algorithms may be
used with displacement or arc-length controls.

It should be mentioned that due to the change of variables from rotations to
spin tensor in Equations (3.24) and (3.25), some convergence problems may arise.
However when the element deformations are sufficiently small, this effect is less.
Usually the correctness of the results is not affected by this approximation [40, 43].
Also Equations (3.21) and (3.22) for updating triad S are valid only for rotations up
to about 30 degrees [37]. As a result, convergence for large load steps may be difficult

In most cases.

3.9 Computation for critical points

There are two different types of critical points. A limit point arises when the load-
displacement curve reaches a local extremum, as the points B and C shown in Figure

3.12, while a bifurcation occurs when different equilibrium paths meet at a certain

o4



Load=Aq r(wA)=0
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Figure 3.12: Equilibrium paths and critical points.

point, as the point A in Figure 3.12. Detection and classification of the critical points
are usually performed by checking the null eigenvector condition, and orthogonality

between the load vector and the buckling mode [118]:

K(u,\)9 =0 (3.34)

where K is the tangent stiffness matrix and # is the associated eigenvector represent-
ing the buckling mode. Critical points can be classified using the following criteria

[118]:

YTR = 0= bifurcation point
VTR #0= limit point

(3.35)

Figure 3.13 shows two cases of nonlinear response with limit loads. Graph (a) is
called “snap-through behavior”, which is one of the most frequent forms of nonlinear
response of shallow structures. Graph (b) shows another case in which the structure
has no post-buckling strength. In both cases the limit point is identified as the point
in which the tangent stiffness matrix becomes singular. The load level at the limit
point is selected as the constraint for optimization against system stability.

In practical cases, the tangent stiffness matrix rarely becomes exactly singular,

thus in this study an alternative method is used to find the limit load of the nonlinear
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Figure 3.13: Two forms of the nonlinear response curve with limit load

path. Since the arc-length method is capable to trace the post buckling path, one can
use this method to follow the equilibrium path beyond the limit point. As shown in
Figure 3.13(c), analysis is stopped when the load level at a newly converged point of
the path (point 3) becomes less than that of the previous converged point (point 2).
Now, using the values corresponding to the three last points 1,2 and 3, it is possible
to perform a quadratic fit to the load displacement curve near the limit point and
find F,... The peak load determined through this procedure was found to be very
accurate.

The critical load found by the nonlinear analysis is used in the shape optimization
problem of the geometrically nonlinear structure. In the next chapter, methodology
for shape optimization in order to maximize the critical load of the structure is

explained.
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Chapter 4

Structural Design Optimization

4.1 Introduction

In this chapter, the shape optimization problem is described in detail. First, the
definition of the shape design variables is presented, and the general form of the
shape optimization problem and its solution using the gradient—based optimization
algorithm are explained. Then the alternative method of optimality criteria for two
cases of load—capacity maximization under constant mass (along with its application
on the design of stiffened panels), and mass minimization under constant load are
explained. Finally, the shape optimization methodology is modified to consider the

effect of local buckling in stiffened panels.

4.2 Geometry and thickness design variables

Figure 4.1 shows an example of a thin—walled structure modeled by facet elements.
We assume that the length of this structure is kept constant, thus the shape is defined
by seven design variables a, b, ¢, d, t1, %2, t3. In this study, variables such as a, b, ¢, and

d which control the nodal positions in finite element model, are called “geometry
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Geometry design variables: a, b, ¢, d
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Thickness design variables: oty ty
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Figure 4.1: Geometry and thickness design variables.

Figure 4.2: Nodal coordinate as the geometry design variable.
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Figure 4.3: Various forms to define the geometry design variables.

Fixed point 1
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Fixed point 2 |

Figure 4.4: Various forms to define the geometry design variable a in Figure 4.1.
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design variables”. The rest of the design variables (i.e. t1,%,, and #3) which control
the thickness of the elements, are called “thickness design variables”. As an example,
Figure 4.2 shows that how nodal global coordinate can be selected (here, coordinate
Z of the point P) as a geometry design variable to control the nodal position.

A geometry design variable can be defined in various ways since it can be measured
from various origins and in various directions. Figure 4.3 shows how a geometry design
variable may be defined to control the position of the point P with inclined boundary
condition. Assuming that the points P and P’ are the positions of a free nodal point
moving on line (L) during the optimization process, geometry design variable 7V
can be selected as the distance of the free node from a fixed point F'. Another way
to describe the position of the point is measuring the distance from a fixed point F’
on the line (L) using the geometry design variable 2$?. Tt is obvious that the number
of ways to define a geometry design variable (to describe the position of a node) is
infinite. Similarly, Figure 4.4 shows how the geometry design variable a in Figure
4.1 may be defined in other ways. Considering that point B is fixed and point A
is moving horizontally on line (L), parameter a; or as may also be selected (as the
distance of point A from a selected fixed point), to control the position of point A.

It is important to note that the change of the shape during optimization should
not violate the design constraints or manufacturing requirements. Any manufacturing
requirement such as a straight edge remaining straight or portions of the boundary
remaining unchanged should be considered when defining a shape design variable.
Some studies consider an auxiliary structure to satisfy these requirements during the

shape optimization [151, 152]. In the present study, change of the shape is performed
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by shape design variables which do not violate the design constraints and boundary

conditions.

4.3 Optimization problem

We assume that a plate or shell structure is analyzed under the applied force vector
Aq in which ¢ is a constant reference force vector, and ) is a load level factor which
is gradually increased until the stability constraint is violated. At this instant, Aq is
called the “critical load” of this structure with respect to the stability constraints,
and is shown as A.q. Considering X as the vector of the shape design variables, the
optimization problem is to maximize the critical load factor A. subject to the constant
total mass My:

Mazximize ()\.) Subject to:
MX)=M—My=0
X, <X < Xy

where h(X) is the equality constraint, X, and X;; are the lower and upper bounds
on the design variables X, and M and M, are the total mass and constant value for

the total mass, respectively. The Lagrangian can be defined as
L(X, p) ==X+ p.h | (4.1)

where p is the Lagrange multiplier. The stationarity conditions of this function
(Karush-Kuhn-Tucker conditions [128]) together with the equilibrium equation and
critical point condition, describe the optimization problem as:

VA + .V, h=0; V, :total derivative

h=20
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F—-—)X=0

K(u,\)9 =0

J91-1=0
where K is the tangent stiffness matrix, 1 is representing the buckling mode, and F
is the internally generated nodal forces. This nonlinear system of equations has to be
solved within the optimization loop. Optimization process starts with the analysis
of the structure and computation of the critical point. At the critical point, the
sensitivity analysis is performed and a search direction AX is produced which is
used in the line-search procedure. Using the first guess a = 1.0 for the step length,
and letting X = X + oA X, a new analysis is performed. If there is no improvement,
the line-search procedure generates a new step length « and the structural analysis
is repeated until an improvement is obtained. The process repeats, continuing with

the sensitivity analysis until the optimum design is reached.
4.4 Sensitivity analysis

Sensitivity analysis is an important and computationally expensive part of the gradient—
based optimization algorithms. The main task during the sensitivity analysis is to
obtain the derivatives of the solution (u., A.) for the critical points with respect to the
optimization variables X. For the sake of simplicity and without loss of generality,
it will be considered that the shape of the structure is controlled by only one design
variable x. First, the system of equilibrium equations is rewritten in terms of the
variables u,z [118]:

| Flu,z) — M(z) =0 (4.2)
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where F' is the internally generated nodal forces. Differentiation of this equation

yields [118]
OF du OF  d\ )\dq B

hdalieied = = 4.
Oou dz + oz qu dx 0 (4.3)

Since K = 0F/0u, Equation (4.3) can be rewritten as

du  dA dqg OF
PR U, — _— e T ] 44
K de dzx ¢=2 de Oz p (4:4)

where p is called the “pseudo-load” vector [118]. Multiplying Equation (4.4) by 97

and using the critical load condition (¥ K = 0), we obtain

dr _ _9'p
dx 9Tq

(4.5)
This equation can be used for the computation of the critical load sensitivity. How-
ever, it can not be used at bifurcation points since the product 97 ¢ vanishes.

In order to compute the sensitivity of a bifurcation load, we start with Equation

(3.34) and differentiate it with respect to x [118]:

dK9) K du 0K, 00 1

Using Equation (4.4) we have

du  dA
Pt %(MQ + duy, (4.7)
where
Koug = ¢
Kbu, = p (4.8)
Substituting Equation (4.7) into Equation (4.6) leads to
A\ O(K ) DK D) oK 0V
@ 5 Sty + =)+ K =0 4.
dr ou * Ju O * Ox + Ox (4.9)
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Multiplying this equation by 97 and using the condition ¥7K = 0, the following
expression is obtained for the computation of the sensitivity of bifurcation loads

[118]:

dx T (hy + w)
dr ~ 07Th,

(4.10)
where w = (0K/0x)Y, and h, and h, are the directional derivatives defined as
hy = (K9),0u, and h, = (K49),0u, in which (Kv), is computed using the finite
difference method. Although it seems impossible to use Equation (4.8) because of
singularity of the stiffness matrix at a critical point, this expression can be applied in
most practical cases since we will rarely reach a precise singular point during solution.

As an alternative approach, the finite difference method (FDM) may also be used

for sensitivity analysis:

dA Mz + Az) — A=)
de Ax

(4.11)

The accuracy of the FDM is strongly dependent on the perturbation size Axr. A
relative perturbation between 107° and 1078 generally leads to results with sufficient
accuracy for engineering applications. The major drawback of the FDM is its high
computational cost, thus it is mainly used in validation of other schemes for sensitivity

analysis.
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4.5 Optimality criteria for load—capacity maximiza-
tion of thin-walled structures, subject to con-

stant mass

4.5.1 Derivation of the optimality criteria

As mentioned before, optimality criterion method significantly reduces the time and
cost of the optimization process for geometrically nonlinear structures since the time—
consuming task of sensitivity analysis is not required in this method. In this section
two optimality criteria are developed for load—capacity maximization subject to con-
stant mass, using Karush-Kuhn-Tucker conditions [128].

