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Abstract

APOS Analysis of Students’ Understanding of Logarithms

Shiva Gol Tabaghi

This research is aimed at analyzing students’ understanding of the concept of
logarithms. Traditionally students are introduced to logarithmic functions as the inverse
of exponential functions, even though logarithms were invented independently of
exponents.

In this study, a review of the historical genesis of logarithms, the literature review
on the understanding of exponential and logarithmic functions, and a review of several
textbooks from different times and geographical places are presented. These reviews
allow the identification of two notions of logarithms: arithmetic and functional. Even
though current curriculum introduces the functional notion of logarithms, attained
curriculum focuses on the arithmetic notion of logarithms. In addition, the importance of
logarithms, that is, their use in converting multiplication of numbers into addition of
logarithms of numbers, has not been highlighted.

I conducted six clinical interviews with students from prerequisite mathematics
courses and a core mathematics course. This data is analyzed within the context of APOS
theory to identify students’ difficulties in understanding the concept of logarithms. The
results reveal that most students’ understanding of the arithmetic notion of logarithms
does not go beyond the “process” level, since understanding the arithmetic notion of
logarithms as undoing what exponentiation does require an understanding of

exponentiation with real exponents.
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Chapter 1: Introduction

My interest in studying the teaching and learning of logarithms originated in my
teaching experience in the Math Help Center at Concordia University. As I was helping
students with prerequisite mathematics courses, I became aware of the difficulties that
students had in understanding the concept of logarithm and decided to study the nature
and reasons of these difficulties.

I assumed that students’ understanding of logarithms depends on their prior
knowledge, the way they were taught the concept and the mental operations they engage
in when working on problems involving logarithms. Students’ beliefs about what it
means to do mathematics may also have an impact on their understanding.

Today’s students are introduced to logarithms as functions that are inverses of
exponential functions. This is quite different from the way logarithms were first
perceived in the history of mathematics. John Napier (1550-1617), the inventor of
logarithms, was motivated to reduce the labor of multiplication and division of huge
numbers by converting these operations into addition and subtraction of logarithms of
these numbers. Logarithms as a computational device were used in the teaching of
mathematics until 1960s. As a basis of the slide rule, they also served the computational
needs of engineers and businessmen. Today, scientific calculators have eliminated this
use of logarithms. However, students are required to learn logarithms because of their
applications in sciences (e.g., biology, chemistry (e.g. pH scale), earth sciences (e.g. the
Richter scale), acoustics (the decibel scale)), computer science (especially information
theory), finance (models of capital growth) and industry. A common application of

logarithms in any domain is the logarithmic scale in graphing relationships. A semi-log



plot can be used to graph and manage a wide range of values when it is impossible to

show all actual values on one graph. Where x > 1, and a > 0, a log-log plot can be
employed to convert the equation y =ax” into a linear equationlog y =loga + blogx,
with slope & and intercept loga. The linear equation allows more values of the function

to be represented in a single graph (see Figure 1). This application of logarithms has not
been stressed in academic mathematics teaching, and thus students are often unprepared
for interpreting logarithmic scales in the workplace (Williams and Wake 2007). In a case
study, Williams et al. (2001) found that interpreting the results of a semi-log plot in the
context of an experiment can be problematic for students.

The advancement of technology made the computational and graphing uses of
logarithms less important and this may have had an impact on the place of logarithms in
school mathematics and in mathematics education research. A brief survey of papers
published in the journal Mathematics Teacher between 1924 and 2006 revealed a peak of
interest in logarithms in the decades of 1960-1970 and 1980-1990. Between 1960 and
1970 the focus was on the notion of the inverse function and between 1980 and 1990
most authors focused on applications of the exponential and logarithmic functions. These
foci of interest reflect the prevailing reform movements of the times: the New Math
reforms of the 1960s focused on the abstract and formal foundational concepts of
mathematics such as sets, relations and functions, and the 1980s which tried to restore the
meaning of school mathematics through stressing its applications. In the New Math
approach, logarithms were merely an example of a general concept of function and an

illustration of the notion of inverse function.
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Figure 1. The left-hand side graph represents the function y = 4x> in the window x=0..3, y=0..8.

Only the values of the function for x up to \/5 could be shown. The right-hand side graph represents the
function y’ =2 + 2x” in the same window. If the numbers on the axes in the right-hand side graph are

interpreted as logarithms in base 2 of numbers x or y, and y’ and X’ are interpreted as y’ = log, y and

x’ = log , X, then in such log-log scales, the graph represents the function y = 4x* for values of x
between 1 and 8.

Although the New Math approaches have been abandoned, the notion of
logarithm as a computational tool has not returned to school curricula because
technological advances made this tool obsolete. Students are still introduced to
logarithmic functions as inverse of exponential functions, because the notion of function
has become the main concept of secondary school mathematics; it is only now introduced
less formally than in New Math and the focus is on the idea of functions as models of
relationships between variable quantities. But, to cope with this notion of logarithm, the
student needs to understand exponentiation, the concept of function, exponential
functions, and the notion of the inverse of a function. Explanation of each of these
concepts is based on the use of other concepts such as exponent, variable, operation, and

so forth, which further complicates the process of understanding the notion of logarithm.



According to Weber (2002), who analyzed understanding of exponentiation using
Action-Process-Object-Schema (APOS) framework, students construct a meaningful
understanding of concepts of exponents and logarithms when they understand
exponentiation as a mathematical process and exponential expressions as mathematical
objects. Therefore, understanding the logarithmic function at even the modest process
level presumes almost the most sophisticated understanding of the exponential function.
Obviously, this approach to logarithms requiljes understanding the notion of function, and
Dubinsky and Harel’s research on th students develop an understanding of the concept
of function (1992) shows that this is a very demanding concept as well. Since students are
introduced to different classes of functions by their defining formulas, the majority
identify functions with algebraic expressions, where numbers can be substituted for
variables to obtain other numbers. This understanding does not support well the
functional notion of logarithms which involves understanding the general notion of the
inverse of a function. Students learn to find inverses of functions through a mechanical
procedure based on manipulation of algebraic expressions. This procedure does not apply
to finding the inverse of the exponential function and students’ understanding fails at this
point.

There have been attempts at designing teaching to help students develop a deeper
understanding of functions that would also be more naturally constructed by them based
on their previous knowledge. In particular, Confrey and Smith (1995), have described the
process of construction by students of a covariation conception of functions and, based on
that, an understanding of exponential and logarithmic functions (details of this research

will be presented in Chapter 3).



Still, I did not find Confrey & Smith’s research helpful in guiding my students
towards a better understanding of logarithms. Therefore 1 engaged in this study in the
hope of finding some explanation of students’ difficulties with logarithms for myself.

I looked at how logarithms have been invented in the history of mathematics, how
they then have been taught in different times and geographical places (19" century Iran
and present day Iran, where I have learned how to compute the logarithm of a number,
using logarithmic tables in 1990, and present day Canada) based on a study of textbooks,
and how they have been learned by a few Canadian students who volunteered to be
interviewed about their understanding of logarithms. This thesis gives an account of this
research.

This thesis is organized in 7 chapters, including this Introduction. Chapter 2 is a
review of the historical genesis of logarithms from Napier’s until Euler’s time. Chapter 3
reviews approaches to logarithms in a few textbooks. Chapter 4 summarizes three
relevant studies on students’ understanding of exponential and logarithmic functions
conducted by Kastberg (2002), Weber (2002), and Confrey and Smith (1995). Chapter 5
presents the methodology of my empirical study of students’ understanding of
logarithms. The results of my study are presented in chapter 6. I discuss both the results
of students’ understanding from my empirical research and the theoretical analysis of
relevant literature and textbooks to propose some recommendations for teaching

logarithms in chapter 7.



Chapter 2: The Meaning of Logarithms in the History of

Mathematics

This chapter summarizes the historical invention of logarithms and reveals how
the arithmetic notion of logarithms (a tool which allows to calculate products by means of
addition and radicals by means of division), invented by John Napier, was changed to the
functional notion in the 18" century. The chq.pter reviews the early history of logarithms,
and then describes the computational and theoretical aspects of Napier’s discovery.
Improvement to Napier’s work, and the invention of the slide rule to visualize and
compute logarithms up to the fourth decimal place, are explained. Then the functional

notion of logarithms is described.

2.1 Early History of Logarithms

Historians trace the history of logarithms back to the Babylonian clay tablets
(2000 to 600 B.C). According to archaeologists, these tablets include table texts and
problem texts. One such table text consist of the first ten successive powers for numbers:
3, 4, 10 and 15 in base sixty which was the Babylonian number base (Boyer 1968).
Besides these earliest known examples of exponential tables, a text problem which can be
interpreted as “to what power must a certain number be raised in order to yield a given
number?” shows that the first appearance of logarithms was not very far from exponential
operations.

Other evidence of the use of exponents was revealed in the work of Archimedes
(287-212 B.C) when he tried to estimate the number of grains of sand in the universe. He

used the term “orders™ as exponents in an exponential expression with base one hundred



million, and noticed that the addition of “orders” corresponds to the product of the terms,

which is known as the first law of exponents (Boyer 1968; Cooke 2005).

2.2 Before Napier

Seventeen hundred years after the previously mentioned events, Nicolas Chuquet
(1445-1500) worked on algebraic concepts and exponentiation. He may have been the
first mathematician to recognize zero and negative numbers as exponents. He listed the
first 20 powers of 2 and pointed out that when two such numbers are multiplied, their
indices (powers) are added. This shows that he had a clear idea of the laws of integer
exponents (Cooke 2005). By this time, Michael Stifel (1487-1567) was doing research on
arithmetic and algebra. He worked on negative exponents and extended the table for

powers of 2 from 0 to 20 to include2™ = %, 272 = % , 270 = % However, the notations

which he used for those negative powers in his book, Arithmetica Integra, were
abbreviations of German words (Boyer 1968). He compared arithmetic and geometric
progressions and noticed a relationship between the terms of a geometric progression and

their corresponding exponents.

2.3 The John Napier Era
The work by Stifel (1487-1567) shows that he considered logarithms as the

inverse of exponents and his focus was only on the integer exponents. Napier’s idea
(1550-1617) was to extend this relationship to real numbers and fill the large gaps
between the terms of the geometric progression. His motivation was to reduce the labor
of calculation and he was introduced to the prosthaphaeresis method employed by

astronomers. Prosthaphaeresis, from the Greek word meaning “addition and subtraction”,



is the method of computation based on trigonometric identities, which were used since
trigonometric tables accurate to fifteen decimal places existed (Boyer 1968). The
prosthaphaeresis method which existed in the sixteenth century utilized the trigonometric
identities, the product of two trigonometric expressions such assina x cosb, to calculate
the product of numbers. For example, to find the product of 4226x9396 by the

sin(a + b) + sin(a — b)
2

prosthaphaeresis method, the trigonometric identity sinaxcosh =

is used. The two given numbers are replaced by sina =0.4226 and cosb =0.9396,

placing the decimal point to accommodate the range of sine and cosine values. Then
a =25"and b =20"; substituting these angles in the trigonometric formula, we will have

sin(45°) +sin(5°)

0.4226x0.9396 = ~0.3970 which by multiplying 0.3970 by 10°,

4226 x9396 ~ 39,700,000 . This method made the multiplication operation easier and less

error-prone. Napier’s knowledge of the relationship between the terms of arithmetic and
geometric progressions, and the prosthaphaeresis method triggered his efforts to develop
a computational aid. His work consists of two parts: computational and theoretical. The
theoretical part which is based on a continuous geometric model was published two years
after his death in 1619, under the title of Mirifici Logarithmorum Canonis Constructio.
The computational part titled Mirifici Logarithmorum Canonis Descriptio, published in

1614, was based on a discrete approximation of the continuous model (Cooke 2005).

2.4 The Computational Aspects of Napier’'s Work

In the computational part, Napier considered a unit divided into 107 parts, then

subtracted from the unit its 107 th part, (1-1/10" =0.9999999), to get a number close to



1 and small enough to be a base so its powers would grow slowly (Maor 1994, Pierce
1977). The powers of this number (1 - 1/ 107 =0.9999999) generate terms of a geometric
sequence in which the gap between the terms is diminished. The first several terms are:

(0.9999999)° =1 , (0.9999999)' =0.9999999 , (0.9999999) =0.99999981,
(0.9999999)° = 0.99999971 , ...

These examples illustrate the slow decrease of the progression. Further, he
multiplied each power by10’ to avoid decimals, and he considered N =107 (1-1/107)",
where [ is Napier’s logarithm of the number N. However, as illustrated
by (1 —1/ 107)107 ~1/e, Napier had no concept of a base for a system of logarithms. He
filled his first table starting with 107 and iterations of 107 (1-1/107)’ consisted of hundred
one entries. Some entries were:

107 =10,000,000 ’ 107 (1-1/107) = 9,999,999 ’ 10’ (1-1/10")* = 9,999,998
107 (1-1/107)'" =9,999,900

In the second table, he started with 107 and considered the ratio of the last term to
the first term of the first table (9999900/10000000 = 0.99999) as proportional to the
numbers of the second table. Several terms were:

10" =10,000,000 , 107 (1-1/10°) =9,999,900 , 10" (1-1/10°)* =9,999,800, ...
107 (1-1/10°)* =9,995,001

It contained fifty-one entries. A third table contained twenty-one rows and sixty-

nine columns. He started the first column with 10" and considered the proportion of the



last term to the fist term of the second table (9995001/10000000 = 0.9995001). A few
terms from first column were:

107 =10,000,000, 107(1-5/10")=9,995,000, 107 (1-5/10*)* =9990002.5,
..107(1-5/10*)* =9900473.5.

Then from each entry in this first column he created sixty-eight additional entries

using the proportion of the last entry to the first entry of the first column
(9900473/10000000 ~.99). A few entries from the first and second columns follow (for

more details, see Appendix A):

107 =10,000,000 10" (1-1/10%) = 9900000
107 (1-5/10*) = 9,995,000 9995000(1-1/10%) = 9,895,050

107 (1-5/10*)* =9990002.5 9990002.5(1-1/10%) = 9890102

107 (1-5/10*)* =9900473.5 9900473.5(1-1/10%*) = 9801468.8

2.5 The Theoretical Aspects of Napier’'s Work

The theoretical part is based on a geometric model which is explained by
considering two moving points, P and O, along two straight lines (see Figure 2.1). P starts
from A and moves geometrically along AB with decreasing velocity in proportion to its
distance from B. Point O moves arithmetically along a second line CD at a constant
velocity generating a number line. These two points start at the same time and begin
moving at the same speed. However, point P slows down and takes infinitely longer to
reach B, and at B its velocity would be zero. Point O continues to move at a constant

speed (Cooke 2005). Suppose P is at the distance y from B at some instant in time t,

while point O reaches the position x from C. If x is the Napierean logarithm of y then

10



x = Naplog(y) . While point P moves to a new position, the division between the two

positions in the geometric model is mirrored by a subtraction in the arithmetic model in
the corresponding positions; thus, the diagram changes division into subtraction (Cooke

2005).

P < y >
® *—o—o >
A B
0]
. ' . Py >
C P X _
< > D

Figure 2.1. Presents a model of Napier’s work

2.6 After Napier
The improvements added by Henry Briggs (1561-1630) after Napier’s death, such

that logarithm of 1 is 0 and the logarithm of 10 is 1, are the basic ideas for what we now
call common logarithms. As a consequence, logarithms to base 10 came to be known as
Briggsian Logarithms. In 1624, Briggs published a table of logarithms to base 10 for all
integers from 1 to 20,000 and from 90,000 to 100,000, with an accuracy of fourteen
decimal places, under the title Arithmetica Logarithmica. The gap from 20,000 to 90,000
was filled by Vlacq (1600-1667) to an accuracy of ten decimal places and added to the
second edition of the Arithmetica Logarithmica in 1628.

At almost the same time that Napier invented logarithms, Burgi (1552-1632)

constructed a table of logarithms with a number slightly greater than one (1+107*) and

11



instead of multiplying powers of this number by10’, he multiplied by10®. However,
Napier published his work prior to Burgi (Boyer 1968).

2.7 Slide Rule Invention
Shortly after the invention of logarithms, the need to visualize the logarithms of
any given number without looking it up in the tables inspired Gunter (1620) to draw a

two foot long line with the whole numbers spaced at intervals proportional to their

respective logarithmic values (Cajori 1908). Figure 2.2. shows his effort.
|

4 &

REXIM LRI
1 2 3

Figure 2.2. Gunter’s design to visualize logarithms of numbers

In 1632, Oughtred combined two of Gunter’s rules to make a device that is known

as the slide rule. He placed these two rules opposite each other and showed that by

sliding them back and forth, one can do calculations, the result of which is correct up to

the fourth decimal place. Figure 2.3. shows one design of a slide rule.
1i122356705F 2 ac0) T T T T 933
4 & & T 8 ® 1

I12345€7892|2458I

Figure2.3. a design of a slide rule

Over the decades different types of slide rules were designed and were in use

loga +logh =logab,

logarithmic  laws:

before the pocket calculator.
the

Oughtred also  stated
loga—logh = log—(i , and loga™ =mloga in word form rather than as formulas in his

12



publication in 1652 (Cajori 1913). In 1618, an anonymous appendix (probably written by
William Oughtred) in the reprintéd translated edition of Mirifici Logarithmorum Canonis
Descriptio contained the table of natural logarithms; Napier’s logarithms were not natural
logarithms (Mitchell & Strain 1936). The development of natural logarithms was delayed
for a few years since Briggs introduced common logarithms in 1624. Common
logarithms were used to simplify the calculations. However, the natural logarithms’
distinctiveness in that they can be defined by a simple integral of a parabola or a series
makes the use of natural logarithms more practical. Furthermore, to model exponential

growth and decay problems, base e is used more often than base 10.

2.8 Graphical Representation of Logarithmic Functions

At the beginning of the 17 century, a functional relation between physical
quantities became apparent and, as a consequence, the analytical representation of a
function which introduces the formula of the function emerged (Youschkevitch, 1976).
Fifteen to twenty years after the invention of logarithms, Descartes (1596-1650) began
applying algebraic methods of representation to geometry, and gradually the graphical
representation of function developed. During the 17™ century, the theoretical viewpoint
of logarithms was extended by the graphical representation, both in rectangular and polar
coordinates (Cajori, 1913). The first invenjtor of the logarithmic curve has not been
ascertained, but it was found in Geometriae pars universalis by James Gregory in 1667.

In addition, hyperbola xy =1 was published by Gregory St. Vincent in 1647 (Cajori,

1913).

13



1 . e .
Mercator expanded the hyperbola y= Tor into  infinite  series,

+x

1 . L 2 } 4
——=1-x+x"-x"+.. , and then integrated it jﬁzx——)—c——+x——x—+.... He
1+x . sl+x 2 3 4

published his work in Logarithmotechnia in 1668 (Boyer 1968). He did not write down

2 3
the logarithmic seriesx — 262- +X = In(1 + x); instead he calculated the numerical

value of the first few terms of the series by taking different values for x suchas x=0.1,
x=0.21 (Cajori 1913). He called the obtained results natural logarithms (Boyer 1968)
and used the work of St. Vincent and Gregory to relate the result to logarithms (Cajori

1913).

2.9 Defining Logarithms Using Integration

In 1676, Gottfried W. Leibniz (1646-1716) derived the integral J‘@ and
: x

concluded that it is a logarithmic curve (Cajori 1913). Leibniz pondered on the logarithm
of a negative number and argued that negative numbers do not have real logarithms,

despite Jean Bernoulli’s (1667-1748) belief thatlog(—n)=log(+n) (Boyer, 1968).
However, Leonhard Euler (1707-1783), a student of Bernoulli, used the formula
e’ =cosO+isin@ and showed that logarithms of negative numbers are not real
numbers. He considered @ = 7 , and therefore e’” =—1and iz =In(-1) (Boyer 1968).
After all these efforts, Euler is the one who defined logarithm in terms of exponent
y=log, x & x =5’ such thatb > 0,b # 1 (Freudenthal 1973).

Logarithms as computational aids to simplify multiplication and division of huge

numbers by converting these operations to addition and subtraction were used until the

14



late 1970s (Maor 1994), and the slide rule was manufactured for the last time in 1975 in

United States (see Figure 2.4.)

Figure 2.4. A slide rule produced in the 1960s in Europe

A five-inch pocket portable slide rule made the calculation easy; however, in the
early 1970s the electronic calculator replaced the slide rule. The HP-35, the first scientific
calculator with logarithmic and trigonometric functions, was introduced in 1972 (Waits &
Demana 2000). It was the world’s first electronic slide rule and it terminated the use of
mechanical slide rule in calculation. With the development of powerful electronic
calculators, logarithmic tables disappeared from school textbooks; and since the 1970s

logarithms have been taught as the inverse of exponential functions (Maor, 1994).
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Chapter 3: The Meaning of Logarithms in the Teaching of
Mathematics

In this chapter, I review a few textbooks to analyze teaching approaches of
logarithms in different times and geographical places. Two of the textbooks are used in
prerequisite mathematics courses offered at a large urban North American university. The
rest are the current Iranian high school curriculum textbooks, some Iranian textbooks
from the 1940s and 1970s, and application problems from an Iranian textbook published
in 1895.

I also included a review of Freudenthal’s theory (1973), the founder of Realistic
Mathematics Education (RME), which is used to determine a global perspective on
teaching logarithms. Freudenthal’s theory (1973) of how logarithms should be taught
was used as a model in reviewing textbooks and evaluating the actual teaching

approaches to logarithms.
3.1 Logarithms in Present Canadian Textbooks

3.1.1 College Algebra 4" edition, by Stewart, Redlin and Watson

College Algebra (Stewart et at., 2004) is used as a textbook for a prerequisite
mathematics course offered at a large urban North American university. The prerequisite
course, which we label here “course A”, is offered for students who lack a subject
requirement for taking a first calculus course labeled as “course B”.

College Algebra, 4" edition, is organized in 10 chapters and was published in
2004. Chapter 3 discusses the concept of function, graphs of functions, behavior of a

function in its domain, one-to-one functions and the notion of the inverse of a function.

16



The concept of function is defined as “a rule that assigns to each element x in a set 4
exactly one element, called f(x), in a set B” (p.215). The different types of functions
such as polynomial and rational functions are introduced prior to exponential and
logarithmic functions.

Chapter 5 is structured in 5 sections whose aim is to introduce exponential and
logarithmic functions. Section 2 recalls the concept of the inverse function and applies a
horizontal line test to f(x)=a", a>1 to conclude that f(x)=a" is a one-to-one
function and that it has the inverse function. Yet, a highlighted definition of the
logarithmic function does not explicitly mention the notion of inverse function:

Let a be a positive number with @ # 1. The logarithmic function with
base a, denoted by log, is defined by log,x=y<a’=x
(Stewart et al., 2004, p.398).

A further explanation of logarithms is given: “log, x is the exponent to which the

base a must be raised to give x” (p. 398). The above two definitions introduce the
“functional” and the “arithmetic” notion of logarithms, respectively. The functional
notion of logarithms introduces the logarithmic function and involves the notion of
function and characteristics of a function. In .contrast, the arithmetic notion of logarithms
introduces logarithms as undoing exponentiations. The arithmetic notion of logarithms
encompasses the computational notion of logarithms in which the arithmetic notion of
logarithms is employed as a computational tool.

Follow examples of evaluating logarithms of given numbers by converting the
logarithmic form into the corresponding exponential form. Knowledge of natural,

negative and fractional numbers as exponents is required to understand the examples.
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There is no example of evaluating logarithms of positive irrational numbers to extend the
domain of a logarithmic function to positive real numbers.

Properties of inverse functions are erﬂployed to infer properties of logarithms. For
example, consider f(x)=a* and f'(x)=log,x, where £ R — R'and
71 R* > R.Therefore,

a) f'(f(x))=x whichimplies log, a* =x for xeR

b) £(f(x))=x which implies ¢°** =x for x>0

A student can apply the definition of the composition of functions in part a) and

obtain f7'(f(x))= f'(a*) =log,(a"), but an algebraic manipulation does not apply to
determine the equality log, 6 a® = x. At this point, an understanding of logarithms, as

undoing what exponentiation does is required (i.e. log,a” can be interpreted as the
logarithm in base a undoes the exponentiation of a to power x, resulting in
log,a” =x).

log, x

As well, in part b) to show that the equality a"**=x holds, a can be

interpreted as: exponentiation in base a undoes the logarithm of x in the base a,
resulting in a"%* = x .

Therefore, a mechanical procedure based of applying algebraic manipulation to
find a composition of functions fails in the context of exponential and logarithmic
functions. When an understanding of a mathematical concept does not take place in their
mind, students try to memorize the properties of the concept and consequently they will

not recall them correctly after a while.

18



A graphical representation of the logarithmic function y =log, x is introduced by
reflecting the graph of y=a",a>1 about liney=x, followed by identifying the
asymptote of the graph. Graphs of different logarithmic functions such as log, x, or
log,,(x —3) are represented respectively by point plotting or transforming the graph of
the initial function log,, x (i.e. horizontal shifting the graph of log,, x to the right 3 units
presents the graph of f(x)=1log,,(x—-3)). The point plotting procedure can be more
applicable in plotting common logarithmic and natural logarithmic functions, since the

different values of these functions can be computed by a calculator.

An application of a common logarithmic function in evaluating the subjective

intensity of the stimulus, s = klog(li) in which k£ is a constant, / is the physical
0

intensity and 7, is the threshold of physical intensity, follows the common logarithms
topics.

The property of natural logarithm,Ine =1, may cause a misunderstanding of In
as a number. Since students are introduced to the natural number e , In can be
interpreted as a reciprocal of e rather than a function. Ine =1 can be understood in a
way that In undoes what e does on 1. 1When students are presented ready-made
properties they generally try to memorize them rather than reason and reinvent the
properties. For example, ¢ =x and Ine” = x which are extracted from the inverse
properties of the natural logarithmic and natural exponential functions, need a
justification and explanation since they cannot be determined by algebraic manipulations.

