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Abstract

In the past several decades, significant amount of resources have been spent by many
manufactures for product quality improvement. Quality improvement efforts involve
mitigating the impact of manufacturing variation through robust design, statistical process
control (SPC), and inspection. This research focuses on manufacturing system design issues
related to inspection. The problem of determining the optimal inspection strategy for a given
multi-stage manufacturing system i.e. inspection strategy that will result in the lowest total
processing cost is modeled as a joint optimization of inspection location and type. Three
inspection options considered in this work are no inspection, full inspection and sampling
inspection. This thesis presents a generic mathematical model and employs dynamic
programming to identify the optimal inspection plan with minimum total processing cost.
Numerical examples are presented to describe the solution procedure. The conclusions are
supported by a factorial experiment. A sensitivity analysis is also conducted to gauge the
impact of inspection errors on the inspection strategy. The developed model is extensible and

applicable to solving manufacturing and inspection allocation problems.

Keywords: Quality improvement, multistage manufacturing system, inspection strategy, full

inspection, sampling inspection, dynamic programming,
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Chapter One

Introduction

1.1 Motivation

In recent years, the strategic importance of total quality management has been widely
accepted by all industries. Improving product, process and service quality is nowadays a key
issue in many organizations to improve or at least maintain-profitability and competitiveness.
Companies cannot survive without providing high quality products. To produce high quality
products, the design and manufacturing community are using a variety of tools to improve
quality throughout the product development cycle: e.g., Six Sigma, process improvement,
inspection, statistical process control (SPC), process change, and robust design. Because no
single approach is superior in every case, management often utilizes a combination of
approaches to achieve the highest quality at the lowest cost. To evaluate the different
approaches, companies need to understand the cause-and-effect relationship between feature-
level variation and system-level product quality. In addition, they must be able to model the
quality costs and the impact of different variation reduction strategies. One of these
strategies, inspection system design and analysis, is the focus of this thesis. Inspection of
products to prevent non-conforming items from reaching the customer is performed in
virtually every production system. In particular, the determination of inspection strategy in a

multi-stage production system where raw material is transformed into a product in a series of



distinct processing stages has attracted much attention due to popularity of the production
system. This is because the multi-stage production system presents various possibilities for
inspection. The problem of determining the inspection strategy is an “inspection allocation
problem”. A typical inspection allocation problem is to determine the location and the correct
inspection strategy: no inspection, full inspection, or sampling inspection, in a serial multi-
stage production system.

In manufacturing processes, inspection is normally associated with rework for
defective or nonconforming items which are repairable. This adds to the cost of production
since some or all of the processing steps in making a product must be duplicated. Moreover,
error propagation as nonconforming units progressing undetected through subsequent
manufacturing steps increases production costs by increasing the amount of reprocessing
needed to restore a unit to defect-free status. Inspection could be performed after each
processing step to significantly reduce error propagation and thus lower the chances of
having to send a unit back through multiple processing steps for rework. This would also
reduce the likelihood of shipping defective units. However, the cost of inspecting after each
step in the production process might outweigh the savings resulted from the early detection
of non-conforming units. On the other hand, inspection could be used after the final
processing step and at no other location. This would of course reduce the cost of the
inspection activity itself. However, if the item is found to have acquired a defect at stage one,
it might be necessary to repeat all processing steps, increasing the cost required to produce
the unit, In order to minimize the cost of processing, in terms of manufacturing, inspection,
rework and penalties for shipping defective units, it is necessary to balance the cost of

accurately detecting defects through inspection. Thus, development of efficient economic



inspection strategies ensures the required output quality while minimizing the total
production cost. Therefore, a cost model must be developed to reflect the dependence of
processing costs on process defect probabilities, rework and penalties in addition to
manufacturing and inspection costs. Based on this model, a solution technique for
determining the optimal location and combination of inspection can be formulated yielding to
a systematic approach in minimizing total production cost for the considered production

system.

1.2 Research Background

This research concentrates on an inspection allocation problem. It generalizes and
extends the earlier work of Oppermann et al. (2003). The objective of their work was to
develop models to decrease the quality cost in technological processes. They developed a
quality cost model for a production system processing single type of parts. Oppermann et al.
(2003) presented quality cost models to compare the quality behaviors of different
technological processes and different inspection strategies (no inspection, full inspection and
sampling inspection). All inspection operations were considered to be error free. They
suggested dynamic programming as one of the possible solution approaches for solving

multiple combinations of technological processes.

1.3 Scope and Objectives of this Thesis
The purpose of this study is to develop a method that addresses the inspection
allocation problem to decide where to allocate an inspection operation and what inspection

strategy to adopt in a serial manufacturing system so that the total expected production cost is



minimized. Using the expression for expected total cost, an optimization procedure is
developed to achieve the objective. Assumptions are made for not including a few costs or
variables because inclusion of such costs and variables would not change the course or
outcome of the model significantly. This is done to avoid unnecessary complexity and
redundant constraints in developing the model.

The environment under consideration is a serial manufacturing system processing
multiple parts. The considered production cost includes the costs of manufacturing,
inspection, rework and penalties if a defective unit goes undetected and is shipped to
customer. In the system considered all defective units are assumed to be repairable and
reworked items are not necessarily restored to a defect-free status. In other words, rework
procedures are not error free. An inspection operation can be performed after each
manufacturing station. Three inspection options considered in this work are — no inspection,
full inspection and sampling inspection. The full inspection operation is considered to be
affected by inspection errors and screens all the incoming units. In sampling inspection, a
sample from the lot (calculated on the basis of the lot size and AQL) is screened for defective
units. Several important issues must be addressed in dealing with the inspection allocation

problem.

1.4 Research Methodology

This research presents a framework of methodologies in the development of a cost
model for optimal location of inspection stations in a serial production system processing
multiple parts. This research uses analytical approach to study the optimal inspection

problem. First, mathematical equations are developed to model the cost and impact of



inspection. Second, a dynamic programming based optimization approach is used to solve the
developed model.

The mathematical model formulated is used to minimize the total production cost.
The solution of the model is used to compare the behavior of different manufacturing
scenarios and different inspection strategies adopted. The model acts as a measurement tool
to compare different inspection strategies at each processing stage. The model also contains
the influence of defect rates at each processing stage and the inspection error associated with
the full inspection on inspection processes. Model in this thesis research is formulated, coded
and solved in optimization software LINGO, version 8, resident on a Pentium-4 machine for
all the variants of the problem.

In real production lines, a decision between the inspection strategies for any possible
production system is to be made. In this research, dynamic programming is used to formulate
an expression for the total production cost which is integral to comparing different inspection
strategies. One of the key features of the inspection allocation problem is that it can be
broken into stages and at each stage a decision will be made whether to allocate an inspection
station, which is also one of the basic characteristics of a dynamic programming model. So,
for the model formulated in this thesis work, dynamic programming as solution approach is
more pertinent. The decision, what inspection strategy to adopt is based on a simple
comparison between the costs of the three possibilities- without inspection, full inspection
and sampling inspection after each manufacturing station.

The developed model is extensively tested by several hypothetical example problems

with realistic features and the results are verified to ascertain the robustness of the model.



1.5 Research Contributions

This research is aimed at extending the work of Oppermann et al. (2003), as they
were among the first to consider both the full inspection and sampling inspection plan
simultaneously. They considered a single manufacturing station and evaluated inspection
allocation possibilities for different inspection policies. In this thesis, the work presented in
Oppermann et al. (2003) is extended to a serial manufacturing system processing multiple
parts and each part can have a different manufacturing sequence. The inspection operation is
subjected to inspection errors. Dynamic programming approach is applied to perform
optimization. Experimental designs and sensitivity analysis are used to study and analyze the
effects on total cost and thus the inspection strategy to determine which variables are most
influential. The main contribution of this thesis is developing the model and methodology to
solve inspection allocation problem under different inspection strategies for serial
manufacturing system processing multiple parts. This type of formulation is not seen in the

existing literature.

1.6 Organization of the Thesis

Following the introductory chapter one, we shall review the literature on the earlier
work done in the area of inspection allocation in chapter two. Chapter three presents the
problem description and model formulation for the system under study; the solution approach
adopted is also presented. Chapter four presents the numerical examples solved using the
model and the analysis of results using experimental design. Concluding remarks are
presented in chapter five; directions for future research work are also discussed within the

limit of this thesis work.



Chapter Two

Literature Review

Over the last few decades, significant progress has been made in the area of quality
system planning. More specifically, the problem of determining optimal locations of
inspection stations and inspection policies so as to minimize related production cost has
received much attention from many researchers. Lindsay and Bishop (1964) were the first
authors to study the inspection allocation and cost minimization problem. They developed a
general inspection screening program in which inspection levels and locations were treated as
variables. They proposed a cost minimization model for inspection allocation in a single line
and multistage production process with perfect inspection and used dynamic programming to
solve it. A few years later, Eppen and Hurst (1974) proposed a method for the location of
inspection stations taking into account imperfect inspection.

There is a broad range of literature studying inspection allocation problems. This
chapter reviews some of the past and recent work in this area. The literature is categorized

based on the solution approach as shown in Table 2.1.



Table 2.1: Categorization of Literature

Index Solution Approach Authors (Year)

Bai and Yun(1986), Eppen and
Hurst(1974), Lindsay and Bishop(1964),
1 Dynamic Programming Oppermann et al. (2003), Penn and

Raviv(2003), Penn and Raviv (2004)

Chen and Thornton(1999),Feng and

Meta-Heuristics (Genetic Kapur(2006), Hassan and Pham(2000),
2 Algorithm, Simulated Kakade et al. (2004),Taneja and
Annealing, etc) Viswanadham (1994),Taneja et al. (1996)

Lee and Unnikrishnan (1998), Peters and
Williams (1984), Rabinowitz and Yahalom
3 Heuristics (2001), Rau and Chu (2005), Rau. et al.
(2005), Raz and Avinadav (2003), Saxena

et al. (1990), Shiau (2002), Shiau (2003)

Narahari and Khan (1995), Rabinowitz and
Emmons (1997), Van Volsem and Van
4 Other Interesting Methods Landeghem. (2003), Veatch (1999), Zhou

and Zhao (2002)




2.1 Dynamic Programming

2.1.1. Bai and Yun (1986): In this paper, the authors focused on an inspection allocation
problem for a serial multistage production system producing identical parts. The rate of
production was constrained by the rate of inspection and only a limited number of automated
inspection stations were available. A cost model was developed to determine the inspection
level and the locations of inspection stations in the line. A solution procedure based on
dynamic programming was proposed for solving small size problems. For large size
problems a heuristic allocation algorithm was presented. Numerical examples were presented
to show the computational efficiency of the solution procedure. The authors reported that the
developed method offered optimal or near optimal solutions in less time even when the

number of stages and inspection machines were large.

2.1.2. Eppen and Hurst (1974): In this paper, the authors suggested a method for allocating
inspection stations in a multistage production process with imperfect inspection. They
developed a model for allocating inspection stations with minimum inspection cost. In the
model the authors considered the inspection to be 100% or full inspection (each part
manufactured is inspected) with known probabilities of accepting bad items and rejecting
good items. They assumed that the probability of discovering a defective item is independent
of the type of error or the stage where the defect was produced. Dynamic programming was

applied to solve the model and inspection policies for the process were suggested.

2.1.3. Lindsay and Bishop (1964): In this paper, the authors developed a general inspection

screening program in which inspection levels and locations were treated as variables. They



proposed a cost minimization model for inspection allocation in a multistage single line
system assuming perfect inspection. The authors assumed the inspection to be 100% perfect.
A series of consecutive inspection level decisions are to be made and the outcome of each
depends on the prior decisions. They applied dynamic programming approach to solve the
model. Computational experiments were conducted to judge the performance of the model.
The authors concluded that application of dynamic programming to inspection allocation

problem produced expected results.

2.1.4. Oppermann et al. (2003): In this paper, the authors focused on an SMT (Surface
Mount Technology) production line. The objective of their work was to develop models to
decrease the quality cost in the processes. They discussed a single combination of
technological and quality process. They described quality cost models based on batch level
statistical quality control to compare the quality behaviors of different technological
processes and of different inspection strategies (no inspection, full inspection and sampling
inspection). All the inspection operations were considered to be error free. The decision
criteria for the selection of a particular inspection strategy were based on the comparison of
the quality cost incurred for each policy. The authors suggested dynamic programming as

one possible approach for solving such problems.

