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Abstract

GROUPS, GRAMMARS AND DESIGNS
A Mathematical Analysis of Artifactual Patterns

Xiu Wu Huang

In keeping with other developments in the natural sciences, more and more researchers use mathematics

to analyze the geometric and constructive principles hidden in works of art and then apply these principles

to generate new patterns. This thesis is in line with trend. It develops tools for the analysis of the geometric

patterns hidden in Bakuba textiles and Zillij mosaics. As such, it contributes to the interdisciplinary Gener-

ative Design project, which explores the mathematical structure of artifacts using groups, shape grammars,

and other techniques. The thesis consists of six parts:

L.

A brief introduction to background of the thesis. After introducing the project and geometric patterns in
Bakuba textiles and Zillij mosaics, we discuss the structure of the Generative Design systems, discuss
results the project team has obtained, and explore the possibility of applying groups to implement our

goals.

. An introduction to wallpaper groups, related theorems and results. After introducing the Crystallo-

graphic Restriction theorem, we provide a proof that establishes that there are precisely seventeen
groups for creating wallpaper patterns from given geometric patterns. To understand these seventeen
groups and to explain the relationship between groups and Bakuba textiles and Zillij mosaics, we illus-

trate these groups using motifs extracted from Bakuba and Zillij.

. An illustration of the mathematical reconstruction of Bakuba and Zillij motifs using groups. After

analyzing patterns in Bakuba Textiles and Zillij Mosaic, we show that we can use certain groups to
reconstruct patterns with different motifs involving various parameters. This brings us closer to our

goal. The groups considered at this stage are not necessarily wallpaper groups.

. An illustration of the mathematical reconstruction of Bakuba and Zillij motifs using grammars. In this

part, we use shape grammars defined by Stiny to reconstruct patterns in Bakuba and Zillij by defining

suitable grammars and applying appropriate sequences of shape grammar rules.

. A new method of creating new pattern. In this section, we compare and discuss the methods of group

theory and shape grammars to extract motifs from classical artifacts and to generate new patterns. Then
we develop a new method that enhances the two classical methods by generating new patterns from

Bakuba and Zillij motifs using wallpaper groups.

. The thesis ends with appendices in which technical definitions and basic proofs are given to make the

thesis self-contained. In particular, the proof that there are precisely seventeen wallpaper groups is

presented in detail for completeness and accessibility.

iii
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Chapter 1

Introduction

This thesis is a contribution to the Generative Design project. It is therefore necessary to provide a brief
introduction to the project and describe its goals and background. I will consider four aspects of the project:
its purpose, its history, its progress, and my involvement in it. In Bhakar [3], the project is described as
follows:

“Advances in information technology now provide a variety of digital tools for the mathematical investiga-
tion of the visual complexity of textile patterns and decorative designs. In this paper, we report on innovative
applications of this technology to the geometric analysis of Kuba cloth and Zillij mosaics. From our per-
spective, these objects present distinctly different analytical challenges, and typify problematic aspects of the
classification and generation problems of artistic design. Mathematical considerations led us to use neural
networks, shape grammars, and related technologies to approach these problems. Our ultimate goal is to use
our methods, samples, and peripherals to build an interactive database for the study of historical pattern and
the generation of contemporary designs.”

This thesis is a contribution to this goal. As is pointed out in this paper: “Geometric patterns in African
Kuba cloth are fractured and reiterated in an astounding display of improvisation that connects the viewer to
the artisan in a special dialogue. Women embroider, stitch and cut raffia pile into velvet patterns on a woven
raffia base prepared by the men. Confounding traditional notions of geometric symmetry and repetition, Kuba
women design their textiles freely as they work, without drawings, over a period of months and sometimes
years (see Adams [1]). These distinctive monochromatic velvets come from the Kasai-Sankuru river region in

central Africa, where western anthropologists, impressed with the cultural richness of carvings and textiles,



have visited the multi-ethnic Kuba kingdom for research and study since the end of nineteenth century.

Fractal symmetry, including recursion, scaling, self similarity, infinity and fractal dimension, is displayed
in the Kuba designs through juxtapositions of linear embroidery, velvet forms and contrasting color that
becomes counterpunctual in the composition. According to Eglash [9], fractals are part of African numerical
systems as evidenced in their village planning, decorative motifs and textiles. He specifically describes Kuba
designs in the computational terms of a complexity spectrum:

These Kuba designs tend to show periodic tilings along one axis, and aperiodic tiling-often moving from
order to disorder-along the other. Similar geometric visualizations of the spectrum from order to disorder
have been used in computer science. As far as I can tell, the Bakuba weavings never reach more that halfway
across the spectrumm—they are typically moving between 1 and 1.5, that is, from periodic to fractal, rather
than stretching all the way to pure disorder.

Kuba women create patterns of mathematical complexity and beauty by deviating from static geometric
structures with their own personal logic of improvisation. Henri Matisse and Gustav Klimt were both in-
spired by Kuba design motifs, transforming and referencing the hypergeometric patterns in their paintings.
Analogous to the African American idiom of improvisational Jazz, improvisation in Kuba cloth makes their
design motifs unique to Western textiles.”

The methods studied and developed in this thesis are designed to explore the geometric features of these
artifactual patterns. What, then, is a Bakuba cloth? Here is an example that will guide us in our quest for new
descriptive and generative techniques to explore the geometric richness of these artifacts:

The second class of artifactual patterns studied in the Generative Design project are patterns found in Zillij
mosaics in North Africa. What are Zillij mosaics? In Bhakar [3], these patterns are described as follows:

“The traditional Zillij mosaics have been traced back to the 12th century and reached a zenith in Fez in
the 17th century. Some of the best examples are in the madrasahs (universities) in the old Medina. In a small
open fronted shop it is possible to still see three generations involved in the task of making the mosaics: the
son making the squares, the father cutting the specific shapes and the grandfather supervising. The mosaics
are fired, then glazed in colors derived mainly from metals, and then fired again. It is said that to make a
Zillij mosaic panel in the traditional way requires great skill and the integration of hand, eye, heart, and mind.
Muslims develop their memory and their heart by learning the Qur’an by heart. A Zillij panel is made by

laying each piece in place upside down and then plaster is poured over the back and the pattern is only seen



Figure 1.1: A Bakuba Cloth (Photo: Hansjorg Mayer)

when it is dry. Traditionally, the pattern is conceived by the Master and held in the mind as he lays each piece
without seeing the pattern develop.

The geometric figures on which the patterns are based have a symbolic component. All the patterns are
based on a circle the symbol of the infinite without beginning or end and where every part of the line is the
same. Patterns are constructed starting with the first theorem of Euclid (see Courant and Robbins [5]). After
a circle is drawn, the radius is maintained and the compass point is moved to any point on the circumference
and a second circle is draw creating an almond shape in the middle, and the circumference of each circle
touches the centre of the other. This can represent the first division of the cell, the beginning of life and of
polarization, and the number two. The compass point can then be situated on the point on the circumference
where the two circles overlap and another circle can be draw. This can go on until six circles fit exactly within
the circumference —six circles around a central circle, and two sets of three, as in the petals of many flowers.
Three is the simplest polygon. Patterns based on four can be the symbol of materiality—the four directions,
and the four states of matter. The pentagon has the ratio of the golden section (the only ratio in which the

smaller section is to the greater as the greater section is to the whole), which was referred to as “the divine



proportion” by Renaissance writers.

The patterns for the Zillij mosaics are for the most part based on geometric systems which are progressions
and multiples of figures with three, four and five equal sides. These in turn have a parallel in music. In the
patterns the circle from which all are derived is still evident in the rotational and reflexive symmetry of the
center figures. It is this symbolism in the transcendent, geometric patterns of Zillij mosaics that suggest a
comprehensive cosmology (Critchlow 1976).”

Here is an example of a Zillij mosaic that will guide us in our exploration of the geometric properties of

such patterns in this thesis:

Figure 1.2: A Zillij Mosaic (Photo: Sharman 1994)

1.1 Digital Tools

Since starting the project in 2001, the research team has done a great deal of work and has made substantial
progress. In this section, we will sketch some salient features of this work relevant to my thesis: image

segmentation, object classification, the structure of shape grammar systems, and recent results.



1.1.1 Image segmentation

In order to identify appropriate digital tools for the analysis of the geometric content of Bakuba cloths and
Zillij mosaics, the Concordia Center for Pattern Recognition and Machine Intelligence carried out a number of
experiments to determine the suitability of different pattern recognition tools for the pattern analysis of such
textiles. At first, interesting objects or shapes had to be segmented for successive applications. Therefore,
various edge detection techniques were used. By converting color images to gray images, we used traditional
methods, like Sobel, Canny, and Marr, to detect edges and then segmented shapes or interesting objects from
background. We also worked on binary images. In this way, we converted color images to gray images; then
we used threshold method, in which the values of threshold were carefully calculated and varied according to
neighbor pixels, to binarize the image to the binary images; lastly we got shapes or objects. We also attempted
to use color information in images to detect edges. Of course, we also made some experiments by used some
software packages on edge detection, but, it is hard to code their parameters and embed to our systems, we

had to study various methods and write ourselves code as discussed in Dudek [8].

1.1.2 Object classification

After segmenting interesting objects from images, we classified all objects according to their shapes or fea-
tures. These works are very helpful for designing shape grammars in the successive steps. For choosing and
locating groups of shapes in real-world images of artifacts, we had enlisted the help of the Centre for Pattern
Recognition and Machine Intelligence at Concordia in assembling a group of systems which identify groups
of similar shapes in raster images. We integrated these systems in an upcoming rule-suggesting system, which
will look at the clusters found and attempt to discern a few basic types of arrangement and symmetry.

One of classification methods is to treat an image as a matrix, use algebraic methods to extract its features
such as SV and then work on these algebraic features by using traditional methods (see Huang [16], Huang
[18] Huang [19], and Guo [12]). At the beginning of the project, we used this method in our work, but the
results were not suitable for more complex images since it was was very difficult to separate objects from their
background Huang [17]. Another method of clustering shapes used information of size, position, rotation and
normalized Fourier descriptors. We also attempted to use neural networks for classification (see Dudek [8]

and Huang [17]).



1.2 Shape Grammars

Shape grammars are designed explicitly to free the design process from being caught using excessively high-
level “symbols” or “atoms”. Various attempts at making fairly general shape grammar interpreters have gone
before us, and we operate on the assumption that a judicious choice of simplifications and specializations will
make creating an interpreter for Bakuba cloths and Zillij mosaics patterns a fairly tractable problem, both at
design time and at run time.

To understand shape grammars well, some members of our team attempted to write our systems to im-
plement shape grammar (sece Hortop [14]). First they planned to develop a shape grammar interpreter in
Flash. The interpreter was defined by James Gips in [10]. They wanted to explore shape grammar applica-
tions as a part of our project and assess what was required for ultimate goal and the processes of studying
and implementing our project. This approach was later supplanted by the creation of a shape grammar inter-
preter written in Java. Currently, the interface to this interpreter is being refined with the goal of making it
user-friendly and accessible to non-specialists.

After studying and analyzing these methods, I believe that the goal of the Generative Design project
can be achieved more elegantly and more effectively by dividing the development of a the ultimate system
required for Generative Design into the following components: a rule extraction tool, a generalized shape
grammar interpreter, a rule generator, a pattern generator, and a searchable data bank of images. This thesis

is mainly a contribution to the formulation of a “generalized” rule generator using groups.

1.2.1 Rule extraction

In which the current system developed by the textitGenerative Design group, shape grammar rules are par-
tially generated automatically or by users’ help. Users design shape grammar rules through their understand-
ing. First, they should analyze some principles hiding in artifacts, and then they may design some appropriate
rules. During these processes, shapes or objects are segmented from their background automatically or man-
ually. To reduce the complexity of algorithms, we may use clues for segmentation. Clustering or classifying

shapes and objects are helpful for extracting rules automatically or manually. This is a key step.



1.2.2 Grammar interpretation

The interpreter is used to understand the shape grammar rules. It retrieves a group of rules about a specific
topic in database, and generates a graph according to the description of the group rules.

The biggest problem we faced, and one faced by most shape grammar researchers, is the subshape
problem—finding groups of faces in a design that match single faces in a rule, something which is required
in shape grammar theory (stated as a mandatory ability to ignore overlapping features) and that allows for
emergent behaviour to take place. Some implementations are very general on content while being weak on
the subshape problem. The approach in the Generative Design project used was to pare down the range of
designs we worked with in order to be better able to deal with the subshape problem in our domain of interest

(see Hortop [14]).

