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ABSTRACT

Static and Dynamic Analysis of Twist Drills Subjected to Cutting Loads
Sagar Chandrakant Kadam

Continuous models for a fluted twist drill are developed to study its static and dynamic

bending characteristics.

The static model is numerically simulated within Matlab for point loads at the free end of
a twist drill. The bending curves are plotted and the bending stiffness of a twist drill is
estimated. Effect of orientation of the spirally fluted cross-section at the fixed end on end
deflection is studied. Characteristic bending curves for one pitch length of drill are

plotted and region of minimum deflection is identified.

Dynamic model is numerically simulated in Matlab over a range of rotating speeds and
the first two natural frequencies and corresponding mode shapes are identified for the

twist drill.

New formulation for estimation of work stiffness is proposed considering the interaction
of drill with the hole-wall. A new lumped mass model for studying lateral vibration
behavior of the twist drill is developed using this work stiffness. The bending stiffness
and fundamental natural frequency estimated using continuous models above and work
stiffness calculated using proposed formulation are used in this new model. This model is

numerically simulated in Matlab for different set of parameters and drill orbital motions
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are obtained. Results are analyzed to study the influence of various parameters on
dynamics of drill and an explanation is given for generation of lobed holes and drill

wandering phenomenon and surface roughness.

Torsional stiffness of set of twist drills in clockwise and counter clockwise directions are

measured experimentally in order to verify the stiffness symmetry.

Appearance of cutting resistance when direction of twist coincides with the direction of
cutting leads to periodic change in torsional stiffness of the twist drill during actual
drilling. Lumped mass model is developed wherein the effect of this periodic change in
torsional stiffness on torsional vibration is studied. Numerical simulations are carried out

in Matlab for stiffness change of bilinear and combined linear and half sinusoidal nature.

Lateral deflection of drill against hole wall is always associated with a small amount of
angular twist. Lumped mass model to study bending-torsional coupling is developed.
Numerical simulations are carried out in Matlab and results are compared with results for

uncoupled torsional model.
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CHAPTER 1

INTRODUCTION

1.1 Drilling Operation

Metal cutting operations are widely used in manufacturing and turning, milling, and
drilling are the three most widely used among them. Drilling is the most versatile cutting
operation and can be used on variety of machine tools such as lathes, milling machines,
boring machines, machining centers, radial drilling machines, special purpose machines

and hand drills.

Important applications of drilling are found in manufacturing industries viz. automotive,
aerospace, machine tool and computer hardware. In all metal cutting operations the hole
manufacturing contributes roughly up to 60%, out of which 20% share goes to
conventional drilling using twist drill. Drilling is a complex operation due to the fluted
geometry of the twist drill and complex design of drill tip. Because of these
characteristics drilling remains a poorly understood manufacturing operation despite wide

applications in industry.

The precision manufacturer prefers the CNC controlled machines and process monitoring
1s vital to achieve required accuracy. Drilling performance can be defined either in terms
of tool life or hole quality. Drilling performance depends on tool geometry, process

parameters and drill bit vibration. In the presence of drill bit vibration the performance is



deteriorated and leads to out of round holes and poor surface finish. Excessive drilling
vibration can also lead to burred holes and tool breakage. Hence vibration analysis is
essential to define the parameters influencing drilling errors such as shape, size, location,
straightness and surface roughness, all of which are primary measures for deﬁniné

drilling accuracy.



1.2  Drilling Machine and Drill

Depending upon design and construction features, drilling machines are classified into

different types.

Drilling machine used for light hole making operations with v-belt and stepped pulley
type spindle drive mechanism and manually adjustable work table and the whole machine

mounted on a bench is called Bench Press.

Another most popular type of drilling machine is Radial Arm Drilling Machine. It is
comparatively rigid machine tool and it has large radial arm which supports the spindle,
the gear drive mechanism and drive motor. Vertical Pillar acts as supporting structure and
guide surface for movements of radial arm and it also has drive mechanism for the
vertical and swing movements of the radial arm. Radial arm has guideways for sliding
motion of spindle head in horizontal direction. Some have spindle head that can swivel
around two axes facilitating drilling of inclined holes, with one of these axes horizontal
running parallel to the center line of the radial arm and another perpendicular to it. It has
heavy foundation and large fixed work table for mounting heavy work pieces. Schematic

of Bench Press and Radial Arm Drilling Machine are shown in figure 1.1.

Other machine tools specially designed for drilling long holes with horizontal spindle are
called Deep Hole Drilling Machine, or Gun Drilling Machine depending upon the

application.
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Like drilling machine, drills are also classified into different types. Most popular type is
the Twist Drill. It is named so because of its spirally fluted body giving rise to typical
drill geometry. Better understanding of drilling process requires good understanding of
drill geometry. Cutting lips, chisel edge angle, web thickness, helix angle, land width,
point angle, rake angle and body clearance are the most important elements of drill

geometry. Drill geometry is shown in figure 1.2 above.

Body of the drill is cylindrical with two semicircular helical flutes ground on periphery.
Cylindrical surface is relieved to avoid full surface contact with hole wall. Precisely
ground land runs helically along the sides of flutes. Land controls the size of the drilled
hole. The tip of the drill is ground conically which leads to formation of two straight
cutting lips of equal length. Cutting lips do the actual cutting whereas the chisel edge
displaces the metal by extrusion action. Accuracy of the point angle at drill tip affects the
relative lengths and heights of cutting lips which have large impact on cutting efficiency.
Chips produced at the cutting lips slide upward through the flutes and the cutting fluid is

discharged at cutting site through the flute.



1.3 Literature Survey

Production of precise holes with minimum errors in shape, size, location, straightness
and surface finish is of utmost importance in view of increased demand for high accuracy
and high productivity from industries. As discussed earlier the hole-quality is influenced
by several factors such as tool geometry, process parameters, dynamics of drill and
supporting machine tool structure, thermodynamic and material properties of drill and
supporting machine tool structure and also the mechanics of cutting at the drill tip.
Because of the vast applications of drilling, slight enhancement in performance of the
drilling process has huge savings in manufacturing costs and reduces final product prices.
Researchers have always tried to refine the understanding of the metal cutting processes
with developments in basic sciences and advanced computing, measurement and control

technologies in order to achieve perfection in drilling and other machining applications.

C. Sujatha, S. V. Muthukrishna [2] have presented the finite element model to study the
lateral, angular and axial deflections of twist drill. The model incorporates all details of
the drill geometry. They presented the results of the model and explained the effect of
helix angle, point angle, chisel angle, diametrical clearance etc. on the deflections of the
twist drill. The results of this extensive static analysis were used to optimize the design of

drill.

D. M. Rincon, A. G. Ulsoy [3] have studied the effect of drill geometry, gyroscopic
moments and rotary inertia on lateral vibration of drill. They found that although

gyroscopic moments and rotary inertia are not that significant as to affect the natural



frequency of drill, number of flutes has impact on it. Higher the number of flutes, stiffer

the drill becomes and leads to increase in natural frequency.

B. W. Huang [4] proposed a time dependent vibration model to study the effects of
rotational speed, pre-twist angle and upward thrust on the amplitude response and natural

frequency of the drill.

B. Dawson, W. Carnegie [5] studied the modal curves of the pre-twisted beam so as to
study the effects of factors such as pre-twist angle, size of cross-section, aerodynamic
effects etc. Theoretical mode shapes are studied for rectangular cross-section beams with
emphasis on effect of width-depth ratio, pre-twist angle and results are validated by

comparison with those from experiments.

O. Tekinalp, A. G. Ulsoy [6] developed a model based on Euler-Bernoulli Beam Theory
to analyze the effects of various geometrical parameters of twist drill, cutting torques and
forces, thrust forces etc. Equation of motion is solved by finite element technique and the
results are compared with known analytical, experimental and numerical results. Effects

of cross-sectional properties, helix angle on lateral stability of drill are studied.

B. W. Huang [7] applied the same model to micro-drilling operation. Thrust force was
subject of concern for micro-drilling. Variation in natural frequencies of micro-drill with

different thrust forces was studied. It was found that natural frequency decreases with



increase in thrust force up to a critical thrust force and drill becomes unstable for higher

values.

A. C. Wijeyewickrema and L. M. Keer [8] have proposed a continuous model
representing a pre-twisted drill subjected to a thrust load. Model incorporates the effects
of rotary inertia, gyroscopic moments and shear deformation on transverse dynamic
motion of the twist drill. Finite element method is used to obtain the critical speeds and

critical thrust forces for different helix angles.

New model is developed on similar lines as explained above again by A. C.
Wijeyewickrema, L. M. Keer and K. F. Ehman [9] for analysis of wandering motion
observed in micro-drilling of electronic circuit boards. For micro-drills the aspect ratio is

greater than twenty. Results of the finite element model are validated experimentally.

S.J. Lee, K. F. Eman and S. M. Wu [10] discussed the wandering phenomenon which is

analyzed by other researchers as described above.

Dynamics of initial penetration of a drill are very important as it has profound impact on
the hole quality and geometrical errors. Reference [11] by Y. Gong, C. Lin, and K. F.
Ehmann is an effort to establish dynamic force models (thrust, torque and radial) for twist
drill for drill’s major and secondary cutting edges and for indentation zone, based on the
understanding of the mechanics of cutting at these locations. Dynamic chip thickness

variations due to drill grinding errors and lateral deflections are formulated and



corresponding formulations for dynamic chip areas at chisel edge and major cutting edge

are also formulated.

Y. Gong, C. Lin, and K. F. Ehmann [12] formulated a complete model for drill skidding
and wandering. Model incorporates both transverse and angular motions of drill tip. Drill
is simplified as pre-twisted beam acted upon by axial thrust and unbalanced radial force
at the drill tip. Continuous forms of governing equations of motion are developed and
solved using finite element methods. For drill skidding, wandering and stable cutting,
different boundary conditions are applied. Numerical results are verified by experiments.
Explanation for generation of odd numbered polygonal holes is presented in

mathematical form.

S. A. Basile [13] developed a 2-D model for drill rotating in a oversize hole and
introduced the concept of work stiffness and included its effect by considering a system
stiffness as bilinear spring. The model identified various factors affecting drill
performance such as rotational speed, damping coefficient, drill-wall clearance, force

amplitude modulation factor etc.

A. Poustie, Z. Katz [14] carried out the experiments on radial drilling machine in order to
study the drill wandering and hole location errors. Deflection measurements were done
on disc attached to the drill at some distance from tip allowing drilling up to 7 mm depth
using infra-red sensor system. Experimental orbit clearly depicts the hole location error

as a result of initial wandering and spindle alignment errors.
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K. Gupta, O. B. Ozdoganlar, S. G. Kapoor, R. E. Devor [15] have studied the effect of
the drill alignment error on drill dynamics. Analytical model presented was validated by
experiments done on the aircraft extension drill. The model predicted the radial forces
and corresponding lateral vibrations which were in agreement with the experimental

values.

K. Gupta, O. B. Ozdoganlar, S. G. Kapoor and R. E. Devor [16] proposed a
comprehensive hole proﬁ]é prediction model which combines the effects of drill
alignment errors, drill wandering and drill margin-hole wall interaction. Results of the

model are validated experimentally.

P. V. Bayly, M. T. Lamar and S. G. Calvert [17] proposed quasi-static model to explain
the phenomenon of regenerative vibration in presence of cutting and rubbing forces on
similar line as in [8, 9 and 10]. Inertia and damping effects are neglected at low speeds.
Whirling oscillations at odd integer multiple of the rotational frequency are observed.

Analytical results are validated experimentally.

P. G. Reinhall and D. W. Storti [18] have used most simplistic approach to model a drill
penetrating a circular hole in a thin plate. Drill trajectories are plotted for the case of no

material removal and numerical methods are used to include the effect of metal cutting on

walls of the hole.
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C. H. Kahng and I. Ham [19] did theoretical and experimental investigation of influence
of centering and pilot holes on roundness errors, parallelism errors and surface roughness

and effectiveness of subsequent reaming and boring operations.

D. F. Galloway [20] provided a most extensive discussion on the effects of drill shape
especially the elements like point angle, relief angle, relative lip height and many other
parameters on drill life, drilling forces and drilling accuracy. Seven appendices in the
paper provide valuable information on material properties, drill nomenclature, drill
grinding parameters, theory of regenerative chatter, theoretical analysis of hole size
variation and drill path during drilling. In addition to that expert comments of some other

researchers on various issues discussed in paper are also presented.

At the start of the drilling operation drill rotates freely and drill tip has no constraints
which resembles the fixed-free boundary condition of a cantilever beam. When at the
start of penetration drill touches the surface of work it resembles the fixed-pinned
boundary conditions. Finally when drill tip enters completely in the work-piece it can be
assumed as fixed-fixed boundary condition. M. Kohring and C. Johnson [21] have done
modal analysis for all these boundary constraints. Bending and torsional modes, natural

frequencies and damping factors are determined.