As described in section 4.3, the optimization problem is to find the optimum
values for shape design variables in order to maximize A. subject to constant total

mass

N
M =>"pVi= M, (4.12)
=1

where N is the number of elements, p; is the material density of the i** element, and

V; = t;A; is the volume of the i element with area A; and thickness ¢;, and M is a

constant. The Lagrangian for this optimization problem is
L ==X+ p(M — M) (4.13)

where p is the Lagrange multiplier. Assuming X = {z,7,...,2,}T as the vector
of shape design variables (whether the geometry or thickness design variables), the

KKT conditions [128] for minimization of L with respect to X become

oL

—=0; I=1,... 4.14
8,’];1 07 ’ 78 ( )
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Thus
N

e oV,
_ +szi8—:m:0; l=1,...,s (4.15)
=1

8:(;,

where s is the number of shape design variables. Now we write the total potential
energy of the structure as
N
II= Z e; — Aeulq (4.16)
i=1
where v and A.¢g are the nodal displacement vector in the global coordinate system
and the vector of the applied loads, respectively, and e; is the strain energy of the *
element which may be written in terms of the vector of the pure nodal displacements
after removing the rigid body motions due to large deflections. It should be men-
tioned that pure displacements may also be written generally as a function of global
displacement vector {u}. Considering Il,, as the total potential energy associated
with the optimum design, the equation II = Il,, should also be satisfied for the
optimum design. Taking derivative from both sides of this equation with respect to
design variable z; (noticing that u and A, are also functions of the design variable z;)

we have

De; O Ju; | O OA
=0; [=1,..., .
Z 0z Z < Ju; 0z O, Oy 0 i=1....8 (4.17)

where m is the number of the nodal displacement components. From the principle of

stationary total potential energy we have = 0, thus Equation(4.17) changes to
Oe; O
40— =0 I=1,..., 4.1
d u' Tor, ox; ' ' y ( 8)

in Wthh has been substituted by —u”q. Substituting for 8’\‘ from Equation (4.15)

into (4.18) results in

N
ov; Oe;
”Zpia uT Zd:rl =0; [=1,...,s (4.19)
=]
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or

Je;
ZpldwlmAzail: D ol=1,....5 (4.20)

where A = 1/(uuTq)

In the case that z; is a thickness design variable, Equation (4.20) leads to

de;
2 pid; — AZG; - (4.21)

where ) means that the sum is on all the elements related to thickness design

variable x;. Equation (4.21) may be simplified as

>, 0e;/0x .
= A -—-——-—‘L.l = .
1 ( S A Aé, (4.22)

where €,, 1s called “average strain energy variation” for the thickness design variable
x;. Equation (4.22) (hereinafter called “Uniform Average Strain Energy Variation”
or UASEV criterion) states that in a structure with optimum thickness, € or average
strain energy variation is the same for all thickness design variables.

For x; being a geometry design variable, Equation (4.20) leads to

OA, de; OA\
(%: pitia—xl> —A <; A ax,> =0 (4.23)

Since the strain energy of a facet element is in proportion to the element area (see

Equation (4.35) ), Oe;/0A; = e;/ A;. Thus

€; 0A,;
ti—A ) ([ 22 ) =0 4.24
(ne-3) (52) 420
xy
As mentioned before, geometry design variables can be defined in various ways

since they can be measured from various origins and in various directions. Considering

the fact that the final optimum shape should be independent of how a geometry design
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variable is defined, the only possible way to satisfy this equation is

(pi t, — A % - o) ) (4.25)

or
(pi t;A; = A ez')m, (4.26)
where ( ), means that the equation is valid for all elements affected by the geometry

design variable z;. In order to obtain an equation similar to Equation (4.22), we

consider Equation (4.26) for all elements affected by the geometry design variable z;:

Ty I

or

> PiliAi

where again ) means that the sum is on all the elements modified by z;. In

1=A ( 2r, ) —Aé, (4.28)

this case, é is called “average strain energy density”. Equation (4.28) (hereinafter
called “Uniform Average Strain Energy Density” or UASED criterion) states that in
a structure with optimum nodal positions, é or average strain energy density is the
same for all geometry design variables.

Equations (4.22) and (4.28) are called the “optimality criteria” and should be sat-
isfied through an iterative process in order to obtain the optimum design. In the next
section, this iterative process is explained. It should be noted that since the second
variation of the Lagrangian was not examined in this study, these optimality criteria
are only empirical local-optimality conditions. Also, since these criteria are satisfied
only at the final load (load capacity), it assumes monotonic structural behavior and

excludes path dependency.
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It should be noted that the optimality criteria found here, are valid for displace-
ment or stress constraints as well. The only difference is that the load capacity of
the structure is found based on these constraints and the optimality criteria are also

satisfied at that load level (load capacity).
4.5.2 Recurrence relation

In order to satisfy an optimality criterion, an iterative scheme is used. Substituting
x; by « for simplicity, a recurrence relation may be written by multiplying both sides

of Equations (4.22) or (4.28) by z and taking the 7" root as

(x)nﬂ = (36)77 A Aéz)}/’" (4.29)
where 7+ 1 and 7 are the iteration numbers, and r is the step size parameter which

can be changed by assigning appropriate value, and &, is defined as

m—zf a;l:ﬁfx; if zis a thickness design variable
. (4.30)
% if zis a geometry design variable

The value of A at the optimal design is determined by minimizing the sum of the

squares of the residuals at iteration 7:

8

Res, = Z(l — Ag;)? (4.31)
i=1
Thus, A can be obtained as
A=)/ ed) (4.32)
i=1 i=1

Substituting Equation (4.32) into Equation (4.29) we finally obtain

s s 1/r
(@)1 = (@), - ((Z &) /(&) (> (4.33)

i=1 i=1 7
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This equation is used at the limit or bifurcation point in order to iteratively modity
the geometry or the thickness design variables and obtain the optimum shape. The
new design variables after each iteration are scaled to satisfy the volume equality
constraint, and the process repeats until the following condition for the convergence
is satisfied:

(AN), < (tol). (AN (4.34)

where (A)); and (A)), is the change in the critical load factor in the first and 7™
iteration respectively, and tol is usually chosen in the range of tol < 1072 depending

on the accuracy required.

4.5.3 Strain energy

Equations (4.29) and (4.30) contain strain energy of the elements affected by the
design variables at the limit or bifurcation point. For a flat shell element, in the case
of isotropic material with the Poisson’s ratio v and the Young’s modulus E,, e; can

be obtained by the following relation:
e =1 / ({em} A {em} + {2} T DE L)) dA, (4.35)

where Af and Df are the membrane and flexural stiffness matrices at the location of

the i** element with thickness t;, respectively, and can be written as:

1 v O 1 v 0
E,t; E,t3
Al = > | v 1 0 , Df= ! 5 v 1 0 (4.36)
1—-v O 0 1—p 12(1 et ) O O 1—p

and {e,,} = {e3 ) 75} and {e,} = {x] &) x3,}" are the membrane and flexural

strains in the mid-surface of the i element respectively. In the case that z is a
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thickness design variable, the value of % for z =t; is:

3

. A D
?)t: = %/A <{5m}T_?-{5nL} -+ {Sb}T, . .{Eb}) dAl <437)

and % is zero when z 5 t;. It should be noted that gj computed by Equation (4.37)

Ei.

is different from 3:

f ot [ (e S e + 1 ke ) aa (439

Ay

N

and as a result, for the general case of the membrane and bending deformations,

UASEV and “Uniform Strain Energy Density (USED)” criteria are not equivalent.

4.6 Optimality criteria for mass minimization of

thin-walled structures subject to constant load

The problem of mass minimization subject to constant load is equivalent to the
problem of load maximization subject to the constant mass. Thus, the optimality
criteria found in the previous section are valid for mass minimization problems as
well. Here, we consider a special case in which the design variables are the geometry
design variables and one overall thickness variable. The optimization problem is to

find a set of design variables X to minimize the total mass M:

N
M=pt ) A (4.39)
i=1

for a shell with overall thickness ¢ under constant applied force vector R subject to
the constraint:

Mm-m=0 (4.40)

where N and p are the number of elements, and material density of the structure

respectively. A, is the area of the i** flat shell element, II is the total potential energy
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and I is the total potential energy associated with the optimum design, satisfying
any design constraint such as stability, displacement, ... Here, as mentioned before,
the set of design variables X consists of geometry design variables, x,, and overall
thickness of the shell, ¢. In order to simplify the presentation, and without loss of
generality, it will be considered that the shape of the structure is described by only
one shape design variable x,, and overall thickness ¢. The total potential energy of

the structure may be expressed as

N
1= Zei —uwWTR=U—-u"R (4.41)

i=1
where U is the total strain energy of the thin shell, u is the global nodal displacement
vector, and R is the vector of the externally applied loads. From the principal of

stationary total potential energy, we have

o ou

%_%_Rzo (4.42)

Using Equations (4.39) and (4.40) the Lagrangian can be defined as
N ~
L=pt Y A—pl-T1) (4.43)
i=1

where p is the Lagrange multiplier. The KKT conditions [128] for minimization of L

with respect to shape design variable x, and thickness t become

oL

7o =0 (4.44)

oL

a5 = 0 (4.45)
M—-11=0 (4.46)
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It is obvious that in case of several shape design variables, Equation (4.44) is valid

for each x, . From Equations (4.44), (4.43) and (4.41) we have

0A; 861 Z Oml u;

f 4.4
Pt ~ 8:1:*> 8u] 6;1; (4.47)

where ) means that the sum is on all the elements related to shape design vari-
able x,, and m is the number of the nodal displacement components. Considering

Equation (4.42) the term 2 vanishes and Equation (4.47) may be written as

6
ﬁaA aez B
pt( » ag; Z &U* = (4.48)
or
oe; 8/1
Z ax* Z DA; 8:r* (4.49)

Since the strain energy of a flat shell element is in proportion to the element area,

