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ABSTRACT

An Examination of the Type of Instruction that Facilitates Preservice Teachers’

Development of Specialized Content Knowledge of Division with Fractions

Vanessa Rayner

Ball, Hill, and Bass (2005) proposed that facilitating the development of
preservice teachers’ specialized content knowledge (SCK) warrants investigation.
Specialized content knowledge is mathematical knowledge that is used to teach
mathematics and should thus be uniquely understood by teachers. Moreover, the type of
mathematics content knowledge (i.e., conceptual and procedural) that would enhance
preservice teachers’ SCK is not well understood. In line with Ball et al., objectives of the
present study were to (a) examine whether content-focused instruction addressing
division with fractions would enhance preservice teachers’ SCK of this topic and (b)
examine the impact of instructional content (i.e., conceptual content, and a combination
of conceptual and procedural content) on preservice teachers’ gains in SCK of division
with fractions (SCK-DF).

Eight preservice teachers were assigned to one of two treatment conditions (i.e.,
conceptual content, and a combination of conceptual and procedural content) and their
development of SCK-DF was measured using semi-structured pre- and post-interviews.
The interview data were coded using the Analysis of Specialized Content Knowledge of
Division with Fractions rubric, developed by the researcher.

In general, the results supported the hypothesis that (a) participants’ overall SCK-

DF was enhanced after instruction and (b) the participants who received the combination
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of conceptual and procedural instructional content demonstrated greater gains in their
development in SCK-DF. Taken together, the results from the current study broaden the
current understanding of ways to foster preservice teachers’ SCK and have implications

for future research in the area.
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CHAPTER 1: STATEMENT OF THE PROBLEM

Central to the goal of producing mathematically proficient students is effective
mathematics instruction, which is largely dependent on a teacher’s deep understanding of
the content (Ball, 1990b; Ball, Hill, & Bass, 2005; Hill, Rowan, & Ball, 2005; Ma, 1999;
Osana, Lacroix, Tucker, & Desrosiers, 2007). What is surprising, however, is that despite
the sound logic of this statement, only a paucity of research has explored the depth and
type of content knowledge necessary for teaching mathematics (Ball et al., 2005). Indeed,
Wu (1997) suggested that efforts to improve mathematics education has primarily
focused on pedagogy (i.e., teaching standards and curriculum) while largely ignoring the
role of content knowledge. In response to this notion, Schoenfeld (1988) proposed that,
“research on the psychology of teaching and learning needs to be expanded both in scope
and in breadth...explorations of learning also need to become more focused and detailed
as we begin to elaborate on what it means to think mathematically” (p. 165). Therefore,
while pedagogical improvements are a necessary aspect of successful mathematics
education reform, a teacher’s content knowledge is as relevant as his or her pedagogical
skills because a teacher’s ability to effectively carry out curricular decisions and learning
objectives (e.g., task selection) is impacted by his or her content knowledge of the subject
(Ball et al., 2005; Osana, Lacroix, et al., 2007; Wu, 1997).

In addressing the role of teachers’ content knowledge and how it relates to student
performance, Hill et al. (2005) developed a questionnaire to measure the content
knowledge implicated in the teaching of mathematics. Specifically, the content
knowledge for teaching mathematics questionnaire (CKT-M) measured two aspects of

mathematics content knowledge: (a) teachers’ common content knowledge (CCK) and, (b)



teachers’ specialized content knowledge (SCK). For instance, participants were requested
to determine the value of x in 10" = 1. This example was considered to be an index of
CCK because the question addresses mathematics that is typically taught in school, and
therefore it can be considered as something that may commonly be known among adults.
Conversely, an item measuring SCK taps into a form of mathematics content knowledge
that is used to teach mathematics; and should thus be uniquely understood by teachers. In
particular, evidence of having SCK would require the ability to use knowledge of
mathematics to do the following: (a) to represent numbers and operations in meaningful
ways, (b) to provide justifications that support mathematical rules, and (c) to analyze
whether and a student’s strategy and solution is, or is not, mathematically reasonable.
Hill et al. (2005) developed and used the CKT-M to empirically investigate
whether teachers’ CCK and SCK would predict first and third graders’ improved
performance on a standardized mathematics assessment (i.e., the Basic Battery for first
and third graders, and Terra Nova for kindergarteners). In particular, Hill et al. conducted
a longitudinal investigation of students from 115 elementary schools, comparing their test
scores at the beginning of the school year to their test scores at the end. It was found that
the teachers’ questionnaire scores positively predicted students’ increased test scores
from both grades, clearly illustrating the link between the mathematical knowledge
teachers display during instruction and students’ mathematical understanding. In fact, the
teachers who scored in the upper quartile predicted above-average gains in students’ test
scores, an improvement that is considered to be equivalent to receiving two to three
weeks of instruction (Ball et al., 2005). Based on these findings, Ball et al. (2005) put

forth the argument that efforts to improve teachers’ mathematical knowledge is a key



component to the mathematical success of future students, and, that such initiatives
should be carried out by providing inservice and preservice teachers with content-focused
professional development and coursework.

The proposition of emphasizing mathematical content during preservice teachers’
methods courses is further substantiated when one considers that as future teachers, these
courses may have the greatest impact on their students’ academic growth (Ball & Rowan,
2004). Further, most opportunities for teachers to modify any changes to their
instructional practice occur during their university training, before they formally join the
teaching profession (National Commission on Teaching and America’s Future, 1997).
Taken together, instructional content that facilitates the development of SCK, particularly
for preservice teachers, warrants investigation. Based on this notion, the first objective of
the proposed study was to examine whether content-focused instruction addressing
division with fractions will enhance preservice teachers’ specialized content knowledge
of this topic.

Moreover, the type of mathematics content knowledge (i.e., conceptual and
procedural knowledge) that would develop preservice teachers’ SCK is not well
understood. An ongoing debate within the mathematics education community is whether
instruction of mathematics should emphasize a conceptual understanding over a
procedural understanding of disciplinary topics (Wu, 1999a). Indeed, Budd et al. (2005)
argued that one of the myths regarding mathematics education is the belief that children’s
meaningful understanding of the subject emerges if they are encouraged to invent
strategies to solve problems rather than learn and understand standard algorithms. For

instance, Kamii and Dominick (1998), proponents of this view, suggested that promoting



students’ fluency in procedural knowledge can harm their conceptual understanding of
mathematics. This notion, unfortunately, fails to consider the difficulties students will
encounter later on during their mathematics career, particularly in algebra, when the
understanding of standard algorithms is necessary (Budd et al., 2005). Further, this myth
fails to account for the research that has empirically substantiated that conceptual and
procedural knowledge develop iteratively (Rittle-Johnson, Siegler, & Alibali, 2001) as
well as an alternate conception of procedural knowledge recently put forward by Star
(2000, 2002a, 2002b, 2005; Star & Seifert, 2006). Therefore, whether the content-
focused coursework suggested by Ball et al. (2005) should exclusively concentrate on
understanding mathematics conceptually or should additionally highlight the relevance of
understanding mathematics procedurally remains to be seen. For this reason, in this study,
I examined the impact of two types of content of instruction (i.e., conceptual content, and
a combination of conceptual and procedural content) on preservice teachers’ gains in

specialized content knowledge of division with fractions (SCK-DF).



CHAPTER 2: REVIEW OF THE LITERATURE

The reform movements of the 1980s and 1990s have fueled the desire to promote
students’ “mathematical power” which refers to the following mathematical abilities: (a)
a capacity to reason mathematically, (b) an ability to engage in problem solving, (c) a
demonstration of an understanding of the connections among mathematical concepts, and
(d) a facility in communicating mathematics to others (Kilpatrick, Swafford, & Findell,
2001). These different skills have influenced the goals of mathematics instruction and the
conception of valuable mathematical knowledge, otherwise referred to as mathematical
proficiency (Kilpatrick et al., 2001). As a consequence of the numerous mathematical
skills reflected in mathematical power, Kilpatrick et al. (2001) expanded on the notion of
what is implied when the term “thinking mathematically” is used (Schoenfeld, 1988) and
proposed a comprehensive definition of the components or “strands” of mathematical
proficiency. That is, mathematical proficiency requires conceptual understanding,
procedural fluency, strategic competence, adaptive reasoning, and a productive
disposition. Further, Kilpatrick et al. suggested that these components are interdependent
and therefore all strands play an equally vital role in students’ development of
mathematical proficiency.

The Nature of Conceptual and Procedural Knowledge

Contradicting this view, however, is the dichotomous perception of two types of
mathematical knowledge: conceptual knowledge and procedural knowledge. As a
consequence of how these two types of understanding are differentiated, their respective
roles in the development of mathematical proficiency continues to be a hotly debated

issue in the mathematics education community (Hiebert & Lefevre, 1986; Rittle-Johnson



et al., 2001; Star, 2005; Wu 1999a). Conceptualizing distinctions among ways of
knowing mathematics can be traced back to Scheffler’s (1968) theory of knowledge in
which he suggested that knowledge can function as a means of either “knowing that” or
“knowing how to.” In this theory, Scheffler posits that “knowing that” is a condition of
propositional knowledge because it is knowledge that is understood in terms of what you
know or believe to be true or false. For example, an individual may know that 2 + 2 is the
same as 1 + 3 based on evidence that the sum of both pairs of numbers is 4. On the other
hand, “knowing how to” is a condition of procedural knowledge because this type of
knowledge cannot be understood as being true or false and rather involves knowledge
that denotes skill or competence (e.g., knowing how to explain 2 + 2 is the same as 1 + 3).
Parallel to Scheffler’s (1968) conditions of knowledge, and in line with other
proposed distinctions of mathematical understanding (e.g., Gelman and Gallistel’s
differentiation between counting skills and principles, 1978; VanLehn’s discrepancy
between schematic and teleologic, 1983), Hiebert and Lefevre (1986) define two types of
mathematics knowledge, (i.e., conceptual knowledge and procedural knowledge) within a
similar dichotomous context. Further, it is important to note that Hiebert and Lefevre’s
definitions have been widely used and accepted within the field of mathematics education
and research. Specifically, they defined conceptual knowledge as:
knowledge that is rich in relationships. It can be thought of as a connected web of
knowledge, a network in which the linking relationships are as prominent as the
discrete pieces of information. Relationships pervade the individual facts and
propositions so that all pieces of information are linked to some network. (pp. 3-4)

Hiebert and Lefevre also defined procedural knowledge as follows:



One kind of procedural knowledge is a familiarity with the individual symbols of
the system and with the syntactic conventions for acceptable configurations of
symbols. The second kind of procedural knowledge consists of rules or
procedures for solving mathematical problems. Many of the procedures that
students possess probably are chains of prescriptions for manipulating symbols.

(pp- 7-8)

Star (2005), however, contended that Hiebert and Lefevre’s (1986) definition of
conceptual knowledge equates the possession of conceptual knowledge with having a
connected understanding of concepts, and does not leave room for the possibility that an
individual may possess a fragmented understanding of mathematical concepts. That is, in
this definition, conceptual knowledge is referred to as being “rich in relationships™ and
can therefore be considered as a “connected web of knowledge;” the term concepr,
however, is not synonymous with connected ideas, but rather simply refers to a notion or
a model. In line with this reasoning, Star (2005) proposed that conceptual knowledge
may also include the understanding of concepts in absence of an understanding of the
connections among them. For instance, Hiebert and Wearne (1996) found that some
students in second grade through fourth grade were capable of accurately performing the
standard algorithm for multidigit addition and subtraction problems but were unable to
solve the same problems using a non-proportional model (i.e., one red chip is equivalent
to 10 and one yellow chip is equivalent to 1). The students whose problems solving
performance fit this profile were grouped as the “nonunderstanders™ as a result of
demonstrating a poorly connected understanding of concepts of place value associated

with multidigit addition and subtraction. Based on these findings, I argue that because the



students were capable of executing the procedure, they did possess some understanding
of the concept of addition and subtraction. Unfortunately, the nonunderstanders’ inability
to model their solution not only highlights the students’ weak connections between
concepts of place value and operations, but also illustrates that conceptual knowledge can
be disconnected and superficial.'

In addition, based on Hiebert and Lefevre’s (1986) definition of procedural
knowledge, one may assume that, unlike conceptual knowledge, procedural knowledge
by nature is disconnected and therefore may not be deeply understood (Star, 2005).
Indeed, the notion that knowledge of the links between procedures is largely sequential
(i.e., follows a step-by-step procedure) substantiates this proposition. It is important to
consider, however, that in the quest to deepen the understanding of conceptual and
procedural knowledge, only a paucity of educational research has examined mathematic
topics beyond elementary school mathematics (e.g., algebra, geometry, and calculus; Star,
2000). As such, Star (2000) suggested that within the context of elementary mathematic
topics, it becomes challenging to conceive of procedural knowledge as comprising more
than an understanding of the rules and the steps that are used to solve a problem. When
the context of using mathematical procedures is extended, however, the definition of
procedural knowledge can be re-conceptualized as a type of knowledge that comprises
more than a sequential understanding of algorithms.