A. G. Ulsoy [22] presented a lumped parameter model for transverse vibration of a twist

drill to incorporate the effects of drill sizes, speed and feed of drilling. Model also

12



considers the centrifugal effect. He found out that the fundamental frequency decreases

with the increase in the speed of the drill.

At the start of drilling operation drill tip deflects in elliptical orbit in addition to the drill
rotation and is characterized as whirling vibration. H. Fujii, E. Marui, S. Ema [23]
discussed the regenerative effect at the major cutting edge which is source of energy for
this kind of vibration while the chisel edge is acting as a damper. In second part [24] they
investigated the effect of drill’s geometrical parameters on initial excitation of whirling
vibration. Detailed explanation is given for role of chisel edge and flank surface in
determining the amplitude of vibration. In third part [25] effect of presence of pilot hole
on whirling vibration was theoretically studied. It was deduced that odd numbered
polygonal holes can be an outcome of regenerative effect by virtue of which the low
frequency vibration is caused which is well below the natural frequency of the system.

Cutting forces vary from the mean values because of variation in dynamic chip load in
the presence of lateral deflection of drill tip due to vibration. Drill bit vibration
deteriorates the drilling performance, and the fluctuations in axial thrust, radial forces and
torque are indicators of the presence of vibration. D. M. Rincon, A. G. Ulsoy [26] have

proposed the analytical model for prediction of radial and thrust forces and torque.

E. B. Magrab and D. E. Gilsinn [27] have modeled the twist drill as pre-twisted Euler
beam under the action of axial thrust and clamped at both end. Set of equations of motion
is solved using Galerkin procedure. Natural frequencies, mode shapes and buckling loads

are calculated for different combinations of geometrical parameters of a drill. Mode
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shape revealed presence of complex out of plane motion which can be a cause for

production of out of round holes.

Y. S. Tarng and T. C. Li [28] and E. Marui, S. Ema [29] proposed methods for detection
and suppression of chatter vibration evident in deep-hole drilling because the lateral
stiffness and damping are markedly lower. Chatter is detected by monitoring the
variations in the thrust forces and torque. Earlier researchers used spindle speed change
method using observed chatter frequency as basis for selection of new frequency to
suppress chatter. Later researchers used the impact type damper for suppressing the
chatter completely, which some times can not be suppressed by changing the cutting

conditions.

The long drills exhibit whirling vibration as explained in [23, 24 and 25]. Another kind of
vibration is called drill chatter. H. Fujii, E. Marui, S. Ema [30] presented the
experimental analysis for chatter vibration. Parameters investigated are the frequency,
amplitude, initiation boundary of chatter. Unstable range of chatter is found out for
different sets of parameters. Experimental results revealed that chatter frequency is equal

to drills first natural frequency for the condition of drill tip supported in machined hole.

A. Askari, E. Stone [31] have discussed the effects of friction on both the regenerative
and non-regenerative chatter observed in drilling. The one-dimensional model explains
the excitation of the torsional-axial mode and its interaction with the nonlinear frictional

forces.
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A. G. Rehorn, J. Jiang, P. E. Orban and E. Bordatchev [32] investigated the structural
dynamics of the high-precision machine tools. Impact testing and modal analysis is done
to check change in dynamic response of spindle after adding cutter. Also the investigation
results suggest that for precise applications dynamics of drive spindle should be
considered to seek improved performance. The model is also useful for tool condition

monitoring.

W. C. Chen [33] has discussed the drill design method based on finite element analysis to
find optimum drill geometry of the twist drill. Two dimensional and three dimensional
finite element analysis is applied to study the effect of various drill geometry features on
the drill’s torsional rigidity. Three dimensional analysis results demonstrating the effect

of helix angle on lateral, angular and axial drill deformations are of great significance.

In case of twisted beams a static torque causes axial deformation whereas axial thrust
produces twist in the beam. This phenomenon is called torsional-axial coupling. P. V.
Bayly, S. A. Metzler, A. J. Schaut, K. A. Young [34] tried to explain the torsional chatter
in drilling by torsional-axial coupling. Results are validated by numerical and

experimental analysis.

D. H. Hodges [35] used principle of virtual work to formulate equilibrium equation for

static torsional deformation of pre-twisted beams. He deduced that pre-twisted beam

untwists under the action of tensile loads.
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T. Arvajeh, F. Ismail [36] have studied both bending and torsional chatter in an integrated
way. Time domain simulation model presented combines the effect of both torsional and
bending. Effect of drill length on both types of chatter is comparatively studied. Results

of simulations and experiments for two different length drill are presented and discussed.

A. J. Schaut, D. N. Dilley, P. V. Bayly [37] have proposed a model which uses spring
supported end conditions unlike many other models which used either fixed type or
pinned type end condition. Spring supported end condition is more representative of the
actual drill- workpiece interaction. Paper also explains the chisel point effect on chatter

frequency through the experimental results.

K. V. Nagrajan [38] extensively studied the model proposed by S. A. Basile in [13]. He
plotted drill orbits for different simulation parameters to validate the model proposed by
S.A. Basile. He compared the orbital motion plotted using finite element analysis of drill-
spindle assembly with the experimental orbits obtained from tests done on bench press

for free rotation of drill.
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1.4 Objectives of the Thesis

In the previous section, a literature review was carried out in order to understand the
approaches used by different researchers for investigation of factors causing inaccuracies

in drilled holes.

Two most important approaches are discrete analysis and continuous analysis.
Continuous models always give better approximation of actual drilling inaccuracies but it
is also true that discrete models can also be equally effective in simulating the actual
drilling process if simulation parameters are selected properly and assumptions about
boundary constraints ancull excitation forces are. made based on sound practical or

experimental data.

Some researchers preferred to study selectively various stages of drilling viz. skidding,
wandering and stable cutting, whereas other preferred integrated study which is rather
complex. Some models studied bending, torsion and axial vibration separately whereas

other models studied them in integrated manner.

The first objective of the thesis is to thoroughly investigate the lumped mass model for
bending vibration of the drill presented in reference [13], calculate analytically or
experimentally the simulation parameters, refine the concept of boundary constraints and
ultimately build a new lumped mass model to simulate the actual drilling operation more
precisely and fully understand the cause of the most common drilling errors based on the

critical analysis of the simulation results.
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The second objective of the thesis is to develop a continuous model for twist drill as a
cantilever with point load acting at unconstrained drill tip to study the static bending
characteristics of twist drill, to understand the significance of different geometrical

parameters in bending behavior and stiffness of twist drill.

The third objective of the thesis is to develop a continuous model for twist drill as a
cantilever with point load acting at unconstrained drill tip to study the dynamic bending
characteristics of twist drill and to identify the first two natural frequencies and mode

shapes of twist drill.

The fourth objective of the thesis is to carry out experimental measurements of torsional
stiffness of twist drills in clockwise and anti clockwise direction in order to verify the

stiffness asymmetry.

The fifth objective of the thesis is to investigate the effect of the cutting resistance on
torsional behavior of twist drill when the drill is cutting through the work-piece material
and to develop a simple discrete torsional model considering time dependent periodic
variations in magnitude of the torsional stiffness of twist drill when cutting through the

work-piece material.

The final objective of the thesis is to develop a lumped mass model to study the Bending-

Torsional Coupling and to study the significance of this coupling on torsional and

bending vibrations of twist drill.
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1.5 Organization of the Thesis

In Chapter 1, an introduction to the drilling operation, the drilling machine and the twist
drill design 1s given. Survey of past research work on the topic of twist drill vibration is

presented briefly and objective of thesis is defined.

In Chapter 2, the continuous model to study the static bending characteristics of twist
drill as a cantilever beam with point load acting at unconstrained drill tip is presented.
Model is simulated in Matlab to understand the significance of different geometrical

parameters in bending behavior and stiffness of twist drill.

In Chapter 3, the continuous model to study the dynamic bending characteristics of twist
drill as a cantilever with point load acting at unconstrained drill tip is presented. Model is
simulated in Matlab to identify the first two natural frequencies and mode shapes of twist

drill.

In chapter 4, the lumped mass model for bending vibration of drill described in reference
[13], boundary constraint formulation and forcing function are investigated. The new
concept of boundary constraint is described and new formulation of work stiffness
proposed. Finally modified lumped mass model considering new work stiffness concept

is presented.
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Model is simulated in Matlab and results predicting the drill orbits for different sets of
parameters are presented followed by the explanation for the most common drilling errors

based on the analysis of the simulation results.

In chapter 5, experimental investigations are done to verify to verify the symmetry in

torsional stiffness of twist drills in clockwise and anti clockwise direction.

In chapter 6, the simple discrete torsional model is developed considering time dependent
cyclic variations of the torsional stiffness of twist drill because of the of the cutting
resistance coming in to picture as a result of torsional vibration of drill tip when cutting
through the work-piece material. Model is simulated in Matlab to study the effect of this
non-linear torsional stiffness on torsional response for harmonic torque imbalance.
Another lumped mass model to study the Bending-Torsional Coupling is developed and

the significance of this coupling on torsional vibration of twist drill is studied.

In Chapter 7, conclusions and recommendations for future work are presented.
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CHAPTER 2

CONTINUOUS MODEL - STATIC BENDING
CHARACTERISTICS OF TWIST DRILLS

2.1 Introduction

Different modeling efforts for lateral vibration analysis of twist drill demands thorough
understanding of bending characteristic of fluted or twisted beams similar to twist drill.
Generalized formulation for moment of inertia calculation of fluted structures is

presented. Moment of Inertia formulae for two, three and four fluted drills are derived.

Moment of inertia of twist drill varies continuously as we move from tip of the drill to the
fixed end. The bisymmetric cross-section of drill changes its angular orientation with
respect to the direction of unbalanced cutting force which is assumed to act perpendicular
to cutting lips as we move along the length of the drill. Bending equation for uniform
beams is modified by replacing the constant moment of inertia term with varying values
which are functions of length and twist angle along the twist drill. Second order
differential equation obtained is solved numerically using boundary value problem solver
in Matlab. Drill is considered as a cantilever beam with point load at the tip and
corresponding boundary conditions are used. Full length of drill is assumed to be fluted,
ignoring the cylindrical shank of drill and drill is assumed to be made by uniformly

twisting the strip of rectangular cross-section.
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2.2 Moment of Inertia Formulation for Fluted Cutting Tools

Figure 2.1: Schematic of Twist Drill Cross-section

Cross-section of the twist drill is as shown in figure 2.1. Suppose axes system YY-ZZ is
fixed on the drill and drill cross-section perpendicular to drill center line lies in plane YZ
(Inertial Frame). The unbalanced cutting force acts perpendicular to axis YY which is
again axis of bi-symmetry. As said before cross-section changes its orientation by an
angle ‘0’ degree along length. Consider that new displaced axes system UU and VV
(Twisted Frame) is placed at an angle of ‘0’ with respect to the fixed axes system YY-ZZ
such that the axis UU lies along axis bi-symmetry running parallel to two cutting lips.

Supposel , I and I , I are area moments of inertias of the cross-section
27” yy uu’ Tvv

corresponding to the fixed axes system, and displaced axes system, respectively. Now
applying transformation principle we can define new coordinates in displaced axes

system UU —VV as follows,
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u=2z-cos0+y-sinf
v=1y-cos0—z-sind Equation 2.1

From definitions of moment of inertia and product moment of inertia, we can write,

I =[v?-dA

uu

[ = juz-dA Equation 2.2
vV

I =fu-vdA

uv

Substituting equation 2.1 in 2.2, we get,

I =1 -00329+I -sin29—2'I -8in0 - cosO
uu  zz vy zy

I =1_-sin20+1  -cos20+2-1  -sinf-cosd Equation 2.3
VW 7z yy zy

=(I -1 )-sin9~cos€)+l -(cosze—sinze)
uv 7z Yy zy

Rewriting in matrix form,
I I cosd sind " |1 I cos®  sinb
uu uv ___[ } | ZZ  zZy [ ]
Lo Iy | L-sin® cosd Izy Iyy —sin®  cosB_

Equation 2.4
Above formulation can be applied to multi fluted cutting tools such as twist drill as

follows. Consider a twist drill with ‘n” number of flutes. Let us divide the total cross
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section in ‘n’ symmetric sectors. Let IZZ, Iyy and IZy are area moments of inertias and

product moment of inertia of individual sector about the principal axes. Now the moment
of inertia properties of whole cross section of a twist drill with ‘n’ number of flutes can

be calculated from the following generalized formula [3].

. T .
qu Iuv _ % cosO,  sino, . IZZ Izy . cosO,  sing,
I 1 i 1|L—sin®; cosb, Izy Iyy —sind, cosh,

Equation 2.5

where,

Equation 2.6
If IZZ and Iyy are principal moments of inertias in above formulation, then the principal

product moment of inertia

Hence we can write following generalized formulation for moments of inertias of multi

fluted twist drills in terms of principal moments of inertias IpZZ , 1

pyy
Ipuu 0 _ % cosf;  sind; T Ipzz 0 cosO,  sind,
0 I Tl -sin®,  cos. 0 1 —sinB, cos#,
pvv | i=1 i i pyy ; ;
Equation 2.7
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For two, three and four fluted twist drills following simplified formulae are derived

respectively [3].