862/8147 = e,»/Al-, Thus

\ €; 3141 .
g,(ﬂt—ﬂz)(ax*) =0 (4.50)
or
€; (914, o
>0 - (G = 0 (4.51)

s

Defining the strain energy density as é; = ¢;/(p t A;), we have

S0 =0 (4.52)

Tx
Similar to the previous case, considering the fact that the final optimum shape should
be independent of how a geometry design variable is defined, the only possible way

to satisfy this equation is

(I—pé&) =0 = (1=pé)l (4.53)
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where |,, means that the equation is valid for all elements affected by the shape
design variable z,. Equation (4.53) may be rewritten in the form of ptA; = pe;, and

then it may be applied to all elements connected to x,:

ptAr = pe
piis = pes (4.54)
ptA, = pex

where £ is the number of elements affected by the variable z,. Summing both sides

we have

or

D Ei
1 — ’uJ—*~~
Pty .. A

and again ) means that the sum is on all the elements related to shape design

(4.56)

variable x,. This equation is what we already called “Uniform Average Strain Energy

Density” or UASED criterion. Applying similar steps for Equation (4.45), we have

p (O A~ (Y By =0 (457)

Considering Equation (4.53) and substituting u = 1/é; = p t A;/e; into Equation

(4.57), we have the following criterion for all possible optimum solutions:

N

Z(p A; — pifqi . %i’i) =0 (4.58)
N ol de; ., e;
D_r A= (/] =0 (4.59)

In case of pure membrane behavior, strain energy is provided by only the membrane

stiffness, thus e; is in proportion to ¢t and (Je;/0t) is equal to (e;/t). In any other
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case (Je;/Ot) is always greater than (e;/t) because of the t? and ¢3 terms associated
with the membrane-bending coupling and pure bending behavior, respectively. So
in general case, (Je;/0t) is always equal or greater than (e;/t) and all the terms in
the sum in Equation (4.59) are negative or zero. Thus the only possible solution for
Equation (4.59) is

de; e

% =7 (4.60)

which states that at the optimum point, all the strain energy is provided by the
membrane mode. In other words:

LN (4.61)

€;
where ey, is the strain energy provided by bending and membrane-bending coupling

effects. This relation may also be extended to the whole structure:

Total bending strain energy  Xe;,
= —

0 4.62
Total strain energy Se; ( )

This relation ( hereinafter called “Least Bending Energy Ratio” or LBER criterion )
states that among all optimum designs with different thicknesses and shapes, the one
which has the least bending energy ratio has the minimum mass. Equations (4.56)
and (4.62) should be iteratively satisfied in order to minimize the total mass of a shell
structure. Similar to Equation (4.33), the following recurrence equation may be used

to iteratively satisfy Equation (4.56):

1/r

Zf\’; él Zx* €

(x*)n+l = (x*>7] . (ZNelé~2 . pfz A (463)
=1 "1 Tx ?

In the case that the system stability is the optimization constraint, the solution

after each iteration should be scaled so that the limit load of the structure is equal

75



to or greater than the applied load. The same procedure is done for the case of dis-
placement constraint to limit the nodal displacement to a maximum allowable value.
Here, we scale the design by changing the general thickness of the shell, and Equa-
tion (4.62) is used to guarantee that change of the thickness is in the proper direction
towards the optimal design. Obviously if the overall thickness of the structure is not
considered as a design variable, this optimality criterion is relaxed and scaling is done
by changing shape design variables. Obviously if the limit load is greater than the
applied load, the thickness should be reduced and vice versa. As for displacement
constraint, if the maximum displacement is greater than the allowable displacement,
the thickness should be increased and vice versa.

It should be noted that the strain energy is not a linear function of the thickness,
and as a result, scaling the thickness of the shell by a scale factor has not the effect
of scaling the limit load by the same scale factor. In other words, by changing the
thickness of the shell, the displacement pattern also changes and a simple proportional
reduction or increase of the thickness would not lead to the desired critical load.
Selecting the new thickness is usually done through an iterative process. However,
this process is not highly iterative since the new thickness is usually selected among

a set of available thicknesses, and this process converges after few iterations.

4.7 Thickness optimization of a plate and its ap-

plication in optimum design of stiffened panels

In this section thickness optimization of a plate (or shell) modeled by N facet elements

is investigated. In this study, the thickness of each element in the finite element
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Figure 4.5: Concept of thickness optimization subject to constant volume.

mesh is considered as a design variable, and optimum thickness ¢; (i = 1,..., N)
for each element is found in order to maximize the critical load (or load capacity)
factor A, subject to constant total volume of the plate (i.e. V = Vj where V is the
total volume of the material — see Figure 4.5). Load factor A. is found with respect
to displacement, stress, or stability constraint. Based on the UASEV criterion for
thickness optimization, it can be concluded that for the optimum shape, the following

value should be the same for all elements:

>

/Ai (‘[m}??—f.{sm} + {Eb}T,%.{sb}) dA, (4.64)

& = Oe; __

1 1
A, Bt 24,

As mentioned before, one can easily see that é; computed by Equation (4.64) in
general case of the combination of membrane and bending deformations, is different

from the strain energy density, which is usually defined as e;/(t; A;) :

., A Dy
& =4 = ﬁ; /A' ({5m}T.t—i.{em} + {5b}T.t—i.{6b}> dA; (4.65)

As a result, thickness optimization of plates and shells using uniform strain energy
density criterion with the values computed by Equation (4.65) in general case of the
combination of membrane and bending deformations is unjustified. However in case

of pure membrane strain energy (i.e. {g,} = 0), using uniform strain energy density
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criterion (USED) instead of UASEV leads to the same result (because in this case,
Equations (4.64) and (4.65) are equivalent). Also, in case of the pure bending strain
energy (i.e. {g,} = 0) results are again the same since based on Equations (4.64) and
(4.65), uniform distribution of ; and uniform distribution of é; in case of {¢,,} =0
are equivalent by a scale factor 3.

The recurrence relation mentioned in section 4.5.2 is used in order to optimize
the thickness of each element iteratively. In order to keep the total volume equal to

constant Vg, after each iteration, all £; are scaled by a scale factor (3:

v,
L N (4.66)
|4 Zizl ti Ai

I}
Considering element thicknesses as the design variables is not the only possible ap-
proach in thickness optimization. One may instead, consider nodal thicknesses as the
design variables, which has the advantage of leading to a smooth thickness profile.
However in that case, the related equations are more complicated, since each design
variable is connected to more than one element.

In this study, the optimal shape after performing the thickness optimization is
smoothed by passing to nodal thicknesses. The thickness of the plate at each node
is found by taking the average of the thicknesses of all elements connected to that
node. Then, a smooth thickness profile is created by linear interpolation using nodal
thicknesses.

Thickness optimization of plates, can be used to identify the potential places for
adding stiffeners. To do so, first thickness optimization is performed, then regions

where elements have higher thickness values are identified as potential rib locations.

Finally, stiffeners with variable height according to the results found in the first step,
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Figure 4.6: Identifying potential locations for stiffeners using thickness optimization.

are added to the plate with constant thickness. Height of the ribs vary proportional to
the obtained thickness distribution, but not more than a maximum value considered
in the design constraint. Thickness of the plate and stiffeners are found such that the
constant volume constraint is satisfied. The whole process may be repeated to find
additional stiffeners.

As an example, Figure 4.6 shows how the potential locations for adding the stiff-
eners are found for a simple plate. Variation of the thickness after performing the
thickness optimization is shown by thickness contours. Considering the cross sections

of the plate at different locations, one can identify the locations of the local maximum
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thickness at each section. The lines which connect these points of local maximum
thickness are called the “lines of maximum thickness”, and are selected as the poten-
tial locations for stiffeners. Any design constraint or limitation is also considered in
locating the stiffeners. The locations and the directions of the sections are arbitrary,
and usually they are selected by the designer in a way to perform the design with the
least number of sections. Obviously, the final design may not be completely unique,
and will somehow depend on the designer’s point of view.

This method is similar to the one used by Stok and Mihelic [142], and Lam and
Santhikumar [145], except that in their studies “Uniform Strain Energy Density”
(USED) criterion was used instead of UASEV. As mentioned before, it is important to
note that using USED criterion instead of UASEV in general case of the combination
of membrane and bending deformations is unjustified and generates erroneous results,
and only in case of pure membrane or pure bending behavior the results are the same.

In topology optimization the checker board pattern, which is an unnatural result
with artificially high stiffness may frequently happen [153, 154]. Several techniques
have been proposed to avoid the checker board pattern as an optimal solution [155,
156, 157]. In this study we use a simple procedure similar to the one used by Géspar et
al. [158], in which a primary meshing is subdivided into further finite elements called
secondary elements. Here, first a primary mesh is considered with square elements
and then each square in the primary mesh is divided into two triangular elements.
The new thickness of each square in the primary mesh (after each iteration) is found

by taking the average of the new thicknesses of its two triangular elements.
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Figure 4.7: Primary buckling modes of a stiffened panel subject to compressive loads
[159].

4.8 Shape optimization of stiffened panels consid-

ering local buckling

In this section the shape optimization methodology is modified to consider the effect of
local buckling in stiffened panels. First, buckling modes in stiffened panels are briefly
investigated, and then a method is presented to modify the optimization solution

strategy to consider the local buckling in stiffened panels.

4.8.1 Buckling modes of stiffened panels

Figure 4.7 shows the buckling modes of a typical stiffened panel. According to Ref.

[159], the primary failure modes for a stiffened panel subject to compressive loads are
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categorized into the following six groups:

Mode 1: Overall (global) buckling of the plate and stiffeners- Figure 4.7(a). This
mode typically happens when the stiffeners are relatively weak, and as a result they
buckle together with the plate.

Mode 2: Local buckling of the plate between the stiffeners- Figure 4.7(b). In
this mode the panel collapses due to the local buckling and consequently yielding of
the plate between the stiffeners.

Mode 3: Beam-column type buckling of the combination of stiffener and effective
plate- Figure 4.7(c). In this mode the failure happens by beam-column type collapse
of the combination of stiffener and the associated effective (reduced) plate.