2.1.5. Penn and Raviv (2003): The focus in this paper was unreliable serial production lines
with known probability of failures for each operation. The authors developed a cost
minimization model under certain throughput requirement and included holding costs in the

objective function. The aim was to decide where and if to install inspection stations on the

10



line at a given production rate. The authors also developed a model for profit maximization
which selected simultaneously the inspection station configuration and production rate. The
authors used a polynomial time dynamic programming algorithm for solving the model
assuming exponentially distributed processing time and Poisson distribution for jobs arriving
into a system. The profit maximization model was solved using a branch and bound
technique under the same assumptions. The authors performed numerous computational
experiments to test the efficiency of the algorithm. The test problems were varied in three
areas; success probabilities, tendency of processing rates along the line and tendency of
holding costs along the line. The authors reported that the algorithms developed to solve the

models are efficient and can be used over a wide range of manufacturing environment.

2.1.6. Penn and Raviv (2004): This paper is an extension of the previous work done by Penn
and Raviv (2003). In this paper, the authors discussed problems related to inspection stations
in unreliable serial production lines. They assumed the system to be under any arrival process
with zero holding costs. They proposed two algorithms, one for operational cost
minimization and the other for profit maximization. The cost minimization model was solved
using an O(N?) time dynamic programming algorithm and the profit maximization model
was solved by an O(N*) time algorithm, where N stands for the number of stations. The
authors recommended the use of branch and bound technique if the holding costs are
relatively high. The authors concluded that polynomial time dynamic programming

algorithms are efficient to solve the inspection station configuration problems.

11



2.2 Meta-Heuristics (Genetic Algorithm, Simulated Annealing, etc)

2.2.1. Chen and Thornton (1999): In this paper, the authors focused on the allocation of
inspection stations in a complex assembly process with multi-characteristic specifications
using a combination of modeling, simulation and simulated annealing. The authors
developed a model to predict the cost of the product due to variations introduced by the
manufacturing process, inspection strategy and the final product requirement. The authors
used Monte Carlo simulation technique to calculate the expected cost of the inspection plan
and simulated annealing to find the optimized inspection plan at the lowest possible cost. The
inspection strategy included the location of inspection stations, inspection limits and if the
product should be reworked or scrapped. The authors also presented a case study on aircraft
wing contour to evaluate the performance of their method. They concluded that a quantitative

inspection plan can be successfully developed by following their approach.

2.2.2. Feng and Kapur (2006): In this paper, the authors investigated the economical and
statistical effects of inspection error on the design of specifications due to imperfect
measurement systems. The authors presented three models for single quality characteristic.
They were, Model 1. no inspection error; Model 2: with inspection error and constant
inspection cost; and Model 3: with inspection error and variable inspection cost. Each model
minimized the expected total cost which was a function of inspection cost, scrap cost and
quality loss cost. They used genetic algorithm to find the optimal solution for minimum
expected total cost. They conducted numerical tests on their model and concluded that based

on the practical situations one of the three models can be used to make effective decisions for

12



inspection. The authors also successfully extended their model to bivariate quality

characteristic.

2.2.3. Hassan and Pham (2000): In this paper, the authors used simulated annealing to find
optimal locations of inspection stations in a serial multistage production system. The authors
used the transfer function model developed by Raz and Kapsi (1991). Experiments were
conducted to judge the performance and results found by simulated annealing and were
compared to those by genetic algorithm. They concluded that the cooling rate used in the

simulated annealing is the most significant factor affecting the quality of the solution.

2.2.4. Kakade et al. (2004): In this paper, the authors discussed an optimization model for
allocating inspection efforts in a serial multistage production system. The authors focused on
assembly lines producing printed circuit board (PCBs) using surface mount technology. The
total cost considered is the summation of inspection cost, rework cost and penalty cost. The
inspection was assumed to be perfect. The authors used a combination of simulated annealing
and branch and bound as the solution method for the model. To test the performance of the
algorithm, experiments were conducted in three different groups with varying test conditions.
The experimental results demonstrated that the proposed solution method offered significant
improvements over simple simulated annealing method. For small and medium size problems

the results generated by the algorithm were close to optimal solutions.

2.2.5. Taneja and Viswanadham (1994): In this paper, the authors discussed an inspection

allocation problem for both serial and non-serial manufacturing systems with inspection

13



errors where repeated inspection is allowed. The authors suggested two possible solution
approaches, genetic algorithm and neural networks for solving the problem. They used a
genetic algorithm based approach to determine the locations of inspection stations. The
authors considered the total cost includes manufacturing cost, inspection cost and scrapping
cost. They also considered a penalty cost for a non-conforming item reaching the customer.
The authors solved the model using exterior penalty method and the genetic algorithm to
minimize the total cost. They also presented experimental results for different cases of the

problem.

2.2.6. Taneja et al. (1996): This paper is an extension of the previous work done by the
authors in Taneja and Viswanadham (1994). In this paper the authors presented two
stochastic search algorithms for solving the inspection allocation problem, one based on
genetic algorithm and the other on simulated annealing. The production systems under
consideration were both serial and non-serial with inspection errors. A mathematical model
was formulated and solved using both stochastic search algorithms for different cases.
Experimental results were reported and the performances of the two stochastic search
algorithms were compared. The results showed that the genetic algorithm performed better
for small to medium size problems but for large size problems performance of simulated
annealing was better. The authors concluded that applications of genetic algorithm and
simulated annealing lead to considerable reduction in computation time as compared to

extensive search techniques while yielding near optimal solution.

14



2.2.7. Van Volsem et al. (2005): In this paper, the authors considered the inspection
allocation problem for a multistage production system with constant production and
inspection rate, perfect inspection and perfect rework. The authors presented a discrete event
simulation model to calculate inspection costs and a genetic algorithm to optimize the
inspection strategy. The costs considered were inspection cost, rework cost and penalty cost.
The authors suggested full inspection, sampling inspection and no inspection as three
possible inspection strategies for the production system. The authors also presented an
example to show the computational efficiency of the algorithm. The results illustrated the
effectiveness and efficiency of the evolutionary algorithm in solving the inspection allocation

problems

2.3 Heuristics

2.3.1. Lee and Unnikrishnan (1998): In this paper, the authors presented a mathematical
model for solving the inspection station allocation problem considering a multistage serial
manufacturing system with inspection errors. The system under consideration processes
different part types with distinctive processing sequences. The authors considered
manufacturing cost, inspection cost, internal failure cost and external failure cost as the
constituents of the total cost of the system. They presented three different heuristic solution
methods for solving the inspection station allocation problem; sequential plan selection
method (SPS), time constraint solution method (TCS) and manufacturing cost and
nonconforming probability selection method (CNS). An example was presented with a
production process of six manufacturing stations and three inspection stations processing

four part types. The results obtained from TCS are reasonably close to the optimal solution as

15



compared to those obtained from SPS and CNS. Also the computation time and memory
requirement for TCS are much lower compared to other methods. The authors also conducted
a two factorial experiment to evaluate the performance of the three heuristics to determine

the factors affecting their performances.

2.3.2. Peters and Williams (1984): In this paper, the authors made an experimental
assessment of five normative heuristics to evaluate their efficiencies. This paper contributes
in the identification of cost and process characteristics that affect the operative conditions for
the heuristics and in determining the strength and direction of the effects. The five heuristics
are based on five rules of thumb : 1) locate inspection station prior to all processing
operations; 2) locate inspection station before those processing operations of relatively high
cost; 3) locate inspection station before processing operations that may make the later
detection of defective items difficult and costly; 4) locate inspection station after those
processing operations likely to generate a relatively high proportion of defective items and 5)
locate inspection station after completion of all processing operations. Each heuristic was
evaluated on a 13 stage serial production system. The results showed that a range of
economic and operating factors affect the applicability of these heuristics. The authors
concluded that the cost of processing at each operation did not have a significant impact on
the performance of the second heuristic. Also the process constraints imposed on the

operating conditions had a significant effect on the performance of four of the five heuristics.

2.3.3. Rabinowitz and Yahalom (2001): The focus of this paper is to determine the

inspection capacity and rate. The authors considered three levels of decisions affecting the

16



inspection policy: inspection capacity, assignment of attributes to inspections and inspection
schedule. The authors considered three problems regarding inspection, restoration and
processing. They used a heuristic method to solve the problem and tested the sensitivity of
the solution for different scenarios. Numerical experiments were conducted to judge the
performance of the method. The authors concluded that process imperfection had the most
significant effect on the inspection policy. Also, they concluded that inspection duration had
a negative impact on the inspection policy when inspection duration was a significant portion

of manufacturing duration.

2.3.4. Rau and Chu (2005): In this paper, the authors studied an inspection allocation
problem for a serial manufacturing system with two types of workstations; workstation of
attribute data (WAD) and workstation of variable data (WVD).The authors also considered
three possible ways for the treatment of the defective items: repair, rework and scrap. The
inspection considered for the production process was imperfect. The authors considered the
total cost including processing cost, inspection cost, rework cost, repair cost, scrap cost and
penalty cost. They developed a model to maximize the total profit and to determine the
optimal inspection policy for the production process. The authors used experimental
heuristics and rules of thumb suggested in Peters and Williams (1984) for solving the model
as the computation time with optimization methods based on complete enumeration grows
exponentially with the number of workstations. They concluded that the performance of the
heuristic method was very close to the optimization methods based on complete enumeration,

but the former takes much less computation time as compared to the latter.
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2.3.5. Rau et al. (2005): This paper is an extension of the earlier work done by the authors in
Rau and Chu (2005). In this paper the authors developed a mathematical model considering
layered fabrication to find an optimal solution for allocating inspection stations in re-entrant
production systems. They considered workstations with variable data only. The authors used
rule of thumbs suggested by Peters and Williams (1984) as well as the characteristics of the
model developed to solve the inspection allocation problem. From the results obtained the
authors concluded that the mathematical model developed is extensible and applicable. They
also solved the model with a complete enumeration method and compared their
performances. The heuristic algorithm proposed offered acceptable results in much less

computational time as compared to complete enumeration method.

2.3.6. Raz and Avinadav (2003): In this paper, the authors considered the problem of
selecting inspection operations out of a set of available inspections to maximize the profit per
item produced. They considered that the inspection has errors. They used revenue, penalty
cost and inspection cost to calculate the profit per item. They used a branch and bound
algorithm to obtain the optimal solution of the problem. Various experiments were conducted
to test the efficiency of the algorithm. They suggested the use of a greedy heuristic to
overcome the disadvantage of the branch and bound algorithm. They also conducted
experiments to compare the performance of the two methods. From the results obtained they

concluded that the use of heuristics is advantageous when the problem size is large.

2.3.7. Saxena et al. (1990): In this paper, the authors discussed the performance of four

inspection allocation heuristics on the basis of job completion time in a serial manufacturing
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system. The aim of the paper was to find which system parameter had the most significant
effect on the performance of the heuristic, favorable range and the effect on the cost. The
four heuristics discussed were: place an inspection station before the processing station with
longest processing time and place another at the end of the processing station, place an
inspection station after the processing station likely to generate a high proportion of defective
items and place another at the end of the process, place an inspection station after each
processing station and place an inspection station at the end of the whole process. The
authors used simulation to simulate a serial production system with 100% inspection policy.
Experiments were conducted to test the performance of the heuristics. They concluded that
inspection time was the most significant factor affecting a particular heuristic. When
inspection time is a high percentage of the processing time, it was suggested to place an
inspection station after each processing station so that shorter manufacturing lead time can be
achieved. When inspection time was a small percentage of the processing time, they
concluded that it is better to place an inspection station after an operation likely to produce

maximum percentage of defective units and to place another at the end.

2.3.8. Shiau (2002): In this paper, the author proposed an inspection planning strategy to
allocate inspection stations in a multistage manufacturing system with limited inspection
resources. He classified the inspection stations in different classes with each class having the
same inspection capability and usage. The author developed a cost model considering
inspection error which deals with inspection capability, manufacturing capability and
tolerances. As the problem size becomes large, it becomes difficult to solve the model by

complete enumeration method. Two heuristic methods, earliest stage assignment method and
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hybrid weighting assignment method, were proposed to solve the model. A case study was
presented to measure the performance of the two heuristics and to compare them to the
enumeration method. The results showed that the two heuristics gave acceptable
performances comparing to enumeration method. The performance of the hybrid weighting
assignment method was better than that of the earliest stage assignment method in terms of

computation.

