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Abstract

The Hill-Robertson effect, quasi-truncation selection, and genetic recombination

Qi Zhang

The Hill-Robertson effect and epistasis are often proposed to explain the prevalence
of sexual reproduction and recombination. The Hill-Robertson effect occurs in small
populations, where a combination of genetic drift and weak natural selection result in
negative linkage disequilibrium. In a large population, however, negative epistasis is
the major source of negative linkage disequilibrium. The epistasis can be calculated
with two models: the additive model and multiplicative model. In populations of any
size, recombination reduces the negative linkage disequilibrium, thus enhancing the

population’s response to selection.

In our research, we examine negative epistasis under quasi-truncation selection. We
also study the amount of negative linkage disequilibrium caused by both the Hill-
Robertson effect and the negative epistasis under r selection, constant population size,
and quasi-truncation selection. In addition, we examine the effect of epistasis
calculated with either the additive model or multiplicative model on linkage
disequilibrium. We find that non-epistatic selection calculated with the additive
model can still generate negative linkage disequilibrium. In large populations, the

negative linkage disequilibrium is noteworthily associated with negative epistasis. In

iil




addition, recombination does not always speed fixation even if the average linkage

disequilibrium is weak negative.
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Introduction

1 Concepts

1.1 Haplotype and phenotype

1.1.1 Haplotype

Haplotype is a set of alleles on a chromosome. Our research studies four two-locus
haplotypes ab, Ab, aB and AB. The frequencies of the above four haplotypes are '[
represented by X;, X2, X3 and X4. A and B are beneficial mutations at the locus 1 and

locus 2 respectively. Hence, Ab and aB are intermediately advantageous haplotypes,

and AB is the most advantageous haplotype.

1.1.2 Phenotypic value

For any haplotype, we specify an abstract value to quantify phenotype. The abstract
value is called phenotypic value. It can be body size, weight, height, and other
quantified phenotype(HALLIBURTON 2004). In our study, the intermediate haplotype

Ab and aB have the same phenotypic values.

1.2 Fitness
Fitness is the ability of an individual to produce offspring in a particular environment.

Absolute fitness (w) is the absolute number of surviving offspring for each genotype




It is calculated as the product of the survival proportion times the average fecundity.
To calculate relative fitness (W), the fitness of one haplotype is normalized as W =1,
and the fitnesses of other haplotypes are measured with respect to that haplotype. For
convenience, relative fitness W is often written as:

W = (14s)

({94

where “s” is called the selection coefficient, and s measures the intensity of natural

selection. In our study, w;, w, w3, and wy represent the absolute fitness of ab, Ab, aB,
and AB. Meanwhile, W, W, W3 and W, represent the relative fitness of ab, Ab, aB,

and AB.

There are two models to calculate fitness: the additive fitness model and the
multiplicative fitness model. In the additive fitness model, the fitness of a two-locus
haplotype can be summed up; therefore, if two mutated alleles at different loci appear
at the same haplotype, the new fitness is the sum of the two single mutated alleles. On
the other hand, in a multiplicative fitness model, the fitness of two loci can be

multiplied.

A summary of the two models is as follows:
Additive model

relative fitness of haplotype AB Wy=1+sa+sp

Since we assume sa=sg=s in our study, Ws=1+2s

Multiplicative model




relative fitness of haplotype AB Ws=1*(1+4s)*(1+s)=(1 +s)2= 1+2s+s°

There is only one item difference between the two models, s*. Considering that new
mutations usually bring about small increase or decrease of fitness, i.e. s is often

2 is second order small (if s is O, s?is 02). The smaller s

small in actual situation, s
item hence can be ignored. So the two models may give the similar results. Maybe

sometimes we can regard the same natural world data as an evidence for both additive

and multiplicative models.

Moreover, if consider the Log transformation between the additive model and
multiplicative model, we see more connection between them.

Apply log to both sides of multiplicative model

Log (relative fitness of AB)=Log(1*(1+s)*(1+s))

Log (relative fitness of AB)=log (1+s)+ log(1+s)

In the transformed space, multiplicative model is changed into additive model

However, the differences between the two models are still noteworthy. We further

demonstrated the difference in the Result part 1.1.

1.3 Selection
Some simple selections have constant selection coefficients while complicated

selections have non-constant selection coefficients. For the constant selection



coefficient, the environmental effects are often ignored. Absolute fitness of a

genotype equals genotype’s reproductive ability

1.3.1 r Selection

In r selection, the selection coefficient is constant and the absolute fitness of a
genotype equals the genotype’s reproductive ability (r) which is constant. In our study,
11, I, 13, and r4 represent the reproductive ability of haplotype ab, Ab, aB, and AB
respectively. Similarly, we assume that each allele has a constant reproductive rate
although its selection coefficient may be variable during selection. In r selection,
populations can exponentially grow without limiting the population size. The premise
for this idealistic selection is that the carrying capacity of the environment is infinite.
However, in the actual situations, organisms often face competition because of the

limited available resources.

1.3.2 Truncation selection

Contrary to the r selection, truncation selection describes the situation in which
individuals above a threshold phenotypic value are selected as parents for the next
generation. Truncation selection is the most efficient form of selection. Truncation is
also defined as a process to eliminate individuals with more than a certain number of

mutations. (CROW 1997; CROW and KIMURA 1979; KIMURA and CROW 1978).

1.3.3 Quasi-truncation selection




Quasi-truncation selection has been introduced to solve the unreality of the truncation
selection model. Instead of abruptly truncating the top ranks in a population, the
eliminating strength of quasi-truncation selection gradually increases over a range of

mutations (CROW 1997; CROW and KIMURA 1979; KIMURA and CROW 1978).

In our study, quasi-truncation selection has been introduced to solve the unreality of
the truncation selection model. In our study, quasi-truncation selection has a constant
upper limit of population size, and selects specified phenotypes; therefore, the
survival of each haplotype is determined by both the carrying capacity and
phenotypic value. Then, the fitness is not only determined by the reproductive ability,
but also by the extent of competition among haplotypes in a population and by the

environment.

1.3.4 Realized fitness

In truncation selection and quasi-truncation selection, the advantages of the favored
phenotypes can vary depending on their frequencies in the populations. To evaluate
the fitness in this situation, realized fitness is introduced. The actual advantage at any

given time is called the realized fitness.

Phenotypic value is the quantified phenotypes. According to the phenotypic values,
the individuals are selected in quasi-truncation selection. However, realized fitness
quantifies the result of the above process---the actual survived offspring number of

each haplotype in quasi-truncation selection.



Realized fitness is represented by w;
w = the number of one kind of haplotype in the next generation / number of their

parents

1.4 Epistasis

Epistasis, interaction between genes, is a deviation from the additivity or
multiplicativity in the effect of alleles at different loci. There are two calculating
methods for epistasis: epistasis on the additive scale and epistasis on the
multiplicative scale. They are derived from the additive fitness and multiplicative

fitness respectively. (EWENS 1969; PUNIYANI et al. 2004)

If we adopt the additive model, when the fitness value is greater than the sum of
fitness at each locus, the phenomenon is called positive epistasis. On the other hand,
when the fitness value is less than the sum of fitness at each locus, the phenomenon is
called negative epistasis (PHILIPS et al. 2000). Similarly, we can define the positive

and negative epistasis on the multiplicative scale.

Static epistasis:

In our study, the epistasis calculated with reproductive ability (r) is referred to as

static epistasis (€).

Dynamic epistasis



After the truncation selection, the epistasis is calculated with realized fitness using the

additive or multiplicative scale. The epistasis calculated with realized fitness is called

dynamic epistasis (E).