1.2.3 Pattern generation

Afterrule extraction, it is necessary to formulate new rules based on the extracted ones and create new patterns
with existed motifs. At this point, new methods and new concepts can be introduced that are faithful to their
origin, but that have not been used before. For example, we can introduce symmetries that exists in most
patterns of Bakuba cloths and Zillij mosaics. Several authors, among them D. Washburn [35], who have used
symmetry as a tool for classifying and analyzing ornaments. Stiny (see [33]) also used symmetry properties
to generate artifactually-inspired patterns by computer using “shape grammars”Leonardo Da Vinci and Diirer
used the idea of superimposing geometric grids on images to visualize their content, and Descartes pioneered
the use of geometric grids to describe geometric content with algebraic equations (see Huang [16}]). Besides,
there are many researchers who used structural information like geometric features of patterns and their
affine transformations in their work (see Martin [24], Knight [22], Levy [23], Bix [4], McDowell [27], and
Griinbaum [11]). Therefore, it is appropriate to study the possibility of applying some concepts of symmetry

in our project, and 1 will discuss it in this thesis.

1.2.4 Pattern storage

Databases are used to store data that may be shapes, objects, motifs, shape grammar rules, and others. In the
future, we may retrieve these data to modify, delete, or generate graphics (patterns). In particular, the database

will be accessible on the Internet and later in a gallery setting, and allow users to contribute their works by



uploading files in some open format. Users will also be able to request the generation of “synthetic” patterns,
based on constraints they supply. With this mixed input stream, the database will develop a behaviour similar
to that of a genetic algorithm where users’ visits, contributions and requests to the system influence the

available vocabulary and generative tendencies of the system (see Dudek [7] and Dudek {8]).

1.3 Wallpaper Groups

We mentioned that we needed to explore the possibility of using the concept of symmetry to generate new
patterns based on shape grammars. Let us take a closer look at what is involved.

Symmetry exists everywhere: in nature, in life and in the arts. Human beings have known about sym-
metry and applied it from the earliest times. From artifacts to modernistic art, from ornaments to building
decorations, symmetrical reflection has been present (see Jablan [20]). Human beings have studied symmetry
both from an artistic and an aesthetic point of view, and applied it in their daily lives in ornamental art for
years. In fine art, “symmetry” has played a key role for a long time, indicating harmony, accord, and regu-
larity, and was identified with mirror symmetry in the more narrow sense. As such, the descriptive languages
used in most discussions on ornaments drifted apart from the exact language of geometry. As the result, even
when talking about the same object, these languages are used in quite different senses.

As the natural sciences (crystallography, chemistry, physics, and so on) evolved, symmetric structures
attracted more and more the attention of mathematicians (see Sharman [31]), and became an important area
of geometric studies. From a mathematical point of view, the key ideas involved in “symmetry” are transfor-
mation groups, invariance, and isometry. This view of symmetry has led to the development of ornamental
art (see Speiser [32]).

Symmetry is very helpful for discovering patterns and provides natural stopping conditions for objects
called “shape grammar generators,” the central structures used in this thesis for the mathematical analysis of
artifactual patterns. We combine shape grammars with methods of group theory to set a finite bound on the
number of types of symmetry to be considered. As a result, our goal becomes achievable since it limits the
search for symmetry-based rules.

The techniques used in this thesis evolved from our study of the geometric structures of patterns of
Bakuba cloths and Zillij mosaics when we discovered that group structures exist in some artifactual patterns.

For example, we were able to use group theory to explain the intrinsic relationship between patterns created



by audio frequencies in a liquid medium and the geometric patterns of traditional Morocco Zillij mosaics
discovered by Dr. Sharman in her study of the geometric structures and mathematical progressions in the
traditional mandala and tessellation patterns in the art of several cultures. For these reasons we have focused
our attention on groups. Wallpaper groups, in particular, because of the fact that building larger images from
motifs is akin to tiling a planar surface according to certain principles.

In order to carry out our task, we needed to take a closer look at the geometric principles involved in
wallpaper groups. The proof that there are only seventeen of them provides some of the relevant clues. We
therefore spend considerable time in this thesis on the proof that classifies these groups and the geometric
ideas involved.

We then show how the ideas involved in the study of wallpaper groups are relevant to the design of shape
grammars. As is clear from our previous publications (see Huang [16] and {17]), “group-enriched” shape
grammars are appropriate for the study of the certain artifactual patterns and are therefore our main tool for

building new images from the geometric motifs extracted from Bakuba cloths and Zillij mosaics.



Chapter 2

Wallpaper Groups

We begin this thesis with a brief discussion of wallpaper groups and the steps required to prove that in view
of the crystallographic restriction and its related theorems, there are only seventeen such types of groups. To
understand these groups well and to find the relationships between wallpaper groups and Bakuba textiles and
Zillij mosaics, we illustrate each group with examples. In particular, we use group theory to analyze the group
structures of Bakuba textiles and Zillij mosaics. After that, we use shape grammars to analyze our interesting
objects. We end with the idea of combining shape grammars and symmetry groups to study Bakuba and Zillij
patterns.

Qur first objective is to clarify and illustrate the well-known fact that there are only seventeen different
kinds of wallpaper groups. What does this mean? Since every such group consists of affine transformations
of symmetry, this means that the possible combination of translation, rotation, reflection, and glide reflection
generate all wallpaper groups.

Wallpaper groups are also called plane symmetry groups or plane crystallographic groups. They con-
stitute a mathematical classification tool for two-dimensional repetitive patterns. The concepts required to
understand wallpaper groups can be found in Appendix A. Especially, we need to mention the crystallo-
graphic restriction. It provides the key to why there are only seventeen wallpaper groups. We therefore deal
in depth with the crystallographic restriction as we proceed.

After observing the fact that the rotational symmetries of a crystal in chemistry and mineralogy are limited
to 2-fold, 3-fold, 4-fold, and 6-fold rotations, mathematicians had idea that same restrictions might apply to

symmetries in mathematics, i.e., if P is an n-center of a wallpaper group, then n should equal 2, 3,4, 6. This
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assumption is called the crystallographic restriction. In mathematics, a crystal is generated by independent
finite translations, and is modeled as a discrete lattice. Because discreteness requires that the spacing between
lattice points have a lower bound, the group of rotational symmetries of the lattice at any point must be a finite
group. Here, we limit our attention to the plane and to the crystallographic restriction on plane patterns. The
classification of wallpaper groups is achieved by imposing on these groups, first of all, the crystallographic
restriction. The key concepts used in the classification proofs are therefore the n-centers in combination with
the crystallographic restriction.

The proof involves two steps: First, we prove that all wallpaper groups satisfy the crystaliographic re-
striction (the details can be found in Appendix B). We then use this fact to explore the consequence of this
restriction using the idea of n-centers (the details can be found in Appendix C). This means that we identify
all possible wallpaper groups. To facilitate our understanding what is involved in the is classification, we
illustrate each wallpaper group with a figure.

The details are as follows:

2.1 The Crystallographic Restriction

The proof of the crystallographic restriction theorem is built around the ideas of a translation lattice and a

unit cell.

Definition 1 The translation lattice for @ determined by point A is the set of all images of A under the

translations in w.

Definition 2 A unit cell for w with respect to point A and generating translations Ty and T, is a quadrilateral

region with vertices A;j, Ait1,5, Asji1, and A 11
Based on these ideas, the crystallographic restriction is proved in the following steps:

Theorem 3 If o, is in wallpaper group w, then | is parallel to a diagonal of a rhombic unit cell for w or else

1 is parallel to a side of a rectangular unit cell for w.

Theorem 4 Ifwallpaper group w contains a glide reflection, then w have a translation lattice that is rhombic

or rectangular.
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Theorem 5 If a glide reflection in wallpaper group o fixes a translation lattice for t, then w contains a

reflection.

Theorem 6 For given n, if point P is an n-center for group G of isometries and G contains an isometry that
takes P to Q, then Q) is an n-center for G. If | is a line of symmetry for a figure and the symmetry group for

the figure contains an isometry that takes l to m, then m is a line of symmetry for the figure.
Lemma 7 (Proved by Xiu Wu Huang) IfT is the center of square LIPQRS, op,0q,0R,arein < 053195,9T >

Lemma 8 (Proved by Xiu Wu Huang) < p4 60, Oga >=< 092,068 058 > if G is the center of equi-

—
AG’ T CG?

lateral NABC.

Theorem 9 If p4 360/ and ppseo/n With P # A and n > 1 are in wallpaper group w, then 2AP is not less

than the length of the shortest nonidentity translation in .

Lemma 10 We shall use Theorem 9 immediately to show that the possible values of n such that there is an

n-center in a wallpaper group are rather restricted.
This proves that wallpaper groups satisfy the crystallographic restriction:
Theorem 11 If point P is an n-center for a wallpaper group, and then n is one of 2, 3, 4, or 6.

The details of these proofs may be found in Appendix B.

2.2 Classification

We start with the following theorem:

Theorem 12 If a wallpaper group contains a 4-center, then the group contains neither a 3-center nor a

6-center.

We shall find all possible wallpaper groups w, beginning with those groups that contain an n-center. By

the crystallographic restriction it is sufficient to consider only the values 6, 3, 4, and 2 for n.
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2.2.1 6-centers

We begin by stating the following theorem, which shows the abundance of symmetry required to support a

6-center.

Theorem 13 Suppose A is a 6-center for wallpaper group w. There is no 4-center for w. Further, the
center of symmetry nearest to A is a 2-center M, and A is the center of a regular hexagon whose vertices are
3-centers and whose sides are bisected by 2-ceners. All the centers of symmetry for w are determined by A

and M.

After proving the theorem above, we explore all possible wallpaper groups with a 6-center and get the

following result: A wallpaper pattern having a 6-center has a symmetry group wg or w§.
1. A wallpaper pattern with symmetry group wg has a 6-center but no line of symmetry;

2. A wallpaper pattern with symmetry group w} has a 6-center and a line of symmetry.

2.2.2 3-centers, but no 6-center

We now turn our attention to wallpaper groups with a 3-center but no 6-center and state the following analogue

to the previous theorem.

Theorem 14 If A is a 3-center for wallpaper group' w and there are no 6-center for w, then every center of
symmetry for w is a 3-center and A is the center of a regular hexagon whose vertices are 3-centers. All the

centers of symmetry for w are determined by A and a nearest 3-center.
It follows from this theorem that wallpaper groups that contain only 3 centers have w3, w3, w3.
1. A wallpaper group tws has a 3-center, has no 6-center, and has no line of symmetry.

2. A wallpaper group w} has a 3-center, has no 6-center, and every 3-center is on a line of symmetry.

3. A wallpaper group 3 has a 3-center off a line of symmetry but no 6-center.

2.2.3 4-centers

The following theorem regarding 4-centers in a wallpaper group is analogous to that concerning 6-centers.

Here is the statement of the theorem.

13



Theorem 15 Suppose A is a 4-center for wallpaper group to. Then, there are no 3-centers for @ and there
are no 6-centers for w. Further, the center of symmetry nearest to A is a 2-center M, and A is the center of
a square whose vertices are 4-centers and whose sides are bisected by 2-centers. All the centers of symmetry

for w are determined by A and M.
By the theorem, we have the following result: Wallpaper groups that contain 4 centers have ws, @}, @3.

1. A wallpaper pattern with symmetry group w4 has a 4-center and no line of symmetry.
2. A wallpaper pattern with symmetry group w} has a line of symmetry on a 4-center.

3. A wallpaper pattern with symmetry group w3 has a 4-center and a line of symmetry off all 4-centers.

2.2.4 2-centers

Now suppose a wallpaper group has a 2-center A and every center of symmetry is a 2-center. If this is the

case, wallpaper groups have ws, w3, @3, w3, ws.

1. A wallpaper group ws has a 2-center, every center of symmetry is a 2-center, and is not fixed by an

odd isometry.

2. A wallpaper group twj has a 2-center, every center of symmetry is a 2-center, and some but not all

2-centers are on a line of symmetry.

3. A wallpaper group w3 has a 2-center, every center of symmetry is a 2-center, and every 2-center is on

a line of symmetry.

4. A wallpaper group w3 has a 2-center, every center of symmetry is a 2-center, has a line of symmetry,

and all lines of symmetry are paraliel.

5. A wallpaper group w3 has a 2-center, every center of symmetry is a 2-center, has no line of symmetry,

but is fixed by a glide reflection.

2.2.5 No centers

Finally we come to wallpaper groups that have no center of symmetry. The possible wallpaper groups have

w1, Wi, w7, and @5,
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1. A wallpaper group zo; has no center of symmetry and is not fixed by any odd isometry.

2. A wallpaper wi has no center of symmetry, is fixed by both reflections and glide reflections, but some

axes of the glide reflections are not lines of symmetry.