(2. IpZZ
0 2. 2 — flutes
L pPYY
S0 430 0
2 pzz 2 PYY 3 — flutes
0 3. 1 + 3 -1
R 2 Ppzz ) DYy
’2-1pzz +2-1pyy 0
0 2.1 2] 4 — flutes
L pzz PYY
Equation 2.8
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2.3 Bending Deflection of Beam with Rectangular Cross-section

2 mm

Figure 2.2: Schematic of Beam Cross-section and Axes System

Deflection of cantilever beam with point load at free end is given by

F.-17 :
8 max =3 E Equation 2.9

Assuming standard drill geometry and the following numerical values

F = 1.0 N (Force)

L = 0.096 m (Length)

E = 210.0x10° lz (Modulus of Elasticity)
m

D = 13.0 mm (Diameter)

b = 2.0 mm (Web Thickness)

L, = 80 x107" m'  (Moment of Inertia)

Iyy = 357.0 x 10712 m*'  (Moment of Inertia)
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The bending deflection of a beam with rectangular cross-section normal to the width of
the section 1.e. about axis of symmetry parallel to axis ZZ (Figure 2.2)

s = -1.7554 x 10 *m
max

The bending deflection of a beam with rectangular cross-section parallel to the width of
the section i.e. about axis of symmetry parallel to axis YY (Figure 2.2)

S -3.9337 x10 ®m

max

Il
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2.4 Bending Characteristics of Twist Drill

—

Figure 2.3: Schematic of Twist Drill Cross-section and Axes System

Generalized bending equations for uniform beams can be written as follows [40]

Edzy: My,
dx 2 IZZ(X)
where,
1_d%
R dx2
Mb =
fb =
y =
Hence,

2 f
and d—;’ -0 Equation 2.10
dx y
Equation 2.11
Bending Moment

Tensile or compressive stress in extreme fiber of beam

Distance of extreme fiber from neutral axis of beam
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b __b_ % Equation 2.12

Let ‘P’ be the pitch of the twist drill. Twist angle per unit length ‘B’ is given by,

p=2" Equation 2.13

The area moments of inertias Izz(x) and Iyy(x) for twist drills change along length and

are functions of twist angle per unit length ‘B’ and coordinate ‘x’.

By following the same steps followed for deriving equation 2.7 the equations for the area

moments of inertias IZZ (x) and Iyy(x) at any point along ‘x’ are given by [3].

2 .12
I (X)ZI - COS (ﬁ-x)-&-l - sin (Bx)
zz 7z Yy Equation 2.14

Iyy(x) = Iyy -cosz(ﬁ-x)+lzZ -sin2(|3-x)

Applying above formulation of area moment of inertia bending equation for twist drill

fixed at shank and point load ‘F’ acting at tip is given by,

a?y _F-(L-x)

Equation 2.15
ix2 E- IZZ (x)
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In order to get the deflection curve this equation is solved numerically using the boundary
value problem solver in Matlab. The following four Boundary Conditions (BCs) for

cantilever beam are used.

Al At fixed end ie.at x=90
dy
=0, —=0
Y dx
B] At free end i1e.at x=L
2 3
9—% -0, d—g =F Equation 2.16
dx dx

Equation 2.15 will use the first three boundary conditions. The equation 2.15 is

differentiated once to obtain following equation.

d’y _F 4| L-x
x> E |dx IZZ(X)

_qil F G'(L—X)~sin(2-[3-x)~—(lzz .cosz(B_x)_,_Iyy -Sinz([}-x))

3 E
dx (IZZ-cosz(ﬁ-x)+lyy-sin2(B-x))2

Equation 2.17

where,
G = Numerical Constant which appears after differentiation using Maple

(For twist drill of D = 13 mm, L = 96 mm, b = 2 mm)
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= 0.5x 0.1370519859 x 10~

= 0.5x 0.913679906 x 10~

= 0.5x 0.783153906 x 107
= 0.5x 0.84339689 x 10~
= 0.5% 0.730944204 x 10"~
= 0.5x 0.685260104 x 107

= 0.5 % 0.548207804 %1077

(P =32 mm)
(P = 48 mm)
(P = 56 mm)
(P =52 mm)
(P = 60 mm)
(P = 64 mm)

(P = 80 mm)

The fourth boundary condition can be applied to equation 2.17 above.

31



2.5 Simulation Results and Interpretations

The third order differential equation (Equation 2.17) is solved numerically in Matlab to
get the deflection vector for whole length of drill. Deflection vector so obtained is plotted
with respect to length vector of the twisted beam to get the deflection curve. The
influence of fluted geometry on the deflection of a beam is evident from the nature of the
deflection curves as seen in the different simulation results presented below. Deflection
curves are plotted for beam with rectangular cross-section about axis of symmetry

parallel to axis ZZ and axis YY (Figure 2.2) for comparison purpose.

After comparing the deflection curves for untwisted strip of uniform rectangular cross-
section along length (figures 2.4, 2.5) with the deflection curves for twisted beam with
identical cross-section (figures 2.6 to 2.10), it is found that slope and curvature variations
along the length of the beam follows different trend as compared to untwisted beam of
uniform rectangular cross-section. Hence slope and curvature variation trends are studied
by plotting the variations with respect to length of the twisted beam for both untwisted
beam of uniform cross-section and twist drill. Slope and curvature variation plots and
corresponding deflection curve plots for beam length equal to twice the pitch are also

presented below (figures 2.12 to 2.17).

In figures 2.6 to 2.10 it is observed that end deflection is function of phase angle. Phase
angle ‘@’ is the angle between the axis of bi-symmetry at the tip and at the fixed end. So
if the point-load at the tip of drill is in vertical direction and for given length of a drill the

orientation of axis of bi-symmetry is horizontal then phase angle is considered equal to
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zero. If the phase angle is changed in steps from 0 degree to 180 degree corresponding

end deflection values also change as shown in figures 2.6 to 2.10 presented below.
Variation of end deflection of the twisted beam is studied by changing value of phase

angle ‘@’ over a range of ‘0-180° degree and for different pitch values between 32 mm

and 80 mm (figures 2.18 to 2.24).

Deflection of the twist drill is found to be grater than the deflection calculated using
empirical formula for rectangular cross-section beam when load acting parallel to the
width of the section and it is found to be less than that when load acting normal to the
width of the section. The end deflections obtained by solving the continuous bending
model for the rectangular cross-section beam when load acting parallel to the width of the
section and normal to the width of the section are compared with the respective end
deflection calculated using empirical formulae. These results are found to be identical.
Thus the reliability of the numerical results obtained for the continuous bending model

for the actual case of twist drill is validated.
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Figure 2.4: Deflection Curves for Rectangular Strip Placed Vertically
(Deflection at free end = - 3.9337 x10 *m == - 0.0039337 mm)
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Figure 2.5: Deflection Curves for Rectangular Strip Placed Horizontally
(Deflection at free end = - 1.7554 x 10 *m = - 0.175542 mm)
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Figure 2.6: Deflection Curves for Twist Drill (® = 0 degree)
(Deflection at free end = - 2.6921 x 10 > m = - 0.026921 mm)
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Figure 2.7: Deflection Curves for Twist Drill (@ = 45 degree)
(Deflection at free end = - 2.1577 x 10 > m = - 0.021577 mm)
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Figure 2.8: Deflection Curves for Twist Drill (¢ = 90 degree)
(Deflection at free end = - 2.5859 x 10 ° - 0.025859 mm)

Pitch = 56 mm, Length = 96 mm
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Figure 2.9: Deflection Curves for Twist Drill (® = 135 degree)
(Deflection at free end = - 3.0811 x 10 > m = - 0.030811 mm)
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Figure 2.10: Deflection Curves for Twist Drill (® = 180 degree)
(Deflection at free end = - 2.6921 x 10 > m = - 0.026921 mm)

Fig 2.11 shows variation in IZZX along length ‘x’. Since there are two flutes in this drill

there are two cosine curves in the pitch length of 56 mm. Effect of variation in Izzxis

clearly reflected in the deflection curve by comparing figures 2.12 and 2.13, which show
respectively the deflections of a twist drill and a rectangular beam. Unlike the deflection
curve for strip of uniform rectangular cross-section shown in figure 2.13, for twist drill
transition points are observed at the distances multiple of half pitch length along the

length of drill where radius of curvature is comparatively smaller.
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Figure 2.11: Area Moment of Inertia Variations along the Length of Twist Drill
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Figure 2.12: Deflection Curve for Twist Drill (® = 0 degree)
(Deflection at free end = - 4.2489 x 10 " m = - 0.0425 mm)
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Deflection y [meter]
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Figure 2.13: Deflection Curve for Rectangular Strip Placed Vertically
(Deflection at free end = - 6.2466 x 10 ®*m = - 0.00625 mm)

Figures 2.14 and 2.15 are plots of slope (?) with respect to length for untwisted strip of
X

uniform rectangular cross-section and twist drill, respectively. It is observed that slope
variation pattern is repeated for every half pitch length for twist drill whereas for

untwisted strip slope variation pattern is more uniform throughout the length.

Figures 2.16 and 2.17 are plots of curvature (ﬁ%) with respect to length for untwisted
dx

strip of uniform rectangular cross-section and twist drill, respectively. Also the curvature
values are higher (radius of curvature is smaller) around the points placed at distances
which are multiple of half pitch length along the beam length as compared to the points

spanned in-between these points. Again it is observed that as we move farther from fixed
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end of drill the radius of curvature steadily increases whereas the curvature changes
linearly for untwisted strip.

5 RectangularPlate placed Vertical (2 mm x 13 mm)
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Figure 2.14: Slope variation curve for Rectangular Strip Placed Vertically

x10% Pitch = 56 mm, Length = 112 mm
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Figure 2.15: Slope Variation Curve for Twist Drill (® = 0 degree)
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Figure 2.16: Curvature Variation Curve for Rectangular Strip Placed Vertically

Pitch = 56 mm, length = 112 mm
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Figure 2.17: Curvature Variation Curve for Twist Drill (© = 0 degree)
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Figures 2.18 to 2.24 are the plots of end deflection of a twist drill with respect to phase
angle obtained for different values of pitch. Pitch is the indicator of degree of twist in the
drill. When pitch is changed from smaller to higher values range of the end deflection is
affected significantly. For smaller pitch drill the end deflection varies over a smaller
range, indicating that lateral stiffness of drill does not vary much with the change in
phase angle. On the other hand for higher pitch drill lateral stiffness vary significantly
with the change in phase angle. Another observation is that the end deflection is found to
be highest (lowest stiffness) in the small region around ® = 72 degree and lowest (highest
stiffness) in the region around ® = 112 degree i.e. around circled points shown in figure

2.18.
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Figure 2.18: End Deflection Variation with Phase Angle (Pitch = 80 mm)
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Figure 2.19: End Deflection Variation with Phase Angle (Pitch = 64 mm)
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Figure 2.20: End Deflection Variation with Phase Angle (Pitch = 60 mm)

43



S
o

End Deflection [meter]

Figure 2.21: End Deflection Variation with Phase Angle (Pitch = 56mm)
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Figure 2.22: End Deflection Variation with Phase Angle (Pitch = 52mm)
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Figure 2.23: End Deflection Variation with Phase Angle (Pitch = 48 mm)
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Figure 2.24: End Deflection Variation with Phase Angle (Pitch = 32 mm)

45



2.6  Significance of Phase Angle for Drilling using Twist Drills

Drill is required to be reground after a certain number of holes being drilled so as to
restore the required geometry which ensures efficient cutting and maintain high accuracy.
With each regrinding of drill, length is reduced by a small amount and in turn the phase

angle also changes.

Axis of bi-symmetry ‘ZZ’ at the trill tip is parallel to cutting lips and perpendicular to
line of action of cutting force whereas the axis of bisymmetry at root is assumed to be
placed horizontal and is reference for measuring phase angle (Figure 2.25). Here root is
the interface of fluted length and drill shank fixed to spindle and as already mentioned
earlier shank is assumed to be rigid fixed end in our analysis. The phase angle is the acute

angle between the axis of bi-symmetry at tip and at the root.

Z

Figure 2.25: Schematic of Cross-section at Drill Tip
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Phase Angle [degree]

Figure 2.26: Variation of Phase Angle for Different Lengths of Twist Drill

Thus each different drill length has unique phase angle and phase angle for given length
of a drill is defined here as characteristic phase angle for that drill length. The end
deflections and corresponding characteristic phase angles are calculated for different drill
lengths for standard drill geometry assumed in section 2.3 above. The characteristic phase

angles of drill are plotted over a length of 300 mm as shown above (Figure 2.26).