2.3.9. Shiau (2003): This paper is an extension of the earlier work done by Shiau (2002). In
this paper the author discussed the inspection station allocation strategy in a multistage
production system with inspection error considering limited inspection resources. The
inspection allocation problem is solved using a cost model in which manufacturing
capability, inspection capability and tolerances are considered. Heuristic methods are
introduced for large size problems based on two decision criteria: sequence order of
workstations and tolerance interval. A case study was presented to measure the performances
of the heuristics and the results were compared with optimal solutions generated by
enumeration method that generated an optimal solution. The author concluded that both
heuristics produced acceptable results compared with the enumeration method, although for

time efficiency sequence order method should be preferred over tolerance interval method.

2.4 Other Interesting Methods
2.4.1. Narahari and Khan (1995): In this paper, the authors discussed a re-entrant
manufacturing system. They proposed a probabilistic model for locating inspection stations

based on cycle time and throughput. The authors developed an analytic method based on
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mean value analysis (MVA) to compute cycle times and throughput rates. Numerical
examples were provided to judge the efficiency of the method. The authors conducted
simulations to validate the proposed method. They also compared different ways of
allocating inspection stations and concluded that a small number of strategically located

inspection stations perform better than a large number of poorly located stations.

2.4.2. Rabinowitz and Emmons (1997): In this paper, the authors considered a multistage
production system with a single inspection facility to perform multiple inspection tasks. The
main focus area in this paper was the scheduling of inspection and maximization of the
fraction of good items produced by the production system. The author proposed an optimal
inspection schedule for a two stage production system and heuristics for a system with more
than two stages. The authors divided the heuristics into two categories as static and dynamic.
Numerical experiments were conducted to evaluate the performance of the two heuristics.

The authors reported that both heuristics performed well.

2.4.3. Van Volsem and Van Landeghem (2003): This paper studied the impact of various
cost parameters on selection of an optimal inspection policy. The system under consideration
is a multistage production system with constant production rate and inspection rate, perfect
inspection and perfect rework. The total inspection cost consists of test cost, rework cost and
penalty cost. The authors considered full inspection, sampling inspection and no inspection
as three possible inspection strategies for the production system. They used simulation to
solve the problem. Two types of problems were considered. In the first problem, the test cost

was fixed and rework and penalty costs were varied. In the second problem, test and penalty
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costs were fixed and rework cost was varied. They concluded that the rework cost did not
have a significant impact on the total inspection cost and its influence on the inspection

policy was not significant.

2.4.4. Veatch (1999): The main objective of this paper was to find inspection strategies for a
multistage production system with time varying quality. The authors formulated a cost of
quality (CoQ) model that allows various repair options and sampling plans. The model
emphasized the dependency between defects and costs. The model was used to analyze the
CoQ of a thermal printer for digital photographs. They found that inspection is cost effective
only for parts that have a poor record of quality or a very high unit cost. They also reported
that sampling inspection is cost effective when there is a significant variation in the defect
rate between lots. The authors concluded that the developed the CoQ model is efficient and

widely applicable to a wide range of assembly processes.

2.4.5. Zhou and Zhao (2002): This paper focused on a mathematical model formulation
that determines the number and locations of inspection stations. The costs considered were
training cost, tool cost, transportation cost and cost of opening and operating inspection
stations. The model has two types of constraints: all demands must be satisfied and capacity
limits at machining and inspection stations cannot be exceeded. Five heuristic algorithms
based on tripartite graph representation of the problem were developed to find feasible
solutions. They were random search algorithm, cubic greedy algorithm, edge greedy
algorithm, single matching algorithm and double matching algorithm. The authors also

performed experiments to verify the algorithms and compared their performances. From the
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results the authors concluded that the double matching algorithm produced the best results.

They produced near optimal solution and had best computational efficiency.

2.5 Summary

Much research work has been done for modeling and solving inspection allocation
problems due to their importance and difficulties in finding optimal solutions. Depending
upon different criteria such as serial or non-serial production system, perfect inspection or
imperfect inspection, different inspection allocation models have been suggested using
dynamic programming and various heuristics.

In the next chapter, a detailed mathematical model for inspection allocation problem
considering a serial manufacturing system processing multiple part types is presented. After
each manufacturing station one of the following three options can be chosen: no inspection,
full inspection or sampling inspection. The dynamic programming approach employed to

solve the model will also be discussed in detail.
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Chapter Three

Model Formulation and Solution Approach

In this chapter, details of the problems studied in this research and the mathematical
model developed to solve the problem are discussed. It further includes,

e Detailed description of the general characteristics of the inspection allocation
problem.

e Assumptions made related to different stages of production.

o Notations used in the mathematical model.

e Explanations of the various parameters used in the model.

e Formulation of the mathematical model.

e Application of dynamic programming approach to solve the model.

3.1 Problem Introduction

As discussed in the previous chapters, the problem considered in this research is to
determine an optimal inspection policy so as to minimize the total processing cost for a given
serial manufacturing system to provide the desired quality of finished product. The
characteristics of the production environment include the number of processing stages in the

given manufacturing system, the probability of producing defective units at each processing
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stage, the inspection error at each stage, the sampling inspection plans and the production
costs associated with each stage.

Consider a multi-stage manufacturing process as shown in Figure: 3.1. There are K
manufacturing stages through which the parts to be processed follow certain sequences. Each
stage of the manufacturing process receives batches of items to be processed. They may
contain non-conforming or defective items. After each of the processing stations, one of the
three actions for quality control may be chosen: no inspection (N ), full inspection (F') and
sampling inspection (S). It is possible to place an inspection station after each
manufacturing station. The first option, no inspection obviously does not necessitate any
further inspection decision. The undetected defective items will continue to be processed in
the manufacturing line and may be shipped to the customer. If full inspection is chosen, then
the inspection station may detect the defective items. The defective items are reworked to
become conforming units. The full inspection operation subjects to two types of inspection
errors. Type I error is the probability of classifying a conforming part as non-conforming,
and Type II error is the probability of classifying a non-conforming part as conforming.
Finally, the sampling inspection option requires a decision to be made on the parameters of
the sampling plan based on the required quality level. The sampling procedure described by
Oppermann et al. (2003) is followed in this research work. The acceptance criterion is
normally a maximum number of defectives items in a sample. If the number of defective
items in a sample is higher than the acceptance criterion, the sample is rejected and a 100%
inspection of the whole batch is carried out. The sampling plan is assumed to be free of

inspection errors.
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Thus, in a multi-stage production system the inspection strategy addresses:
1. The number and locations of inspection stations;
2. The inspection policies to be used at the inspection stations.

The purpose is to determine the optimal location of inspection stations and the type of
inspection policies in the serial multi-stage production system such that the total cost of the
manufacturing process is minimized. The total cost comprises the manufacturing cost at each
stage, the inspection cost for all inspected items, the rework cost associated with defective
items and the penalty cost incurred by the defective items. In the next section, the

assumptions used in developing the mathematical programming model are presented.
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Figure 3.1: A Serial Manufacturing System
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3.2 Model Assumptions

1.

The system has K manufacturing stations arranged serially and processes / different
part types. Each part type follows a given manufacturing sequence.

Defective parts are generated only at the manufacturing stations and each
manufacturing station has a specific probability of producing defective parts for each
part type.

One of the three quality control actions may be taken: no inspection, full inspection
and sampling inspection at each manufacturing stage. The selection of these options
should minimize the total manufacturing cost.

For no inspection, a penalty cost is incurred at each stage for the all undetected non-
conforming units.

Two types of inspection errors are considered for the full inspection operation. Type I
error is the probability of classifying a conforming part as non-conforming, and Type
II error is the probability of classifying a non-conforming part as conforming. The
probabilities of these two types of errors are known at each stage.

The sampling inspection is assumed to be free of inspection errors. A 100%
inspection policy is applied to the whole lot rejected by sampling inspection.

The units identified as non-conforming by the inspection operation are assumed to be
reworkable.

The production system has reached a steady state and system breakdown is not

considered.

Before the model is presented, we first give the notations used in the model.
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3.3 Model Notations

Indices:

i=index of part type, i=1,....1.

k = index for manufacturing station, k= 1,....K .

Parameters:

n,= number of units of part type i entering the system.
@, = probability that the inspector at manufacturing station k erroneously classifies a

conforming unit of part type i as a non-conforming unit.
B, = probability that the inspector at manufacturing station & erroneously classifies a non-

conforming unit of part type i as a conforming unit.

Z,,= probability of a non-conforming unit of part type i processing at manufacturing

stationk .

s, = sample size for batch processing part type i at manufacturing stationk .

MCP, , = unit manufacturing cost for processing part type i at manufacturing stationk .
ICP, , = unit inspection cost for part type i at manufacturing stationk .

RCP,, = unit rework cost for part type / at manufacturing stationk .

PCP,, = unit penalty cost for part type i at manufacturing stationk .

Variables:

Continuous Variables:

NC, = number of conforming units of part type i leaving manufacturing stationk .

NNC; ,= number of non-conforming units of part type i leaving manufacturing stationk .
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NR, .= number of units of part type i rejected at inspection station after manufacturing

stationk .
Binary Variable:
Inspection Option:

. ) 1, If no inspection is performed,
No inspection: NI, =

0, Otherwise

) i 1, If full inspection is performed,
Full inspection: FI,, =

0,Otherwise

1, If sampling inspection is performed,
0,0Otherwise

Sampling Inspection: SI,, = {
In this thesis, erroneously classifying a conforming item as non-conforming is called as
Type-I error and labeling a non-conforming unit as conforming is called a Type-II error.

Although these definitions are similar to definitions used in statistical analysis, it should be

noted that they are defined in terms of inspector fallibility rather than sampling error.

3.4 Cost Structure

The objective function of the developed model is to minimize the total cost of
production involved in the manufacturing and quality control processes. Specifically, they
include manufacturing cost, inspection cost, reworking cost and penalty cost. They are

discussed below.

3.4.1 Manufacturing Cost
The manufacturing cost of part type i at station & is the multiplication of the unit

processing cost at station k and the number of part type i processed at stationk . The unit
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processing cost is composed of machine setup cost, material cost and overhead cost. The
number of units of part type i processed at station % is the total number of units flowing into
station k£ from the preceding station. These units may be conforming and are designated as
non-conforming after full inspection, or they may be non-conforming but are designated as
conforming due to Type-II inspection error.

Therefore, the manufacturing cost (MC, , ) is defined as follows:
For the first manufacturing station it is,
MC,,= [NC,, + NNC,,]x MCE,, (3.1)

For all other stations it is calculated as follows,

! K
Z ZMCi,k = Z Z [Nci,k—] x (1 i )+ NNC; ) % By ] x MCF, , (3.2)

I K
i=l k=2 i-1 k=2
Where, the number of conforming units and number of non-conforming units produced at a
manufacturing station are calculated as follows,

¢ Calculation of the Number of Conforming Units (NC, ,)

The number of conforming units of part type i produced at station % is equal to the
number of conforming units flowing from the immediately preceding manufacturing station
which can be either a manufacturing station or an inspection station.

For the first manufacturing station it is,

NC,,=n, x(1- Z,,) (3.3)

For all other stations it is calculated as follows,

I K I K
ZZNCi,k = ZZ[NCi,k—l X (1 & )+ NNC, X iy + NRi,k—l] x(1- Z,,) (3.4)
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¢ Calculation of the Number of Non-Conforming Units (NNC, ;)

The number of non-conforming units of part type i produced at station & is equal to
the number of non-conforming units flowing from the immediately preceding manufacturing
station which can be either a manufacturing station or an inspection station.