Mode 4: Local buckling of the stiffener web- Figure 4.7(d). This mode is usually
called a “Stiffener-induced failure”.

Mode 5: Lateral-torsional buckling of the stiffener web- Figure 4.7(e). This
mode is similar to mode 4 except that buckling of the stiffener is a lateral-torsional
(tripping) buckling.

Modes 4 and 5 typically happen when the height to thickness ratio of the stiffener
web is too large and/or when the stiffener flange (e.g. in “Z” stiffeners) is inadequate
to keep it straight.

Mode 6: Entire yielding of the panel cross section. This mode usually happens
when the panel slenderness is very small or when the panel is subjected to the tensile
load. In this case the panel cross section yields entirely, without any local or overall
buckling.

Most studies consider only one or two forms of buckling (buckling modes) since
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Figure 4.8: Behavior of the perfect and imperfect stiffened panels.

considering all possible mode shapes in nonlinear analysis of stiffened panels (partic-
ularly during the iterative process of optimization) is a complex and time—consuming
task. In this study, before performing each nonlinear analysis, the buckling mode
corresponding to the lowest buckling load is found using a linear eigenvalue analysis,
and then an imperfection similar to that mode shape is considered in the nonlinear
analysis of the stiffened panel. This procedure along with optimization methodology

is explained in the next section.

4.8.2 Bifurcation buckling and modification of the optimiza-
tion algorithm

Figure 4.8 shows the behavior of the perfect and imperfect stiffened panels, under

axial loads. In a perfect structure, the equilibrium path reaches to a bifurcation point

and follows the second branch as the nonlinear post-buckling deformations. In case
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that the structure is not perfect, the equilibrium path falls bellow that curve with a
margin depending on the amount of imperfection.

Two forms of the bifurcation points are usually observed in equilibrium paths.
First type which has been depicted in Figure 4.8(a,b) is called symmetric bifurcation,
in which the behavior or strength of the structure does not depend on the direction
of imperfection. In this case (which usually happens in buckling modes 2, 4, and 5)
a small imperfection similar to the buckling mode (with either positive or negative
sign) leads to the correct result for the imperfect structure. The second form of the
bifurcation point is usually observed in global buckling (and also mode 3), where the
direction of the global bending makes difference in the behavior, and consequently
strength of the structure, as shown in Figure 4.8(c). In this case, usually two analysis
are necessary for the imperfect structure, with small imperfections in the positive
and negative directions.

Figure 4.9(a) shows a typical algorithm for optimization of structures with geo-
metric nonlinearity. The optimization process usually starts with nonlinear analysis
of an initial design. In the next step, optimization is performed and design variables
are modified, leading to a new design. The whole process is repeated until conver-
gence is achieved. As mentioned before, this algorithm is very time consuming, since
an iterative process (nonlinear finite element analysis) has to be performed inside
another iterative process (nonlinear optimization problem). Obviously performing
nonlinear finite element analysis (NFEA) for all the possible buckling modes (dur-
ing each optimization iteration) makes the complex task of optimization even more

complex and practically impossible to perform. As a result, a criterion should be
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Figure 4.9: Algorithms for optimization of nonlinear structures.

employed to efficiently find the appropriate buckling mode and select that as the
imperfection shape before each NFEA.

Figure 4.9(b) shows how the optimization algorithm can be modified to consider
the effect of initial imperfections and buckling modes. Before each NFEA, a lin-
ear eigenvalue analysis is performed and linear buckling mode shapes of the perfect
structure are found. Then, a small imperfection similar to the buckling mode shape
corresponding to the lowest buckling load (load Pp in Figure 4.8(a,b)) is considered
in the NFEA. Performing the NFEA, the critical load of the structure is then con-
sidered as P., = P;, where P, is the limit load of the imperfect structure. Using this
methodology, NFEA is performed only for the first buckling mode in each iteration
of the optimization process, and also mode switching due to the change of the shape
(during the optimization process) can be captured.

It should be mentioned that if stress or displacement constraint is also considered

in the optimization process, the critical load should be reduced to the load corre-
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Figure 4.10: Discretized panel module used in finite element analysis.

sponding the allowable stress or displacement, if that constraint becomes active prior
the stability constraint.

In order to simplify the process, instead of the whole structure a single module of
the stiffened panel with appropriate boundary conditions is considered (Figure 4.10).
This model has already been used in Ref. [160], and has been proven to be accurate
enough. Buckling mode shapes of the single module are found by performing the

following familiar eigenvalue analysis:

([K] + M{I))9: = 0 (4.67)

where [K] and [K,] are the stiffness and stress stiffness matrixes in the global co-

ordinate system, respectively, and 1J; represents the i

buckling mode shape. The
1¥; corresponding to the smallest \; is the first buckling mode, and is selected as the

initial imperfection in NFEA.
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Chapter 5

Numerical Examples

A set of problems on geometrically nonlinear static analysis, and shape optimization
of thin-walled structures were solved in order to demonstrate the accuracy of the
proposed flat shell element, and developed optimization methodologies. The results
presented in this chapter are categorized in different sections, and are compared with
those available in the literature using other elements, analyses, or design optimization

techniques.

5.1 Validation of the proposed shell element for

thin-walled structures

In this section some of the popularly employed geometric nonlinear benchmark prob-
lems are selected to evaluate the accuracy of the new shell element for thin-walled
structures. The corotational approach with Newton-Raphson technique along with
the load control method and convergence criterion based on incremental displacement
(with 4 = 107*) is used for these examples. In each example, load steps are depicted

on the load-displacement path.
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Figure 5.1: Cantilever plate subjected to end moment,

5.1.1 Cantilever plate subjected to end moment

A cantilever plate with length L = 60 ¢m, width b = 30 ¢m, and thickness ¢ = 0.1 cm
made of an isotropic material and subjected to an end moment is considered (Figure
5.1). Due to the applied end moment M, the cantilever forms a circular arc with
radius R equal to EoI/M(1 — 1?) and central angle § equal to £. Thus, one can
show that the transverse tip deflection can be computed by the following analytical
formula:

E.I ML(1—1v?)

1 —cos—————=) (5.1)

NV = — sy = —
W = R(1 — cost) M= 1/2)( il

The plate is modeled by 144 triangular flat shell elements (developed in this study)

38



and the end moment M = 5644.5 N.cm is applied in 25 equal steps. Figure 5.1 plots
the transverse tip deflection W against the end moment M. Analysis is done by total
number of 147 iterations (almost 6 iterations per load step). As it can be realized,

the result is in complete agreement with the analytical solution.
5.1.2 Elastica problem

Figure 5.2 shows a cantilever plate with length L = 10 ¢m, width b = 1 ¢m, and
thickness ¢ = 0.1 c¢m subjected to axial compression force at its free end. This
problem which is one of the earliest examples of post buckling analysis, has been
investigated in detail in Ref. [161]. The problem was originally investigated for
columns, but it can be used to evaluate the developed shell element as well. The
contribution of Poisson’s ratio is neglected by considering v = 0. The analytical

linear buckling load is F,, = ”zfé’l

= 40.3416 N. Linear buckling analysis using the

proposed shell element also gives almost the same value F,,. = 40.3544 N.
Considering any value for the angle o and neglecting the axial deformation, the

following expressions have been derived [161] to find the tip coordinates, X4, Y,

versus applied force P:

1 /2
0 4\/1— P2sin’¢p
) /2 —
X4 = E/ \/1—P2sin’¢ . dp | — L (5.2)
Jo

2P
YA:?

where P = sin(§) and k* = 7.

To evaluate the new shell element in nonlinear analysis, the cantilever plate is
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Figure 5.2: Elastica problem

modeled using 40 triangular elements, and 10 Kgf = 98.1 N axial force is applied in
20 equal steps. Since the plate is initially completely flat, it is necessary to consider a
very small imperfection to start the lateral deflection. Figure 5.2 shows the deflections
at the tip against the applied load, when a quadratic imperfection with the maximum
value of 0.1 em at the tip is considered. Analysis is performed by total number of 135
iterations (almost 7 iterations per load step). The difference between the analytical
solution and the results based on the proposed shell element is very small. It should
be noted that the nonlinear response is dependent on the amount of imperfection

particularly for pre-buckling part of the graph.

5.1.3 Cantilever plate subjected to end shear force

Figure 5.3 shows a cantilever plate with dimensions similar to those of the one in
the Elastica problem (section 5.1.2) but with different material properties, subjected

to the end shear force. Similar to the Elastica problem, it is possible to derive an
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expression for the tip deflections at any load level, neglecting the axial deformation:

do
E,JJ—=M=-Pzx .
[ds (5.3)

Differentiating both sides with respect to s yields

2
E I(ji—f = —Pcos¢ (5.4)
or
d*¢ 0
Fr —k*cos (5.5)
where k2 = EL Now, integrating both sides of Equation (5.5) with respect to ¢, we
have
d2
/ o (f dp = —k? / cosg.de (5.6)
or
d*¢ d '
/Eg d—f ds = k2/005¢.d¢ (5.7)
Thus
1 [ d (dp\°
-2-/—&; (£> ds = —k2/005¢.d¢ (5.8)
or
1 (do\? 5
5 E = —k Sln(b “+c (59)

At x =0 we have M =0, ‘;—f:(), ¢ = « therefore
c = k’sina (5.10)

Now, substituting Equation (5.10) into Equation (5.9) yields:

2
(%) = 2k? (sina — sing) (5.11)
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Figure 5.3: Cantilever plate subjected to end shear force

Since %f < 0, we conclude that

ds = o (5.12)

kv/2./sino — sing

Finally

- 0 e 1 @ do
L_/ads_/o(_ds)_k\/i/o Vsino — sing

_ ’ _ K N 1 ¢ cospdp
XA_/a dxm/a ds.cosd)—/o (—ds).cosp = w5 Ve g (5.13)

0 0 @ 1 (% singdd
. /a Y /a 551 /0 (=ds).siné k2 Jo Vsina — sing

P

2 _
where k* = -

For the finite element simulation, the cantilever plate is modeled with 40 shell
elements and 4 Kgf = 39.24 N shear force is applied in 20 steps at the tip. Analysis
is performed by 104 iterations (almost 5 iterations per load step). The results are
shown in Figure 5.3 in which analytical solution is compared with finite element

solution based on the developed shell element.
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Figure 5.4: Cantilever subjected to end in-plane shear force
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5.1.4 Cantilever subjected to end in-plane shear force

In order to compare the response of a structure modeled by different membrane
elements, a cantilever beam subjected to end in-plane shear force is considered in
Figure 5.4. It should be noted that this example does not fall into the category of
“large displacements and rotations—small strains”, but as long as the strains remain
in the range of small strains (i.e. less than 5%) it is possible to use the proposed
approach. Also material nonlinearity is not considered in this example, which means
that we assume only elastic strains. Four different mesh configurations with 21, 40,
60 and 80 elements are used, and load F' = 6000 N is applied in 6 steps at the tip.
Nonlinear behaviors of different elements are investigated in pure membrane action.
Figure 5.4 shows the tip deflection against the applied load using different membrane
elements. It can be realized that different mesh configurations have insignificant
effect on the result obtained by the proposed new element. The same analysis using
LST(Ret) and Allman(3M) membrane elements shows that by increasing the number
of elements, the nonlinear response approaches to the same final result but they
converge slower than the proposed element. This example shows the efficiency of the
proposed element in geometrical nonlinear problems compared to the other membrane

elements.