In order to study the significance of characteristic phase angle, the end deflections for
lengths between 0 — 56 mm (P = 56 mm) corresponding to characteristic phase angles are
plotted versus drill lengths (Figure 2.27). Study of this plot revealed very important
property of the twist drills by virtue of which the lateral stiffness of twist drill does not

necessarily increase with decrease in length. In case of untwisted beams of uniform cross-
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section the end deflection must always be smaller for smaller lengths and lateral stiffness
increases with decrease in length. Transition zones are observed around a point at a
distance of half pitch length and one pitch length from the fixed end wherein the amount
of end deflection is found to be increasing with decrease in length. Two Critical Drill
Lengths are observed in the zone; higher one is favorable for stable cutting because of
higher lateral stiffness as compared to another smaller one which is unfavorable because

of lower lateral stiffhess.

For precision drilling applications, understanding of this typical stiffness characteristic
observed in Twist Drills has tremendous significance because it enables to choose the

safest drill length for assuring accuracy.
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Figure 2.27: Characteristic End Deflection Curve for Twist drill
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2.7 Summary

In the present chapter a continuous model to study static bending characteristics of twist
drill is presented. Simulation results are presented and with the help of these results

different aspects of static bending of twisted beams applied to twist drilling are discussed.

In the next chapter continuous model based on equation of motion for Euler-Bernoulli

Beam is presented. Simulation results for sinusoidal force excitation are presented and

first natural frequency of twist drill is identified.
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CHAPTER 3

CONTINUOUS MODEL -EULER-BERNOULLI BEAM
EQUATION APPLIED TO TWIST DRILLS

3.1 Introduction

In the previous chapter, effect of varying moment of inertia as a function of length on
static bending characteristic of a fluted beam is studied and its application to twist drill is
described. End deflections which represent the stiffness of the drill for different

conditions are studied.

In this chapter equation of motion for twist drill as a continuous system is developed
where moment of inertia term is the function of the length and the twist angle. Finally the
equation is solved numerically for different forcing frequencies and fundamental natural
frequency for 13 mm diameter drill is identified. Also deflection curves for first and

second mode are presented.

Euler-Bernoulli Beam equation for lateral vibration analysis of beams with uniform
cross-sections throughout the length is modified by replacing the constant moment of
inertia term with varying values of moments of inertia for twisted beams as a function of
length and twist angle. As a result a fourth order partial differential equation with

trigonometric coefficients is obtained. In this equation the highest order space term is of
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order four and the time term of order two. Unbalanced force term is function of both
space and time. This partial differential equation can be solved either using numerical
methods or finite element method to get the lateral deflection vectors in space and time

domain.

The partial differential equation is converted to ordinary differential equation by

assuming force and deflection variations with time to be sinusoidal. The equation is then

simulated in Matlab over a range of forcing frequencies.
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3.2 Continuous Form of Equation of Motion for Twist Drills

Euler Bernoulli Equation for lateral vibration of beams of uniform cross-section is given
below, which is modified by substituting moment of inertia as a function of length ‘x” for

twisted beams [40].

2 2 2
m.g—Z+E —a——{l 9 y}zf(x,t)

a2 ox2 | 22X gy2
Equation 3.1
From equation 2.14,
= . 2 . - 1 2 .
IZZX = IZZ cos“ (B x)+Iyy sin“(B-x)
which can be represented as
= —_— . 2 . i
2ox m(lyy IZZ) cos” (B x)+Iyy Equation 3.2

Substituting in equation 3.1, we get,

2 4 3 2
m- 2V gl 9 Ly O Ly ‘6—% =f(x,1)
atz ZZX 8x4 ZZX 8x3 ZZX x

Equation 3.3
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where,

I and 1" are first and second derivatives of moment of inertia function I | and
ZZX ZZX 77X

are written as,

2
0
I’ :—(I ):-2»[32 -(I -1 )~cos(2-[3~x) Equation 3.4
77X ax2 zzZX yy 7z
Denoting, (I — Izz) =(Q, we can write the equation of motion as,

Equation 3.5

Above partial differential equation can be converted into an ordinary differential equation

in space coordinate by assuming the time variation as below,

y(x,t) = Y(x)- cos(0) . t),

f(x,t) = F(x)- cos(m- t) Equation 3.6
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Hence,

4 3
((Q~cos2(ﬁ-x)+lyy)-§—;zj+[2~B-Q-sin(2-B-x)-§x—§]

i29) (o F(x)
+(2'32-Q-COS(Q'B'X)'dng_‘[ J Y- ( j

(=N

Equation 3.7

Rewriting in the form,

d4y+ 2-B-Q-sin(2-[3-x) -d3y+ 2-[32~Q-cos(2-[3-x) ‘dzy
dx? Q-cosz(B-x)+Iyy dx3 Q-cosz(B-x)+Iyy dx?

3 m-u)2 -Y(x)— F(X)

.0-cos2(B- . .0-cos2(B - 2.
E-Q-cos (B x)+E Iyy E-Q-cos (B x)+h Iyy

=0

Equation 3.8

Above equation can be rewritten in following compact form,

d—§ x>1 +[g<x>]d y

_[m

o’ J.[h(x)]- Y(x)—(?} h(x)l=0

Equation 3.9
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where,

() = 2-B-Q-sin(2-B-x)

J( ) Q-cosz(B-x)JrIny

ox) - 2-B2-Q-cos(2-B-x)
Q-cosz(B~x)+Iyy

hix) = !

) Q-cosz(B-x)JrIny

Equation 3.10
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3.3 Simulation Results

3.3.1 Identification of Natural Frequencies :

Above differential can be solved using numerical solver in Matlab for Boundary Value

Problems using four Boundary Conditions (BCs) for cantilever beam as follows.

Al At fixed end x=0
dy
=0, —=0
Y dx
B] At free end x=L
2 3
<3 -0, &y
dx dx

Matlab program written to solve this equation is simulated in loop over a range of forcing
frequencies and displacement amplitude vector obtained is plotted against corresponding
forcing frequencies. First and second peaks of displacement amplitudes are located at
forcing frequencies of 333 Hz and 1950 Hz. They correspond to first and second natural
frequencies. Higher natural frequencies are extremely high which are usually not
encountered in operation of the drill. Plot of Displacement Amplitude v/s forcing

frequency obtained is presented below (Figure 3.1). This result is later used in Chapter 4

when lumped mass model is studied.
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Figure 3.1: Displacement Amplitude v/s Forcing Frequency
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(First Natural Frequency = 333.0 Hz, Second Natural Frequency = 1950.0 Hz)
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3.3.2 Identification of Mode Shapes

The mode shapes of drill obtained by solving the continuous equation of motion
(Equation 3.9) are presented below (Figures 3.2, 3.3). It must be noted that only the fluted

part of the drill is considered in this case.

The first mode shape is found to be similar to static compliance of drill (Figures 2.6 to

2.10) obtained in second chapter by solving continuous form of static bending equation.

Analytical results for first and second mode shapes obtained by B. W. Huang [7] and
experimental results for first and second mode shape obtained by M. Kohring [21] are
found to be similar to our analytical results. Those results are presented below (Figures
3.4, 3.5) for comparison purpose. It is seen that the first mode shows significant bending

in the fluted part of the drill.

Similar results for first and second mode are obtained by B. Dawson and W. Carnegie [5]
which contains the mode shapes corresponding to first three natural frequencies. Another
study by E. B. Magrab and D. E. Gilsinn [27] shows the mode shapes corresponding to

first four natural frequencies.
All results presented here are the mode shapes corresponding to an unconstrained drill

tip. These mode shapes reveal the presence of significant amount of vibrations in the

rotating fluted body of the drill which are presumed to be responsible for drill breakage.
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Figure 3.2: First Mode Shape for fluted drill (D = 13.0 mm, L = 100.0 mm)
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Figure 3.3: Second Mode Shape for fluted drill (D = 13.0 mm, L = 100.0 mm)
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3.4 Summary

In the present chapter continuous model based on equation of motion for Euler-Bernoulli
Beam is presented and solved numerically in Matlab to identify fundamental and second
natural frequencies of the twist drill. First and second mode shape diagrams obtained are

compared with similar results in past research.

In the next chapter discrete model to study orbital dynamics of twist drill is presented.

Simulation results are presented and with the help of these results parameters responsible

for different types of drilled hole inaccuracies are identified.
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CHAPTER 4

LUMPED MASS MODEL - ORBITAL DYNAMICS OF
TWIST DRILLS

4.1 Introduction

In the previous chapter continuous form of equation of motion of twist drill is presented
and solved numerically. First two natural frequencies are identified and corresponding

mode shapes are obtained and compared with similar results in past literature.

In the present chapter lumped mass model of twist drill including the effect of drill work-
piece interaction is presented. Results of simulation are analyzed to explain the influence

of different parameters towards the drilling inaccuracies.

Several modeling efforts proposed in past describe discrete models for analyzing the
lateral vibration behavior of twist drill. Some of them have stressed on drill chatter which
occurs close to the natural frequencies. A few others have noted that the inaccuracies like
lobed holes and position error are rather common at very low rotational speeds which

however are far lower than the drill natural frequencies.

Drilling process generally can be segregated in different stages, most important being

drill skidding and wandering. Drill skidding, is a random lateral movement of drill tip
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which occurs at the start of drilling operation when drill interacts with work surface.
Second one, drill wandering, is a vibratory motion of drill tip which when overlapped on
the circular motion of drill axis produces out-of-round holes and sometimes center of

these holes also deviate from axis of rotation.

Better understanding of dynamic behavior of twist drill during actual cutting action has
demanded formulation of a two dimensional model which considers the complex
phenomenon of drill-hole wall interaction. Model proposed in this chapter is similar to
models proposed by Basel in [13]. The simulation parameters such as drill stiffness and
fundamental natural frequency are calculated analytically for actual drill geometry i.e.
twisted beam (Chapters 2 and 3). Another important difference is that selection of non-
dimensional parameter ‘a’ i.e. ratio of work-stiffness to drill stiffness. The work stiffness

is calculated from a new formulation developed as described later in this chapter.

Drill dynamics causing lobed and non-straight holes ultimately is influenced by many
factors viz. unbalanced radial force, axial thrust force, rotating speed, eccentricity etc.
Effort is made to explain the significance of different parameters and role of individual
parameter on the occurrence of different kind of inaccuracies commonly evident in
produced holes. Thus proposed model is an effort to elaborate the drill wandering
phenomenon and factors influencing it, on the basis of realistically validated simulation

parameters.
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Only fluted body of the drill excluding the cylindrical shank portion is considered while
calculating the lateral stiffness of drill. Spindle head supporting the drill is assumed to be
rigid which is true in case of modern machine tools such as machining centers. Presence
of oil grooves or coolant holes are neglected. Effect of rubbing action of land with drill
and contribution of thrust force in lateral vibration are also not considered. The effects of

centrifugal and gyroscopic actions are not considered in the model.

All the analytical calculations and simulation results presented are for two fluted twist

drill of diameter D = 13 mm, length L = 96 mm and pitch P = 56 mm. Drill is assumed to

be made by twisting a rectangular cross-section strip of size 13.0 mm X 2.0 mm.
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4.2 Description of Mathematical Model

0
> M

N W

Figure 4.1: Schematic of Drill-Hole Wall Interface

Figure 4.2: Schematic of Lumped Mass Model and Axes System

The two dimensional model described here represents the lateral vibration of a drill inside

an oversize hole. Drilled holes are normally oversize by few micrometers by virtue of
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which a thin film of coolant is maintained in between the precisely ground land of drill

and hole-wall. Thus at any instant the drill tip is ideally assumed to be free to move by a
distance equal to clearance gap (0) under the action of unbalance force. When the drill tip

displacement is more than the clearance gap, its motion experiences an additional
resistance because of the stiffness of the work surface. Thus the overall system stiffness
can be modeled as bilinear spring. This configuration is schematically represented in

diagram (Figure 4.1).

For no contact between drill and the hole, the system stiffness is equal to the drill
stiffness only. When the drill makes contact with hole both work surface and drill gets
displaced by same amount. Consequently, drill and work stiffness act as system of
parallel springs and the system stiffness is equal to sum of the stiffnesses of drill and

work-piece.

Spindle support system is highly stiff compared to that of the drill. Drill acts as a
massless cantilever beam and equivalent mass of the drill is assumed to be lumped at the
tip. Lumped mass is assumed to be symmetrically supported by springs and rotating
inside an oversize hole. The figure 4.2 is a schematic representation of the model, along
with the axis system and forces acting on the system. Direction ‘R’ is always
perpendicular to cutting lips and rotates with the drill. The unbalance forces are assumed
to be acting in direction ‘R’. The unbalanced forces arise as a result of unequal length of
cutting lips, non-uniformities in material properties of work-piece, side forces generated

due to alignment errors and other random forces generated in cutting process.
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4.3 New Formulation for Work Stiffness (Kw)

El E?2

:///

Hinge

Figure 4.3: Cutting Lips Orientation- Top View

El

E2

Kw+Kd

Figure 4.4: Cutting Lips in Displaced Position
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Drill tip is a cone shaped end of the fluted body of the drill. Two straight cutting lips are
formed as two flutes cut through the conical surface of the drill tip. To avoid rubbing of
the tip surface against work surface those lips are relieved by providing end relief angle
on the trailing surfaces. Two sharp cutting edges of the lips cut in opposite directions,
with cutting edge E1-C cutting when lateral movement of drill tip is in upward direction
and cutting edge E2-C cutting when the lateral movement is in downward direction as

shown by arrows in diagram above (Figure 4.4).