Section 3 of chapter 5 introduces the product, quotient and power laws of

logarithms. The proof of each law is derived from the law of exponents. Examples on
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expanding and combining logarithmic expressions, as well as warning examples about

employing incorrect laws of logarithms such as 10g§ # log(—g—) , (log, x)* #3log, x, and

log,(x+y)#log, x+log, y are presented.

log, x

a

The change of base law, log, x = , is introduced to convert the logarithm

of numbers from one base to another base. The proof of the change of base law and of a

particular formula, log, a = L , which is derived by substituting x = @ in the change
0

of base of law, are presented. The importance of the change of base law becomes
apparent as it allows the calculation of logarithms in any base by converting logarithms
into common or natural logarithms and then employing calculators.

Section 4 of chapter 5 presents different examples of solving logarithmic and
exponential equations. In some of the examples a graphical solution is presented along
with an algebraic solution. The section includes compound interest problems to illustrate
the application of exponential functions in modeling, and computational aspects of
logarithms in finding the growth time of an investment.

Section 5 of chapter 5 emphasizes the convenience of logarithmic scales in
managing a large range of values. The logarithmic scales such as pH, Richter, and decibel
scales are explained and formulas to measure acidity of a solution, the intensity of an
earthquake and the loudness of a sound are presented‘.

The chapter ends with extra modeling examples of exponential or power functions
titled, Focus on Modeling, Fitting Exponential and Power Curves to Data (p.445-457).

To distinguish which model fits the data points (x, y), logarithms are used to linearize the
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data. If the data fit an exponential function y =ce®, the function is linearized as
Iny =Inc+ kx, therefore data points (x,In y) will lie on a straight line. Otherwise, when
data fit a power function y =ax”, and the function is linearized as Iny =Ina+nlnx ,
the data points (Inx,1n y) will lie on a straight line.

College Algebra includes a wide variety of resources to enhance different
instructional approaches, but it does not provide a ground for reinventing and exploring
the mathematical concepts. The extra modeling problems are not considered in the
curriculum of course A and they may not even be noticed by students or highlighted by
the teacher. Reviewing a final examination of course A shows that the attained

curriculum focuses on computational aspects of logarithms.

3.1.2 Calculus for Business, Economics, Life Sciences, and

Social Sciences 10" edition, by Barnett, Zingler, and Byleen, 2005

This textbook is a popular textbook for the prerequisite Calculus course offered in
the same university. The prerequisite course, “course B”, is offered for students who want
to obtain admission into undergraduate programs such as Business, Finance, and Life
Sciences. The textbook is organized into 9 chapters. The first two chapters include a
quick review of the concept of function and different types of functions to prepare
students for calculus. A function is introduced as “a rule that produces a correspondence
between two sets of elements such that to each element in the first set there corresponds
one and only one element in the second set” (p.7). Different types of function such as
polynomial, rational, exponential and logarithmic functions are presented in chapter 2.

Section 3 of chapter 2, Logarithmic Functions, begins by defining one-to-one

functions and the inverse of a function. As an example, the exponential function y =2*
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is considered to describe how to find a logarithmic function. The inverse of y =2" is

found by interchanging the variablesx =2”, and stating “x=2” if and only if
y=log, x” (p.111). A mechanical procedure in finding an inverse function (e.g. to find

an inverse function of f(x)=2x, students learn to interchange x and y, and solve the
equation for y in terms x to obtain the inverse function f7'(x) = —;—) does not apply to

finding the inverse of the exponential function. Therefore, stating “x =2” if and only if

b

y=log, x” may confuse students. After this example, the definition of a logarithmic
function follows as:

The inverse of an exponential function is called a logarithmic function. For 6>0 and b#1,
logarithmic form y =log, x is equivalent to exponential form x =5’ The log to the base b of
X is the exponent to which & must be raised to obtain x (p.111).

The above definition includes both functional and arithmetic notions of
logarithms. However, the examples on conversion of exponential form to logarithmic
form and vice versa, indicate that the intended curriculum of introducing the concept of
logarithms in this section is centered on the arithmetic notion of logarithms. Even though
the functional notion of logarithms is introduced, there is no example discussing the
behavior of a logarithmic function, domain and range of a logarithmic function and
modeling problems with logarithmic functions.

Further, the properties of logarithms such as log,1=0 and log, b =1 which can

be inferred from the definition of logarithms are listed along the laws of logarithms in

theorem 1 (p.113):
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If b, M and N are positive real numbers, b # 1,and p and x are real numbers, then

1) log,1=0 5)log, MN =log, M +log, N
2) log, b =1 6) logb%=long—long
3)log, 6" =x 7) log, M? = plog, M

4 b =x,x>0 8) log, M =log, N M =N

Theorem 1 lists the properties of logarithms without justifying them. Only the
proof of the property 5 is presented and the rest of properties are practiced through
examples. It is noteworthy that there exist Explore & Discuss activities to discuss the

relationship between log, M +log, N with log,(M + N) and log, MN . However, the

allotted class time may not permit students to participate in discussions and explorations.
Since it is assumed that students have been introduced to logarithms in a pre-calculus
course, only two class sessions (each equal to 75 minutes) are devoted to review
exponential functions, logarithmic functions and applications of exponential functions in
modeling compound interest problems. The arithmetic notion of logarithms is employed
in finding the time of investment in compound interest problems. For example, a
problem, “If interest is 5% compounded continuously, how long will it take for money
invested to double?”, taken from one of a final examination in course B, shows that the
attained curriculum focuses on the computational notion of logarithms.

The arithmetic notion of logarithms is highlighted by employing a calculator to
compute common logarithms and natural logarithms of numbers under the title of
Calculator Evaluation of Logarithms. A calculator is used to find the natural logarithm or
common logarithm of a given number and vice versa. Finding the number of which a

common logarithm or natural logarithm is given is not a trivial procedure like the former

23



one. For example, to estimate the number whose natural logarithm is 3 (Inx =3), the

logarithmic equation needs to be converted to the exponential equation (e* = x); then a
calculator can be helpful.

A few examples are presented to show how to solve an exponential equation. For
example, to solve e =3, after taking the natural logarithm of both sides of the equation,
the equation becomes Ine* =1n3. Of course, In3 can be evaluated by a calculator but

justifying that Ine® is equal to x requires an understanding of the logarithm as undoing
what exponentiation does (In undoes what e does to x).

Furthermore, the textbook introduces derivatives of logarithmic functions in
chapter 5. The concept of derivative is tied to the concept of function, therefore
presentation of functional notion of logarithms is essential at this point. However, a
review of final examinations in course B shows an emphasis on knowing the rules of
differentiation of logarithms and exponential functions rather than on modeling problems

with a logarithmic function and analyzing the behavior of the function. For example,

c‘Find —idil fOI‘ given y= [ln(x + 2) _ e(x2—4x)]2 ”

X

is a typical question to ask in a final

examination in course B.

Calculus for Business, Economics, Life Sciences, and Social Sciences includes a
quick review of the concept of logarithms in comparison to College Algebra which
provides a more detailed instructional approach. Both of the textbooks present the
functional notion of logarithms while the attained curriculum focuses on the
computational aspects of logarithms. They.both fail to provide students with guided
lessons in which students can develop their own understanding of the concept of

logarithms.
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3.2 Logarithms in the Iranian Textbooks

The Iranian high school curriculum design varies by stream of studies, whether in
Humanities, Natural Science or Math/Physical Science. Based on their Grade Point
Average (GPA) from junior high school, students enroll in a senior high school or a
vocational high school. The senior high school offers mostly programs in Humanities,
Natural Science and Math/Physics. Natural Science and Math/Physics programs have the
same curriculum in the first year of senior high school. In second year, students pursue
their interest either in Natural Science or Math/Physics. Figure 3.1. illustrates the school

system in Iran.

Vocational H.S.

(2-4 years)

Humanities Sc.
Elementary Junior H.S. (3 years) Natural Sc.
School (5 years) (3 years) (2 years)

Natural & Math/Physics

(1 year) Math/Physics
(2 years)

Figure 3.1. Illustration of the current Iranian schooling system

3.2.1 Mathematics 2, Ministry ‘of Education, 2003

Mathematics 2 is a current high school curriculum textbook for second year
students (around 15-16 years old) in Natural Science, Math/Physics and also in
vocational high schools. Mathematics 2 is organized in 8 chapters and totals 177 pages. It
introduces a variety of topics such as relations and functions, matrices and systems of
linear equations, graphs of functions, sequences and series, trigonometry, vectors, and

combinations and probability. In this textbook, a function is defined “as a relation in
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which two distinct pairs of numbers (x,y) do not have same x -coordinate. If two pairs
have equal x -coordinates then their y -coordinates need to be equal” (p.21). Topics such

as onto functions, one-to-one functions and the inverse of a function are introduced after
students learn how distinguish a function from a relation. Different types of functions
such as trigonometric, ceiling, exponential and logarithmic functions are introduced in
chapter 4.

Exponential and logarithmic functions are presented in section 3 of chapter 4. The

section starts with the definition of positive and negative rational exponents. To extend
the domain of exponents to real numbers, it poses the question “what does 27 mean?”.
To find 2V2 , the graph of y =27 is sketched by point plotting and 2¥? is estimated by
interpolation.  After students have constrpcted a meaning for real exponents, the

definition of an exponential function, y =a”, a > 0,a #1 follows: “If x is a real number,
a” satisfies all of the laws of exponents. For example, a*” =a*.a”” (p.87). The graph
of y=a" for a>1 and 0<a <1 follows the definition of the exponential function. Since
the graphs indicate that the exponential function is an onto and one-to-one function, the
logarithmic function y =log,x is introduced as its inverse function. The relation
between y=a" and y =1log, x is emphasized by sketching the graph of both functions
in a unique coordinate system and indicating that the graph of y =log, x is a reflection of
y=a" about the line y=x; therefore x=a” & log,x=y. A few examples are

presented to show how to convert an exponential equation to a logarithmic equation and

vise versa.
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The product and quotient laws of logarithms are extracted from the laws of
exponents and practiced through examples. The product law is verbalized as “logarithm

of the product of numbers is the sum of the logarithms of the numbers” (p.89). The power
law of logarithms, log, b* =xlog, b for a,b>0,a#1, is mentioned as an obvious

property of logarithms without proof and justification. It does not seem be an obvious
property, unless it can be resulted from the product law. Furthermore, natural logarithms
and common logarithms of numbers, and evaiuating them with a calculator are discussed.

The lesson ends by emphasizing the importance of invention of logarithms in the
history of mathematics to reduce the computational labor by converting multiplication of
numbers to addition of logarithms of numbers and division operation of numbers to
subtraction of logarithms of numbers.

Mathematics 2 illustrates a functional notion of logarithms within 4 pages,
however most of the given examples and exercises are centered on the computational
notion of logarithms. There is no application problem to be modeled with a logarithmic
function or an exponential function. In contrast, abstract mathematics problems are

designed particularly for students in Math/Physics program as follows:

y

1. If y=log, x—log,(x+1),x >0 show that x=l .
—e

2. Sketch the graph of 2log y =log2 +log(x +1)

I translated the section from its original language and included in Appendix B to

provide more details on the teaching logarithms in Iran.
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3.2.2 Fundamentals of Mathematics, Ministry of Education, 2004

Fundamentals of Mathematics, the pre-university textbook for the Humanities
stream, introduces computational aspects of logarithms. It has a total of 150 pages in 5
chapters. Chapters include topics on mathematical induction, sequences of numbers,
logarithms, mathematical modeling, and basic probability. Chapter 2, the chapter which
precedes the one on logarithms, presents a sequence of numbers and then introduces
different types of sequences. Arithmetic and geometric sequences are employed in
chapter 3 to reveal the relationship between corresponding terms of these sequences and
define the arithmetic notion of logarithms. Chapter 3 in total includes 6 sections as
follows: genesis of logarithms, common logarithms, logarithms and scientific notations,
computation with logarithms, proof of properties of logarithms, and the application of
logarithms in measuring the magnitude of an earthquake and intensity of a sound wave.

Section 1, Genesis of Logarithms, starts with modeling the growth rate of
bacteria. The time of growth is modeled by an arithmetic sequence and the number of

bacteria is modeled by a geometric sequence (see Table 3.1).

x :Time (day) 0{11(2 I3 (4 |5 |6 |7 8 9

y :Number of Bacteria |1 |2 [4 |8 |[16 |32 |64 | 128|256 512

y ‘Number of Bacteria | 2° 2! 22 | 23 | 2* | 2° | 26 | 27 |28 | 2° | 2v

Table 3.1. Sequences of numbers used to model the growth rate of bacteria

The table shows that the product of two terms of the geometric sequence such as

16 and 32 can be calculated by adding the indices of the terms, in this case, 4 and 5,
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respectively, which are terms of an arithmetic sequence, and then finding the
corresponding term for 9 in the geometric sequence, i.e. 512 in this case. The third row of
the table indicates that geometric terms can be written in base 2 to the power of
corresponding arithmetic terms. Thus y =2" < x =log, y, such that y is a number in
geometric sequence and x is the logarithm of this number in base 2.

Another non-standard example of logarithms presented in this textbook is:

Numbers 16 X 32 = 512
2x2x2%x2 X Ix2x2x2x2 = 2x2%2x2x2%x2x2x2x2
Logarithms 4 + 5 = 9

This example reveals the most significant property of logarithms, converting
multiplication of numbers to addition of the logarithms of the numbers.
After some practice exercises and examples, the textbook gives the following

definition of logarithms: “log, y is a number [representing the power] to which b needs

to be raised in order to obtain y , so log, y=x < b" =y,y > 0,6 > 0,b #1”(p.62).

Section 2, Common Logarithms, présents an algorithm to construct a table of
logarithms in base 10 for numbers between 1 and 10. This table is employed to provide a
rough estimate of the common logarithm of numbers. Section 3, Logarithms and
Scientific Notations, shows that the integer part of the common logarithm of a number
can be obtained easily from the scientific notation of the number and the decimal part can
be estimated form the constructed table of logarithms for numbers from 1 to 10. For

example to estimate the logarithm of 200, 200 can be expressed in scientific notation

2x10°> and, by referring to the table, 2~10"" so 2x10%> ~10>*" x10®> and

log200 ~ 2.301, in which the integer part of 2.301 is the power of 10 and the decimal
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part is found in the table. This textbook conte;ins a rarely-seen-today common logarithmic
table of numbers from 1 to 10000 up to four decimal digits.

Section 5 introduces the laws of logarithms. The product, division, and power
laws of logarithms are proved and practiced through examples. Furthermore, the change
of base of law of logarithms is introduced to facilitate finding logarithms in bases
different from 10.

Applications of logarithms to measuring the magnitude of an earthquake and the
intensity of a sound wave are presented in the last section. The Richter scale and decibel
scale are explained and it is emphasized that logarithmic scales are more convenient
scales in comparing a wide range of numbers.

In this textbook, the arithmetic notion of logarithms is presented through
examples and modeling problems in a way which is compatible with the historical
genesis of logarithms. For example, the presented bacteria growth rate problem
establishes a connection between geometric terms and corresponding arithmetic terms to
introduce the concept of logarithms. The table of common logarithms for numbers from 1
to 10 is constructed to provide students with a concrete computational knowledge of
logarithms. Furthermore, the lessons do not overwhelm students with logarithmic
symbols since the natural logarithm of numbers is not presented. I translated the chapter 3
of Fundamentasl of Mathematics and included in Appendix C to provide more details on

the teaching logarithms in Iran.
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3.2.3 Logarithms in several Iranian Textbooks from the 1940s
and 1970s and Application Problems from 1895

A review of several Iranian textbooks from the 1940s and 1970s reveals that the
arithmetic notion of logarithms is defined either by emphasizing the relationship between
corresponding terms in arithmetic and geometric sequences to conclude that an arithmetic
term is the logarithm of the corresponding geometric term, or by introducing logarithms
as the inverse of exponentiation.

In the textbooks from the 1970s, logarithms are defined as the inverse of
exponentiation. A high school curriculum textbook from 1972 (“Algebra”,1972) defines

logarithms as follows: “the number x ,x =log, 4, is called the logarithm of A4 to base

a (a>0),when a” = 4. A is called the antilogarithm of x to base a , 4 = antlog, x”.

Pezeshk (1942), an editor of curriculum textbooks, defines logarithms as follows:
Given two sequences 4 and G such that G is a geometric sequence with the initial term 1

and ¢ as a common ratio, and 4 is an arithmetic sequence with the initial term 0 and » as

G:q gt gl 2.9,
a common difference. 4 and G form a system, {A 7 99 589 g ,

L= FR,.,—2F =1, 0,1,28,... A7 ...
such that each term of the arithmetic sequence is the logarithm to base g" of the

corresponding term in the geometric sequence and each term of the geometric sequence

1
can be obtained by raising ¢’ to the corresponding term in the arithmetic sequence.

Pezeshk (1942) considers two consecutive terms of a geometric sequence, and
respectively their corresponding terms of an arithmetic sequence to prove a theorem. The

theorem shows that the difference between any two consecutive terms in each sequence
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approaches zero by inserting terms between these two sequential terms. Based on this
theorem he concludes that a) any term of a geometric sequence has a corresponding term
of an arithmetic term which is its logarithm and b) any positive number has a logarithm.
Furthermore, he proves the uniqueness of the logarithm of a number in any given base.
Further details are included in Appendix D.

In addition, a translation of some finance problems where logarithms are used in
simplifying exponential expressions and solving the problems is included in Appendix E.
These problems are taken from Mizanoalhesab written by Mir Krinish in 1895. One of
the interesting problems and its solution follows:

A barrel is filled with syrup. The total volume of the barrel, a, is equal to the
volume of 100 pitchers and a pitcher of this syrup costs ¢ =36 tomans. Let b be the
volume of the pitcher. Suppose a person wants to reduce the concentration of syrup so
that the cost of a pitcher of the diluted drink decreases to 1 toman. He dilutes the syrup
with water by repeatedly taking out one pitcher of syrup from the barrel and pouring in
one pitcher of water instead. He repeats this process until the value of each pitcher of
syrup becomes d =1 toman. Find out how many times this person needs to repeat this
process to decrease the value of each pitcher to d =1 toman.

Solution: It is clear that the ratio of the volume of syrup in the barrel to the
volume of syrup in the pitcher is equal to the ratio of the volume fraction of the syrup in
the barrel to the volume fraction of the syrup in the pitcher. By taking out the first
pitcher of syrup and pouring in a pitcher of water, the volume of the syrup is a—5 , so

% =4 b and x= ?—(a —b) which x indicates the volume of the syrup in a pitcher, so
x a

by taking out the second pitcher from the barrel the volume of syrup in the barrel is
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(a-b)°

_ 2
(a-b) —é(a -b)= (a=b) and the equality of ratios is % =—19a which
a a

X

2
X = M. Repeating this process and taking out » pitchers, the volume of the syrup

(a=b)"

an—l

in the barrel becomes which is worth ¢ =36 tomans per pitcher. Therefore, the

(a—b)"

an-—l

value of syrup in the barrel is x ¢ . On the other hand, the value of each pitcher

of syrup is decreased to d =1 , so ad indicates the value of diluted syrup in the barrel.

(a=b)"

n-1

By solving xc=ad , n indicates the number of times that the person needs to

take out pitchers of syrup to decrease the value of each pitcher to d =1 toman, so

nlog(a—b)+logc—(n—1)loga =loga+logd

ne logc—logd  log36—Ilogl 356
loga —log(a—5b) logl00—1og99

A review of current Iranian textbooks indicates two distinct approaches —
functional and arithmetic— in teaching the concept of logarithms. The functional notion
of logarithms is introduced to students who study Natural Science, Math/Physics or in
vocational high schools. The arithmetic notion of logarithms is presented for students in
Humanities programs. Students’ fields of study influence the instructional approach of
logarithms. Furthermore, the arithmetic notion of logarithms is presented through
examples and modeling problems in a way which provides a grounding for students’

reinvention and exploration of logarithmic concept.
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3.3 Realistic Mathematics Education

Freudenthal’s theory in teaching exponential and logarithmic
functions

Freudenthal’s idea is that logarithm and exponential functions need to be
introduced to students through real-life problems (Freudenthal, 1973). Once they have
been introduced, the activities which help students reinvent the exponential and
logarithmic laws need to be employed. Students reinvent the mathematical concepts
through a learning process that passes through a variety of sequential learning activities
(Freudenthal, 1973). These activities compel the students to invent the mathematical
concepts, to recognize the common aspects of the concepts, to formulate and then apply
them in other situations. The teachers’ role is to help students invent and formulate the
concepts (Freudenthal, 1973). Freudenthal (1991) stresses that there is no need to teach
the knowledge that students can invent by themselves (Freudenthal, 1999). Further, he
explains a teaching approach to logarithms which does not use the term logarithm and
logarithmic notation. This approach was applicable in 1970 because of existing

logarithmic tables in textbooks. The logarithmic tables were used in a way that allowed
students to write a number a in the form of 10”. To computeab, students use a
logarithmic table and write @ =10” and 5 =107 . They multiply ab and apply the
exponential law (z*xz” =z"), thus ab=107"?. Then, they can compute the

logarithmic value of 107" from the logarithmic table (Freudenthal 1973). Although, this
approach was limited to logarithms to base 10, it did not necessarily require learning the

laws of logarithms. Rather the exponential laws were applied.
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According to Freudenthal (1973, page 375), functions and mapping concepts arise
intuitively through real-life based examples, such as interest as a function of time,
temperature as a function of time, price as a function of quality. He argues for the need
for mathematical activities to help students concretize the concept of mapping. From his
point of view, concretizing a mapping is categorized in two ways: displacement and
transfiguration (Freudenthal, 1973, page 383). In displacement, the focus is on the place
of the objects not on the nature of the objects. The object x is displaced by rule f to fx.
In contrast, in transfiguration the focus is on the objects. The object x is transfigured into
Jfx byrule f.

To grasp the concept of mapping, students should be able to perform at least one
method of concretization since a complcte concretization of the mapping concept with
respect to object and place is not easy to form (Freudenthal, 1973, page 384). However,
logarithmic functions require a complete concretization, displacement and
transfiguration. Displacement can explain thé mapping of the geometrical sequence to the

corresponding arithmetical sequence. Transfiguration happens in mapping x to logx.
For example, consider f(x)=1log,x and x=9, then f(9)=1log,9=1log,3’ =2. This
implies that 9 is transfigured to log, 9 and displaced to 2. Displacement concretization

requires an understanding of logarithmic functions as the inverse of exponential

functions. In the above example of displacement concretization, log,9 needs to be

interpreted as to what power 3 must be raised to be equal to 9 (3 =9). The
development of both types of concretization of a logarithmic function might not happen

simultaneously for all students.
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Freudenthal (1973), the founder of Realistic Mathematics Education (RME), has a
global perspective on teaching mathematical concepts. His idea is that mathematics
education needs to be implemented through realistic context problems. Realistic context
problems provide the opportunity for students to develop a basis for their informal
knowledge, make connections between informal knowledge and formal mathematics and
reinvent the mathematical concepts. The context of the problems is not necessarily
limited to real situations, rather the situations provide grounds to experience
mathematical concepts (Freudenthal, 1973 & Van den Heuvel-Panhuizen, 2003).
Through their experiences, students recognize the common aspects of the concepts and
organize their own mathematical activities. Organizing matters from reality or a
mathematical perspective is called “mathematizing”(Freudenthal 1973, 1991).
Mathematizing is the core aim of mathematics education (Van den Heuvel-Panhuizen,
2003). Two ways of mathematizing—horizontal mathematizing and vertical
mathematizing—in an educational context are proposed by Treffers (Van den Heuvel-
Panhuizen, 2003). Horizontal mathematizing refers to the mathematical tools to solve
realistic context problems, while vertical mathematizing refers to the students’ own
mathematical activities, such as finding strategies, discovering concepts, and making
connections between concepts (Van den Heuvel-Panhuizen, 2003). Students’
mathematical knowledge develops through the process of progressive mathematization,
engaging horizontal and vertical mathematization to schematize a mathematical concept.

Gravemeijer and Doorman (1999) analyze the role of context problems in
calculus from an instructional perspective. As an example, the historical development of

calculus provides a modeling perspective about velocity and distance problems starting
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from discrete functions. Gravemeijer & Doorman (1999) emphasize that the RME
approach “transcends the dichotomy” between formal mathematics and informal
knowledge (Gravemeijer & Doorman, 1999).

RME may offer a helpful perspective for teaching logarithms by providing
opportunities in which students can reinvent logarithms and the laws of logarithms. In the
design of context problems, the historical genesis of logarithms can be taken into
account, as it was done in the Iranian books reviewed here. It is noteworthy that solving
such problems may require more than mathematical facts and formulas: for example, the
ability to decode a contextual problem, apply a proper mathematical concept and interpret
the result in the context of the problem. Furthermore, the teachers’ role in RME is
different than their role in traditional mathematics education. They need to know the
objectives of RME as well as multidisciplinary applications of mathematical concepts. In
their study, Wubbels and others discovered that student teachers generally fail to provide
opportunities for student-centered learning and discoveries in RME (Wubbels, Korthagen

& Broekman, 1997).