For the additive scale,
expected realized fitness of genotype AB = wi+(wa-wi)H(W3- W) = Wa+ws- W)
E (dynamic epistasis) = observed realized fitness-expected realized fitness
= W +Wa-W3-W3
e (static epistasis) = r4-+r(-I,-I3 (D)

,where w 1is the realized fitness.

For the multiplicative scale,
expected realized fitness of genotype AB = w*(w2/w1)*(w3/wl) = woxw3, W)
E (dynamic epistasis) = w4 - waws /w)
e (static epistasis) = 14- I213/1; 2)

,where w is the realized fitness.

1.5 Linkage disequilibrium

Linkage disequilibrium is a statistical phenomenon in which haplotype frequencies in
a population deviate from the values they would ordinarily have if the genes at each
locus were combined randomly. The magnitude of LD is often indicated by D and D’

(D-prime). There are two loci with two alleles at each locus. Alleles A and a at locus

1, and alleles B and b at locus 2.



D= freq(observed haplotype AB)-freq(A)*freq(B)

where A and B are the alleles at the two loci respectively.

For the biallelic two-locus model, D can also be calculated as:

D= freq(AB)*freq(ab)-freq(Ab)*freq(aB) =x1*x4-x2*x3 3)
where x1, X2, x3, and x4 respectively represent the frequencies of the four haplotypes.
For convenience of comparing linkage disequilibrium in different populations, D’ is
calculated as below,

D’=D/Dmax 4)

,where Dmax=|max(D)| if D>0

Dmax=lmin(D)| if D<0

According to the sign of D (+/-), the linkage disequilibrium can categorized into
positive and negative LD. The positive linkage disequilibrium occurs when an
observed haplotype frequency is greater than the expected haplotype frequency.
Conversely, the negative linkage disequilibrium occurs when an observed haplotype
frequency is smaller than the expected haplotype frequency. The linkage
disequilibrium is affected by selection, genetic drift, mutation, and recombination.
(FELSENSTEIN 1965; HEDRICK 1987; LEWONTIN 1964; LEWONTIN 1988; MUELLER

2004)

1.6 The Hill-Robertson effect

1.6.1 Genetic drift




Genetic drift is a stochastic process. It is the fluctuation of allele frequencies in a finite
population over time. During the process, random events may not always keep the
expected frequencies of advantageous genes. In addition, different sampled
populations may have varied evolution trajectory. “This evolutionary mechanism, a
change in a population’s allele frequencies due to chance, is called genetic drift.”

(CAMPBELL and REECE 2001)

1.6.2 The Hill-Robertson effect

The genetic drift combining with selection may generate negative LD. The
phenomenon is called the Hill-Robertson effect. The Hill-Robertson effect covers two
features: in small population, the negative linkage disequilibrium (LLD) can still appear
because of smaller effective population size and selection effect. The LD reduces the

effect of selection action upon the loci. (HILL and ROBERTSON 1966)

1.7 The costs and benefits of sexual reproduction
The organisms adopting sexual reproduction have to afford costs; at the same time, the

organisms also acquire benefits from the sexual reproduction.

1.7.1 The costs of sexual reproduction
Sexual reproduction generates offspring slower than asexual reproduction because
only one of the two parents can give birth to offspring in sexual reproduction and,

meiosis is more complicated and energy consuming than mitosis. This is often referred




to as the two-fold cost of sex. In addition, sexual partners are hard to find when the

population size is quite small. (MAYNARD SMITH 1978)

1.7.2 The benefits of sexual reproduction
However, the benefits of sexual reproduction and recombination have also been

proposed by researchers.

Sexual reproduction and recombination can increase the variation of genetic
combination. The varied genetic combination may adapt to different environmental
situations and defend against the parasite’s attack; the variation may also decrease
intra-species competition since individuals with different genetic combination need

varied resource to live; (HAMILTON et al. 1990; MULLER 1932)

Moreover, the sexual reproduction and recombination may speed up the appearance of
new genetic combination. Without recombination, one organism needs two steps to
acquire a two beneficial gene combination; however, two single beneficial mutations
may be combined with recombination, hence an organism can quickly acquire the
combination of two beneficial mutations. In addition, Sex and recombination assist to
remove deleterious mutations if two deleterious genes are associated in a single

individual. (KONDRASHOV 1988)

1.7.3 The quantification of sexual reproduction

10




The abstract “reproductive effort” which is the energy consumed during sexual
reproduction might be referred to as a general unit of the costs and benefits of sexual
reproduction (HIRSHFIELD and TINKLE 1975). However, since reproductive effort does
not sufficiently consider the factor of mortality risk, it is not appropriate to quantifying

the costs and benefits (DALY 1978; PIANKA and PARKER 1975).

In our study, we focus on how the negative LD is generated in sexual and asexual
reproduction. Moreover, we quantify the costs and benefits of recombination through

measuring the relative numbers of allelic copies passed to the next generation.

2 Literature review

Sexual reproduction and recombination result in several biological costs. For example,
in a sexual population, only female individuals can give birth to the next generation. If
we also consider meiosis and fertilization, we see that the sexual reproduction process
is more complicated than the asexual reproduction. In addition, to attract mates,
organisms may develop some physical characteristics which often jeopardize their
own survival. These and other factors (such as energetic costs) mean that sexual
reproduction is, in general, less efficient and more costly than asexual reproduction.
Despite the obvious costs of sexual reproduction, however, it is still commonly

observed in nature.

The recognized benefit of sexual reproduction is genetic recombination, although it

has been difficult to define and quantify this benefit. One hypothesis to explain the

11




paradox of sexual reproduction and recombination is that an uncertain environment
favors organisms that adopt sexual reproduction and recombination.(WILLIAMS 1975).
Subsequent work has shown that such a benefit depends on a negative autocorrelation
between successive environmental conditions. Antagonistic coevolution between
parasites and their hosts would result in this type of fluctuating selection (BARTON
1995) although it is difficult to see how this can be generalized to other ecological

situations.

The hypothesis that there is a benefit for recombination in a changing environment
leads to the question of whether recombination may then be unnecessary in a stable
environment. The following model has been proposed to explain the advantage of
recombination in a small population. In a small population, there exists almost no
individuals that have the fittest possible genotype, combining most of the beneficial
mutations at different genetic loci, or the chance is very small when these beneficial
mutations first appear. Recombination joins beneficial alleles (or deleterious alleles)

into one individual.(PHILIPS ef al. 2000)

Another possible explanation for sexual reproduction and recombination is the
existence of negative epistasis. (see definition in methods section below) (CORDELL
2002; EWENS 1969; PHILIPS et al. 2000). Negative epistasis describes the situation
where the effects of selection at multiple loci are less than the sum or product of their
effects at individual loci. This type of selection alters the genotype frequencies in the

population, generating negative linkage disequilibrium. The advantage of genetic

12




recombination is that it breaks down this negative linkage disequilibrium and restores
the statistical independence of allele frequencies at different loci. In this way, genetic
recombination can result in the more efficient elimination of multiple deleterious
mutations, thus solving the problem known as Muller's ratchet.(KONDRASHOV 1984,

KONDRASHOV 1988; MULLER 1950)

It has been shown that, in small populations, negative linkage disequilibrium can be
built up by the joint effect of random genetic drift and selection, and this effect is
often referred to as the "Hill Robertson Effect” (HRE) (Hill and Robertson 1966).
Even in a large population, where genetic drift is less important, this effect is still
noteworthy if we consider a large number of genetic loci (Keightley and Otto 2006) or
sub-divided populations (Martin et al. 2005). In this case also, recombination helps

break down the accumulated negative linkage disequilibrium.