Under the action of the unbalance force ‘F’ acting in downward direction the drill is
displaced laterally by distance equal to ‘S’. As the back face of the cutting lip E1-C is
having a line contact with the matching conical surface work-piece at the bottom of the
hole it can not cut through the material. But other cutting lip E2-C has its cutting edge
facing the direction of lateral displacement and it cuts through the material. Consequently

the line E1-C-E2 can be assumed to rotate by angle equal to ‘v’ and the point E1 rests

against the work-piece and acts as the hinge point.

Thus the overall displacement under the action of unbalance force can be visualized as

combination of linear displacement ‘S’ and angular twist ‘v’ of the drill tip as top end of
the drill body is fixed to driving spindle. Angle ‘v’ is called Displacement Induced

Twist. Hence drill is assumed to be a system combined of lateral and torsional springs.
Bending and torsional stiffness of this system are represented schematically by the linear

and torsional springs, respectively, as shown in diagram above (Figure 4.5).
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The lateral stiffness of the system when drill tip is in contact with hole surface is sum of

drill lateral stiffness and work stiffness as explained in section 4.2 above.

For this configuration we can write the equations for linear displacement and angular

twist in terms of lateral and torsional stiffness of the system as given below.

K =L_Fr_ = Equation 4.1
v

Also,

(KW + Kd ) S=F Equation 4.2

2
S= For Equation 4.3
K
t
and,
F .
= Equation 4.4
K +K
w d
Equating both equations,
K t i
KW +Kd == Equation 4.5
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Rearranging the equation, we get

K =—Lt-X Equation 4.6

This is the new formulation for Work Stiffness in terms of radius of drill ‘r’, lateral

stiffness of drill ‘K ,’ and torsional stiffness of drill ‘K ¢ .

d
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4.4 Formulation of Equation of Motion

T1

Figure 4.5.1: Cutting forces and torques on a twist drill

v

Figure 4.5.2: Free body diagram for drill’s displaced position
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Discrete form of equation of motion can be derived by following the same procedure

followed in research paper by Dr S. A. Basile [13] and reference as follows.

The force diagram when drill is displaced by distance ‘r” more than radial clearance ‘8’
such that it makes contact with hole-wall is shown in diagram above (Figure 4.5). Drill is
rotating in counter-clockwise direction with angular velocity ‘@’. When drill body is

pressed against the hole-wall normal reaction ¢ Fr > will appear at the point of contact.

Fr =0 for r<dy
Fr =(r—29)- KW for r =9 Equation 4.7

Because of the rubbing action at the point of contact, friction force ¢ Ff > is generated, the

value of which depends on the coefficient of friction ‘p’.

Ff =0 for r<9
Ff =u- (r—9) KW for r1r=>96 Equation 4.8

Normal reaction force ° Fr > and frictional force ° Ff’ appears only when radial

displacement exceeds the radial clearance (i.e. whenr >9).
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This can be represented mathematically introducing Heaviside Unit-Step Function

‘H(r-0)’ as follows,

H(r - 8)= O fOI‘ (I‘ - 8) < 0 Equation 4.9
H(r-5)=1 for  (r-9))0
Equations 4.8 and 4.9 can be rewritten as follows,
Fr = [(r-0) KW ] H(r-0) Equation 4.10
Ff = [ (r-0) KW ] H(r-9) Equation 4.11
H(r-6) = H Equation 4.12

Ultimate purpose being the orbital motion analysis, the equation of motion can be written

in both directions along co-ordinate axes ‘X’ and ‘Y’. The components of forces FX ’

and * Fy > along axes ‘X’ and ‘Y’, respectively, are found out as given below. The acute

angle between the horizontal direction and instantaneous position of axis of bisymmetry

of twist drill is denoted by symbol ‘@' and called Instantaneous Position Angle.

FX = Fr +COSQ — Ff -sin @ Equation 4.13
Fy = Ff +COS @ -+ Fr -8in @ Equation 4.14

If we refer figure 4.5, we get

sin @ = Y and cos ¢ = X Equation 4.15
T T
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Rewriting above equations, we get

F =(r_5)1< (X-p.Y)H(r-8) Equation 4.16
X T W

F =(ﬂ]K (Y +p.X)H(r - 5) Equation 4.17
Y r w

Unbalance force component ‘ F’ acts in radial direction, perpendicular to the axis of bi-
symmetry which is parallel to the cutting lips. It is combination of different forces arising
during cutting process because of geometrical features of drill tip and other process
parameters as discussed above in section 4.2. This force can be split in to components

along co-ordinate axes.

According to S. A. Basile [13] these radial forces provide a good indication of drills
orbital motion because of the radial displacement. Also there exists a factor called force
amplitude modulation, which leads to formation of noncircular holes. S. A. Basile
deduced by experimental measurements that the radial and thrust forces follow the same
pattern as that of the oscillatory motion of drill and number of lobes of holes so produced
is governed by the ratio of the number of oscillations exhibited by radial force to the drill
rotational speed. And according to other researchers, Y. Gong et al. [12] drilled hole is

usually polygon-shaped hole with an odd number of sides.

The components of unbalanced force before non-dimensionalization of equation of

motion along co-ordinate directions Fix and Fiy are selected such that they represent the

above said effect of force amplitude modulation [13].
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Following are the relations for the unbalanced force given by S. A. Basile [13] which are
also used in the equation of motion formulated in next part of this section and equation of

motion is simulated and corresponding results are shown in following section 4.5.

F.
o JAmbX 11 % sin (3p1)] [cos (pt + 9)] Equation 4.18
X k&
= Fimby [1-Asin Bp1)] [sin (pT + ©)] Equation 4.19
by* ks '

where,

A = Amplitude Modulation Factor

Fix
ox* ™ e

F.
F = v Equation 4.20
by*  k§

(-] .

Rest of the non-dimensional parameters ‘k’, ‘p’, ‘1’ are explained in next stages. For
simplification the rest of the random forces are neglected while formulating the equation

of motion.

If ‘M’ is mass of a drill, ‘K d’ and ‘C d ” the stiffness and damping coefficient of the

system, ¢ FX > and * Fix * be the forces as described above then the simplified equations of

motion in directions ‘X’ and ‘Y’ can be written as follows

MX+C,X+K , X=F +F Equation 4.21
d d X ix
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MY+C Y+K,Y= Fy + Fiy Equation 4.22

d d
where,
2
X = X , X = X Equation 4.23
dt dt2
. dY . d%y
Y=—o, Y =—2 Equation 4.24

Above equation of motion can be converted to the non-dimensional form. We can define

non-dimensional parameters as given below.

Non-dimensional displacements ‘x” and ‘y’,

—=Yy Equation 4.25

p="2, 0= Equation 4.26

damping ratio ‘€’ and non-dimensional or equivalent stiffness ‘k’,

C 4K K
&= d_, k= d w Equation 4.27
2M mn 2
( /K d —+ /KW)
non-dimensional time ‘1’
T=0 -t Equation 4.28

77



Substituting equations 4.16, 4.18 and 4.20 in equation 4.21, we get

2 _
Mg—z—chd—)(-FKdXZ I'_S
dt

" Ky(X-p, Y)H (r-8)+F
t

T 1X

a%xX  dx

5 5
MEZ o, Bk X+HK X1-—2 |“Hp K Y[1-——° |=F
d g T4
@ dt v \/X2+Y2] * WY[ \/X2+Y2] .

Equation 4.29
We can write equation for natural frequency as
dr Equation 4.30
- ® quation 4.
a "
From equations 4.28 and 4.30, we get
aX = ax ® Equation 4.31
dt dr n
2 2
X = ax w2 Equation 4.32
a2 aw? "

Substituting equations 4.31 and 4.32 in equation 4.29, we get

5 d2X dx

0 0
Mo® ——+C, 0 —+K X+HK l-————=|-Hp K l-—=—|=F.
n d d X w ix
i’ " de YU Vx%4y? ‘{ VX2 +Y?
Equation 4.33
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Rearranging above equation, we get

a2x  Cyq@p ax KX HE X 5 HpyK,, Y 5 Fx
+ —+ + 1- - > I- =
& Mol 9 Mo? Mo? X2 +Y’ Mo2 Xy ) mo?
Equation 4.34
), e ) ) ) &)
d| = —1 K¢—=| HK |— H -
) e da) WLl oyl s
W M T ME Mt VXY Mo aY:) MuZs
n n n n
Equation 4.35

Substituting non-dimensional parameters from equations 4.25 to 4.27, new form of

equation is obtained as follows.

2 K K F
d (x)+22’;d(x)+de+H I:VX[I— ! 2]—prK—Wy[l——-————l }__17(_

dT2 dt x2 +y k ’XZ +y2 N ké
Equation 4.36
From equations 4.26 and 4.27, we can write
K
d . (1 +\/a)2 , Equation 4.37
k 40
K
IZV = (1 i ;{&)2 Equation 4.38
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If we assume the following notations,

. dx d2x
X=—, X=—7F Equation 4.39
dt dr?

then, the equation of motion in its full non-dimensional form is written as follows.

3&+2§X+(1+\/-&2X+H(1+‘/a)2 1 ] 1+( ){ J_F
4o, 4 \/—w J‘_—

Equation 4.40

Similarly for another direction ‘Y’, equation of motion in complete non-dimensional

form can also be written as follows.

— +f)2 1+¢a)2{ Hy} 1+f V[l_r_}_ﬁy

Equations 4.41
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4.5 Calculation of Basic Simulation Parameters

Proper selections of simulation parameters can only guarantee the reliable results and
subsequently leads to proper understanding of the process. Following is the list of all the

basic simulation parameters.

1] Drill torsional stiffness (K t)
2] Drill lateral stiffness (K d)

3] Work stiffness (KW)

4] Drill natural frequency ( @ )

5] Forcing frequency (o)

6] Radial clearance ()

7] Coefficient of friction ()

8] Amplitude Modulation Factor (1)

9] Damping ratio (&)

All non-dimensional parameters appeared in the equations of motion derived above

(Equations 4.40, 4.41) are in turn calculated from the basic parameters listed above.
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4.5.1 Drill Torsional Stiffness (K t)

Torsional stiffness value is selected from the experimental results explained in chapter 5

for experimental investigation of torsional stiffness of twist drills.

Figure 5.9 in chapter 5 shows the test result for 13.00 mm diameter drill for torsion test

for the test torque in the direction of cutting torque.

Torsional stiffness of the drill

K ¢ Slope of the test curve
= 56992 _Nm
degree
Kt =5.6992 x 1—8—9
T
Equations 4.42
K, =326.529 Nm

ra

4.5.2 Drill Lateral Stiffness (K d)

Torsional stiffness is selected from the analytical results explained in chapter 2 for the

analytical investigation of bending characteristics of twist drills.
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Figure 2.4 in chapter 2 shows the test result for 13.00 mm diameter drill for bending of

twist drill acting as a cantilever beam under the action of point load F = 1.0 N.

Lateral stiffness of drill

Force
K = _—
d End deflection
_ 1.0
0.026921
Ky = 37.1457 N Equations 4.43
mm

4.5.3 Work Stiffness (KW)

Work stiffness value IS calculated from the new formulation proposed for estimation of
work stiffness as discussed in section 4.3 of this chapter. The work stiffness is obtained

from equation 4.7, as

~

—_t_
Kw_ 2 Kd

Thus work stiffness for 13.00 mm diameter drill can be calculated substituting values of

‘K ; >and ‘K d > from the equations 4.26 and 4.27 above.
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Ky, =232 (371457107
(6.5x10—3j
3 N .
=7691.3513x10" — Equations 4.44
m

4.5.4 Drill Natural Frequency (con)

Natural frequency is selected from the analytical results explained in chapter 3, where

dynamic bending characteristics of twist drills are investigated.
Figure 3.1 in chapter 3 shows analytical result for 13.00 mm diameter drill for the force
acting at the unconstrained drill tip obtained by solving continuous model in Matlab over

a range of forcing frequencies.

Fundamental frequency of drill corresponding to the first peak in frequency plot is

o = 3330 Hz
n
= 333.0x (2 rad
S€C
© = 20923007 rad Equations 4.45
secC

84



4.5.5 Other Parameters

Forcing frequency ((®) is proportional to the rotational speed of the drill and is equal to
the angular velocity,

(D:21IN rad

60 sec

where N is the rotational speed in revolutions per minute (rpm)

Simulations are done over a range of rotating speeds between 100 — 25000 rpm.

Radial clearance (d) is usually very small and is selected to be equal to 40 micro-meters.