For the first manufacturing station it is,

NNC,,= n,x Z,, (3.5)

For all other stations it is calculated as follows,

! K 7 K
S S WG, =Y Y INC, . x{( = @y )+ NNC oy x B + NR,y | % 2, (3.6)

i=l k=2 i-1 k=2
a,,=0and g, =1, if at station (k-1), no inspection or sampling inspection is
performed. The number of parts reworked is calculated as follows,

e Calculation of the Number of Reworked Units (NR, )

The number of parts identified as reworkable at an inspection station, in case of full

inspection is affected by the types of inspection errors. It is calculated as follows,

iiNR = zlli[NCi,k xa;, +NNC,, x (1 —Bix )] (3.7

i=1 k=l i-1 k=

3.4.2 Inspection Cost

The inspection operation in the system under consideration can be either full
inspection or sampling inspection. In case of full inspection, the inspection cost (IC, ;) is the
product of the unit inspection cost multiplied by the entire lot size processed at workstation
k. For sampling inspection, it is the product of the sample size and unit inspection cost for

part type i manufactured at stationk .
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Therefore,
For no inspection, we have
IC,,=0

For full inspection, we have

Ic, = ZZK:[NCM +NNC,, | x ICP,

1 i-1 k=

M~

I 1
i=1 -1

P
i
—

And for sampling inspection, we have

/ I K
Z]Ci,k = Zzsi,k x ICP,

i=1 k=1 i-1 k=1

3.4.3 Rework Cost

(3.8)

(3.9)

(3.10)

At an inspection station, units identified by the inspection operation as non-

conforming can be reworked. In case of full inspection, the rework cost (RC, ) is the cost of

reworking a unit of part type i manufactured at stationk identified as a non-conforming unit

by an inspection station. For sampling inspection, it is the product of the number of non-

conforming items in the sample and the unit rework cost.
For no inspection, it is
RC,, =0

For full inspection, we have

M=

/ /I K
RC, = ZZ [NCi,k xa;, + NNC;, x (1 ~ Bk )] x RCF,,
= =)

1 i-l k=

i

==
I

And for sampling inspection, we have

>'RC,, = > 5,4 %Z;, x RCP,,

k=1 i=] k=

/ K
i=1

—
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3.4.4 Penalty Cost

This is the cost incurred when a non-conforming unit goes undetected and is shipped

to the customer. In case of no inspection policy, the penalty cost ( PC, ) constitutes the cost

for further processing the unit in the manufacturing system, the warranty cost and the cost of
repairing the defective unit after sales. The penalty cost is the product of the number of non-
conforming units of part type i manufactured at station k¥ and the unit penalty cost. For
sampling inspection policy, it is the product of the number of defective units in the accepted
batch and unit penalty cost.

For no inspection,
I K I K
> > PC,,=> > NNC,, x PCP, (3.14)

For full inspection,
PC,, =0 (3.15)

For sampling inspection,

iZPCi,k = Zf[(zvc,-,k +NNC, ;) =5, x PCE,, (3.16)

7
i=l k=l i=l k=1

3.4.5 Cost of No Inspection

The cost incurred if no inspection is performed at a particular stage is the sum of

manufacturing cost and penalty cost at that stage.

K K
ZCNi,k = ZZ(MC:‘,k +PC, )

1
k=1 i=l k=1

{
i=1

For the first manufacturing station it is,

CN,,=([NC,, + NNC,,1x MCP,,+ NNC,, x PCP,)) (3.17)
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For all other stations it is calculated as follows,
I K I K
ZZCNi,k ZZ([NC pa X (1-a,, )+NNC,, , x P, ] x MCF,, + NNC,, x PCF,)

.. (3.18)

3.4.6 Cost of Full Inspection

This cost is the sum of the manufacturing cost, inspection cost and reworking cost at a

particular stage.

I K

iiCFi,k - ZZ(MCi,k +1C,, +RC,,)

i=1 k= i=l k=1

—_

For the first manufacturing station it is,

CF,,=(INC,, + NNC,,1x MCP,,+[NC,, + NNC,,]x ICP,,+ [ NC,, x a,,+ NNC,,

(1-B,)1x RCE, ) (3.19)

For all other stations it is calculated as follows,

[ K I K
ZZCF.-,k = ZZ([NCi,k—I x(1-a;, )y NNC,, % D, 1x MCP, , +[ NC, ,+ NNC, ;]

i=l k=2 i=] k=2

x ICP,+[NC,, x a,,+ NNC,, x(1- 8,,)]x RCP,,) (3.20)

3.4.7 Cost of Sampling Inspection

This cost is incurred if at a particular stage, sampling inspection is performed. This
cost is the sum of the manufacturing cost, inspection cost, rework cost and penalty cost at
that stage. In addition, if the sample is rejected then a 100% inspection will be carried out.

This additional cost will also contribute to the cost of sampling inspection.
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K
>.CS., =) .(MC,, +IC,, +RC,, + PC,,)

7 7
i=l k=1 i=l k=l
For the first manufacturing station it is,
CS,,=([NC,, + NNC,,]x MCP,,+ P, x(s,; x ICF, ; +s,,x Z;, x RCB, | +([NC;, + NNC,,]-
$.)% 2,y x PCP, )H(1-P)X[[NC,, + NNC,, 1x(ICF,,+ Z,, x RCF, )]) (3.21)

For all other stations it is calculated as follows,
/I K /I K
z Z CSii = z Z (INC oy x(1-ay YYNNC, X Py 1X MCE,  + By % (s %

ICP, +s,, % Z;, x RCF  +(NC,,+ NNC, ,-5,,)x Z,, x PCF, , J*
(1-P)X[(NC,, +NNC,,)x(ICF,,+Z,, x RCF,; )]) (3.22)
Where, the probability of acceptance ( P,) of the sample is calculated as follows,

e Calculation of Probability of Acceptance of the Sample (7,)

The probability of acceptance of the sample is the probability that d, the number of
defectives, is less than or equal to Ac, the acceptance number. The sample size and the
acceptance number for the sample are calculated using Military Standard 105E tables. For a
given batch size and AQL these tables give the values of sample size and the acceptance
number for the sample. With these values it is possible to calculate the probability of
acceptance. Actually the use of hypergeometric distribution is necessary for the exact

calculation of P,. Whenn,, 210xs,, , it is possible to use binomial distribution as a good

estimate to calculate the probability of acceptance [Oppermann et. al (2003)].

The equation of the binomial distribution is:

= |l z yixa-z  yw 3.23
Pa= |, (Z, )'=x1-Z2 ) (3.23)
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Thus, the probability of acceptance of the sample is calculated by:
Ac

F,=pyt pyt..tp,= zpd (3.24)
d =0

3.4.8 Total Cost

This study is based on the minimization of total production cost to determine the
optimal inspection policy and the location of inspection stations in a manufacturing line. The
objective function for the inspection allocation problem for a manufacturing system

producing i part types is expressed as follows:

I
ZTC,,,,C =ZZ(CNL,€ x NI,, + CF,, x FI,,+CS,, x SI,,) (3.25)

k= i=l k=1

I K
i=l

Thus, the objective function of the inspection allocation problem is,

I K
Minimize 7C =) " TC,, (3.26)

i=l k=

—

St NI+ FI,,+ SI,,=1 (3.27)
NI, e {0,1}
FI,, e {0,1}
SI,, e {0,1)

Where, the constraint in equation 3.27 ensures that only one inspection policy is selected at a

manufacturing stage.

3.5 Solution Approach

Many planning and control problems in manufacturing, telecommunications and

capital budgeting call for a sequence of decisions to be made at different stages. The initial
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decision is followed by a second, the second by a third, and so on perhaps infinitely.
Generally, a number of technological processes are arranged serially in a production line. In
real production lines, we have to make a decision between the inspection strategies. The
decision whether to inspect or not is based on a simple comparison between the costs of the
two possibilities, with or without an inspection station after a manufacturing station. In this
research, dynamic programming is used to solve the inspection allocation problem. The
details involved in implementing this approach are discussed in the following section.
e Characteristics of Dynamic Programming Approach to Inspection Allocation

Problem

In inspection allocation problem, each manufacturing station is considered as a stage
and a decision had to be made whether to allocate an inspection station after each
manufacturing station and the type of inspection policy to be adopted. The state at any stage
is simply the stage where the parts are at the beginning of the stage i.e. whether the parts are
at a manufacturing station (no inspection) or at an inspection station (full inspection or
sampling inspection). To make a correct decision at any stage, we do not need to know how
we got to this current location. The decision is to select from the three options: no inspection,
full sampling inspection and sampling inspection after a manufacturing station. The current
state of the system will convey all the information about its previous behavior necessary for
determining the optimal inspection policy henceforth.

We now describe how dynamic programming is used to solve the model developed

previously. Let TC,, (S,,;X,,) is the total cost of the best overall policy for the remaining

stages, given that the parts are in state S§,, ready to start stage kand selects X, as the
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immediate decision. Given S,, and k, let X"« denote the value of X, that minimizes
TC,, (S, X, ;) and let TC"ix (S, ; X, ) be the corresponding minimum value. Thus,

TC ik (8,43 X, )=min [TC, (S,,; X, )] (3.28)
Where, X, € {NI,, ;FI, ;S ,}

The objective is to find TC,, (S, ,; X, ) and corresponding inspection policy.

TC;, (S, ,;X,,)=Immediate cost + Minimum future cost

Immediate cost = 7C,,

Minimum future cost = TC, , (S, ;3 X 41)

TC 1 (843 X1y )= TC, + TC, 1 (S p3 X i) (3.29)
TC' ik (S, ;3 X, )=min {[CN,, x NI, ,+CF,, x FI, , +CS,, x SI,, 1+ TC, , (S, 413 X;41)}
The initial condition for TC, | is: Forii=1,...,/; k=1

TC,\(S;;X,))=min {CN,, x NI,, + CF,, x FI,; +CS,;, x SI,,}

As discussed previously, one of the features of the inspection allocation problem is that it
can be broken into stages and at each stage a decision had to be made whether to allocate an
inspection station, which is also one of the basic characteristic of a dynamic programming
model. Additionally, dynamic programming yields exact optimal results in less
computational time. On the negative side, the computational effort increases with the

increase in problem size and formulating a dynamic programming can be difficult. The

model presented above can be solved to find the optimal solution of the inspection allocation
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problem using various available software packages. The widely used packages are LINGO,
CPLEX, among others.

In this research, the model is coded in LINGO resident on a Pentium-4 machine operating
at 2.6 GHZ and 512 MB RAM. The model requires as inputs the number of parts types (i)

and manufacturing stations (k), a set of parameter values (n,,Z,, ,MCP, etc) and

assignment of inspection errors («;,,B,,) . This information is used to compute the total

cost for each possible inspection configuration, The configuration which yields the minimum
value is identified as the optimal solution.

In any model there is an issue of randomness and thus statistical analysis should be
performed. By just running the model once, one cannot predict how valid the results might
be. The estimates could differ greatly from the corresponding true characteristics and there
could be a significant probability of making wrong inferences about the system under study.
Thus, appropriate statistical methods must be used to analyze the output from the model. In
this research two-level factorial experiments are used to study and analyze the system.
Design of Experiments is used to evaluate and analyze the various parameters and their
interactions on the total processing cost and thus their effect on the selection of a particular
inspection strategy. The test problem instances studied for the above explained model are

presented in Chapter Four.
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Chapter Four

Numerical Examples and Analysis

This chapter presents several numerical examples to validate the developed model
and its solution method in the previous chapter. The main purpose of this thesis research is to
develop a mathematical model for inspection allocation problem. The model developed has
been tested for various instances of the problem. The computational results of the example
problems presented in this chapter validate the model and identify the sensitive parameters of
the model. A further investigation of the model is conducted by varying the sampling
parameters and probabilities of inspection errors. The data used in this example are realistic
but hypothetical. The range for various parameters considered is presented in Table 4.1. The
values of all the input parameters are considered from published work in literature. The
model is programmed and solved by LINGO optimization software, version 8, for the
optimal solution. The AQL and the probabilities of Type I and Type II errors are assumed to
be constant and known for each inspection operation. The cost parameters and the probability
of processing a non-conforming unit are different for each manufacturing stage. The
reworking cost and penalty cost are dependent on the manufacturing cost at a particular stage

and are also shown in Table 4.1,
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Table 4.1 Data Values

Range

Parameter Min l%’lax
Manufacturing Cost 10 | 500
Inspection Cost 1 15
Probability of Type I error 0.02 | 0.15
Probability of Type II error 0.02 | 0.15
Probability of processing a non-conforming unit | 0 | 0.10
AQL 1% |2.5%
Reworking Cost = (45 % to 55 %) x Manufacturing Cost
Penalty Cost = (2 to 5) x Manufacturing Cost

As a rule of thumb, the relation between the four different types of costs was set so
that always, Inspection Cost < Reworking Cost < Manufacturing Cost < Penalty cost. This
simple rule is based on common sense; if inspection cost was larger then reworking cost,
inspection would be uneconomical. Similarly, if reworking cost were larger then
manufacturing cost and penalty cost, rework would be uneconomical. Design of Experiments
(DOE) is used to conduct and analyze tests to evaluate the parameters that impact the total

processing cost and thus the inspection policy.

4.1 Example Problems

The model is tested for two sets of problems corresponding to single and multiple part
types processed by a serial production system. For these two sets of problems, dynamic
programming methodology is used to obtain optimal solutions. The model is tested by
different sets of problem instances using LINGO. The single part type problem is used to
validate and test the effectiveness of the dynamic programming method. The multiple part

type problem is used to show the ability of dynamic programming in handling complex
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problems. All the results are obtained using a Pentium 4 platform with 2.6 GHZ and 512 GB

RAM. The comparison and analysis of the results are done in the following sections.