Reflection

The review of the introduction of the concept of logarithm in current Canadian
textbooks shows that the instructional approach focuses on the functional notion of
logarithms. Regardless of their field of study, Canadian students are required to learn the
functional notion of logarithms. The instructional approaches provide facts, formulas, and
procedures to gain competency in solving typical examination questions. These
approaches were completely different from Freudenthal’s theory which suggests the use

of realistic context problems to introduce the mathematical concepts.
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In contrast, current Iranian textbooks’ approaches are compatible with students’
fields of study. The textbook for the Humanities stream introduces the arithmetic notion
of logarithms in the vein of Freudenthal’s theory. The lessons started with modeling the
growth rate of bacteria to establish a connection between bacterial growth rate (a
geometric sequence) and time of growth (an arithmetic sequence) to introduce the
concept of logarithms. The construction of a table of common logarithms, relation
between a number in scientific notation and its common logarithms, and the importance
of logarithmic scales were discussed to provide students with a concrete computational

knowledge of logarithms.
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Chapter 4: Literature Review on the Learning of
Logarithms

This chapter presents a review of relevant studies on the learning of logarithmic
and exponential functions. First is Kastberg’s theory about understanding a mathematical
concept and her empirical study (2002) on understanding logarithmic functions. Second
is Weber’s empirical study on how students can extend their understanding of natural
exponents to real exponents. Third is Smith and Confrey’s theoretical study on
understanding logarithmic functions. They extend Confrey’s theory of “splitting” in
understanding exponentiation, and emphasize that both splitting and covariation approach

to functions are central in understanding logarithmic functions.

4.1 Kastberg’s Study on Students’ Understanding of

Logarithmic Functions

Kastberg (2002) develops a theory of understanding and applies her theory as a
framework to analyze how students understand logarithmic functions. She suggests that a
student’s understanding of a mathematical concept can be perceptible from the student’s
collection of beliefs about the concept. Evidence of the students’ beliefs are their ideas
and feelings about the concept (conceptions), the way that they represent the concept
(representations), how they make connection between the different representation forms
(connections) and how they apply the concept to solve a problem (applications).

To probe students’ understanding of logarithmic functions, Kastberg (2002)
conducted a case study over three instructional phases (pre-instructional, instructional
and post-instructional). She designed nine interview protocols including a variety of

activities and interviewed four students who enrolled in college algebra course at a rural
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community college in the United States. Activities included phenomenological questions,
and standard and non-standard logarithmic problems. In the pre-instructional phase,
students were asked to define a function, logarithm, and logarithmic function, list
properties of a logarithmic function, and solve standard logarithmic problems. The
instructional phase did not require students to do any logarithmic problem. In the post-
instructional phase, non-standard problems were presented. For example, one of the
problems used the relations between sequences, another introduced the function

f(4B) = f(4A)+ f(B) and f(2)=1 then asked to evaluate the function for some values.

There also existed two table-completion problems which asked for the numerical
approximation of logarithms of a few numbers.

Based on this study, she concludes that students understood the logarithmic
function as a “problem to do” in which the problem has four categories: level of
difficulty, type of the problem, tools to solve the problem and characteristics of the
logarithmic function.

In the pre-instructional phase, she states that students’ understanding was
“speculative”. Students’ beliefs about the level of difficulty of logarithmic functions were
associated with their performance in solving activities; therefore, they described
logarithmic functions as easy or hard. Since students in the pre-instructional phase were
given standard logarithmic problems, they thought that logarithmic problems include
evaluating, simplifying, graphing, making tables of values and solving exponential
equations. Tools such as facts, formulas, a calculator and a procedure were needed to be

able to solve these types of problems. Furthermore, they characterized the logarithmic

function as a symbols or a notation such aslog,,.#.
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The instructional phase was concurrent with class instruction on logarithmic
functions. Only one interview was conducted after they had been taught and it did not
require solving logarithmic problems. Students believed that logarithmic functions are
easy to solve. They tried to absorb facts, formulas, and procedure to solve these
problems. Evaluating logarithms of numbers and converting logarithmic form to
exponential form and vice versa were the types of problems which were emphasized in
the class instruction. Since students were introduced to logarithmic functions as the
inverse of exponential functions, they characterized logarithmic functions as related to
exponential functions.

In the post-instructional phase, students were given non-standard problems based
on logarithms without mentioning logarithmic function. Students could not recognize that
these problems were based on logarithms. They tried to manipulate each problem with a
method that they used before and it made sense for them. Kastberg (2002) categorizes
their attempt to solve non-standard problems: recognition the pattern of numbers in the
relation between sequences problems, successive approximation in the table-completion

problems, linear interpolation in the evaluating values of function f(4B)= f(4)+ f(B),

and awareness of inconsistencies to eliminate them.

Kastberg compared students’ performance on standard logarithmic problems in
the pre-instructional phase with their performance on non-standard logarithmic based
problems in the post-instructional phase. Since the instructional phase was based on a
traditional approach, it might improve students’ performance on standard problems rather

than non-standard problems.
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Some of her observations can be summarized as follows: students focused on
standard problems which were presented in their classes since they understood
logarithmic functions as particular problems to do. The traditional instructional approach
failed in providing grounds to stimulate students’ cognitive development. Furthermore, it
provided resources of facts, formulas and procedures to employ in standard mathematics
problems. Presenting facts and formulas without providing any rationale for their needs

and uses accounts for memorization and incorrectly recalling from a memory. As an

example, the product law of logarithms log, 4B =log, 4 +log, B can be distorted by the

distributive property of numbers and incorrectly result in log (4 + B) =log, A+1log_ B.

4.2 Weber’'s Study on Students’ Understanding of

Exponential and Logarithmic Functions

In a case study, Weber (2002) adapts Action-Process-Object-Schema (APOS)
theory to analyze how students develop an understanding of exponents and logarithms as
reverse of exponentiation. His theory is that students’ understanding of exponents takes
place in four stages (adapted from APOS theory): exponentiation as an action,
exponentiation as a process, exponential expressions as the result of a process, and
generalization. Generalization indicates the ability of justifying real numbers as
exponents, whereas exponentiation as an action indicates the ability of computing
exponential functions only for positive integer exponents. Within the context of this
theory, he has conducted an empirical research to analyze students’ understanding of
exponents and logarithms. He interviewed fifteen students who enrolled in a pre-calculus
course three weeks after they were introduced to exponential and logarithmic functions.

Some of interview problems were:
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1) What does the function f(x) =a" mean to you?

2)Is 5" aneven or an odd number?

3) How would you compute log, 78125 without using a calculator?

Analyzing the students’ responds for question 3 showed that none of students

solved log, 78125, even though four out of fifteen students convert log, 78125 to

5% =78125. Presenting logarithms as reverse of exponentiations require a process
conception of exponentiation.

Based on his observations, he concludes that students construct a meaningful
understanding of concepts of exponents and logarithms when they understand
exponentiation as a mathematical process and exponential expressions as mathematical
objects (Weber, 2002). He has developed instructional activities according to his theory’s
stages and implemented in an experimental pre-calculus course for further research.

In enhancing students’ understanding of exponentiation as a process, he asks
students to write a program to perform exponentiation with a graphing calculator and
answers the question such as “why (—1)* negative when x is odd”. In exponential

expressions as the result of a process, for example, students are asked to demonstrate that

2°2* =27 In the generalization stage, students discuss “what it means to be a half factor

of 27.

4.3 Confrey’s and Smith’'s Research on Students’

Understanding of Exponential and Logarithmic Functions

Confrey and Smith (1995) criticized the current curriculum approach to

multiplication as repeated addition; such an approach results in an underdeveloped
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understanding of multiplication in exponential growth and decay (Confrey & Smith,
1995). They propose splitting as a primitive model for multiplication and division
(Confrey & Smith, 1995). In splitting, a particular quantity splits into equivalent multiple
versions with respect to growth rate. As an example of splitting, try folding a sheet of
paper symmetrically, the paper splits in two similar rectangles (one two-splits, one
indicates level of split). Fold the paper one more time so that there are 4 rectangles (two
two-splits, two indicates the level of split) and so on. The connection between the levels
of splitting and the geometric view of the results (similar rectangles) distinguishes
splitting from counting (Confrey, 1994). Hence, splitting is a metaphor for
exponentiations.

Juxtaposing the level of splits and the result of splits makes the isomorphism
between counting (arithmetic sequences) and splitting (geometric sequences) become
apparent. A covariation approach of this isomorphism is required to develop an
understanding of exponential functions (Confrey, 1994). Thus, a covaried isomorphism
between counting (repeated addition) and splitting (repeated multiplication) provides a
basis for the understanding of exponential functions (Confrey & Smith, 1995). The
covariation approach to functions allows a student to conceive the elements of domain in
relation to the corresponding elements of range. Through this approach the student can
consider the entire process as happening to all values at once and describe the situation in
terms of the rate of change.

In contrast, the correspondence approach considers the equation of a function as a
producer, such that substituting x from the domain in the equation produces exactly one

y in the range. The current curriculum approach to the concept of functions relies on the
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correspondence view which may create difficulties in understanding the notion of
function (Confrey & Smith, 1995). Students experience functional situations in real-life
based examples in which one quantity varies with or depends upon another such as price
as a function of quality. Such real-life based examples are compatible with a covariation
approach to function, but curriculum design stresses the correspondence approach to
function.

Smith and Confrey (1994) review the theoretical aspects’ of Napier’s work to
extend their research to logarithmic functions. They conclude that Napier’s consideration
of a covaried isomorphism— between (a) the position of a geometrically moving point on
a line AB=10" units with the velocity proportional to its distance of B and (b) the
position of an arithmetically moving point on a number line— is basis for the invention
of logarithms (see Figure 2.1.). So, they' categorize the historical development of

logarithms in four steps:
1. The development of arithmetic and geometric sequences
2. The juxtaposition of arithmetic and geometric series
3. The development of continuous geometric worlds

4. The cogeneration of continuous arithmetic and continuous geometric worlds
(Smith & Confrey 1994)
and summarize splitting and covariation approach to function as bases for understanding
of logarithmic functions (Smith & Confrey, 1994).
Students initially develop a correspondence view (action level) of functions
(Sfard, 1989), which is considering a function as a machine to compute numeric values

for a given input. A covariation view (process level) of a function happens when a
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student can generalize the concept of function as a set of inputs and outputs instead of
considering a function formula to produce an output from an input. The current
curriculum approach to the concept of function relies on the correspondence view since it
presents different types of functions such as polynomial, quadratic, absolute value,
exponential and logarithms by emphasizing their equations and the properties of each

type of function. So the covariation view of a function might not be developed at the time
that students are introduced to logarithmic functions. For example, f(x)=a" represent
a covariation isomorphism between splitting and counting. Splitting happens in base a
and creates a geometric set {a’,a',a’,a’,..} with a corresponding arithmetic set
{0,1,2,3,...} that indicates the level of splits. This function can be viewed as a covariation

isomorphism between two sets when the domain of the function includes only positive

1
', a2, a be explained by

integers. If the domain is extended to real sets, how can a~
splitting? Does it make sense to say a ' as negative one a-splits? The splitting

conjecture based on repeated multiplication has limitations in extending exponents to real

numbers.
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Chapter 5: An Empirical Study of Students’ Understanding
of Logarithms

This chapter describes my own study of students’ understanding of logarithms. I
start by explaining the theoretical framework, APOS theory, that I have adapted to
describe the levels of understanding of the concept of logarithms in the students I have
interviewed. APOS theory has been used as a guideline for designing the study, as well as

for analyzing and interpreting the data.

5.1 Theoretical Framework: APOS

APOS theory has been developed by Dubinsky (1991) as an expansion of Piaget’s
concept of “reflective abstraction” to speak about levels of understanding among
undergraduate mathematics students (originally this concept was part of a model of early
childhood cognitive development, Piaget 1958). Dubinsky (1991) hypothesizes that
learning a mathematical concept takes place in an individual’s mind through constructing
mental actions, processes, objects, and organizing them in schemas to apply to problem
situations. This model of mental construction of concepts is called APOS theory
(Dubinsky 1991), where the letters in the acronym stand for “action”, “process”, “object”
and “schema”

At the action level of understanding a mathematical concept, an individual refers
to instructions and follows them step-by-step to perform operations related to the
concept. For example, understanding the concept of function at the action level means to

be able to calculate the values of a function given by an algebraic expression for concrete

values of the independent variable.

47



By repeating such actions and reflecting on the actions, an individual may
interiorize them and no longer need to be told what to do to perform operations related to
the concept in appropriate situations (e.g. the individual calculates several well chosen
values of a function to figure out how the values of the function change, whether they
grow or not, changes from negative to positive, etc.). When the actions have thus become
a kind of generalized procedure for the individual, Dubinsky proposes to say that the
individual’s understanding of the concept is at the process level. Thus, at the process
level, an individual is able to perform the operations implicitly through constructed
mental perception without referring to instructions.

At some point, the individual may want to isolate the process as a theoretical
object in its own right, that is, as a concept, which deserves a name and a definition;
Dubinsky says that the process is encapsulated into a cognitive object in an individual’s
mind. At this point in the construction of the concept of function the individual has a
general notion of function and can think of functions as a new kind of variables that can
operated upon (they can be added, multiplied by scalars, combined, reversed in some
cases).

Interiorization and encapsulation are therefore the main cognitive mechanisms
involved in understanding mathematical concepts. Encapsulation is a form of synthesis of
a certain knowledge and know-how. Once the individual’s understanding is at the level of
objects, he or she can further synthesize the various actions, processes, and mental
objects to form a coherent entity, called a schema. For example, the schema level of
understanding functions would include knowing the general notion of function and how it

is different from, say, the notions of relation, curve, equation; knowing what kind of
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questions can be asked about functions (domain, range, continuity, differentiability,
integrability, extrema, maxima and minima, etc.) and sets of functions (rings of
polynomials, normed spaces of continuous functions on closed intervals, etc.).

Normally, in the process of learning mathematics, an individual’s mind constructs
and holds distinct local schemas associated with a given mathematical concept and
retrieves proper schemas depending on problem situations.

APOS theoretical framework has been used to both organize learning
mathematical concepts and analyze actual mental operations employed by individuals
trying to understand mathematical concepts, mostly at the undergraduate level. In the
context of this research, APOS theory has been used to analyze a few students’

understanding of the concept of logarithm.

5.2 Adaptation of APOS Theory for Analyzing Data

In chapter 4, I identified two notions of logarithm: arithmetic and functional. At a
given moment of solving a problem or reflecting on a mathematical question, a student
may use one or the other of these notions at different levels suggested by APOS theory.
In this section, I describe what I mean by saying that a student thinks at the action,
process, object or schema level in relation to each of the two logarithm notions.

Levels of thinking about the arithmetic notion of logarithms

A,: Action level: guessing the logarithm (log, @) of a given number,a, by
raising the base b of the logarithm to powers n and checking if 4" = a; for example: to
findlog, 8, trying 2°, 2° and deciding that 3 is log, 8.

P,: Process level: at this level, the guessing described above is treated as a

method; by repeating the actions above and reflecting on them, the student develops some
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more general rules of proceeding when faced with the problem of finding logarithms; he
or she is able to describe this method and justify his or her evaluation of a logarithm by
saying that the base to this value is the number of which the logarithm is sought; at this

level, for example, the student may find log, x and justify the answer by saying that

O, : Object level: at this level, the processes described above are treated as
objects in themselves (they are “encapsulated” into wholes), which can be operated upon;
for example, added, subtracted, compared; for example, computing log, 7+log,5 and
comparing with other objects such as log,12.

S,: Schema level: understanding the objects of the object level as a system,

where the elements are built through conceptual relationships, example: extracting the
laws of logarithms from the laws of exponents.

Levels of thinking about the functional notion of logarithms

A, Action level: given a graph of an exponential function y =a” and a concrete
value of y, finding the corresponding x.

P,: Process level: systematically repeating the action of finding x’s for concrete
y’s, obtaining a table of pairs ( y, x ), drawing a graph of the inverse of y =a* from the

table (for concrete a)

O,: Object level: realizing that the process of sketching the graph of x as

dependent on y gives a new function which can be given a special name, and has some

special properties, one of which is that it undoes what the exponential function does.
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S,: Schema level: conceptualizing the relationships between exponentiations

and logarithms, example: applying log and In schemas in solving exponential equations.

5.3 Research Procedures

In this section, I describe subject recruitment, data collecting techniques, and
procedures used to analyze collected data.

The six subjects were volunteers to participate in the research, recruited from
among students registered in three different levels of mathematics courses in a large,
urban, North American university. Two of the courses were pre-university level courses;
the first one (course A) was a pre-requisite for the second one (course B), and the third
(course C) was one of the core courses for mathematics major students.

Participants of these six case studies included two female students from course A,
one male and one female from course B and one male and one female from course C.

To collect data I used a clinical interview technique and a written questionnaire
consisting of general questions, a review example on logarithms and a set of problems or
“activities” on logarithms. The general questions asked about subjects’ background,
attitude toward the concept of function and their prior experience with logarithms. The
review example (Figure 5.1.) was intended to help subjects recall the concept of
logarithm. The clinical interview provided me with a flexible method to analyze the
mental operations underlying the subjects’ understanding of the concept of logarithms.
While subjects engaged in activities, I observed their behavior, asked questions to reveal
their thought processes, and clarified any misunderstanding concerning the logarithmic

problems. I recorded the interviews and transcribed each interview. It is noteworthy that

51



students did not have access to a calculator during the interviews. Transcripts and written

questionnaires are included in Appendix F.

Review: log, 9 =2 means the same as3° =9. What does log, 8 mean?

Figure 5.1. The review example given in the questionnaire

In designing the six problems on logarithms, I was trying to categorize them
according to APOS theory developed in section 5.2. That is, each question was supposed
to require a certain minimal level of thinking about logarithms, and I wanted to have
questions requiring at least the action level, at least the process level, etc., for each of the
two notions of logarithm (arithmetic and functional). I describe the problems below.

The first problem, labeled Activity 1 (Figure 5.2.), emphasizes the relationship

between exponents and logarithms.

Activityl. Complete the table row by row.
Loganthms Expounentials
fog, 16=7 4 =7
log, 256=7 4 =7
log,4=" 4'=4
log, 1=? 4'=1

1 . 1
log, —=7 4=
%16 16
log, (-16y="? 47'=—16

Figure 5.2. Activity 1
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The first three rows in the table of Activity 1 (Figure 5.2) — to find log, 16,
log, 256 and log,4 — do not require anything more than the Action level of the
arithmetic notion of logarithm (4,): the answers can be obtained by performing

multiplication of natural numbers.
The next two rows — log, 1 and log, 1—1-6—, — require knowledge of definitions of

the zero and negative exponents which goes beyond performing the ordinary arithmetic
operations. At this point, the subject must have generalized the guessing behavior into a
method applicable to exponents that are not only whole numbers but arbitrary integers.

Thus, at least the process level P, of understanding the arithmetic notion is necessary
here.

The last row — log, (—16)— requires the object level O,

al »

because the subject must

be aware of the conditions of existence of the logarithm of a number, which presumes
thinking about logarithms as objects in their own right (and not as computational
exercises).

In the second problem, Activity 2 (Figure 5.3.), subjects were asked to estimate

the value of the exponential function f(x)=4" at the irrational number V2 from a graph

of the function, and to find the logarithm log, 4% | The action level of the functional

notion of logarithms A4, is sufficient to answer the first question, since the graph
f(x)=4" is given. Since the exponent is irrational but concrete, answering the second

question (log, 4‘/5) requires no more than the P, level of the arithmetic notion of

logarithms and can be solved independently of the graph and the first question. The
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expected answer would be V2. If the graph is used to answer the second question

(tracing back the value of exponent from the value of the power), the action level of the

functional notion 4, is sufficient. In this case the student’s answer could be a decimal

approximation of V2, say, “about 1.4”.

Activity2.The graph of f(x) = 4" is given. Estimate 4% =9 and
estimate log 477,
:
;;;;; 3
& i
f
i
2 o 4 2
Figure 5.3. Activity 2
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The third problem, Activity 3 (Figure 5.4.), may be conceived of at a process or

an object level of the arithmetic notion of logarithm. At the object level O, of

understanding the arithmetic notion of logarithm, the first expression, log, 7 +log, 5 is
calculated by applying a law of operations on logarithms, treated as objects in its own
right. For example, if the subject know the laws of logarithms correctly, he or she may
find the answer by estimating log, 35. At the process level the subject may evaluate each
logarithm individually and add the results. The action level is not sufficient here because
fractional exponents are involved. As regards the second expression — log, 27 xlog,, 3 —
similar behaviors may be expected. At the object level, the subject would be expected to
think about the laws of operations on logarithms; at the process level, the subject would
evaluate each term individually without mentioning the applicability of laws of
operations on logarithms in this case. Evaluating log,, 3 requires knowledge of fractional

numbers as exponents and the definition of fractional exponents, therefore the action

level is not sufficient.

Activity 3. Evaluate the expressions.

log, 7+log, 5=7

log, 27 log,, 3="7

Figure 5.4 .Activity 3
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In Activity 4 (Figure 5.5.), subjects are asked to reflect on the validity of an

identity involving logarithms of arbitrary numbers: log,, x* = (log,, x)°. It is suggested
that they substitute a value for x . Answering this question requires the object level O, of

understanding the arithmetic notion of logarithms: it is a question about laws governing

operations on logarithms treated as objects in their own right.

Activity 4 Does the equality log,, x° = (log,, x)° hold? Find
an example and explain your reason.

Figure 5.5. Activity 4

Activities 5 and 6 (Figure 5.6.) require the schema level S, of understanding the

arithmetic notion of logarithm, since logarithms with a variable basis x appear in the
questions. Here, logarithms have to be conceived as constituting a system, governed by
definitions and laws. These problems were addressed mainly to subjects from course C, a
core course for mathematics majors. It was not expected to be accessible for students of

the pre-university level courses.

Activity 5.
Find the value(s) of x such thatlog (x-1)+log (x)=1.

Activity 6.
Consider the inequality log
about this meguality.

X -1| <2 what do you think

Figure 5.6. Activities 5 & 6
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5.4 Analysis of Data

In order to analyze each subject’s understanding of logarithms (according to the
categories adapted from APOS theory as described in the previous sections), I identified
significant statements from each subject’s transcripts and/or her/his solution and

categorized them as shown in Table 5.1.

1 2 3 4 5 6
Activities Subject’s APOS Explanation of | Justification of APOS | Comment
statements category subject’s analysis s
behaviors
Review example: | 174. Okay, 2 A . She computes
to power 2 is “ log,8="7
log,9=2 4, um--- 2 to 2 =g
power 3 is 8. with finding =

means the same so therefore

as?’2 =9 What | log2,8 is
means 3.

log,8="7

Table 5.1.The data analysis procedure

Column 1 contained the set of problems (activities). Column 2 contained
corresponding statements from the subject. Column 3 categorized student’s level of
thinking by using APOS theory developed in section 5.2 . Column 4 contained the notes
that I took during the clinical interview. I justified my categorization in column 5 and
added comments in column 6. This procedure helped me identify the variation and
stabilization of a subject’s mental operations according to APOS theory. I represented the
variation/stabilization in a graph for each subject, where the x —axis was scaled by the

progression of the transcripts and the y —axis was scaled by 4,,, P,, O, ,and S, or the

corresponding levels of understanding the functional notion of logarithms. I then
explained the results of each case study by introducing each subject and describing

her/his remarkable efforts in solving logarithmic problems.
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Chapter 6: Results of Six Case Studies of Students’

Understanding of Logarithms

In this chapter, 1 briefly introduce the subjects of my case studies who were
students registered in three different levels of mathematics courses in a large, urban,
North American university. I explain some of their particular approaches to solving
logarithmic problems. Based on my adaptation of APOS theory explained in section 5.2, I
tried to identify their thought processes, and summarized the levels of thought processes
of each students in a graph, where the x —axis was scaled by the progression of the
transcripts (the transcripts were consecutively numbered and included in Appendix F)

and the y —axis was scaled 1(4,),2(P,),3(0,)and 4 (S,).

Casel: Student 1 Enrolled in a Pre-Calculus Course
(Course A)

The subject was an independent female mature student from course A, a
secondary school graduate from 14 years ago. Her interest in Finance motivated her to
start a university program. She believed that the notion of function has applications in
economy and provides a better picture of a given situation. She did not recall seeing
logarithms before or working with the log key on a calculator, therefore she found the

review example helpful. Despite her lack of knowledge she was interested to work on the

problems. She interpreted natural exponents as an abbreviation for multiplication, since

she interpreted 3% =9 as “how many times 3 to get 9” (line 13, Appendix F). She could

not compute log,1=? and log, 1L6 =? because she had a lack of knowledge of the
definition of zero, and negative numbers as exponents. She guessed that log,(-16) =7
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would be -2 and she referred to log, 16 =2. She was puzzled with V2 asan exponent,

and when given the approximation of +/2, she computed 4'*' as 5.64. This reveals her

misconception about raising a number to a power: she interprets 4'*' as 4x1.41. She did

not extend the domain of exponents to real numbers. She did not know how to read the
given graph in Activity 2. She reflected on her actions to evaluate log, 7 +log, 5 because
first she evaluated each logarithm separately and added the results then she suggested a
law such that log, 7+1log, 5= log, 12. To verify her suggestion she compared the value
of log, 7+log, 5 with log, 12 and rejected her suggestion. Her understanding advanced

to O, level while she experienced a stabilization at P, level (see Figure 6.1.).

In Activity 5, she substituted some values for x and verified whether
log (x—1)+log, (x) =1 holds, but she did not rearrange the equation by applying the
definition and the laws of logarithms.

Lines 1 to 95 in Appendix F are a transcript from the interview with her and

analysis of data is represented in Appendix G.
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Figure 6.1.Represents student 1’levels of understanding: 1=Action, 2=Process, 3=Object,

4=Schema
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Case 2: Student 2 Enrolled in a Pre-Calculus Course

(Course A)

At the time of the interview, Student 2 (female, non-mature) was enrolled in the
Education program but was planning to switch to Marketing and was therefore taking
course A as a prerequisite for admission. She said she studied logarithms at school the
year before and admitted that she did not like logarithms. She believed that the concept of
function is useful in marketing and statistics. She solved the first four questions in
Activity 1 correctly, justifying in each case her answers to the log questions by making

correct exponential statements. But in the fifth question of Activity 1, she proposed that
. 1 .1 )
the solution to 4’ = "3 is 5 “because 4> =16”. She apparently did not remember the

definitions of negative and fractional exponents. She solved the questions in Activity 2
correctly. In Activity 3, to evaluate log,7+log,5, she converted each part into
exponential forms and tried to find exponents and add them. She had the potential to
reach the O, level, since she experienced stabilization at P, level, but a lack of
knowledge of the definition of negative and fractional numbers as exponents influenced
her progress in understanding the concept of logarithms. Figure 6.2. represents the
variation/stabilization of her thought processes.