3. A wallpaper group w? has no center of symmetry, is fixed by both reflections and glide reflections, and

all axes of the glide reflections are lines of symmetry.

4. A wallpaper group w? has no center of symmetry, has no line of symmetry, but is fixed by a glide

reflection.
We can combine this analysis into the expected theorem:

Theorem 16 (Wallpaper Group Classification) If G is a wallpaper group, then there are points and lines

such that G is one of the seventeen groups defined above.

The details of these proofs and their analysis may be found in Appendix C.

2.3 Illustration

The various planar patterns can be classified by the transformation groups that leave them invariant, their
symmetry groups. A mathematical analysis of these groups shows that there are exactly 17 different plane
symmetry groups. This means that there are 17 types of such groups, corresponding to 17 essentially distinct
ways to tile the plane in a doubly-periodic pattern.

In this section we illustraie each of seventeen wallpaper groups based on our understanding of what is
involved. The illustration combines ideas from Martin [24] M. McCallum {26], D.E. Joyce [21] and F. E.
Szabo [34]. Moreover, we use some motifs with features of Bakuba and Zillij to implement some symmetry

groups with Mathematica [36].
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Table 2.1: Wallpaper Groups 1 to 17

Symme IUC Marti ..
y ry . o Definition
group notation notation
has rotations of order six (60°), rotations
1 p6 we of order three, and rotations
of order two, but no reflections
has rotations of order six (60°), rotations of
2 pbm wg order three, rotations of order two, and
reflections
3 3 - has rotations of order three (120°)
P 3 but no reflections or glide reflections
1 has rotations of order three (120°),
4 p3ml w3 .
and no reflections
5 p31m - has rotations 9f order three (120°),
and no reflections
6 4 - has rotations of order four (90°)
P 4 and no reflections or glide reflections
7 Am ol has rotations of order four (90°),
p 4 and reflections
3 4 o2 has rotations of order four (90°),
pig 4 and reflections
4 contains rotations of order two (180°),
9 P99 w5 ¥ . .
glide reflections, and no reflections.
10 2 - contains rotations of order two (180°)
p 2 but no reflections or glide reflections
11 omm ol has reflections in two perpendicular directions,
2 and a rotation of order two (180°)
12 n w2 has reflections, and no rotations
p 2 or glide reflections
13 pmg w5 has rotations of order two (180°), and reflections
14 pl w1 contains only translations
15 om ol contains reflections and glide reflections
1 with parallel reflection axes, but no rotations.
9 contains reflections with parallel axes
16 pm w1 .
and no rotations
3 contains only glide reflections with parallel axes
17 pg wy . .
no rotations or reflections
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Table 2.1 lists all seventeen groups. The IUC notation for these groups is the notation for symmetry
groups adopted by the International Union of Crystallography in 1952. In our description, some ideas are
adapted from Martin [24], Joyce [21], and an article in Wikipedia [37].

To show the relationships between wallpaper groups and Bakuba cloths as well as Zillij mosaics, we
generate examples with wallpapers groups that are based on motifs extracted directly from Bakuba textiles
and Zillij mosaics (shown in Figure 2.1, or on motifs derived from features of Bakuba cloths and Zillij

mosaics.

Motif in a Bakuba Cloth Motif in a Zillij Mosaic

Figure 2.1: Two Sample Motifs

We start our illustration of each of the seventeen wallpaper groups in the order adopted in Table 2.1.

2.3.1 6-centers
The Group wg (p6)

This group contains 60-° rotations, that is, rotations of order 6. It also contains rotations of orders 2 and 3,

but no reflections.

Example 17 To illustrate the principle of the group we, we design an equilateral triangle containing some
features of Bakuba cloths and Zillij mosaics. In this example, the fundamental region is the central pattern
in Figure 2.2. The rotation center of the rotation of order 6 is at the lower vertex (designated in the figure
by the symbol (). The rotation centers of the rotations of order 3 are at the other two vertices (designated
in the figure by the symbol 7). The rotation center of the rotation of order 2 is at the midpoint of the side

connecting the rotations of order 3 (designated in the figure by the symbol X ).
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Figure 2.2: A Pattern Generated by the Group g (p6)

The group w} (p6m)

This most complicated group (p6m) has rotations of order 2, 3, and 6, as well as reflections. The axes of

reflection meet at all the centers of rotation.

Example 18 7o illustrate the principle of the group (w3 ), we design a 30°-60°-90° triangle containing some
of the features of Bakuba cloths and Zillij mosaics. In this example, we generate two patterns. In the left
pattern, the rotation of order 6 is at the 30-degree vertex, a rotation of order 3 is at the 60-degree vertex, and
the rotation of order 2 is at the 90-degree vertex. In the right pattern, we show three reflections that use the

three sides of the triangle as reflection mirrors.

Triangle with Three Rotations Three Reflections

Figure 2.3: A Pattern Generated by the Group g (p6m)
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2.3.2 3-centers
The group ws (p3)

This is the simplest group containing a 120° rotation, that is, a rotation of order 3.

Example 19 Here are two examples to illustrate the principle of the symmetry group w3 (p3). In the exam-
ples, the fundamental region is a rectangle and the three vertices of the rectangles are rotation centers of 120

degrees.

Tiling of a Bakuba Cloth Motif  Tiling of Zillij Mosaic Motif

Figure 2.4: Two Patterns Generated by of the Group w3 (p3)

The group w! (p3m1)

This group is similar to the last one in that it contains reflections and order 3 rotations. The axes of the
reflections are inclined at 60° to one another, but for this group, all of the centers of rotation lie on the

reflection axes.
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Figure 2.5: A Pattern Generated by the Group w3 (p3m1)

Example 20 We illustrate the principle of the symmetry group w3 (p3ml). In the examples, the fundamental
region is an equilateral triangle with each side a reflection (designated by the symbol <7) and each vertex a

rotation of order 3 (designated by the symbol ().

The group w3 (p3lm)

This group contains reflections (whose axes are inclined at 60° to one another) and rotations of order 3. Some

of the centers of rotation lie on the reflection axes, and some do not.

Example 21 7o illustrate the principle of the symmetry group w3 (p31m), we use a picture from [25]. In
the examples, the fundamental region is an isosceles triangle with a vertex of 120 degrees. There are three
distinct rotations, py is at the 120-degree vertex, py is at the 30-degree vertices and ps3 is a reflection of p1

about a;,, the horizontal mirror. The other two mirrors are rotations of oy, by 120 and 240 degrees.
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Figure 2.6: A Pattern Generated by the Group @ (p31m)

2.3.3 4-centers
The group w, (p4)

This is the first group with a 90° rotation, that is, a rotation of order 4. It also has rotations of order 2.
The centers of the order-2 rotations are midway between the centers of the order-4 rotations. There are no

reflections.

Example 22 Figure 2.7 contains two examples illustrating the principle of the symmetry group wy (p4). In
the examples, the rectangle in the middle is the fundamental region; the upper left vertex and lower right
vertex of the fundamental region are rotation centers of 90 degrees; The 180 degree centers of rotation are at

the other two vertices of the fundamental region.

Motif in a Bakuba Cloth Motif in a Zillij Mosaic

Figure 2.7: Two Patterns Generated by the Group w4 (p4)
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The group w, (pdm)

Example 23 Here is an example for the group wj (p4m) in Figure 2.8 that has a triangular fundamental
region with all edges being reflection mirrors [25]. The fundamental region is an isosceles right triangle with

a 180-degree rotation center at the 90-degree vertex and 90-degree rotation centers at the other two vertices.

Figure 2.8: A Pattern Generated by the Group wj (p4m)

The group 3 (p4g)

This group w3 (pdg) also contains reflections and rotations of orders 2 and 4. But the axes of reflection are
perpendicular, and none of the rotation centers lie on the reflection axes. Again, the lattice is square, and

an eighth of a square fundamental region of the translation group is a fundamental region for the symmetry

group.

Figure 2.9: A Pattern Generated by the Group w3 (p4g)
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Example 24 This pattern has an isosceles right triangle for a fundamental region [25]. Both the horizontal
and vertical glide reflections are readily apparent here. The second rotation of order 4 can be seen as well

(shown in Figure 2.9).

2.34 2-centers
The group w; (p2)

This group contains 180° rotations, that is, rotations of order 2.

3 x 3 Tiling of a Bakuba Cloth Motif 4 x 4 Tiling of a Zillij Mosaic Motif

Figure 2.10: Two Patterns Determined the Group wa(p2)

As in all symmetry groups, there are translations, but there are neither reflections nor glide reflections.

The two translations axes may be inclined at any angle to each other and the lattice is a parallelogrammatic.

Example 25 Here are two examples in Figure 2.10 that illustrate the principle of the symmetry group w>
(p2). In the examples, two translation axes are perpendicular to each other and the fundamental region is a

rectangle. The centers of rotation are at the four vertices and the midpoints of the vertical sides.

The group w3 (cmm)

This group has perpendicular reflection axes, but it also has rotations of order 2. The centers of the rotations

do not lie on the reflection axes.

Example 26 Here are two examples in Figure 2.11 that illustrate the principle of the symmetry group w3
(emm). In the examples, the fundamental region is a rectangle. Starting from the patterns in the middle, it
is easy to see the three reflections that two are vertical and one horizontal, and the three rotations of 1 80°

degrees. If we take a closer look, we can also see glide reflections.
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3 x 3 Tiling of a Bakuba Cloth Motif 4 x 4 Tiling of a Zillij Mosaic Motif

Figure 2.11: Two Patterns Generated by the Group w3} (cmm)

The group w3 (pmm)
There are no glide reflections or rotations, the lattice is rectangular, and a rectangle can be chosen for the

fundamental region of the translation group.

Example 27 Here are two examples in Figure 2.12 that illustrate the principle of the symmetry group w3
(pmm). In the examples, the fundamental region is a rectangle; all of the edges of the rectangle are mirrors;

each vertex of the rectangle is the center of a rotation of 180 degrees.

3 x 3 Tiling of Bakuba Cloth Motif 5 x 5 Tiling of Zillij Mosaic Motif

Figure 2.12: Two Patterns Generated by the Group w3 (pmm)

The group w3 (pmg)

This group w§ (pmg) contains both a reflection and a rotation of order 2. The centers of rotations do not lie

on the axes of reflection. The lattice is rectangular.

Example 28 Here are two examples in Figure 2.13 that illustrate the principle of the symmetry group ws
(pmg). In the examples, the fundamental region is a rectangle. Starting from the patterns in the middle, it is

easy to see the reflections, glide reflections, and the rotations.
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3 x 3 Tiling of a Bakuba Cloth Motif 4 x 3 Tiling of a Zillij Mosaic Motif

Figure 2.13: Two Patterns Generated by the Group @3 (pmg)

The group wj (pgg)

This group @} (pgg) contains no reflections, but it has glide-reflections and half-turns. There are perpendic-

ular axes for the glide reflections, and the centers of the rotations do not lie on these axes.

3 x 3 Tiling of a Bakuba Cloth Motif 5 x 3 Tiling of a Zillij Mosaic Motif

Figure 2.14: Two Patterns Generated by the Group w3 (pgg)

Example 29 Here are two examples in Figure 2.14 that illustrate the principle of the symmetry group ws
(pgg). In the examples, the two translation axes are perpendicular to each other, and each has length twice
the length of their corresponding parallel edges; the fundamental region is a rectangle. Starting from the

central patterns, it is easy to see the glide reflections and the rotations.
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2.3.5 No centers
The group w; (pl)

This is the simplest symmetry group. It consists only of translations. There are neither reflections, nor glide-
reflections, and no rotations. The two translation axes may be inclined at any angle to each other. Its lattice
is parallelogrammatic, so a fundamental region for the symmetry group is the same as that for the translation

group, namely, a parallelogram.

Example 30 Here are two examples in Figure 2.15 that illustrate the principle of symmetry group w, (pl).
In Figure, two translation axes are perpendicular to each other, and motifs are only translated. Therefore,

the motifs in the tiling patterns are parallel to each other.

3 x 3 Tiling of a Bakuba Cloth Motif 3 x 3 Tiling of a Zillij Mosaic Motif

Figure 2.15: Two Patterns Generated by the Group @, (pl)

The group wi (cm)

This group wi (cm) contains reflections and glide reflections with parallel axes. There are no rotations in
this group. The translations may be inclined at any angle to each other, but the axes of the reflections bisect
the angle formed by the translations, so the fundamental region for the translation group is a thombus. A

fundamental region for the symmetry group is half a thombus.