The simplest models in population genetics assume constant selection coefficients for
alleles and assume that there are no epistatic interactions between alleles at different
loci. While such models might be realistic for exponentially growing populations in an
unlimited environment, they are not realistic for populations that are limited by finite
resources (HARTL and CLARK 1989). In such cases, truncation selection may provide
a more realistic description of the situation (CROW 1997; CROW and KIMURA 1979).
Strict truncation selection — which is often used in artificial breeding programs -
involves selecting a breeding population only from individuals whose phenotypic

value is above a specified cut-off value. Quasi-truncation selection, or competitive

13




selection, also involves selecting individuals with the highest phenotypic value but,
rather than specifying a given cut-off phenotypic value, the number of selected
individuals is determined by the carrying capacity of the environment. Thus, the
probability of being selected (the "realized fitness") depends not only on the
phenotype of the individual itself but also on the phenotypes of other individuals in
the population. While truncation selection is both efficient and biologically realistic,
it results in the buildup of negative linkage disequilibrium between beneficial alleles
at different loci. This would impede the progress of selection. In such cases,
recombination can restore the population to linkage equilibrium (BARTON 1995;

Kouyos et al. 2006; OTTO 2001)

3 Research objectives

For my thesis research, I investigate the effects of competitive selection in natural
populations. Rather than using real populations, I simulate populations of various sizes,
and with two genetic loci under selection. The relationship between genotype and
phenotype will be constant, but the fitness of these phenotypes will depend on the
phenotypic composition of the population at a given generation. I focus particularly

on the changing values of the realized fitnesses as the population evolves under
selection. This will allow me to calculate the value of epistasis between loci and to
investigate the associated buildup of linkage disequilibrium. The effects of
recombination are evaluated by comparing the results of simulations that include

recombination to those that do not.

14




The research objectives are listed as below:
1 Compare the additive model with the multiplicative model
2 Study the Hill-Robertson effect with multiplicative scale
3 Study the more realistic quasi-truncation rather than truncation selection
4 Measure dynamic epistasis with realized fitness
5 Compare the LDs caused by the Hill-Robertson effect and epistasis

6 Study the impact of recombination on fixation rate

Methods
To achieve the above research objectives, the following methods are applied.
1. Simulation environment
In our study, programs written in Java language are developed to implement Monte
Carlo methods. The J2SE 1.5, chart generating software jFreeChart 0.9.2, and XML
parser Dom4j-1.6.1 are applied. The programs run on an Ultra Sparc client-server

system installed with a Solaris 9.0 operating system.

2. Initial conditions

For massive simulation, initial parameters are specified in a configuration file. In this
study, four haplotypes ab, Ab, aB, and AB with specified initial fitness are chosen.
The initial epistasis calculated with the reproductive ability (r) is zero. The

phenotypic values (v) are specified and kept constant during evolution (v4>v2, v3; v2,
v3>v1). In addition, the initial haplotype frequencies are chosen to keep the initial

linkage equilibrium (The initial D is zero). We also assume that no new mutation

15




occurs, and the recombination rate is constant during evolution. Generation time,

initial population size and carrying capacity are specified at the beginning.

3 Evolutionary simulations

16




3.1 Flow charts
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3.2 Pseudocode

Input haplotype frequency, initial population size, end population size,
generation, reproductive ability, phenotypic value, recombination rate, Is
truncation selection or not,

Initialize a population with the initial haplotype frequencies;

While (current generation<= initial total generation) do

While (there exist individuals not processed yet) do
Select an individual and calculate its offspring number according to Poisson

distribution, the mean value of Lamda=reproductive ability;

If (recombination is true) then
Randomly select an individual for recombination;

Endif

Add offspring to next generation;

Endwhile
If (implement carrying capacity) then
If (implemént truncation selection) then
Eliminate individuals according to phenotypic values;
Else
Randomly eliminate individuals to keep constant population size;
Endif

Endif

18




generation-1

Endwhile

3.3 Stochastic simulation
Stochastic process is simulated with random number generator. The generated

random number is uniformly distributed between 0 and 1.

For the number of offspring, Poisson distribution is used. If X is the number of events
occur randomly in a time interval and A is the mean number of events in the time
period,

X =max{n: Uj;-Us-... -U,> exp(-\)}
U is the probability of corresponding event. Then, the following algorithm can be

used:

|
Ja—
<

il

|
—

Set a = exp(-A), r =

While(r > a) {Set r

t

]

.
&
<

i
><

4
—_
~—
—

Return X
In our study, the X is the number of offspring. Hence, the number of offspring center
on the value of reproductive ability (This is the mean value of 1).(J. H. AHRENS and U.

DIETER 1973; KNUTH 1969)

3.4 Reproduction and recombination
In each generation, the number of offspring reproduced by a single individual is

calculated by its reproductive ability (r) which is initially specified. The variance of

19




the offspring number, as mentioned in the last Section 3.3, is calculated with a value

from a Poisson distribution.

If recombination occurs, the mating partner will be randomly selected from the
population. Then the two parents cross over: reciprocally exchange alleles at loci;

then, two new haplotypes are formed which different from their parents.

3.5 Population size

The initial population size is specified by input. In the following generations, the
population size is the sum of offspring in the previous generation. Population size can
fluctuate since the variance of offspring number (See 3.3). Once the population size
reaches the initially specified carrying capacity, randomly selected individuals in the
population will be eliminated to keep the population size below the carrying capacity.
However, in quasi-truncation selection, the individuals with high phenotypic values
will have high priorities to reproduce offspring and transfer their genes to the next

generation even if the population size already reaches the carrying capacity.

4 Data analysis

For the small population, change of output is not sensitive to input parameters since
the stochastic effect is overwhelmingly obvious. For large populations, the output
change with the input parameters in a more predictable way since stochastic effect is

less obvious in these large populations.
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For the small populations (population size=100), the fluctuation of LD is considerable,
we simulate 300 replicates to fully study the fluctuation. While the population size
increase, the fluctuation decrease correspondingly. Hence, we decrease the replicates.
When simulating the large population (population size=10,000), the each replicates
approximately reach the same result. The table below uses the standard deviation of

10 random samples to demonstrate the fluctuation of LD in different size of

populations under quasi-truncation selection.

Population Population Population
size=100 size=1000 size=10,000
Standard 0141 0.0031977 0.00016501

deviation

Considering the deterministic behavior is more obvious in larger populations, we
choose the following simulation strategies:

For each set of initial parameters, we run 300 replicates for the small populations
(population size=100), 100 replicates for medium populations (population size=1000),

and 10 replicates for the large populations (population size=10,000).

The realized fitness, haplotype frequencies, allele frequencies, D value (linkage
disequilibrium), and E value (dynamic epistasis), calculated in each generation, are
stored in output files for further analysis. These output results are statistically
analyzed in the situations of r selection, constant population size, and quasi-truncation

selection.
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Results
With a two-locus model, computer simulations for the large populations and small
populations are shown in the figures below. In the simulation of the large population,
we focus on the deterministic effect since the stochastic effect is not obvious. On the
contrary, in the simulation of the small populations, we show the large stochastic

effects

1 Simulation of stochastic process in large populations

1.1 Constant population size
From Figure 1, we can see that when the additive model is applied, the LD is negative
although the initial epistasis and linkage disequilibrium is zero. Conversely, when
multiplicative model is applied, the LD is around zero when the initial epistasis
equals zero. With high reproductive rate (reproductive rate=3) of allele A and B, the

negative LD calculated with the additive model is noteworthy.