4.1.1 Numerical Examples for Serial Production System Processing Single Part

Consider a serial six stage manufacturing system processing a single part type with an
option of allocating an inspection station after each manufacturing station. The data values
for the problem are given in Table 4.2 and Table 4.3. All the costs are unit costs incurred for

producing one unit of each part type i at manufacturing stationk .

Table 4.2: General Data for a Six Stage Inspection Problem

Number of Manufacturing Stations | 6
Number of Units Manufactured 500
Probability of Type-I Error 0.02
Probability of Type-II Error 0.05
AQL 1.5%
Sample Size 50
Acceptance Number 2

Table 4.3: Data for Each Stage of a Six Stage Inspection Problem

Manufacturing Station 1 2 3 4 5 6

Manufacturing Cost 21 45 29 | 24 15 70

Inspection Cost 1 11 13 3 8 10

Reworking Cost 10 22 15 11 7 35
Penalty Cost 42 90 60 50 30 | 140
Probability of Defect 0.09 | 0.04 | 0.01 | 0.08 | 0.03 | 0.06
Pa 0.16 | 0.68 | 0.99 | 0.23 | 0.81 | 0.42

4.1.1.1 Creating a Sampling Plan to Determine the Probability of Acceptance
The first step is to create a sampling plan for the considered manufacturing process.

An acceptance sampling plan is a statement of the sample size (n) to be used and the
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associated acceptance criteria (4c) for the given lot. The major types of sampling procedures
and their applications are shown in Table Al in the appendix. The selection of a sampling
plan depends on both the objective and the history of the organization whose product is
sampled. There are two widely used ways of picking (n, Ac):

1. Use tables (such as MIL STD 105E) indexed on either the AQL or the LTPD desired.

2. Specify two desired points on the OC curve and solve for the (n, Ac) that uniquely
determines an OC curve going through these points.

In this research work, Military Standard 105E tables with normal inspection procedures are
used to calculate the values of the sample size and the acceptance number for a given lot size
and AQL. The standard includes three types of inspection (normal, tightened, and reduced
inspection). The type of inspection that should be applied depends on the quality of the last
batches inspected. At the beginning of inspection, normal inspection is used. The AQL
represents the poorest level of quality for the vendor’s process that the consumer would
consider to be acceptable as a process average. The AQL is a property of the vendor’s
manufacturing process; it is not a property of the sampling plan. Furthermore, the AQL is
usually not intended to be a specification on the product. It is simply a standard against
which to judge the lots. It is common to use an AQL of 1% for major defects and 2.5% for

minor defects. After the values of sample size and acceptance number for a lot are obtained

the probability of acceptance of the lot ( P, ) is calculated with equation (3.23).

The P, values at each manufacturing stage are calculated depending on the values of

probability of defect at each stage and are shown in Table 4.3. After the data in Table 4.2
and Table 4.3 were taken by the model in Chapter Three, the model was then solved in

LINGO to obtain the optimal solution. As discussed in the previous chapter dynamic
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programming is used to solve the inspection allocation problem. Each manufacturing station
represents a stage and after each stage a decision is to be made whether to allocate an
inspection station after the manufacturing operation and the type of inspection policy to
adopt. The objective function minimizes the total cost at which we have an optimal
inspection policy. The total cost of processing at each stage was calculated by LINGO. They

are shown in Tables 4.4 to 4.9. First we construct the function TC, *(S,,;X,,) as shown in

Table 4.4.

Table 4.4: Processing Cost at Stage 1 for the Different Inspection Policies

S, TC* (8,5 X,,) X'

No Inspection 14280 NI,

§° Full Inspection 11518 FI,
’ Sampling Inspection 11585 ST,

At the first stage, the probability of defect is high and the inspection cost is low, so a rational

decision would be to allocate an inspection station after the first manufacturing station and

perform a full inspection operation. Equipped with 7C"11(S,,; X,,) and X ™11 we are ready

to calculate TC"12(S,; X;,) and X"12 as shown in Table 4.5.
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Table 4.5: Processing Cost at Stage 2 for the Different Inspection Policies

X ]
b2 TC, (S, X,,)= TC, ,+ TC 11 (S5 X1,)
Stage | - TC" 12 X2
S, No Inspection Full' Samphp g
Inspection Inspection
No 23766+14280 | 23766+11518 | 23766+11585
1,
Inspection |  =38046 =35284 35351 | 39284 | M
o
o Full 26295+14280 | 26295+11518 | 26295+11585
FI.
2| Inspection |  =40575 ~37813 —37880 | 37813 i
Sampling | 23573+14280 | 23573+11518 | 23573+11585 35091 ST,
Inspection =37853 =35091 =35158 bk

At the second stage, the inspection cost and penalty cost are high which result in higher
processing cost for no inspection and full inspection. Hence performing sampling inspection

is the most economical choice at this stage. In the next stage, as presented in Table 4.6,

TC/,(S,5;X,;)and X "1 are calculated.

Table 4.6: Processing Cost at Stage 3 for the Different Inspection Policies

X .
b TC (8,5 X,3)= TC ,+TC 2 (S 55X, 5)
Stage 2 TCy, X
. Full Sampling
S
b No Inspection Inspection Inspection
No 15110+35284 | 15110+37813 | 15110+35091
NI,
Inspection |  =50394 =52023 —so201 | 00201 i
o
(N Full 21219+35284 | 21219+37813 | 21219+35091
50 FI.
£ Inspection =56503 =59032 =56310 56310 bk
Sampling 15488435284 | 15488+37813 | 15488+35091 50579 ST,
Inspection =50772 =53301 =50579 bk
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At the third stage, high inspection cost and low probability of defect results in selection of no

inspection policy .We now turn to calculate 7C"14(S, ,; X, ,) and X 14 as shown in Table

4.7.
Table 4.7: Processing Cost at Stage 4 for the Different Inspection Policies
Ko TC, (S, ;X )= TC, ,+TC/,(S,,; X
1,4 ( 1,4 1,4) 1,4 1,3( 1,32 1,3)
Stage 3 TC*14 X 14
. Full Sampling
S
b4 No Inspection Inspection Inspection
No 16000+50201 | 16000+56310 | 16000+50579
NI,
Inspection |  =66201 =72310 —66579 | 99201 i
<«
o) Full 13952+50201 | 13952+56310 | 13952+50579
FI.
§° Inspection =64153 =70262 =64531 64153 ik
Sampling 14019+50201 | 14019+56310 | 14019+50579 64220 ST
Inspection =64220 =70329 =64598 Bk

At stage four, the high probability of defect and low inspection cost result in selection of full

inspection policy. At stage 5, as shown in Table 4.8 we find 7C"15 (S ;; X, ;) and X 1,5* .

Table 4.8: Processing Cost at Stage S for the Different Inspection Policies

X ,
b TCys (855X 15)= TC s+ TC 14 (843X 4)
Stage 4 TC"s | X5
. Full Samplin
S pling
b No Inspection Inspection Inspection
No ' 7812+66201= | 7812+64153= | 7812+64220= 71965 NI,
Inspection 74013 71965 72032
w
o Full 10959+66201 | 10959+64153 | 10959+64220
FI,
| Inspection | =77160 ~75112 —75179 | P12 i
Sampling | 8276+66201= | 8276+64153= | 8276+64220= 72429 S7
: ik
Inspection 74477 72429 72496
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Now at stage five, the probability of defect and the penalty cost are low which would result

in selection of the no inspection policy. Finally TC"16(S,¢; X, ) and X "1 are calculated in

Table 4.9.

Table 4.9: Processing Cost at Stage 6 for the Different Inspection Policies

X
b TC 4 (8,65 X 16)=TC s +TC, s*(S,55 X, 5)
Stage 5 TC" 16 X6
. Full Sampling
S
he No Inspection Inspection Inspection
No 43400+71965 | 43400+75112 | 43400+72429
NI,
Inspection |  =115365 ~118512 ~115820 | 119363 | M
O
v Full 41326+71965 | 41326+75112 | 41326+72429
FI.
2| Inspection |  =113291 ~116438 —113755 | 113291 M
Sampling | 40350+71965 | 40350+75112 | 40350+72429 112315 e
Inspection =112315 =115462 =112779 Lk

At stage six, high inspection cost and penalty cost results in the selection of the
sampling inspection policy as the most economic option. Now, the overall optimal solution
obtained for the six stage inspection allocation problem is,

Total cost= 112385

Cost per unit=224

Inspection policy = {FI, SI, NI, FL, NI, ST}
Total inspection operations= 4

For the purpose of comparison, we review the optimal solution obtained above with
three different scenarios. The objective function in all scenarios is to minimize the total

processing cost of the system.
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Case 1: No Inspection Policy

Now, consider if there was no inspection at all in the manufacturing system. Without
inspection, the solution obtained from solving the model s,
Total cost = 123410
Cost per unit =247
Inspection policy = {NI, NI, NI, NI, NI, NI}
Total inspection operations= 0

The cost per unit without inspection is high as compared to that from the optimal
solution (247>224). All the non-conforming units produced in the system are processed and
are delivered to the customers. This scenario results in a higher cost per unit due to high
penalty cost imposed on processing of a defective unit. So, selection of no inspection policy

can be justified only if the probability of defect and penalty cost are low.

Case 2: Full Inspection Policy
If full inspection operation is performed after each manufacturing operation, then the
solution obtained is:
Total cost= 122484
Cost per unit=245
Inspection policy = {FI, FI, FI, F1, FI, FI}
Total inspection operations= 6
Here, as we are performing full inspection operation at each stage, the cost per unit of

processing a unit is higher as compared to that obtained for the optimal solution (245>224).
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In this scenario, we are inspecting all the units processed in the system which result in higher

cost per unit. Therefore, performing full inspection at each stage may not always desirable.

Case 3: Sampling Inspection Policy

If we choose to do sampling inspection after each manufacturing stage, the solution
obtained from solving the model is
Total cost= 116267
Cost per unit=232
Inspection policy = {SI, SI, SI, SI, SI, SI}
Total inspection operations= 6

In this scenario, the cost per unit is higher as compared to that obtained from optimal
solution (232>224). Moreover, lots with low probability of acceptance would also be
accepted which is not desirable.

The results for other tested problems for the system processing single part type are

shown in Table 4.10. The data for all these problems are given in the appendices.
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Table 4.10: Results for Different Scenarios of Single Part Type Inspection Problem

Optimal solution
k=4; n,=300 257,350
Total Cost k=8; n,=1000 159,0472
k=10; 1,=5000 878,5074
k=4; n,=300 857
Cost per Unit k=8; n,=1000 1590
k=10; n,=5000 1757
k=4; n,=300 {SLFLSLFT}
Inspection Policy k=8; n,=1000 {SLFLSLFLFLNISI NI}
k=10; n,=5000 | {SLFLFLSI FLFLFL,NISISI}
k=4; n,=300 4
Total Inspection Operations %=8; n.=1000 7
k=10; n,=5000 9

From the above results, one can observe that the model developed is effective in
solving the inspection allocation problem. Depending on actual parameters and system

requirements the method would produce satisfactory results.

4.1.2 Numerical Example for Processing Multiple Part Types

The model is now extended to a multistage manufacturing system processing multiple
part types with each part having a different sequence of processing. Consider a five stage
serial manufacturing system processing two part types with an option of allocating an
inspection station after each manufacturing station. The manufacturing sequences for the two

parts types are given in Table 4.11.
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Table 4.11: Manufacturing Sequences

Manufacturing Station 1 2 3 4 5
Part Type-A * * * * -
Part type-B - * * * *

Where, * indicates manufacturing is performed on a particular part type at the corresponding
processing station. The data values for the problem are given in Tables 4.12 and 4.13.