Coefficient of friction (p) is chosen as 0.25.

Amplitude Modulation Factor (A) is varird over a range between 0.2 - 2.5.

Damping ratio (&) is chosen as 0.07.

Ky _ 7691.3513x107

Stiffness ratio, o= 3
Ky 37.1457x10

=207.059 Equations 4.46

4K K
A% = 1200006 N Equations 4.47

(o o] =

Equivalent stiffness, k =
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4.5.6 Final Simulation Parameters

Finally parameters selected for actual simulation are documented in tabular form and

corresponding parameters selected by S. A. Basile are also listed for comparison purpose.

Simulation Value selected Value: S. A. Basile (12)
Parameters
& 0.07 0.07
2-30N
Fimbx ’ Fimby 0230
F F. 0.035 - 0.8956 0.2
imbx imby
k8 ° Kk
a 200.0 4.6
k 129.9 329.0
) 0.04 mm 1.0 mm
A 0.2-5.0 1.3
1 0.25 0.25
o 2000.0 (72d) 507.1 (24)
sec sec
N 100 — 25000 (rpm) -
® 10.5 - 2620.0 (1ad) 419 (rad)
sec sec
PHI 0.0 (rad) -0.13 (rad)

Table 4.1: Simulation Parameters
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4.6 Simulation Results

Simulation results shown below are of two different categories.

First type of plot is a trajectory of the drill centerline obtained by plotting displacement
vectors ‘x” and ‘y’ on two dimensional domain (2-D). Same data is plotted on three
dimensional domain (3-D) also with the third vector as time vector. This 3-D plot gives a
clear picture of effect of these lateral oscillations as drill proceeds deeper inside the work-
piece with time. Second type of plot is a locus of the outermost point on the cutting edge.
The displacement vectors mentioned above are overlapped on the drills rotary motion to
get the locus of outermost point of cutting edge. Drill is assumed to rotate at constant

speed. Data is plotted on both 2-D and 3-D domain in a similar way as for the first type.

Series of 2-D and 3-D plots are obtained for different sets of parameters. Following are

the simulation results obtained for three different sets of parameters.

For first case the unbalance forcing components * >and ‘F > are changed over
p Fimbx imby

arange of 0.2 N to 5.0 N.
For the second case the force amplitude modulation factor ‘A’ is changed over a range of

1toS5.

For the third case drill speed is changed over a range of 100 rpm to 20000 rpm.
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4.6.1 Effect of Change in Unbalanced Force Components

Results of simulations for different magnitudes of unbalance force are presented below

(figures 4.6 — 4.29). Smaller values for other variable parameters which are forcing
frequency ‘ ®’ as function of rotating speed ‘N’ and amplitude modulation factor ‘A are

selected to keep the influence of these factors smaller so that the influence of imbalance

force components Fix and Fiy on hole inaccuracies is emphasized.

ix N Fiy
= 0.2t03.0 N
N = 100  rpm
A = 1

Rest of the simulation parameters listed in table as & , o, k, 9, p, ® are held constant.
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Figure 4.13: Locus of Outermost Point of Cutting Lip on Time Scale (Fi =0.5N)
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4.6.2 Effect of Change in Force Amplitude Modulation Factor

Results of simulations for different magnitudes of amplitude modulation factor ‘A’ are
presented below (figures 4.6 — 4.29). Smaller values of other variable parameters which

are forcing frequency ‘o’ as function of rotating speed ‘N’ and force imbalance Fi > are

selected to keep the influence of these factors smaller so that the influence of amplitude

modulation factor on hole inaccuracies is emphasized.

Fix B Fiy

= 02 N
N = 100 rpm
A = 1to5

Rest of the simulation parameters listed in table as& ,a, k, 0, p,mn are held constant for

given system. Magnitudes of those parameters are given in table 4.1 above.
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4.6.3 Combined Effect of Unbalance Force Components and Amplitude

Modulation Factors

As mentioned in section 4.6.3 the influence of unbalance force components and
amplitude modulation factors on drilled hole profile is different. Comparative study for
combined effect of these parameters on hole profile will be more meaningful and will
result in better understanding of factors responsible for formation of distinct hole profiles

observed in actual practice.

Results of simulations for different combinations of magnitudes of amplitude modulation

factor ‘A’ and imbalance force Fiare presented below (figures 4.54 — 4.61). Small

magnitude of forcing frequency ‘ ®” which is function of rotating speed ‘N’ is selected to
emphasize on the influence of different combinations of amplitude modulation factor and

force imbalance on hole inaccuracies.

N = 100 rpm
A = 3
Fix N Fiy
= 04t01.0 N

Rest of the simulation parameters listed in table as& , o, k, 9, p, ® ~are held constant

for given system. Magnitudes of those parameters are given in table 4.1 above.
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4.6.4 Observations - 1

The predicted orbits for different magnitudes of force imbalance as shown in figures 4.8,
4.12, 4.16, 4.20, 4.24, 4.28 and for different magnitudes of amplitude modulation factor
as shown in figures 4.32, 4.36, 4.40, 4.44, 4.48 clearly reveal contribution of these
parameters in the formation of lobed holes. Influence of both the parameters on hole
inaccuracies is almost similar. Higher the magnitudes of force imbalance components and

amplitude modulation factor three lobed hole shape becomes more and more prominent.

There is significant difference in the trajectories of drill centerline as shown in figures
4.6,4.10, 4.14, 4.18, 4.22, 4.26 and figures 4.30, 4.34, 4.38, 4.42, 4.46. This difference is

reflected in the difference in the roughness of the corresponding predicted hole profiles.

Trajectory of drill centerline for higher values of amplitude modulation factor is more
symmetric with higher and lower magnitude oscillations of same pattern repeated

alternately making the three lobed shape of drilled hole more prominent.

Also influence of force imbalance on roughness of hole profile in addition to lobe
formation is clearly evident from the predicted orbits (figures 4.50—4.57) shown in
section 4.6.3 where combined effect of force imbalance and amplitude modulation factor
on hole profiles inaccuracies is presented in the form of predicted orbits. It is observed

that with increase in imbalance force the unevenness of hole profile increases.
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4.6.5 Validation of Results — 1

In this section the results in literature in past literature similar to the numerical results
obtained by simulation of lumped mass model developed in section 4.4 above are
presented for the purpose of comparison and validation. Figure 4.58 below shows

predicted and experimental hole shapes obtained by Y. Gong et al. [12].
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Figure 4.58: Simulated and Experimental Hole Profiles [12]
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Figures 4.59 below shows predicted three lobed hole profiles obtained by P. V. Bayly et

al. [17].

Figure 4.59: Predicted 3-Lobed Hole Profile [17]
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Figures 4.60 below shows experimental hole profiles obtained by P. V. Bayly et al. [17].
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Figure 4.60: Experimental 3-Lobed Hole Profile [17]
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Figures 4.61 below shows measured three lobed hole profiles and photograph obtained by

P. V. Bayly et al. [17].
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Figure 4.61: Measured Profile and Photograph of 3-Lobed Hole [17]
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4.6.6 Effect of Change in Forcing Frequency

Results of simulations for different values of forcing frequency which is function of drill
rotational speed ‘N’ are presented below (figures 4.62 — 4.81). Values of force imbalance

‘Fi’ and amplitude modulation factor ‘A> are kept constant for all simulations and

influence of forcing frequency on hole inaccuracies is studied.

Fix B Fiy

= 1.0 N
N = 100 to 25000 rpm
A = 1.0

Rest of the simulation parameters listed in table as& ,a, k, 3, j, ® ~are held constant

for given system. Magnitudes of those parameters are given in table 4.1 above.
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Figure 4.64: Locus of Outermost Point of Cutting Lip on Time Scale (N = 100 rpm)
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Figure 4.67: Locus of Outermost Point of Cutting Lip on Time Scale (N = 300 rpm)
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Figure 4.73: Locus of Outermost Point of Cutting Lip on Time Scale (N = 1000 rpm)
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4.6.6.1 Observations -2

Simulations results (Figures 4.62-4.73) again demonstrate formation of three lobed holes

as a result of combined effect of force imbalance and amplitude modulation factor.

For lower speeds influence of rotational speed is not prominent. Effect of increase in

rotational speed is evident in trajectories of drill centerline (Figures 4.62, 4.65, 4.68,

4.71) which results in an additional hole profile unevenness.

Thus force imbalance and amplitude modulation factor are major contributors in the

formation of three lobed holes and unevenness of hole profile.
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Figure 4.79: Locus of Outermost Point of Cutting Lip on Time Scale (N = 6000 rpm)
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4.6.6.2 Observations - 3

Simulations results (Figures 4.74-4.79) demonstrate formation of polygonal and three
lobed holes, respectively, as a result of combined effect of rotational speed, force

imbalance and amplitude modulation factor.

Higher speeds are found to be influential and result in polygonal shaped hole profile.
Effect of increase in rotational speed is evident in the trajectories of drill centerline

(Figures 4.74 and 4.77), which results in an additional hole profile unevenness.

Thus rotational speed, force imbalance and amplitude modulation factor all together are

responsible for formation of three lobed holes and unevenness of hole profile.

At lower speeds the lobes were more gradual and smooth, whereas the holes shapes at
higher speeds as seen in figures 4.75 and 4.78 are more polygonal rather than smooth

lobed profile.
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Figure 4.80: Trajectory of Drill Centerline (N = 10000 rpm)

137



Magnification 20X
8;’"""""? T T T T s s s e e [ $ T T

Y + R.sin(wt) (mm)

% s 4 2 o 2 4 s s
X + R.cos wt (mm)

Figure 4.81: Locus of Outermost Point of Cutting Lip (N = 10000 rpm)

Non-dimensional Time

Figure 4.82: Locus of Outermost Point of Cutting Lip on Time Scale (N =10000 rpm)
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Figure 4.89: Locus of Outermost Point of Cutting Lip on Time Scale (N = 18000 rpm)
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Figure 4.93: Locus of Outermost Point of Cutting Lip on Time Scale (N = 25000 rpm)
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4.6.6.3 Observations - 4

Simulations results (Figures 4.74-4.79) shown above demonstrate formation of elliptical
holes or lobed hole profiles close to circular shape as a result of combined effect of

rotational speed, force imbalance and amplitude modulation factor.

Higher speeds are found to be highly influential and result in smooth hole profiles more
or less elliptical in shape. Effect of increase in rotational speed is evident in the
trajectories of drill centerline (Figures 4.80, 4.83, 4.86, and 4.90) and predicted hole

profiles (Figures 4.81, 4.82, 4.84, 4.85, 4.88, 4.89, 4.92 and 4.93) shown above.

Moreover at rotational speeds higher than 10000 rpm the holes shapes are found to be of
different shapes at different depths as seen in figures 4.81, 4.82, 4.84 and 4.85. Different
shapes of orbits at different hole depths are also shown in figures 4.85.1 to 4.85.8. Shape
of the drilled orbits are close to either circular, three lobed or elliptical shapes and is

changed instantaneously as drill moves deeper and deeper.

In figures 4.82 and 4.85 it is observed that the size of drill orbit also changes
instantaneously as drill moves deeper and deeper. The difference in the size of drill orbits
at different times is easily noticed when we compare the orbits shown in figures 4.85.1

and 4.85.2 for different times.

In figures 4.86, 4.90 and 4.94 showing trajectories of drill centerline it is observed that

center of the drill orbit change its location continuously along with time which can be
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referred as Speed Induced Wandering. In figure 4.96 showing an drill orbit at certain time
for rotational speed of 20000 rpm, shift of the center of orbit from drill’s geometric center
is seen clearly. This type of phenoménon leads to straightness error because of which the
mating shaft will not pass through the hole even if both the shaft and drilled hole sizes are

within required tolerance limits.
Thus rotational speed, force imbalance and amplitude modulation factor all together are

responsible for drilling errors such as shape, size, straightness and surface finish errors,

all of them being the primary measures for defining drilling accuracy.

152



4.6.7 Validation of Results — 2

In this section again the analytically or numerically predicted or experimentally obtained
orbital plots found in past research work for twist drill are compared with the numerical
results obtained by simulation of lumped mass model developed in section 4.4 above for

the purpose of comparison and validation.

Figure 4.97 below shows experimental three lobed drill orbit found in research paper by
Z.Katz et al. [14] for N=710 rpm, D = 10 mm, L = 87 mm, b = 1.5 mm. Similar orbit is
also shown in figure 4.61 above. These results can be compared with the predicted orbit
(Figure 4.98) obtained by simulating lumped model developed in section 4.4 above for N

=1200 rpm, D =13 mm, L = 96 mm and b =2 mm.
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Figure 4.97: Experimental Three-Lobed Orbit [9]
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Figure 4.98: Experimental Three-Lobed Orbit [9]

Figure 4.99 below shows experimental elliptical drill orbit obtained by A. C.