1.2 Quasi-truncation selection (large populations)
In our study, the individuals with higher phenotypic values are chosen to reproduce,
hence keeping the constant population size. In large populations under quasi-
truncation selection, even all the four haplotypes have the same reproductive ability,
negative LD is still obvious (See Figures 2ZA). Since we use the same reproductive
ability, this result clearly shows the effect of an environment on the negative LD. If

an environment favors one specific phenotype, the individuals with the phenotype
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have higher propriety to reproduce while other individuals without the phenotype
have few chances to reproduce. Therefore, this leads to the difference of realized

fitness between the individuals with higher and lower phenotypic values.

In Figure 2A, both epistasis and D are negative before the haplotype with the lowest
phenotypic value (haplotype ab) vanishes (See Figure 2B).For the comparison of
linkage disequilibrium between the different populations, we also show the D’ and
epistasis in Figure 3. From Figure 4, we obtain the correlation coefficient R=0.9983,
and the coefficient of determination R Square=0.9966. Both of them demonstrate the

linear relationship between the E and D.
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Figure 1 The impact of additive and. multiplicative model on the Hill-

Robertson effect

0.00 -
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Generation

Y axis represents the average D determined from 10 replicate runs. The series
additive model plots D value under initial non-epistasic selection which is calculated
with the additive scale, and series multiplicative model plots D value under initial
non-epistasic selection which is calculated with the multiplicative scale. The initial
frequencies of the four haplotypes ab, aB, Ab, and AB are 0.81, 0.09, 0.09, and 0.01,
respectively. The reproductive rate for both the beneficial allele A and allele B is 3.

Carrying capacity is 10,000, and the initial population size is also 10,000.
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Figure 2 Epistasis and linkage disequilibrium under quasi-truncation
selection
(A) Epistasis (E) and linkage disequilibrium (D)
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In Figure A, Y axis represents the average D and E determined from 10 replicate runs.
In Figure B, Y axis represents the average realized fitness of four haplotypes AB, aB,
Ab, and ab determined from the same 10 replicate runs. The series LD plots D values,
and series Epistasis plots E values calculated with the multiplicative model. The

initial frequencies of the four haplotypes ab, aB, Ab, and AB are 0.81, 0.09, 0.09, and
0.01, respectively. The reproductive ability of the four haplotypes ab, aB, Ab, and AB

is 1.05. Carrying capacity is 10,000, and the initial population size is also 10,000.
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Figure 3 D’ and Epistasis under quasi-truncation selection
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To compare linkage disequilibrium of different allele frequencies, we also show the

D’ and E in this figure. This figure uses the same data as that in figure 2.




Figure 4 The regression between Epistasis and linkage disequilibrium under

quasi-truncation selection

0.00 1

-.02 1

-.04 -

-.06 1

Epistasis(E)

Epistasis E and linkage disequilibrium lie on X axis and Y axis respectively. This
figure uses the same data as that in figure 2. The correlation coefficient R equals 0.

0.9983, and the coefficient of determination R Square equals 0.9966
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2 Simulation of stochastic processes in small populations
2.1 Genetic drift (no selection)
The LD generated by genetic drift (All the haplotypes have equal reproductive ability)
is presented in Figure 5. Without selection, the mean values of D in each generation
determined from the replicate runs is around zero because genetic drift generates
totally equal positive LD and negative LD (See Figure 5 A and 5B). To examine the
variance of LD generated by genetic drift, we also show the standard deviation in
Figure 5. The standard deviation decreases along with the increase of population size
since the effect of genetic drift is reduced in large populations. This trend is clearly

seen in Figure SA and Figure 5B.
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Figure 5 Genetic drift and linkage disequilibrium (without selection)
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The frequencies of the four initial haplotypes are 0.25. There is no selection upon the
haplotypes (All the haplotypes have the same reproductive ability) (A) Small
population size is 100, and the average of D is determined from 300 replicate runs.
(B) Large population size is 10,000. The average of D is determined from 10 replicate

runs. Both figures (A) and (B) show standard deviation.

30




2.2. The Hill-Robertson effect (HRE)
To compare the HRE with genetic drift, we also simulate the Hill Robertson effect in
small populations. Under selection, the magnitude of D is less than that generated by
only genetic drift with the same population size. However, the average of D caused
by the HRE is overall negative since some of the positive LD is reduced when
selection is introduced (see Discussion 2.2 for further explanation). The average of D
is still smaller than the magnitude of D. The reason is that some negative LDs are still
offset by positive LDs. In the figures below, we focus on the HRE in the case of

either r selection or constant population size.

2.2.1 r selection

In Figure 6, five randomly chosen results of replicate runs under r selection are shown.
In Figure 6, the replicate 3 reaches carrying capacity (Population size equal 10,000) at
generation 86. Both the replicate 1 and replicate 5 reach carrying capacity at
generation 128. Before the above replicates reach carrying capacity, they are under r
selection. From Figure 6A, we see that noteworthy negative LD in the replicate 1 and
5 is generated while considerable positive LD in the series 3 is generated. Although
the average D of many replicate runs is not obviously negative, noteworthy negative

LD are actually accumulated in some trajectories (replicate 1 and 5) under r selection.
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Figure 6  Linkage disequilibrium under r selection (The Hill-Robertson effect)
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A series of D values determined from 5 replicates lies on the Y axis, respectively. The
multiplicative model is applied. The initial frequencies of the four haplotypes ab, aB,
Ab, and AB are 0.81, 0.09, 0.09, and 0.01, respectively. The reproductive rate for
both the beneficial allele A and allele B is 0.05. Carrying capacity is 10,000, and the

initial population size is 100.

32



2.2.2 Constant population size

In figure 7, five randomly chosen results of replicate runs with constant small
population size are shown. With the weak selection (reproductive rate=0.05), the
series 1 and 2 in Figure 7 show noteworthy negative D values although the average D
values of the ten replicate runs are not considerably negative. In the figure, population
size does not always remain constant (equal to carrying capacity). Because of the
obvious stochastic effect in small populations, sometimes population size is below the
carrying capacity even though the reproductive rate is greater than zero. We also try
to keep the population size constant by increasing initial population fitness and
selection strength; however, with the stronger selection, negative LD generated by the
HRE is less noteworthy (See multiplicative model in Figure 1). In actual situations,
both the strictly constant population size with the strong selection and fluctuating
population size around the carrying capacity with the weak selection may exist. Our
study shows the HRE is more considerable under weak selection (See Discussion

section for further explanation).

In Figure 8, five randomly chosen results of replicate runs with constant large

population size are shown. Contrary to Figure 7, both the positive and negative

linkage disequilibrium is not noteworthy.
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Figure 7  Linkage disequilibrium in constant small populations (The Hill-

Robertson effect)
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A series of D values determined from 5 replicate runs lie on the Y axis. The
multiplicative model is applied. The initial frequencies of the four haplotypes ab, aB,
Ab, and AB are 0.81, 0.09, 0.09, and 0.01 respectively. The reproductive rate for both
the beneficial allele A and allele B is 0.05. Carrying capacity is 100, and the initial

population size is 100.
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Figure 8 Linkage disequilibrium in constant large populations (The Hill-Robertson

effect)
0.25
0.15 t
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-0.15 r
-0.25

Generation

A series of D values determined from 5 replicate runs lie on the Y axis. The
multiplicative model is applied. The initial frequencies of the four haplotypes ab, aB,
Ab, and AB are 0.81, 0.09, 0.09, and 0.01, respectively. The reproductive rate for
both the beneficial allele A and allele B is 0.05. Carrying capacity is 10,000, and the

initial population size is 10,000.
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2.3 Quasi-truncation selection (small populations)