She rejected the equality in Activity 4 as soon as she read the problem; however,
she tried different values for x, such as 2 and 10 to justify her answer. She probably
selected 2 because 2 is a small natural number, but she was not able to estimate

log,,(2)’ =log,, 8. By the given hint (select x as one of powers of 10) she selected

x=10 to show that the equality does not hold. To solve log (x—1)+log (x)=1, she
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tried each term separately, so that the equation was simplified to log (x —1) = 0. Then by
referring to the review example she converted log, (x-1)=0 to x°=(x-1). She
modified the inequality in Activity 6 to log, |x2 - 1| > 0, since she believed logarithms are

always positive. She appeared to confuse the domain and the range of logarithms.
Lines 96 to 167 in Appendix F are a transcript from the interview with her and

analysis of data is represented in Appendix G.
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Figure 6.2. Represents student 2’s levels of understanding: 1=Action, 2=Process, 3=Object,

4=Schema

Case 3: Student 3 Enrolled in a Calculus Course (Course B)

This student (female, non-mature) was a student interested in the Business
program who registered in course B to fulfill the Business program requirements. She
said that she never learned about logarithms in her secondary school because her teacher
ran out of time. She did not believe that the concept of function would help her in the

future unless she studied mathematics. Even though it was her first time working on
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logarithms, she figured out the relationship between exponentials and logarithms from the
review example. In Activity 1, first she evaluated the exponentials column of the table
and then followed the pattern between exponentials and logarithms to evaluate the
logarithms column. She was the only subject influenced by the distributive law in

evaluating the expression log, 7+1log, 5 and believed that log, 7 +1log, 5=log,12. To

evaluate log,27x log,,3 , she converted each term to exponential forms but she could

not evaluate 27* =3. Lack of the extension of the domain of exponents from natural
numbers to real numbers and lack of knowledge of the definition of negative and
fractional numbers as exponents hindered her progression in understanding logarithms.
Furthermore, she had a misconception of powers/roots as multiplication/division. Her

understanding level varied between 4, and P, represented in Figure 6.3. She believed

that learning mathematics would be easier if only concrete numbers were used rather than
variables. In addition, she asked if she could use a calculator.
Line 168 up to 275 in Appendix F presents a transcription of her clinical interview

and Appendix G presents analysis of data.

Levels of understanding (APOS)
N
*
¢
*
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168 178 188 198 208 - 218 228 238 248 258 268

Line numbers of transcripts

Figure 6.3. Represents student 3’s levels of understanding: 1=Action, 2=Process, 3=Object,

4=Schema
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Case 4: Student 4 Enrolled in a Calculus Course (Course B)

This (male, non-mature) student was interested in studying commerce. He was
taking course B as a prerequisite and had been taught logarithms in course A. Further, he
had a review on logarithms a few hours before this interview in the course. He did not
believe that the concept of function is useful for his area of work. He mentioned that he
hates fractions, and gets nervous when he sees fractions. He referred to the review

example several times while he was completing Activity 1. He remembered the definition
of negative and fractional exponents but he had difficulty with 4’ =—16. He was

puzzled with V2 in Activity 2 due the lack of practice with irrational exponents and the

lack of extension of the domain of exponents to real numbers. He applied the product law
of logarithms to evaluate log,7+log,5 and wrote log,35. To evaluate
log, 27 x log,, 3, he tried to suggest a law such that numbers can be added when bases

are common but he could not apply it since bases were not common. To evaluate

log, 27 x log,, 3, he confused the operation between logarithmic terms in the product

law and suggested that to evaluate the product of logarithmic terms, we add the numbers

when the bases are common. Since bases were not common in log, 27 x log,, 3, he could
not apply his suggested law. Therefore, he converted log, 27 and log,, 3 to exponential
forms. However, he had difficulty in finding a power to raise 27 and obtain 3 (27" =3).
In Activity 5, he applied the product law and wrotelog, (x> — x) =1; however, to convert

it to exponential form he had difficulty since the problem was not a numerical problem

and involved understanding variables. He again referred to the review example and

converted the given inequality in Activity 6 to x* = ‘xz - 1’ and he could not solve it any
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further. His understanding of the concept of logarithms did not advance further than 4,
level, despite his knowledge of formulas. He had a misconception of powers/roots as
multiplication/division.

Lines 276 to 389 in Appendix F are a transcript of the interview with this student

and analysis of data is presented in Appendix E.
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Levels of understanding (APOS)
N
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Line numbers of transcripts

Figure 6.4. Represents student 4’s levels of understanding: 1=Action, 2=Process, 3=Object,

4=Schema

Case 5: Student 5 Enrolled in a Core Mathematics Course

(Course C)

The subject was a mature female student studying Pure and Applied Mathematics
enrolled in course C. She mentioned that the concept of function is useful in everything.
She did not remember logarithms and forgot how to read logarithmic notations; she had

been taught logarithms five years before. She did not pay enough attention to the review

example and wrote log,8 =2°. She did not want to try log,(-16) and 4’ =-16 in

Activity 1. She used the given graph in Activity 2 to estimate 42 , but the value log, 4V
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was not apparent to her. To evaluate log,7+log,5, she converted each part to
exponential forms and estimated them by the given graph in Activity 2. She evaluated

log, 27 x log,, 3 by converting each term to exponential forms and finding the product of

the results. She did not immediately reject the equality log,, x* = (log,, x)* in Activity 4,

rather she tried to find an example to verify it. She was frustrated by the fact that all of
the problems asked about logarithms. She could not solve the problems in Activity 5 and

6 and kept blaming herself, saying “I did really bad, I do not remember log” (line 489,

Appendix D). In activity 6, she converted the inequality into x’ = }xz — ll <2, but could
not simplify it any further. She advanced to P, level of understanding of the arithmetic
notion of logarithms. Furthermore, she had a potential to reach P, level since she had an

understanding of the concept of function and experience with the graphical representation
of functions. Since she could not conceptualize the relationship between exponentials
and logarithms, her understanding of both arithmetic and functional notions of logarithms
varied between action and process level and did not stabilize at process level. She had
difficulty in conceptualizing logarithms as undoing what exponentiations do.

Lines 390 to 498 in Appendix F present a transcript of her clinical interview and

analysis of this data is indicated in Appendix G.
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Figure 6.5. Represents student 5’s levels of understanding: 1=Action, 2=Process, 3=Object,

4=Schema

Case 6: Student 6 Completed a Core Mathematics Course

(Course C)

The subject was a mature male student completed course C. He was studying in a
graduate program. He had seen logarithms recently in one of his courses. He strongly
believed that the concept of function is useful in day to day calculations. He was the only

subject who remembered logarithms and the laws of logarithms. He applied the power
law of logarithms (log, a® = clog, a ) to evaluate log, 477 in Activity 2. He used the
product law of logarithms (log,(ac)=1log,a+log,c) in Activity 3 and wrote
log, 7+1log, 5 =log, 35. Then he referred to the given graph in Activity 2 to verify that
log, 7 +log, 5 =log, 35 holds. In evaluating log, 27 x log,, 3 , he thought that there is a

law to find a product of logarithmic terms. Since the bases were not common he

evaluated each term separately and found the product of the results. In Activity 5, he
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log, * . In

incorrectly recalled the change of base law of logarithms as log (x-1) = on 1
0g,

Activity 6, he used the definition of logarithms (y =log, x < x =5”) and extended it

such that log, x < y implies ” < x , and then he solved the problem. He simplified the

problem to inequality x> <—(x> —1) and concluded that x <+ 1 . He advanced to S
2 al

level of understanding of the arithmetic notion of logarithms and had a potential to reach

S, . His knowledge of formulas enabled him to have a different approach in some of the

activities; for example, his knowledge of the power law of logarithms helped him to
simplify the logarithmic expressions. Since he applied the laws of logarithms in solving
problems and he had previously developed an understanding of the concept of
logarithms, his interview did not provide me with significant data about his cognitive
development during his engagement in the activities.

Lines 490 to 534 present a transcript of his clinical interview in Appendix F and

analysis of his interview are included in Appendix G.
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Figure 6.6. Represents student 6’s levels of understanding: 1=Action, 2=Process, 3=Object,

4=Schema
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Summary

Cases 1 through Case 4 focused on students from prerequisite mathematics
courses who wanted to obtain admission into undergraduate programs such as Business,
Finance, and Commerce. The results of their interviews showed that three students out of
four had a lack of knowledge of the definition of negative and fractional numbers as
exponents. Even though my study did not focus on exponentiation, my observations
confirm Weber’s study in the sense that students’ understanding of exponents was limited
to natural exponents. When the given exponent was not a natural number to be
interpreted as an abbreviation for multiplication such as 4'*', I became aware of my
students’ misconception of exponents as times, i.e. computing 4'*' as 5.64. As I assumed
in the beginning of my study, students’ prior knowledge of some mathematical facts and
laws influenced their understanding of logarithms. For example, the distributive law
(ab+ac=a(b+c)) influenced one of my student’s approach in evaluating
log, 7+log, 5 as log,12. When students are presented with mathematical facts (i.e.
logarithms are not defined for negative numbers) without providing grounds for
reinvention and reasoning they may not recall them correctly after a while. For example,
one of my subjects thought that logarithms are always positive. None of my four subjects
were able to answer and justify their answer to log, (—16) =? without my help.

Furthermore, I noticed that facts and laws presented in mathematical notations can
become complicated for students to remember and recall correctly rather than the facts
and laws presented in words. For example, remembering that the logarithm of a product
of numbers is equal to the addition of logarithms of the numbers can be easier than

memorizing the formula log AB =log 4 +log B for some of students.
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Prerequisite mathematics courses students (Case 1 through Case 4) did not
demonstrate any understanding of the functional notion of logarithms, even though it is
part of the current curriculum. I observed that they had difficulties with understanding
variables and solving the given problem for x. One of my subjects tried to substitute
different values for x to verify if the given equality holds, instead of simplifying the
equation and solving.

Case 5 and Case 6 focused on students who registered for a core mathematics
course. The student in Case 5 did not remember logarithms since she had been taught
logarithms five years ago. I realized her anxiety while she engaged in activities. I think
her anxiety did not allow her to reflect on her actions and develop an understanding of
logarithms. She kept referring to the given review example more than other subjects and
she could not conceptualize the relationship between logarithms and exponentials. In
contrast, the student in Case 6 tried to employ the laws of logarithms if they were
applicable. He even thought of a law to evaluate a product of logarithmic terms. Even
though he remembered and recalled the 1aws of logarithms, he did not grasp the
importance of logarithms in converting multiplication and division of numbers into
addition and subtraction of logarithms of these numbers since he incorrectly recalled the

log, x
log, 1

quotient law of logarithms as log, (x-1) = . These two subjects did not provide

me with significant data on their mental development during engagement in activities, but
Case 5’s interview revealed how affective issues influence development of mental
operations and Case 6’s showed that remembering and recalling laws did not indicate the

level of understanding of mathematical concepts.
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Chapter7: Conclusions and Discussion

This chapter presents the results of my study on students’ understanding of the
concept of logarithm. I also discuss and compare Katsberg’s observations on students’

understanding of logarithms with my observations through this research.

Conclusions

I identified two notions of logarithms — arithmetic and functional — by reviewing
the historical genesis of logarithms and a few textbooks from different times and
geographical places. Current curriculum approach focuses on the functional notion of
logarithms which requires knowledge of eXponentiations, the concept of function and
exponential function, and the notion of the inverse of a function. In contrast, to present
the arithmetic notion of logarithms knowledge of exponentiation is sufficient. Logarithms
as undoing what exponentiation does may also provide a broader view of exponentiation
with real exponents. The historical genesis of logarithms can provide modeling
perspectives to design an arithmetic instructional approach.

The functional notion of logarithms can be presented when students advance to an
object level of understanding of the arithmetic notion of logarithms and develop an
understanding of the concept of function and exponential function. Furthermore, my
review of textbooks showed that the functional notion of logarithms is generally
introduced to provide a tool for solving exponential equations. However, the functional
notion of logarithms is not necessary at this point.

As Freudenthal (1973) points out, logarithms can be introduced through context

problems in which they appear as a tool for calculation or measurement. The arithmetic
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notion of logarithms can be employed as a proper instructional approach to emphasize the

relationship between exponentials and logarithms and provide a computational tool.

Arithmetic instruction shows us the correct way. If mathematics fraught with relations should be taught,
it should be tied to the other member of the relation, to start with and again and again, whether the other
part of the relation be mathematics, physics or everyday life. ..., logarithms should start with stide rule or
with air pressure, or with the hyperbola if it should be applied there,... (p.133)

I analyzed empirical data, gathered through clinical interviews, using APOS
theory to describe students’ understanding of the concept of logarithms; however, mental
operations of an individual do not necessarily follow the linear progress of levels of the
APOS theory. The results of four case studies with students from prerequisite
mathematics courses showed that the understanding of exponentiation, extending the
domain of exponents to real numbers and conceptualizing the abstract definition of
negative and fractional exponents influenced students’ understanding of the arithmetic
notion of logarithms. My study confirms Weber’s emphasis, that a process of
understanding of exponentiation is required prior to presenting logarithms. His study’s
focus on students’ understanding of exponents indicates that most of the students’

understanding of exponents did not progress beyond an action level (Weber, 2002).

Discussion

Students’ difficulties in understanding the concept of logarithms has been studied
theoretically and empirically. Smith & Confrey’s theoretical study (1994) reveal that
splitting and covariation approach to function are bases for understanding of logarithmic
functions. My review of their study indicated that the splitting conjecture based on

repeated multiplication has limitations in extending exponents to real numbers and the
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covariation view of a function might not be developed at the time that students are
introduced to logarithmic functions.

I also reviewed Kastberg’s empirical study (2002) on students’ understanding of
logarithmic functions within the context of her theory of understanding. Her model of
understanding is developed based on students’ beliefs about mathematical concepts and
mathematics. She considers four categories of evidence (conceptions, representations,
connections and applications) as indicators of students’ beliefs about a mathematical
concept. On the other hand, my research analyzed students’ level of understanding of the
concept of logarithms within the context of APOS theory. In my research questionnaire,
the given review example helped students realize the relationships between logarithms
and exponentials in order to engage in activities. Then, I monitored their progressions and
possible constraints in their understanding of the concept of logarithms.

As Kastberg points out the current mathematics curriculum approach provides
facts, formulas, and procedures to gain some formal mathematical knowledge and apply
them in typical mathematics examinations. This instructional approach influences
students’ beliefs about logarithmic functions as a collection of problems to do. According
to Freudenthal (1973), ready-made laws prevent invention by students and do not allow
students to develop an understanding of mathematical concepts. Furthermore, application

problems such as measuring the magnitude of an earthquake, provide a formula,
M = logé (in which I is the intensity of an earthquake and S is the intensity of a

standard earthquake) and all that is required is to substitute some values and calculate.
These kinds of application problems do not provide grounds to realize the importance of

employing logarithms and logarithmic scales. Therefore, students try to memorize laws,
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facts and formulas without experiencing them through realistic context problems. The
RME approach seems promising in providing realistic context problems in which
students reinvent mathematical concepts. Realistic context problems may motivate

students and shape their beliefs about mathematics as well as enhance their understanding

of mathematical concepts.
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Appendix A: A logarithmic table written by Napier

1st columa Ind column 68th column 69th column
10000000.0000000  9000000.000000 - 5000857462496  5048858.887871
9095000.0000000  9895050.000 000 5097307533 764 5046334 458427
9990002.5000000 9890102475000 5094 758.879 998 5043811.291 198
Q0850074987500 9885157423763 5092 211.500 558 5041289385552
00800149950006  0880214.845051 5080 665.394 807 5038 768.740 859
9075024.9875031 9875274737628 3087120562110 5036249356489
90700374750094  9870337.100259 5084 577.001 829 5033731.231811
9065052.4562719 9 865401.031 709 5082034.713328 5031214.366 195
9060069.9300437 9860460230743 5079493695971 5028698759012
90550808050787 0855538996128 5076953.940 123 5026184409632
00501123501312 0850611226630 5074415472149 5023671317427
00451372030561 0845685.021 017 5071878.264413 5021150.481 768
0040 164.725 3001 0840 763.078 036 5060342325280 5018648902028
00351946420465 9335842696517 5066807654118 5016139577577
9930227.0456250 9830924775160 5064 274.250 291 5013631.507788
0025261.9321022 9826000312781 5061 742.113 166 5011124602034
9920209.3011361 0821006308125 5050211242109 5008619120688
9015339.1514856 9816185759971 - 5036681.636488 5006114.820123
0010381.4819008 9811277667001 5054 153.205670 5003611.762713
00054262011680  0806372.028257 5051626219022 5001109956832
0000473.5780233 0801468842243 5049100405912 4098609401853
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Appendix B: Translation of exponential and logarithmic
functions from the Iranian Textbook Mathematics 2 (p. 85-93)

4.3 Exponential and Logarithmic Functions

a" is defined for a positive real a and an integer »n , and its preliminary

properties are formulated in Mathematics 1. It can be proved that there exists one and

1
only one positive real number b such that " = g. This definition implies that 6=a", or

b=%la and b is called the n™ rootof a. Therefore, %la"y=a.

m

For every positive number a, a’ =1. If — is a positive rational number, a” is
n

defined as: a” = (4/5)’" =4/a"

Examples:

| —

a* =3a
8 =(V8)y’ =2 =4

3 =By ==

2
3

. . . = 1
If 2 isa negative rational number (n>2, ne N, m<0), then a” =

n Fa)™

and note that the denominator is defined since —m > 0.

2
Example: 125 3 = ! ! ! L. !

QM%) yfazsy Yy 5 2
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a - ) ey
The laws of exponents, —=a , a#0, which are studied in
a

Mathematics 1 hold for any rational exponents such as » and s .

How irrational exponents can be defined? For example, what does 2 mean?

The graph of y =27 is sketched by point plotting.
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Figure B.1 shows the graph of y =2" taken from the textbook

W | =
N | —
(PSHR )

Y 1111261141156 (2|283 4

Table B.1 is a table of values of y =2"

The black dots on the graph indicate the values of the function at the given
positive rational points (see the Table B.1). To find 2 on the graph, indicate J2on x-

axis and find 27 on y-axis. It is obvious that 2*can be defined for negative real
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s 1 1 1

numbers. For example, x = L implies that 22= - =—==——— and note that 2" is
2 N2 14142

2
always positive. Therefore, the graph of y=2" with the real number set as domain is

presented in Figure B.2.

Figure B.2 the graph of y = 2" taken from the textbook

Example: Suppose a type of bacteria become doubles each day. The number of

bacteria after x days can be modeled by an exponential function y =2*.

X 1 2 3 4

y 2 22 23 24
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Exponential Function y=a"

If x is a real number a" satisfies all of the laws of exponents. For example,

a =a*-a’.

The graph of y=a” is sketched for ¢ >1 and 0 <a<1.

Vo e me

F} K;Eu -

Figure B.3 presents the graphs of y =a”

Logarithmic Function

The above graphs indicate that y =a* is an onto and one-to-one function with
domain R and range (0,). Therefore, y=a*(a #1, a > 0) has an inverse. The inverse
function is called a logarithmic function and its notation is y =log, x where a is the
base of logarithm. The figure B.4 shows that the graph of y =log, x is a reflection of the
graph of y=a"about the line y=x, therefore x=a” < log,x=y. For example,

32=2° & 5=1log,32 and 1000=10° < 3 =1log,,1000. Note that if a=10 then

log,, x is called the common logarithm.
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Figure B.4 shows the graph of y =a” and y =log, x
. . 1, .
Example 1: Convert the given equations, log,1=0 and log3(§) , into the
exponential forms.

log,1=01=7°

1 1
log,(=)=-2< ~=3"
g3(9) 9

Example 2: Evaluate the given expressions x =log,8 , x=log,,100, x=log,1 ,
and x=1log, 7.

x =log, 8 implies that 2 =8, x =3

x =log,, 100 implies that 10" =100,x =2

x =log, 1 implies that 5" =1,x=0

x=log,7 impliesthat 7* =7 ,x =1
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Properties of Logarithms

1. Let a, u,and v are three real numbers and a >0, a #1. Consider the law of

4

exponents, a“ xa’ =a""" and suppose that x =g" and y=a’, thus x-y =a""

by using the relationship between exponential forms and logarithmic forms, we

obtain log, xy =u+v. Now substitute x =a* , y =a"” and conclude:

Theorem 1: log, (xy)=log, x+log, y means that logarithm of the product of
numbers is the sum of the logarithms of the numbers.

Example: Given that log,,2~0.3010, log,,3~0.4771 and log,, 5~ 0.6990.
Compute log,15 and log,, 6.

log,, 6 =log,,(3x2) =log,, 3 +log,, 2 = 0.4771+0.3010 = 0.7781
log,, 15 = log,,(3x 5) = log,, 3 +log,, 5 = 0.4771+0.6990 =1.1761

. x
2. Let a, u,and v are three positive numbers and a 1. Let —=¢, then Theorem
Y

1,

Yetox= yt = log, x=log,y+log,t and log, ¢ =log, x —log, y. Therefore,
Y
Theorem 2: log, (—{) =log,x—log, y
y

Example: log,, (—i—) =log,, 2 ~log,, 3

3. Itis obvious thatif a,b >0, a#1 then,

Theorem 3: log, b* =xlog, b

3 1 2
Example: log,, ¥/100 = log,,(100)* = %1og10 (100) = 3 x2= 3
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John Napier, the inventor of logarithms, considers the irrational number
e=2.71828 as a base of logarithms. log, is called the natural logarithm. Logarithm in

base 10 is generally written without writing base 10 and is the called common logarithm.

Nowadays in developed countries, students use calculators to evaluate logarithms, like

this;
number log key answer
5 log 0.69897010
3.25 log 0.51188336

The invention of logarithms is one of the greatest discoveries in the history of
mathematics since logarithms reduced the labor of multiplication and division of huge

numbers by converting these operations into addition and subtraction of logarithms of
these numbers.
Example 1: Show that 7'%* =3,

let x=log,3 < 7* =3 , therefore by substituting 7> =3

Note that o'%* = b always holds.
Example 2: Solve the given equation log(x+3)+logx=1.

log(x+3)+logx=1=logx(x+3)=1og10
x(x+3)=10= x> +3x-10=0= (x +5)(x—2)=0=>x=2 and x=-5.

x = -5 is not acceptable. Why?

Note that 0 <a=b=loga =logh

3¥ =27

Example 3: Solve the given system .
P 8 Y {4"” =64
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, 3V =27 (3 =3 x-y=3 [x=3
First method: = = =
4% = 64 4% =43 x+y=3 y=0

x-y=log, 27 -y=3 =3
Second method: using logarithms: Y= 08 = ¥y = ¥
x+y=log, 64 x+y=3
Exercise: [Some of the exercises are as follows]

1. What are the domain and range of y =log,, x ?

27 =16
2. Solve the given system of equations using logarithms {
2*7 =4

3. Solve the given equations for x.

log.(x+1)+logs(x—1) =1
log x —log15 =10g0.02
log, x =log,121

log5+log5+log5 =log5’
4. Show that the given equalities @)log> +log5+log o8 hold.
b)log3* +log3? =0

5.1s log,, x defined for x <0 ? Is it defined for x=0?

loga logh

6. Consider matrix 4=
logh loga

}. Show that lA| =log abxlog%.

7. Does the equality a'®” =y hold? Why?
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Appendix C: Translation of sections on logarithms from the

Iranian Textbook Fundamentals of Mathematics (p.58-82)

Chapter 3: Logarithms

3.1 Genesis of Logarithms
A certain bacterial culture doubles every day. After a day two bacteria would
duplicate and there would be four bacteria. Consider the table below which shows the

number of bacteria in a week.

Time (day) o[1[2]3]4 [5]6 [7 [8 |9

Numberof Bacteria |1 |2 4| 8116 (32| 64| 128 | 256 | 512

Table C.1 shows bacteria growth rate

A careful consideration of Table C.1 shows that the numbers of bacteria in the
second row represent a square sequence (a geometric sequence with ratio 2) and the
numbers in the first row (Time) represent an arithmetic sequence.

At the beginning of the 17" century John Napier discovered that when we
multiply two terms of a give geometric sequence, the product is a geometric term. For
example, 4x16=64, where 4, 16, 64 are terms of the geometric sequence and
correspond to 2, 4, 6 respectively in the arithmetic sequence. Therefore the multiplication
of numbers in the geometric sequence corfesponds to the addition of numbers in the
arithmetic sequence.

Example 1: Consider the given table, find §x128.
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011121314 |5 1|6 |7 |8 |9 |10

1(2]14(8]16]32|64|128 256|512 1024

Table C.2 shows a geometric and an arithmetic sequences

To find 8x128, the numbers corresponding to 8 and 128 can be obtained from the
first row of the above table which are 3 and 7. We know that 8x128 =1024 where 1024
corresponds to 10. Note that 3+7 =10. Therefore, instead of multiplying numbers in the
geometric sequence, the corresponding terms in the arithmetic sequence can be added and
then the corresponding term for 10, which is 1024, can be obtained. Therefore, numbers
in the arithmetic sequence are logarithms of the corresponding numbers in the geometric

sequence.

x:Logarithms |O |1 (234 |5 |6 | 7 8 9 10

¥ : Numbers 112|14|8(1632|64 128|256 |512 | 1024

Table C.3. shows numbers and their logarithms

As you realize, the geometric terms can be written as powers of the number 2.

x:Logaritms | O [ 1 [ 2 |3 |4 |56 |7 |8 ]| 910

y:Numbers |20 [ 2" | 22|22 |2 |25 28|27 |28 |2° | 2°

Table C.3.1 shows numbers and logarithms of numbers in base 2

In fact, terms in the geometric sequence can be represented by number 2 to the
power corresponding to the arithmetic terms, i.e. y =2* < x=log, y, such that y isa

geometric term and x is the logarithm of y in base 2.
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Example 2:

Numbers 16 X 32 = 512
2x2x2x%x2 X 2x2x2x2x2 = 2x2x2x2%x2%x2x2%x2x%x2
Logarithms 4 + 5 = 9

Exercise 1: By using a calculator, find the powers of number 2 up to 2% and fill

out the Table C.3.1, and then answer the questions below.