Wijeyewickrema et al. [9] for N =710 rpm, D =9.525 mm, L = 101.6 mm.
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Figure 4.99: Experimental Elliptical Orbit [9]
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Predicted drill orbits (Figure 4.100) for harmonic imbalance force obtained using finite
element methods as presented by A. C. Wijeyewickrema et al. [9] for N = 10000 rpm, D
=9.525 mm, L = 101.6 mm are in close agreement with our numerically predicted drill

orbits for similar harmonic force imbalance and N = 14000 rpm (Figures 4.84-4.85.8).
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Figure 4.100: Drill Orbits Predicted using Finite Element [9]
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Nature of imbalance cutting force decides the shape of drill orbit. Predicted orbits (Figure
4.101) presented by A. C. Wijeyewickrema et al. [9] for experimentally prescribed
imbalance force and N = 10000 rpm, D = 9.525 mm, L = 101.6 mm follow the same

pattern observed for imbalance force.
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Figure 4.101: Experimental Elliptical Orbit [9]
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4.7 Summary

In the present chapter discrete model to study orbital dynamics of twist drill is presented
and the simulation results obtained by numerically solving the model in Matlab are
analyzed and contribution of different parameters in different kinds drilling inaccuracies

like size error, shape error, straightness error, surface roughness are explained.

In the next chapter torsional stiffness of drills of different sizes in the direction of cutting

torque and opposite direction are measured experimentally and compared for variations.
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CHAPTER 5

EXPERIMENTAL INVESTIGATION OF TORSIONAL
STIFFNESS SYMMETRY OF TWIST DRILLS

5.1 Introduction

In the previous chapter discrete model considering the effect of drill work-piece
interaction is presented and orbital dynamics of twist drill is discussed in relation to the

influence of various parameters on different drilling errors.

The orbital dynamics in the last chapter considered only the transverse bending vibration
of the twist drill. However, the cutting loads will apply a time varying torque on the drill
and will cause torsional vibrations also. Since the cutting loads introduce both transverse

and torsional vibrations the two types of vibrations are coupled in nature.
This chapter describes the experimental investigations of the effect of twisted nature of

the twist drill on its torsional stiffness in the direction of cutting torque and in the

opposite direction.
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5.2 Experimental Set-up

Initially drill of diameter 12.7 is subjected to torsion test in cutting direction on a
Universal Testing Machine (UTM). Details of the test set-up on UTM i.e. mounting of
fixtures and drill are shown in picture (Figure 5.1) below. UTM facilitates torsion test
only in one direction. Hence new Test Fixture is designed to test the drills of diameters
ranging between 8.0 — 20 mm. All the parts of the set-up are designed considering the

maximum possible cutting torque (60.0 Nm) for highest size of drill to be tested.

Test Fixture has following parts,

Support plate: This is a flat rectangular plate of mild steel with machined bottom face

and has arrangement to mount it on T-table with bolts.

Bearing Pillars: These are two mild steel strips welded on the top of support plate and
carry two concentric in line holes to carry the aluminum sleeve type bearings. The sleeve
bearings are press fitted into the holes in the pillars and their inside diameter
accommodates a clearance fit for the cylindrical shank and fluted body of the drill. One
of the pillars giving support to shank of drill has threaded holes. Bolts are tightened
against the flat ground on the cylindrical shank of drill for arresting the rotation when

torque 1s applied on the drill tip.

Torque arm: This is a mild steel strip with a hole machined on one end and arrangement

to hang dead weights on other end. Again the hole carries the aluminum sleeve type
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bearings. The sleeve bearings are press fitted into the holes in the pillars and inside has a
clearance fit with fluted body of drill. The arm has threaded holes to fix two bolts one
from top and the other from bottom which pass through threaded holes and bearing
sleeves. When those bolts are tightened the hemispherical tips of the bolts rest inside the
drill flutes and arrest the relative rotation between torque arm and drill tip when the

torque is applied on the drill tip.

Details of the designed Test Fixture and drill mounted for actual test are shown in picture
(Figure 5.2) below. At the time of test, the drill is supported by bearing pillars. Shank of
the drill is fixed by tightening the bolts and the torque arm is mounted on drill tip in
horizontal direction. Then overhanging side of arm is loaded with dead weights
progressively starting with very small weight, and the downward deflection of the arm is
noted down every time. Torque is exerted on drill tip and drill gets twisted and arm
makes angular motion. A micron dial indicator is used to measure the vertical movement
of arm. Angular twist is calculated by dividing the downward displacements by effective
length of the arm. Torque is calculated by product of gravitational force corresponding to

dead weight and effective length of the arm.
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Figure 5.1: Torsion Test on UTM (D = 12.7 mm, Cutting Direction)
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5.2 Test Results and Conclusion

Tests are conducted for four different sized drills, 10.5 mm, 11.0 mm, 12.0 mm and 13.0
mm diameter. Two tests for each of the drills on in clockwise direction and other in
anticlockwise direction are done. Test data is plotted in Microsoft Office Excel
Corresponding plots of the Torque v/s Twist Angle and are shown in figures 5.3 to 5.10.
The slopes of those plots give the torsional stiffness values. Following are the torsional

stiffness values obtained from the experimental results.

For 10.5 mm drill
1] K, (10.5mm)=27579x 180 _y158.016 N—‘;‘ (Cutting Direction)
T ra
- 180 _ Nm . . o
2] K ¢ (10.5 mm) =2.8339x— =162.372 “ad (Opposite Cutting Direction)
n ra

Equations 5.1

Difference between two stiffness values is + 2.76 %.

For 11.0 mm drill

11 K, (11.0mm) =3.8205x 130 =218.899 N—rg (Cutting Direction)
T ra

2] K, (1.0 mm)=338439x 180 _570.239 N—r(‘l‘ (Opposite Cutting Direction)
T ra

Equations 5.2

Difference between two stiffness values is + 0.61 %.
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For 12.0 mm drill

1] K, (12.0mm)=43138x 30 =247.163 32
t T rad
2] K, (12.0 mm) =4.3428x 180 =248 824 N
t T rad

Difference between two stiffness values is + 0.67 %.

For 13.0 mm drill

11 K, (13.0mm)=5.6992x 80 =326.540 1
t T rad

2] K. (13.0 mm) =5.5840x 80 =319.040 N1
t T rad

Difference between two stiffness values is - 2.14 %,

(Cutting Direction)

(Opposite Cutting Direction)

Equations 5.3

(Cutting Direction)

(Opposite Cutting Direction)

Equations 5.4

From the above calculations it is clear that the value of the torsional stiffness in

clockwise twisting and anticlockwise twisting does not differ much, the difference being

within + 2.67 % to — 2.14 %.

It can be concluded that the small difference in values of stiffness in two directions is

because of either manual reading errors or calibration error of dial indicator used. Thus

experimental results validate the symmetry in torsional stiffness of the twist drills.
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D = 10.50 mm (Cutting Direction)
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Figure 5.5: Plot of Torque v/s Twist Angle (D = 10.5 mm, Cutting Direction)

D =10.50 mm (Opposite Direction)
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Figure 5.6: Plot of Torque v/s Twist Angle (D = 10.5 mm, Opposite Cutting Direction)
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D = 11.00 mm (Cutting Direction)]
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Figure 5.7: Plot of Torque v/s Twist Angle (D = 11.0 mm, Cutting Direction)

D = 11.00 mm (Opposite Direction)
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Figure 5.8: Plot of Torque v/s Twist Angle (D = 11.0 mm, Opposite Cutting Direction)

167



D = 12.00 mm (Cutting Direction)
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Figure 5.9: Plot of Torque v/s Twist Angle (D =12.0 mm, Cutting Direction)
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Figure 5.10: Plot of Torque v/s Twist Angle (D =12.0 mm, Opposite Cutting Direction)
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D = 13.00 mm (Cutting Direction)
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Figure 5.11: Plot of Torque v/s Twist Angle (D=13.0 mm, Cutting Direction)
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Figure 5.12: Plot of Torque v/s Twist Angle (D = 13.0 mm, Opposite Cutting Direction)

169



Torque [Nm]

25

20 1

Y
(&)

Y
o

D = 12.7 mm (Cutting Direction)

y=2.5042x+9.4217
y=6.716x+0.3496
0 1 2 3 4

Twist [degree]

Figure 5.13: Plot of Torque v/s Twist Angle

(UTM Test, D = 12.7 mm, Cutting Direction)
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54 Summary

In the present chapter torsional stiffness of drills of different sizes in the direction of
cutting torque and opposite direction are measured experimentally and compared for
variations. The difference in stiffness in the cutting direction and opposite direction is
found to be within + 2.67 % to — 2.14 %, for four different size drills and assumed to be

negligible.

In the next chapter discrete model is presented to study the effect of time dependent
cyclic variations of the torsional stiffness of twist drill due to the cutting resistance
appearing when twist direction coincide with cutting direction on torsional vibration
behavior of twist drill. Another lumped mass model to study the Bending-Torsional
Coupling is developed and analyzed to study its significance on torsional vibration of

twist drill.
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CHAPTER 6

LUMPED MASS MODEL - BENDING TORSIONAL
COUPLING DYNAMICS OF TWIST DRILLS

6.1 Introduction

In previous chapter torsional stiffness variations of twist drill in cutting direction and the
opposite were investigated experimentally. Twist drill is unique in itself among all types
of cutting tools because of its fluted structure, which resembles the pre-twisted beams.
Influence of this geometrical characteristic on static and dynamic behavior of twist drills

is investigated in previous chapters.

In this chapter discrete torsional model is developed considering time dependent cyclic
variations of the torsional stiffness of twist drill when cutting through the work-piece
material. Such stiffness variations are caused by the addition of work stiffness in the
cutting direction. Model is simulated in Matlab for harmonic torque imbalance and
results are presented. Another lumped mass model to study the bending-torsional
coupling is developed. Simulation results are analyzed and the influence of this coupling

on torsional vibration of twist drill is investigated.

As discussed before the two cutting lips of drill cut in opposite directions as drill rotates,

and the cutting forces acting on them form a couple and drill is twisted about its center
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line as other end of the drill is fixed in the drive spindle. When drill is cutting through the
material at uniform rate the mean cutting torque twists the drill by fixed amount which is
called the initial displacement and the torque variations about the mean value of torque

cause torsional vibrations.

Another important phenomenon is axial-torsional coupling. When drill is fed in the work
tremendous thrust force acts at the tip of drill in upward direction. Because of the twisted
geometry of the drill, the fluctuations in upward thrust lead to alternate twisting and
untwisting of drill. Inversely the fluctuations in cutting torque also leads to twisting and
untwisting of drill which alternately increases or decreases the length of drill affecting the

instantaneous feed rates.

The concept of work stiffness was discussed in section 4.3 of chapter 4. The lateral
displacement of drill tip when in contact with work-piece is accompanied by an angular
twist and an increase in drill stiffness. The overall movement of the drill tip is represented
as combination of linear displacement of drill tip center ‘S’ and angular displacement ‘y’.
Twisting of drill because of the lateral displacement of drill tip results in bending-torsion

coupling.

From this discussion it is clear that the torsional vibration analysis is very important as is
lateral vibration analysis in understanding the reasons for drilling inaccuracies.
Following sections discuss effect of nonlinearities in torsional stiffness and bending

torsional coupling on torsional response of twist drill.
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6.2 Nonlinear Torsional Stiffness Models

As explained above in section 6.1, when twist direction of vibrating drill coincide the
cutting direction, the rate of cutting increases momentarily with corresponding increase in

cutting resistance. Consequently, the torsional stiffness of the drill increases.

In presence of the additional cutting resistance the resulting drill twist is less than that
under free end condition without the cutting load. Thus it is clear that during drilling
through the work-piece material the torsional stiffness of drill in cutting direction is
different from that in the opposite direction and the torsional stiffness is essentially

nonlinear,

The variations in the torsional stiffness can be represented by different simplified models

as explained in following sections.

6.2.1 Bilinear Torsional Stiffness

When the direction of drill torsional vibration is opposite to the cutting direction the
torsional behavior of the twist drill will be decided by torsional stiffness of drill alone.
When the direction of drill torsional vibration coincide the cutting direction the drill twist
will be smaller since the equivalent stiffness of the system, represented below (Figure

6.1), will be higher than the torsional stiffness of drill alone.
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K¢ Kt

Figure 6.1: Schematic of Drill Torsional Stiffness in Cutting Direction

From equation 5.4, torsional stiffness for 13 mm drillis, K - 326.540 N—r:;
ra
.\ . . Nm
Let the additional work stiffness due to cutting be, Kc: 100.00 “ad
ra
Equations 6.1

Let * KS > be the overall system stiffness at any time, Ksnc be the system stiftness for the

opposite cutting direction and Ksc be the system stiffness for cutting direction.