Comparing Figure 9 with Figure 2, we see that the average of negative D becomes
noteworthy when population size increases. However, in small populations
(population size=100), the negative LD lasts a longer time than that in large
populations (population size=10,000). In addition, in some replicate runs, the
negative D is noteworthy in small populations because of the considerable stochastic
effect in small populations. The same reason may explain that the standard deviation
in Figure 9 is greater than that in Figure 2. Although the stochastic effect may
accumulate negative LD, the stochastic effect overall offsets the quasi-truncation
work. However, we see the average values of negative LD have the similar trajectory
as that in Figure 2. Around the time one haplotype with the lowest phenotypic value
(haplotype ab)vanishes, D reaches the minimum value (See Discussion 1.3 for further

details).
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Figure 9 Linkage disequilibrium (D) in small populations under quasi-truncation

selection

0.0 1 -

Generation

On the Y axis is the average D determined from 300 replicate runs. The D value is
calculated with the multiplicative model. The initial frequencies of the four
haplotypes ab, aB, Ab, and AB are 0.81, 0.09, 0.09, and 0.01 respectively. The
reproductive rate for both the beneficial allele A and allele B is 0.5. Carrying

capacity is 100, and the initial population size is also 100.
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3 Recombination

Figure 10 shows the effect of recombination on fixation of allele B when overall
weak negative linkage disequilibrium is generated by the Hill-Robertson effect. In
Figure 10, we see that recombination overall decreases the average frequencies of
beneficial allele B and at the same time, delays the fixation of allele B. In fact,

recombination has a similar effect on another beneficial allele A

Conversely, Figure 11 shows the effect of recombination on fixation of allele B when
noteworthy negative linkage disequilibrium is generated by quasi-truncation selection.
In Figure 11A, we see that recombination increases the average frequencies of
beneficial allele B and at the same time, speeds the fixation of allele B.
Recombination has a similar effect on another beneficial allele A. The inflexion point
around generation 8 in Figure 11A corresponds to the vanishing of haplotype ab
shown in Figure 11B. After the extinction of haplotype ab, the increase of frequencies

of allele B is slow.
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Figure 10  The frequencies of allele B with weak negative D generated by the Hill-

Robertson effect

o
©

o
P

Frequency
o
2

—e— Recombination
—#— NO recombination

o
o)

©
n

1 19 37 55 73 91 109127 145

Generation

The average fixation time of Allele A

Allele A Without recombination | With recombination
Average fixation time 109.7 112.8
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The average fixation time of Allele B

Allele B Without recombination | With recombination
Average fixation time 106.32 114.27
(generation)

The frequencies of the four initial haplotypes are 0.25 respectively. The multiplicative

model is applied. The reproductive rate for both the beneficial allele A and allele B is

0.05. Population size is 1,000. The average allele frequencies of allele B and D

values are determined from 100 replicate runs. Probability of recombination is 0.2
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Figure 11 The frequencies of allele B with noteworthy negative D under

quasi-truncation selection
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The frequencies of the four initial haplotypes ab, Ab, aB, and AB are 0.01, 0.09, 0.09,
and 0.81 respectively. The reproductive rate for both the beneficial allele A and allele

B is 0.05. Population size is 10,000. The average D values and allele frequencies of
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allele B in Figure A are determined from 10 replicate runs. The average realized
fitnesses of haplotype ab are also determined from the same 10 replicate runs.

Probability of recombination is 0.2
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Discussion
In Results section, we demonstrate the stochastic process in large and small
populations, and we also show that recombination reduces linkage disequilibrium and
affects fixation time. In the following parts, we will generalize deterministic models to
approximately describe the evolution processes in large populations, and we also
discuss noteworthy stochastic effect in small populations. Furthermore, we will

discuss the relation between recombination and fixation.

1 Deterministic models
Deterministic models ignore random effects. The recursive mathematical equation of
a dynamic system is resolved directly. In our study, mathematical models for r

selection, constant population size, and quasi-truncation selection are generalized.

1.1 r selection

In r selection, the frequency of any generation can be tracked through the initial
fitness (reproductive ability) and the initial frequencies of haplotypes. Since the
growth of the population is not restricted, the realized fitness equals a haplotype’s
reproductive ability. Hence, the epistasis (E) calculated with realized fitness equals

zero, if the initial epistasis (e) calculated with the reproductive ability equals zero.

The frequency of t’th generation is

!
X

xl(l‘)= t t t t
xXih oFx, 1 X X7,
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This can be generalized as the following equation:

4
AT

x ()= ,
k=t Xk T

(5)
where x; represents the frequency of the i’th haplotype. ( The details of derivative

are in the Appendix A)

Consequently,

{ t t t

Xyl X1y = Xo1h X3h
4 2
(stlxkrk )

The initial epistasis calculated with the multiplicative model is zero, that is,

D(t) = (6)

T4=T7xI3;I1 O TgxI[=17*1I3
It is easy to see that D(t)=0; however, if the epistasis is calculated with the additive
model, D(t) is always negative although the epistasis stays at zero (See Appendix A

for proof).

1.2 Constant population size

Unlike the populations under r selection, the population size is kept constant.
However, to keep the constant population size, the eliminated individuals are
randomly selected according to their haplotype frequencies in the whole population.
Hence, each haplotype still has the same frequency as that under r selection. The

realized fitness of the haplotypes is:
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i+ 1+] t+l 4
N*x, X Zk:l Yl riZk=1 Wil

_ i i _
Wi (t)= N * - e T ' k=4 41 O
X xi xirl' Zk:l xk rk
k=4,
k=1 xk rk

,where i represents the i’th haplotype, and t represents the t’th generation (see

Appendix B for proof).

Using the additive or multiplicative model, dynamic epistasis (E) calculated with
realized fitness will remain zero, if the initial epistasis (e) is zero. (See Appendix B

for proof)

Since with the constant population size, the frequencies of the haplotypes are the

same as that under r selection, then the equation (5) can still be applied in this case:

t
X1,
xi (t) - k=4 : P
k=1 T
Similarly, D calculated with the equation (6) can also be used in this case, and D stays
at zero while epistasis calculated with multiplicative model is zero. Moreover, D will

be negative while epistasis with additive model keeps at zero. (See Appendix B for

proof)

1.3 Quasi-truncation selection
Like the cases of constant population size discussed in the abovel.2, quasi-truncation
selection also keep the constant population size; however, to keep the constant

population size, the elimination of individuals are associated with the phenotypes of
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individuals. The individual with larger phenotypic values will have high priority to

reproduce.

Quasi-truncation selection can be mathematically described with piecewise (stepwise)

functions.

Frequencies
Before the growth of haplotypes aB and Ab is restricted (truncated), the frequencies

X2, X3, and x4 are the same as those under r selection.

x,(t) = xzrz'
x, (1) = x,1
x, (1) = x,1, (8)

However, the frequency of x; is determined by X», and X3 and x4.
Since x,(¢) =1—x,(t) — x,(t) — x,(t) ,
x, () =1=x,1, — x5, —x,1, C))
It is obvious that x(t) is monotonically decreasing.

After the growth of haplotypes aB and Ab is restricted (truncated),

x @) =0
x,®)=x0)=~1- x4r4')/2

x,(t) = x4r4' (10)

Fitness
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Before the growth of haplotype aB and Ab is restricted (truncated), the realized

fitness wy, ws, and wy are the same as those under r selection.