Example 31 Here are two examples in Figure 2.16 that illustrate the principle of the symmetry group wi
(em). In the examples, two translation axes are perpendicular to each other, and the reflection has two
vertical mirrors with two vertical edges of the fundamental region as axes. The glide reflection has a vertical

mirror through the midpoints of the horizontal edges.
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4 x 3 Tiling of a Bakuba Cloth Motif 4 x 3 Tiling of a Zillij Mosaic Motif

Figure 2.16: Two Patterns Generated by the Group w1 (cm)

The group w? (pm)

This group @? (pm) contains reflections. The axes of reflection are parallel to one axis of translation and per-
pendicular to the other axis of translation. A fundamental region for the translation group is a rectangle, and
one can be chosen that is split by an axis of reflection so that one of the half rectangles forms a fundamental

region for the symmetry group.

4 x 3 Tiling of Bakuba Cloth Motif 4 x 3 Tiling of Zillij Mosaic Motif

Figure 2.17: Two Patterns Generated by the Group w?(pm)

Example 32 There are two examples in Figure 2.17 that illustrate the principle of the symmetry group tw3
(pm). In the examples, two translation axes are perpendicular to each other, and the reflection has two

horizontal mirrors with two horizontal edges of the fundamental region as axes.
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The group = (pg)

The direction of the glide reflection is parallel to one axis of translation and perpendicular to the other axis
of translation. The lattice is rectangular, and a rectangular fundamental region for the translation group can
be chosen that is split by an axis of a glide reflection so that one of the half rectangles forms a fundamental

region for the symmetry group.

Example 33 Here are two examples in Figure 2.18 that illustrate the principle of the symmetry group w3
(pg). In the examples, two translation axes are perpendicular to each other, and the glide reflection has a

vertical mirror through the midpoints of the horizontal sides.

4 x 3 Tiling of a Bakuba Cloth Motif 4 x 3 Tiling of a Zillij Mosaic Motif

Figure 2.18: Two Patterns Generated by the Group w3 (pg)

2.3.6 Conclusion

After illustrating the seventeen wallpaper groups with motifs most of which have the features of Bakuba
textiles and Zillij mosaics, we can find some clues that link the wallpaper groups to the objects studied in the
Generative Design project. To describe these clues clearly, we analyze some examples and provide our ideas

in the following sections.
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Chapter 3

Groups and Bakuba Textile Patterns

After introducing the required theorems about wallpaper groups and illustrating the seventeen wallpaper
groups, we now establish a relationship between these groups and Bakuba textiles. To this end, we study two

different Bakuba textile patterns.

3.1 Analysis of a Bakuba Cloth

First we consider a pattern as shown in Figure 3.1:

Figure 3.1: A Bakuba Cloth
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We can extract some patches from Figure 3.1 as shown in Table 3.1:

Table 3.1: A List of Patches in Figure 3.1

Patch 1 Patch 2 Patch 3 Patch 4 Patch 5 Patch 6

/

Patch 7 Patch 8 Patch 9 Patch 10 Patch 11 Patch 12

Next we use symmetry operations on the patches in Table 3.1 and get Figure 3.2:

Figure 3.2: A Pattern in a Bakuba Cloth Generated by a Symmetry Group

From our analysis of Figure 3.2 we get the information listed in Table 3.2.

30




Table 3.2; Symmetry Operations on the Patches in Table 3.1

Patch name | Operation on patch Patch name | Operation on patch
Patch 1 translation 71 Patch 2 translation 7o
Patch 3 translation 73 Patch 4 translation 74
Patch 5 no operation Patch 6 translation 74
Patch 7 translation 77 Patch 8 translation g
Patch 9 reflection o,,, with horizontal axes m Patch 10 translation 71
Patch 11 translation 7y Patch 12 translation 7o

Here, 71, T2, T3, T4, 76, T1, T8, T10, T11, T12 are different translations generating the patterns shown in
Figure 3.2 by operating on patches. Since 7 is a vertical translation and 711 is a horizontal one, 7; and 71
are not parallel. Therefore these translations can be expressed by the combination of 71 and 7¢;. In other
words, they are elements of the groups < 71,711 >. Although these translations cannot be a group, since this
pattern is only a piece of Bakuba textiles,we can see from the above example that group theory is useful for
the analysis of Bakuba textiles.

Certainly these translations act on different patches and generate patterns that are part of Figure 3.2.
Moreover, if we combine the reflections and translations in the wallpaper group w? (pm) with these patches,

more complicated patterns are generated that are not a part of Figure 3.2.

3.2 A Typical Pattern in Figure 1.1

Let us now examine a specific component of Figure 1.1.

Figure 3.3: Pattern in Figure 1.1
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After analyzing the structure of this component of Figure 3.3, we find that we can construct these compo-
nents by group G1 =< pc,360/45 péy%o /4= E > operating on the patch shown in Table 3.3, where p¢,360/4
is a rotation of order 4, and C is a rotation center. It should be noted that in the process of generating these

components, we must use different rotation centers.

Table 3.3: Generating Figure 3.3 on a given Patch

The group G acts on the patch
Patch with right vertex of the patch
as rotation center (symbol ()

The group G; acting on the right-
most patch of the pattern generated The pattern is generated by the group
by last step with right vertex G'1 with two different rotation centers
as rotation center (symbol )

3.3 Conclusion

To generate the mentioned patterns in the two examples above, we use the group of rotations of order 4,
translation, reflection on different patches with various parameters like rotation centers. If we choose the
patches appropriately, some of the patterns in the given figure can be generated by symmetry operations on

the patches. Therefore, symmetry groups are relevant to the study of Bakuba textiles.
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Chapter 4

Groups and Zillij Mosaic Patterns

We want to discuss the group structure of Zillij mosaics using the following examples.

4.1 A Group Structure in Weaving

Think about the sample mentioned in Figure 1.2 and decompose it into the following parts:

Pattern 1 of Figure 1.2 Pattern 2 of Figure 1.2

Figure 4.1: Patterns in Figure 1.2

Then consider the following two patches in (Figure 4.2):
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1

]

Patch 1 Patch 2

Figure 4.2: Patches for Pattern 1 and Pattern 2

Now we think about the group G2 =< p¢ 360/8, P%,aeo /8 = E >, where pc 3608 is a rotation of order
8, with C being a rotation center.

We can construct the patterns in Figure 4.1 with the group G4 acting on Patches 1 and 2, but the rotation
centers are different. For Patch 1, the center of the rotation is on the left bottom vertex of a fundamental

region. The details are described in Table 4.1.

Table 4.1: Generating Process for Pattern 1

E acting on Patch 1 pc,360/8 acting on Patch 1

>
ml

P2c, 360/8 acting on Patch 1 The pattern generated by G2 acting on Patch 1
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Now let G5 act on Patch 2 as shown in Table 4.2. The center of the rotation is more complicated since it
lies on the axis that is perpendicular to the left edge of Patch 2, goes through its midpoint, and is away from

it by “the length of the left edge”.

Table 4.2: Generating Process for Pattern 2

1

L1

E acting on Patch 2 pc,360/8 acting on Patch 2

P2 360 /8 acting on Patch 2 The pattern generated by G acting on Patch 2

From Tables 4.1 and 4.2 we see that the subgroup of rotations of order 8 may generate different patterns

by acting on a different patch with an appropriate rotation center.
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4.2 The Group Structure of Zillij Patterns

Let us consider a pattern like the one shown in Figure 4.3 (a).

S2h

(a) An Original Image b) A Similar Image

Figure 4.3: Another Sample of Zillij Mosaics

To simplify our study, we omit some of the background from Figure 4.3 (a) and get a figure similar to

Figure 4.3 (b). From Figure 4.3 (b) it is easy to see that this pattern can be decomposed into the patterns

shown in Table 4.3.
Table 4.3: Patterns in Figure 4.3 (b)
¥ \ I P
2 <
PN ﬂ ;\* » 0
¢ e o
Pattern 1 Pattern 2 Pattern 3 Pattern 4 Pattern 5
ﬂ&:"‘* ‘“‘t»% s - o e ® .
b a |’ N 4 LA . *
% v | ' | & b 2 x
&uﬁ o - - % o b4 w
Pattern 6 Pattern 7 Pattern 8 Pattern 9 Pattern 10

Next we focus our attention on the patterns in Table 4.3, analyze them and obtain the patches shown in

Table 4.4.
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Table 4.4: Patches for Table 4.3

Patch 1 Patch 2 Patch 3 Patch 4 Patch 5
Patch 6 Patch 7 Patch 8 Patch 9 Patch 10
Patch 11 Patch 12 Patch 13 Patch 14

We can also use the rotation group of order 8 mentioned above to generate Patterns 1 to 10, acting on
different patches with different rotation centers. We list the relationship between patterns and patches in in

Table 4.3 and the Patches in Table 4.4.

Table 4.5: Relationship between Patterns and Patches

Pattern name | Patch name | Group act on Patches
Pattern 1 Patch 1 < PC,360/165 pgf,gﬁo/]ﬁ =E>
Pattern 2 Patch 13 < P0,360/8> P as0/8 = £ >
Pattern 3 Patch 3 < P0,360/8s P as0/8 = £ >
Pattern 4 Patch 4 < £0,360/8 PO 3508 = E >
Pattern 5 Patch 5 < P0,360/8 Pé as0/s = E >
Pattern 6 Patch 14 < P0,360/8: Po 3608 = £ >
Pattern 7 Patch 7 < pc,360/8, P 360/8 = B >
Pattern 8 Patch 8 < Pc,360/8 Po,360/8 = £ >
Pattern 9 Patch 12 < PC,360/8 Poe0/s = E >
Pattern 10 Patch 11 < Pc,360/8 PO,360/8 = E >
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Whereas Patch 14 is created by a horizontal reflection on Patch 6, Patch 13 is generated by a horizontal
reflection, and Patch 12 is generated by the above group G2 acting on Patch 9 and Patch 10 with appropriate

rotation centers.

4.3 The General Group Structure of Zillij Mosaics

After analyzing the above two samples of Zillij mosaic, we find that we can use symmetry groups to generate
a Zillij mosaic pattern. The group may consist of rotation, reflection, translation, and identity, with the order
of rotations not limited to 2,3,4,6. Sometimes we need combine these operations with a scaling that expands
or contracts an object, as in Patch 12, which is generated by the group G2 acting on Patch 9 and Patch 10,

and is contracted to the appropriate size in the pattern.

4.4 Conclusion

Although the order of rotation in the groups mentioned in Table 4.5 is not 2,3,4, or 6 in the two examples
considered, we can nevertheless conclude that if we choose our motifs appropriately and construct the groups

carefully, groups can be used to analyze the structure of Zillij mosaic.
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Chapter 3

Grammars for Artifactual Patterns

In the 1950s, a combination of logic, mathematics, and linguistics was being developed to describe a family
of artifacts and architectural structures, and the concept of a shape grammar was defined. “Shape Grammars,
though, were one of the earliest, most complete, and most successful generalizations of the formal grammars
for one-dimensional logical or natural languages, to formal grammars for two- or three-dimensional spatial
languages” [22]. Shape grammars manipulate shapes, while grammars in logic and related fields manipulate
symbols. The processes of defining a shape grammar to describe a known style contain four steps. First,
assign a vocabulary of shapes and a set of spatial relations; second, design a set of shape rules that define the
occurrences of spatial relations; then, assign a set of initial shapes that begin the generations of designs; last,

specify a set of shape grammars in term of shape rules and initial shapes.

5.1 Shape Grammars
In [33], Stiny defines a shape grammar as a quadruple: SG =< Vg, Vy, R, I >, where

1. Vr is a finite set of shapes. A finite arrangement of an element or elements of Vr in which any element
of Vr can be used multiple times with the desired Euclidean transformations (translation, rotations,

scale and reflection), gives the set V;:. Also we define Vi = V7 — ¢.
2. Visis a finite set of shapes such that shapes in the nonempty sets Vgl" and VA“,; are distinguishable.

3. Ris a finite set of shape rules of the form u — v, where u and v are shapes formed by the shape union
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of shapes in V* and V};. The shape u must have at least one sub-shape that is a shape in Vﬁ. The

shape v may be the empty shape.

4. I is the shape formed by the shape union of shapes in the power sets Vi and V3. I must have at least

one sub-shape that is a shape in VJ.

Shapes in the sets V' or V:;" are called terminal shapes (or terminals). Shapes in the sets Vﬁ or Vy; are
called non-terminals (or markers). Terminals and markers are distinguishable, i.e., given a shape formed by
the shape union of terminals and markers, the terminals occurring in the shape can be uniquely separated
from the markers occurring in the shape. No shape in qu is a sub-shape of any shape in VAJ;, and vice versa.
I is called the initial shape. The shape consisting of all the markers in I has at least one sub-shape that is
a marker. Euclidean transformations could be applied to any of the above shapes to facilitate creation and
orientation. But only those that are applied to markers in a rule are applied to the subsequent generations
employing that marker.