Hiebert and Lefevre’s (1986) conceptualization of procedural knowledge only

encompasses an algorithmic perspective, and, as a consequence, they admit that “...not

! Knowledge that is understood deeply refers to the abstract understanding of information such that it may
be recalled and applied flexibly in order to maximize the performance of a given task. Conversely, when
information is understood superficially, its application becomes limited to the context in which it was
learned and is therefore used inflexibly or may be characteristically applied using trial and error (de Jong &
Ferguson-Hessler, 1996).



all knowledge fits nicely into one class or the other. Some knowledge lies at the
intersection. Heuristic strategies for solving problems, which themselves are objects of
thought, are examples” (p. 9). Schoenfeld (1979) defined heuristics strategies as a
strategy that relies on knowledge of general mathematical concepts or procedures to
derive a solution. The generality of these procedures implies that the focus of these rules
extends beyond computation and rather addresses mathematical properties common to all
numbers (Wu, 2001). Furthermore, the use of heuristics strategies also demonstrates a
capacity to deviate from the typical problem solving pattern in attainting a solution (Star
& Seifert, 2006).

Consider, for example, an individual with a less sophisticated procedural
understanding of division with fractions as being an individual who would always solve
that type of problem by recalling and applying the “inverse and multiply” rule. Star (2005)
described this quality of procedural understanding as inflexible or superficial because of
the limited ways in which the procedure for solving such problems is known. Further, this
conceptualization of procedural knowledge is an example of the algorithmic perspective
espoused in Hiebert and Lefevre’s (1986) definition of procedural knowledge.
Consequently, an individual that possesses Star’s deep procedural knowledge would
demonstrate the capacity to apply various procedures to solve division with fractions
problems as a result of knowing general mathematical principles and understanding how
they relate to that type of problem.

Deep Procedural Knowledge
The notion of deep procedural knowledge is plausible when one considers de Jong

and Ferguson-Hessler’s (1996) argument for dimensions of knowledge. That is, rather



than confounding type and quality of knowledge, they suggest that type and quality are
separate factors of knowledge. In accordance with this theory, Star (2000, 2005) argued
that it is possible to regard mathematical knowledge in terms of type (i.e., conceptual and
procedural) crossed with quality (i.e., superficial and deep).

In addition to de Jong and Ferguson-Hessler’s theory of dimensions of knowledge,
Star’s (2000, 2005) argument of the existence of deep procedural knowledge is
additionally based on the following theories. More specifically, Davis (1983) described
the mental processes that a student may experience when faced with a novel problem, one
for which they cannot simply recall the strategy that is typically used. More specifically,
the planning involved in deciphering an appropriate solution strategy would entail
considering procedures based on the goals, or subgoals, that the procedure may attain.
That is, rather than selecting a procedure because it matches the problem type, procedures
are chosen based on the knowledge of the outcome when a particular procedure is applied,
illustrating an abstract understanding of the problem and an ability to understand
procedures outside the specific context in which they may have originally been
introduced.

Similarly, Ohlsson and Rees (1991) suggested two types of knowledge that may
be used to guide problem solving behaviours during the completion of a task. That is,
problem solving can be guided by knowledge of mathematical principles (e.g., the laws
of numbers) as well as by understanding the purpose of each step in a series of
procedures. Therefore, in addition to considering the goals of a procedure, a deep
procedural understanding may also enable an individual to consider whether the purpose

of using a given rule is in line with the task environment or situation.
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Finally, in VanLehn (1990) and VanLehn and Brown (1980), the concept of
teleologic semantics is suggested as a form of procedural knowledge. Specifically,

The teleologic semantics of a procedure is knowledge about the purposes

of each of its parts and how they fit together. Such knowledge is the

province of true masters of the procedure...Teleological semantics is the

meaning possessed by one who knows not only the surface structure of a

procedure but also the details of its design. (VanLehn & Brown, 1980, p.

95)

More generally, understanding the teleology of a procedure promotes planning
knowledge, an issue that has been previously addressed by Davis (1983) and Ohlsson and
Rees (1991). Indeed, VanLehn (1983) and VanLehn and Brown (1980) extend the
concept of planning knowledge to include acknowledging the goals of a procedure (Davis,
1983) and the environment in which a procedure is used (Ohlsson & Rees, 1991), but

also incorporate an understanding of the constraints that the situation may impose on
procedures as well as any heuristics that are relevant to the situation.

In light of these theories, Star and Seifert (2006) considered the possibility that
procedures can be executed with understanding, implying that the goal of procedural
understanding is not the automatic execution of a series of steps. Clearly, substantiating
this notion would have serious implications for the manner in which mathematics is
taught. Specifically, if procedures may only be understood through memorization, the
benefits in enhancing students’ procedural knowledge would be questionable. Indeed,
previous research has demonstrated that rote learning of mathematical procedures tends

to make mathematical problem solving less meaningful for students (Hiebert et al., 1997).
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Moreover, Hiebert et al. (1997) add that rote learning poses constraints on students’
problem solving behaviours, hindering their ability to recall procedures and increasing
the likelihood of error. For this reason, the National Council of Teachers of Mathematics
(1989) suggested that the memorization of procedures should be de-emphasized during
instruction and that conceptual learning should play a key role in fostering students’
understanding of the subject. If, however, the development of students’ flexibility in the
execution of mathematical procedures is realizable, then the role of procedural
knowledge in mathematics instruction would need to be revised.

In addressing this issue, Star and Seifert (2006; also see Star, 2002a) examined: (a)
whether elementary students can demonstrate flexibility in the use of algebra procedures,
and (b) what instructional context promotes this type of understanding. Star (2002b)
considered that a person who has flexibility possesses an understanding of multiple
solution procedures and has the ability to invent new procedures to solve unfamiliar
problems or consider the most economical solution for familiar problems. Thirty-six
randomly selected sixth-graders who did not possess any prior formal knowledge of
solving linear equations participated in five 1-hour experimental instruction sessions.
During the first instruction session, and subsequent to the administration of a pretest, all
participants were provided with instruction that introduced five basic transformations that
are used when solving linear equations (i.e., compute, combine, expand, subtract from
both, and divide). Following that session, participants were randomly assigned to either
the control group or the treatment group. During the instruction sessions, the participants
from both groups were instructed to solve linear equations using the five transformations

and the order in which to use the transformations was not specified. The task given to the
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treatment group differed in that the participants were requested re-solve each linear
equation using a different order of transformations; the task for the participants in the
control group did not involve resolving problems. Rather, they were required to solve a
series of different but isomorphic problems only once.

The results demonstrated that although the participants from the treatment group
solved fewer problems and made more transformation errors during the instruction
sessions, the posttest revealed no significant differences in the number of problems
attempted, the percentage of problems solved without transformation errors, or the
percentage of problems with a correct answer between the two groups. The results did,
however, indicate differences in the participants’ ability to demonstrate flexibility in
using transformations. That is, while participants from both groups executed one of three
invented equation-solving procedures (i.e., change in variable, cancel terms, or divide
before expanding), significant differences between the two groups was supported with
respect to the ability to invent novel strategies. Not only were students from the treatment
group more likely to invent their own solutions, but the treatment group took advantage
of more of the opportunities where inventions could be used. Further, on the posttest,
students from the treatment condition more often presented unique transformation
sequences, supporting the notion that participants from that group demonstrated a
significantly greater knowledge of multiple procedures. Taken together, the findings
demonstrate that knowledge of multiple procedures and invention does not necessarily
harm a student’s ability to derive solutions with accuracy, and that this form of
mathematical understanding may effectively be facilitated by incorporating the

alternative ordering task during instruction. More generally, these results cut the ties that
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are commonly perceived between facts and algorithms on the one hand, and drill and
practice on the other (Gravemeijer & van Galen, 2003).

Moreover, the implications of the findings in Star and Seifert (2006) suggest that
algebra learners can benefit from their understanding of multiple procedures in the same
way that elementary learners have an advantage with the ability to invent their own
algorithms to solve single digit and multidigit problems. Indeed, the findings from
previous research examining children’s development of understanding whole number
operations recommends that students’ use of invented algorithms should also be
promoted rather than only encouraging students to rely on standard algorithms (Carpenter,
Franke, Jacobs, Fennema, & Empson, 1998). It has been suggested that the use of an
invented algorithm denotes flexibility in thinking about numbers and an abstract
understanding of problems, which enables students to efficiently solve problems as a
result of this deepened understanding of number concepts.

Understanding Fractions
The Role of Fractions

Although Star (2000) suggested that the exploration of deep procedural
mathematics knowledge may be more suitable at the middle- and secondary-levels, Behr,
Lesh, Post, and Silver (1983) and Wu (2001) contended that the topic of fractions may be
perceived as a form of “pre-algebra.” Indeed, similar to algebra, this topic makes use of
abstract and general mathematical procedures in order to solve operations and are
therefore expressed using symbolic notation. Based on this notion, Wu (2001) proposed
that fractions is a key topic in helping students transition their mathematical perspective

from the particular procedures and concepts addressed at the elementary level to the more
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general manner in which operations are performed in algebra. Moreover, in addition to
the value of understanding fractions based on its connection with algebra, a topic that is
notoriously known as a gatekeeper course’, students’ understanding of fractions is vital
because of its deep connections with other rational number concepts such as percents,
decimals, ratios, rates, and quotients (Saxe, Gearhart, & Nasir, 2001).

Unfortunately, although the understanding of fractions plays an important role in
elementary mathematics education, it is also a topic that both elementary and preservice
students find extremely challenging to grasp (Rayner, Pitsolantis, & Osana, 2007; Saxe et
al., 2001). It has been posited that the source of students’ difficulties with this topic is
largely attributed to the way in which fractions is addressed in students’ mathematics
textbooks, the instructional techniques used in the classroom, and teachers’ difficulties
understanding this topic (Askey, 1999; Ma, 1999; Niemi, 1996; Saxe et al., 2001; Wu,
1999b). While it is beyond the scope of this proposed study to address the issue of how
fractions are presented in students’ textbooks, I will critically review the content of
fractions at the elementary level. Following that, I will provide a summary of the research
that underscores both inservice and preservice teachers’ difficulties with this topic. This
review of the literature of fractions will not only address the source of students’
difficulties with fractions, but will also serve to provide the reader with a conceptual,
procedural, and deep procedural understanding of division with fractions.

Teaching Fractions
In general, Askey (1999) and Wu (1999b) noted that the topic of fractions is

presented in a complex manner that lacks mathematical explanations. More specifically,

% Algebra is often referred to as a gatekeeper course because the students that can succeed in this topic often
advance to other topics in mathematics while those who do not succeed may be permanently left behind
(Wu, 2001).
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teachers often introduce students to the concept of fractions with at least five different
meanings of its symbolic representation (Wu, 1999b). Wu considered this to be
problematic for students because the numerous representations present a dramatic
increase of the ways in which the same symbol may be understood as students move from
whole numbers to fractions. Indeed, the same fractions symbol can represent different
fractions (i.e., parts of a whole, the size of a portion when it is equally distributed, the
quotient when the divisor is larger than the dividend, a ratio of two numbers, and an
operator3). Despite this symbolic commonality, these concepts carry different meanings,
making it challenging for students to understand the definition of a fraction without any
ambiguity (Wu, 1999b).

Furthermore, the teaching of fractions has been criticized for an over-emphasis on
conceptual explanations (Wu, 1999b) despite the simplicity and relevance of
mathematically procedural explanations. The prominence of conceptual justifications
during instruction on this topic is problematic for a few reasons. First, although it is
extremely valuable for students when teachers model the algorithms used to solve

operations with fractions using concrete or semi-concrete methods, the numbers that can
. e . . 1 2
be used in these examples is limited to simple fractions, such as > or 3 As soon as the

fraction becomes less common, concretely modeling a solution becomes complex and
thus less effective and confusing.
To illustrate, consider the following division with fractions word problem where

the goal is to discover how many groups of a certain length are comprised within a total

2
3 An operator is an instruction that carries out a process, for example “5 of”.
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quantity: Mary has 6 feet of ribbon. She plans on making bracelets with this ribbon. Each
bracelet requires % of a foot of ribbon. How many bracelets can Mary make? Figure 1

contains a semi-concrete explanation of how to solve this problem (Reys, Lindquist,
Lambdin, & Smith, 2007). The first step in solving this problem involves dividing each

of the 6-feet pieces into thirds because the problem requires the discovery of how many
groups of % are in 6 feet. As a result of dividing each foot into thirds, six groups of three
have been created; otherwise expressed as 6 multiplied by 3. When the inverse and
multiply rule is applied, % is inversed and becomes % and this fraction is multiplied by 6;
in carrying out the initial step of this calculation, 6 is multiplied by 3. The second step

. . . 2 . . .
requires discerning the number of groups of ES' In this case, this reflects the action of

dividing 18 by 2 because groups of %s are removed from the total quantity. Following
this action, the number of groups that have been formed can be counted, providing a
solution to the word problem that reflects the number sentence 6 + %

An obstacle, however, arises when more complicated fractions are involved in a problem;
. . . 2 5 .

it becomes tremendously tedious to solve problems like 6_4 + 7 using a concrete or

semi- concrete strategy. Therefore, if students are only expected to understand how to
solve problems with simple fractions, notwithstanding the fact that complex fractions do
exist in the real world, the foundation of their knowledge of fractions becomes weak and

unstable (Askey, 1999; Wu, 1999a).
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2
This Mary has 6 feet of ribbon. She plans on making bracelets with this ribbon. Each bracelet requires —

of a foot of ribbon. How many bracelets can Mary make?
1 foot

—

N _/
—

6 feet
1. Divide each foot into thirds because we are looking for how many groups of — go into 6

feet.