1 X rt+1 —x rt+1 —x rt+1
373 4'4
Wl(t): = t t t
1—=x,r, —xyry —x,1,
w,(t) =r,
wy(f)=r
w, (1) =r, (11)

After the growth of haplotypes aB and Ab is restricted (truncated), the realized fitness
wy is the same as that under r selection.

w (1) =0

a- x4r4r+l )2 11— )641”4’+1

(1—x4r4')/2 1—x4r4'

w, (1) = wy (1) =

w, () =1, (12)

Epistasis (with additive scale)

Before the growth of haplotypes aB and Ab is restricted (truncated),

E(t) = w,(t) + w (1) — w, (1) — w,(1)

1 X rt+1 X rt+1 X r1+1
- e e M T o
E(t)y=r, + , - =5 =1
T X T X T X0y
l_xrt+l_xrt+l_xrt+l
E(t) — 2°2 373 474 __’,i (13)

1 t t t
=Xl T Xl — X

E is negative since w(t)<r;(See Appendix C for proof)
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After the growth of haplotypes aB and Ab is restricted (truncated),
E@)=w,(1)+0—w, () — w,(1)
+1

E(f)=r, 2% 1250 (14)

!
1-x,r1,

Epistasis (with multiplicative scale)
Before the growth of haplotypes aB and Ab is restricted (truncated), the realized

fitness wy, ws, and w4 are the same as those under r selection.

E@) = w,(t) = w,()w, (1) w, (1)

1—x,1, —x,1 —x,1,
E(t):r4 _r2r3(1 2t+? : ?+1 = r+1) (15)

X,y =Xy — XT,

E is always negative. (See Appendix C for proof).

After the growth of haplotypes aB and Ab is restricted (truncated),
E(t)=w,()—=w,(t)w,(£)/0)

Hence, E(t) cannot be calculated.

Linkage disequilibrium
Before the growth of haplotypes aB and Ab is restricted (truncated),
D(t) = x, (1) x, (1) = x, (1) %3 (1) (16)

D(t) is always negative, and monotonically decreasing (See Appendix C for proof)
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After the growth of haplotypes aB and Ab is restricted (truncated),
D) =0%x,(t) — x,(1)x;, (1) = =x, (1) x,(¢) 17)

D(t) is always negative, and monotonically increasing.

We can see that negative D reaches minimum value around the time when haplotype

Ab and aB start to be truncated.

From the deterministic models and simulations, we see that quasi-truncation selection
is remarkably important to LD generation since quasi-truncation selection is

associated with negative epistasis.

However, quasi-truncation selection cannot be easily predicted with initial parameters

although a broken line approximation for truncation selection was proposed. In the

approximation, the fitness function is linearly proportion to the phenotypic values.
w(v)=kv

,where k is a constant, and w is a fitness function. The fitness increases while

phenotypic values increase. The extreme case of the approximation is the strict

truncation selection(CROW 1997; CROW and KIMURA 1979).

However, in actual situations, fitness does not follow a fixed pattern of strict
truncation selection or some intermediate alternatives. The fitness is dynamically
changing. What patterns are taken is determined by the environmental carrying

capacity and the level of competition between the individuals. Our study on quasi-
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truncation selection focus on more realistic cases: realized fitness has different
functions during varied evolutionary stages (As discussed in the above paragraphs).
We can examine an evolutionary trajectory: at the beginning time, at least some
organisms with intermediate phenotypic values can reproduce and the reproduced
offspring still survive in the environment although the organisms with the least
favored phenotypes have less fitness regardless of their reproductive ability. In
addition, the organism with the most favored phenotypes cannot dominate the
environment instantly, since the environment still has carrying capacity to be filled.
How long time dose the process take is determined by the reproductive ability of the
favored organism and the carrying capacity of the specific environment. All in all,
during the evolutionary process, the fitness cannot be described with only strict

truncation selection or a simple approximation.

Our study gives the mathematical models for the special case of quasi-truncation
selection in which the different evolutionary stages are respectively described with
piece-wise functions (See Deterministic models in Discussion section) in which the
two intermediately advantageous genotypes have the same reproductive rates and
phenotypic values. With some modifications, the models can be further expanded to
include more general cases—the two intermediately advantageous genotypes have

different reproductive ability and corresponding different phenotypic values.

In addition, under quasi-truncation selection, our study shows that the change of

dynamic epistasis measured with realized fitness corresponds to the change of LD for
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large populations while other papers only discussed the relationship between initial
epistasis which is determined by initial fitness and LD. Moreover, this study shows
noteworthy negative epistasis and negative LD simply resulting from competition for
the limited resource even in a special case of each haplotype with an equal

reproductive rate (See Figure 2).

1.4 Epistasis and linkage disequilibrium
Our study, first time, shows the relation between dynamic epistasis and LD although
other papers mention that the negative epistasis may generate negative LD; however,

they use instead the static epistasis(OTTO 2001).

Not only are both negative epistasis and LD generated under quasi-truncation
selection, but also linear relationship between epistasis and LD under quasi-truncation
selection is directly demonstrated in our simulations (See Figure 3). However,
epistatic selection does not always correspond to LD ( See 1.3 in Discussing for

details).

Although epistasis cannot always cotrespond to LD, still deserving notice is the fact
that the formula for the non-epistatic selection calculated with multiplicative model
and LD match each other gracefully.

W]*W4=W2*W3 €« X]*X4=X2*X3
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When epistasis with the multiplicative model is zero, D will be zero. This may also
have the implication of the difference of the additive model and the multiplicative

model.

1.5 The additive model vs. the multiplicative model

In their origin paper, Hill and Robertson used additive model instead of multiplicative
model to demonstrate the negative LD generated by the combination of genetic drift
and selection. The HRE has been used without pointing out that the additive model

itself can also generate negative LD(HILL and ROBERTSON 1966).

From the above discussion on deterministic models and the simulations for the r
selection, constant population size, and quasi-truncation selection, we see that, under
the additive scale, even the non-epistatic selection can still generate negative LD (See
Figure 1 in Results section). The reason is that the non-epistatic selection calculated
with additive scale is still negative epistatic with multiplicative scale. Moreover, the
generated negative LD is noteworthy when the selection is strong (Reproductive rates
are large). Although multiplicative calculation can be transformed to the additive

model by logarithmic calculation, in this study, their effect on LD is different.

2 Stochastic Processes

2.1 Genetic drift

Genetic drift (without any selection) can generate LD with a large magnitude (See

Figure 5). However, LD generated by genetic drift only is not always negative in multi
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replicate runs. The positive and negative LDs have equal opportunity to occur. For the

larger population size, the stochastic effect is not so noteworthy.

Although genetic drift itself was studied by researchers(KIMURA 1955; KIMURA 1957),
I would like to argue the point that how important is genetic drift, on its own, to the
evolution of sex? If we say that the mechanisms giving rise to the sexual reproduction
and maintaining sex are different(CROW 1999), quasi-truncation selection may play an
important role in the origin of sex since quasi-truncation selection can generate
negative LD quickly. Then, a strategy such as sexual reproduction to counterbalance
the negative LD generated by quasi-truncation selection is necessary. What is more,
the significance of genetic drift to the maintenance of sexual reproduction cannot be
ignored. Once the organisms developed the sexual reproduction, they cannot suddenly
change back to asexual mechanism. To maintain sexual reproduction is not as hard as
to initiate it. If only the advantages of sex equal the disadvantages of sex or little

higher, the sexual reproduction would be preserved.

Now papers usually argue that how large the magnitude of multi-locus association
against two-fold cost (ILES et al. 2003; KEIGHTLEY and OTTO 2006). I would like to
emphasize the impact of genetic drift on maintaining sex, which was ignored
sometimes. To further clarify that, we should notice that most new mutations are
neutral. Genetic drift rather than HRE and quasi-truncation selection is easy to be

found an underlying force for generating LD.
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2.2 Hill-Robertson effect
Keightley and Otto (2006) simulated the Hill-Robertson effect on multi-locus with
deleterious mutation. However, the negative LD was not directly demonstrated since it
used a modifier locus to show the relation between HRE and recombination. In our
study, how the negative LD is generated by the HRE is shown. In addition we focus

on the beneficial mutation rather than deleterious mutation.