5.1.5 Cantilever isotropic angle subjected to end shear force

Figure 5.5 shows a cantilever angle subjected to end shear force. The beam is modeled
with 160 triangular elements, and load F' = 1200 N is applied in 6 steps at the tip. Tip

deflections obtained using the new shell element are compared with those obtained
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Figure 5.5: Cantilever angle subjected to end shear force

with LST(Ret) and Allman membrane elements combined with DKT plate bending
element. It is again observed that the choice of the membrane element affects the

response of the structure significantly.

5.1.6 Cantilever stiffened plate subjected to end shear force

Figure 5.6 shows a cantilever stiffened plate subjected to end shear. The structure
is modeled with 320 triangular elements, and load F = 2400 N is applied in 6
steps at the tip. The result obtained by the new shell element is compared with
the one obtained using DKT element combined with the Allman(3M) and LST(Ret)
membrane elements. In all the cases the same imperfection is considered in the form
of a half sine wave with the maximum value of 1 mm at the middle of the free edges

of the stiffeners. Since most of the bending resistance is provided by the membrane
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action in the stiffener plates, the choice of the membrane element can affect the results
significantly. It is observed that use of Allman element leads to significant errors in

the computed response of the structure. The error is less in the case of LST(Ret).

5.2 Validation of the proposed shell element for

thick structures

In this section, some example structures with geometric nonlinearity are analyzed
using the proposed element for thick structures, and the results are compared with
those obtained using Allman(3M) and LST(Ret) membrane elements combined with
the same DKMT plate bending element. To trace the complete load-displacement
curve in the following examples, corotational approach with Newton-Raphson tech-

nique combined with the arc length method [162, 163] and convergence criterion on
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Figure 5.7: Response of the square unsymmetric [0/90]z laminate subjected to shear

and biaxial compression.

incremental displacement is used. In each example, load steps are depicted on the
load—displacement path. Fiber angles in composite laminates are measured from the
x axis shown in the figures.
5.2.1 Square unsymmetric laminate with simple supports
subjected to shear and biaxial compression

Figure 5.7 shows a simply supported unsymmetric laminate [0/90]s, under in-plane
loading Ny = N, = N . The dimensions of the laminate are 27.9 cm x 27.9 em X
0.216 ¢m and it is made of 16 layers of graphite-epoxy material with the following
mechanical properties:
E,=13258 GPa, Fy = 10.8 GPa, G, = G13 = 5.7GPa
Go3 =34 GPa, i3 =113 =024, vy3 =0.49

The plate is modeled by 200 triangular elements, and X displacements along the
edge (z = 0) and Y displacements along the edge (y = 0) are constrained. The other
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two edges are free to move in the x and y directions. Z displacement along all the four
edges is constrained. The linear buckling analysis with the proposed shell element
gives the value (N7 = Np = N7 )., = 83.28 N/cm for the critical buckling load.

Using corotational approach and proposed thick shell element, the nonlinear
analysis is performed and the load—deflection path is found for this plate. Due to
the coupling effect between membrane and bending modes, this unsymmetric lami-
nate deforms in-plane and out-of-plane simultaneously and no imperfection is needed
to start the lateral deformation. The variation of the central deflection against the
applied loads is plotted and compared with those obtained using LST(Ret) and All-
man(3M) membrane elements combined with DKMT plate bending element. It is
observed that in the pre-buckling part of the nonlinear curve, there is no significant
difference between the results obtained by different membrane elements combined
with DKMT. However, in the post—buckling part of the response, where membrane
forces are larger, the result found by Allman(3M) combined with DKMT becomes
less accurate.

For this example, results of the analysis using the proposed thin shell element are

found to be the same as those shown in Figure 5.7, which indicates that in this case,

DKMT coincides with DKT due to negligible eftect of shear deformation.

5.2.2 Cantilever laminated angle subjected to end shear force

Figure 5.8 shows a cantilever angle subjected to end shear force F. The beam is made
of [(0/90)4]s composite laminate with mechanical properties similar to those in the

previous example (section 5.2.1). Tip deflections obtained using the proposed thick
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Figure 5.8: Cantilever laminated angle subjected to end shear force.

shell element are compared with those obtained using LST(Ret) and Allman(3M)
membrane elements combined with DKMT. Two different meshes with 40 and 160
elements are considered in the analysis and results are shown in Figure 5.9 for each
mesh. It is observed that the choice of the membrane element has a significant effect
on the response of this structure. Interestingly, the results found by the proposed
element are very close for two different meshes, and other elements lead to almost
the same result when a fine mesh is used. It is concluded that the result found by the
proposed element when a coarse mesh is used is the most reliable one. It should be
mentioned that in this case as well, using DKT instead of DKMT leads to the same

results due to negligible effect of shear deformation.

5.2.3 Thick cantilever beam subjected to end shear force

A thick beam with length L = 20 ¢m, thickness h = 4 ¢m and width b = 0.1 em is
considered under the tip load F. The beam is modeled with 160 optimal membrane
elements (OPT), as shown in Figure 5.10, case(I). In order to eliminate the effect

of mesh orientation, two different meshes are considered. A similar beam with the
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Figure 5.9: Response of the cantilever laminated angle (at the tip corner where the

load is applied) subjected to end shear force modeled by 40 and 160 elements.
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Figure 5.10: Thick cantilever beams modeled by triangular shell elements.

same length and thickness but different width b = 2 ¢m is also modeled by 20 trian-
gular shell elements as shown in Figure 5.10, case(II). Two different shell elements
(DKT+OPT) and (DKMT+OPT) are considered and for both cases (I) and (II), W
is found by the relation W = (W; + W) /2.

Although the width of the beams in cases (I) and (II) are different, it is obvious
that F'/b, or load per unit width of each beam, should be the same at any tip deflection
W. Figure 5.11 shows that the result found by the proposed thick shell element
(DKMT+OPT) is almost the same as the result found for case (I) which means that

the proposed thick shell element is capable to model the shear effect, accurately.
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Figure 5.11: Nonlinear response of the thick cantilever plates.

5.2.4 Shallow shell under uniformly distributed transverse
load

In this example, a shallow shell with dimensions shown in Figure 5.12 is considered
under downward uniformly distributed load ¢. The shell is made of unidirectional
laminate with 40 layers, and mechanical properties similar to those in the previous
examples. Although the length to thickness ratio of this shell is about 37 but due
to the high ratio of E;/G;3 in this unidirectional laminate, it is predicted that shear
deformations are considerable. Two different meshes with 40 and 320 elements are
considered, and the deflection of the center of the shell is obtained using different
combinations of membrane and bending elements (Figure 5.13). In each case, limit
and bifurcation points are also found and shown in the figure.

It is observed that again, the result found by the proposed element are very
close for two different meshes, and other combinations of the membrane and bending

elements converge to the same result when a fine mesh is used. The same structure
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Figure 5.12: Shallow shell under downward uniformly distributed load.
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Figure 5.13: Response of the shallow shell modeled by 40 and 320 elements.
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with fine mesh is also analyzed using DKT instead of DKMT, and the result for
(DKT+OPT) is shown as a sample. As it was already predicted, in this case using
DKT instead of DKMT leads to erroneous results for limit and bifurcation points

which confirms the significant effect of shear deformations.

5.3 Numerical results for shape optimization

In order to demonstrate the efficiency and accuracy of the proposed design optimiza-
tion methodology, some illustrative examples are presented considering stability or
displacement constraints. Accuracy of the proposed algorithm is compared to that
of the SQP (Sequential Quadratic Programming) gradient based method. Regarding
the sensitivity analysis, since the main idea is to only evaluate the accuracy of the
proposed method by comparing its results with that of the gradient based methods,
finite difference method (FDM) is used as an alternative approach for sensitivity

analysis in the SQP method.

5.3.1 Shape optimization of a shallow spherical shell: mass
minimization subject to the constant load
Figure 5.14 shows a shallow spherical shell with overall thickness ¢ subjected to a
8000 N downward load at the apex. The optimization problem is to minimize the
total mass of the shell subject to stability constraint. This means that F.,. in the
optimum design should be equal or very close to (but more than) 8000 N. The shell
is modeled with 144 proposed triangular shell elements and due to symmetry, only a
quarter of the shell is analyzed. Design variables are the thickness ¢, and the shape

design variables hy, hs, and hs. The initial values for h;, hs, and hs are considered
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Figure 5.14: Shallow spherical shell subject to transverse load

60.00 mm, 53.56 mm and 33.92 mm, respectively. Initial value t = 3.3 mm is
considered for the overall thickness of the shell. Initial total mass is equal to M =
2.7110 Kg for the mass density of 2800 Kg/m?®. Optimization procedure starts by
changing the nodal positions in vertical direction and considering step size parameter
r = 10. Three regions have been considered (h > hy, hy > h > hs, hg > h),
and average strain energy density in each region has been considered in optimization
process.