A shape is generated from a shape grammar by beginning with the initial shape and recursively applying
the shape rules. The shape generation process is terminated when no shape rule in the shape grammar can
be applied. The sentential set of a shape grammar, SS(SG), is the set of shapes (sentential shapes) which
contains the initial shape and all shapes which can be generated from the initial shape using the shape rules.
The language of a shape grammar L{SG), is the set of sentential shapes containing only terminals. In other
words, the language defined by a shape grammar L(SG) is the set of shapes generated by the grammar that
do not have any sub-shapes which are markers. The language of a shape grammar may be a finite or an

infinite set of shapes. The next section demonstrates examples.

5.2 A Shape Grammar for Bakuba Textiles

Let us return to the Bakuba textile in Figure 1.1 and think about a shape grammar for this design. We begin

by listing the required terminals and markers in Table 5.1.
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Table 5.1: Terminals and Marker (V and Vi) for Figure 1.1

Terminal 1 Terminal 2 Terminal 3

Terminal 4 Terminal 5 | ) Marker

Next we create a set of shape grammar rules for Figure 1.1 (1), separated into Tables 5.2 and 5.3.

Table 5.2: Shape Grammar Rules for Figure 1.1 (1)

Left Side Right Side Left Side Right Side
-
1 2
-
3 4
-
5 6
. A
7 8
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Here is the second table.

Table 5.3: Shape Grammar Rules for Figure 1.1 (2)

Left Side Right Side Left Side Right Side

11

13

15

17

Then we assign an initial shape I as shown in the figure in the Table 5.4.
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Table 5.4: Application of a Shape Grammar (Figure 1.1) (1)

Step 1: Initial Shape

Step 4: Twice Rule 13 and Once Rule 6

Two times of using Rule 6

Step 5: using Rule 9 and Rule 10

Step 6: Using Rule 15

Step 7: Using Rule 16

Step 8: Using Rule 14
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We summarize this analysis in our definition of a shape grammar for Figure 1.1:

SG =<Vp,Vpy, R, T >

where Vir, Vur, R, I are defined as above.

Now we apply the rules in Table 5.2 and Table 5.3 to generate a pattern similar to that at the top of the
Figure 1.1.

The generating processes involved are summarized in Table 5.4 and Table 5.5.

Table 5.5: Application of a Shape Grammar (Figure 1.1) (2)

Step 9: Rule 1, Rule 4, and Rule 6

Step 10: Rule 5, Rule 10, Rule 8, Rule 11, and Rule 8
Then using Rule 6 to erase the arrow
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5.3 A Shape Grammar for Zillij Mosaics

We now define a shape grammar for Zillij mosaics. We illustrate the construction of the grammar using the

patterns in Figure 1.2. First we list terminals and markers as in Table 5.6.

Table 5.6: Terminals and Marker for Figure 1.2

Terminal 1

Terminal 2

7N\
N

Terminal 3

|

L]

Terminal 4

Marker

=)

Next we form the set of shape grammar rules as shown in Table 5.7. In Tables 5.8, 5.9 we show the

results of applying these rules.
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Table 5.7: Shape Grammar Rules for Figure 1.2

Left Side Right Side Left Side Right Side
w
| % X - |- E
- | O o LN
N I
\ "" 6 ‘ »)‘ ‘
M ) I s [ S—
7N ~ |
J. e O
A O~ A
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In addition, we assign an initial shape I as shown in Figure 5.1.

Figure 5.1: An Initial Shape I for Figure 1.2

‘We now have all required components for a shape grammar and define the grammar for Figurel.2 as

S5G =< Vp, Vo, R, I >

where Vi, Vi, R, I are the components as defined.

If we apply the rules in Table 5.7, we can see that they generate a pattern similar to that in the chosen
component of Figure 1.2.
The generating processes are summarized in Table 5.8 and Table 5.9. From these tables we can see that

by using the defined grammar, we can reproduce either the entire figure or, at worst, a significant part of it.
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Table 5.8: Application of a Shape Grammar (Figure 1.2) (1)

Step 1: Initial Shape Step 2: Using Rule 4

Step 3: Using Rule 9

Step 5: Using Rule 8 Step 6: Repeat 6 times of Rule 8
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Table 5.9: Application of a Shape Grammar (Figure 1.2) (2)

THIXCNS
‘4"'2-"“-»:”/
I -
9 PaNE,
ARG
AN

g

Step 9: The Result After Using Rule 10
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Chapter 6

A New Method for Generating Patterns

6.1 The Idea behind the New Method

So far we have used symmetry groups and shape grammars to analyze Bakuba textiles and Zillij mosaics,
and have found that our method is limited since Bakuba textiles and Zillij mosaics are closer to art than
mathematics. Moreover, the process of designing shape grammar rules is more complicated if the pattern
consists of many patches. We therefore extends our methods and tools by adding symmetry groups, i.e.,

wallpaper groups, to our analytical techniques. We illustrate this idea with the following two examples.

6.1.1 First illustration

In Table 6.1, we use the patch in Figure 1.1 and the wallpaper group w3(p31m) to create a new pattern. The
unit cell for the group is a graphics of the fundamental domain (gray polygon), control points that have been
used to form the domain (red points), and the graphical content of the unit cell. The downward oriented red

point in the unit cell is the rotation center.
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Table 6.1: Creating a New Pattern with Symmetry Group w3 (p31m)

A patch with Bakuba features | The unit cell for the group w3 (p31m)

The tiling of the above pattern (2X3)
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6.1.2 Second illustration

In Table 6.2, we use the patch in Figure 1.2 and the wallpaper group wg( p6 ) to create new pattern, with a

control path used to indicate the rotation center.

Table 6.2: Creating a New Pattern with Symmetry Group wg (p6)

A patch with Zillij features | the unit cell for the group wg(p6)

The pattern generated by symmetry group =g (p6) on the patch

The tiling of the above pattern (3X3)

The examples above show that it makes sense to enrich our analytical tools by adding wallpaper groups to
shape grammars. When describing shape grammar rules, we can therefore use one of the seventeen wallpaper
groups and replace shape grammar rules in an original way: way can simplify the rules and improve the way

of creating new patterns.
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6.2 The New Method

Since it is not easy to describe our new method in words, we describe it by an example.
First we define terminals and markers, i.e., the set of Vi and V) as Table 6.3. To simplify the description,

we only define two terminals and one marker.

Table 6.3: Terminals and Marker (Vi and Vi)

Terminal 1 Terminal 2

-

Marker

Next we define a set of shape grammar rules using a symmetry group as shown in Table 6.4.
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Table 6.4: Combining Shape Grammar Rules and Symmetry Groups

Left Side Right Side Symmetry group

1
2
3 w? (p3lm)
4 \ l - We (p6)

. ’

_.}

5

Now we assign an initial shape I as follows:
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Figure 6.1: Initial Shape I for New Method

This completes the definition of the components of the shape grammar SG =< Vp, Vs, R, I >, where
Vr,Vu, R, I is defined as the above.

We now apply the rules in Table 6.4 and show the result in Table 6.5.

Table 6.5: Combined Application of Shape Grammar Rules and Symmetry Groups

e~
“

Step 1: Initial Shape | Step 2: Using Rule 1

Step 3: Using Rule 4

Step 5: Using Rule 3 | Step 6: Using Rule 5
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From the above example we can see that the main difference between the new and old methods lies in

how shape grammar rules are defined and how they are applied.

6.2.1 How to define shape grammar rules

Based on the original way of defining shape grammar rules, we add some wallpaper groups to shape grammar
rules. When doing so, we just need to define unit cells that define the operation areas and rotation centers for

the groups, and indicate which group is used.

6.2.2 How to apply shape grammar rules

When building shape grammar rules without the use of wallpaper groups, as in the case of rotation rules, for
example, we often had to repeat a rules many times. With the help of wallpaper groups, we need to use the
rule just once. This not only simplifies the process of applying shape grammars, it also avoids the possibilities

of producing incomplete patterns because the number of repetitions is inadvertently incompletely defined.

6.3 Conclusion

We have shown that wallpaper groups can be combined effectively with shape grammars to study patterns in
Zillij mosaics and Bakuba textiles. This follows, in particular, from the fact that although wallpaper groups
involve glide reflections, as shown in Section 2.3, these operations are simply product of translations and
reflections, and we know that these operations are also needed for the use of shape grammars in the study of
the patterns considered in this thesis. Not only do these groups provide a way of simplifying the specification
of grammars that involve iterations of operations, therefore, they also provide an easy method for validating
the completeness of sequences of operations.

In the future, we hope to combine the method of tilings with the use of wallpaper groups to generate
bigger patterns based on motifs derived from Zillij mosaics and Bakuba textiles. For example, we can use the
patterns in Table 6.1 and Table 6.2 and appropriate tilings to generate the pattern shown in Figure 6.2.

On the other hand, because the order of rotation in wallpaper groups is limited in 2,3,4,6, but the order of
rotation occurred in Bakuba textiles and Zillij mosaics may be 8, 16, and is out of the range of 2,3,4,6, we

have to extend the order of rotations when combining wallpaper groups with shape grammars.
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Figure 6.2: Tiling of Two Patterns

As the above discussion shows, the use of both wallpaper groups and tilings are a promising line of
research that still needs to be explored. Not only do we need to generalize the idea of a shape grammar to
include wallpaper groups and tilings, we also need to broaden the class of wallpaper groups itself for this

purpose. Figure 6.2 shows that we can xgenerate beautiful patterns with this extension of our methods.
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Appendix A

Geometry, Symmetry and Groups

A.1 Concepts from Geometry
Suppose we are familiar with the Cartesian plane.
Definition 34 A point is an ordered pair (x, y) of numbers.

Definition 35 A line is the set of points (x, y) that satisfy an equation ax + by + ¢ = 0 where a, b, c are

number with a? + b? > 0.

Definition 36 The distance between points (x1, y1) and (2, y2) is the value given by

Vi(me —z1)2 + (Y2 — y1)2

Definition 37 If all points of a set of points lie on the same line, we call the points of this set collinear points.
Definition 38 If two lines meet at a right angle, they are called perpendicular lines.

Definition 39 We say that a line is a perpendicular bisector of a line segment if the line is perpendicular to

the line segment and passes through the midpoint of the line segment.

A.2 Symmetry Transformations

Definition 40 A transformation on the plane a one-to-one correspondence from one set of points in the plane

to other set of points in the plane.
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Definition 41 For any two transformations 7., T, in the same space, the product T, T, of two transformations

T, T,, IS the composition of the transformations: T,7,(P) = 7,(t,(P)).

Moreover, we use a symbol 7" for the composition 7...7, where T occurs 7 times, i.e. the n-th power of

the transformation 7.
Definition 42 The order of the transformation 7 is the minimal n(n € N) for which 7 = E holds.

Remark 43 If there is no finite number n which satisfies the given relation, then the transformation T is
called a transformation of infinite order. If n = 2, then the transformation  is called an involution. If
transformations T, and T, are such that 7,7, = E, then 7, is called the inverse of T,, We use the symbol 7,

1

to express it; and vice versa, i.e. ;" =T, and T L = 7,. Moreover, for the product of two transformations

(ry7) "t =77 71 holds.

Definition 44 Theidentity transformation of a space is the transformation E under which every point of the

space is invariant, i.e. E(P) = P holds for each point P of the space.

The identity transformation is symmetry of any given figure. Any figure in which set of symmetries

consists only of the identity transformation F is called asymmetric; any other figure is called symmetric.

Definition 45 A translation 74 g is a mapping having equations of the form

=z +a

y=y+b
where a and b are numbers, and A(z, y), B(z', ¢).

Definition 46 A reflection o, in line m is the mapping defined by

P ifpoint Pisonm
om(P) =

Q&  if Pis off m and m is the perpendicular bisector of PQ.

Definition 47 If a and b are distinct lines perpendicular to line c, then 0,040, is called a glide reflection

with axis c.
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Definition 48 A rotation about point C through directed angle of 0 is the transformation p, , that fixes C
and otherwise sends a point P to the point Pl where CP! = CP and 8 is the directed angle measure of the

—_—
directed angle from CP to CP1.

A.3 Symmetry Groups
A figure g is any non-empty subset of points of space.

Definition 49 A figure g is called invariant with respect to a transformation T if 7(g) = g, where the

transformation T is called a symmetry of the figure g.

Definition 50 The set of points invariant with regard to all the powers of a given symmetry T is called the

element of symmetry of the figure g.

As a binary operation * we understand any rule which assigns to each ordered pair (a, b) a certain element

¢ written as a * b = ¢, or in the short form, ab = c.