Table 4.12: General Data for a Two Part Type- Five Stage Inspection Problem

Part Type A B
Number of Units Manufactured 300 500
Probability of Type-I Error 0.01 0.05
Probability of Type-II Error 0.14 0.08
AQL 1% 1%
Sample Size 13 13
Acceptance Number 1 1

Table 4.13: Data for Each Stage of a Two Part Type Five Stage Inspection Problem

Manufacturing Station 1 2 3 4 5
: A 194 310 123 412 -
Manufacturing Cost B - 555 178 768 339
) A 9 12 4 4 -
Inspection Cost B 10 3 7 5
) A 100 150 50 200 -
Reworking Cost B - 350 90 130 130
A 390 620 250 820 -
Penalty Cost B | - 900 | 350 | 540 | 650
- A 0.04 0.10 0.03 0.07 -
Probability of Defect B - 0.0 0.07 0.01 0.03
P A 0.40 0.04 0.55 0.13 -
a B - 0.05 0.13 091 0.55

The optimal solution obtained for the inspection problem for part A and part B at

each stage of manufacturing processing are shown in Tables 4.14 and 4.15.
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Table 4.14: Processing Costs at Each Manufacturing Stage for Part A

Manufacturing station Processing Cost Inspection Policy
1 62360 SI
2 08742 FI
3 42650 SI
4 127092 FI
5 - -

For part A, at the first stage the high inspection cost and penalty cost result in higher
processing cost for full inspection and no inspection policy. So performing sampling
inspection is the most cost-effective option at this stage. At stage two, high probability of
defect and penalty cost results in the selection of full inspection as the most viable option. At
stage three, sampling inspection is selected as the most economic inspection choice. Finally,
at stage four high probability of defect and low inspection cost results in the selection of the
full inspection plan. So, the optimal solution obtained for the inspection allocation problem
for part A is,

Total cost= 330844
Cost per unit= 1103
Total inspection operations= 4

Table 4.15: Processing Costs at Each Manufacturing Stage for Part B

Manufacturing station Inspection Policy

1

Processing Cost

256275 FI

2

3 78248 SI
4 122320 NI
5 134200 NI

For part B, at the second stage, the probability of defect occurrence is high which

results in the selection of the full inspection policy. At stage three, the high inspection cost
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and penalty cost results in the selection of the sampling inspection plan. At stages four and
five, no inspection policy is selected as a result of low probability of defect and high
reworking cost.
So the overall inspection plan for part B is,
Total cost= 591043
Cost per unit=1182
Total inspection operations= 2
The results for other tested problems for the system manufacturing multiple part types

are shown in Table 4.16. The data for all these problems are given in the appendices.

53



Table 4.16: Results for Different Scenarios of Multiple Part Type Inspection Problem

Optimal Solution
i=2;k=5; A-330844
n,;=300,500 B-591043
Total cost P=3;k4; g—gigﬂg’
otal cos _ - )
n;=1000,700,1200 C-717972
i=2;k=0; A-1221873,
n;=800, 500 B- 836778
i=2;k=5; A-1103,
n;=300,500 B-1182
Cost per Unit b=3;k=4; gg;f’
S 1 — - ’
n;=1000,700,1200 C- 508
i=2;k=6; A-1527,
n;=800, 500 B-1673
i=2;k=5; A-{SI, FI, SI, FI}
n;=300,500 B-{F1, SI, NI, NI}
=3 k=4 A-{FI NI, F1,}
Inspection Policy 100 700 1 B-{FI, FI, SI}
n;=1000,700,1200 C-{FL, FI}
i=2;k=0; A-{NI, FI, FI, FL, FI, SI}
n,=800, 500 B-{NI, FI, SI, FI, FI, FI}
i=2;k=5; A-4,
n;=300,500 B-2
I Inspecti i =35k ¥y
Total Inspection Operations 1,=1000,700,1200 C— 2,
i=2;k=6; A-S,
n;=800, 500 B-5

The results demonstrate the ability of the model to handle complex problems. It can
be concluded that the model is highly extensible and applicable, so it can serve as a

production planning tool to solve inspection allocation problems.
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4.2 Experimental Design and Analysis

A Design of Experiment (DOE) is a structured and organized method for determining

the relationship between factors ( X, ) affecting a process and the output of that process (Y ).

Design of Experiment involves designing a set of experiments, in which all relevant factors
are varied systematically. When the results of these experiments are analyzed, they help to
identify optimal conditions, the factors that most influence the results, and those that do not,
as well as details such as the existence of interactions and synergies between the factors.
Experiments are conducted to evaluate and analyze the various parameters and their
interactions on the total processing cost. In this study, factors such as cost parameters,
inspection errors and probability of defect are used to conduct a thorough investigation of the
interactions on the total processing cost along with other system parameters. Two-level
fractional factorial experimental designs are used to study and analyze the effect on total
processing cost and to determine which variables are most influential. The experimental
design is implemented using statistical software Minitab-Release 15. Minitab uses analysis of

variance to decide which factors have an effect on the response.
4.2.1 Effect on Total Processing Cost

Here we analyze the effect of the considered factors on the total processing cost under
a fixed unit manufacturing cost of 100 processing 100 units. A 272 fractional factorial
experiment was conducted for the factors chosen. The experiment requires 32 runs and the
sequences of the experiments are randomized to ensure that variation between runs and
biases are eliminated at all conditions. Table 4.18 provides the design matrix and an

overview of the DOE factors used to access the performance of total processing cost under
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various operating conditions. It also shows the response values. The factors chosen for
analyzing the effect on total processing cost are inspection cost (/CP), rework cost (RCP),
penalty cost (PCP), probability of defect (Z), probability of Type-I error (Type-l),
probability of Type-II error (Type-II) and Acceptable Quality Level (AQL). The levels of
factors under consideration are taken from the previous published work and are shown in
Table 4.19.

Table 4.17: 2% Fraction Factorial Design

Factors:7
Runs:32
Resolution: IV
Fraction: 1/4

Table 4.18: The Design Matrix and DOE Factors

Std Run
Order | Order ICP |RCP|PCP| Z |TYPE-I | TYPE-II | AQL | TC

31 Low | Low | Low | Low | Low High | High | 20132

[y

2 28 | High| Low | Low | Low | Low Low Low | 20124
3 23 | Low | High | Low | Low | Low Low Low | 20156
4 21 High | High | Low | Low | Low High High | 20400
5 26 | Low | Low | High | Low | Low Low High | 20170
6 9 High | Low | High | Low | Low High Low | 21000
7 8 Low | High | High | Low | Low High Low | 20228
8 20 | High | High | High | Low | Low Low High | 21000
9 14 | Low | Low | Low | High | Low Low Low | 20084
10 18 High | Low | Low | High| Low High High | 22897
11 2 Low | High | Low | High | Low High High | 20303
12 7 High | High | Low | High | Low Low Low | 22978
13 29 Low | Low | High | High | Low High Low | 20097
14 3 High | Low | High | High | Low Low High | 22884
15 27 Low | High | High | High | Low Low High | 20316
16 4 High | High | High | High | Low High Low | 23103

17 30 Low | Low | Low | Low | High High Low | 19423
18 12 | High | Low | Low | Low | High Low High | 20400
19 25 Low | High | Low | Low | High Low High | 19577
20 16 | High | High | Low | Low | High High Low | 20400
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Table 4.18: The Design Matrix and DOE Factors (Contd.)

Std Run
Order | Order ICP |RCP | PCP| Z |TYPE-I|TYPE-II|AQL | TC
21 22 Low | Low | High | Low | High Low Low | 19646
22 13 | High | Low | High | Low | High High High | 21000
23 32 Low | High | High | Low | High High High | 19816

24 6 High | High | High | Low | High Low Low | 21000
25 5 Low | Low | Low | High | High Low High | 19820
26 24 | High | Low | Low | High | High High Low | 22250
27 1 Low | High | Low | High | High High Low | 20053

28 19 | High | High | Low | High | High Low High | 22451
29 15 | Low | Low | High | High | High High | High | 19980
30 10 | High | Low | High | High | High Low Low | 22767
31 11 Low | High | High | High | High Low Low | 20433
32 17 | High | High | High | High | High High | High | 23220

Table 4.19; The Levels of Factors

Notation ICP | RCP | PCP Z TYPE-I TYPE-II AQL
Low 1 45 200 0.01 0.02 0.02 1
High 15 55 500 0.10 0.15 0.15 2.5

A sampling plan created for the given batch size and the corresponding AQL values
following Military Standard 105E is shown in Table 4.20.

Table 4.20: Sampling Plan

Batch Size=100 .
AOL Sample Size Acceptance Number
1% 13 0
2.5% 13 1

In this analysis, totally confounded patterns were not taken into consideration. Table
4.21 contains the estimated effects and the coefficients of the experiments. The probability
values close to zero are considered to be significant. Figure 4.1 presents the normal
probability plot of the effects estimates from the experiments. It shows that the main effects

A, B, C, D, E and the interaction AC and AD are significant at 95% level. The points lying
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on the straight line can be interpreted as random noise. On the other hand, points
corresponding to A, B, C, D, E, AC and AD appear to be falling off the straight line, hence
the significant factors.

Table 4.21; Estimated Effects and Coefficients for TC

Term Effect Coef. SE T P
Coef.

Constant 208784 | 27.51 758.91 0.000
ICP 1727.5 863.7 27.51 31.40 0.000
RCP 172.5 86.3 27.51 3.14 0.020
PCP 325.8 162.9 27.51 5.92 0.001

Z 1197.7 598.9 27.51 21.77 0.000

TYPE-I -227.2 -113.6 27.51 -4.13 0.006

TYPE-II 31.0 15.5 27.51 0.56 0.594
AQL 39.0 19.5 27.51 0.71 0.505

ICP*RCP -18.8 -9.4 27.51 -0.34 0.745

ICP*PCP 183.5 91.8 27.51 3.34 0.016

ICP*Z 955.5 477.8 27.51 17.37 0.000

ICP*TYPE-I 115.0 57.5 27.51 2.09 0.082
ICP*TYPE-II 523 26.1 27.51 0.95 0.379
ICP*AQL 39.8 19.9 27.51 0.72 0.497
RCP*PCP 24.0 12.0 27.51 0.44 0.678
RCP*Z 87.3 43.6 27.51 1.59 0.164
RCP*TYPE-I 35.5 17.7 27.51 0.65 0.543
RCP*TYPE-II | -79.5 -39.8 27.51 -1.44 0.199
RCP*AQL -97.5 -48.8 27.51 -1.77 0.319

PCP*Z -80.2 -40.1 27.51 -1.46 0.195
PCP*TYPE-I | 110.2 55.1 27.51 2.00 0.092
PCP*TYPE-II -2.5 -1.3 27.51 -0.05 0.965

PCP*AQL -25.0 -12.5 27.51 -0.45 0.666
Z*TYPE-I 16.3 8.1 27.51 0.30 0.778
Z*TYPE-II -9.8 -4.9 27.51 -0.18 0.865

Z*AQL -25.8 -12.9 27.51 -0.47 0.656
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Figure 4.1: Normal Probability Plot of Effects

From the DOE analysis, we can identify the coefficients of the regression equation as

shown in Equation 4.1 for calculating the total processing cost.

TC = 20874.4 + (17227'5)>< Icr+ (——-—175'5) < RCP + (——-—3225'8)x PCP+(1 1927'7j 7

_(227.2 955.5

)xType—I+(1-8—§—'§-ijCPxPCP+( ijCPxZ

L (4)

If we shift from the lower inspection cost values to the higher values, the main effect
will be to increase the total processing cost by an amount of 1727.50. The main effect of
RCP causes an increase by an amount of 172.5 in the total cost when RCP increases. A
shift from lower penalty cost to higher penalty cost increases the total processing cost by

325.8. An increase in Z will increase the total cost by 1197.70. The total processing cost
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decreases by an amount of 227.2 if we shift from lower value of Type-I error to the higher
value. A simultaneous increase in inspection cost and probability of processing a defective
unit increases the total cost. This interaction effect is 955.5. The interaction effect of

inspection cost and penalty cost has an effect of 183.5 on the total cost.

Table 4.22: Analysis of Variance for TC

Source DF | Seq.SS | Adj.SS | Adj. MS F P
Main Effects 7 | 36870841 | 36870841 | 5267263 | 217.48 | 0.000
2-Way Interactions | 18 | 8316504 | 8316504 | 462028 | 19.08 | 0.001
Residual Error 6 145316 145316 24219
Total 31 | 45332661

The analysis of variance again confirms the results obtained previously using the
normal probability plot showing that main effects A, B, C, D and E, and two way interaction
effects AC and AD are significant. The probability values very close to zero are considered
to be significant. Now, to check the assumption of normal distribution, residual analysis was

performed using multiple regression analysis.
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Figure 4.2: Normal Probability Plot of Residuals

Figure 4.2 is the normal probability plot of the residuals and the plot is satisfactory.
As a diagnostic check, the residual plot confirms that the model is adequate. From the plot it
can be concluded that all the points lie on the probability line and the deviation may be
interpreted as noise. This plot confirms the assumptions that the effects of A, B, C, D, E, AC

and AD can be explained as noise.
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Main Effects Plot for TC
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Figure 4.3: Main Effects Plot for TC

Figure 4.3 shows the main effects plots for the total cost. The factor of unit inspection
cost, rework cost, penalty cost and probability of processing a defective unit has a positive
effect on the cost per unit. The total cost increases with a shift from the lower values to the
higher values. The probability of Type-I error has a negative impact on the total cost. The
total cost decreases with the increase in Type-I error. High values of Type-I error increases
the cost of performing full inspection which leads to the selection of other low-priced
inspection option. Thus, high probability of Type-I error reduces the total processing cost.