-

1 foot

As a result of dividing each foot into thirds, we have created 6 groups of 3, for a total of 18
sections. Notice that this reflects the first calculation when executing the inverse and multiply rule,

3
6+ -:—)’- becomes 6 X 5 and the first calculation is 6 x 3.

1 foot

gl L) )1

2. We have continued by encircling groups where in each group there is 3 of a section. 9

groups of 3 have been formed. This step reflects the second calculation executed — or

18+2=90.

Figure 1. Explanation of a division with fractions word problem using a semi-concrete

method.
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Similarly, an inadequate understanding of fractions can also be promoted if a
student’s understanding of operations with fractions is only procedural in nature. The
notion that only one type of mathematics knowledge should be used as a vehicle to
understand fractions and operations with them contradicts the iterative nature of the
relationship between conceptual and procedural knowledge that has been empirically
supported (Rittle-Johnson et al., 2001). Specifically, Rittle-Johnson et al. (2001) found
that incremental developments in one type of knowledge yields gains in the other, and in
turn, these gains in knowledge sustain and extend the initially developed understanding.
In addition, relations between the development of conceptual and procedural knowledge
indicates a bidirectional association, and, although Rittle-Johnson and Alibali (1999) and
Hiebert and Wearne (1996) suggested that conceptual knowledge may have a greater
influence on the understanding of procedures than the reverse, the nature of the iterative
relationship implies that procedural knowledge may lead to developments in conceptual
knowledge and vice versa®. Taken together, the second reason why an over-emphasis on
conceptual explanations is criticized is because proficiency in mathematics requires an
understanding of both mathematical concepts and procedures (Star, 2005; Wu, 1999a),
and as such, both types of understanding should play an equally important role in the
classroom.

A final reason that supports the notion of teaching both mathematical concepts

and procedures is based on research that has demonstrated that instruction that only uses

* Findings from other research (i.e., Byrnes, 1992; Byrnes & Wasik, 1991) contradict this notion and rather
propose that the development of conceptual and procedural knowledge is sequential, conceptual knowledge
preceding the development of procedural knowledge. Based on studies that have illustrated that under
certain circumstances, such as multiplication with fractions, it is possible to correctly execute a procedure
without developing a deeper understanding of the underlying concepts (Niemi, 1996), I argue that the
iterative and bidirectional theory appears to be a more appropriate explanation addressing the variance in
the sequence of development of these two types of knowledge (see Rittle-Johnson & Alibali, 1999).
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concrete models to teach mathematics is ineffective. This type of instruction fails to
promote mastery of understanding and applying algorithms, limiting students’ capacity to
use mathematics in applied situations (Gravemeijer & van Galen, 2003). In terms of the
topic of division with fractions, not all interpretations of division with fractions lend
themselves to justifying the standard algorithm. In fact, aside from the measurement
model (i.e., the grouping interpretation of division with fractions that requires forming a
number of groups of a certain size) illustrated in Figure 1, the partitive model (i.e., the
grouping interpretation of division with fractions that requires finding the size of each
group; Ball, 1990b; Carpenter, Fennema, Franke, Levi, & Empson, 1999; Reys et al.,
2007) and the factors and product model (i.e., an interpretation of division with fractions
that requires calculating a missing factor; Askey, 1999; Ma, 1999) are models that do not
reflect the actions performed while executing the algorithm (i.e., the denominator in the
second number is multiplied by the numerator in the first number, and this product is
divided by the product of the denominator in the first number and the numerator in
second number). As such, I suggest that only promoting a conceptual understanding of
division with fractions may produce a similar outcome as when students are expected to
learn the division with fractions algorithm by rote; that is, it limits their understanding of
the algorithm.

A final critique of the teaching of fractions is that during instruction on operations
with fractions, connections between the algorithms and properties of whole number
operations are not made (Askey, 1999; Wu, 1999b). It is a disservice to students to
present mathematical topics as isolated curricular subjects in place of highlighting the

myriad of connections among mathematical concepts and procedures. Indeed,
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highlighting the connections among mathematical topics would build students’
mathematical understanding rather than promote a disconnected at best, and illogical at
worst, progression from one topic to the next. For instance, connected to the division with
fractions algorithm is the understanding that division is the inverse of multiplication (Wu,
1999b). The notion that 24 + 3 = 8 is the same as 8 x 3 =24 is valid because the former
may be interpreted as findings how many groups of 3 are in 24 (i.e., the measurement
division model). The latter is interpreted as 8 groups of 3; either way, both interpretations
suggest that there are a number of groups of objects (i.e., 8) with a number of objects in
each group (i.e., 3) and these values multiplied together make up a total number of
objects. Further, the principle that division is the inverse of multiplication is a general
rule of mathematics and as such can be represented as: m ~ n = k is the same as m = nx k,
where k, m, and »n are whole numbers (Wu, 1999a).

Figure 2 indicates how this mathematical principle applies to division with
fractions, and thus can be used to justify the inverse and multiply rule (Wu, 1999a). As it
can be seen in Figure 2, using a mathematical rule (i.e., that division is the inverse of
multiplication) to justify a standard algorithm may be considered a powerful tool to add
to a student’s repertoire of mathematics knowledge. Moreover, the example in Figure 2
substantiates the notion that procedural justiﬁ.cations can be incorporated during
instruction in a meaningful manner. As I previously mentioned, Kamii and Dominick
(1998) argued that teaching standard algorithms, such as to invert and multiply, to
elementary students can harm their understanding of mathematics. Their reasoning is
based on the belief that standard algorithms enable students to engage in problem solving

without forcing them to consider their own reasoning skills.
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. a ¢ x.
1. Becausem+n=klsthesameasm=nxk,;+—:—1sthesameas

Y

X

aule
AR

a
b

2. To solve for i, multiply both sides of the equation by 4 and the result is
c

x d_a
—=—X—,
y ¢ b
3. For this reason £+£=£x£ .
c b
For example, E—E is the same as £=£x£
15 33 33 y
Execute step 2 2]2=£ 3 and so i?ixE: is the same as 2—2
17 )15 33\17 )y 17 15 15 33

Figure 2. Explanation of the inverse and multiply rule using the principle division is the

inverse of multiplication.
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Lending partial support to Kamii and Dominick’s (1998) reasoning are the results
in Carpenter et al. (1998). In particular, Carpenter et al. found that compared to the
students who initially used the standard algorithms, the students who used invented
strategies first demonstrated a greater understanding of base-ten concepts and a capacity
to successfully transfer their knowledge to solve novel tasks. Moreover, these students
displayed fewer procedural bugs when performing the subtraction algorithm. Based on
the results, and in line with Kamii and Dominick, one may agree that teaching standard
algorithms is obsolete because of the benefits of using invented algorithms. This
argument, however, may be spurious because the students who used invented algorithms
first were also exposed to the standard algorithms during instruction. Therefore, a more
appropriate recommendation would be to provide students with the opportunity to
construct invented strategies before instruction of standard algorithms provides students
with a strong foundation of multidigit operation concepts; from this basis, students can
develop a meaningful understanding of procedures used with multidigit addition and
subtraction.

Additionally, while it is true that introducing students to algorithmic procedures in
an ad hoc fashion may prevent students from developing a more meaningful
understanding of mathematics (Wu, 1999b), the appropriate teaching of standard
algorithms should nevertheless play a central role in mathematics instruction. That is,
because standard algorithms are created using mathematical reasoning, they can play a
meaningful role during instruction if the mathematics that supports the algorithm is
incorporated in the justification. Moreover, motivating students to use algorithms is in

line with an inherent goal of using mathematics, to be able to solve a complex problem in
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the simplest and most efficient way possible (Carpenter et al., 1998; Wu, 1999a). Taken
together, students will only be able to achieve this goal of mathematical proficiency if the
teacher’s instruction facilitates, among other things, conceptual understanding and
procedural fluency (Kilpatrick et al., 2001).

To this point, I have discussed how instruction on division with fractions can
promote conceptual understanding (see Figure 1) as well as procedural understanding
(see Figure 2). An aspect of Kilpatrick et al.’s (2001) definition of procedural fluency,
however, is the capacity to flexibly perform procedures. Based on Star and Seifert’s
(2006) definition of flexibility, then, developing students’ procedural fluency of division
with fractions would involve instruction that teaches multiple strategies for solving these
types of problems. Two alternate procedural strategies (i.e., complex fraction and
common denominator; Tirosh, 2000) that can be used to solve division with fraction
problems are shown in Figure 3.

In line with Star and Seifert’s (2006) findings, developing students’ flexibility
enhances their reasoning skills and promotes a student’s capacity to understand
mathematical problems from an abstract perspective, facilitating the application of
efficient strategies with familiar problems. Also, flexibility promotes transfer skills, and
therefore allows students to invent new strategies when they encounter novel problems.
Taken together, I argue that all of the ways of knowing fractions that I have presented
may promote the goal of focusing on “substantive mathematics” (Ma, 1999) and teaching
for mathematical proficiency (Kilpatrick et al., 2001), and therefore should be

incorporated in fractions instruction.
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Alternative 1: Complex Fractions

The product of a number and its reciprocal is 1. ax 1 =lora+l=a

a
a a d a
b d ¢ ¢ i 1 be
d d c

This shows how to symbolically represent the division of any two fractions, or a whole

number and a fraction, as a fraction. Multiplying the same number (in this case the
. d . . .. .
strategic use of — ) to the denominator (i.e., the divisor) and to the numerator (i.e., the
c

dividend) produces an equivalent fraction whereby the equivalent fraction’s denominator

. . a d

is 1. Therefore, based on the principle that a +1=a, 3 + —.
c

c a
— ==X
d b

Alternative 2: Common Denominator

First, the fractions are renamed as like fractions.

a c_ad cb

b d bd db

Following that the first numerator is divided by the second numerator.
ad +cbh

Apply this to the denominators.

bd +db =1,

ad +cbh

which can be represented as _cbzi'
c

and the result is

Figure 3. Two alternative procedural explanations of solving division with fractions.
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Inservice and Preservice Teachers’ Difficulties with Fractions

Tightly integrated with fractions instruction is the quality of mathematical
understanding the teacher possesses (Askey, 1999; Ball, 1990b). That is, teachers cannot
teach for mathematical proficiency with division with fractions if they do not themselves
have a deep mathematical understanding of the topic (Kilpatrick et al., 2001). In a recent
study, Ma (1999) interviewed 23 U.S. teachers and 72 Chinese teachers to gain an
understanding of the nature of their subject-matter knowledge. Four standard elementary
topics (i.e., subtraction with regrouping, multidigit multiplication, division by fractions,
and the relationship between perimeter and area) were couched in a classroom scenario
and the teachers were requested to discuss how they would handle problems that typically

arise during instruction of these topics. For instance, with respect to the topic of division
. . . 3.1
with fractions, the teachers were required to compute 1—4— + 3 as well as to develop a word

problem that reflects this number sentence. The fractions interview task was as follows:
Imagine that you are teaching division with fractions. To make this meaningful
for kids, something that many teachers try to do is relate mathematics to other
things. Sometimes they try to come up with real-world situations or story

problems to show the application of some particular piece of content. What would
3.1
you say would be a good story or model forlZ + 3 ? (p. 55)

Across all four topic areas, Ma (1999) found that the knowledge the Chinese
teachers possessed was qualitatively different from that of the U.S. teachers. In particular,
the findings suggested that Chinese teachers articulated mathematical ideas that reflected

a rich and interconnected understanding of mathematical concepts. The results from the
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division with fractions topic supports this general conclusion. Of the 21 U.S. teachers
who attempted to compute the number sentence, only nine (i.e., 43%) correctly computed
the answer to the problem. Of the teachers who could not execute the calculation, four
demonstrated an unclear understanding of the algorithm, five vaguely recalled the rule
and as consequence could not remember certain details of the procedure (such as which
fraction to invert), two correctly applied the algorithm but calculated the wrong solution,
and one participant performed the wrong strategy and thus produced an incorrect answer.
With respect to representing the number sentence in a word problem, 6 U.S.
teachers could not think of a story and 16 produced stories that conveyed their conceptual
misconceptions of division with fractions. One of the U.S. teachers did produce a
mathematically reasonable story but, unfortunately, her answer to the problem resulted in
a fractional number of children, a notion that is unrealistic. Ma (1999) considered this
response as pedagogically problematic. In general, the story problems that the U.S.

teachers generated highlighted a few misconceptions of the concept of dividing a fraction

by a fraction (i.e., 1% +% ). Specifically, the teachers produced stories that conveyed

dividing 1% by 2, or reflected multiplying 1% by % . Taken together, the teachers not

only displayed a weak understanding of the procedure, but also demonstrated a deficient
understanding of the concepts related to this topic.