Also different from the simulation in Hill and Robertson’s work (1966), we use
multiplicative scale, instead of additive scale. According to our above discussion, the
non-epistatic selection calculated with the additive model still generates negative LD.
To eliminate the confounding effect caused by the additive model, we, hence, simulate
the Hill-Robertson effect with the multiplicative model. Our simulation shows, with
multiplicative scale, selection can reduce positive LD, hence accumulating negative
LD since positive LD accelerates a fixation rate. In Figure 6 and 7, we see that the
evolutionary trajectory with positive LD will quickly reach fixation. In the last
generations, most of remaining trajectories have negative LD. Hence, HRE will build
up negative LD which makes the maintenance of sexual reproduction preferable.
Although the average negative LD in our study is not noteworthy, the negative LD in

some runs of simulation is quite large.

2.3 Stochastic processes and quasi-truncation selection
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While the stochastic processes such as HRE and genetic drift generate considerable
negative LD, the stochastic processes overall devalue the effect of the deterministic
process on generating negative LD in small populations (See Figure 9). However, in
some replicates, the negative LD caused by the collaboration of stochastic effect and

quasi-truncation selection is considerable.

3 Recombination and fixation

In the above discussion, we see that LD may be caused by both deterministic and
stochastic processes. Recombination is dispensable to break up the generated LD and

accelerate evolutionary process.

The other papers use recombination modifier locus to show how the HRE and
negative epistasis affect the recombination (BARTON and OTTO 2005; KEIGHTLEY and
OTTO 2006; KOUYOS et al. 2006). In our study, to illustrate how negative LD is
generated, we separately simulate recombination and non-recombination. We use
fixation time to evaluate the effect of recombination on evolution (See Figure 10 and
11). For genetic drift and the HRE, we see that the average fixation time is not
shortened by recombination. One reason is the average of LD generated by genetic
drift and HRE is not noteworthy. Another reason is that at the beginning generations,
positive LD is almost as noteworthy as negative LD since weak selection cannot
reduce positive LD in short time. Recombination may reduce the positive LD in the
beginning generations and hence, decreases the beneficial allele’s chances of fixation.

However, for some evolutionary trajectories, negative LD is noteworthy. The value of
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D even is around -0.24 which is almost near the minimum of negative LD for tow loci
(D= -0.25). For these evolutionary trajectories, recombination may accelerate fixation
process. Under quasi-truncation selection, we see the recombination decrease the

fixation time.

4 Conclusion

Our research shows that non-epistatic selection with additive model still generates
negative linkage disequilibrium. The Hill-Robertson effect may generate significant
negative LD under multiplicative scale. The more realistic quasi-truncation selection
can generate negative LD in large populations. In quasi-truncation selection, dynamic
epistasis measured with realized fitness correlates to LD. Stochastic effect overall
devaluate negative LDs caused by negative epistasis. Recombination may shorten

fixation time.

In summary, populations may build up negative LD in many ways: genetic drift, the
HRE, quasi-truncation selection, and even non-epistatic selection with additive scale.
To eliminate the accumulated LD, some sorts of mechanisms are needed, which is a
good reason why recombination was adopted by organisms and continue to be

employed until now.

55




Literature Cited

BARTON, N., and S. P. OTTO, 2005 Evolution of random drift. Genetics 169: 2353-2370.

BARTON, N. H., 1995 A general model for the evolution of recombination. Genet. Res. 65:
123-144.

CAMPBELL, N. A., and J. B. REECE, 2001 The evolution of populations, pp. 445-462 in
Biology. Pearson Education, Inc., San Francisco.

CORDELL, H. J., 2002 Epistasis: what it means, what it doesn't mean, and statistical
methods to detect it in humans. Human Molecular Genetics 11: 2463-2468.

CrOW, J. F., 1997 The high spontaneous mutation rate: Is it a health risk. PNAS 94:
8380-8386.

Crow, J. F., 1999 The omnipresent process of sex. J. Evol. Biol 12: 1023-1025.

Crow, J. F., and M. KIMURA, 1979 Efficiency of truncation selection. PNAS 76: 396-399.

DALY, M., 1978 The cost of mating. The American Naturalist 112: 771-774.

EWENS, W.J., 1969 Two locus behavior, pp. 97 in Population genetics, edited by B. M.S.

FELSENSTEIN, J., 1965 The effect of linkage on directional selection. Genetics 52: 349-
363.

HALLIBURTON, R., 2004 Quantitative genetics, pp. 525-591 in Introduction to population
genetics. Pearson Prentice Hall, Upper Saddle River.

HAMILTON, W, D., R. AXELROD and R. TANESE, 1990 Sexual reproduction as an
adaptation to resist parasites. PNAS 87: 3566-3573.

HARTL, D. L., and A. G. CLARK, 1989 Ecological complications, pp. 230-231 in

Principles of population genetics. Sinauer associates, Inc. publishers.

56




HEDRICK, P. W., 1987 Gametic disequilibrium measures: proceed with caution. Genetics
117: 331-341.

HIiLL, W. G., and A. ROBERTSON, 1966 The effect of linkage on limits to artificial
selection. Genet. Res. 8: 269-294.

HIRSHFIELD, M. F., and D. W. TINKLE, 1975 Natural selection and the evolution of
reproductive effort. Proc. Nat. Acad. Sci. 72: 2227-2231.

ILES, M. M., K. WALTERS and C. CANNINGS, 2003 Recombination can evolve in large
finite populations given selection on sufficient loci. Genetics 165: 2249-2258.

J. H. AHRENS, H., and G. U. DIETER, 1973 Computer Methods for Sampling from Gamma,
Beta, Poisson and Binomial Distributions. Computing 12: 223-246.

KEIGHTLEY, P. D., and S. P. OTTO, 2006 Interference among deleterious mutations
favours sex and recombination in finite populations. Nature 443: 89-92.

KIMURA, M., 1955 Stochastic processes and distribution of gene frequencies under
natural selection. Cold Sprig Harb. Symp. quant. Biol 20: 33--55.

KIMURA, M., 1957 Some problems of stochastic processes in genetics. Ann. math. Statist.
28: 882-901.

KIMURA, M., and J. F. CROW, 1978 Effect of overall phenotypic selection on genetic
change at individual loci. PNAS 75: 6168-6171.

KNUTH, D. E., 1969 Art of computer programming, volume 2: seminumerical algorithms.
Addison-Wesley Pub. Co., Upper Saddle River, NJ

KONDRASHOV, A. S., 1984 Deleterious mutations as an evolutionary factor. I. The

advantage of recombination. Genet. Res. 44: 199-218.

57




KONDRASHOV, A. S., 1988 Deleterious mutations and the evolution of sexual
reproduction. Nature 336: 435-440.

Kouyos,R. D., S. P. OTTO and S. BONHOEFFER, 2006 Effect of varying epistasis on the
evolution of recombination. Genetics 173: 589-597.

LEWONTIN, R. C., 1964 The interaction of selection and linkage. I. General considerations;
heterotic models Genetics 49: 49-67.

LEWONTIN, R. C., 1988 On measures of gametic disequilibrium. Genetics 120: 849-852.

MARTIN, G., S. P. OTTO and T. LENORMAND, 2005 Selection for recombination in
structured populations. Genetics 172: 593-609.

MAYNARD SMITH, J., 1978 The evolution of sex Cambridge University Press, New York

MUELLER, J. C., 2004 Linkage disequilibrium for different scales and applications.
Briefings in bioinformatics 5: 355-364.

MULLER, H. J., 1932 Some genetic aspects of sex. Am. Nat. 8: 118-138.

MULLER, H. J., 1950 Our load of mutations. Amer. J. Hum. Genet. 2: 111-176.