Figure 4.4 shows the interaction plot for AC. According to the figure, if the penalty
cost is more then the total cost is also higher at higher values of inspection cost. High penalty
cost results in selection of either full inspection or sampling inspection. It results in the
increase of total cost when inspection cost is also high. Figure 4.5 shows the interaction plot

of AD. According to the figure, the total cost is low at lower values of inspection cost and
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probability of defect. As the probability of defect increases full inspection is performed and

the high inspection cost increases the total cost.
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Figure 4.4: Interaction Plot (AC) for TC
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Figure 4.5: Interaction Plot (AD) for TC
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The results suggest that the other parameters such as Type-II inspection error and
AQL do not have a direct impact on the minimized total production cost. It is the inspection
cost and the probability of processing a defective unit at a particular stage that will affect the
total cost more significantly. This will in turn affect the inspection decision at that stage. If
the probability of processing a defective unit is high, a more rational decision will be to
allocate an inspection station performing full inspection after that stage irrespective of the
costs so as to minimize the number of non-conforming units being forwarded in the system.
If the probability of processing a defective unit is low, it would be more economical not to
perform an inspection provided that the penalty cost is also low. In the intermediate range of
probability of processing a defective unit, the decision on which type of inspection policy to
adopt will depend on the cost parameters and the probability of acceptance of the sample at
that stage. The fact that Type-I error has a negative impact on the total cost implies that at a
higher value of Type-I error, the total cost is also higher which would affect the selection of
an economic inspection plan.

In the next section, the impact of inspection errors and AQL on the selection of full

inspection plan and sampling inspection plan will be discussed.

4.3 Impact of Inspection Errors on Full Inspection Cost

In an effort to gain insight into the impact of inspection errors on the full inspection
operation, the model was run under variety of conditions of probability of defect and
inspection errors. Three scenarios were generated representing probability of defects ranging
from lower to higher values. In these scenarios, the inspection error moves from a better
quality of 0.02 through three intermediate levels to a poor quality level of 0.15. For each

scenario, the cost of performing full inspection operation was calculated. The data for the
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problem are given in the appendices. Tables 4.23 to 4.25 and the corresponding Figures 4.6
to 4.8 summarize the key variables for different combinations of Type-I and Type-II errors

for different levels of probability of defect.

Table 4.23: Full Inspection Cost For Different Levels of Inspection Errors at Z=0.01

Typell = | 402 | 005 | 008 | 012 | 0.5
Type-l ¥
0.02 10997 | 10996 | 10994 | 10992 | 10991
0.05 11096 | 11095 | 11003 | 11091 | 11090
0.08 11244 | 11243 | 11242 | 11240 | 11238
0.12 11442 | 11441 | 11440 | 11438 | 11436
0.15 11591 | 11500 | 11588 | 11586 | 11585
11650
@ 11550
S 11450 —e—0.02(])
[
§ 113850 —=—0.05(])
‘g_ 1250 —a—0.08()
Q —e—0.12())
5 11150 ——0.15(1)
L

11050
10950

0.02 0.05 0.08 0.12 0.15
Type-ll Error

Figure 4.6: Full Inspection Cost w.r.t Varying Inspection Errors at Z=0.01
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Table 4.24: Full Inspection Cost For Different Levels of Inspection Errors at Z=0.05

Typell = | 402 | 005 | 008 | 012 | 015
Type-l v
0.02 11140 | 11132 11125] 11115] 11107
0.05 11282 | 11275 | 11267 | 11257 11250
0.08 11422 | 11417 | 11410| 11400 | 11392
0.12 11612 | 11607 | 11600 | 11590 | 11582
0.15 11757 | 11750 | 11742 11732 11725
11800
w 11700
8 11600 —e— 0.02(I)
§ 11500 —=—0.05(1)
g 11400 —a—0.08(])
£ 11300 —e—0.12(1)
3 11200 —x— 0.15(1)
“ 11100 i
11000 &
0.02 0.05 0.08 0.12 0.15
Type-ll Error

Figure 4.7: Full Inspection Cost w.r.t Varying Inspection Errors at Z=0.05

Table 4.25: Full Inspection Cost For Different Levels of Inspection Errors at Z=0.10

Typell=—> | 402 | 005 | 008 | 012 | 0.5
Type-I ¥
0.02 11380 11365 | 11350 | 11330 | 11315
0.05 11515 ] 11500 | 11485 | 11465 | 11450
0.08 11650 | 11635 | 11620 | 11600 | 11585
0.12 11830 | 11815 | 11800 | 11780 | 11765
0.15 11971 11965 | 11950 | 11930 | 11915
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Figure 4.8: Full Inspection Cost w.r.t Varying Inspection Errors at Z=0.10

From the analytical results, it can be observed that the modeled system is more
sensitive to Type-I error than Type-II error. In all the three scenarios, the full inspection cost
increases with the increase in Type-I error. This will generally be true as long as the yield of
the process exceeds 50% due to the greater exposure of Type-I error as well as the fact that
Type-I inspection error erodes the base. That is, such errors reduce the number of conforming
units which arrive to the customer. Hence, higher values of inspection errors and probability
of defect occurrence results in an increase in the cost of full inspection. This will lead to the

selection of the other available inspection options depending upon the system parameters.

4.4 Impact of AQL on Sampling Inspection Cost
In this section, the effects of the variation of the AQL and thus the acceptance criteria
for a given sample on the cost of performing sampling inspection are observed. Two

scenarios, one for AQL=1% and the other for AQL= 2.5 % with acceptance numbers 0 and 1,
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respectively, are considered. The data for the problem is given in the appendices. Sampling
inspection cost for the two types of variations are given in Table 4.26 and Table 4.27. Figure
4.9 compares the sampling inspection cost with the variation in the probability of defects.

Table 4.26: Sampling Inspection Cost for Different Levels of
Probability of Defect at AQL=1%

VA Pa Sampling Inspection Cost

0 1 10104
0.01 0.8775 10353
0.02 0.769 10565
0.03 0.6735 10745
0.04 | 0.5882 10897
0.05 0.5133 11027
0.06 | 0.4473 11171
0.07 | 0.3892 11317
0.08 | 0.3382 11450
0.09 | 0.2934 11570
0.1 0.2541 11678

Table 4.27: Sampling Inspection Cost for Different Levels of
Probability of Defect at AQL=2.5%

Z Pa Sampling Inspection Cost

0 1 10104
0.01 0.9927 10288
0.02 | 0.9731 10476
0.03 | 0.9436 10662
0.04 | 0.9068 10842
0.05 | 0.8645 11012
0.06 | 0.8185 11138
0.07 | 0.7702 11234
0.08 0.7206 11317
0.09 0.6707 11390
0.1 0.6213 11454
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Figure 4.9: Sampling Inspection Cost w.r.t Varying Probability of Defect

In the two scenarios, it can be seen that sampling inspection cost increases with the
increase in the probability of defect. The cost of performing sampling inspection is higher
when AQL= 1% AQL than when AQL=2.5 %.

The costs of no inspection, at the three mentioned defect levels (0.01, 0.05, and 0.10)
are 10350, 11750 and 13500, respectively. A comparison of the cost values for the three
inspection options at same defect levels indicates the effect of inspection errors and AQL on
the selection of a particular inspection plan. For the same defect levels, lower values of Type-
I error result in lower full inspection cost as compared to sampling inspection cost and no
inspection cost. This will lead to the selection of full inspection as the best option. At higher
values of Type-I error, the full inspection cost is also higher which results in the selection of

either the sampling inspection or no inspection as the best option.
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4.5 Summary

The inspection allocation model developed in Chapter Three is solved using dynamic
programming. The methodology is tested using problems of different sizes. Data used for the
tested problems are realistic but hypothetical. The model is tested for manufacturing systems
processing both single and multiple part types. The results obtained are reasonable for the
variations in the most important parameters. The methodology developed is efficient and
adequate in handling different problem scenarios.

In this chapter, insights are gained into the effects of changing the model parameters
such as inspection cost, reworking cost, penalty cost, and probability of defect and inspection
errors. An experimental design was conducted to mitigate the problem and was also used to
quantify the results. The results suggested that inspection cost, probability of processing a
non-conforming unit and the probability of Type-I error play a major role in determining the
total processing cost, the optimal locations of inspection station and the type of inspection
policy adopted. The other factors which have an influence on determining the total cost and
inspection policy are reworking cost and penalty cost.

A sensitivity analysis was conducted to gauge the impact of inspection errors on full
inspection and AQL on sampling inspection plan. The model proved to be more sensitive to
Type-1 error than to Type-II error. Nonetheless, many real world systems continue to
pressure on the inspector to avoid Type-II errors which may be detected further down the line
while failing to properly audit Type-I errors which may exist further among the discarded
items at the inspection station. With the increase in the AQL, the cost of performing

sampling inspection decreases. The above insights identify the forces affecting the objective
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function and the main interaction among these forces. Most of these phenomena in principle

would remain valid beyond the specific example problems used in this study.
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Chapter Five

Conclusions and Future Research

This chapter presents a summary of the research conducted in this thesis. It also
presents several concluding remarks based on the problem modeling and results analysis.

Future directions for research on this study are also discussed.

5.1 Concluding Summary

This research extends the work of Oppermann et al. (2003) by incorporating
additional features in the model. They showed the mathematical background of the
inspection allocation problem and the peculiarities of the inspection and repair process for a
serial manufacturing system processing single part. In this thesis, a generic model is
formulated to accommodate several scenarios simultaneously. The model is extended to a
serial manufacturing system processing multiple part types with each part having a different
sequence of manufacturing. The full inspection operation was considered to be subjected to
two types of inspection errors. Problem size has been substantially increased due to the
increase in planning horizon. While many different optimization methods are available, the
dynamic programming optimization method is an appropriate method to perform

optimization. The developed model is extensively tested by several hypothetical example

7



problems with realistic features and the results are verified to ascertain the robustness of the
model. Computational results showed that dynamic programming is an effective approach in
solving such and similar problems. The performance of the proposed method on the sample
problems indicates the feasibility of their implementation in a manufacturing environment.

In this work, design of experiments is used to analyze the effects of variation in
manufacturing and inspection parameters on the selection and location of the inspection
policy and thus the total processing cost. The results suggested that inspection cost,
probability of processing a non-conforming unit and the probability of Type-I error play a
major role in determining the optimal locations of inspection station and the type of
inspection policy adopted, and thus the total processing cost. The other factors which have an
influence were rework cost, penalty cost and interaction effects.

The method described above proved capable of providing insights into the influence
of system parameters on the alterative inspection strategies. For the selected frames of
problems and parameters a sensitivity analysis was conducted to determine the impact of
inspection errors on full inspection and AQL on sampling inspection procedures. For full
inspection option, it was found that the model was more sensitive to Type-I error as
compared to the Type-II error. The full inspection cost increased with the increase in Type-I
error. For sampling inspection option, inspection cost was lower at larger value of AQL.

It is important to note that the primary objective of this thesis work is to develop a
general mathematical model for inspection allocation problem capable of handling multiple
part types. The necessary steps in practice depend on the concrete quality of the investigated

process and on the complexity of the investigated products.
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5.2 Future Directions for Research

While the research and experimentation described in this thesis provide interesting

and useful results the latent research possibilities in the inspection allocation problem are

multifold and many problems remain to be solved. Some of the probable extensions to this

work include the development of an integrated model to

Study the effects of production scheduling and material handling operations on the
quality.

Extending the model to cases where there are constraints on the number of
inspections, available inspection time and the inspection budget.

Incorporating inspection error probabilities that vary according to the incoming
fraction of non-conforming units at the inspection station.

Accommodating features such as variable sampling parameters and effect of
inspection errors on the sampling plan.