Figure 5.15 shows the results of optimization (optimum shape, bending energy
ratio and mass iteration histories) based on the proposed optimality criteria in section
4.6. In this analysis, the design is scaled at each iteration by changing the overall
thickness of the shell, and the thickness is selected in mm to 1 decimal place. In the
third iteration the bending energy ratio increases, which means that the change in the

thickness due to the design scaling is not in the proper direction towards the optimal
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Figure 5.15: Optimum shape, and variation of the mass and bending energy ratio for

the dome shell (thickness scaling)

design. As a result, the analysis should be continued with the previous thickness, but
it is not possible because of the stability constraint. Thus the analysis terminates

and the minimum mass M = 0.4844 K g is achieved in the second iteration.

5.3.2 Width optimization of a cantilever plate: mass mini-
mization subject to the constant load

In this example the proposed optimality criterion in section 4.6 is used to optimize

a plate with displacement constraint. A cantilever plate with end load F' = 200 N is

shown in Figure 5.16, and the objective is to optimize the width of the plate in order

to minimize the mass subject to a displacement constraint W < 50 ¢m at the tip.

The initial dimensions 9 cm x 100 cm and thickness ¢ = 4 mm are considered for the

plate. The initial total mass of the plate considering mass density of p = 7850 Kg/m?
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Figure 5.16: Cantilever plate with end load

is M = 2.8260 Kg. The plate is modeled with 40 propbsed triangular shell elements,
and due to symmetry only half of the plate is analyzed. The width of the plate at
each station is considered as the shape design variable and design scaling is done by
multiplying the width of the plate at every point by a scaling factor. The step size
parameter is considered as r = 10.

Figure 5.17 shows the optimum shape and variation of p é; over the length of the
cantilever plate before and after optimization. It can be seen that the total mass
decreases to M = 2.0116 K g while the average strain energy density approaches the

uniform distribution.
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Figure 5.17: Optimum shape and variation of the mass and energy density for the

cantilever plate
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Figure 5.18: Shallow arch under downward loads

108



5.3.3 Width optimization of a shallow arch: mass minimiza-
tion subject to the constant load

Figure 5.18 shows a shallow shell with thickness ¢ = 20 mm subjected to eleven
equally spaced concentrated vertical loads, each one equal to F' = 8000 N. Opti-
mization problem is to find the best shape (by varying the width of the arch, and
without any change in the thickness) in order to have minimum mass subject to the
stability constraint. The plate is modeled with 40 proposed triangular shell elements
and due to symmetry, only a quarter of the plate is analyzed. Step size parameter
r = 2 is considered in analysis. The width of the shell at each station with initial
value W = 100 c¢m is considered as the shape design variable, and design scaling is
performed by changing the width of the shell at each point.

Figure 5.19 shows the result obtained by the proposed optimality criterion in
section 4.6 compared to the one obtained by Sequential Quadratic Programming
(SQP) method. Starting with the initial mass M = 1611.12 K g, the minimum mass
obtained by the proposed method after 8 iterations and performing 8 nonlinear analy-
sis is M = 1226.30 K¢. Optimization by Sequential Quadratic Programming (SQP)
method leads to a smaller mass equal to M = 1213.10 K g, but it requires 18 optimiza-
tion iterations and 161 nonlinear analyzes. It may be seen that using the proposed
design optimization methodology, one can efficiently obtain the optimum solution
with an acceptable accuracy without any need to perform the time—consuming task

of sensitivity analysis.
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Figure 5.19: Optimum shapes and variation of the mass for shallow shell (present
study vs SQP method )
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Figure 5.20: Shallow arch subjected to concentrated vertical loads.
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SQP Method

This study

Figure 5.21: Optimum results of the thickness optimization (e¢m) for the shallow arch
of Figure 5.20 subject to the constant mass (thicknesses have been exaggerated for
better view.)

5.3.4 Thickness optimization of a shallow arch: limit load
maximization subject to the constant mass

Figure 5.20 shows a shallow arch similar to the one in the previous example but with
thickness t = 1 cm subjected to eleven equal concentrated vertical loads F. The top
of the arch is constrained such that only vertical movement is allowed. Optimization
problem is to find the optimum thickness distribution in order to maximize the critical
load subject to constant mass. The arch is modeled with 320 proposed triangular
shell elements and due to symmetry, only a quarter of the arch is analyzed. Analysis
is performed using five design variables t1, t5, ..., {5 for thickness values as shown in
Figure 5.20, and r = 10 is considered as the step size parameter. Mass equality
constraint is satisfied after each iteration by scaling the design variables using a
scale factor. Analysis of the initial design (t; = t3 = ... = {5 = 1 ¢m) leads to
F,.. =1137.02 N as the critical load.

Figures 5.21 and 5.22 show the optimum results obtained by this study (proposed

optimality criterion in section 4.5) compared to those obtained by using the Sequential
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Figure 5.22: Variation of the critical load (limit load) during the thickness optimiza-
tion for the shallow arch of Figure 5.20.
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Figure 5.23: Variation of € during the thickness optimization for the shallow arch of
Figure 5.20.
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Figure 5.24: Shallow arch made of two different materials under top concentrated

vertical loads.

Quadratic Programming (SQP) method. Since the lateral movement at the top of the
arch is constrained, no bifurcation in the form of sideways deformation is observed,
and the critical load is found to be only in the form of limit load (snap-through). It
can be seen in Figure 5.22 that SQP method leads to a slightly higher critical load
(F., = 1356.40 N) but it needs more iterations compared to the proposed method,
which leads to F,, = 1349.69 N at the optimum point. Figure 5.23 shows the values of

€ before and after optimization, confirming that € approaches a uniform distribution.

5.3.5 Width optimization of a shallow arch: bifurcation load
maximization subject to the constant mass

In this example, a shallow arch similar to those in the previous examples, but with

different dimensions and material properties, is considered again (Figure 5.24). This

time, optimization is performed to find the optimum width for the arch at different

stations in order to maximize the critical load subject to constant total mass. The
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Figure 5.25: Limit and bifurcation points for the shallow arch in Figure 5.24 (before

optimization.)

arch is made of two types of plastic with the following mechanical properties:

Typel : E =0.90GPa; G =042 GPa; v=0.42; p=0.89 gr/cm?

Type2: E =1.50GPa; G = 0.60 GPa; v=0.42; p =1.40 gr/cm?

Analysis is performed using r = 2 as the step size parameter. By linking design
variables in order to maintain the symmetry, six design variables Sy, 5, ...,Sg for
the width of the arch at different stations are considered, as shown in Figure 5.24.

Figure 5.25 shows the load—deflection (equilibrium) path for the arch before op-
timization. As it is seen, a critical point in the form of bifurcation happens at load
F.. = 6.95 N which is less than the limit load. Selecting the bifurcation load as the
load carrying capacity of the structure, the proposed optimality criterion in section
4.5 is employed to optimize the width and maximize this bifurcation load. Figures
5.26 and 5.27 compare the results obtained by using the proposed optimality criterion
method with those obtained by using the sequential quadratic programming (SQP)

method. Again, it can be seen that the proposed method leads to almost the same
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Figure 5.26: Results of the shape (width) optimization for the shallow arch in Figure

5.24 subject to constant mass.
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Figure 5.27: Variation of the critical load (bifurcation load) during the width opti-
mization for the shallow arch in Figure 5.24.

optimum shape and critical load (F,, = 8.06 N) in much less number of iterations
compared to the SQP method (which leads to Fi, = 8.17 N), without any need to

perform the time-consuming task of sensitivity analysis at every iteration.
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Figure 5.28: Cantilever plate subject to axial and shear forces at the tip.

5.3.6 Thickness optimization of a cantilever plate: load max-
imization subject to the constant mass

Figure 5.28 shows a cantilever plate subject to the shear load F' and axial force
P = 20F at the tip. Dimensions of the plate are 40 ¢m x 4 ¢m with overall thickness
t = 0.4 em, and it is made of isotropic material (steel) with the following mechanical
properties:

E, =200 GPa, G =771 GPa, v =0.3

The objective is to perform the thickness optimization in order to maximize the
load capacity F' subject to the constant volume or mass. In this example the load
capacity I’ is found based on the displacement W = 1 cm, where W is the vertical
deflection at the tip of the plate. The plate is modeled by 40 proposed triangular
shell elements, and due to the symmetry only half of the plate is analyzed.

Nonlinear analysis results in F' = 49.81 N as the initial load capacity of the plate.
Figure 5.29 shows the results of thickness optimization subject to constant volume,

using UASEV and also USED criteria. In both cases, convergence is achieved in 5
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Figure 5.31: Square plate with simple supports subjected to biaxial compressive
forces.

iterations, with » = 2 as the step size parameter. Nonlinear behavior of the plate
optimized by UASEV and USED criteria is also shown in Figure 5.30.

It is observed that optimization using the UASEV criterion increases the load
capacity of the plate to F' = 150.36 N, compared to ' = 131.16 N obtained by
using USED criterion. In Figure 5.30, it is interesting to note that in the range of
W < 0.75 em, the load capacity of the plate optimized by UASEV criterion is slightly
less than that of the one optimized by USED, however since the optimality criteria
are applied at the limit point (i.e. W =1 em) UASEV finally overcomes USED and

leads to a higher load capacity.