Definition 51 A structure (G, ) formed by a set G and a binary operation * is a group if it satisfies the
axioms:

1) (Closure): forall a,, a, € G, a,a, € G is satisfied;

2) (Associativity): forall a,, a,, a, € G, (a,a,)a, = a,(a,a,) is satisfied;

3) (Existence of a neutral element): there exists e € G that for each a, € G the equality a,.e = a, is
satisfied;

4) (Existence of inverse elements): for each a, € G there exists 7' € G so that a7 'a, = e is satisfied.

5) (Commutativity): for all a,, a, € G, a,a, = a,a, is satisfied, the group is commutative or Abelian.
Definition 52 The order of a group G is the number of elements of the group.

Remark 53 we distinguish finite and infinite groups by the order of groups. The power and the order of a

group element are defined analogously to the definition of the power and the order of a transformation.

Definition 54 A figure g is said to be an invariant of the group of transformations T' if it is invariant with

respect to all its transformations, i.e. if 7(g) = g forany T € T.
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Definition 55 All symmetries of a figure g form a group, that we call the group of symmetries of g and denote

by T,

Definition 56 A subset H of group T, which by itself constitutes a group with the same binary operation, is

called a subgroup of group T if and only if forall a,, a, € H, ala;l € H.

Definition 57 Anisometry is a distance-preserving transformation of the geometry objects in the plane con-

sisting of translations, rotations, reflections, and glide reflections.

Definition 58 A wallpaper group w is a group of isometries whose translations are exactly those in < T,,

T, > where if 1=T,  and 7,=T, . then A, B, C are noncollinear points.

Definition 59 A cyclic subgroup of a wallpaper group is a subgroup generated by a single element of the

group.
Definition 60 For a set s of points, if 0,.(s) = s, we call point P is a point of symmetry

Definition 61 A point P is an n-center for a group G of isometries if the rotations in G with center P form

a finite cyclic group C,, withn > 1.

Definition 62 A figure is a nonempty set of points. If point P is an n-center for the symmetry group for a

figure, then P is also called an n-center for the figure.
Definition 63 A center of symmetry is an n-center for some n.

Remark 64 A point of symmetry is not necessarily an n-center, and vice versa. For example, if point P is a
4-center for some figure, then P is a point of symmetry for that figure since o, = piv oo In this case, point P
is a point of symmetry but P is not a 2-center. Also note that if point Q is a 3-center for some figure then Q)

is not a point of symmetry for that figure.

Definition 65 The crystallographic restriction says that if point P is an n-center of a wallpaper group, then

n is one of 2,3,4,0r 6.
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Appendix B

Proof of the Restriction Theorem

Unless otherwise stated, the details of the proof are taken from MARTIN [24].

For proving the crystallographic restriction theorem, we need some basic concepts that are introduced in
Appendix A.

The ornamental groups of the plane are the rosette groups, the frieze groups, and the wallpaper groups.
We pay our attention on the last of the ornamental groups of the plane by considering wallpaper groups whose

subgroup of translations is generated by two translations.

Definition 66 The translation lattice for wo determined by point A is the set of all images of A under the
translations in w. Since every translation in w wallpaper group is of the form 'rg 74, then all points A;; form

a translation lattice where A;; = r37i(A).

See Figure B.1.

} 31
AR T
> ‘.0 e )
/é &’t"i’ /
LY
Ay / / B=Ay / L / &y,

Figure B.1: Illustration of the Translation Lattice
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Definition 67 A unit cell for wo with respect to point A and generating translations Tyand T2 is a quadrilat-

eral region with vertices A;j, Ait1,5, Aijt1 and Aipy i1

A unit cell is always a quadrilateral region determined by a parallelogram. A translation lattice with a
rectangular unit cell is called rectangular; a translation lattice with a rhombic unit cell is called rhombic.
Our first task is to show that a translation lattice is necessarily rhomic or rectangular when contains odd

isometries.

Theorem 68 If o; is in wallpaper group w, then | is parallel to a diagonal of a rhombic unit cell for w or

else L is parallel to a side of a rectangular unit cell for w.

Proof

Suppose o, is in wallpaper group . We wish to show that [ is parallel to a diagonal of a rhombic unit cell
or that / is parallel to a side of a rectangular unit cell. Let A be a point on l. Let 7, ,, be a shortest nonidentity
translation in co.

There are two cases.

— —

Case 1: Neither AP = Inor AP L 1. letQ = o,(P). Thenrt,,isinwasr,, = 0,7, ,0,". See

Figure B.2. Since AP = AQ and points A, P, Q are not collinear, then<7, ., 7, ,> is the group of all

translations in w and [ contains a diagonal of a rhombic unit cell.

Figure B.2: Illustration of Case 1

Case 2: AP =lor AP L 1.
e
Let a be perpendicular to AP at A;
let m be the perpendicular bisector of :ﬁ;
and let n = o,(m).

See Figure B.3.
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Figure B.3: Illustration of Case 2

Let 7, , be a shortest translation in o that is not in <7, ,>.

Then R is on m, on n, or between m and n, as otherwise Tj:’i,T A, 18 shorter than 7, ..

Further, considering both 7, . and its inverse, we may suppose without loss of generality that 7, , is
such that R is on m, on a, or between m and a.

Let S = o,(R). Assume R is between m and a.

It] = AP. then Ta sTa, g IS & translation in w shorter than 7, .

Ifi L iﬁ then 7, , 7, , is a translation in  shorter than 7, .

Therefore we must have R is on m or a.

If Ris onm, then <7, ,, T, ;> is the same as <7, ,, T, > SINCE T, T, rn = Ty p-

Thus ! is parallel to a diagonal of a thombic unit cell (JARPS; in Figure B.3) with respect to point A
and generating translations 7, , and 7, 4.

On the other hand, if Ris on a, then <7, , 7, > is the group of all translations in w and ! is parallel to
a side of a rectangular unit cell for w.

This proves the theorem. i

Theorem 69 If wallpaper group w contains a glide reflection, then w has a translation lattice that is rhombic

or rectangular.

Proof

First, we suppose wallpaper group wo contains no reflections but does contain a glide reflection with axis
line [.

By the Theorem of the Frieze Groups [24], we see that the smallest group containing the glide reflection

and the translations in o that fix [ is a frieze group F} generated by glide reflection -y with axis [.
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Hence, we may suppose 2 is a shortest translation fixing .

Let A be a point on {.

Let a be perpendicular to [ at A, m = vy(a), p = ¥*(a), and P = v%(A).

So 7, , is a shortest translation in <7y>.

Let 7, , be a shortest translation in o that is not in <v*>.

Since ijfj 4, p cannot be shorter than 7, ,,we may suppose without loss generality that B is on a or lies
between ¢ and p.

If B is on a, then w has a rectangular translation lattice and [ is parallel to a side of a rectangular unit

cell. Suppose B is between ¢ and p.

See Figure B.4.
|
P
] '
B \' LRy,
d
)
Figure B.4: Hlustration of B between a and p
Let C = 0,(B).

« . _ —1
Thent, ,isinwas 7, ,=Y7, z7 -

—n2 ;
So7, T, p=Y" and B is onm.

So LJABPC is a thombic unit cell with / containing a diagonal.ll

Theorem 70 If a glide reflection in wallpaper group w fixes a translation lattice for o, then w contains a

reflection.

Proof
If glide reflection ~y takes point A to point P in the translation lattice determined by A for wallpaper group
w, then vy followed by 7,, , must be a reflection as the product is an odd isometry fixing point A.H

This finishes the preliminary results needed about odd isometries in a wallpaper group.
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Theorem 71 For given n, if point P is an n-center for group G of isometries and G contains an isometry
that takes P to Q, then Q) is an n-center for G. If | is a line of symmetry for a figure and the symmetry group

for the figure contains an isometry that takes | to m, then m is a line of symmetry for the figure.

Proof

First, for a given n, the set of n-centers must be fixed by every isometry in the group. To see this, suppose
a(P) = Q for some isometry « in group G. Form the equations ozp,,,@oz"1 = pg 1o and a‘IpQ'q,a:p,,’ﬂ,
we see that () is an n-center iff P is an n-center (for the same n).

Similarly, if a(l) = m, and oy is in G, since 0,, = ao,a™!, therefore, oy, is in G.W
Lemma 72 (Xiu Wu Huang) If T is the center of square OPQRS, 0., 0, 0y, arein < Opgr Osr Op >

Proof

According to the theorem about half-turns, we have:

Op = Opn O
Oq =0y 00
Op = OppOps

Figure B.5: Illustration of Lemma 74

Moreover, from the condition, we have:

«—> >
RS = 0,.(PQ),
— “—
PS = 0, (RS),
QR = 0,(PS)

Therefore, we have:

Ops = 01055070

Q

RS
gz = 0505305 = 0507040705
O

= 0,035,005 = 0705070507050
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Thatis op,00,0r arein < o o, >0

PQ’US’

Lemma 73 (Xiu Wu Huang) < pa,60,052 >=< oqe O5a: 09 > If G is the center of equilateral

boTe] toZe2RY: ]
AABC.
Proof
Let Gi1= <pa,60, 05> Go= <043, 050, oqp> and Gz= <pa,60, Tz PB:60> T5es OB 758

Suppose p 4,60 (B) = C for orientation.

Do d

Since B = og5z(A), and BG = pas60 (CG), so, we have:
PB,60 = U‘éapz,soac‘_c’;

(we can checked it by using A, B, C)

since AG PB, GO(CG), oqp = O‘X-é»pA,eo, and Theorem 71,

S0 pB,eo and el in G1,s0 Gy = G3.

Figure B.6: Illustration of Lemma 75

Now, think G and G3: Since pa,e0 = 04093 » B(_C:’—m—-» (C’G) the above conclusion about pp 6o,

and Theorem 71, thus, G5 = G3. That is <p 4,60, Tga>= <0492, O&g» aﬁ>.l

Theorem 74 If p 4 360/ and pp aeo/n With P # A and n > 1 are in wallpaper group w, then 2AP is not

less than the length of the shortest nonidentity translation in w.

Proof

Suppose rotations p 4 360/n and pp 3so/n With P # A and n > 1 are in wallpaper group .

Then = contains the product pp 360/n04,—360/n, Which is a nonidentity translation 7'2 7¢ for some i and j
by the Angle-addition Theorem.

So

N )
PpP,360/n = T2T1PA,360/n
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and

ppaso/m(A) = T3Tipa 360/m(A) = Aij.

Hence, either P is the midpoint of A and A; ; (when n = 2) or else AAPA, ; is isosceles.
In either case, 2AP = AP + PA; ; > AA; ; > 0 by the triangle inequality.
Therefore, 2AP is not less than the length of any nonidentity translation in .M

Theorem 74 shows that certain centers of symmetry cannot be arbitrarily close. This conclusion is very

useful for the following proof.

The theorem above more precisely states that no two n-centers (same n) can be “too close”.

Lemma 75 The possible values of n such that there is an n-center in a wallpaper group are rather restricted.

Proof
Suppose point P is an n-center of wallpaper group.
Let @ be an n-center (same n) at the least possible distance from P with Q) # P.

The existence of point ¢} is assured by the previous two theorems.
1. Let R = pg 360/ (P). Then R is an n-center and PQ = QR.
2. Let S = pr,360/n(Q). Then S is an n-center and RQ = RS.
3. If S = P, then n=6. See Table B.7.

4. If S # P, then we must have SP > PQ = RQ by the choice of Q.

8 P ! i S; 'i s"i P 3
R 1 R . R 1 >éu
Figure B.7: Figures for Case 3

Hence, if S # P, then n < 4. So n is one of 2,3,4,or 6.0

We have proved the crystallographic restriction theorem:

Theorem 76 (Crystallographic Restriction Theorem) If the point P is an n-center for a wallpaper group,

then n is one of 2,3,4,0r 6.
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Appendix C

Proof of the Classification Theorem

Unless otherwise stated, the details of the calculations below may be found in [24].

‘We begin by observing that from Theorem 76 in Appendix B, we can get the following result:

Theorem 77 If a wallpaper group contains a 4-center, then the group contains neither a 3-center nor a

6-center.

Proof

We suppose there is a wallpaper group containing a 3-center P, i.e. pp,120, and a 4-center @), i.e. pg,g0-

Therefore, the product pp,12000,~90, i.€. a rotation of 30°(n = 12) about some point, is also in the
wallpaper group. By the crystallographic restriction theorem (Theorem 76), that is impossible. Thus, a
wallpaper group cannot contain both a 4-center and a 3-center at the same time.

Since pf;ﬁo = pp,120, according to the above conclusion, it is impossible that a wallpaper group contains
a 3-center and a 6-center.ll

Based on the theorems above, we shall now find all possible wallpaper groups w, beginning with the
groups that contain an n-center.