Based on these results, Ma (1999) concluded that the U.S. teachers’ difficulty
with this task was the result of their inadequate understanding of the procedure and their
misconceptions surrounding the concept of division with fractions. Moreover, another

result from Ma’s study was that the general pedagogical skills the teachers possessed

27



could not aid them in successfully representing the concept of division with fractions, a
conclusion that further supports the importance of teachers’ content knowledge.

In contrast, all 72 Chinese teachers carried out a procedure to arrive at the correct
answer. Interestingly, some of the Chinese teachers voluntarily offered elaborate
justifications of the rule, and as such, Ma began asking the Chinese teachers to describe
how they understood the mathematical reasoning behind the algorithm. The answers to
this question not only comprised the traditional explanation (i.e., how dividing two
numbers is the same as multiplying by its reciprocal), but alternative computational
approaches (i.e., using decimals, applying the distributive property, and strategies where
only division was used) were also put forward as a result of the teachers’ conception that
under certain circumstances these alternate approaches can be easier and less complicated
than the traditional inverse and multiply strategy.

In addition, while only one U.S. teacher was able to create a conceptually accurate
representation of the number sentence (i.e., generate a word problem), 90% of the
Chinese teachers were able to complete this task, once again illuminating a gap in the
quality of understanding between these two group of teachers. Further, of the 65 Chinese
teachers who were successful, 12 teachers presented more than one story to reflect three
different interpretations of division with fractions: the measurement model, the partitive
model, and the factors and product model. Specifically, a story reflecting the

measurement model would revolve around finding out how many halves are represented

inl% . The partitive model presents a slightly different interpretation in which 1% is half

of something. Finally, a story based on the factors and product model would involve 1%
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cqe 1
being the product of two factors, one of which is 5 These results demonstrated that,

unlike the U.S. teachers, almost all of the Chinese teachers displayed at least one of the
three aspects of SCK (i.e., knowledge of how to represent numbers and operations in
meaningful ways). Further, Ma (1999) suggested that their comprehensive conceptual and
procedural understanding of division of fractions was the vehicle for the development of
this knowledge.

Similar to the U.S. teachers in Ma’s (1999) study, the preservice teachers in Ball
(1990a) also demonstrated an inadequate understanding of division. The prospective
teachers were administered three types of questions (i.e., division with fractions, division
by zero, and division involving algebraic equations) and their responses were analyzed
with respect to their ability to produce correct answers and to justify their solution

strategy. The division with fractions number sentence was the same one that was used in
. 3 1
Ma (i.e., IZ + 5 ). Compared to the U.S. teachers from the Ma study, however, the

preservice teachers demonstrated a stronger grasp of the algorithm, indicated by the
higher number of participants that were able to correctly answer the problem (i.e., 17 out
of 19, or 89%). Despite the fact that they were more proficient in executing the algorithm,
only 5 preservice teachers were able to able to appropriately represent the problem in a
real-world situation, a finding that is consistent with Ma’s study. The pattern of results
that emerged from this problem was similarly found for the division by zero problem and
the division involving algebra equation.

Also contributing to the understanding of preservice teachers’ knowledge of

rational number concepts, Tirosh, Fischbein, Graeber, and Wilson (1998) examined 147
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prospective elementary teachers’ content knowledge of this topic. Participants’ content
knowledge was measured using a questionnaire and semi-structured interview, both of
which were developed within a framework of three dimensions of mathematics
knowledge: (a) an algorithmic dimension, (b) an intuitive dimension, and (c) a formal
dimension. Similar to Kilpatrick et al.’s (2001) strands of mathematical proficiency,
Tirosh et al. posited that these three dimensions play an interdependent role in facilitating
the development of conceptual knowledge and thus inconsistencies in any one of the
dimensions may be the source of students’ and adults’ misconceptions of mathematical
concepts.

The first, or the algorithmic dimension, comprises knowledge of the procedures
and justifications of the step by step sequence of rules used in standard algorithms.
Similar to the findings in Ball (1990a), Tirosh et al. (1998) found that the majority of
preservice teachers accurately performed the algorithms when solving addition,
subtraction, and multiplication problems with fractions or decimals. A distinction,
however, between the findings from both of these studies was that the prospective
teachers in Tirosh et al. struggled with executing the standard algorithm used with
division with fractions and decimal numbers. In general, the preservice teachers
demonstrated more difficulties with the division with decimal number problems
compared to the division problems with fractions. Those who did display misconceptions
of the algorithm used with division with fractions, however, typically inversed the
dividend (i.e., the first fraction in the number sentence) instead of the divisor (i.e., the
second fraction in the number sentence). Interestingly, even the preservice teachers who

were mathematics majors demonstrated difficulties computing accurate answers to these
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problems (i.e., percentage of correct answers ranged from 57% to 93%). Nonetheless, in
general, they were more successful when compared to the other preservice teachers (i.e.,
percentage of correct answers ranged from 12% to 69%).

Moreover, to assess the participants’ knowledge of the mathematical reasoning
behind each step in standard algorithms, the preservice teachers were requested to explain
each step that was executed in a problem previously solved by a hypothetical elementary
student. The results indicated that most of the preservice teachers were unable to justify
the steps of the standard algorithms used with operations with fractions and with
decimals. For instance, only 8 preservice teachers provided acceptable justifications for
the steps involved in a division problem with one decimal number.

Tirosh et al. (1998) proposed that the intuitive dimension involves knowledge of
mathematics that is accepted without proof. More simply put, this type of knowledge is
the “common sense” understanding that arises from problem solving situations (e.g.,
multiplying two whole numbers always produces a quantity that is larger than either
factor). In the study’s questionnaire, this type of understanding was assessed by asking
the preservice teachers to produce models (i.e., verbal, graphical, or concrete) of rational
numbers and operations with rational numbers. Similar to the results in Ball (1990a), it
was found that the preservice teachers showed deficiencies in their abilities to represent
operations involving rational numbers, particularly when fractions were included in the
number sentence. In addition, the interview questions tapped into the preservice teachers’
beliefs of the outcomes of operations with rational numbers. It was found that the
preservice teachers incorrectly transferred concepts of multiplication and division with

whole numbers to rational numbers. For instance, 60% of the preservice teachers
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contended that “multiplications always makes bigger” and 51% suggested that “division
always makes smaller,” two notions that do not hold for all rational numbers.

Finally, Tirosh et al. (1998) proposed that the formal dimension includes
knowledge of the definitions of concepts and procedures relevant to the topic in question.
In comparing the participants who were mathematics majors to the other preservice
teachers, extensive differences in their formal knowledge were found. For example, of
the mathematics majors, 92% provided correct definitions of rational and irrational
numbers compared to the 23% of the non-mathematics majors.

In summary, the findings from Tirosh et al. (1998) highlight distinctions between
the two groups of prospective teachers, demonstrating that the mathematics majors
tended to display a stronger understanding of rational numbers. Overall, however, the
results depict preservice teachers’ content knowledge of this topic as rule-bound and
fragile as evidenced by the large percentage who upheld false conceptions of operations
with rational numbers, including an inability to justify the steps in algorithms and to
provide suitable representations of rational numbers and operations with them. These
findings contribute to the understanding of preservice teachers’ content knowledge of
rational numbers and build on the results that were found in Ball (1990a, 1990b).

In general, the results from several studies (i.e., Ball, 1990a, 1990b; Ma, 1999;
Tirosh et al., 1998) paint a bleak picture with respect to inservice and preservice teachers’
content knowledge of fractions, and division with fractions in particular. In accordance
with this conclusion, opportunities for teachers to teach for mathematical proficiency, at
least in this area, appear to be slim. That is, as a consequence of their fragmented

understanding of this topic, the ways in which they can address this topic in the
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classroom will be limited (Wu, 1999b). Furthermore, the findings from Ball (1990a), Ma
(1999), and Tirosh et al. (1998) are a cause for concern because it may be implied based
on the findings from Hill et al. (2005) that students who have teachers with a similar
understanding of division with fractions will perform poorly in this area. As such, the
prospect for most of these students to continue understanding mathematics beyond this
topic (e.g., algebra) will diminish (Wu, 2001). Taken together, I propose that it is crucial
that the content of instruction of division with fractions at the preservice teacher level
facilitates the mathematical knowledge that will necessitate effective instruction in the
future (Ball et al., 2005).
Theoretical Framework

Based on the results from Tirosh et al. (1998), Tirosh (2000) continued to
examine preservice teachers’ knowledge of rational numbers by assessing their subject-
matter knowledge (i.e., common content and specialized content knowledge; Ball et al.,
2005) and their pedagogical content knowledge (PCK) as it relates to division with
fractions. Shulman (1986) initiated the research efforts to better understand teachers’
PCK and proposed that in addition to subject-matter knowledge, teachers also need to be
capable of understanding how students come to comprehend mathematics. In particular,
Shulman suggested that teachers with PCK should consider, based on their understanding
of students’ conceptions of mathematics, which representations of concepts and
principles would successfully develop their students’ knowledge. Moreover, PCK also
comprises knowledge of students’ common misconceptions of mathematics. A theoretical

model highlighting the relationship between types of teacher knowledge (i.e., SCK, CCK,
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and PCK) and the types of mathematical content knowledge (i.e., conceptual understanding
and procedural fluency) is presented in Figure 4.

In Tirosh (2000), the preservice teachers’ subject-matter knowledge was
measured as a function of their ability to correctly calculate division with fractions
problems and derive number sentences from word problems. The same number sentence
problems and word problems were used to gauge the participants’ PCK. In line with
Shulman’s (1986) definition of PCK, the preservice teachers were requested to identify
incorrect strategies commonly demonstrated by elementary students. These items were
presented at the beginning of a mathematics methods course in which the preservice
teachers were enrolled.

The results from this pretest indicated that the majority of the preservice teachers
correctly performed the calculations and accurately derived number sentences from the
word problems (i.e., 25 out of 30, and 29 out of 30, respectively). In addition, the other
items indicated that most of the preservice teachers (i.e., 26 out of 30) attributed the
source of students’ errors to misapplication of the standard algorithm. Further, the
preservice teachers attributed this misapplication to poor memorization of the procedure,
underscoring the fundamental belief that mathematics is a discipline of facts and
procedures that need to be memorized. Notably, none of the preservice teachers
considered that students may use alternate ways of solving these types of problems, and
only a few of them were aware of the tendency of many children to falsely assume that

concepts associated with operations of whole numbers can always extend to fractions.
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Based on these findings, the preservice teachers were provided with instruction
that emphasized the sources of students’ errors in this area as well as multiple ways of
solving division with fraction problems. It is important to note that these ways of
knowing fractions were not presented concretely or semi-concretely, but rather Tirosh
(2000) took the opportunity to expose the preservice teachers to several meaningful
algorithmic strategies that are all based on mathematical procedures. The three strategies
she used are the same ones that were presented in Figure 2 (i.e., the standard algorithm)
and Figure 3 (i.e., an algorithm based on principle the product of a number and its
reciprocal is one, and applying the standard algorithm used with multiplication with
fractions but using division in place of multiplication).

A posttest assessment, identical to the pretest, was administered at the end of the
course to evaluate changes in the preservice teachers’ subject-matter knowledge and
pedagogical content knowledge in this topic. The results from the posttest demonstrated
an inversed pattern of responses pertaining to the questions addressing children’s
mistakes and sources of misunderstanding. In particular, the vast majority of the
preservice teachers demonstrated familiarity with a variety of sources of incorrect
methods of performing calculations and 28 preservice teachers were able to display more
than one possible algorithmically-based error for each number sentence.

In addition, the results from the questions with the word problem demonstrated
that more preservice teachers at the end of the course were aware of the misconceptions
of division with fractions commonly upheld by elementary students. The first
misunderstanding relates to the tendency of extending concepts of operations with whole

numbers to operations with fractions (e.g., “the dividend is greater than the divisor”). The
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second misunderstanding is based on the application of “multiplication makes bigger,
division makes smaller” to all fractions. Finally, the preservice teachers were able to
associate students’ confusion with an over reliance of the partitive model, which
constrains the development of a meaningful understanding of the algorithm; the
participants’ PCK clearly improved after receiving this instruction. In sum, the findings
highlight the notion that instruction that emphasizes several ways of knowing
mathematics and children’s misconceptions, even in absence of conceptually based
instruction, may be an effective pathway to improving preservice teachers’ subject-matter
and pedagogical content knowledge.

The findings from Tirosh (2000) are crucial given the paucity of research that has
examined how content knowledge can help foster preservice teachers’ knowledge for
effective teaching. That is, it was found that preservice teachers’ development of PCK
was not only enhanced by the instruction on children’s misconceptions, but it was also
improved as a result of instruction on the mathematical reasoning that supports the
standard algorithm used with division with fractions as well as alternate algorithms that
are equally effective in solving these types of problems.