5.3.7 Thickness optimization of a simply supported square

plate: load maximization subject to the constant mass

Figure 5.31 shows a simply supported square plate under the biaxial compressive edge

forces N, = N,. Dimensions of the plate are 80 cm x 80 em with overall thickness
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Figure 5.32: Results of thickness optimization (¢m) for a quarter of the plate shown
in Figure 5.31: (a) UASEV criterion. (b) USED criterion.

t = 0.4 cm, and it is made of isotropic material (steel) with the following mechanical
properties:

E, =200 GPa, G =77 GPa, v=0.3

In order to initiate the lateral deflection, an imperfection in the form of a half sine
wave with the maximum value 1 mm at the center of the plate is considered. The
objective is to optimize the thickness of the plate, while having the same total volume
or mass, in order to maximize the load capacity for W = 0.4 ¢m, where W is the
vertical deflection at the center of the plate. The plate is modeled by 800 proposed
triangular shell elements, and due to the symmetry only a quarter of the plate is
analyzed. Performing the nonlinear analysis results in N, = N, = 369.5 N/cm as
the initial load capacity of this plate.

Figure 5.32(a,b) shows the results of thickness optimization subject to constant
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Figure 5.33: Change of load carrying capacity of the plate shown in Figure 5.31
during the thickness optimization using USED and UASEV criteria.

volume for a quarter of the plate using UASEV and USED criteria in 8 iterations,
respectively. In both cases r = 4 has been considered as the step size parameter. It is
observed that optimization based on USED criterion tends to reduce the thickness in
the middle of the plate and to increase it on the corners and mid-sides, while UASEV
criterion tends to reduce the thickness on the mid-sides and to increase it on the
corners and somewhat in the middle. Figure 5.33 shows the change of load carrying
capacity of the plate, during the thickness optimization. Nonlinear analysis of optimal
plate shows that the load capacity has been increased to N, = N, = 584.3 N/em, and
Ny = N, = 509.2 N/cm for UASEV and USED criteria, respectively, while having
the same total volume. Although using any one of these two criteria increases the
strength (or load capacity) of the plate, it is obvious that UASEV criterion is more

efficient than USED.
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Figure 5.34: Square plate with a square hole in the center, and simple supports,
subjected to biaxial compressive forces.

5.3.8 Thickness optimization and rib location for a simply
supported square plate with square hole: load maxi-
mization subject to the constant mass

In this example the application of the UASEV criterion is shown for thickness opti-

mization, and subsequently potential stiffener location for a stiffened plate. Figure

5.34 shows a 80 cm x 80 cm simply supported square plate with overall thickness

t = 0.4 em and a 24 e¢m X 24 ¢m square hole in the center. Loading and mater-

ial properties are similar to those in the previous example (section 5.3.7). Also, an

imperfection in the form of a half sine wave with the value of 1 mm around the cen-
tral hole is considered to initiate the lateral deflection. The objective is to optimize
the thickness and find the potential stiffener locations subject to constant volume
or mass, in order to maximize the load capacity for W = 0.4 ¢m, where W is the

deflection at the midpoint of the hole edges. In this example, the following design
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Figure 5.35: Result of thickness optimization (e¢m) for a quarter of the plate shown
in Figure 5.34. Thicknesses of the sections have been exaggerated for better view.

constraints should also be satisfied for the final design:

e Maximum height of the stiffeners= 5 em.

e Same thickness for the stiffeners and the plate in the final design.

Similar to the previous example, a quarter of the plate is modeled by 182 proposed
triangular shell elements. Although usually in finite element analysis a finer mesh
is used near notches and holes, a uniform mesh is used in this example to avoid
computational difficulties due to large number of elements. Performing the nonlinear
analysis results in N, = N, = 290.8 N/cm as the load capacity of this plate for
W = 0.4 c¢m. Thickness optimization is performed using UASEV criterion with

r = 4 as the step size parameter. Iterative process converged after 9 iterations.
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Figure 5.36: A quarter of the plate shown in Figure 5.34 with stiffeners at potential
locations. Numbers show the height of the stiffeners (cm).

Variation of the thickness for a quarter of the plate found based on the results of
thickness optimization subject to constant total volume, is shown in Figure 5.35.
Load carrying capacity of the plate after performing the thickness optimization, has
increased to Ny = N, = 654.3 N/cm.

Based on this shape, and predefined design constraints mentioned above, stiffeners
are located on the lines of maximum thicknesses (as shown in Figure 5.36) on a plate
with constant thickness. Height of the stiffeners are proportional to the thickness of
the elements, with the maximum value of 5 em according to the first design constraint.
Keeping the total volume equal to the initial volume 2329.6 ¢m?, and considering
the same thickness for stiffeners and plate (as per the second design constraint)
a new overall thickness of ¢ = 0.36 ¢m is found for the plate and the stiffeners.
Nonlinear analysis of this stiffened plate shows that the load capacity has increased
to N, = N, = 560.4 N/cm compared to N, = N, = 290.8 N/cm for the initial
plate, however it has reduced compared to N, = N, = 654.3 N/em for the plate with

optimized thickness.
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5.3.9 Thickness optimization and rib location for a simply
supported square plate with square hole under down-
ward surface load: load maximization subject to the
constant mass

A plate similar to the one in Figure 5.34 is considered under the downward surface

load q. Boundary conditions are similar to those in previous example except that

in-plane deflections are not allowed for all four edges. As a result, membrane forces
arise during the deflections due to bending. The objective is to maximize the load
capacity for W = 0.3 em using UASEV criterion, subject to constant total volume or

mass. The following design constraints should also be satisfied at the final optimum

design:
e Maximum height of the stiffeners= 10 cm.
e Thickness of the stiffeners= 0.4 cm.

A quarter of the plate is modeled by 182 proposed triangular shell elements. Nonlinear
analysis results in ¢ = 0.318 N/cm? as the load capacity of this plate. In the next step,
UASEV criterion with r = 4 is employed for thickness optimization. New thickness
distribution and potential locations for stiffeners are shown in Figure 5.37, which are
found after 9 iterations. Load carrying capacity of this plate after performing the
thickness optimization, has increased to q = 0.865 N/cm?.

Figure 5.38 shows the stiffeners located on the the lines of maximum thickness,
with their height proportional to the new thickness of the elements, but not more than
10 ¢m, and their thickness equal to 0.4 ¢m according to the design constraint. Keeping

the total volume equal to the initial volume, a new thickness ¢ = 0.339 = 0.34 c¢m is
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Figure 5.37: Result of thickness optimization (¢m) for a quarter of the plate shown in
Figure 5.34 with hinged supports (v = v = w = 0 at the edges) under the downward

surface pressure load. Thicknesses of the sections have been exaggerated for better

view.

Thickness = 0.34 ¢cm

Figure 5.38: A quarter of the plate in Figure 5.34 with hinged supports under the
downward surface with stiffeners at potential locations. Numbers show the height of

the stiffeners (cm).
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Figure 5.39: A quarter of the plate in Figure 5.34 with hinged supports under the
downward surface and stiffeners at potential locations after the second rounds of rib

locating. Numbers show the height of the stiffeners (c¢m).

found for the plate. Nonlinear analysis shows that the load capacity for W = 0.3 em
has increased to ¢ = 1.26 N/em? compared to ¢ = 0.318 N/cm? for the initial plate,
and compared to g = 0.865 N/cm? for the plate with optimized thickness.

It should be mentioned that once the ribs are placed on a plate, structural behav-
ior of the plate changes considerably. Thus, as mentioned before, it seems appropriate
to repeat the optimization process for the stiffened plate, to obtain any further possi-
ble stiffener locations, and also modify the heights of the previously located stiffeners.
Figure 5.39 shows the result of the optimized plate after the second round of opti-
mization. It may be seen that a new series of stiffeners are found and the heights of
the previous stiffeners have also been modified. Performing nonlinear analysis, the
load capacity of the stiffened plate after the second round of optimization is found

to be ¢ = 1.57 N/cm? compared to q = 1.26 N/cm? after the first round.
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Figure 5.40: Stiffened panel under axial load.

5.4 Shape optimization of stiffened panels consid-

ering local buckling

In this section, two numerical examples are presented. The first example, is basi-
cally a one—variable problem and allows us to focus on the aspects of local buckling
during the change of the shape, without going through the details of optimization
process. The second example is a multi-variable problem which is solved using the
proposed method (section 4.8) to consider local buckling and mode switching during

the optimization process.

5.4.1 One—variable design of a stiffened panel

As the first example, a stiffened panel shown in Figure 5.40 is considered under both
stress and stability constraints. The panel is infinitely wide and only a single module
of the panel with the boundary conditions shown in Figure 4.10 is considered with
the dimensions and material properties given in Figure 5.40. Thickness of the plate

and stiffeners (¢, and t,) are considered as the design variables. The objective is to
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128



maximize the load capacity of a single module of this stiffened panel subject to the
volume equality constraint V = 65820 em?. Stress constraint oy, < 25000 N/cm?
(with oy 5 representing the von Mises stress), and also stability constraint (limit load)
are considered in the design. The inequality side constraint 12 mm < ¢, < 18 mm
is also considered for the plate thickness. This problem may actually be reduced to
a one—variable problem, since the thickness of the stiffener may be obtained when
changing the plate thickness, using the volume equality constraint. Thus, it is possible
to analyze the panel within the range 12 mm <'t, < 18 mm for several thicknesses
of the plate and corresponding stiffener thickness.

Figure 5.41 shows the result of analysis for different values of t,. For each case, the
first bifurcation load (Pg) and the corresponding mode shape are found by the linear
buckling analysis of the single module, as shown in the second column of the table in
the Figure 5.41 (mode shapes A, B and C' are shown in Figure 5.42). Then for each
case, nonlinear analysis is performed considering an imperfection similar to the first
buckling mode, and maximum value of 1 ecm. Load capacity of the imperfect stiffened
panel is found based on the stress and stability constraints, and is shown in the third
column of the table in Figure 5.41 (P,..). It is seen that in this example always a
region in the imperfect structure reaches to the maximum stress prior reaching to
the nonlinear limit load. The region where yielding happens first in the imperfect
structure is mentioned in the third column of the table as (1), (2), or (3), and are also
shown in Figure 5.42. Load capacities (P..) for different designs have been plotted
in Figure 5.41. It is observed that the design with ¢, = 16 mm has the highest load

capacity and is therefor the optimum design.
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As it is seen, for the lower values of ¢, , the stiffened panel fails by local buckling
of the panel, however as t, is increased the buckling mode changes and finally at
t, = 18 mm the structure tends to fail by global buckling. This example shows
that as the shape of the structure changes during optimization process, failure mode
may also change as well, and a single unique failure mode may not be considered

throughout the whole process.