Find out the multiplications below by using Table C.3.1. Do not multiply

numbers, find an addition operation which indicates the result of each multiplication.

C3.1.

a) 256 x 128
b) 2048 x 1024
¢) 131072 x 32
d) 4096 x 16

Note that logarithms can be employed in computing the powers of a number.
Example 3. Number: 32x32x32x32=(32)* =1048576
Logarithm: 5+5+5+5 =4x5=20

Exercise 2. Compute the expressions below by using the above method and Table

a) (256)°
b) (64)°
¢) (1024)°

Logarithm of y in base 2, log, y, is the number to which 2 should be raised to

obtain y . This implies that exponential forms can be converted to logarithmic forms.
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Example 4. If 2 =32, determine the value of x by using the definition of

logarithms.
2" =32 < x=log, 32 and by referring to Table C.3.1 x=35.

Table C.4 contains a geometric sequence and its corresponding arithmetic

sequence.

x:Logarithms [0 | 1| 2 | 3 4 5

y:Numbers |1|5|25]|125]|625]3125

Table C.4. shows a geometric and an arithmetic sequence of numbers

Numbers in the geometric sequence can be written as powers of number 5.

x:Logarithms [0 |1 (2 |3 |4 |5

y:Numbers | 5°|5'|52|5°|5*|5°

Table C.4.1 shows the logarithm of numbers in base 5

Therefore, the geometric terms can be represented by number 5 to the power of
the corresponding arithmetic terms, y =5 < x =log, y.

Example 5. According to Table C.4.1, 5° =125 is equal to log;125 =3

In general, log, y, is the number to which b is raised to obtain y, and
log, y=x<b"=y,y>0,b>0,b%1.

3.2 Common Logarithms
Since counting numbers are written in base 10, logarithmic tables in base 10 are

more applicable than other bases. Thus, this section focuses on logarithms in base 10.
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x : Logarithms | 0 1 2 3 4 5 6 7 8 9 10

y:Numbers | 10° { 10" | 10* | 10° | 10* | 10° | 10° | 107 | 10® | 10° | 10"

Table C.5. shows the logarithms in base 10 of numbers

The relationship between the above two sequences (see Table C.5) is y =10"
where y represents a number and x represents the logarithm of this number in base 10.
Logarithm of numbers (numbers are powers of number 10) in base 10 can be easily
computed. For example log1000000000 is equal to 9 because 1000000000 =10".
Furthermore, the number of zeros in the product of two numbers which are powers of
number 10, is equal to the sum of the numbers of zeros in both numbers; therefore, there
is no need to apply logarithms to find the product of numbers of powers of number 10.
How can we find logarithms of numbers which are not powers of 10? For example, how
can the logarithm of 2 in base 10 be evaluated? We need to estimate the natural numbers

from 1 to 10 by fractional powers of number 10 (see Table C.6).

x : Logarithms | 0 1

v : Numbers 1 |2 3 4 5 6 7 8 9 10

y:Numbers | 10° | 10" | 10" | 10" | 10" | 10" | 10" | 10" | 107 | 10

Table C.6. show the estimation of numbers from 1 to 10 by fractional powers of 10

By the definition of logarithms, logarithms of numbers which are integer powers

of number 10 are integer numbers. Since any number can be expressed in scientific

notation ax10”, 1<a <10, we design an algorithm to evaluate the logarithm of a ,

1<a<10.
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An algorithm to compute common logarithms of numbers

1. let a be a small number greater than 1 and list all natural powers of a:
a,a*,..,a**,a”,.... The sequence is a geometric sequence.

To find the product of two numbers such as x and y, estimate them by one of the

terms of the above geometric sequence.

Example 6.If x=a",y=a’ then x-y=d" -a* =a""* =a”
17
Example 7. Ifx = a', y = a*, then = ;%— =a"t=4’
y a
Example 8. If x=a", then x* =(a'")* =a**

2. To make this idea compatible with decimal powers, let a be a number which is

a fractional power of the number 10.

1
Example 9. Consider a=10%2 implies a’> =10 (why?). Find the powers of a

from 1 to 32 and fill out the table below.

n

Number: @" =10% Log: —
. umber: a” = g: 3
1 1.074 0.0312

2 1.154 0.0625

32 10 1

Table C.6.1 shows the algorithm of finding common logarithms of numbers

Exercise. Consider Table C.6.1 and verify the equation log(2x3) =1log2 +log3.
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Figure C.1 shows a sketch of a graph in which the x —axis represents _?;’:'_ and

n

y —axis represents a" =103 (x and y values are taken from Table C.6.1).

Figure C.1 presents a graph of values indicated in Table C.6.1

Examplel0. Estimate log2 by using the above graph.
Indicate 2 on y —axis , draw a line parallel to the x —axis to intercept the graph.

From the interception point draw a perpendicular line to intercept the x—axis, x

interception indicates log2=%=0.301. Log?2 can be also estimated form Table

C.6.1,, since 2 is between 1.911 and 2.053 and respectively 3% and ;—g are logarithms of

1.911 and 2.053 in base 10. Therefore, the estimation of log?2 is _1,_2

Log3, log4,..., log9 can be obtained by the same method. In other words,

natural numbers from 2 to 9 are expressed as fractional exponents of number 10, thus

Table C.6 can be completed as follows:
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X : Logarithms 0 0.301 | 0.477 | 0.602 0.698 0.778 0.845 0.903 0.954 1
Y : Numbers 1 2 3 4 5 6 7 8 9 10
y: Numbers 1 00 1 00.301 1 00.477 1 00.602 1 00.698 1 00.778 1 00.845 1 00.903 1 00.954 1 Ol

Table C.6.2 shows the logarithms of natural numbers from 1 to 10 in base 10

3.3 Logarithms and Scientific Notation

The common logarithms of numbers are more applicable than the logarithms in

any other bases because of a relationship between a scientific notation of numbers and

their common logarithms. Table C.7 shows the relationship between common logarithms

of a few numbers and their scientific notation.

Numbers Scientific notation of | Numbers represented as powers of number Common
numbers 10 logarithms of

numbers

20 2x10' 10 x10' 10" 1.301

200 2x107 10 x10? 10> 2.301

2000 2x10’° 10 x10° 10°* 3301

20000 2x10° 10°* x10* 10" 4.301

Table C.7. indicates the relationship between common logarithms and scientific notation

Note that you can find the logarithm of 20000 by using a calculator, type 20000,

and press Log. The calculator displays 4.301.

Exercise 1. Compute 1og 2000000000 and log(2x10"") using Table C.7.

Exercise 2. Fill out Table C.8.
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a) Find a number which its logarithm is 17.699.

b) Find a number which its logarithm is 28.699.

Numbers Scientific notation | Numbers represented as powers of number | Logarithms of
of numbers 10 numbers
50000 5x10°* 10 x10* 10457 4.699
500000 5x10° 10" x10° 10°%” 5.699
5000000
50000000

Table C.8. presents common logarithms and scientific notation of numbers

In this section, a table of logarithms in base 10 is constructed (see Table C.6.1).
Using Table C.6.1, the logarithm of numbers which are expressed in scientific notation
can be estimated since the whole part of logarithms is the power of 10 and the decimal
part can be obtained from Table C.6.1 .
3.4 Computation of Logarithms
[This section includes a picture of a Chinese wooden logarithmic table and a
logarithmic table for numbers from 1 to 1000 in base 10]
3.5 Proof of the Laws of Logarithms

The definition of common logarithms implies 10* = y < x =log,, ¥ . In previous

sections the product law of logarithms is practiced through exercises. This section

presents the proof of the product law of logarithms.

Theorem 1: for any two positive real numbers, a and b, log,, ab =log,, a+log,, b.
Proof: let log,, a = x, and log,, b = x, then

1) a=10"
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2) b=10".
By multiplying 1) and 2), we obtain ab =10" x10™ =10""" and by the definition of
logarithms, log,, ab = x, +x,. If we substitute log,, a=x, and log,, b =x, we obtain,
logab =loga+logh.

Theorem 2: loga” =nloga for a>0. (n is a positive integer; but this theorem

can be proved for any real exponent)

Proof: Theorem 2 is an extension of Theorem 1, because
loga” =logaaa...a =loga+loga+...+loga (n times), therefore loga” =nloga.
Exercise 1: Prove Theorem 2 using the mathematical induction theorem.

Exercise 2: Prove that for any two positive real numbers, a and b ,
a
log(z) =loga—-logh.

Example 10: Compute log5+1og20 using Theorem 1.

loga +logh =logab
log5 +10g20 =1log5%x20 =1og100 =2

Exercise 3: Prove that Theorem 1 and 2 are hold for all bases of logarithms.

Theorem 3: log_(ab) =log, a+log. b

Theorem 4: log, a” =nlog,.a

Theorem 5: logc(%) =log.a—log, b

2

Example 11: Apply the above theorems to simplify log(ﬂ).
z
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2
By Theorem 5: log(u) =log(x2y) ~log z, and by Theorem 3:
z

log(x’y) = logx* +log y and by Theorem 4 logx® = 2logx. Therefore,

2

log(XTy) =2logx+logy-logz.

Example 12: Simplify the given expression log(%\/b_ ).

1

11 1 1
log@/a+/b) =log(a’6?) = loga® +logh® =§loga+%logb

Example 13: Rewrite the expression below as a unique logarithm.

A=log.[p —log.[4p +log(—;—p2)+log4.

1

1 = 1
\/;xapzx4 p2x§p2><4 1, i
A = log(——F=) =log(——=5——) =log(—x p* x4) =log p
\/4p 2p5 4

Example 14: Solve the equation logx — %log( pq) = —%log(ﬁ) , P,q>0.
q

logx——l—log —llog ——llo +llo
5 p 5 q > gp 5 g4

1 1
log x =§logq +Elogq =loggq

SO x=gq.
Since common logarithms are more useful than other bases of logarithms, there is
a formula to convert logarithms of different bases to common logarithms.

log x
loga

Theorem 6: If x > 0 then log, x =
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Proof: we know that log, x=y implies that ¢’ = x, by the definition of
logarithms. If a =5 then loga =logh; as a result log(a’)=1logx; so yloga=1logx.

and log, x = log x .
loga loga

Therefore y = log x

Example 15: use a calculator to compute log,17.

Exercises: [Some of the exercises are as follows]

1. Simplify the given expressions by using the theorems.
log(a’h’)

log(mr)
log[(a +b)(a-b)]
2
a
log(——
etz
2. Rewrite the expressions below as a unique logarithm.
log pg —log2q
1 3 )
—log(ab) — =1 b
7 08(ab) ~ Zlog(a’d)

3. Solve the given equations for x.

a)log27 =3logx
b)logx+2log4 =2logl2

1
c)log(p - g) = log(p® —qz)"z—logx

3.6 Application of Logarithms: Magnitude of an Earthquake and Intensity of

a Sound Wave

In 1990, a great earthquake with a magnitude between 7.2 and 7.6 destroyed
Rodbar and caused the death of many people in Northwest Iran. Usually, when there is an

earthquake report on the news with a magnitude bigger than 5 on the Richter scale,
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people are afraid of possible casualties and damages. However, an earthquake with a
magnitude between 3.5 and 4 on the Richter scale does not terrify people. How does the
difference between 3.5 to 7.2 on the Richter scale influence the amount of damages and
losses of life? What is the nature of measurement of magnitude of an earthquake that
small numeric increases cause on the Richter scale indicate a great increase in damages?

It is interesting to know that an increase of magnitude 1 on the Richter scale
corresponds to a tenfold increase in damages. For example, an earthquake of magnitude 6
is 10 times more severe than an earthquake of magnitude 5 and 100 times more severe
than an earthquake of magnitude 4.

Exercise 1. Given that an earthquake 6f magnitude 4 has an average intensity of 1,

fill out the table and answer the following questions.

Average Intensity | 1

Magnitude 415(6(78]9

a) How can the average intensity of an earthquake and the Richter scale
measurement of the earthquake be related?

b) How can an earthquake magnitude of 9 be compared to an earthquake
magnitude of 7?

Certainly, you notice that the Richter scale is a logarithmic scale.

Exercise 2. Answer the questions below considering that the Richter scale is a

logarithmic scale.

a) Which number has a logarithm of zero?

99



b) An earthquake magnitude of 2 is imperceptible. Which number has a logarithm

of 27

¢) An earthquake magnitude of 7.25 will cause a great amount of damage in a

crowded area. What number has a logarithm of 7.25?

Richter scale: Earthquakes release a huge amount of energy. Released energy by
a great earthquake is 100 billion times more than released energy by a light earthquake.
During the past 150 years, different magnitude scales have been used to measure and
compare earthquake magnitudes. Richter (1935), an American geologist, developed a
logarithmic scale to measure the intensity of earthquakes. This scale is called Richter
magnitude scale and is the most popular scale. Since an earthquake magnitude of less

than 4.4 is imperceptible, released energy, by an earthquake magnitude less than 4.4

(E, =10** joules) is considered as a standard base to measure an earthquake magnitude.

The formula M = zlog£ evaluates an earthquake magnitude in which E is released
0

energy in joules from an earthquake magnitude of M and E, =10**.

Classes Magnitude
Light M<4.5
Moderate 4.5<M<5.5
Strong 5.5<M<6.5
Major 6.5<M<7.5
Great M>7.5

Table C.9. shows the magnitude classes of an earthquake
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Example 16. In 1906, the San Francisco earthquake released an energy of around

5.96x10' joules and destroyed the streets of the city. Find the magnitude of this

earthquake.
. 2 E
By applying the formula, M =—log—,
3 CE,
M= glo 5.96x10'

2
M =Zlog5.96x10") M =—§—(O.775+11.6)

>

M= %(mgs.% +loglohey M =825

Example 17. The Rodbar earthquake had a magnitude of 7.2 to 7.6. Find the

amount of released energy in joules.

By applying the formula, M = %logE£ , M =72,E,=10*, then

0

2 E
72="lo
3 glo“

logE =152
E =10"% =10" x10°* =1.584x10"

Exercise 3. Repeat Example 17 by considering the earthquake of magnitude 7.6

on the Richter scale.
The intensity of a sound wave (Loudness of a sound wave): A human ear can

hear a wide intensity of sounds. The weakest sound intensity that a human ear can hear

has a value of 1x10™? watts/m> and is called the threshold of human hearing,

I, =1x107". To compare relative sound intensities, a decibel scale which is a
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logarithmic scale is employed. The formula D = lOloin, where [ watts/ m? s the
0

intensity of a sound and 7, =1x10™? warts/m? , indicates the level of a sound in

decibels.
Intensity of a sound | Source of a sound
1x107" Threshold of hearing
52x107™" Whispering
3.2x107° Conversation
8.5x10™ Heavy Traffic
3.2x107° Jack-Hammering
1x10° Threshold of pain
8.3x10? Jet engine taking off

Table C.10 shows the intensities of sounds

Example 18. Find the level of a sound in decibels of whispering with a
5.2x107" intensity.

-10
D= 1010in , D= IOIOg% =27.16

0

Logarithmic Scale

Since the logarithm of a number in bases different than 1 has a slower growth rate
than the number itself, logarithmic scales are more convenient scales for comparing a

wide range of numbers.
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Appendix D: Translation of parts of a Textbook written by
Pezeshk in 1942 (p.5-11)

1. Overview
1. Definition: consider two infinite sequences, a geometric sequence G, with

initial term 1 and ¢ as a common ratio, and an arithmetic sequence A, with 0

as the first term and » as a common difference. Write them below each other

so that each term of G corresponds to a term in A, and these form a system D,

n

G :.“q—n ,..-,q_z,q—l 513q5q2a'*"q seee
D)

Fi..-r,...,-2r,—r,0,r2r,.. nr,..

Therefore,
a) Each term of the arithmetic sequence is the logarithm of the corresponding

term in the geometric sequence.

1
b) Each term of the geometric sequence can be obtained by raising ¢’ to the

corresponding term in the arithmetic sequence.

2. log A is the notation to indicate the logarithm of number 4.

3. Since terms of a geometric sequence are always positive it is concluded that
only positive numbers have logarithms.

4. Theorem: consider two consecutivé terms of a geometric sequence. You can
insert geometric terms between these two terms so that the difference between any two

consecutive terms approaches zero.

m+1

Proof: consider two consecutive terms ¢”,¢"" from a geometric sequence,
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Lg, ¢% .., 9", q"" ..., 4" ,..... Insert (p—1) geometric terms between ¢

+1
m+l _

m 1
and ¢"" . The common ratio of the constructed sequence is » 9 ~ JE =¢g” and
q

1
consider g? =q'. The k t term of the sequence is ¢"g'* and the (k+1)™ term of the

m _rk+1

sequence is ¢"q" " , and the difference between them is

1 1
m _rk+l m 1k

q"q"" — q”’q"‘ =q"q"(q'-1) = q’"q"‘ (q; —1). Their difference varies by (q; —1) and

1 1
when p becomes larger, g” becomes smaller. When p approaches infinity ¢”

1
approaches 1 and (g” —1) approaches 0. (i.e. the difference between the terms ¢”¢"* and

q"q"*" becomes very small.

5. Conclusion 1: since we insert m geometric terms between any two
consecutive terms of a geometric sequence, and respectively m arithmetic terms between
the two corresponding consecutive terms of an arithmetic sequence, therefore, each term
in the arithmetic sequence is the logarithm of the corresponding term in the geometric
sequence.

6. Conclusion 2: any positive number a can be inserted between two consecutive
terms of a geometric sequence. Consider a and its consecutive term and insert geometric
terms such that the difference between a and its following term becomes very small.
Therefore, a is a geometric term and there exists the corresponding arithmetic term
which is the logarithm of a. Thus, any positive number has a logarithm.

7. Theorem: when a number can be found by inserting (m —1) terms between two

consecutive terms in a geometric sequence, and this number can also be found by
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inserting (m'-1) terms between two terms of a geometric sequence, in each case the
number has the same logarithm.

Proof: consider two sequences 1,4,¢°,....g™ and 0,7,27,...,mr . First, insert
(m—1) terms between two consecutive terms of both sequences. Second, insert (m'—1)
terms between two consecutive terms of both sequences. Suppose A be (k+1) term in

the first sequence as well as A be (k' +1) term in the second sequence. Therefore, from

the first sequence A= (r/; ), log 4= T & and from the second sequence
m
A=([g)" logA="1F,. Then
m

®l9) =g)*
qm'k - qu'
km' = mk’ implies that log A4 is unique.

k_¥
m

Any number has only one logarithm in each logarithmic base.

8. Definition: in each logarithmic system, a number where logarithm is 1 is called
the base of the system.

Since logarithmic systems depend on the values of ¢ (common ratio) and
r (common difference), there exists an infinite number of logarithmic systems. The most
useful logarithmic system was invented by Henri Briggs and uses common logarithms or
logarithms in base 10. John Napier, the inventor of logarithms, introduces the

logarithmic system base e = 2.718..., called the Napierean logarithm.
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9. The logarithm of N in base % is denoted by log, N . Common logarithm of

N is written as log N and Napierean logarithm of N is written as In.

2. Properties of Logarithms

10. Theorem: the logarithm of the product of numbers is equal to the sum of the
logarithms of each number.

a) Consider two numbers A and B, a geometric sequence, and an arithmetic
sequence. Insert geometric terms between two consecutive terms of the geometric
sequence to obtain A and B, and, respectively, the corresponding terms in the arithmetic
sequence are inserted.

1
.

La,a,...a"

1 1
seery PRt
et
<

= 1PB=2B,~ B0, B2B,...nfB

|

Therefore, suppose that A =a”,B=a? A-B=a”-a? =a”" and log 4 = pf3,
logB=qp, log(AB)=(p+q)p so log(4.B)=log A+log B
b) When there are more than 2 numbers such as A, B, C, D,...

log ABC.D....=log A(B.C.D...)=1og A+log(B.C.D...)
log BC.D...=log B.(C.D...)=log B+1log(C.D....)
logC.D...=logC +log D...

therefore by substituting log A.B.C.D...=log A+logB+logC+logD+....

11. Theorem: the logarithm of the quotient of numbers is obtained by subtracting

the logarithm of the denominator from the logarithm of the numerator.
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Suppose:

4_¢
B

A=BC
log A=1log B+logC
logC =log A—log B

12. The logarithm of the m™ power of a number is equal to m times the
logarithm of the number.

A" =AA4A4.A m times

log A" =log A+log A+log A+...log A=mlog A

13. Conclusion: the logarithm of ¥ iﬁ base b is the number to which 5 is raised

to obtain N .

By taking the logarithm of both sides of N =5", we obtain log, N =alog, b.
Since b is base and log, =1, thus log, N =a

14. Logarithm of the m™ root of a number is equal to the logarithm of the

number divided by m .

1

loga =—1—logA
m

3. Common Logarithms (logarithms in base 10)

15. A system of common logarithms can be written as follows:

...,——1—,...,—~1-2~,—1—,1,10,102,...,10",...
10" 77710710
<
o Mees=2,= 1,012, ...
L
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As you see, the common logarithm of a number in base 10 to an integer power is
equal to the integer power. For example

1ogi3 =logl0~> =-3

10

log10° =0

Therefore, the logarithm of a number that is not an integer power of 10 can be
found be estimating the number between two consecutive powers of 10 and obtaining the
corresponding estimation in an arithmetic sequence. This logarithm includes an integer
part and a decimal part. The integer part is called the characteristic and the decimal part is
called the mantissa.

16. Theorem: the characteristic of the logarithm of a number greater than 1 is

equal to the digits of the number minus 1.

Consider 4 with n+1 digits. 4 can be estimated between 10" and 10™".
10" < 4 <10™'. By taking the common logarithm of the inequality, n <log 4 <n+1.
This implies that the characteristic of log 4 is »n.

17. The logarithm of a number smaller than 1 has a negative characteristic.
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Appendix E: Translation of several Finance Problems taken

from Mizanoalhesab Written by Mir Krinish in 1895 (p.8-18)

Problem 59. A barrel is filled with syrup. The total volume of a barrel, a, equals
to the volume of 100 pitchers and a pitcher of this syrup is worth ¢ =36 tomans.
Consider b as the volume of the pitcher. A person wants to reduce the concentration of
syrup such that the value of each pitcher decreases to 1 toman. He dilutes the syrup with
water as follows: he takes out one pitcher of syrup from the barrel and pours one pitcher
of water in the barrel. He mixes syrup and water and repeats this process until the value
of each pitcher of syrup becomes d =1 toman. Find out how many times this person
needs to repeat this process to decrease the value of each pitcher to d =1 toman.

Answer. It is clear that the ratio of the volume of pure syrup in the barrel to the
volume of pure syrup in the pitcher is equal to the ratio of the volume fraction of the
syrup in the barrel to the volume fraction of the syrup in the pitcher.

By taking out the first pitcher of syrup and pouring in a pitcher of water, the

volume of syrupis a—b5 , so a_4- b and x = é(a —b) where x indicates the
x a

volume of the syrup in a pitcher. So by taking out the second pitcher from the barrel, the

» 32
volume of syrup in the barrel is (a —b) — é(a -b)= (a=b)” and the equality of ratios is
a a
(a-b)’
2
% =—4d where x = b(a_sz. Repeating this process and taking out » pitchers,
x a

(a-b)"
an—l

the volume of the syrup in the barrel becomes which is worth ¢ =36 tomans
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per pitcher. So the value of syrup in the barrel is @—# xc¢ . On the other hand, the
a

value of each pitcher of diluted syrup is decreased to d =1, so ad indicates the value of

(a-b)

-1

diluted syrup in the barrel. By solving xc=ad , n indicates the number of

times that the person needs to take out pitchers of syrup to decrease the value of each
pitcher to d =1 toman, so

nlog(a—b)+logc—(n-1)loga =loga+logd

e logc—logd  log36-logl _ 356
loga—log(a—b) logl00—1log99

The formulas below are employed in computing the compound interest of an
investment:

1)logs =loga+ nlog p is equivalent to s =ap” [the rest of formulas are
obtained from formula 1].

2) loga =logs —nlog p

3) log p = logs —loga
4 n= logs —loga
log p

Application problems in using the above formulas
Problem 60. A population of a city is 2,000,000. Suppose each year the

population of city will increase by 2%. Find the population of the city after 100 years.
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a =2000000, p =1.02,n =100

loga =logs—nlogp

logs =6.3010300 +.8600200 = 7.1610500
s =14490000

After 100 years the city’s population is around 14490000.

Problem 61. A person has to pay back his debt in a total of 6,000 tomans. Find out
how much he borrowed 4 years ago at 4% compounded interest rate. In other word, how
much investment at 4% compound interest rate after 4 years will be 6,000 tomans.

5 = 6000, p =1.04,n =4
loga =3.7781513 - 0.0681332 = 3.7900181
a=5128.827

Problem 62. A person lends 600 tomans to another person and he asks for 800

tomans after 3 years. Find out the interest rate.

a=600,s =800,n=3
_2.9040900-2.7781513
B 3

p=1+—"1.1006 =1+ -, ¢ =10.06
100 100

=.0416462

log p

Problem 63. How long will it take an amount of money to double if it is invested

at 4% compounded annually?

s=2a,p=1.04
n_log2a—loga _ log2  .3010300 -1
log p log1.04 .0170333
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Problem 64. A person borrows a = 6,000 tomans for » =10 years at 5%
compounded annually. In addition, he borrows & = 500 tomans at the end of each year.