Although Tirosh’s (2000) findings are critical, her study did not compare which
type of mathematical content (i.e., conceptual, or a combination of conceptual and
procedural) has a greater impact on preservice teachers’ development of subject-matter
and pedagogical content knowledge. In addition, her measures disproportionately focus
on preservice teachers’ PCK, despite the importance of facilitating their content
knowledge (Ball et al., 2005). Finally, Tirosh’s method of measuring teachers’ subject-

matter knowledge was more in line with Ball et al.’s (2005) notion of CCK. Thus, the
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question of how to enhance preservice teachers’ SCK through content based methods of
instruction remains open. The development of SCK at the preservice teacher level should
be one of the goals of instruction because, in line with the findings from Hill et al. (2005),
teachers with adequate SCK, and CCK, may have a positive impact on their students’
performance in mathematics.

As I previously mentioned, Ball et al. (2005) proposed that SCK is made up of three
primary skills: (a) an ability to analyze students’ errors, (b) the capacity to strategically
represent numbers and manipulatives that are in line with a given instructional goal, and (c)
a facility in explaining the meaning behind an algorithm. I argue that in relation to division
with fractions, all three skills require a sound conceptual and procedural understanding of
the topic.

For instance, in Tirosh (2000), preservice teachers’ knowledge of common student
errors improved as a result of forming connections between the multiple algorithms used in
division with fractions and children’s misconceptions of this topic. This finding illustrates
that although a teacher’s knowledge of common student errors is an aspect of pedagogical
content knowledge (Carpenter, Fennema, & Franke, 1996), this skill is nevertheless
connected to the content knowledge used when teachers analyze students’ errors, which is
an aspect of SCK. Therefore, the results from this study may be used to suggest that
procedural content knowledge may indeed play a role in developing preservice teachers’
SCK. Moreover, because the students’ misconceptions that were addressed during the
mathematics methods course implemented by Tirosh comprised both conceptual and
procedural errors, it is possible that procedural content knowledge is not the only factor that

contributed to this result. Based on this aspect of the study, I suggest that a deep
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understanding of both concepts and procedures pertaining to division with fractions is
necessary in order to comprehensively assess students’ misunderstandings.

In addition, multiple ways of understanding division with fractions (i.e.,
conceptually and procedurally) provides a broader and deeper knowledge base from which
numbers and activities can be strategically selected in order to effectively promote learning

objectives. For instance, one of the Chinese teachers in Ma (1999) applied the distributive

. . . 1
property in her solution strategy because the numbers in the problem (i.e., 1% + 5) were
amenable to this property. Specifically, because of the invert and multiply rule, %

- . 3 .. 3.
becomes 2, which is an easy number to distribute across IZ (i.e., because IZ is the

same as 1 + % , distributing 2 across 1% would mean (1 x 2) + (% x 2)). Clearly, certain

numbers are more conducive to the application of particular properties and strategies than
others; the capacity to match strategies with appropriate numbers and manipulatives
emerges from a deep understanding of mathematics, implying that the mastery of both
conceptual and procedural knowledge is necessary.

Finally, gains in both conceptual and procedural knowledge of division with
fractions would provide teachers with the opportunity to discuss with their students the
multiple ways of understanding the algorithm. To illustrate, consider the case of a
preservice teacher presented in Eisenhart et al. (1993). “Ms. Daniels” experienced many
obstacles in her quest for teaching for understanding during her preservice teaching
internship. Like many preservice teachers, Ms. Daniels’ procedural understanding of

mathematics was adequate (Ball, 1990b). Unfortunately, her underdeveloped conceptual
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knowledge limited the ways in which she could teach certain mathematical topics. For
instance, when a student requested that Ms. Daniels justify the algorithm for division
with fractions, Ms. Daniels initiated her response with a real world explanation.
Unfortunately, she was forced to revert back to focusing on the computational
explanation once she realized that her real word example was an example of
multiplication with fractions, not division with fractions. Indeed, an implication of
Eisenhart et al.’s study is that this teaching moment could have been much more powerful
had Ms. Daniels possessed a deeper conceptual and procedural understanding of the topic.
In sum, the evidence discussed here highlights the benefits of promoting both a conceptual
and a procedural understanding of division with fractions when developing preservice
teachers’ SCK of this topic.
The Present Study

Given the empirically supported links between teachers’ sound mathematics
knowledge and student performance in mathematics (Ball et al., 2005), the objectives of
the present study were twofold. The first objective was to examine changes in preservice
teachers’ SCK of division with fractions (SCK-DF) after having received content-focused
instruction on the topic. Based on the findings from Tirosh (2000), it was hypothesized
that, in general, preservice teachers’ SCK of this topic would be enhanced. A second
objective was to determine which type of mathematical content (i.e., conceptually-
focused instruction or a combination of conceptual and procedurally-based instruction)
promotes greater gains in SCK. In line with the theoretical model presented in Figure 4, it
was also hypothesized that the preservice teachers receiving the combination of

conceptual and procedural content during the instruction sessions would demonstrate
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greater gains in their development in SCK-DF compared to participants in the conceptual

condition only.
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CHAPTER 3: METHOD
The present study had two objectives. The first objective was to examine whether
content-focused instruction addressing division with fractions would enhance preservice
teachers’ specialized content knowledge of this topic. In other words, would preservice
teachers’ SCK-DF develop as a result of having received content-focused instruction on
this topic? The second objective was to examine the impact of two types of content of
instruction (i.e., conceptual content, and a combination of conceptual and procedural
content) on preservice teachers’ gains in SCK-DF. That is, would the preservice teachers
who receive instructional content that emphasizes a combination of conceptual and
procedural explanations experience greater gains in their development of SCK compared
to those only receiving conceptual content?
Research Design
To address these research questions, a quasi-experimental design was used. In
particular, the participants were assigned to one of two groups, and I provided each group
with distinct types of content during instruction that addresses the topic of division with
fractions. Type of content was the independent variable. Specifically, the instructional
content for the control group’s instructional content involved employing mathematical
concepts to explain the standard algorithm for division with fractions problems and
focused on of the various ways division with fractions can be interpreted. The
instructional content for the treatment group involved using mathematical concepts and
procedures to meaningfully justify both traditional and alternative algorithms used to
solve division with fractions problems.

The measure of preservice teachers’ SCK was the dependent variable. The
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preservice teachers” SCK —~DF was measured using a pretest and posttest audio-recorded
interview. In addition, at the end of each instruction session, I administered a paper and
pencil test to measure participants’ understanding of the instruction. This assessment was
incorporated as a means of treatment integrity, ensuring that the participants’
understanding of the instruction was consolidated and therefore contributed to the
outcome measure. A representation of the research design may be viewed in Figure 5.
Participants

I used a convenience sampling technique to recruit 8 undergraduate students in
the Early Childhood and Elementary Education program (i.e., preservice teachers) at
Concordia University. At the time of testing, the participants were registered in a
mathematics methods course (EDUC 388/4, Teaching Mathematics II) for the Winter
2007 session. The majority of the sample was in their 3rd or 4th year of undergraduate
study and completed EDUC 387/2 (Teaching Mathematics I) in the Fall 2006 semester.
Participants varied in age and previous teaching experience. The instructor of the
Teaching Mathematics II course, Dr. Helena Osana, was contacted in order to obtain
permission to recruit the students in the course on a voluntary basis. Dr. Osana is an
educational psychologist whose research focuses on the relationship between student
cognitions and elementary teachers’ thinking and practice. One aspect of the mathematics
methods course is to enhance teachers’ understanding of mathematical concepts and
associated classroom practices. Based on this notion, preservice teachers are provided
with an instruction of elementary mathematics that emphasizes content knowledge,
understanding of student learning, and instructional design (Concordia University,

Department of Education, 2006).
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Measures of Preservice Teachers’ Understanding of Fractions
General Knowledge of Fractions

All students enrolled in Dr. Osana’s course were required to complete the
Knowledge of Fractions Assessment (KFA; see Appendix A). This test was previously
developed by Saxe et al. (2001) for elementary students and was used in Rayner et al.
(2007) to measure preservice teachers’ conceptual and procedural knowledge of fractions.
On the KFA, computational accuracy with respect to the following topics of fractions are
indices of procedural knowledge: (a) computing the answer to addition and subtraction
fraction problems, (b) filling missing numerators of equivalent fractions, and (c)
symbolically representing a fraction that reflects a picture of a part-whole representation
of a fractional quantity. In addition, Saxe et al.’s measure of students’ conceptual
understanding of fractions on the KFA uses the accuracy of answers to test items that
assessed estimation and problem solving skills.

Saxe et al.’s (2001) KFA was validated using a sample of upper elementary
students. Specifically, confirmatory factor analysis was used to distinguish conceptually-
orientated and procedural test items. A three-factor model was used: the first was a measure
of general knowledge of fractions, the second was a measure of procedural skills, and the
third was a measure of conceptual understanding. Results of the confirmatory factor
analysis demonstrated strong support that the two sets of items are indices of independent
areas of competence. Specifically, the confirmatory factor analysis using the students’
responses to the posttest indicated that all fit indices were high (Bentler-Bonett NFI1 = 984,
Bentler-Bonett NNFI = .985, CFI = .994). Similarly, for the pretest, the best fit indices

were high (Bentler-Bonett NFI = 0.981, Bentler-Bonett NNFI = .979, CFI = .992).
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Cronbach’s alpha indicated internal consistency for each scale. For the conceptually-
orientated scale, the indices were .73 (pretest) and .83 (posttest); for the computational
scale, the indices were .86 (pretest) and .87 (posttest; Saxe et al., 2001).

The participants’ scores on the KFA may be viewed in Table 1. Given that this test
was created for and validated using upper elementary students, preservice teachers’
performance on the test will not be used in the analyses. Rather, this test was used as a
means of identifying preservice teachers’ initial mathematical abilities with respect to the
topic of fractions. An awareness of the preservice teachers’ initial understanding of
fractions enabled me to incorporate variance in the participants’ mathematical abilities
within each group, similar to a typical classroom, as well as allowed me to match
mathematical abilities across the two groups. Moreover, Tirosh (2000) found that the
preservice teachers at the beginning of the mathematics methods course demonstrated
misconceptions of division with fractions similar to elementary students, suggesting that
this assessment tool has face validity for the purpose of measuring preservice teachers’
initial understanding of fractions.

Specialized Content Knowledge

In line with the theory of mathematical knowledge for teaching espoused in Ball et
al. (2005; also see Hill et al., 2005), pre and post semi-structured interviews were audio-
recorded to assess any changes in the preservice teachers’ specialized content knowledge of
division with fractions subsequent to their participation in the instruction sessions. As |
previously mentioned, Ball et al. proposed that SCK is made up of three primary skills: (a)
an ability to analyze students’ errors, (b) the capacity to strategically represent numbers and

manipulatives that are in line with a given instructional goal, and (c) a facility in explaining
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Table 1

The Proportion of the Preservice Teachers’ Correct Responses on the KFA (N = 8)

KFA Procedural KFA Conceptual KFA Total

Participant ID

CG-1 64.70% 66.67% 65.52%
CG-2 94.12% 100.00% 96.55%
CG-3 100.00% 91.67% 96.55%
CG-4 82.35% 75.00% 79.31%
TG-5 100.00% 83.33% 93.10%
TG-6 100.00% 83.33% 93.10%
TG-7 94.12% 50.00% 75.86%
TG-8 88.26% 75.00% 82.76%

Note. CG-1, CG-2, CG-3, and CG-4 were the participants in the control group and TG-5,

TG-6, TG-7, and TG-8 were the participants in the treatment group.
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the meaning behind an algorithm. Although the CKT-M (Hill et al., 2005) has been shown
to measure teachers’ common content knowledge and specialized content knowledge, the
questionnaire items extend to topics in elementary mathematics in addition to division with
fractions. Given that the content of the instruction sessions in the present study will only
address the topic of division with fractions, a general assessment the participants’ SCK was
not appropriate. Therefore, rather than use Hill et al.’s (2005) CKT-M, I have developed a
series of interview items and propose that they measure preservice teachers’ SCK of
division with fractions. The pre-interview items may be viewed in Appendix B and the
post-interview items are presented in Appendix C.

Conducting interviews as oppose to administering a questionnaire was justified
because the small sample allows for the collection of rich interview data and these data can
be analyzed using both qualitative and quantitative methods. Furthermore, little is known
regarding the development of preservice teachers’ SCK, and therefore a data collection
method that lends itself to qualitative analyses is warranted and may provide specific
hypotheses for future research.

As can be seen in Appendix B and Appendix C, the interview items presented
fictitious elementary students’ incorrect solutions to a series of division with fractions
problems (see Tirosh, 2000). In particular, some of the items illustrated that the student
incorrectly matched a word problem to the symbolic representation of a division with
fractions problem. Other items demonstrated a student incorrectly using the division with
fractions algorithm when solving symbolically represented problems. Based on these
solutions, participants were asked to identify the source of the student’s misunderstanding

and propose a follow-up problem that would strategically highlight the misconstrued
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concepts or procedures in a more meaningful manner.