5.4.2 Multi—variable design of a stiffened panel

A stiffened panel similar to the one in the previous example with constant length of
250 ¢m and four design variables b, t,, h, and ¢, is considered. The obhjective is to
maximize the load capacity of this stiffened panel subject to the volume equality and
stability constraints. No stress constraint is considered in the design. Here again,
the first bifurcation load and the corresponding mode shape are found by the linear
buckling analysis of the single module, and then nonlinear analysis is performed
considering a small imperfection similar to the first buckling mode. Optimization is
performed using the gradient-based sequential quadratic programming (SQP) method
of optimization, and sensitivity analysis is performed by the finite difference method.
Figure 5.43 shows the iteration history, along with three sample points A, B, and C.
Optimization process starts with b = 80 cm, t, =1 cm, h = 10 em, t; = 1 cm as the
initial point, and leads to the optimum design with b = 60.287 c¢m, t, = 0.746 cm,
h = 25.015 em, t; = 1.800 ¢m (point C'). Figure 5.44 shows the nonlinear behavior of
three sample points A, B and C'. Again it is seen that a unique failure mode may not

be considered throughout the whole optimization process, and the proposed method
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captures the mode switching which happens during the optimization process due to

the change in shape of the structure.
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Chapter 6

Discussions, Contributions and
Conclusions, Future Work, and
Publications

6.1 Discussions

This study presented an efficient, accurate and robust methodology for nonlinear
analysis and design optimization of thin-walled structures. The proposed optimiza-
tion method seems to be suitable for the cases in which the shape of the structure
can be defined by a few number of design variables, and the nodal positions in the
finite element mesh are linked to the design variables by a suitable relation. It should
be mentioned that structural optimization techniques based on optimality criteria
method may suffer convergence difficulties and other numerical instabilities when
they are applied to the optimum design of large structures. This is why stochastic
search techniques such as genetic algorithm and simulated annealing have recently
found wide application in structural optimization.

It should also be mentioned that recently, some doubts have been raised about the
mathematical convergence of facet elements [164]. In particular, when refining the

mesh, finite element solutions are expected to converge to the exact solution of a well-
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defined mathematical model. However, some numerical experiments have shown that
facet shell elements may not exactly converge when the mesh is refined, although
their results lie within a few percent of the reference values [164]. Tt is believed
that best shell elements are formulated using 3D continuum mechanics incorporating
shell theory assumptions. However, facet element was used in this study due to its
computational efficiency and also since the formulation of corotational approach using
curved elements is extremely difficult to perform and it is not even well developed.
During the nonlinear deformations, plastic zones may appear in the structure
which affects the nonlinear behavior significantly. This study does not consider ma-
terial nonlinearity during deformation. Also in the case of composite structures, local
failures inside the laminate might be initiated if the interlaminar stresses are very
high and allowable strengths of the composite ply are low. Again this study does not

consider the failure of composite materials, during nonlinear deformations.
6.2 Contributions and conclusions

Contributions and conclusions of this study can be categorized into the following two

major groups:

1) Development of the new shell elements, applicable in coroational non-

linear analysis:

e A new thin shell element was formulated based on the combination of DKT
(Discrete Kirchhoff Triangle) plate bending element and OPT (OPTimal) mem-

brane element.
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A new moderately thick shell element was formulated based on the combination
of DKMT (Discrete Kirchhoff-Mindlin Triangle) plate bending element and

OPT (OPTimal) membrane element.

The membrane-bending coupling terms in the stiffness matrix were determined

for the case of laminated composite plates and shells.

Inconsistent stress stiffness was formulated based on the shape functions of

BCIZ plate bending element and LST(Ret) membrane element.

A robust non-linear analysis program based on the corotational method has
been developed and applied on numerous benchmark problems with geometric
non-linearity (large displacements and rotations, and small strains) using new
shell elements. Solutions of these problems showed very good agreement with

the analytical solutions.

Based on the numerical results, it is concluded that using membrane elements
other than OPT usually overestimates the stiffness of the structure and leads to
erroneous results. Based on the results of this study, whenever the membrane
action has a considerable role in providing the stiffness of the structure, the
choice of the membrane element can significantly affect the nonlinear response

of the structure.

It was shown that analysis using the proposed elements will lead to the accurate
result using less number of the elements compared to the other shell elements.
This would be a great advantage when performing nonlinear analysis, since any

reduction in number of elements affects the computational time significantly.
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2) Development of the optimization methodology for shape optimiza-

tion of thin-walled structures with geometric nonlinearity:

e T'wo optimality criteria have been proposed and combined with a geometrically
nonlinear analysis program. The proposed method changes the shape of the
structure so that the average strain energy densities (or average strain energy
variation for the case of thickness optimization) for all design variables become

uniform.

e [t was shown that the proposed method converges to the optimum shape in
less number of iterations compared to the standard gradient-based methods of

optimization without performing the sensitivity analysis.

e It was shown that in general case of the combination of membrane and bending
deformations, using USED criterion instead of UASEYV is unjustified, and only
in case of pure membrane or pure bending behavior results based on USED and

UASEYV criteria are the same.

e A methodology for establishing rib location and design optimization of stiffened
plates based on an optimality criterion for thickness optimization was presented.
Applying the proposed criterion for thickness optimization through an iterative
process, it is possible to find the potential locations to add the stiffeners and

increase the strength of the plate while consuming the same amount of material.

e The effect of local buckling in optimization of stiffened panels was studies and
a robust method of optimization was presented to consider the change of the

buckling mode during the optimization process. In this method always the first
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buckling mode (whether it is local or global) is captured and selected in the
form of an initial imperfection in nonlinear analysis during the optimization

process.

6.3 Future work

The work done in this thesis can be extended in the following directions:

e Dynamic corotational analysis of thin-walled structures:

In this research, dynamic analysis of geometrically nonlinear thin-walled struc-
tures could be formulated using corotational method. Dynamic analysis of
nonlinear structures using this method has not been developed yet. Results of
this study would be extremely useful, since recently corotational method has
gained a lot of popularity and there is an ongoing effort to use this method in

commercial structural analysis codes.

e Nonlinear structural analysis using genetic algorithm:

In traditional methods of nonlinear structural analysis, equilibrium equations
are satisfied by minimization of potential energy through a gradient-based
method (e.g. Newton-Raphson method). As an alternative method, genetic
algorithm may be used for minimization of potential energy. This method may

be used for both geometrically and materially nonlinear structures.

e Design optimization of composite laminated structures using optimality criteria:

In this study, optimality criteria could be presented in order to optimize the

fiber angles and thickness of the layers in composite laminates. Failure of the
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composite laminate as well as geometric nonlinearity could be considered in this

research.

e Optimum design of composite stiffened panels:

In this research, the present study could be extended to stiffened panels made of
composite laminates, and their strength could be maximized subject to local and
global bucklings. Failure of the composite laminate could be also considered in

this study. Applications of this study would be mainly in aerospace industries.

6.4 Publications

The work presented in this thesis is based on the following journal and conference
papers, and presentations:

Journal papers, published or accepted for publication:

e Khosravi P., Ganesan R., Sedaghati R., “Corotational nonlinear analysis of
thin plates and shells using a new shell element”, International Journal for

Numerical Methods in Engineering, (69)(4), pp. 859-885, 2007.

e Khosravi P., Sedaghati R., Ganesan R., “Optimization of geometrically nonlin-
ear thin shells subject to displacement and stability constraints”, AIAA Jour-

nal, (45)(3), pp. 684-692, 2007.

e Khosravi P., Ganesan R., Sedaghati R., “An efficient facet shell element for
corotational nonlinear analysis of thin and moderately thick laminated com-

posite structures”, Computers and Structures, In press.
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e Khosravi P., Sedaghati R., Ganesan R., “Optimization of stiffened panels con-
sidering geometric nonlinearity”, Journal of Mechanics of Materials and Struc-

tures, In press.
Journal papers, to be communicated:

e Khosravi P., Ganesan R., Sedaghati R., “Optimization of thin-walled struc-
tures with geometric nonlinearity for maximum critical load using optimality

criteria”.

e Khosravi P., Sedaghati R., Ganesan R.., “Effect of local buckling on the optimum

design of stiffened panels”.
Conference papers:

e Khosravi P., Ganesan R., Sedaghati R., “Limit load analysis of thin geomet-
rically nonlinear structures using a new shell element”, 47th AIAA/ ASME/
ASCE/ AHS/ ASC Structures, Structural Dynamics, and Materials Confer-

ence, 1-4 May 2006, Newport, RI, US.

e Khosravi P., Sedaghati R., Ganesan R., “Shape optimization of thin-walled
structures based on a new shell element and uniform strain energy density
criterion”, The Eighth International Conference on Computational Structures

Technology, 12-15 September 2006, Las Palmas de Gran Canaria, Spain.

e Khosravi P., Ganesan R., Sedaghati R., “Nonlinear analysis of composite plates
and shells using a new shell element”, III Furopean Conference on Computa-
tional Mechanics Solids, Structures and Coupled Problems in Engineering, 5-8

June 2006, Lisbon, Portugal.
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e Khosravi P., Ganesan R., Sedaghati R., “Optimality criteria for shape opti-
mization of thin plate and shell structures”, 21st Canadian Congress of Applied

Mechanics, 3-7 June 2007, Toronto, Canada.

Poster presentations:

e Khosravi P., Ganesan R., Sedaghati R., “Nonlinear analysis of thin-walled com-
posite structures using a new shell element”, Centre for Applied Research on
Polymers and Composites, CREPEC, 2005, University of Montreal, Montreal,

Canada.

e Khosravi P., Ganesan R., Sedaghati R., “Nonlinear analysis of laminated com-
posite structures using optimal membrane element, and considering shear defor-
mation”, Centre for Applied Research on Polymers and Composites, CREPEC,

2006, Ecole de Technologie Superiore , Montreal, Canada.
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