The overall system stiffness over the one complete cycle is given as follows,

K = K = 3265400 for 0<0<m
S snc rad
Equations 6.2
Nm
K = K = 426.54 — for n<0<2n
S SC rad

Equations 6.3

The variation in system stiffness along time is shown in figure 6.2
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Figure 6.2: System Torsional Stiffness v/s Time (N = 100 rpm)

6.2.2 Combined Linear Sinusoidal Torsional Stiffness

Bi-Linear torsional stiffness model represents the nonlinearity in the system. In order to

understand the behavior of the nonlinear system, the stiffness variation is assumed to be

gradual instead of the sharp rectangular variations. The gradual increase in stiffness can

be represented by a half-sinusoidal curve.

The torsional stiffness for 13 mm drill is, K - 326.540 E:;—
ra

o . .. Nm

The additional stiffness due to cutting is taken as, Kc= 100.00 —
ra

Let © Ks > be the overall system stiffness at any time, Ksnc be the system stiffness for the

opposite cutting direction and KSC be the system stiffness for cutting direction.
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The overall system stiffness over the one complete cycle are given as follows,

Nm

KS Ksnc 326.54 — for 0<0<mn
Equations 6.4
K = K = K.+ K sinot for t<0<2n
s SC t c
= (326.54+100.00sin 1) N;;’ Equations 6.5
ra

The variation in system stiffness along time is shown in figure 6.3 below
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400} N SN
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Figure 6.3: System Torsional Stiffness v/s Time (N = 100 rpm)
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6.3 Discrete Model- Nonlinear Torsional Stiffness

Two different models representing nonlinear torsional stiffness are explained in sections
6.2.1 and 6.2.2 above. Equation of motion for Torsional Vibration of a drill based on

these models can be written as follows,

Jo+C dé +K 0=T(1-Asin ot) Equation 6.6
where,
K = K for 0<0=<m
] snc
= Kt
K = K for n<0<2n
S SC
= K,+ K sinot
t C
(As discussed in sections 6.2.2 above) Equations 6.7
and
J = Mass Moment of Inertia of twist drill,
C 4 - Coefficient of Damping,
KS = Non-Linear Torsional Stiffness of the system,
A = Amplitude Modulation Factor as described in chapter 4,
T = Torque Amplitude
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6.4

Discrete Torsional model developed above considering the nonlinearity in Torsional
stiffness is simulated in Matlab and results are presented. Deflection time plots for

constant linear stiffness are also presented for comparison with results of above model.

Two different sets of results are presented for different types of torque variations. Two
different types of torque fluctuations Type A and Type B, used for simulation are shown

in figures 6.4 and 6.5. For Type A the torque fluctuations about mean torque are higher

Simulation Results 1

and for Type B the torque fluctuations about mean torque are lower.

T (Nm)
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12

10} /

05 1
Time (sec)

Figure 6.4: Torque v/s Time —~Type A (N = 100 rpm)
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Figure 6.5: Torque v/s Time — Type B (N = 100 rpm)

Torsional responses for the two different types of input torques when system stiffness is

Nm

), are shown in
rad

constant and equal to torsional stiffness of drill (KS= K ¢ 326.54

figures 6.6 and 6.8.

Torsional responses when system stiffness is nonlinear along time as explained in section
6.2.2 above for the two different types of input torques are shown in figures 6.7 and 6.9.
Peaks in those plots are suppressed gradually because the stiffness increases gradually
during second half of each cycle. Small amount of phase lag with respect to input torque
seen in all these torsional responses is result of the viscous damping considered in the

model.
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6.5 Discrete Model for Bending-Torsional Coupling

In this section the lumped mass model explained in section 4.4 for lateral vibration of
drill and the discrete torsional model based on nonlinear torsional stiffness explained in
section 6.2.3 above are combined to study the effect of bending-torsional coupling on

torsional response of twist drill.

Although this coupling is not as significant as that of torsion-axial coupling it would be

rather interesting to study this phenomenon in more detail.

Equation 4.29 derived in section 4.4 of chapter 4 is the equation of motion in X direction

of drill mass lumped at the tip of drill and rotating in clearance hole.

X dX

me= ¢, 28
i

% +K dX+HXKW[1—-

) )

Equation of motion in Y direction can be written as follows,

2
d Y dy ) o

+ Gy HRGY HHYK | 1= |- HXi Ky 1= | =F,
d@ [ X2+Y2) e W( \/X2+Y2) 1y

Equation 6.8
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The equation of motion for torsional vibration of a drill (Equation 6.6) does not consist of
the coupling because of the bending induced twist referred while discussing the concept

of work stiffness in chapter 4.

That equation can be modified to include the effect of coupling. Lateral displacement ‘S’
of a drill tip as described in chapter 4 (Refer Section 4.3, Figure 4.4) is nothing but radial
displacement as a result of displacements X and Y in respective directions and can be

written as,

S=  vx2+Yv2

Equation 6.9

And angular twist induced is given by,

9 = \/X2 +Y2

= = - Equation 6.10
c R
Adding this term to equation 6.6 above, we get
J0+Cy-0+K -0+K 0 =T(1-L-sin o Equation 6.11
where,
K = K = K for 0<8<n
s snc t
K= K = K.+ K sinot for T<0<2n
S ¢ t c
Equation 6.12
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Rearranging the equation

J-0+C -9+Kt-6+(KCsinmt)-9c-H

d +Kt-OC+(Kcsmmt)-(60)-He

0

= T(1-X-sin ®-t)
Equation 6.13

where,
H,=0 0<6 <mn

H. =1 M<0<2n

Equation 6.14

‘H 0 ’ 1s unit step function similar to “H(r-8)’ introduced in section 4.4 earlier.

Equations 4.29, 6.8 and 6.13 are three coupled equations of motion. First two are
equations of motion for lateral vibration of drill in two orthogonal directions along co-
ordinate axes. Third equation is equation of motion for torsional vibration for nonlinear

torsional stiffness.
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6.6 Simulation Results 2
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Figure 6.10: Trajectory of Drill Centerline (N = 100 rpm, Fi =02N,A=1)
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Figure 6.11: Locus of Outermost Point of Cutting Lip (N = 100 rpm, Fi =02N,A=1)
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The set of three ordinary equations presented in previous section are solved
simultaneously in Matlab to get the torsional time response and corresponding orbital
motion of the drill tip. Results of simulations are shown in figures 6.10 to 6.14.
Simulations are carried out at rotational speed of 100 rpm. Other simulation parameters

are as listed in table 4.1 in chapter 4.

Figure 6.10 and 6.11 are trajectory of drill center line and locus of outermost point on
cutting lip respectively. Figure 6.12 and Figure 6.13 are angular displacement time
responses of drill without effect of coupling and with effect of coupling, respectively.
Plots also show the effect of nonlinear torsional stiffness which is function of time and
represented by combination of linear and half-sinusoidal stiffness variations over each
cycle as discussed in section 6.2.2 earlier. Figure 6.14 shows displacement plots in
figures 6.12 and 6.13 overlapped on each other to visualize effect of coupling on torsional
response of the drill. Close observation of these plots reveals the difference in angular
displacement magnitudes along time as a result of bending-torsional coupling as

explained earlier.

For further investigation of the coupling effect some more simulation results are

presented below for different sets of parameters.
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Results shown above (Figures 6.15 — 6.17) are obtained by increasing all of the
parameters viz. speed, imbalance force and amplitude modulation factor. Like figure 6.14

the figure 6.17 also clearly shows change in magnitudes of angular deflections at

different times as an effect of coupling.
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Drill centerline trajectory and orbital plot shown above (Figures 6.18, 6.19) are found to

follow the same pattern as shown in chapter 4 while discussing effects of different

parameters on drill profile in details. The trajectory and orbital plots are same as

obtained in chapter 4 because the coupling we discussed here is unidirectional i.e.

twisting does not induce any additional lateral displacement as bending does.

Figure 6.20 below is corresponding displacement time plots for coupled and uncoupled

cases overlapped for comparison. Figure 6.21 is similar plot obtained for higher

amplitude modulation factor and other parameters kept constant.
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Figure 6.20: Coupled and Uncoupled Angular Displacements Overlapped,
(N =200 rpm, Fi: 02N, A=2)
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6.7 Observations

The effect of nonlinear torsional stiffness is that the peaks in the displacement time
response of twist drill for harmonic torque excitation are suppressed. In other words the
torsional displacements for nonlinear stiffness are smaller as compared to that for linear

stiffness.

After we analyze the displacement time plots in figures 6.14, 6.17, 6.20 and 6.21, it is
noticed that the angular displacements for coupled case are always smaller than that for

uncoupled case. Explanation for this is as follows.

The small amounts of additional angular displacements induced by lateral displacements
of drill tip must always be in the direction of angular velocity as shown in figure 6.22
below. The static twist of drill corresponding to mean cutting torque is always in the
direction opposite to direction of rotation, whereas the direction of the angular
displacement in response to the torque fluctuation about the mean torque changes its

direction from clockwise to counterclockwise from time to time.

Thus the overall effect is that the displacement time plot is shifted downward by small

amount as seen in figures 6.14, 6.17, 6.20 and 6.21. In other words the overall angular

displacement is reduced by small amount as a result of bending-torsional coupling.
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6.7 Summary

Two most important aspects of torsional vibration of drill are nonlinearity in torsional

stiffness and bending induced torsion of drill.
Torsional model representing the time dependent cyclic variations of torsional stiffness
depending upon the instantaneous direction of angular displacement in simplified

mathematical form is developed and simulation results are discussed.

Simplified torsional model representing the bending—torsional coupling and torsional

stiffness nonlinearity is developed and simulation results are discussed.
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CHAPTER 7

CONCLUSIONS AND FUTURE RECOMMENDATIONS

7.1. Summary and Conclusions

This thesis work is a systematic study of the static and dynamic behavior of twist drill.
Results of numerical analysis of proposed models are analyzed and are followed by
observations and explanations. Ultimate aim is to earn global understanding of the
dynamic behavior of the twist drill and investigate the relation between the drilling

inaccuracies and lateral and torsional vibration behavior of the twist drill.

Summary of the work described in different chapters of the thesis and conclusions drawn

are given below.

L Continuous static bending model was developed and static behavior analyzed
to understand the influence of fluted geometry on drill lateral stiffness. This
understanding is very important in design of twist drills as well as in drill

selections for various drilling application.

Web thickness, length of fluted body of drill and rate of twisting (helix angle
or pitch) are crucial elements of design of the twist drill. Stiffness of the drill

for given drill cross-section depends on both pitch and length of drill.
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1.

1.

Continuous model based on Euler-Bernoulli beam theory was developed and

analyzed to locate first two natural frequencies and respective mode shapes.

Although the first natural frequency of the drill is quite higher as compared to
the spindle speed in common practice, the technological developments in
cutting tool materials and use of robust modern machine tool spindles, those
seemingly higher speeds are reachable; whereas the second natural frequency
is too high to reach. Other valuable information earned is the first and second
mode shapes. Reasons for drill breakage common in machining operation can
be found from deflection data for whole length of drill obtained from the

modal analysis.

Discrete model for drill rotating in clearance hole is an approach closer to
actual drilling process. Harmonic forcing function used for excitation of
model was taken from the Dr Basile’s study. Contribution of different
combinations of simulation parameters in occurrence of out of round and non-

straight holes is studied.

Selection of forcing function used for excitation of model defines the accuracy
of the predicted orbital patterns. Force excitation model based on
experimentally measured data can guarantee that the predictions will be closer
to practically observed holes shapes. Modulated forcing excitation is

responsible for the lobed holes and rough surface finish; whereas speed in
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IV.

combination with modulated forcing excitation is mainly responsible for
straightness error caused by wandering of drill center line and hole size

variations along the length.

Experimental investigation carried out for torsional stiffness of drill revealed
that the twisted nature of drill does not have any impact on the drill’s torsional

stiffness in clockwise and anticlockwise directions and those are equal.

Thus the cutting resistance appearing intermittently when angular deflection
of vibrating drill tip coincide the direction cutting direction is the important
factor responsible for the time dependent nonlinear behavior of the torsional

stiffness of drill while cutting holes.

Discrete torsional vibration model is presented to represent the effect of the
time dependent non-linearity of torsional stiffness and bending-torsional
coupling both resulting from the interaction of vibrating cutting lips with the

work-piece, on torsional time response of drill.

Overall angular displacements are smaller because of intermittent increase in

torsional stiffness due to cutting resistance and reverse twisting of drill tip due

to the interaction of drill with work-piece.
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7.2.

IL.

M1

IVv.

Recommendations for Future Work

The partial differential equation presented in chapter 3 can be modified by
introducing effect of boundary conditions representing the interaction of
cutting lips with work-piece material. This equation can be solved numerically
to get the time and space domain response and drilled hole profiles and can be

predicted more precisely.

Discrete model studied in chapter 4 can be validated by experimental
measurements of drilled hole profiles. Validation of predicted orbital plots for
high speeds can be done by drilling tests on the robust machine tool like CNC

Machining Center.

Bending-Torsional model can be validated by comparing the simulation

results with the experimental measurements for actual cutting process.

Bending-Torsional coupling model presented in chapter 6 can be modified to

include effect of Axial-Torsional coupling and new comprehensive Axial-

Torsional-Bending model can be developed.
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