Having a penalty cost function that increases with the fraction defective.
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Appendix A

Tables Utilized in Presenting the Discussion

Table Al: Acceptance Sampling Procedures [Montgomery, D. (2005)]

Table 14-1  Acceptance-Sampling Procedures

Objective

Attributes Procedure

Variables Procedure

Assure quahty levels
for consumer!/producer

Maintain quality at a target

Assure average oulgoing
quality level
Reduce nspection, with small

sample sizes, goad-quality history

Reduce inspection after
good-quality history

Select plan for specific OC curve

system; MIL STD [03E,
ANSFASQU Z21.4
AOQL system: Dodge-Romig
plans

Chain sampling

Skip-lot sampling: double sampling

Assure quality no worse than target  LTPD plan; Dodge-Romig plans

Select plan for specific OC curve

AQL systeni: MIL STD 414,

ANSIASQC Z1.9

AOQL system
Narrow-limit gauging

Skip-lot sampling: double

sampling

LTPD plan: hypothesis testing

Table A2: General Data for Four Stage Manufacturing System

Number of Manufacturing Stations

Number of Units Manufactured

300

Probability of Type-I Error

0.08

Probability of Type-II Error

0.03

AQL

1%

Sample Size

50

Acceptance Number
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Table A3: Data for Each Stage of a Four Stage Manufacturing System

Manufacturing Station 1 2 3 4
Manufacturing Cost 250 375 70 160
Inspection Cost 4 2 13 8
Reworking Cost 125 175 35 80
Penalty Cost 500 750 140 320
Probability of Defect 0.06 0.07 0.04 0.08
Pa 0.19 0.13 0.40 0.09

Table A4: General Data for Eight Stage Manufacturing System

Number of Manufacturing Stations 8
Number of Units Manufactured 1000
Probability of Type-I Error 0.05
Probability of Type-II Error 0.09
AQL 1.5%
Sample Size 80
Acceptance Number 3

Table AS: Data for Each Stage of an Eight Stage Manufacturing System

Manufacturing Station 1 2 3 4 5 6 7 8
Manufacturing Cost 179 101 265 53 468 227 324 29
Inspection Cost 12 6 1 3 11 5 6 8
Reworking Cost 90 50 125 25 235 115 170 15
Penalty Cost 360 220 550 110 932 450 650 60
Probability of Defect 0.01 0.06 | 0.07 | 0.10 | 0.10 | 0.05 | 0.03 | 0.05
Pa 099 | 029 | 0.19 | 0.04 | 0.04 | 042 | 0.78 | 042
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Table A6: General Data for Ten Stage Manufacturing System

Number of Manufacturing Stations 10
Number of Units Manufactured 5000
Probability of Type-1 Error 0.12
Probability of Type-1I Error 0.07
AQL 1%
Sample Size 200
Acceptance Number 5

Table A7: Data for Each Stage of a Ten Stage Manufacturing System

Manufacturing Station 1 2 3 4 5 6 7 8 9 10

Manufacturing Cost 148 | 166 | 222 | 237 | 36 | 298 | 288 | 448 | 377 | 78
Inspection Cost 15 5 9 12 6 2 1 11 4 6
Reworking Cost 80 | 95 | 140 | 110 | 13 | 180 | 190 | 255 | 195 | 35
Penalty Cost 300 | 300 | 450 | 400 | 80 | 600 | 650 | 900 | 800 | 150

Probability of Defect 0.01]0.02 | 0.05|0.04 | 0.02 | 0.08 | 0.01 | 0.00 | 0.07 | 0.04

Pa 0.980.79 | 0.06 | 0.1910.79 {001 | 098 | 1 |0.04|0.19

Table A8: Manufacturing Sequences

Manufacturing Station | 1|2 |3 |4

Part Type-A ok |k
Part Type-B o I
Part Type-C *1*-]-
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Table A9: General Data for Four Stage Three Part Type Manufacturing System

Part Type A B C
Number of Units Manufactured 1000 700 1200
Probability of Type-I Error 0.05 0.06 0.02
Probability of Type-1I Error 0.04 0.10 0.15
AQL 2.5% 2.5% 2.5%
Sample Size 80 80 80
Acceptance Number 5 5 5

Table A10: Data for Each Stage of a Four Stage Three Part Type
Manufacturing System

Manufacturing Station 1 2 3 4
A 120 327 91
Manufacturing Cost B - 415 300 80
C 370 225 - -
A 3 3 1 -
Inspection Cost B - 7 4 1
C 4 3 - -
A 65 180 45 -
Reworking Cost B - 220 145 35
C 170 110 - -
A 250 700 200 -
Penalty Cost B - 900 650 125
C 700 400 - -
A 0.02 0.04 0.07 -
Probability of Defect B - 0.08 0.06 0.01
C 0.06 0.03 - -
A 0.99 0.91 0.51 -
Pa B - 0.38 0.65 0.99
C 0.65 0.97 - -
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Table A11: Manufacturing Sequences

Manufacturing Station [ 1 |2 {3456

Part Type-A il Bl Bl
Part Type-B ol Il el el

Table A12: General Data for Six Stage Two Part Type Manufacturing System

Part Type A B
Number of Units Manufactured 800 500
Probability of Type-I Error 0.04 0.08
Probability of Type-II Error 0.08 0.04
AQL 1% 1%
Sample Size 80 80
Acceptance Number 1 1

Table A13: Data for Each Stage of a Six Stage Two Part Type Manufacturing System

Manufacturing Station 1 2 3 4 5 6

0.99 | 023 | 0.81 | 0.68 | 0.81 | 042

Manufacturing Cost A | 478 | 125 | 357 | 12 | 408 | 170
B | 445 | 242 | 182 | 47 | 388 | 355

. Al 7 5 3 9 T | 10

Inspection Cost B 1 15 g > 1 3
Reworking Cost A 250 | 65 | 175 | 6 | 200 | 80
B | 220 | 121 | 90 | 25 | 190 | 170
benalty Cost A | 950 | 250 | 700 | 24 | 800 | 340
B | 900 | 500 | 360 | 90 | 770 | 700
» A ] 001 | 008 | 003 | 0.09 | 0.04 | 0.06
Probability of Defect B | 0.01 | 003 | 0.03 | 0.04 | 0.03 | 0.06
A 1000 | 023 | 081 | 0.16 | 0.68 | 0.42

Pa B

86



Table A14: Data for Sensitivity Analysis on Inspection Errors and AQL

Number of Units Manufactured 100
Manufacturing Cost 100
Inspection Cost 8
Reworking Cost 50
Penalty Cost 350
Sample Size 13
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Appendix B

LINGO Code for Six Stage Manufacturing System Processing Single Part Type
MODEL:
SETS:
Part_types/1/: Num;
Manufacturing_stations/1, 2, 3, 4, 5, 6/;
Links(Part_types,Manufacturing_stations):Num_Conf,Num_Nonconf,Num_rework,F,CN,CF
,CS,Pa,Type one,Type two,NLFI,SI,Manu_price,Insp_price,Rework price,Prob_def,PC;
ENDSETS
DATA:
Num=500;
Manu_price= 21, 45, 29, 24, 15, 70;
Rework price=10, 22, 15, 11, 7, 35;
Insp_price=1, 11, 13, 3, 8, 10;
Prob_def=0.09, 0.04, 0.01, 0.08, 0.03, 0.06;
PC=42, 90, 61, 50, 34, 140,
PA=0.16, 0.68, 0.99, 0.23, 0.81, 0.42;
Sample=50;
ENDDATA

! Processing Cost at stage 1;
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@for (Part_types (i) :

@for (Manufacturing_stations (k) |k #EQ# 1:

F(i,k)= @min(links(i,k):C1(i,k)*NI({,k)+C2(1,k)*FI(1,k)+C3(1,k)*SI(i,k))

));

I Processing Cost at other stages;

@for (Part_types (i) :

@for (Manufacturing_stations (k) [k #GE# 2:
F(i,k)=@min(links(i,k):(C1(1,k)*NI(i,k)+C2(1,k)*FI(1,k)+C3(i,k)*SI(i,k))+ F(i,k-1))
%);

! Inspection Option;

@for (Part_types (i) :

@for (Manufacturing_stations (k) :

@BIN (NI(i,k));

@BIN (FI(1,k));

@BIN (SI(i,k))

)3);

! This constraint makes sure that only one inspection option is selected at a stage;
@for (Part_types (1) :

@for (Manufacturing_stations (k) :

NI (4, k) + FI (i, k) + SI (i, k) =1

)55

@for (Part_types (1) :
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@for (Manufacturing_stations (k):@GIN (Num_conf (i, k)), @GIN (Num_nonconf (i, k))
)3);
! Compute cost associated with each inspection option at stage 1,
@for (Part_types (i) :
@for (Manufacturing_stations (k) |k #EQ# 1:
CN(1,D)=((((Num_conf(i,k)+Num_nonconf(i,k))*Manu_price(i,k))+
(Num_nonconf(i,k)*PC(i,k))));
CF (i, 1) = (((Num_conf (i, k) +Num_nonconf (i, k))*Manu_price (i, k)) +
((Num_conf (i, k) +Num_nonconf (i, k))*Insp_price (i, k))+
(Num_rework (i, k)*Rework_price (i, k)));
CS (i, 1) = ((Num_conf (i, k) +Num_nonconf (i, k))*Manu_price (i, k)) +
Pa (i, k)*((Sample*Insp_price (i, k)) +
(((Sample))*Prob_def (i, k)*Rework_price (i, k)) +
(((Num_conf (i, k) +Num_nonconf (i, k)))-Sample)*Prob_def (i, k)*PC (i, k)) +
((1-Pa (i, k))*(Num_conf (i, k) +Num_nonconf (i, k))*Insp_price (i, k))
+Prob_def (i, k)*Rework_price (1, k)))));
)3
! Compute cost associated with each inspection option at remaining stages;
@for (Part_types (i) :
@for (Manufacturing_stations (k) |k #GE# 2:
CN (i, 1) = ((Num_conf (i, k-1)*(1-Type_one (i, k-1)) + Num_nonconf (i, k-1)*
Type_two (i, k-1)))*Manu_price (i, k)) + (Num_nonconf (i, k)*PC (i, k))));

CF (i, 1) = ((((Num_conf (i, k-1)*(1-Type_one (i, k-1)) + Num_nonconf (i, k-1)*
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Type two (i, k-1)))*Manu_price (i, k))) +
((Num_conf (i, k) +Num_nonconf (i, k))*Insp_price (i, k))+
(Num_rework (i, ky*Rework_price (i, k)));

CS (i, 1) = (Num_conf (i, k-1)*(1-Type_one (i, k-1)) + Num_nonconf (i, k-1)*
Type_two (i, k-1)))*Manu_price (i, k))) +
Pa (i, k)*((Sample*Insp_price (i, k)) +
(((Sample))*Prob_def (i, k)*Rework_price (i, k)) +
(((Num_conf (i, k) +Num_nonconf (i, k)))-Sample)*Prob_def (i, k)*PC (i, k)) +
((1-Pa (i, k))*(Num_conf (i, k) +Num_nonconf (i, k))*Insp_price (i, k))
+Prob_def (i, k)*Rework_price (i, k)))));

)3);

! Number of Conforming and Non-conforming units produced at stagel;

@for (Part_types (i) :

Num_conf (i, 1) = Num (i)*(1 -Prob_def (i, 1));

Num_nonconf (i, 1) = Num (i) * Prob_def (i, 1);

);

! Number of Conforming units produced at remaining stages;

@for (Part_types (i) :

@for (Manufacturing_stations (k)| k #GE# 2:

Num_conf (i, k) = ((Num_conf (i, k-1)*(1-Type_one (i, k-1))) +

(Num_nonconf (i, k-1)* Type_two (i, k-1))) +
Num_rework (i, k-1))*(1- Prob_def (i, k)) ););

! Number of Non-conforming units produced at remaining stages;
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@for (Part_types (1) :

@for (Manufacturing_stations (k)| k #GE# 2:

Num_nonconf (i, k) = ((Num_conf (i, k-1)*(Type_one (i, k-1))) +
(Num_nonconf (i, k-1)* (1-Type_two (i, k-1)))) +
Num_rework (i, k-1))*(Prob_def (i, k))

)3

! Number of parts reworked at all stages;

@for (Part_types (i) :

@for (Manufacturing_stations (k) :

Num_rework(i,k)=((Num_conf(i,k)*Type_one(i,k)+Num_nonconf(i,k)*(1-Type_two(i,k))))

%);

! Inspection errors are considered only if full inspection is performed;

@for (Part_types (i) :

@for (Manufacturing_stations (k) :

Type_one (i, k) =0.02*FI (i, k);

Type_two (i, k) =0.05*FI (i, k) + (1-FI (i, k))

)3

END
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