By the crystallographic restriction it is sufficient to consider only values 6,3,4, and 2 for .

C.1 6-Centers

We start our process of exploring all possible wallpaper groups with 6-center, and we have the following

theorem.
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Theorem 78 Suppose A is a 6-center for wallpaper group w. There are no 4-center for w. Further, the
center of symmetry nearest to A is a 2-center M, and A is the center of a regular hexagon whose vertices are
3-centers and whose sides are bisected by 2-ceners. All the centers of symmetry for w are determined by A

and M.

Figure C.1: Illustration of the Proof of Theorem 78 (1)

Proof

According to Theorem 77, w can contain no 4-centers since t contains the 6-center A.

Let M be an n-center nearest to A. If M were a 3-center or a 6-center, then there would be a center F
closer to A than M, where par,12004,60 = pr,s0- See Figure C.1 above. Hence, M must be a 2-center.
Define point G by the equation pr,18004,—60 = pG,120- SO G is either a 3-center or a 6-center. However, G
cannot be a 6-center as then there would be a center .J between A and M, where J is defined by the equation
PG,60PA,60 = pJ,120- Hence G must be a 3-center. The images of G under the action of p4 ¢ are the vertices
of the hexagon in the statement of the theorem. With B = o/(A) and C = p4 6o(B), then B and C are
6-centers for . The centers of symmetry determined by the 6-center A and the 2-center M are as arranged
in Figure C.2. With N = p4 60(M), then N is a 2-center for w. Also, since 6-center A must go to a 6-center
under an element of @, then opr04 and oo 4 are shortest translations in w. Hence 74,5 and 74 ¢ must
generate the translation subgroup of .l

We have our first specific wallpaper group:

wWe =< TA,B>TA,Cs PA60 =< PA,60,0M >

where AABC is equilateral and M is the midpoint of AB. A smallest polygonal region ¢ such that the plane

is covered by {a(t)|a € w} is called a polygonal base for wallpaper group w.
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I~ o

s

- O

Figure C.2: Illustration of the Proof of Theorem 78 (2)

The bases may be used to create wallpaper patterns having a given wallpaper group as symmetry group.
If t' is a figure with identity symmetry group in base ¢, then the union of all images «(t') with a in w is a
figure with all the symmetries in .

This figure is said to have motif ¢'. In producing a wallpaper pattern, once motif ¢’ is picked for base ¢,
that part of the pattern in a unit cell is determined and this is then just translated throughout the plane to give
the wallpaper pattern.

For each of the seventeen wallpaper groups, we shall have a figure such as Figure C.3.

[ D
OO
4
/ I’
N s Pf
?
4
v
M...__
A B

we =< TA,B,TA,C» PA60 >
=< PA60,OM >

Figure C.3: Illustration of the Wallpaper Group wg
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These will have a pattern with the check motif, a unit cell with a base and symmetries indicated, two sets
of generators for the group, and two designations for the group.

In addition to the notation of Fejes Toth involving “cw”, the short international form used by crystallog-
raphers will be given.

For example, the group wg is designated p6 by crystallographers.

Consider extending s to .

Since the rhombic translation lattice of 6-centers determined by 6-center A must be fixed by any isometry
in o, then by Theorem 70 in Appendix B, any extensions of wg are obtained by adding reflections that fix
this translation lattice.

However, because of the richness of ws, adding any one of the possible reflections requires introducing

all of the possible reflections.

See Figure C.4.
S S S6
VAVERNAN
¢ D ;é, ,;é
N gg
M
2 B

wg =< TA,B>TA,Cs PAB0, O78 >
=< PASO, O8>
= pbm

Figure C.4: Illustration of the Wallpaper Group w3

Let

1
Wg =< TA,B>,TA,C»PA60: Offa >+

From the result on og, then

1 _
Wg =< PA,60:0M, o5ic >.

Since
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= 05120 PAGO = 0493 054>
and
OpM = 0' Um
moreover, we can rewrite the last two equalities as:
052 = PA, 600‘__&, m.._m =oZLlo, .
AG WA OMA GM Mc™M
So

@o =< 033 O5wh OFA >

This means that w] is generated by the three reflections in the three lines that contain the side of a
30°,60°,90° triangle. by Lemma 73 in Appendix B, we get:

wg =< PA60, Tz >

A wallpaper pattern with symmetry group wg has a 6-center but no line of symmetry; a wallpaper pattern
with symmetry group w§ has a 6-center and a line of symmetry. A wallpaper pattern having a 6-center has a

symmetry group g or wp.

C.2 3-Centers, but no 6-Centers

After exploring all possible wallpaper groups with 6-center, we continue our way and explore wallpaper

groups containing 3-centers, but do not have 6-center. We have the following theorem:

Theorem 79 If A is a 3-center for wallpaper group w and there are no 6-center for w, then every center of
symmetry for w is a 3-center and A is the center of a regular hexagon whose vertices are 3-centers. All the

centers of symmetry for @ are determined by A and a nearest 3-center.

Proof

Since the fact that p4,—120pp,180 cannot be in w for any point P since w contains no 6-centers, that every
center P for co must be a 3-center follows.

Let G be a nearest 3-center to A.

Let J be such that pg 12004,120 = pJ,240-

Then J is a 3-center and AAGJ is an equilateral triangle.

The images of GG and J under the action of p4,120 are the vertices of the hexagon in the statement of the

theorem.

73



Repetition of the argument for each 3-center shows that all the 3-centers are arrayed as in Figure C.5.

Figure C.5: lllustration of the Proof of Theorem 79

This finishes the proof of the theorem. l

Further, from Figure C.6,

Figure C.6: Advanced Illustration of Theorem 79

we see that each of pg 12074,¢ and py12074,7 i pg,120 Where Q is the centroid of AAGJ.

Hence neither 74, nor 74,7 is in w as otherwise ) would be a 3-center nearer to A than G.

Soif 74, p is a shortest translation in w, then 3-center B is not a vertex of the hexagon of nearest 3-centers
to A.

Let B and C be defined by 74,8 = pa,12004,—120 and TA,c = pa,—120PA,120-

Then 74 g and 74,¢ are shortest translations in w and take A to next nearest 3-centers.

Hence, 74, g and 74 ¢ generate the translation group of .

Let w3 =< TA,B,TA,C PA,120 >=< 4,120, PG,120 >

If ww contains no odd isometries then 7o must be ws.
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w3 =< TA,B;TA,C) PA,120 >
=< PA,120, PG,120 >

Figure C.7: Illustration of the Wallpaper Group w3

See Figure C.7.

Consider extending wj to a wallpaper group wo without reflections by adding glide reflections.

Then by Theorem 70 in Appendix B, @ must have a glide reflection that takes 3-center A to a 3-center
that is not in the translation lattice determined by A.

By composing this glide reflection with a translation and possibly a rotation about A, we may assume @
contains a glide reflection that takes A to either G or J.

Suppose « is a glide reflection in co that takes A to G.

Then ¥ = 0,0z where Z is the midpoint of A and G and 2 is some line through G.

Since oz fixes the set of all 3-centers, then o, must also fix the set of all 3-centers.

See Figure C.8.

By composing o, with a rotation about G, we may suppose without loss of generality that 2 is either the
perpendicular bisector of JB or z = G.J.

The first is impossible as otherwise AG is the axis of v and T, 47? is a translation in @ of length AG
and shorter than 74, 5.

Soz= (G_j .

However, then pg 1207 = 0470,0.02 = 05+ and @ contains the reflection in the perpendicular

Ac zZJ
bisector of AG.
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Figure C.8: Illustration of the Wallpaper Group w3

Likewise, the presence of a glide reflection taking A to J implies the reflection in the perpendicular

bisector of A.J is in w.

In any case, @ must contain a reflection if = is an extension of w3 and contains an odd isometry.

w% =< TA,BaTA,CapA,1207Um> & k" KAB (/];' %
=< PA120, G120, 0 > & J; & %

= pdml
Figure C.9: Ilustration of the Wallpaper Group w3

All extensions of w3 to a group with no 6-centers by adding odd isometries are obtained by adding
reflections.

If w3 is extended by adding oy, then line [ must be a line of symmetry for the set of 3-centers.

Since such a line must pass through at least one 3-center, we suppose [ is a line through 3-center A.

Let w3=<74,B,TA,C) PA,1205 el and w3=<T4,B,TA,C)PA,120, oGB>

See the above Figure C.9 and the following Figure C.10.

The above shows that w3 is generated by the three reflections in the three lines containing the sides of an

equilateral triangle.
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w% =< TA,B>TACs PA,120, 001 >
=< £G,120,09 8 > /
= p3im SN B e B

Figure C.10: Tlustration of the Wallpaper Group w3

Group w3 and w3 are obtained by adding to w3 the reflection in one of the diagonals of the rhombic unit
cell determined by A.
Adding the reflections in both diagonals would introduce a halfturn and a 6-center.

So any wallpaper pattern containing only three centers has one of w3,%3, w2 or as its symmetry group.

1. A wallpaper pattern with symmetry group tos has a 3-center, has no 6-center, and has no line of

symmetry.

2. A wallpaper pattern with symmetry group w3 has a 3-center, has no 6-center, and every 3-center is on

a line of symmetry.
3. A wallpaper pattern with symmetry group w3 has a 3-center off a line of symmetry but no 6-center.

Remark 80 The short international forms p3ml and p31m have often been interchanged in the mathematical

literature and caution is advised whenever these are encountered.

C.3 4-Centers

Now we turn our attention to the wallpaper groups with 4-centers.
The following theorem regarding 4-centers in a wallpaper group is analogous to that about 6-centers. The

proof follows the statement of the theorem. See Figure C.11.

Theorem 81 Suppose A is a 4-center for wallpaper group w. Then, there are no 3-centers for w and there

are no 6-centers for w. Further, the center of symmetry nearest to A is a 2-center M, and A is the center of
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Figure C.11: Hlustration of Theorem 81

a square whose vertices are 4-centers and whose sides are bisected by 2-centers. All the centers of symmetry

for w are determined by A and M.

Proof

By Theorem 79 of the crystallographic restriction, if A is a 4-center for wallpaper group w, then every
center of symmetry for w is either a 2-center or a 4-center.

Let M be a center of symmetry nearest to A.

If M were a 4-center, then K would be a center of symmetry closer to A than M where K is given by

PM,90PA,90 = OK.

See Figure C.12.

X

Figure C.12: Illustration of the Proof of Theorem 81

So M must be a 2-center.

Then F is a 4-center where

PM,180PA,—90 = PE,90-
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The images of E' and M under the action of p4 go are, respectively, the vertices and midpoints of the
square in the statement of the theorem.

Translation 74, g is not in @ as otherwise Z is a center of symmetry closer to A than M, where

TA,EOA =0Z.

With N = pago(M) ,7a,B = om0oa , and T4 c = on0O4, then ONAME is a square and 74 p are
shortest translations in o and generate the translation subgroup.

Thus there is no more room for more centers of symmetry than those already encountered (Theorem 83).

The centers of symmetry for to are as arranged in the above Figure C.12. W

Let wy =< Ta,B,TA,c,Pa00 > Where E is the center of square JABDC. If w contains no odd
isometries then w must be w4.Now we use three noncollinear points A, B, C to check 74,8 = pg,9004,-90

See Figure C.13

Ly

Figure C.13: Hlustration of the Wallpaper Group w4

where AA7 = AB = AC = BB/.

Ta,B(A) = B, 74,8(B) = B', 74,5(C) = D

and

pE,90pPA,~90(A) = ppgo(A) =B

since the angle A/EB/ = 90°, pg 90pa,—o0(B) = pg,e(4’) = B’

PE,90PA,~90(C) = pp,9o(B) = D

Therefore, 74,58(A) = pr,90pa,—90(A4), 7a,8(B) = pE90p4,-90(B), Ta,5(C) = pr.g0pa,—0(C).
Similarly, we can use A,B,C to check 74,c = pE,—9004,90-

S0, w4 =< Ta,B,TA,C) PA0 >=< PA,90, PE,90 >-

See Figure C.14.
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W4 =< TA,B;TA,C) LA, >
=< PA,90, PE,90 >
= p4 v

% K

Figure C.14: Illustration of the Wallpaper Group w04

Consider extending w, to wallpaper group « by adding odd isometries. If ¢, is in w, then / must be a

line of symmetry for the set of all 4-centers in zo.

Because of the abundance of rotations in wy, it is sufficient to consider adding either a reflection in a line
of symmetry through a 4-center or else a reflection in a line off all the 4-centers.

> —
Lines AE and M N will serve our purpose.