The last item presented a word problem that reflected the measurement model of
division with fractions (e.g., how many groups of 7 are in 12; see Figure 1) and a number

sentence. In the context of this specific item, the participants were requested to use the
structure and content of the word problem to discuss how they would explain the division
with fractions algorithm to their students. The measurement division with fractions model
was used because compared to the other two interpretations (i.e., partitive model and

factors and products model), only measurement division with fractions word problems
comprise actions that mirror the steps carried out when performing the traditional algorithm.

The same question was applied to the number sentence. That is, the participants were asked
5 3, . . .
to use the problem o + 3 to justify the standard algorithm.

Assessment of Content

At the end of every instruction session, 20 minutes were dedicated to administering
a short written assessment of the participants’ understanding of the content (see Appendix
D). Prior to discussing the specific problems, it is important to note that the goal of each
instruction session was to promote the preservice teachers’ content knowledge of division
with fractions to examine how improving mathematical content knowledge fosters their
SCK. The content covered during instruction, therefore, did not teach to aspects of SCK. I
developed the assessments of content to ensure that the preservice teachers consolidated the
content of the instruction, and therefore, based on this objective, the problems reflected the
content of the instruction and not aspects of SCK. The content of the instruction may be

viewed in Appendix E and is based on the literature that has illustrated various ways of
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understanding division with fractions and the algorithms used to solve these types of
problems (Ma, 1999; Star & Seifert, 2006; Tirosh, 2000; Wu, 1999a).

For the control group, the assessments of content entailed presenting a classroom
scenario, similar to the one in Ma’s study (1999), to assess the participants’ conceptual

understanding of the three interpretations of division with fractions. That is, participants
. .. . . 3
were given a division with fractions number sentence (e.g., 9+ Z) and were subsequently

asked to write a real-world situation to match the symbolic representation. In addition, the
control group’s assessment of content for all three instruction sessions comprised the same
format, but the real-world situation that they were requested to record reflected the
interpretation of division with fractions that was covered on that day. That is, at the end of
Session 1, the participants were requested to develop a real-world situation that reflected
the measurement model. At the end of Session 2, the participants were requested to develop
a real-world situation that reflected the partitive model, and at the end of Session 3, the
participants were requested to develop a real-world situation that reflected the factors and
product model.

Given that the treatment group also received an instruction session that emphasized
the conceptual underpinnings of the division with fractions algorithm using the
measurement model, the assessment of content for Session 1 mirrored the one that was
administered to the control group. The assessment of content administered at the end of
Session 2 comprised two division with fractions problems presented in symbolic form,

whereby the participants in the treatment group were asked to use those numbers sentences

to explain why §+ 5 = 4 x% (Wu, 1999a). The assessment of content distributed at the
c
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end of Session 3 to the treatment group asked participants to use a different algorithm and
re-solve two division with fractions problems (see Star & Seifert, 2006).
Procedure
Dr. Helena Osana was contacted in order to obtain permission to recruit the
students in her class. Subsequent to her approval, I requested that she make an
announcement in class briefly describing the study and to invite the students who were
interested in participating to fill in their contact information on a sign-up sheet. Further,
Dr. Osana explained to the students that those who added their name and contact
information to the list did not guarantee their participation in the study; that is, when I
individually contacted them, they were free to decline their participation. In the remainder
of this section, each phase of the research design presented in Figure 5 will be described in
detail.
Phase I: Sample Selection
Subsequent to ethical approval, and approximately 2 months into the winter
semester, all students enrolled in EDUC 388/4 were requested to complete Saxe et al.’s
(2001) knowledge of fractions assessment prior to receiving any instruction on fractions.
Given that the test has an important pedagogical function, it was a mandatory part of the
course and was therefore administered during the first half of one of their classes. Prior to
the administration of the test, I explained to the preservice teachers that they would be
given 30 minutes to complete the test. Shortly after the 30 minute period, I made a copy of
the tests that belonged to the preservice teachers who completed the sign-up sheet
mentioned above and then returned their original test back to them. The preservice teachers

who did not write their name on the sign-up sheet also kept their original test, but no copies
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of their test responses were made. All of the preservice teachers received the answers to the
problems, allowing them to use the test as a review for an upcoming examination in the
course. For ethical reasons, I administered the test; Dr. Osana was not present during the
administration of the test nor when the original tests were returned to the preservice
teachers who were interested in participating.

Following the administration and scoring of the Saxe et al. (2001) assessment, |
individually contacted the preservice teachers who placed their name on the sign-up sheet.
At that time, I reviewed the details of the study to the students (e.g., dates and duration of
the instruction sessions and duration of the interviews) as well as the details of
compensation’. It was also made clear that participation was voluntary and would therefore
not influence their grade in the class. In fact, the participating preservice teachers were also
informed that Dr. Osana would not be aware of who would be involved in the study. Eight
of the students who filled their contact information on the sign-up sheet agreed to
participate.

Phase II: Pre-interview

Following this, I conducted individual interviews with the 8 preservice teachers
who were able and willing to participate in the study. The pre-interview measured their
specialized content knowledge of division with fractions at the onset of the study. During
this interview, the participants’ responses were recorded using a digital audio-recording
device. Further, participants were administered a consent form (see Appendix F) that
would clearly stipulate the following information: (a) participation in the research project

was completely voluntary, (b) participants would not receive grades on the practice

* The compensation was administered in the form of a draw, and the compensation items were two kits of
mathematics manipulatives.
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problems to be completed during the sessions, (c) whether or not participants decide to
participate in the study would not influence the grade they receive in EDUC 388/4, (d)
participants should not inform Dr. Osana of their participation until after the their final
course grade had been submitted, (e) participants must use their student identification
numbers in place of writing their names on the practice problems, and (f) at anytime
during or after their participation in the study, they had the right to withdraw from the
study. After the interview, participants were asked not to discuss the content addressed
during the interview and instruction sessions with other students.

It is important to note that prior to the pre-interview, all of the preservice teachers
received instruction of division with fractions during the mathematics methods course. The
content of this instruction was also included in Session 1 for both groups.

Phase I1I: Content-focused Instruction
Following the initial interviews, the participants were randomly assigned to one of
the two groups and the test scores from the KFA were used to ensure that the mathematical
ability of each student in the control group was matched as closely as possible to a specific
student in the treatment group (see Table 1). A summary of the content addressed during
the three content-focused instruction sessions for the control and treatment group may be
viewed in Figure 6.

I prepared the content of the instruction for all of the sessions prior to conducting
the study. I conducted the instruction sessions for three consecutive weeks. The
instructional sequence for the control group was as follows. In Session 1, the participants
were instructed on the conceptual underpinnings of the traditional algorithm using the

measurement model of division. In Session 2, concepts underlying the partitive model of
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Session # Control Group Treatment Group
(n=4) (n=14)
1
Measurement Model
2
Partitive Model Mathematical Interpretation
3 Common Denominators
Factors & Product Model
Complex Fractions

Figure 6. Content that was addressed during the instruction sessions.
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division with fractions were addressed, and in Session 3, concepts tied to the product and
factors model of division with fractions were examined. The instructional sequence for the
treatment group was as follows. In Session 1, the participants were instructed on the
conceptual underpinnings of the traditional algorithm using measurement model of division.
In Session 2, the mathematical explanation of the traditional algorithm and certain general
properties of mathematics that may also be employed when solving division with fractions
problems were explored. Finally, in Session 3, the application of all alternate algorithms
was examined. Irrespective of group, each instruction session lasted 1 hour and 15 minutes,
whereby the initial 55 minutes was dedicated to instruction and the final 20 minutes was
used to complete the appropriate assessment of content measure.

In addition, the assessments of content that were administered to both groups at the
end of instruction Session 1 were evaluated and returned to them at the beginning of
instruction Session 2. This procedure was repeated once for the assessment of content that
was administered at the end of instruction Session 2. With respect to the assessment of
content that was administered at the end of instruction Session 3, the original copy and
feedback was returned to each of the participants at the beginning of the post-interview. I
made copies of their responses and returned the original assessment of content to each of
the participants. None of the preservice teachers demonstrated any misconceptions of the
content that was addressed during the instruction sessions. All copies of the participants’
assessments of content were retained and stored in a locked filing cabinet, along with the
signed consent forms.

Phase IV: Post-interview

After the three instruction sessions, I contacted the participants in each group and
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requested their participation in the final stage of the data collection, the post-interview.
While the post-interview items were consistent with the structure and format of the items
from the pre-interview, the numbers that were used in the pre-interview items differed from
the numbers that were used in the post-interview items. The post-interview was also audio-
recorded for subsequent analyses.

Upon completion of the data collection, the PowerPoint instruction slides and
practice problems were e-mailed to the participants. Included in this e-mail was a brief
description of the results and the identification of the two participants whose names were
randomly picked to receive compensation. Finally, because the study terminated after the
mathematics methods course, only the PowerPoint instruction for Session 1 was posted on
the on-line course conference to allow all students (i.e., those that did not participate or
attend the instruction sessions) access to this information. The decision to post the
Powerpoint slides and assessments of content after as opposed to during data collection was

to prevent participants from one group to view the alternate groups’ instructional content.
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CHAPTER 4: ANALYSIS AND RESULTS

The current study was designed to address two research questions. The first
research question was concerned with the examination of whether content-focused
instruction addressing division with fractions enhanced the preservice teachers’
specialized content knowledge of division with fractions (SCK-DF). To answer this
question, the data were analyzed in two ways. First, each participant’s score on the pre-
interview was compared to his or her score on the post-interview. Following that, the
development of SCK-DF was examined, using descriptive analyses, as a function of area
of SCK (i.e., analyzing student solutions, representing numbers and operations in
meaningful ways, and justifying mathematical rules and procedures) in order to
determine how each of the three areas developed as a consequence of the content-focused
instruction.

The second research question addressed whether and how differences in gains in
SCK-DF were the result of the type of content of instruction. In order to address this
research question, I examined group differences in SCK-DF quantitatively as well as
qualitatively. For the quantitative analyses, two Mann-Whitney U tests were performed
on the participants’ ranked pre- and post-interview scores. One Mann-Whitney U was
used to analyze group differences in participants’ final interview score on the pre-
interview, and a second Mann-Whitney U was used in the same way for participants’
post-interview scores.

Added to that, I analyzed the group differences qualitatively whereby the
participants’ performance on both pre- and post-interviews was described as a function of

group. With respect to the qualitative comparison of the groups’ development of SCK-
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DF, in this chapter I will discuss each interview item® and the total interview scores by
group on the pre- and post-interview. In addition, I will also report the frequency with
which the participants used Division Language and demonstrated Misconceptions of
Division with Fractions (MDF) by group. In line with the ethical guidelines concerned
with participants’ anonymity, the participants will henceforth be referred to using an
identification number (i.e., CG-1, CG-2, CG-3, CG-4, TG-5, TG-6, TG-7, and TG—8)7.

It is important to note that for both research questions, the interview data will be
described in this chapter in three sections, each of which accords to one of the three areas
of SCK. That is, Section I (i.e., items 1a through 5a) will describe the items that
corresponded to analyzing student solutions, Section II (i.e., items 1b through 5b) will
describe the items that addressed representing numbers and operations in meaningful
ways, and Section III (i.e., items 6 and 7) will describe the items that reflected justifying
mathematical rules and procedures.

Data Preparation

Subsequent to conducting the interviews, I developed a coding sheet (see
Appendix G), on which the responses were transcribed, to prepare the data for analysis.
That is, rather than transcribe the participants’ interview responses in a sequential
fashion, a list of coding ideas tailored to each item were used as a guide to organize the
participants’ responses. In general, for the items that corresponded to analyzing the
hypothetical student’s solution (i.e., Section I, items 1a through 5a), the list of coding

ideas comprised: (a) addressing the concept of division, (b) identifying the error

® Please note that for clarity of argument, I will not discuss the interview items in the same order as they
appear on the pre- and post-interview.

7 Note that CG refers to the participants in the control group and TG refers to the participants in the
treatment group.
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displayed by the student, and (c) identifying an alternate error displayed by the student.
With respect to the items that addressed the participants’ ability to represent numbers and
mathematical ideas in meaningful ways (i.e., Section II, items 1b through 5b), the list of
coding ideas comprised: (a) any misconceptions of division with fractions that the
participant demonstrated and (b) the participant’s follow-up problem that was designed to
address the student’s misconceptions of division with fractions. Finally, for the last two
items that required the participant to justify the invert and multiply algorithm using the
context of the problem provided (i.e., Section III, items 6 and 7), the list of coding ideas
comprised: (a) addressing the use of multiplication in the standard algorithm, (b)
addressing the meaning behind inverting the divisor, and (c) addressing the remainder.
Each interview item and the corresponding list of coding ideas are presented in the
coding sheet (see Appendix G).
Coding and Scoring
Research Question 1

Subsequent to transcribing the interviews and organizing the transcripts by coding
idea, each participant received an SCK-DF numerical score (i.e., SCK-DF Item Score) for
each item on the interview. The scores were assigned using a rubric that is presented in
Appendix H. In general, an SCK-DF Item Score of 0 indicated that the participant’s
response to the item in question was inappropriate. In line with this reasoning, an SCK-
DF Item Score of 2 indicated an accurate response to the item and a SCK-DF Item Score
of 1 was indicative of an answer that was partially correct. Each participant’s SCK-DF
Item Scores were summed, and the sum of these scores was the participant’s Total SCK-

DF Score.
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Data Reduction

Following the coding and scoring of the data, I calculated several levels of scores
from the interviews. A diagram describing these calculations may be viewed in Figure 7.
That is, for each of the 8 participants, there is a Total SCK-DF Score (ranging from 0 to
24), or the total sum of the scores received from each of the 12 items on the interviews. I
calculated a group score for each item referred to as Group SCK-DF Item Score (ranging
from 0 to 8). Finally, the Total Group SCK-DF Score represents the sum of the
participants’ Total SCK-DF Scores that I summed as a function of group (ranging from 0
to 96).