Find out how much debt he will have at the end of 10 years.

Answer. The amount of a tomans is worth ap” after n years where p=1+ —1%

The amount of 4 that he receives at the end of the first year is worthhp”™ , the amount of
b that he receives at the end of the second year is worth 5p"~...., and so on. These

values bp" ™ ,bp"2,...,bp* ,bp are geometric sequences. We know that the sum of

n-1 _ n-1 __
sequences can be computed from s = aq—@l__@' Therefore, éE_(_IZ_l_l) and
q- p-
n-1 _
p=ap" + br(p™ -1 is the total amount of his debt.
ap” =9773.37

p'=1.551328
p"-1=0.551328

n—1 _
bp(p™ -1) = 5788.94
p-1
9 =15562.31

By considering a =5 in the above equation,

ap(p" -1
1) = p(p” ~1)
p-1

2)logp =loga+log p +log(p" —1)—log(p 1)

3yn= loglap +p(p-D]-loga ,
log p
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Application problems on using the above formulas

Problem 65. A businessman invests 4000 tomans each year at 4% compounded
annually for 6 years. Find out how much money he will have at the end of 6 years.

a=4000,n=6,p=1.04
p-1=.04,p" =1.265318
log a = 3.6020600

log p=0.0170333
log(p" —1) =-0.5762333
log(p-1)=-1.3979400
log @ = 4.4408000

@ =27593.07toman

Problem 66. A businessman expects to receive 10,000 tomans after 20 years from
a person. However, the businessman asks for yearly payments. Consider 4%

annually compounded interest rate and compute the amount of yearly

@ =10000,n =20, p =1.04

payments. loga=2.5090712,a =322.902

Problem 67. An amount of a tomans at ﬁannually compounded rate is

invested for n years. At the end of each year the amount of 4 is withdrawn. Find

out how much money R will remain in the account after » years.
Answer. ap” is the amount of money at the end of #» years if no money is taken

out from the account. If an amount of money b is not withdrawn in the (n—1) th

year it has a value of bp"~. If the amount of money b is not withdrawn in the

113



(n—2)™ year it has a value of bp" 2, ..., and if the amount of money b is not

withdrawn in the last year it has a value of 5. The values form a geometric

sequence bp"™, bp" ™, ..., bp*, bp, b and the sum of the geometric sequence is
b(p — l) . Therefore,
p-1

)R =ap” _bp" -1
p-1

2) =22 D R
p'(p-1) p”

-1
Ly

3)b=(ap” - RX
p" -1

4yn = 108lb = (p=DR]~log[b~ (p=D)a]
log p

Problem 68. A person invests 30000 tomans at 4% compounded annually, and he
receives 800 tomans at the end of each year. Find out what will be the remaining
amount after 15 years?

a=30000,6=800,n=15,c=4,p=1.04
R =38009.41

Problem 69. A person wants to support his son for 6 years by paying 500 tomans
each year. If the interest rate is 3.5% how much does he need to invest in order to
cover his son expenses?

b=500, n=6, c=3.5, p=1.035; since there is no money left at the end of 6
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P R e

years, R =0. By applying a =—: -,
pp-) p

Problem 70. A person wants to sell his property. There are three customers: one
wants to pay in cash 34500 tomans, second one wants to buy for 38000 tomans by
paying 6000 tomans in cash and the remaining amount in 4 yearly payments of
8000 tomans. The third customer wants to buy for 40000 by paying 4000 tomans
in cash and the remaining amount in 6 yearly payments of 6000 tomans. The
seller wants to know, with the 5% interest rate, which one of the customers will
pay the highest amount?

Answer. The second customer wants to pay 32000 tomans in 4 years. By

bp'=l) R 4-28367.6
pi(p-1) p

applyinga =
Since b =8000,n =4, p =1.05,R = 0, therefore, the second customer pays
6000+28367.6=34367.6.

Third customer wants to pay 36000 in 6 years. Therefore a =30454.2and he
pays 4000 + 30454.2 = 34454.2 . The results show that the first customer pays the

highest amount.

Problem 71. A person should pay back 1000 tomans in 5 years. What are the
yearly payments if interest rate is 5% compounded annually?

a=1000,n=5,c=5,p=1.05,R=0
b=230.97
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Problem 72. A person borrowed 100,000 tomans from a bank at 5% annually
compounded. In order to cover his expenses, he spends each year 6000 tomans.
How long he will be able to cover the expenses?

a =100000,b = 6000, p=1.05,R=0,c=5

p = 1086000-10g1000 _ 6000, 1 o536
log1.05 1000

He will have money for 36 years, in 37th years he will have R =4163.7

remaining money.

Problem 73. A person borrows 20,000 tomans and puts up his property income of
1500 tomans as collateral. How long will it take to pay back his debt at 5%
annually compounded rate?

a=20000,6=1500,p=1.05,R=0
e log1500—-10g500  log3
log1.05 log1.05

It will take 22 years to pay back the debt.
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Appendix F: Transcripts of Interviews and Students’ Written

Questionnaires

“I”- Interviewer and “S”- Student

Case 1: The subject was an independent (female, mature) student from course A (pre-
calculus course). Interview was conducted in October 2006.

1. I: do you want to go John Molson School?

2. S:Thaven’t decided yet. I heard some good things about McGill, regard to future

job. I am doing research.

S: this no [she reads “have you ever seen log notation?” from the questionnaire].

. I don’t remember. It is possible we did in math 536, advance math in high school.
I took 536 almost 14 years ago.

. S: I do not know is that same thing.

. I: you probably had it in math 536. I know that the new version of 536 has it.

S: Everything we are doing now, I remember I did it in high school. And I

remember we did cosine, but because of high school I did not pay attention.

8. S:1know this [3®> = 9] but this [log, 9] I have never seen.

9. I: try to do what you can, if you feel to do.

10. S: okay.

11. I: if you look at the review example you will get an idea.

12. It it is called log 9 base 3 which is equal to 2.

13. S: like, how many times 3 to get 9.

14.1: ok.

15. S: Here, that means how many times multiply 2 to get 8, 3.

16. I: if you are feeling to do, try them and use review example. It is not about
measuring your knowledge, it is how do you learn and understand logarithms.

17. S: here, log 4, 16 that would be 2 because 4 times 4 is 16.

18. I: yes, it is called log 16 base 4.

19. S: oh, yeah okay.

20. I: can you please write down your answers.

21. S: okay.

22. S: [she followed the column order in filling the table], this one do I get to use the
calculator?

23. I: no. Can you please complete the table row by row?

24. S: oh, sorry. [She fills out 4> = ? and then tries to multiply 4s to obtain 256].

25. S: [mumbling] 4 times 4 is 16, 16 times 4 , 64 times4 is 256.

26. S: this would be 1[4” =41, so 1[log, 4 =?].
27. S: this [[log, 1 =?] silence um---and jumps to another one, [however to compute
4'=1 she thought of a decimal number 0.25]

W

<o

28. S: this[log, % = ?] I am not sure, fractions, fractions I am really bad.
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29

30
31
32
33
34

35.
36.

37.
38.
39.
40.
41.
42.
43.

44.
45.

46.
47.

48.
49.
50.
51.
52.
53.
54.
55.
56.

57.

58.
59.
60.

6l.

62

. S: T guess this [log, (~16) = 7] would be -2, that is the best I can do.

. I: continue if you want.

. S: function of x is equal to 4 to power x, okay then estimate that...

. S: silence um---

. I: have you ever used a graph?

. S: well, we have started to do a bit of graph in math class, but I mean I use in
micro macro, I mean it is a bit more complicated, this is just like assumption and
this and that to get formula.

I: do you know how to find a point on the graph?

S: um---, silence um--- 4 power half, the thing I am really bad with fractions, um--
- square roots.

I: do you remember the estimate of square root of 2.

S: no, I do not remember.

I: try to guess what it can be.

S: okay. Silence

I: what is your best guess?

S: I consider square root of 2 as 1, 4 to power 1 which is 4.

I: can you try on the graph to show me how you can read that from the given
graph.

S:xis 4 um---no, 1 isx, 1 on x-axis and silence...

I: draw the vertical line from 1 to the graph, what is the y value of this cross
point?

S: silence

I: the vertical line passing through 1 cross the graph on a point, now draw the
horizontal line from this cross point to intersect the y-axis, so y is 4.

I: square root of 2 is almost 1.41. Please use the graph to find 477
S: okay, that would be the 5.64.

I: how did you find it?

S: I multiply 4 by 1.41.

I: 1.41 is the power?

I: since the graph of f(x)=4" is given. Try to use the graph and estimate 477,

S: okay, 1.41 on x-axis um---. will give me 6 on y-axis.

S: now, log, 4" silence ...

I: please tell me what you are thinking.

S: I know this [4ﬁ ] is 6 or around 6. I am thinking how many times this [4] goes
to give 6, so I am thinking of one point something, so let say um---. I guess it
would be 1.41.

S: log 7 base 4 plus log 5 base 4. I never done this, I do not know.

I: Try what you can, and what do you think.

S: so how many times 4 to get 7 plus how many times 4 to get 5, maybe one point
something it will give you 2 something, maybe up to 3.

S: so let see if I do 12, I can not add those two. Because I was thinking maybe
can add log 7 base 4 to log 5, make it log 12, but by doing that it does not give me
2 something.

. I: by doing what?
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63

64.

65.
66.

67.
68.
69.

70.
71.
72.

73.

74.

75.
76.
77.

78.
79.
80.
81.
82.
83.
84.
85.

86
87
88
89
90
91

92
93
94
95

. S: by adding log 7 to log 5 and have log 12 base 4, but 4 times 4 would be 16 it
would be over which I do not think I can do that.

S: but let say 12, um--- I am just I do not know it work out either so 2 times 2, 4
times 2 is 8. No from what I see I do not think you can add and solve it. it is kind
of like bracket.

S:so 3 times 3 is 9, 9 times 3 is 27, so [log, 27] is 3.

S: 3 times um--- 27 um--- that is like point something. Let say 0.5. 3 times 0.5

would be 1.5. If we would be um--- I do not know is it possible actually add two

log bases together and two numbers together and get the answer.

I: no.

S: it is impossible. So you need to do it one at the time. Okay.

S: [she reads Activity 4] let say this x is 3 would be 9 to 10, 10 times 10 one

hundred, let say x is 10, to power of 3 is 1000.

S: that would be 10, no it is not hold.

I: can you please explain why?

S: x is 10, this would be 3 and log 10 base 10 is 1. 1 times 3 is 3 um ---now, log

10 base 10 is 1 and 1 power to three is one, and it does not hold.

S: find the value of x such that log (x-1) to the power x plus log x to the power, no

base x equal to one, so this whole thing here has to be equal to one.

S: okay, let’s take 2, log (2-1) base 2 plus log 2 base 2 equal 1? So this would

give me 2.

I: how did you find 27

S: um--- log 1 base 2 plus one, log 1 base 2 .silence um---

I: do you know a power that we can raise any number to this power and obtain

one.

S: no, I do not remember.

I: you considered x equal 2. How did you find it?

S: it is a guess, x can be any number, I picked the lowest one.

S: consider the inequality what do you think about this inequality. Silence...

I: do you know this notation?

S: absolute value.

I: okay

S: that can not be one, because it gives 0 , so I will try with two so it can be

absolute value of ( 4-1) and um---

.S: no,4 so16-1 log 15 base 4 um--- Silence...

. I what you are trying?

. S: Tam trying to pick a number.

. S: this is positive, negative

. I: what is negative, positive?

. S: x to be negative or positive, and when x is negative this come to positive and
base is negative. Assuming that x would be negative number.

. I: have you been worked with log key on a calculator?

. S: with log never.

. I: probably you saw this key on calculator?

. S:yes, I saw it.
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Case 2: Student 2 (female, non-mature) was taking course A at the time of the

interview, January 2007.

96. S: I do not like logs.
97. S: If this [log, 8] is going to be the same as this I can put here 2, um--- . ok, 2 is

base to power 3 is 8. Answer of this [log, 8] is 3.

98. S: complete row by row, I am doing the same as here. 4 to what power gives us

16, it is 2, because 4 times 4 is 16. Answer is 2.

99. S: here, I think it is 4.

100.
101.
102.
103.

104.

105.
106.

107.
108.
109.
110.
111.
112.
113.
114.
115.

116.

117.
118.

119.

120
121
122

123
124
125

126
127

128
129

S: here, 4 equal to 4 it is one.
S: for this zero.
S: here is one over two, I think so.

I: One over two? Why?
1

. = 1
S: because 4> =16, [she writes42 = ﬁ]'
1
I: what is 4°, what other notation we can show it?
S: point 5.
1
I: what other notation to show 4°.

S: I do not know.

I: it means square root of 4.

S: oh right, it is gonna be 2.

S: well, 4 times um---- because [ am looking at um---, if um---.
I: what is 47! ?

S: -4,

I: no, do you know about negative powers.

S: no, I do not know.

I 47"= % comes by the definition of negative powers.

S: 50 4 to -2 is one over 16.
S: here, is the same. Oh, no. I think it is going to be 16, but -16. It is not the same.
No, it can not be -16.

S: no it can not be log negative.

. S: the graph of f(x) is given. We do not know x.
. I: do you know how to read the graph.

. S:um---, yes.

. S: Ithink x is +/2 here.

. I: true, it is between 1 and 2, consider it as 1.41.

. S: ok. Estimate log um--- this is the same.

. I: you find square root of two on the graph but the question wants us to find 4% .
. S:Ineedy, so I just go like that, it is 7.

. S: so for log, 4 , I do like this [4 = 4‘5] and it has to be /2, [4‘5 = 45].

. I: ok.
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130.
131.
132.

133.

134.

135.
136.

137.
138.
139.
140.
141.
142.
143.
144.

145.
146.

147.
148.
149.
150.

151.
152.

153.
154.

155.
156.
157.

158.
159.

160.
161.

162
163

S: evaluate the equations. I need to see this page.
S: log, 7, what power of 4 gives us 7. Silence...
I: what do you think?

S: oh, the one that I had before, 4*> =7 and for log, 5, I need a power of 4 to get

V2
5, 4" 1 do not know exactly but 4 + ghr
I: why you add them up?

S: oh, sorry, «/_2-+\/ﬁ

S: I will put this here 3 to power what is 27, 3; now other one, 27 to what power is
3.

S: square root, oh no.

S: 27 is 9 times 3. 3 times 3 times 3, root 3.

I: can you show it as a power.

S: one over three.

S: so three times one over three is 1.

S: does the equality hold? No.

I: why do you think it does not hold?

S: because it is gonna be different, the answer is different because 3 here only
acting on x, but over log is to power 3.

I: ok. Can you have an example? »

S: for example x=2, so 2 powers 3 is 8, but 10 to what power give 8. um--- I do
not know. Silence...

I: maybe you can find an easier example.

S: like 1, I do not know.

I: Can you choose a number which is a power of 10.

S: ok, thousand, or 10.

S: it has to be log 10 times 3, log,, 1000, and 10" =1000 power is 3.

S: (log,, 10)*, so log 10, 10 is 10 equal to 10 is 1.

S: the answers are different.

S: find the values of x such as log..., um---.

S: values of x, here log, x as the same x' = x it is one.

S: here log  (x —1) is zero, because I got one and equal one.

If I can get log, (x —1) zero it is right. I think it is minus something. It can not be

negative.

S: um--—, x* =(x—-1) and x-1=0 so x is one.

S: consider this inequality what do you think? No it is wrong, because the log
should be always positive. I mean bigger than two.

[: why? '

S: I know that first log should be positive and second there is here x square minus
one should be positive and there two. It can not be negative.

. S: I do not need a negative here, can I change it?

. I: yes. You can write it down.
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164

165
166
167

(c
168

169.
170.
171.

172.

173.
174.

175.

176.

177.
178.
179.
180.
181.
182.
183.
184.
185.
186.
187.
188.
189.

190
191
192

. S: log,

x2 - 1, > 0 this is the correct one. It can not be two and above two but I do

not know about one. Here if I put one, it is gonna be log zero base 1. um--- I think
it has to be equal to zero.

. I: ok.

. S: is that right?

. I: important to me is how you think and solve them. It does not a matter right or
wrong.

Case 3: This student (female, non-mature) was a student registered in course B
alculus course). Interview was conducted in October 2006.

. S: My calculus teacher told us you need logarithms in university, but we never did
it.

I: it is fine, there is a review example.

I: what about exponentiation?

S: I have done that. But, logarithms were last chapter of the book and we did not
have time to go through it.

S: I know that [3® = 9) Jand I understand this [log, 9 = 2], this [log, 8 = ?] is
asking me what is the power of 2 equal to 8, just like 3 to power 2 is equal to 9.
So what is the power of 2 equal to 8, 2 power 2 is 4, um--- 3 power to 2 is 9, so
can it be like a fraction?

I: no, this is not a fraction.

S: okay. Something to the power of 2 has to be equal 8. 2 to power 2 is 4, um--- 2
to power 3 is 8. So therefore log 2, 8 is 3.

I: continue if you want and it is not about testing your knowledge, I am interested
in how you can solve them.

S: okay. What power of 2 um--- [she did not notice that the base of logarithms in
Activity 1 is 4].

I: follow row by row, please.

S: um--- 4 times 4 is 16. Can I write?

I: yes of course.

S: mumbling 4 by 4, 16 by 4 and 64 by 4, power 4.

S: power of one.

S: 4 to what power is equal to one? Now, we will go in fraction.

I: no, this is not fraction.

S: um---to power of zero.

I: good.

S: okay. Four to the power of what?

S: silence, um--- four to the power of what negative two.

S: silence, how the negative will get involve? Silence...

S: no, actually no, like a negative power, that is not how it works really?
Silence...

. I: what do you think?

. S: I should know this negative one.

. I: do you know a power to raise 4 and obtain a negative number?
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193. S: no that is impossible. Okay. Do not exist.
194. S: I do not know is that the same? Is that [ log, (—16) = ?] does not exist too?

195. I: good question. What is the relation between exponentials and logarithms?
196. S: that would be the same. log,(—16) = ? is impossible.

197. S: okay, here, wait this fraction one.

198. S: what power of 4, I am assuming to be a fraction, 4 to the power of a fraction.
That is possible. Is not it?

199. I: what else it can be?

200. S: decimal, fraction , um---

201. S:1did powerto 2,4, 1, zero and um---

202. S: negative power! That is not!

203. S: Because, 4 to the power of negative 2, I am assuming that would be negative
two.

204. I: have you ever worked with negative powers?

205. S: not really, I am not good it math.

206. S: that is what I think, negative two. I just do not know how that works.

207. 1. what do you think would be 4 to power -1?

208. S: -4

209. I: you multiply 4 by negative one, but negative one is power of 4.

210. I: do you remember the definition of negative exponents?

211. S: um--- not really. ’

212. I: You had a good guess.

213. S: okay. The graph of ...[she reads Activity 2].

214. 1. have you ever worked with a graph?

215. S:yes. Not a lot.

216. S: estimate 4" , um---the square root of 2 is um---silence

217. S:1just have to know what is the square root of 2 is. It is just one, no it is 2 times.
Silence ...

218. S:Ican get all if I had a calculator. That is why now I do not know what the
square root of two is. You forget basic knowledge, because you plug into a
calculator.

219. I: I see. Can you estimate it?

220. S: the square root of 4 is 27 right, because 2 times 2 is equal 4, so what times what
equals 2? I am thinking like a half.

221. S: [She multiplies %x% to verify her guess].

222. S: oh, no silence ...

223. I: you told that square root of 4 is 2, and what is the square root of 1?

224. S:itis one.

225. I: can you estimate square root of two?

226. S: not really.

227. 1: 2 is between one and 4, so what that gives you?

228. S: um---okay.

229. S:um--- I am trying to find what times to what gives me 2, since 2 times 2 is 4,
what times to what gives me 2.
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S: [she tries % , %x —;—] probably I am off of my number, because 9 over 4 is

definitely not two. So um--- silence...

S:s0 1.2 times 1.2 is um--- probably not.

S: I am not sure, I stop here and I can not handle this question.

I: okay, I will give you square root of two, so you can continue the question.
Square root of two is almost 1.41.

S: so then estimate that, okay, square root of 2 is power of 4, f(x) =4" and x is
1.41. Silence...
S: [She uses the graph and finds 4'*' as 6.5].

S: so now estimate um---, how would I estimate log,

[: do you think you can use the graph?

S: no, because I will put the 4 um--- wait maybe.

S: no, let me check that answer goes 4, silence...

S: [she checks several times the review example and table in Activity 1, then she

finds log, 4¥? =1.41].

I: do you think you can use the graph?

S: no, I do not think so. Maybe, there is a relation. Yes, you should be able too.
S: the only thing is that y equals, but 1.41. I do not think it make sense.

S: I don’t know what is that one [log, 7+log, 5=7].

S: 3 times 3 is 9, 9 times 3 is 27, um---because 9 times 2 is 18, this is 3.

S: silence... so what is the power of 27 equals to three? How is that possible? I do
not know how the log works? How 27 it will be like a fraction? How you get a 3,
27 times one.

I: why one?

S: I mean um---I do not know how 27 get 3 which power. A negative?

I: square root of 16 is what?

S:is 4.

I: how you can show square root of 16, in power notation?

S:-2

I: how would be possible? How 4 to power -2 can be 16?

S: oh, Yeah one half, I know that.

I: true. Now, try to figure out how 27 can be 3?

S: if I divide by 9.

S: I want to know it? Square root of 9 is 2, I feel it should be 9 somewhere. Just
because of multiplying um---

I: could you please tell me what do you think about the previous problem

log, 7+1log, 5="7.

S: could you do, I do not have any idea about log, but I assume when there is a
common base so you add the numbers.

S: [she reads Activity 4] equality of that is hold? No I really do not know.

47
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S: no, because here [log,, x° ] you will figure out the inside first x and then

exponent (x*) and then log,, x°, but there find log,, x and exponent it

(log,, x)*.

S: find the value of x such that ...[she reads the Activity 5]. I wish I know logs.
S: silence, okay, the only thing that I am thinking there is more than one answer.
S: I do not know how to rearrange the equation to solve.

S: [she reads Activity 6] what do you think about inequality? What do you mean
what do I think about it?

I: I mean can you solve it? How you can solve it? Do the notations make sense for
you?

S: does this x is something different of that x.

I: no, x is x.

S: It is kind of weird. I find it would be easier to learn if I had numbers.

I: do you know this sign?

S: absolute value.

I: okay.

S: um--- if log would not be there, I can definitely figure it out.

You can not ever um--- you need a value for x, um--- less than 2!

S: absolute value is always positive, there is only few options 0,1 and 2, or 1.5,
you know if it is less than 2. That is really odd.

Case 4: The subject (male, non-mature) student was taking course B at the time of
terview, November 2006.

S: [he reads the review example, and writes 2° = 8].

I: can you please tell me what are you thinking?

S: Okay. This is pretty simple.

S: can I use a calculator?

I: no, sorry.

S: this [Log 256] I know what is it but, I do not know how to get there.
I: can you please follow row by row.

S: this is 16. Um--- I guess 4 to 4 is 256. That is right.

S: that must be one. I get confuse and every time I get confuse I look at the other
ones that I already did.

S: zero, um--- zero.

S: I hate fractions, anytime I see fractions I get nervous. Um--- -2, -2 .

I: do you think today lecture is helpful?

S: yeah. Of course, yeah. If I did not have it today, last time it was math 206 so I
would be very lost.

S: -16, um--- half.

I: Are you sure is half. 4 to power half is square root of 4.

S: square root um---

I: what is 4 to power half meaning for you?

S: I do not have an idea. I just put it half. I guess it would be not -2? No.
L1027
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. Sthere[47 = %] is -2, so that can not be -2 there. If 4 to -2 gives one over 16,

so -16 um---

I: you are looking for a power to raise 4 and get -16.

S: 2 gives 16. It can not be -2 because -2 gives one over 16. No, I do not know.
I: have you seen a power to raise a positive number like 4 to this number and
obtain a negative number?

S: actually, may be but I do not remember. To me, it is totally lost.

S: estimate um--- this [4‘/5 = ?] here, I am lost.

I: the graph is given to help you. Try to use the graph. What is asking?
S: 4 to root of two.

I: look at the graph and estimate 4 to power square root of 2.

S: graph increasing; now maybe it gets decreasing.

I: which one decreasing?

S: x is increasing, but square root um--- maybe it is parallel, no.

I: parallel?

S: not parallel, sorry symmetric. No it can not be symmetric.

I: let try together. We have 4' =4, x is 1. Can you show it on the graph?
S: xis 1 and y is 4 so it is here.
I : also for x equal zero, y is 1. You are seeing these from the graph. Now to find

4" , what is x?

S: x is square root of 2.
I: you have x which is square root of 2 then you draw vertical line from this point

to intersect the graph and y —coordinate of this intersection will be 472

S: great. But [ do not know square root of 2.

I: do you have any estimation of it? what is can be? Between which numbers?

S: nothing. I think 4 is 2.

I: what is the square root of one?

S: it is one. Two is between 4 and 1, square root is between 1 and 2, 1.5.

I: okay consider estimation of square root of 2 as 1.5.

S: here, means 1.5 [he points to y-axis] um---no, x is 1.5, follow it up. It comes up
to 8.

I: now, try to estimatelog,

S: Tlook at what I did before. Now I know square root of 2 is 1.5, so basically log
4,4t01.5,yeah. 4to 1.51s 8. here log4, 4 is 1, log 1, 4 is zero. The 1.5 come in
the front. It is just 1.5, no um--- 1.5 is in the front but after what happens for 4,
here is 4.