OTT0, S. P., AND N. BARTON, 2001 Selection for recombination in small populations.
Evolution 55: 1921-1931.

PHILIPS, P. C., S. P. OTTO and M. C. WHITLOCK, 2000 Beyond the average: the
evolutionary importance of gene interactions and variability of epistatic effects.,
pp- 20-38 in Epistasis and the evolutionary process, edited by J. B. WOLF, E. D. B.
III and M. J. WADE. Oxford University Press.

PIANKA, E. R., and W. S. PARKER, 1975 Age-specific reproductive tactics. The American

Naturalist 109: 453-464.

58




PUNIYANI, A., U. LIBERMAN and M. W. FELDMAN, 2004 On the meaning of non-epistatic
selection. Theoretical population biology 66: 317-321.

WILLIAMS, G. C., 1975 An important question, it's easy answer, and the consequent
paradox, pp. 3-14 in Sex and evolution, edited by R. M. MAY. Princeton

University Press, Princeton, New Jersey.

59




Appendix

A.

r selection

N represents the initial population size, and N(t) represents the population size of t’th

generation. x1, x2, x3, and x4 represent the initial haplotype frequencies. Xi(t)

represent the haplotype frequency in the t’th generation. r represents the reproductive

ability of the i’th haplotype.

NO)=N*x*n+N*x,*r,+ N*x;*r,+ N*x, *r,

N(@2)=N *x, *r12+N*x2*r22+N*x3*r32+N*x4*r42

N(t)y=N*x *r' +N*x2*r2t+N*x3*r3'+N*x4*r4' (18)
Hence,
x,(t)=N*x, >"rI’/N(t)

t
X4

xl(t) = t+ t t t
X\ X, +x3r3 +x4r4

Similarly, we can derive x(t), x3(t), and x4(t).

They can be expressed as:

t

X,
0 =Cmr
k=1 xk rk

&)
where x; represents the frequency of the i’th haplotype.

According to the formula D(t)= x1(t)*x4(t) - x2(t)*x3(t)
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t t t t
D) = X1h . L . L N O L
- k=4 ¢ k=4 1 k=4 t k=4 ¢
et ST et Vi Tk et kT et Yk Tk
Consequently,
X, 1, X = X1, X,
_ My XK 2l X0
D() = " — (6)
(Zkzl Xl )
Theorem 1.

If the initial epistasis calculated with the multiplicative model is zero, and initial D is

zero, then D(t)=0

Proof.
If the initial epistasis calculated with the multiplicative model is zero, that is,
I4=IpxI'3;T1 O TIg4+1=I7%I3

then,

t t t t
Xyly Xl — Xy by X3ly x1x4(’”1’4)t ~ X, %3 (1, 1y)’ _ x, X, (rry) ~ X, %, (1,7,

4 N2 4 1\2 4 £\2
(Zk=1xkrk ) (Zk:]xkrk ) (Zk=1x’<rk )

D(t) =

Since D=x1*x4-x2*x3=0,

D(t)=0

Theorem 2.
If the epistasis is calculated with the additive model, D(t) is always negative although

the epistasis stays at zero
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Proof.
If initial epistasis e=0 then,
r1+r4=r2+13

Since initial D= x1*x4-x2*x3=0,

t t t !
XyFy X\l — X,1) XsFy
4 1\2
( kzlxkrk)

D() =

x X, (nr,) ~x, X, (1r,13)’

4 t\2
(Zk:] Xhi)

o n(ntrn—nR)<nn

<0 & nr, <rnr

2
& nntnn—n <nn
2
S nn—n <nh-hn
S n(n=n)<rn(n-r)
Since r,—r, >0
<———>I’1<I‘3

In this study, r1 is less than r3, hence,

D) <0

19)
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B. Constant population size

Unlike the populations under r selection, the population size N is kept constant.

However, each haplotype still has the same frequency as that under r selection.

t
X

xi (t) = k=4 ¢
k=1 XiT

)
Hence the conclusions for D in Appendix A can also be applied to D in a constant

population size.

The realized fitness of the 1’th haplotypes is:

t+1

X1
k=4 1+l k=4 t
% .. 0t t+] :
w(t)—N XX 2aaTe N2 M %
i - N * r r ' - k=4 r+1
Xi Xi X7 w=1 Vi Tk

k=4 4
pat YT

,where i represents the i’th haplotype, and t represents the t’th generation

Theorem 3. Calculated with either the additive or multiplicative model, E(t)=0 if
initial e=0

Proof.

If the additive model is used, then r1+r4=r2-+r3

Considering equation (7), then
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ij4xk r
E@1) = w, () = [w, () + wy (D) = w, D1 =[r, = (r, + 1, - DI
k=1 kT

=0

Similarly, we can prove that E(t) calculated with multiplicative model is also zero.
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C. Quasi-truncation selection

Before the growth of haplotype aB and Ab is restricted (truncated), the realized

fitness w,, w3, and wy are the same as those under r selection.

1_x rt+1 —x rH—l —x rr+1
Wl(t) — 272 - 373 t 4 4:
1=x,r, —x31y — X471,
w,(t)=r,
wy(t) = r,
w, () =r, (11)

Epistasis (with additive scale)

Before the growth of haplotypes aB and Ab is restricted (fruncated),

E(t)y =w, (1) +w (1) — w, (1) — wy (?)

1

l—x rt+1 -x rt+1 - rr+
— 272 373 474
E(l)—l’4+ t t T hTh
1-x,r, — X315 = x,1,
1__x rt+1 —x rt+l —x rr+1
E(t)z 22 373 44 _rl (13)

1-x,1,' = x,1, = x,1,
Since rl, r2, r3, and r4 are greater than 1, hence
xn ™ ur™ x> xn v an +xrn
then,
1-(x, r2'+1 + x3r3’+1 + Jc4r4’+l )<1=00,n +x,1" +x,1,")

t+1 t+1 t+1
1= (xyr,  + 31y +x,1, )

<1

! t t
1-(x,r, +x315 +x41,)
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Considering under our quasi-truncation selection, the growth of haplotype ab is
always restricted; hence, haplotype ab cannot achieve a realized fitness greater than
its reproductive ability. i.e., wl(t)<rl

E(t) is negative since w(t)<r.

Epistasis (with multiplicative scale)
Before the growth of haplotypes aB and Ab is restricted (truncated), the realized
fitness wy, w3, and wy are the same as those under r selection.

E(t) = w, (1) = w (D)wy (1) wy (2)

1_ I— I_ !
Xl T X3l T X

EO=n- r2r3(1 —x,n," - xr = x,n™ ) (1)
Similar to the proof for the additive model, since wi(t)<r
E@)y=r,—nnlw@)<r-nrr/n=0
E(t)= is negative.
Before the growth of haplotypes aB and Ab is restricted (truncated),
D(1) = x,(1)x,(1) — x, (1) X, (2) (16)
According to the equation (8),
x, (1) = x,1,
x,(1) = x;1,
x,(t) = x,1, (&)

,and r2, 13, r4 are greater than 1, hence,
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x,(t) > x,

x,(t) > x4

x,(t) > x,
Then,

x, () =1=x,(t) = x;(t) = x,(£) <1=x, —x; —x, = x,

= x ()< x

= x,(t) < x,1;
With the multiplicative model,

D(t) = x, (t)x4r4' — xzrztx3r3’ < xlr]tx4r4t - xzrz'x3r3’ = x1x4(r1'r4' - rztr;) =0
Hence, D(t) is always negative, and monotonically decreasing

Similarly, we can prove that with the additive model.
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D. Programming code
See the code package on the server:

http://bioinformatics.concordia.ca/~qzhang/QiZhangThesis
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