First, let wi= <74 B,TA,C, PA,00, 052>

4E

See Figure C.15.

[

O—0—~0]
aNVe
NO — <> (O

4

A M

1

Wy =<TA,B,TAC; PA, 0GR =
=< PA,90, PE90, TG >

= pdm

Figure C.15: Tllustration of the Wallpaper Group o}

Since

PA90 = OGEOTE: PES0 = Txip0ags
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we have

Wi =< P4,90; PE0: 055 >=< 053> Ohiar O >

this means that w} is also generated by the three reflections in the three lines that contain the sides of an
isosceles right triangle.

Secondly, let wj= <7TA,B,7TA,C) PA,90; TR >-

See Figure C.16.
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e
%

A b4 B
2
Wy =< TA,B,TA,C> PA0 O =
=< PA90, O >
= pdg

S

|

e
.
.

Figure C.16: Ilustration of the Wallpaper Group w3

Both 043 and o7 cannot be added to wy without introducing a center of symmetry closer to A than

M.

The group o} differs from the above group (p4) in that it also has reflections.

To consider the possibility of extending w4 to a wallpaper group w without reflections by adding odd
isometries, it is sufficient (Theorem 70 in Appendix B) to suppose w contains a glide reflection taking 4-
center A to a 4-center that is not in the translation lattice determined by A.

By composing this glide reflection with an appropriate translation, we may suppose = contains a glide
reflection «y taking A to E. With Z the midpoint of A and E, then v = 0,0z for some line z through E.

Since -y must fix the set of all 4- centers, then z must be one of ]\TE,ITE, or I<V—Ej

However, -y followed, respectively, by pE,90, PE,180.0T PE,270 gives the reflection in W .

Extending w4 by odd isometries leads only to w} or w3.
1. A wallpaper pattern with symmetry group w4 has a 4-center and no line of symmetry.

2. A wallpaper pattern with symmetry group cw; has a line of symmetry on a 4-center.
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3. A wallpaper pattern with symmetry group s has a 4-center and a line of symmetry off all 4-centers.

C.4 2-Centers

Now, we focus our attention on the wallpaper groups with 2-center.Suppose wallpaper group w has a 2-center
A and every center of symmetry for o is a 2-center.

So o4 isin w.

With < 74 p,7a,c > the translation subgroup of @, let oy = 74,04, ON = Ta,cO4, and o =
ONOTAOM.

Points M, N, E are 2-centers and we have our usual notation with [JABDC defining a unit cell.

See Figure C.17.

Figure C.17: Illustration of 2-Centers

Every point A,;; in the translation lattice determined by A is a 2-center as well as the midpoint of any two
such lattice points.

There can be no more centers of symmetry than these.

Let wy =< TA,ByTA,CyTA >

If contains no odd isometries, then o = ws.

Since, we have:

OM = TA,BOA,ON = TA,COA

S0

we =< TA,B,TA,C,04 >=< OM,0E,ON >.

'This means that @, is generated by 74, g, Ta,c, and o and also by o, o and oy .

See Figure C.18.
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P -~ -
- P
P P
W =< TA,B,TA,C;0A >
=< OypM,0E,ON >
MOCE,ON - -

Figure C.18: Illustration of the Wallpaper Group w2

Consider extending o to wallpaper group w by adding only odd isometries.

Suppose oy is in @.

Then <o has a thombic or rectangular translation lattice (Theorem 68 in Appendix B).

In the nonrectangular rhombic case, line [ is parallel to a diagonal of a unit cell and so must pass through
a 2-center.

In this case, we may suppose A to be a 2-center on [.

Then ! contains a diagonal unit cell of the translation lattice determined by A.

However, adding the reflection in one diagonal of a unit cell necessitates adding the reflection in the other

diagonal as the center of the unit cell is a 2-center.

1
Let wy =< 7Ta,B,TA,C,093: 058 >

See Figure C.19.

1 _
Wy =< TA,B,TA,C: 04 O5E >

ho <
=< O9p1 05 OM > -
=cmm

Figure C.19: Tlustration of the Wallpaper Group w3
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Therefore, in the nonrectangular case, we have only the one possibility that @ = 3.

If a rhombic unit cell is rectangular, then the unit cell is square and is a special case of the general
rectangular case considered next.

An extension w of wq cannot have a reflection in a diagonal of a unit cell unless the unit cell is thombic
and cannot have reflections in both a diagonal and a line parallel to a side since every n-center is a 2-center.

Thus, to extend wy with reflections there remains to consider only the case where a unit cell is rectangular
(possibly square) and o; is in zo with [ parallel to a side of unit cell defined by HABDC.

There are the two possibilities that either [ passes through a 2-center or else [ passes between two adjacent
rows of 2-centers.

In the first case, introducing the reflection in one of the lines that contains a side of (IJN AM E requires
the introduction of the reflection in each of these lines.

In this case, w is w? defined by

W5 =< TA,ByTAC) 0551 TG >

Since, we have:

0'(—)

TA,B0'4—>0'1—> = 2052 and TA’CON—)(]'(——-—) = O-A(—I)V NBE

ANYaM AMYME ANYAM
S0,

2 J—
Wy =< TABTAC, O 09 >==< 0gh Ot O ONE =~

See Figure C.20.
C
O O o
l ' < < °
i
E
N O
e, o
l N - ~ = e
O
A M B

2 _
wy =< TAB,TAC, T T4 =
=< 9% 578 YA ONE ~
= pmm

o
-~ -~

Figure C.20: Illustration of the Wallpaper Group w3

In the second case, where [ passes between two adjacent rows of 2-centers, we may suppose without loss

—
of generality that [ is parallel to AN.
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In this case, w is @3 defined by wh =< TA,B»TA,C10A,Op > Where p is the perpendicular bisector of
AM.

See Figure C.21.

c oo \ \
| | /] A N/
. O o
Z \
ol |}

3
Wy =< TA,B7TA,C,UA7U]J >
=< OA,ON,0p >

h /J\/L\f/ |
/ N

Figure C.21: Ilustration of the Wallpaper Group w3

We have finished extending wy by adding only reflections.

Consider extending w, to a wallpaper group w by adding a glide reflection v such that no reflections
are introduced a glide reflection with an axis that passes through a 2-center necessitates the introduction of a
reflection.

Hence, the axis of v must pass between two adjacent rows of 2-centers.

This requires that the parallelogram unit cell be rectangular.

We shall see that one choice of axis for v introduces glide reflections whose axes consist of all possible
candidates.

Let p be the perpendicular bisector of AM; let g be the perpendicular bisector of AN.

A glide reflection with axis p taking 2-center M to 2-center C followed by 7¢ 4 produces the undesired

reflection op.
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So let -y be the glide reflection taking M to N and A to E.

Let € be the glide reflection taking N to M and A to E.

The axis of v is p and ¥2=74,¢; the axis of € is ¢ and £2 = TA,B.

Check that yo 4 = €. Let w3=<7Ta B, Ta,c,04, 7>

Then w74 not only contains both + and ¢ -and hence all possible glide reflections whose presence does not
also require reflections—but o3 is even generated by + and &.

See Figure C.22, where the axes of glide reflections are indicated by broken lines.

W§ =< TA,B,TAC;TA,7Y >
=< v, >
= P99

Figure C.22: Tllustration of the Wallpaper Group w3

So far, we have:

1. A wallpaper pattern with symmetry group o has a 2-center, every center of symmetry is a 2-center,

and is not fixed by an odd isometry.

2. A wallpaper pattern with symmetry group w3 has a 2-center, every center of symmetry is a 2-center,

and some but not all 2-centers are on a line of symmetry.

3. A wallpaper pattern with symmetry group w3 has a 2-center, every center of symmetry is a 2-center,

and every 2-center is on a line of symmetry.

4. A wallpaper pattern with symmetry group w3 has a 2-center, every center of symmeltry is a 2-center,

has a line of symmetry, and all lines of symmetry are parallel.
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5. A wallpaper pattern with symmetry group wj has a 2-center, every center of symmetry is a 2-center,

has no line of symmetry, but is fixed by a glide reflection.

C.5 No Centers

Finally we come to the wallpaper groups = that have no center of symmetry.

If @ contains oy, suppose A is on {.

If w contains no reflection but does have a glide reflection, suppose A is on the axis of a glide reflection
in .

There is the case where t contains no isometries other than translations. In this case, the @, = w where
w1 =< TA,B, Ta,c > With A arbitrary and A, B, C noncollinear.

See Figure C.23.

S A A A
AN
S

Figure C.23: Illustration of the Wallpaper Group =,

w1 =< TA,B,TA,C >
=< TA,B;TA,BTA,C >

Consider extending @, to wallpaper group w by adding only odd isometries.
If gy is in w with A on [, then, by Theorem 1, there is a thombic unit cell defined by JABDC with
| = AD or else there is a rectangular unit cell defined by LJABDC with | = Ac.
In case JABDC is a square, w cannot have reflections in both AD and AC because @ contains no
rotations.
Let w{=<7a,B,TA,C) ogp> and Wi=<T4,B,TA,C) o3>
2

If w contains a reflection then w is one of w} or w?.

Since, we have

87



O'ZB(B) = C, TA,C = 0'<A—D>7'A’BO':A—D>
SO
w% =< TA,B>TA,C O9H >=< TA,B, 09D >

See Figure C.24 and note that NE is not a line of symmetry for zo}.

/ A h
\ A /
§ N /]
\
K21 /!
wi =< TAByTAC,O5g > /
=< TA,B 05D >
=cm / A
A

Figure C.24: Illustration of the Wallpaper Group w}

On the other hand, all the glide reflections in w? are of the form (amﬂ", B)Ta,c With i # 0 and have
axes that are also lines of symmetry for w?.

This property can be used to distinguish patterns with symmetry group wj and w?$. See the above
Figure C.24, and the following Figure C.25.

Finally, consider extending wo; with glide reflections only.

The axes of the glide reflections must be parallel because zo; contains no rotations.

We have the one further case where one of the generating translations is the square of a glide reflection in
w. Let w} =< 74 5,7a,c,7 > where 7 is the glide reflection with axis AB that takes A to M.

See Figure C.26.

So v2=74,B.

Clearly w7} is generated by 74,c and 7.

Lete = 74,c7.

Check that ¢ is the glide reflection with axis Jﬁ that takes N to E and that 3 is generated by ~y and ¢.
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2
w] =< TA,B,TA,C,U}TC’ >
=<TAC: T4 Osip =~
posd pm

Figure C.25: Tllustration of the Wallpaper Group w?

So w3 contains all possible glide reflections.

The extension of ) to a wallpaper group by adding only odd isometries gives one of w}, w?, or w}.

1. A wallpaper pattern with symmetry group oo; has no center of symmetry and is not fixed by any odd

isometry.

2. A wallpaper pattern with symmetry group w; has no center of symmetry, is fixed by both reflections

and glide reflections, but some axes of the glide reflections are not lines of symmetry.

3. A wallpaper pattern with symmetry group w? has no center of symmetry, is fixed by both reflections

and glide reflections, and all axes of the glide reflections are lines of symmetry.

4. A wallpaper pattern with symmetry group w5 has no center of symmetry, has no line of symmetry, but

is fixed by a glide reflection.

89



A ! B

w3 =< TA,B;TA,CyY >
=<7, >
=pg

/ / /

Figure C.26: Illustration of the Wallpaper Group w3

C.6 Conclusion

We have finished the search for all possible wallpaper groups. Therefore the corollary of crystallographic

restriction theorem, mentioned at the beginning of this thesis, can be stated as the following theorem.

Theorem 82 If G is a wallpaper group, then there exist points and lines such G that is one of the seventeen

groups defined above.
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Appendix D

Notation

AB is the distance from point A to point B.

AB is the line passing through the points A and B.

AB is the line segment of the line AB between A and B.

AABC is the triangle determined by the points A, B, C.

OABDC is the parallelogram determined by the points A, B, D, C.

—_ >

CP is the ray from C to P consisting of all points of CP between P and C.

wf is the (§ + 1)th wallpaper group with rotation of order i for ¢ > 1 and no rotation for i = 1.
B(a, b) is the point B with coordinate (a, b).

Om 18 the reflection with line m as the reflection axis.

< T1,T2,..., Tn, > is the group generated by transformation 71, 72, ..., 7.

— —

AP 1 [ states that the lines AP and [ are perpendicular.

P4, is the rotation with rotation center A and rotation angle is .

o is the rotation with rotation center M and with a rotation angle of 180° degree.
N = 7(M) is the image of M under the transformation 7.

I or e is the identity transformation or the identity element of a group.

Remark 83 In the case of transformation groups, we follow the usual practice of denoting the identity ele-

ment “e” by the capital letter “E”.
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