I: what you are trying to find?

S: so what happens after, 1.5 times 4, no?

I: look at the table that you filled out.

S:4to 1.51s 8, now log 8, 4 um--- if it is 16 it is 2, now you do 8 um--- 4,4,
silence...it is 1.5. It is okay.

S: this addition, when you add logs it is multiplying so it is log 35, 4. in the same
base. I had this morning.

47
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S: we do not have the same base. Multiplication, they add them but the same base.
It is still 3, this 3 and 3 um--- so now. You add them in multiplication.

I: why you think we add them?

S: we multiply them when it was addition in same base. We do not touch bases
here we multiply, but not same bases.

[: what if you find each log separately, what do you think?

S: finding them and multiplying.

S: now we have log base 3, 27. 27 is 3 and 3 so multiply log um--- so first when
you do that it becomes 3 to 3 , 27 .Here you have log 27, 3 , you do not have this,
this means 3 , 1 um---

I: Are you trying to find log 27 base 37

S:itis 3,n09,nonot 9. It is 3.

I : look your table.

S:itis 3 alone. It is just 3. Okay, but now for here you take 27, because you take
base and the answer is 3. Now when I find power I find log.

I: in which power you can arise 27 and get 3?

S: it is gonna be minus.

I: minus?

S: it can be a third. 27 to the power of one third.

I: yeah. One third means third root of 27.

S: this [4" = —16] can not be a half.

I: it is not a half. Think about do we have a power to raise a positive number and
get a negative number.

S: I have had powers that are negatives like here -2 or when I do derivatives, they
could be negative power. But, when I do base to a power that gives me negative
no.

I: when you look at the graph, you will see the domain and range of function. The
range is a set of values for y=f(x), what is the range of y?

S: y’s are getting small.

I: does the range include negative numbers?

S: no. so it is between zero and 1.

I: x values or the domain of the function includes negative numbers, zero and
positive numbers. But y values or the range does not include negative numbers.
S: so it does not exist. Yes, when you put -2 it is very small close to zero. Okay.
S: equality?

[: equality means these two expressions are equal.

S: find an example in situation. Um--- no it is not equal.

I: why do you think it is not equal?

S: because log base of 10, x to power 3 is equal to log base 10, x times log base
10, x times log base 10, x.

S: but this log base of 10, x to 3, that means base is 10 so log,, x* equals to base

of 10 and then 10 to um--- the answer 27, so here the answer would be x°, but
here we don’t have it.

I: wait a minute. You need to have your own example. I mean consider x as an
arbitrary number that you want.

S: okay. You can just use a regular number.
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I: log is on base 10, so you may choose a value for x such that finding log of this
value in base 10 be simple.

S: I take 10, um--- 10 to um--- 10 times 10, means 10 to the power of 2.

I: okay.

S: 100, so that means here [ have log,,100°. So answer for that um--- what do I

do? If I put 3 here log 10 what happens for 3? When I do log 100, 10 it is easy.
What do I do with 3?

I: your x is 100 and you want to find log,,100°. You can write 100 in base 10. I

mean 100 is 10 to power 2,

S: oh. Yeah. Then it is 6, so the answer is 6.

S: now this is 6. Basically I do log 10, 100 and 3, so you do log 10 to 2 and then
3, so that is the same thing.

I: are you sure? Can you check it?

S: because you do 3 times two.

I: as you said at the first you need to find log 100 base 10 then multiply your
answer three times by itself.

S: so it is 2 times 2 times 2 which is 8, that is why it does not work.

S: okay, the same base, you can just multiply them.(x-1) times x equals 1.

log(x* — x) is 1, now this is the problem, no what um---the 1 other side is zero ?
I: no.

S: x is the same number as the base.

I: yes, x is x.

S: so if x is the same as the base, that means having log 3,3 .But now um---

S: now, x is the base then you have x to 1 equals to x> — x. Because base is x so

you put the base x and 1 comes to power equals to x> —x. You solve this.
I: okay. Go ahead.

S: now, this cancels this.

I: it is an equation, try to simplify it.

S: do you want me find that?

I: yes, please.

S: bring x over make it zero, take x out and means x is 0 and 2.

S: what do you mean by saying what do you think about inequality.

I: do you think you can solve it? How you can solve it?

S: (he refers to the given review example again), smaller than 2, smaller than two
can not be an answer. You can not put here, the base is x here you need and
answer so I just put less than two.

I: have you seen smaller notation on the power?

S: like this x* = |x*"|
I: is it make sense x to power smaller than 2 , but what ?
S: um--- so smaller than 2, you see now I am confused. Because here always you

had answer and that was easy, and you have absolute value. So it is always
positive. So it is between zero and smaller than two.
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Case 5: the students (mature, female) enrolled in course C (a core mathematics

course) at the time of interview, November 2006.
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S: do you want me to write it done here?

I: please and tell me what you are thinking.

S: silence

S: [she writes log, 8 =2°]

S: can I put the review example there.

I: yes.

S: so here we have log of 9, how do you call this?
I: base 3.

S: log,9=2, base 3 is equal to 2.

S: log of 16 base 4 is 4 to the two.

S: oh no um--- 2 to the 4.

I: the review example shows that log 9 base 3 is 2, what will be log 16 base 4?
S: [she writes 47]

I: why 4 to two.

S: 4 to two is 16, right.

I: yes, it is 16, but we are looking for log of 16 base 4.

S: in the review example the base is 3, my base is 4 here. I am thinking if the log
um---

S: yeah, yeah

I: log and exponents

S: so it is two, do you want me cut it off.

I: yes.

I: please follow row by row to fill out the table.

S: do you want me write 4 to 2?

I: yes, please.

S: so log of 4 is um--- log base 4 of 256, so that is what?

S: okay forget it. um---

S: can you do it? Silence...

I: you can write of the questionnaire.

S: so here, I am kind of like, my brain is not seeing this.

I: T am not measuring your knowledge, just be relax

S: forget about the log.

I: [she looks at the second question and she realizes all is about logs]

S: one out of 16, that is a good question. I guess [ have to look at these and these
and try to find the relationship.

I: what is the relationship between them?

S: silence...

S: can we go the second question.

I: yes.

S: the graph is given, estimate 4% =7 and log, 49 =9,

I: graph is given to help you.
S: Okay. Silence...
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430. I: what are you thinking?

431. S: here is my graph, square root of 2, where is square of two?

432. S: square of root 2 is 1.7? I do not know.

433. I:itis almost 1.41.

434. S: so square root of 2 is 1.41 so I am gonna look at around 1.41 here, it is around

S

7.

435. S: estimate log 4 square root of 2.

436. S:soitis gonnabe...

437. S: um--- good question. What about relationship.

438. S:silence...

439. S: okay, one more other thing um---so log um---

440. I: so tell me what are you thinking?

441. S:Iam trying to estimate, wait [ will come back, later. [She starts next activity].

442. S: evaluate the equations. It is all about log. Laughing, so I need really
understand it.

443. I: [she refers to the review example], it is not a knowledge test be relax.

444. S: laughing, I have better figure it out.

445. S:log 3 of 9 equal to 2, so means as 3 is in the base 3 to two is 9, equal to 2 , my
base is here.

446. S: [she starts over from Activity 1] so log 4 to the 16, is it good?

447. S: the base is 4 so0 4 to something is equal to 4.

448. S: log, 4¥? =9 is square root of 2.

449. S: wait what about this one -16.

450. S: but the log function is like this. How come?

451. T: this is exponential function.

452. S:right. This is exponential function.

453. S: so evaluate the equations. This is log 7 to base 4 we find out something here

477 =7 , here we have log 4 , 5 equal to 5 so 4 to something is equal to 5,s0 4, 5
at the bottom is 1.2.

454. S: what is this, so this is the log of 7 plus log 5, wait what I did?

455. S: you said square root of 2 is 1.4?

456. S: can this stay like that?

457. 1. okay.

458. S:itis 3 to something is 27 , how much so equal to 27 times of log 27 , 3 the base
is 27 so 27 is something

459. S:Iam just writing like that.

460. I: it is fine. I have your explanation on my recorder.

461. S: so I am taking the base 27 on what power will give me 3, 27 to 1/3. I assume,
so what I got, I got here 3, 3 times 1/3 equal to 1.

462. S: Activity 4, does the equation hold?

463. S: Okay. log of 10, x base 10 to x cube is equal to the log of.

464. S:1swear I do not remember logs.

465. S: what we are saying here, is saying that 10 to the power of something is equal to
x cube and here we saying this is this side and here we got log 10 x , so it is 10 to
the power of something is equal to x then you cube that. Is that equal, good
question?
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. S: silence. Um---

. I: bring your own example and try.

. S: let say x is equal to two, 10 log of 10 to the cube what is that? that is equal,
silence...to out of 10, 8 how do the log function works, so it is 10 to the
something equal to 8 , it is what?

I: try an easier example.

S: so x is equal to 10, okay x is equal to 10...

I: okay

S: let say x is equal to 10, log 10,10 to the cube, log 10 times10, 10 to 3 is equal,
this is equal to three. Right? so what about the other side, the other side I got log
of 10. x cube so x is gonna be 10 so log of 10 to the 10 cubed right, so 10 to the
power of what gives me 10 so 1 give me 10, the answer to the parenthesis is 1 and
do the three is one, therefore they do not equal.

S: find the value of x such that log of um---

S: okay, you want to find the value of x, so log of x, (x-1) okay plus log of x to x
is equal 1. So I got here, I have to do it again, so I got base x to something is equal
to (x-1) and I got x to the something is equal to x, I am just writing, not a good
notation. So this is should be equal to one okay so what x to the power of what
give me (x-1), wow!

S: x to the power 1 give me x , um--- so this is 1. What I am gonna do with this,
this is the power of zero what is this 1, find the value of x, you have to find the
value of x, silence...

S: so this gives me 1 right? I do not know.

I: do you remember any log laws?

S: no.

S: consider the inequality log x okay, inequality more than 2 what do you think
about this equality?

S: what do you mean of what do you think?

S: is it true or false?

I: how you think you can solve it, can you solve it?

S: what I am doing here, I am saying base is x so x to this something is equal to,
silence, should be smaller than 2 it that what I am saying

I: okay.

S: and okay forget it.

I: if I give you a calculator do you think it is helpful?

S: no

I: do you want to check them with a calculator?

S: But, laughing, I did really bad. I do not remember log.

Case 6: He was a graduate student who completed course C on January 2006.

The interview was conducted in November 2006.

490

491

. S: in the first case we have log 9 base 3 equal 2 which means 3 square equals 9, so
in this case um---base 2 square base two to power something is equal to 8 , so log
2 cube base 2 equals 3.

. S: do you want me fill both of them?
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I: yes, both.

: are there the same answers, anyway?

: this is the answer 4 square 16.

: that is 4*um---

: you can please write down your calculation.

: 4 times 4 is 16, 16 times 4 is 64, 64 times 4 is 256.

: which is 4.

: one.

: base 4, is zero. Um---

: [ guess negative, -2.

: this [log,(~16) = ?] can not be done, complex numbers will help me here.
I: no, please consider only real numbers.

S: can not be done.

S: graph is given estimate 4 to power square root two. Okay, power 1.3. um---
you want me look at the graph some where here.

I: how you find it?

S: square root of 2 is something like 1.3, and I try to figure out 4 to the power of
1.3.

I: Ineed only estimation.

S:okay, 4'=4, 4> =16 so4tothe power of root 2 is somewhere between,
bigger than 4 less than 16. So it is 6 point something, 6.3.

S: estimate the log, in this case you can put this («/5 ) in front s0+/2 log ,4,log, 4

is one and /2 . Laughing...

S: same base you multiply inside, right?

I: yes, so you remember the laws of logs?

S: I remember them. So log of 35 base 4? Do you want me to find an answer?

I: yes please, estimation.

S: I guess you can do it separately. 4 to the power what, is equal to 7?

I: (he tries to use the given graph from Activity 2).

S: it doesn’t help that much. It is better 1.4 plus 1.2 equal 2.6. I represent logs as
exponents and find them from graph. This side is 4 to the power something equal
to 35. It is gotta between 2 and 3. All right.

S: um--- but this does not work out. But this is the same thing of something else.
Log um--- I do not know, you can convert this again! 3 times 3, 3 cube is 27, so
this [log, 27] is equal 3, 27 to power something is 3, one third. But there is

nunwnwmwmvmwnn=—uwvuuwywn

another rule to use, multiplication rule.
I: no there is no such a rule. Log convert multiplication of numbers into addition
of log of numbers.

S: there is another way of writing log 27, log3®.

S: does the equality hold? No. because log,, x is not equal to (log,, x)°.
S: it is kind of fun.

log, x 9
g 1

X

S: no, is that right? Is it subtraction rule? Is log, (x —1) equal to

I: oh, no.
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525
526

52

~

528
529
530
531
532

533

534

. S: but there is a rule for log (a-b) is not it?

. 1: no, log converts division operation into subtraction of logarithms of numbers.

. S:so log, [(x - 1)(x)] =1, log, (x* —x) =1, so convert to exponents , how to
convert that? x' = x*> —x, so x=2.

. S: is this only answer or I did wrong?

. I: in quadratic equation you canceled out one of roots.

. S: oh, right. Interesting.

. S: what do you think, what do I think about inequality.

. I Are you converting it into exponents?

. S: yes, it is easy for me, or it seems easier. x> <+(x? —1), 0 <-1, no it is not
true, it does not make sense.

. S: oh there is absolute value, right it is minus and plus. When it is plus does not
work. When it is negative x is less than positive negative square root of half. [He

writes x> < —(x> 1), x> <—x* +1), ...x<i\/%]
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Student 1°s written questionnaire
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Activityl. Complete the table row by row. Activity2. The graph of f{x) = 4" {s given. Fstimate 4t o7 W@
estimatelog 4
N f
Logarithrs Exponestials v
§ \g(\
log, 16=7 2 e :
N y 1%
k 5
ﬁ( log, 256 =7 4 #=2 40
Y
b ;
log 4=71 4h=4
N Jd
log, 1=7 § 4=
log, == PSS
i 18 ,
-5 :
log, (-10)=7 - 4 4'=-16
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(log,, %)’ hoid? Find

Activity 3. Evaluate the equations. rf’; Activity 4.Does the equality log,, +*
o an example and explain your reason,
PR \
log, 7+log, 57 .

. ™ } \
N2 N

T

Y5 LS
log, 27x log, 3=7

Aclivity 5,
Find the values of x such mﬁ&]ogx (x=1)+log, (x) =1.

Aclivity 6.
Consider the mequahly lag,j.t »li <2 what de you think
ghout this inequality.
2
fe
A
& v,
i 7 ¥
"
¢ 5
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Student 2’s written questionnaire
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Activity % Besluate the equations.

fog, T4 log, 527
Yy
(e
ﬁ iy m =
log, 27x log,, 3~7
3 bow d
. RS
ﬁ;ﬁiwj} 3
T.3
2 }
¢
3?»
3&5; . Bk RD
W,
53 LI [!
:
Activity 5. , {

Find the valacs of x such thattog, {x ~D+dog (x) =1,

o ("") <o ) N
(/ f_j:,wm { et
- z

%& M.M«:‘M’E‘
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% =h

Thaok you so much for completing the activities
Best wisles
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Student 3’s written questionnaire
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Aelivity 5. Bvaleate e cqualinn,

g, T nlog, Bt g

‘“"’ie%ﬁil;‘?

dag, 30 oo, Fo 'y
-
3
(sadvlor™=3

SR F

Activity 5.
Find the values of x such that log,

multiple answers pecgse
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< vy ve -aemanGe equana™ &
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x-1#log, (x)=1.
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Activity 6,

about this inequality,
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Student 4’s written questionnaire
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Activity 3, Bvaluate the sqmtions.

log, 7+ log, 5=7

%ﬁ(?D
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log, 27 % tog,, 3= 7 ‘33

Activity 4.Docs the equality log,, x* = (log,, x)° hold? Find
an example and explain your reason.

(Vzg}/ J 5 = f/g%m// fmgf T

227y 77=73
2 X 4

Activity 5,
Viod the valugs of x such thatlog, (e~ 1)+ log, () =1.
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Student 5’s written questionnaire
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Activity 3. Bvaluste the syuations,

fog, 7+ log, §=7
? s
[
, R
qﬁ‘ﬁ’) 4
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log, 27x log,, 3= 1
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334'}’? % m 78
B Y
R
Activity 5,

Find the values of x such thatlog, (x—1)+ log, (%) =1.

ly, (31} 1l ayst.
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Activity 4.Does the equatity log,, x™ = {log,, x)* hold? Find
an example and explain your reasan.
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)
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Student 6’s written questionnaire
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Logarithns

Exponentials

log, 167 L

4% =7 1l

log, 336 =71

a=r750

log, 4=2 §

Al=4

tog, k=7 AP | '»)
1 ‘s P -

g, e e

iR T 1L Yo%

tog, (163 =7 4t 16

...... Comt he deo | v
2
3

s ] (o
Activity2 The graph of /(x) = 4" is giver. Butimats 47 =7 and
3

caiimwlag‘-%"s) -~ Si, éi
N L ot
-
L N P A
. : [ H
f 5
¢

144




Activity 3. Evaluate the eqnations.

Ui \
i v, >
wgi?flog,, §=2 fyab L= 1.6
’ 5
3 ; - X .
Q‘f}ﬁﬁk ‘}53(';} b o= 25
i 7

log, 27 log,. 37 |

X 3% (%
Sl ¥ o
I
L
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Find the values of x such thut log, (x =1} +log, (x) = 1.
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Thank you 50 much for camp!tstmg the activities
Best wishes

Activity 4.Docs the equality log,, *° = (log,, x)* hold? Find
an exaople and explain your reason,
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n
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Activity 6. ;
Consider the inequality logfix’ - if <2 what do you think
about this fnequality. B
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Appendix G: Tables of Analysis of Data

Student 1’s interview analysis

Activities Interviewee'’s Analysis | Explanation of | Justification of Comments
statements with line with subjects’ APOS analysis
numbers APOS behaviors

Review example: 8. I know this She does not

[32 = 9] but this I remember because

log; 9 =2 means the have never seen i}fyt:;l; ::::_h 536,

same as3> = 9. What tlog; 91

means log2 8="7

13. like, how many Says “ times” not “ | Power = times
times 3 to get 9. to the power”
15. here, that means A She performs Power = times
how many times al multiplication and
gnultiply 2to get 8, finds 10g2 8
Activity 1; 17. here, log 4, 16 P She says,
10g4 16=° that would be 2 al “because” she
because 4 times 4 is reflects on her
16 answer.

42 -9 She fills this
after finding log.

4* =9 25. [mumbling] 4

times 4 is 16, 16

times 4 , 64 times 4 is

256.
She multiplies 4 | She is following

P by itself 4 times | the relation
log 256 =7 a to find 256, then | between log and
4 she follows the exponential.

relation between
log and
exponential to
find the answer.

4" = She finds the
power.

log, 4="? 26. this would be P She follows the

4 1(4" =4, 50 al relation between
’ log and
I(log,4=7?) exponential. ,

4" =1 She tries She does not know | She has lack of
decimal power definition of zero knowledge on
for 4 like 0.25 . as an exponent. exponentiation.

— = She skips this She does not
10g4 1=7? 2,7' (10g4 =7 questiog. know the
silence definition of
ZEro as an
exponent.
) 1 She skips this She doesn’t
4" =— question also, know about zero
16 without any and negative
effort to solve. exponents.
1 28. She jumps to She does not
log, -1—6 =7 next question. like fractions.

this[ log, % =7]

I am not sure,
fractions, fractions I
am really bad.
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4 =_16 She calculate Since 42 =16 She does not
powers -2. . extend the
she thinks domai
5 omain of
4™ =-16 exponents to
real numbers.
Misconception
of
exponentiation.
10g4 (__1 6) =9 29. 1 guess this She looks at
[log,(-16)=7] log,16 =7
would be -2. and guesses that
log,(-16) =1
is -2.
Activity 2: 42. 1 consider square She considers She does not know | I told her
The graph of rootof2as 1,4 to the estimation of estimation of

f(x)= 47 is given.

Estimate 4ﬁ =7 and

power 1 which is 4.

V2 =1.

square root of 2.

square root of
two.

log, 477 =9
49. okay, that would She tries to She does not
be the 5.64. . NG how to read a
estimate 4" . graph.
51. I multiply 4 by Instead of raising Power = times
1.41. to power, she Lack of
multiplies the base | knowledge on
by the power. exponentiation.
54. okay, 1.41 on x- She uses he
axis um--- will give graph to
6 -axis.
e o y-axis estimate 4«/5
57.1know this Pl She estimates She justifies her Despite of
N a No) estimation. having lack of
(47")is 6or log, 47 as exponentiation
arf)uqd 6.1am 1.41. knowledge and
thinking how many misconception
times this(4) goes to of powers and
give 6, so [ am times, she
thinking of one point reasons her acts
something, so let say in solving log
um--- I guess it problems.
would be 1.41.
Activity 3: 60. so how many She estimates Her strategy to
log, 7+log,5="7 times 4 to get 7 plus P log, 7 and calculate
B4 B4 how many times 4 to al 4/ an 1 7 +1 5
0g, / +log,
get 5, maybe one log 4 5 by :
. s R , shows that she is
point something it converting them flected on h
will give you 2 into exponential reflecte 0; o
something, maybe up and estimating answer and
03 understanding.
0 5. the exponents.
63. by adding log 7 to 0 She verifies her | She rejects this
log 5 and have log al answer. She approach by
12 base 4, but 4 times thinks of relying on log
4 would be 16 it applying definition.
would be over which commutative
I do not think I can law then she
do that. realizes that
does not work
with logs.
log, 27 xlog,, 3 =7 66. 27 um--- that is 0 1 She finds She guesses She confuses
3 7 like point something. a log, 27 10g27 3 as05, | power with
Let say 0.5. ; times.
3 times 0.5 would be easily then she however when she | power=times

1.5. If we would be
um--- I do not know

tries to estimate

verifies her answer
0.5%), she
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is it possible actually
add two log bases
together and two
numbers together and
get the answer.

10g27 3 vy

guessing it as
0.5.

multiplies 0.5 by 3.

Activity 4:
Does the equality
3 3
log,, x” = (log,, x)
hold? Find an example
and explain your reason.

72. x is 10, this
would be 3 and log
10 base 10is 1. 1
times 3 is 3 um---
now, log 10 base 10
is 1 and 1 power to
three is one, and it
does not hold.

al

She justifies her
answer by
considering
x=10 asan
example.

Activity 5: 74. okay, let’s take 2 She guesses she plugs a
Find the value(s) of X , log (2-1) base 2 plus x = 2 since value for x to
such that log 2 base 2 eql}al 1 she says “ X can verify equality

log ( x— 1) +1o g x= so this would give me be any number, I instead of
g * 2. pick the lowest rearranging the
one” equality and
solving,
76. S: um--- log 1 Since she does not | She does not
base 2 plus one, log 1 know the 0 _
base 2. silence um--- definition of the know @ 1
zero exponent she
can not solve it
out.
Activity 6: 85. that can not be She plugs
Consider the inequality ong, because it gives different values
2 0, so I will try with in inequality.
logx x 1‘ <2 what two so it can be
do you think about this absolute value of
inequality. (4-1) and um---
91. x to be negative She can not

or positive, and when
X is negative this
come to positive and
base is negative .
Assuming that x
would be negative
number.

manipulate the

smaller sign (<)
and convert log
to exponentials.
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Students2’interview analysis

Activities Interviewee’s Analysis | Explanation of | Justification of Comments
statements with line with subjects’ APOS analysis
numbers APOS behaviors
Review example; 97. If this [log 8] A She follows the | She raises 2 to
o b th2 al given review power 3 to get 8.
log, 9 =2 meansthe | o SON8 0 501 example.
sameas3® =9 . What [exponent]I can put
here 2, um--- . ok, 2
means log2 8§=7 is base to 3 is 8.
Activity 1: 98. 1am doing the P She writes She says,
log4 16 =92 same as here. 4 to al exponential “because” she is
what power gives us form of and tries | reflected on her
16, it is 2, because 4 to find exponent | answer.
times 4 is 16. Answer (power).
is 2,
42 -9 She fills
42 =7 after
finding
log,16=17.
10g4 256 =9 99. here, I think it is ‘Pa : She follows the
4. relation between -
logarithmic and
exponential form.
44 =9 She writes 256
without
calculation by
referring to
logarithmic
form.
7 _ She knows the
4 =4 definition of
ZEero as an
exponent.
log 4=9 100. here, 4 equal to P She writes She follows the -
4 4 it is one. al exponential relation between
form of log. log and
exponential.
=9 101. for this zero. She converts log
log,1=" Fy to exponential
form and finds
exponent.
4" =1 She writes zero.
102. here is one over because of She does not
10g4 —_—= ? two, I think so. 42 — 16 she have concrete
16 . knowledge on
erlteS negative
2 1 exponent. I used
42 = Tg an example
47 = l to
4
remind her.
117. s0 4 to -2 is one She recalls the She recalls the
over 16. definition of definition of
negative powers. | negative powers.
. 1 She says -2 after
4" =— I showed her
16 41
47 ==,
4

149




10g4 (—16) =9 118. here , is the She looks at It seems she gets She writes
same. Oh, no . I think 1 confuse with 4> =_16
it is going to be 16, log,— =7 | negative and
but -16. It is not the 16 exponents. She understands that
same. No, it can not and says that does not extend the | it is impossible.
be lo (_1 6) — 9 domain of She thinks range
-16. . 84 | exponents toreal | of log function
is the same. She numbers. is positive.
compares them
several times
and says “log
can not be
negative”.
4! =16 Since she finds She writes
that 4% = — 16
h and
log,(-16) =1 realizes that it is
impossible.
is not possible,
she writes that
4" =-16
is impossible
also-
Activity 2: 123. Ithink x is She thinks
The graph of ﬁ here. question asks

f(x) = 4" is given.

square root of 2.