Research Question 2

Following that, I used the Analysis of Specialized Content Knowledge of Division
with Fractions (ASCK-DF), a rubric created to assign codes to the participants’
statements. In particular, the ASCK-DF comprised two types of codes: (a) Student Codes,
which reflected the hypothetical students’ involved in the classroom scenarios, and (b)
Participant Codes, which reflected the participants’ misconceptions of division with
fractions and their use of Division Language. Together, these codes served as a means for
qualitatively describing the group differences in SCK-DF on the pre- and post-interview
(i.e., addressing the second research question). Please refer to Appendix I for a detailed
description of the ASCK-DF.
Student Codes for the Classroom Scenarios

The Student Codes varied as a function of section. That is, the codes for Section I
reflected children’s common misconceptions of division with fractions identified by

previous research (see Tirosh, 2000). In particular, the misconception codes addressed (a)
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algorithmically-based errors (e.g., inverting the dividend instead of the divisor); (b)
intuitively based mistakes (e.g., the value of the divisor cannot be larger than the value of
the dividend); (c) mistakes based on procedural knowledge (e.g., division is
commutative); and (d) mistakes based on conceptual knowledge (e.g., confusing the
concept of division with the concept of multiplication). Finally, in situations where the
participant did not provide any analysis of the student’s error, the No Error Analysis code
was used. Some of the Student Codes for this section were also generated from the
interview data themselves.

The Student Codes for Section II derived from the interview data and primarily
addressed whether the participant’s goal was to improve the student’s conception of
division with fractions or provide the student with a more effective solution strategy. In
both cases, the pedagogical method that the participant suggested was coded. In other
words, I was concerned with the materials that the participant wanted to use (e.g.,
pictures, manipulatives, or symbols), whether the participant offered more than one
method of correcting the misconception or problem, and whether he or she commented
on the connection between the student’s misconception of division with fractions and
other operations or mathematical concepts and procedures.

Similar to Section II, the Student Codes for Section III also emerged from the
data. Specifically, in addition to a participant’s ability to justify the standard algorithm, I
was concerned with: (a) whether the participant volunteered multiple methods of
justifying the algorithm, (b) whether his or her method was not addressed during the
instruction sessions and thus was invented by the participant, (c) whether the participant

used knowledge of concepts of division with fractions or knowledge of procedures
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associated with this topic, and (d) whether the method used on item 6 was also applied to
item 7, thus indicating an ability to flexibly apply the same method to distinct contexts.
Participant Codes Reflecting Participants’ MDFs and Use of Division Language

In general, the Participant Codes did not differ as a function of section. More
specifically, the same codes were used for all of the items except on items 6 and 7, for
which some codes reflecting the participant’s misconceptions in his or her justification of
the algorithm were added. For example, on item 7, several participants identified an
incorrect number of groups in his or her pictorial model of the algorithm, and failed to
recognize that as a consequence, the model did not reflect the answer to the problem.

Overall, the MDF codes in all three sections were identical to the Student Codes
for Section I. Some additional misconceptions, however, that were not among the Section
I Student Codes emerged from the data. As such, some additional Participant Codes were
added to the rubric. Some participants, for instance, confused the action of division with
the act of partitioning an area. Moreover, a few participants incorrectly matched a
number sentence to a word problem that was presented during the interview, situating the
divisor as the dividend.

In addition to the participants’ MDFs, the use of Division Language was also
coded. The Division Language codes reflected the participants’ use of formal
mathematical vocabulary to communicate concepts and procedures associated with
division with fractions (see ASCK-DF). According to Zazkis (2002), the notion of formal
vocabulary refers to mathematical language that communicates a specific mathematical
concept or procedure. In line with this notion, I coded various types of Division

Language to reflect whether Division Language was used as a means of communicating
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terminology, concepts, or procedures associated with division and division with fractions
(e.g., size of one group, invert and multiply, or quotient).
RESULTS
Research Question 1: The General Development of SCK-DF

A comparison of the pre- and post-interview SCK-DF Item Scores may be viewed
in Table 2. In general, all but 1 participant demonstrated a higher Total SCK-DF Score on
the post-interview compared to the pre-interview. Specifically, CG-3’s Total SCK-DF
Score was 1 point lower on the post-interview compared to CG-3’s pre-interview Total
SCK-DF Score. What had a significant impact on her reduced Total SCK-DF Score on
the post-interview was the high number of items whose score remained unchanged (i.e.,
9). In addition, she was one of the participants with a limited number increased SCK-DF
Item Scores on the post-interview (post-interview SCK-DF Item Score was increased for
4 items on the post-interview), suggesting a relatively small improvement in SCK-DF
from the pre-interview to the post-interview compared to the other participants. The other
participant (i.e., CG-4) who also received a score increase on 4 items demonstrated only a
slightly higher Total SCK-DF Score on the post-interview. Indeed, her score pattern
indicated that of the 12 items, the scores of 4 items increased, of 3 items decreased, and 5
items remained the same. At the other end of the spectrum, TG-8 displayed a score
increase on 9 items on the post-interview. As for the other participants, CG-2 and TG-5
demonstrated a score increase on 6 items and CG-1, TG-6, and TG-7 each experienced a
score increase on 5 items. Thus, overall, the preservice teachers' improvement on the
post-interview suggests that their SCK-DF was enhanced following the content-focused

instruction.
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Table 2

The Participants’ SCK-DF Item Scores Compared as a Function of Time (N = 8)

Interview Section ,
Participant ID Section I: Analyzing Student Solutions

Item la 2a 3a 4a Sa

Interview Pre Post Pre Post Pre Post Pre Post Pre Post

CG-1 1 1 2 2 2 0 2 2 0 1*

CG-2 1 1 2 2 2 2 1 2% 2 2

CG-3 2 1 2 2 2 2 2 1 2 1

CG-4 0 1 1 1 1 2* 2 2 2 2

TG-5 1 2% 1 2% 2 2 1 1 2 2

TG-6 0 2% 2 2 0 2% 2 2 2 2

TG-7 1 2* 2 2 2 2 0 1* 2 1

TG-8 1 0 0 2% 1 2% 1 1 2 1
Section II: Representing Numbers and Operations in Meaningful Ways

Item 1b 2b 3b 4b 5b

Interview Pre Post Pre Post Pre Post Pre Post Pre Post

CG-1 0 2% 0 0 2 1 1 0 1 2*

CG-2 2 1 1 2% 2 2 0 1* 1 2%

CG-3 1 1 1 2% 2 2 1 1 1 1

CG-4 0 0 2 1 0 1* 2 0 2 1

TG-5 0 2% 2 2 2 2 0 1* 1 2%

TG-6 0 2% 0 2* 1 1 1 1 2 2

TG-7 1 1 2 2 2 2 1 2% 1 2*

TG-8 1 2% 1 2% 1 2% 1 2% 1 2*

Section III: Justifying Mathematical Rules and Procedures

Item 6 7

Interview Pre Post Pre Post

CG-1 0 2% 0 1*

CG-2 1 2% 1 1

CG-3 1 1 0 1*

CG-4 0 2% 0 0

TG-5 0 2% 0 0

TG-6 2 2 0 1*

TG-7 2 2 0 2%

TG-8 1 2% 1 2*

Note. The values with an * indicates a post-interview SCK-DF Item Score increase.
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Based on the data from Table 2, I determined how each of the three areas of SCK
improved following the content-focused instruction. In particular, irrespective of group, I
calculated the mean number of participants whose item scores increased on the post-
interview (please see note in Table 2). Please refer to Figure 8 for the mean number of
participants whose SCK-DF Item Scores increased on the post-interview compared as a
function of section. The calculations indicated that the highest mean participant score
increase was in Section III, whereby an average of 5 of the 8 participants experienced
score increases. Following that, in Section II, an average of 4 (specifically, M = 3.80) of
the participants demonstrated greater scores on the post-interview. The area of SCK that
benefited the least from the content-focused instruction was Section I, (analyzing students
solutions), whereby an average of 2 participants (specifically, M = 2.20) displayed higher
scores on the post-interview. In summary, these data indicate that the majority of the
participants experienced an overall increase in SCK-DF subsequent to receiving content-
focused instruction and the area of SCK that benefited most was the ability to justify the
standard algorithm.

Research Question 2: Group Differences in the Development of SCK-DF
Quantitative Analyses

The Total SCK-DF Scores and the Total Group SCK-DF Scores for the pre- and
post-interviews may be viewed in Table 3. With respect to the research question
pertaining to the differential impact of the two types of content of instruction (i.e.,
conceptual content, and a combination of conceptual and procedural content) on

preservice teachers’ gains in SCK of division with fractions, two Mann-Whitney U tests
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Mean Number of Participant
PSS

Section I Section 11 Section 111

Figure 8. Section comparison of the mean number of participants who improved their

SCK-DF Item Score on the post-interview.
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Table 3

A Comparison of Total SCK-DF Scores and Total Group SCK-DF Score as a Function of

Time (N = 8)
Pre-interview Post-interview

Participant ID Total SCK-DF Score Total SCK-DF Score

M) 6]
Control Group
CG-1 11 14
CG-2 16 20
CG-3 17 16
CG-4 12 13
Total Group SCK-DF Score 56 (14.00) 63 (15.75)
Treatment Group
TG-5 12 20
TG-6 12 21
TG-7 16 21
TG-8 12 20
Total Group SCK-DF Score 52 (13.00) 82 (20.50)
Total 108 (13.50) 145 (18.13)
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were performed. The critical alpha level of .05 was used as the criterion for both tests.
Pre-interview Group Differences

The participants’ original Total SCK-DF Scores on the pre-interview were
ordered, and then ranked. Following that, a Mann-Whitney U test was used to compare
the ranks for the control group (n = 4) to the treatment group (n = 4). The results
indicated that the median pre-interview score was 12.00 and the interquartile range (IQR)
was 4.00. The results from the Mann-Whitney U indicated no significant difference
between groups on the pre-interview, U = 7.00 (corrected for ties U = 7.50), p = .886.
Post-interview Group Differences

The participants’ original Total SCK-DF Scores on the post-interview were
ordered, ranked, and a Mann-Whitney U test was used to compare the ranks for the
control group (n = 4) to the treatment group (n = 4). The median post-interview score
was 20.00 and the IQR = 6.25. The results from the Mann-Whitney U indicated a
significant difference between groups for the post-interview, U = 1.00 (corrected for ties
U= 1.00), p = .05, one-tailed.

Qualitative Analysis of Section I: Analyzing Student Solutions

I will now continue the discussion with a description of #ow the participants and

groups’ SCK-DF changed as a function of the type of content of instruction. Please refer

to Figure 9 for a list of the pre- and post-interview items and expected responses for

Section 1.
To begin, the pattern of change of Group SCK-DF Item Score was different for
both groups in this section (see Figure 10). In particular, on the pre-interview, the control

group demonstrated a greater Total Group SCK-DF Score for Section I (M =
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Item | Pre-interview Post-interview Expected
Response
la 1 1) Inverting the
l+4'—-4+4=1 g+6=6+6=1 wrong number
4 and
2) dividing
versus
multiplying
2a 1 3 1 4 The divisor can
—-%T Y- be bigger than
4 5 3 4 the dividend.
“I can’t do this because — is bigger “I can’t do this because — is bigger First half of the
5 7 statement is
correct.
than Z, so you can’t share less than 3, so you can’t share less among
among more” more”
3a 1 1 1 1 1 1 1 1 1 1 Misuse of the
320- 3=3" 320 3><320 960 410- 5=5" 410 2><410 920 | commutative
property and
correct
application of
the standard
algorithm.
4a Kate’s mom bought 6 bars of Harriet has a paper to write for her The student
chocolate for her and her friends. If | political science course. She has set confused
1 aside 10 hours to write the paper. It finding how
each person had — of a bar of 1 many groups
2 takes her — of an hour to write a page. 1
chocolate, how many people 2 of — with
altogether ate chocolate? How many pages can she write in 10 2
hours? splitting 10 in
6+2=3 half or
10+2=5 distributing 10
among 2
groups.
5a Looking for

1
Jerry bought 35 pounds of flour for

$2.00. How much did he pay per
pound?