I told her to find
Estimate 4‘/5 =7 and 4ﬁ =7.
log, 472 =9
127. Ineed y, so 1 She estimates She knows how
just go like that, it is 4J’z‘ to read the
7. as7: graph,
128. so for P She writes She writes It seems she has
lo 4ﬁ L do lik al exponential exponential form practiced
€4 » 1 GO like form of log and | of log and find the | irrational
2 find the numbers,
this (4= 4" ) and ﬁ exponent, \/5 ‘ because she
exponent, .
it has to be /2., does not get
4 A 4 3 confused by
47 =47, .
Activity 3: 133. oh, the one that I She estimates She finds each
log, 7+1log,5=2 had before, P log,7 b term by converting
B4 & 47 =7 a Ba DY them into their
= / and for referpng to t.h(? corresponding
log, 5,Ineeda 2;3";3:: Z:‘,thlty exponential forms
power of 4 to get 5, estimate and then adds the
i results.
4" 1do not know log45 by
exactly but converting it
1.1 nto exponentia
A ' al
form.
135. oh. Sorry ,
V2 +411
log. 27 xlog... 3 =2 | 136. I'will put this P She finds She computes each
€3 8z here 3 to power what al log, 27 term separately

is 27, 3; now other
one, 27 to what
power is 3.

easily then she
tries to find a
power to raise
27 and get 3.

and multiplies the
results.
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137. square root, och
no.

She thinks of
square root,
immediately she
realizes that it

can not be
correct.
138. 27 is 9 times 3. She performs
3 times 3 times 3, calculation on
root 3. 27 and finds out
that 3 is third
root of 27.
Activity 4: 144. because it is 0 She considers logs
Does the equality gonna be different, al as an object.
3 _ 3 the answer is
log,, x” = (log,y x)"h different because 3
old? Find an example and here only acting on x,
explain but over log is to
your reason. power 3.
146. for example She I told her to
x=2, so 2 powers 3 is takes X = 2, choose X one
8, but IQ to what then realizes it is of the powers of
power give 8. um--- I not going to be ten. She chooses
do not know. easy to find x=10 and
Silence... log 8 justifies her
109
answer.
Activity 5: 155. values of x, here She
Find the value(s) of X logx X as the same finds
such that ) log, x=1,
logx (x-D+ logx x=] X =X itisone. by converting it
into exponential
form, then she
tries to show
that
log, (x-1)
is zero.
158. um---, She tries to find She makes a
x° = (x—1) and P misake in
x—1=0soxis 0g. (x . ) xO___(x_l)
one. by converting ,
log into so she gets
exponential wrong answer.
form,
Activity 6: 159. Consider this She thinks range Misconception
Consider the inequality inequality what do of logarithmic of the domain of
2 ou think? No it is functions is logs as the range
logx X - 1| <2 what arong, because the positive. of logs
do you think about this log should be always
inequa]ity_ positive. I mean
bigger than two.
164. She thinks
2 2
log |x —1|20 log, ix —1‘=

this is the correct
one. It can not be two
and above two but I
do not know about
one. Here if I put
one, it is gonna be
log zero base 1. um--
1 think it has to be
equal to zero.
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Student 3’s interview analysis

Activities Interviewee'’s Analysis | Explanation of | Justification of Comments
statements with subjects’ APOS analysis
APOS behaviors

Review example: 172. 1 know that She has not seen
(32 =9) andI log before.

10g3 O =2 means the understand this '

(log, 9 =2). This

same as 3% = 9. What .

0 (log,8="7)is

means log, 8 =7 asking me what is the

power of 2 equal to 8.
174. Okay, 2 to A She computes
power 2 is 4, um--- 2 al log,8=2
to power 3 is 8. 50 o2 m
therefore log 2, 8 is with finding
3. 2° =8
Activity 1: 178. 4 times 4 is 16. She first finds
42 =9 exponential
) form.
=9 By referring to She calculates
log4 16=" A"’ the given review | powers of 4 and
example, she concludes that
finds log,16=2.:
log,16=2.
4% =9 180. mumbling 4 by She multiplies 4, | She computes the
) 4, 16 by 4 and 64 by 4 times by itself. | exponentiation.
4, power 4.
A She finds the She calculates
10g 256 =9 al exponential powers of 4 and by
4 form 4% =2 referring to the
) review example
flerfsgl'rsl;};e&:he she finds log.
review example
to find log.
4" = 181. power of one. A She first finds the
1 4=9 al exponent then log.
08, 4= .

4" = 182. 4 to what power She thinks She says power is She has lack of
is equal to one? Now, powerisa fraction number knowledge on
we will go in fraction number. | since she can not the definition of
fraction. recall the Zero as

definition of zero exponent.
power.
184. um---to power P She finds the
log,1="? of zero. al exponent first then
4 log.
198. what power of She skips this She does not
) 1 47 T am assuming be first and after remember the
4’ = — a fraction, 4 to the completing the definition of
16 power of fraction. last row of the negative
That is possible. Is table she goes exponents.

not it? back to this

question.
203. 4 to the power She says I She guesses it is she does not
of negative 2, I am assume. -2, since she had know the

assuming that would
be negative two.

positive, zero
exponents in
preceding
problems.

definition of
negative powers.
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1 P After she finds After she finds the
log, —=7? al the power, she | power, she
16 calculates calculates
1 1
log,—=-2|log,—=-2
4 4
16 16
4" = -16 193. no that is She finds out I gave her a hint
impossible. Okay. Do that such a by saying that
not exist. power does not “do you know a
exist. power to raise 4
and obtain a
negative
number?”
log (-1 6) =9 194. Tdo notknowis | p She tries to She finds the
4 that the same? Is al mach the answer by
log ., (—-16) =2 relation between | referring to the
( g4( ) . ) log and relation between
thaf}does not exist exponents and exponentials and
too? says logarithms.
log,(-16) =1
is impossible
Activity 2: 217.1 just have to She does not know
— 4* | know what is the the approximation
tl'he' graph Of: f(x)=4 square root of 2 is. It of square root of 2.
is given. Estimate is just one, no it is 2
4\5 =9 and times.
log, 497 =9
220. the square root She guesses half | She tries to find
of 4 is 27 right, can be square square root of 2 by
because 2 times 2 root of two, so squaring numbers
equal 4, so what she multiplies such as half, third
times what equals 2? half by half. half.
I am thinking like a
half.
230. Probably I am She guesses that
off of my number, 3
because 9 over 4 is — is square
definitely not two.
root of two, to
verify she
multiplies
3 3
p— x —_—,
2 2
243. the only thingis | 4 ) She estimates She finds I told her
that y equals, but a 141 _ Jzo approximation
1.41. ;l' . ?1'5 log4 47 =141 of square root of
y using the by referring to the | 2.
given graph. review example
and Activity 1.
Activity 2: 245. 1 don’t know She skips this
— hat i ion.
1084 7+ 10g4 5=9 what is that question
log, 7+log, 5=
260. could you do, I She writes Her reasoning
do not have any idea log. 12 probably is
about log, but I 84 because of

assume when there is
a common base so
you add the numbers.

distributive law in
algebra.
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log, 27 x log ;7 P 245.3 times 3 is 9,9 P, She writes She calculates

times 3 is 27 , um-— log 27 as powers of 3 and

because 9 times 2 is 5 3 concludes that

18 . Thisis 3. 3 =27. 10g327=3_

246. so what is the A She writes She does not

power of 27 equals to al log 3 as extend the domain

three? How is that 2 of exponents to

possible? I do not 27" =3, real numbers.

know how the log

works? How 27 it

will be like a

fraction? How you

get a 3, 27 times one.

248. I mean um---1 She has lack of

do not know how 27 knowledge on

get 3 which power. A fractional

negative? exponents.

256. if I divided by 9. She wants to She divides 27 by | Misconception
divide 27 by 9, 9 instead of taking | of roots as
to find the root. division.
exponent of
27" =3.

Activity 4: 261. no, because here A . She considers Her intuition is
3 ai
Dossthecqully | (log,,x*)you il ¥=Dum | comh e
log;, x* = (logy x)°h figure out the inside :ﬁ:ﬁﬁg’sfgen example
old? Find an example and first (x) and then . 3
explain your reason 3 review example log 10 2= loglo
: exponent (X~ ) and and writes
3

then log,, x>, but log,, 2° =log,,

there find log10 X

and exponent it

3
(logy, ).
Find the value(s) of X such | 264.1do not know She does not
that how to rearrange the know how to
_ — 1 equation to solve. solve the

log * (x l) + 1Og x % problem when

variables are

involved.
Consider the inequality 268. Does this x is Lack of

2 something different understanding of

log, ’x - 1’ <2 what of that x. variables
do you think about this
inequality.

275. Absolute value
is always positive,
there is only few
options 0,1 and 2, or
1.5, you know if it is
less than 2. That is
really odd.
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Student 4’s interview analysis

Activities Interviewee’s Analysis | Explanation of | Justification of Comments
statements with subjects’ APOS analysis
APOS behaviors
Review example: Reads the
10g3 9 = 2 means the review example
and writes
sameas3” = 9. What 23 -8
means log 2 8=7
Activity 1: 283. This is 16. He finds 16 by
4% =9 multiplying 4 by
! 4.
log, 16 =7 A | e rlation between
log4 16=4. logarlthm.s and
. exponentials forms
Then by looking | in each row in
at 42 =16 order to complete
he realizes his the table.
mistake.
4* =9 283. Um---1 guess 4 He guesses and | He does not
) to 4 is 256. That is looks at perform
right. — 9 | multiplication to
log,256 =1 find 4 to power 4.
, then says that
is right.
Aal He first finds the
=9 power. Then he
log, 256 =1 follows the
relation between
log and
exponential
form.
4’ =4 284. That must be He checks the
one. I get confuse previous ones
and every time I get and follows the
confuse I look at the relation.
other ones that I
already did.
10g4 4=9 Aal He writes
log,4=7 by
referring to
exponential form.
4? =1 285. zero, um--- zero. ’
-9 He finds the
10g4 ) Ay power, then refers
to the review
example to find
logs.
. 1 286. I hate fractions, He thinks few He hates
4" = — anytime I see second and says fractions.
16 fractions T get -2.

nervous. Um--- -2, -
2.
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1 A After he finds After he finds the
log 4T = ? al the power, he power, he
16 calculates calculates
1 1
log,—=-2| log,—=-2
g4 16 g4 16
by referring to
review example.
Times=power
4? =-16 289. -16, um--- half.
293.1do not have an Since he had -2
idea. I just put it half. power in
I guess it would be previous one, he
not -2? No says “ it would
not be -2”.
_ ) 295. here Since he does
10g4 (-16) =" A“I not have
(472 =—)is concrete
16 knowledge on
-2, so that can not exponents and
be -2 there he does not
(4" =-16). 1f410 know that range
. of exponential
-2 gives one over 16, function i
nction is
so -16 um--- it 1
. If 4 to -2 gives one POSIVE rea
numbers.
over 16, 50 -16 um---
345. I have had He answers I helped him by
powers that are based on my asking have you
negatives like here -2 hints, but he is seen a power to
or when I do not reflected on raise a positive
derivatives, they his answer. number like 4 to
could be negative this number and
power. But, when [ obtain a
do base to a power negative
that gives me number?
negative no.
Activity 2: 300. estimate um--- He is not used to
_Ax work with
The graph of /' (x¥) =4" | this (47> = ?)here, rational
is given. Estimate I am lost. exponents.
47 =9 ma
log, 4% =9
312. X is square root He can not He does not
of2. understand the know how to
question easily. read the graph.
318. it is one. Two is He estimates
between 4 and 1, square root of 2.
square root is
between 1 and 2, 1.5.
320. here, means 1.5, He shows 1.5 on He does not
um---no, x is 1.5, y-axis instead of know how to
follow it up. It comes considering it as find a point on a
up to 8. ax value. graph and

confuses x and y
axis.
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Jz 326. 410 1.5 is 8, He goes back to
log, 47" =7 now log 8, 4 um--- if A table and checks
itis 16 it is 2, now previous ones
you do 8 um-- 4,4, that he writes
silence...itis 1.5. It is 1.5.
okay.
Activity 3: 327. this addition, A Since he had log He interprets the
10g4 7+ log4 5=9 when you add logs it al in the day of product law of
is multiplying so it is interview, he logs as “add
log 35, 4. in the same remembers the logs it is
base law. He multiplying”
multiplies 7 by
5, and writes
log, 35.
log 27 x 10g 3=9 328. we do not have A He writes He confuses the
3 z the same base. al exponential forms | product law of
Multiplication, they of each terms by logs and says
add them but the referring to the “Multiplication,
same base. It is still given table in they add them
3, this 3 and 3 um--- Activity 1, and but the same
so now. You add finds base”
them in —
multiplication. log; 27 =3.
330. we multiply He struggles to Misconception
them when it was retrieve a law to of logs’ addition
addition in same multiply logs. law.
base. We do not
touch bases here we
multiply, but not
same bases.
333. now we have P He writes He calculates
log base 3,27.27is 3 al log 27 as power of 3, and
and 3 so multiply log 3 concludes that
um--- so first when 33 =27, log 27 =3
you do that it 3 b
becomes 3 to 3, 27
.Here you have log
27,3, you do not
have this, this means
3,1 um--
337. itis 3 alone. It He writes 27=3
is just 3. Okay, but and tries to find
now for here you take a power for 27.
27, because you take
base and the answer
is 3. Now when I find
power I find log.
339. it is going to be
minus.
341.itcanbeathird. | 4 He is not reflected
27 to the power of al on his actions. He
one third. keeps referring to
previous activities.
Activity 4: 357. but this log base He does not why Since variable x
Does the equality of 10, x to 3, that the equality does is involved in
3 3 means base is 10 so not hold and has this activity, he
log,, x” = (log, x)"h 1 3l difficulty in does not
old? Find an example and 0819 X cqualsto understanding
explain your reason. base of 10 and then 1 3
10 to um--- the 0810 X -

answer 27, so here
the answer would be

X 3 , but here we
don’t have it.
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363. 100, so that A He takes
means here I have al x =100 asan
log,, 100°. so example.
However, he has
answer for that um--- difficulty t
what do I do? If I put theulty to
calculate
3 here log 10 what 5
happens for 3? When 10g10 100°..
I dolog 100, 10 it is
easy. What do I do
with 37
365. Yeah. Thenitis | 4 He refers to I told him to
6, so the answer is 6. al previous ones to write 100 as
answer p 102 , S0 he was
log,, 10 able to find
3
log,, 100
370. so it is 2 times 2 He computes In computing Power=times
times 2 which is 8, log. 100=2 3
that is why it does €10 (log,, 100",
not work. , then finds he times 2 by 3
log.. 100 3 ) instead of raising 2
( €10 ) to power 3.
Activity 5: 371. okay, the same A He applies the He is not reflected
Find the value(s) of X such | base, you can just al product law of on his actions ,
that multiply them. (x-1) logs. since he refers to
_ — 1 times x equals 1. the table in
logx(x 1) + logx x =] now . log x* — x Activity 1 to write
» 108, the exponential
is 1.Now this is the form of
problem, no what 2 _
um---the 1 other side log, (x" —x) =1
is zero ?
373. X is the same Lack of
number as the base. understanding of
variables; X is
not an
mathematical
object for him.
376. now, x is the A He is not reflected

base then you have x
to 1 equals to

2
X~ — X . Because

base is x so you put
the base x and 1
comes to power

equals to x2 -X.
You solve this.

al

on his actions ,
since he refers to
the table in ‘
Activity 1 to write
the exponential
form of

log, (x*-x)=1

Activity 6:
Consider the inequality

log, |x* —1| <2 what

do you think about this
inequality.

385. smaller than 2,
smaller than two can
not be an answer.
You can not put here,
the base is x here you
need and answer so [
just put less than two.

he refers to the
given review

example, he
writes

2 2-1
x? =[x

He tries to follow
the relation
between
exponential and
logarithms, but he
is confused with
smaller sign.
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389. um--- so
smaller than 2, you
see now I am
confused. Because
here always you had
answer and that was
easy, and you have
absolute value. So it
is always positive. So
it is between zero and
smaller than two.
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Student 5’s interview analysis

Activities

Interviewee'’s
Statements

Analysis
with
APOS

Explanation of
subjects’
behaviors

Justification
of APOS analysis

Comments

Review example:
log, 9 = 2 means the

same as 3% = 9. What
means log2 8§=7

392. silence

She

writes
log,8=2°.
While she does
not understand

the review
example.

She does not
pay enough
attention.

Activity 1:
log,16 =2

399. log of 16 base 4
is 4 to the two.

she writes

log, 16 = 42

She realizes that
all is about log,
and then she
tries to
understand the
review example
and the relation
between log and
exponents.

409. So it is two, do
you want me cut it
off.

al

She finds the
answer after
several times
referring to the
review example.

She follows the
review example.

4* =9

412. do you want me
write 4 to 2?

She writes 16.

log, 256 ="

414. so log of 4 is
um--- log base 4 of
256, so that is what?

416. Can you do it
(log, 256 =7y

al

After
finding

4* =256,
she looks the
relation between
log and
exponents and
writes

log, 256 =4

She uses the
review example to
find log.

She multiplies 4
, 4 times.

This is very
simple and
intuitive for her.

al

She writes the
power and then
follows relation
to find log.

This is very
simple and
intuitive for her.

al

She writes the
power and then
follows relation
to find log.

She finds
42 =L
16

easily.
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1 422. one out of 16, A She writes the
log, —=7 that is a good al power and then
16 question. I guess I follows relation
have to look at these to find log.
1
(4" =——)and
16
theses
(log L, ) and
— ="{)an
*16
try to find the
relationship.

4’ =16 She has
difficulty with
finding power.

o (19=7 | [
q - log,(-16) =1
and start
Activity 2.
Activity 2: 432, square root of 2 She thinks I told her that
— 4% is 1.7? I do not know. square root of 2 consider square
.The‘ graph Of: fx)=4 is 1.7. rootof 2 as 1.41.
is given. Estimate she knows how
4\/E = ? and estimate to read the
i graph.
log, 4" =?
434. so square root of She uses the
2is1.41solam graph to

gonna look at around
1.41 here, it is

estimate 4ﬁ

around 7. andshe
concludes it is
around 7.
. N 437. um--- good First she skips
estimate log, 4™ =? question. What about log. 4V =9
relationship. 08,4 -
, and goes to
next activity.
Ny A She refers to the | She uses the
448. log, 4" is al review example. | review example to

square root of 2.

find log.

log, 7+1log, 5="7 442. evaluate the She goes back to
&4 &4 equations. It is all the review

about log. Laughing, example and
so I need really tries to
understand it. understand.
453. so evaluate the P She uses She says “ 4 to
equations. This is log al previous activity | something is equal
7 to base 4 we find results and 5” in finding
ou:[/;omethmg here converts 10g4 5
4% =7  here we log, 7 to
have log 4, 5 equal N
to 5s04to 477 =7, a0
something is equal to log 4 S5to
5, so4,5at the 12
bottom is 1.2. 4 =5.
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log 27 x log 3=9 | 458 itis3to P She finds out She does not refer
3 277 something is 27, al 1 27 to the review
h 083 </ by
ow much so equal o example.
to 27 times of log 27 converting it to
, 3 the base is 27 so exponential.
27 is something
461. so I am taking P She finds
the base 27 on what a 1 3
OO 0g,,; 3 by
power will give me 3, o
27 to 1/3. 1 assume, converting it to
so what I got, I got exponential.
here 3, 3 times 1/3
equal to 1.
Activity 4: 468. let say x isequal | p First she She is reflected on
Does the equality to two, 10 log of 10 al considers her actions, since
3 _ 3 to the cube what is = she is not referring
loglo X = (logIO x) h that? that is equal, ticies tozf’-l::gd she to the review
old? Find an example and silence...to out of 10, 3 example any more.
explain your reason. 8 how do the log log,, 2° =log
function works, so it with converting
is 10 to the . ?
something equal to 8 itto 10° =8
, it is what?
472. letsay xisequal | p She considers She is reflected on
to 10, log 10,10 to a x =10 and her actions, since
tpe cube, log 10 . shows that she is not.referrlng
tlmeslo,‘lq to3is equality does to the review
equal, t}ps is equal to not hold. example any more.
three. Right? so what
about the other side,
the other side I got
log of 10. x cube so x
is gonna be 10 so log
of 10 to the 10 cubed
right, so 10 to the
power of what gives
me 10 so 1 give me
10, the answer to the
parenthesis is 1 and
do the three is one,
therefore they do not
equal.
Activity 5: 474. okay, you want P She converts
Find the value(s) of X to find the value of x, al logs to
such that so log of x, (x-1) exponentials,
_ _1{ okay plus log of x to —
log,(x -1 +log, x = x is equal 1. So I got log, (x~1)
here, I have to do it tox =x—1
again, so I got base x
to something is equal and logx X to
to (x-1)and I got x to x? =x

the something is
equal to x, I am just
writing, not a good
notation. So this is
should be equal to
one okay so what x to
the power of what
give me (x-1), wow!
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475. x to the power 1
give me x , um--- SO
this is 1. What I am
gonna do with this,
this is the power of
zero what is this 1,
find the value of x,
you have to find the
value of x, silence...

al

She says

?
X = X power
is 1, then she

considers

)
x =x-1

and she does not
how to solve it.

Activity 6:
Consider the inequality
log,

do you think about this
inequality.

x2 —ll < 2 what

483. what I am doing
here, I am saying
base is x so x to this
something is equal to,
silence, should be
smaller than 2 it that
what [ am saying.

she writes
x?=h2—q<
. She gives up.
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Student 6’s interview analysis

Activities Interviewee'’s Analysis | Explanation of | Justification of Comments
statements with line with subjects’ APOS analysis
numbers APOS behaviors
490. in the first case A

Review example: we have log 9 base 3 al

log, 9 = 2 means the equal 2 which means
3 3 square equals 9, so

same as 32 = 9. What in this case um---base
1 89 2 square base two to

means 10g, & = ¢ power something is
equal to 8 , so log 2
cube base 2 equals 3.

Activity 1: A He finds the

10g4 16=° al exponent and
then finds log.
4% =9 495. this is the
answer 4 square 16.

4* =9 498. 4 times 4 is 16, He performs
16 times 4 is 64 , 64 calculation to
times 4 is 256. find 4 to power

4.

10g4 256 =9 499. which is 4. P He is reflected on

al his actions.

4" = 500. one .

10g4 4=9 Pal He writes‘ one

after finding the
exponent.
4" =1 501. base 4, is zero.
=9 He is reflected
log, 1=" Fy on his actions.
47 = L -5202 I guess negative, Pal
16
1 He writes after
log 4T = ? finding the
16 exponent.
4" = -16 He knows that
this is
impossible.
_ -9 503. this He has concrete | He knows about
10g4 ( 16) ’ 1 ~16)="? 0“1 ’ knowledge on the domain and
(log,(-16)=?) . .
A the domain and | rang of logarithmic
can not be done., so A range of functions.
cqmplex numbers logarithmic and
will help me here. exponential
functions.
Activity 2: 509. okay,
The graph of 4! =4, 42 =16

f(x) = 4% is given.
Estimate 4\/E =7? and
log, 492 =9

so 4 to the power of
root 2 is somewhere
between, bigger than
4 less than 16. So it is
6 point something,
6.3.
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510. estimate the log, | () He knows the He applies power
in this case you can al power law of law of logarithms.
put this (v/2 ) in L‘I’)ﬁg‘?s and
front so )
V2log .4,
log4 4 is one and
\/5 . Laughing...

Activity 3: 511. same base you He knows the

log, 7+1log, 5=2 multiply inside, product law of

&4 €4 right? logarithms.

517. it doesn’t help 0 He applies the
that much. It is better al product law of
1.4 plus 1.2 equal logs and
2.6. I represent logs findslog . 35
as exponents and find inds 108, T
them from graph. ”Ijnen he verifies
This side is 4 to the his answer by
power something evaluating each
equal to 35. Itis gotta tem sepzjlrately
between 2 and 3. All and adding
rlght them.

log., 27 xlog., 3 = { 519. um--- but this 19) He thinks of a Since he recalls

&3 8z does not work out. a multiplication the laws of

But this is the same law for logs. logarithms,
thing of something identifying his
else. Log um---1do thought process
not know, you can level is not so
convert this again! 3 casy.
times 3, 3 cube is 27,
so this (log, 27 ) is
equal 3, 27 to power
something is 3, one
third. But there is
another rule to use,
multiplication rule.

Activity 4: 521. does the equality 10 He applies power

Does the equality hold? No. because al law of logarithms

3 3
log, x” = (log,, x)
hold? Find an example
and explain your reason.

3,
loglo X 1snot
equal to

(log;, %)°.

and shows that the
equality does not
hold.

Activity 5:
Find the value(s) of X
such that

log (x-1)+log, x =]

523. no, is that right?
Is it subtraction rule?
Is

Iogx (x —1) equal
log, x )

to
log, 1

He does not recall
the law question
law of logarithms
properly, since he
has learned how to
memorize the
formulas not
verbalization of
formulas.
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527. so S , He applies the
lo x=Dx) = “ product law of
Ex [( )( )] logarithms.
2
log, (x* -x)=1
, SO convert to
exponents , how to
convert that?
X "= X 2 X, s0
x=2.
Consider the inequality 533. yes, it is easy for He tires to
2 me, or it seems convert the
logx * ll <2 what easier. inequality into
flo you Fhink about this x2 < +( x2 _ 1) , an exponential
inequality. form.

0 < -1, noitisnot
true, it does not make
sense.

534. oh there is
absolute value, right
it is minus and plus.
When it is plus does
not work. When it is
negative x is less than
positive negative
square root of half,

He
writes

xt < —(x* -1

¥ <—x?+1)

,...x<i\/I
2
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