2% 3% = 239 or $6.66 per pound

1
Nigella used 4 Z cups of flour to bake

2 lemon meringue cakes for a dinner
party. Shelly, one of her dinner guests
loved the cake so much she decided to
bake one lemon meringue cake the next
day. How much flour did Shelly use to
bake this cake?

2X4l=ﬁor 8l cups of flour
4 4 2

the size of each
group versus a
multiplication
problem where
the number of
groups and
number in each
group is known

Figure 9. A description of the interview items in Section I, and the expected responses.
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=—&— (Control Group

—8—— Treatment Group

Mean Total Group SCK-DF
Score for Section I
o

Pre-interview Post-interview

Time

Figure 10. A group comparison of the mean Total Group SCK-DF Score for all the items

in Section L.
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6.20) compared to that of the treatment group (M = 5.00). On the post-interview,
however, not only did the treatment group’s Total Group SCK-DF Score for Section I
improve (i.e., M = 6.60), but it also exceeded the control group’s Total Group SCK-DF
Score for this section (i.e., M = 6.00). The mean Total Group SCK-DF Scores for Section
I on the post-interview imply that the treatment group experienced an overall increase in
SCK-DF while the control group did not. Based on the difference between the groups’
mean Total Group SCK-DF Scores for Section I at the onset of the study, however, the
treatment group’s greater gain in this area of SCK-DF should be interpreted with caution.

A group comparison of the Group SCK-DF Item Scores for the items in this
section, as well as the frequencies of Division Language codes and MDFs, are presented
in Table 4. In general, both groups demonstrated a relatively low frequency of MDFs for
all of the items except item 3a. Further, the treatment group demonstrated a greater
decrease in the overall frequency of MDFs on the post-interview compared to the control
group.

Despite the groups’ difference in the decrease of MDF's on the post-interview,
both groups demonstrated an overall increase in the frequency of Division Language that
was used in response to the items in this section (i.e., items 1a, 2a, 3a, 4a, and 5a).
Indeed, the control group’s greatest Division Language frequency increase was
demonstrated on items 4a (i.e., frequencies of 2 and 9, respectively) and 5a (i.e.,
frequencies of 1 and 6, respectively), while the treatment group’s greatest Division
Language frequency increase was demonstrated on items la (i.e., frequencies of 4 and 7,
respectively) and 3a (i.e., frequencies of 5 and 10, respectively). It is important to note

that items 4a and 5a reflected conceptually-based misconceptions while items 1a and 3a
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Table 4
A Group Comparison of Group SCK-DF Item Score, Frequency of Division Language,

and Misconceptions of Division with Fraction for Section I at Both Time-points (N = 8)

Pre-interview Post-interview

Variable Control  Treatment Control  Treatment

Item la
Group SCK-DF Item Score 4 3 4 6
Division Language 1 4 1 7
Misconceptions of Division with 1 0 1
Fractions (MDF)

Item 2a
Group SCK-DF Item Score 7 5 7
Division Language 1 0
Misconceptions of Division with 2 1 1
Fractions (MDF)

Item 3a
Group SCK-DF Item Score 7 5 6 8
Division Language 4 5 2 10
Misconceptions of Division with 3 4 4 0
Fractions (MDF)

Item 4a
Group SCK-DF Item Score 7 4 7 5
Division Language 2 4 9 2
Misconceptions of Division with 0 2 1 0
Fractions (MDF)

Item 5a
Group SCK-DF Item Score 6 8 6 6
Division Language 1 1 6
Misconceptions of Division with 0 0
Fractions (MDF)
Total Group SCK-DF Score for
Section I (M) 31(6.20) 25(5.00) 30(6.00) 33 (6.60)
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comprised procedurally-based errors, perhaps highlighting a link between the type of
content that was addressed during the instruction sessions and the use of Division
Language.

Control Group

In general, the control group’s Group SCK-DF Item Score for each item in this
section did not change from the pre-interview to the post-interview. In fact, the only item
where the Group SCK-DF Item Score changed was on item 3a, which decreased by 1
point from the pre-interview to the post-interview. It is important to consider, however,
that for the majority of the items on the pre-interview, the Group SCK-DF Item Scores
for the control group was high (see Table 4). Specifically, as indicated in Table 4, 3 of 5
the items on the pre-interview received a Group SCK-DF Item Score of 7, and one item
received a Group SCK-DF Item Score of 6. Based on the participants’ performance on
the pre-interview, then, it is logical that more content-focused instruction would only
have a minimal positive effect on their final error analysis skills.

Item 1a. One item, however, for which the participants in this group did not
collectively perform well on during the pre-interview was item la (see Table 4).
Moreover, after the instruction sessions, the Group SCK-DF Item Score for this item
remained the same. In particular, because CG-3’s score decreased on the post-interview
and CG-4’s increased, there was no change in the overall group score for this item.

Indeed, on the pre-interview, CG-4’s statement illustrated no analysis of the
student’s error. She concluded that:

CG-4 (1a Pre): Well, first I would have asked her why she came up with this if

she had done any little drawings to get a visual of how she actually came up with
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her number sentence to see how she understands it first. That would be the first
step that I would do because for me I am very visual so I need to see the actual
break down of it. Well she just divided the 4 by the 4 instead of looking at the
whole fraction and like drawing it out.

Although it may be argued that her final statement comprised some error analysis, I

considered her statement a replication of what was written on the paper. That is,

for% +4=4+4=1, she stated that the student divided 4 by 4 (restating the 4 +4 part of

the solution) instead of using the fraction and dividing % by 4. The avoidance of

analyzing the student’s error may reflect her poor understanding of division with
fractions.

Added to that, CG-4 confused the action of division (which can either be
distributing a total among a number of groups or continuously grouping groups of a

certain size from the total) with the act of partitioning, stating that, “Here, for instance,

the % and then dividing it again by 4, she just divided the 4 directly from the fraction.”
That is, using a pictorial representation of —clf’ CG-4 re-partitioned that area into four

smaller areas, considering that she was modeling % divided by 4. Interestingly, she was

not the only participant who displayed this misunderstanding when addressing this item.
In fact, in addition to CG-4, 3 participants (i.e., 1 from the treatment group and 2 from the
control group) also demonstrated this misconception when addressing how the student’s

misconception should be corrected.
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On the post-interview, however, CG-4 did not display the MDF that was
demonstrated in the pre-interview and her SCK-DF Item Score improved because she
identified one of the two algorithmically-based errors. Taken together, her performance
on the post-interview for this item illustrated some of the progress made in her error
analysis skills.

Contrary to CG-4, CG-3’s SCK-DF Item Score decreased on the post-interview.
Specifically, CG-3 received an SCK-DF Item Score of 2 on the pre-interview, identifying
both of the algorithmically-based errors. Unfortunately, CG-3’s response to this item on
the post-interview only addressed the hypothetical student’s general misconception of
fractions, resulting in a lower post-interview score for this item.

Although CG-1’s SCK-DF Item Score did not change from the pre-interview to
the post-interview, her response on the post-interview indicated a slight improvement in

her error analysis. That is, on the pre-interview she commented on the fact that the
student confused multiplication with division because, according to CG-1, multiplying %
by 4 closely resembles the solution the hypothetical student represented (i.e.,

1 4 1 . ,

7 X4 = 2 =1 compared to 1 +4=4+4=1).1considered CG-1’s responses to be

reasonable, but nonetheless inadequate, given that she did not address the fact that the
division symbol remains after the algorithm is applied. On the other hand, in CG-1’s
response on the post-interview, she stated that the hypothetical student’s error was
algorithmically-based, noting that the student failed to change the operation from division
to multiplication. Her response, however, also demonstrated her own algorithmically-

based errors where she stated that correctly performing the algorithm would involve
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multiplying 6 by 6, illustrating that she inverted the dividend instead of the divisor. She
replicated this misunderstanding on item 7 on the pre-interview, where she stated that the
standard algorithm involves inverting all fractions.

Item 2a. With respect to items 2a, 4a, and 5a, the Group SCK-DF Item Scores on
the pre-interview were high to begin with. As such, there was very little change in the
control group participants’ responses from the pre-interview to the post-interview for
these items (see Table 4). The 3 participants, for instance, who correctly identified the
student’s misconception of division with fractions on item 2a on the pre-interview were
the same 3 participants who did so on the post-interview. Of interest, however, is that in
responding to item 2a on the pre-interview, 2 of the 4 participants identified student
errors that they themselves demonstrated in their response to the same item. Indeed, CG-
4 misunderstood the student’s statement, claiming that:

CG-4 (2a Pre): He doesn’t understand the full value of, like, the actual fraction,
that even though this might be bigger than, like g might be bigger than % in

actual num[ber]| like when you are writing it out you might think that, but when
you, but when you divide it into like 5s or whatever, he’s not seeing that it could
actually be smaller than the first number.

Note that CG-4 believed that the student in 2a misunderstood the concept of a fraction

. 1. 3 .
because that student considered that 7 is smaller than 5 Contrary to her analysis, one
assumes that the student does indeed understand the concept of a fraction because % is in

fact bigger than % Further, based on her statement, I argue that she displayed the very
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misconception that she identified in the student, illustrating how a teacher’s
misconceptions of the content may negatively impact his or her analytical skills of
students’ solutions, consistent with previous research (van Dooren, Verschaffel, &
Onghena, 2002). Moreover, CG-4 continued to display this pattern of identifying a
misconception that she herself possessed on the post-interview, on this item and on item
4a. Similarly, on item 2a on the pre-interview, CG-3, stated that:

CG-3 (2a Pre): I think what he is having trouble seeing is that you are actually
taking —531 of % You can’t share less among more that would be ah, that’s more

like a subtraction type of thing where you can’t take less, you can’t take a bigger

piece from a smaller piece.
In other words, CG-3 indicated that one of the student’s errors was that he or she applied
an understanding of subtraction in place of division, and at the same time, she
demonstrated an interpretation of multiplication with fractions instead of division with
fractions. Interestingly, in addition to identifying this error, CG-3 accurately identified
the student’s real misconception of division with fractions on the pre-interview. On the
post-interview, however, she did not use an interpretation of multiplication with fractions
on this item, contributing to the slightly reduced frequency of MDFs on the post-
interview for the control group.

Item 4a. With respect to item 4a, the Group SCK-DF Item Score was the same on
the pre- and post-interview because CG-2’s SCK-DF Item Score increased on the post-
interview and CG-3’s SCK-DF Item Score decreased by the same amount on the post-

interview.

78



Item 5a. In terms of item 5a, the Group SCK-DF Item Score can be explained by
CG-1 and CG-3’s post-interview SCK-DF Item Scores. That is, CG-1’s response on the
pre-interview lacked any analysis of the student’s error. Subsequent to participating in the
instruction sessions, however, she responded, “He doesn’t understand that it is a division
problem. But when you break it down with the partitive interpretation, you have another
way of seeing it.” In contrast, CG-3’s score on the post-interview decreased because she
considered that the student:

CG-3 (5a Post): ...Knows that when you are supposed to divide, cause sometimes

often when we say to children, “well you don’t need to divide the fractions, you

just need to multiply it by the reverse,” sometimes they see fractions that need to

be divided and they just multiply it no matter what without reversing the number

and without going through the algorithm in their head, without picturing it.

In other words, CG-3 believed that the student failed to write 4%+ 2 and incorrectly
wrote 2 X 4% because she misapplied the algorithm. This analysis, however, would carry

o . 1 . .
greater weight if the student’s incorrect response had been 4 7 X 2. Irrespective of this, as

indicated in Figure 8, the student demonstrated a misconception of the concept of
partitive division, thus explaining why CG-3 did not receive an SCK-DF Item Score of 2
for this response on the post-interview.

Item 3a. Unlike the other items, the Group SCK-DF Item Score on item 3a
decreased by 1 point from the pre-interview to the post interview for the control group
(see Table 4). On the pre-interview, all of the participants accurately identified that the

student’s error was the misunderstanding that division is commutative. One of the
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participants (i.e., CG-4), however, additionally considered that the student demonstrated
errors in performing the algorithm. As a matter of fact, CG-4’s response not only
identified her own misunderstanding of the algorithm, but she revealed on the pre-

interview a common misconception of division with fractions that children demonstrate:
confusing a whole number divided by % with a whole number divided by 2 (Ma, 1999;

Tirosh, 2000). Further in this regard, in demonstrating this common misconception, her
response illustrated that a possible source of this misunderstanding could be her use of
the interpretation of multiplication with fractions as opposed to division with fractions.

The following excerpt supports this notion.

CG-4 (3a Pre): First, I would get him to look at the 320, break that down into %s

to see to show him what they look like, what -1— of 320 is, and then ask him after
seeing that if he still thinks that this [the student’s solution] is the same. So I
would get him first to draw it out into %s and then look and see if he still thinks it

makes sense or not and then we would see from they are depending on what his

answer is.

Note that, CG-4 understood 320 +—:1): as 320 x % because she stated that you are looking
1 . . . . .

for “what 3 of 320 is.” In addition, her comment regarding breaking down the total into

%s reflects using the partitive model, whereby the number of groups is a whole number

(i.e., 3) instead of the fraction that is represented as the divisor (i.e., —13-). That is, she
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distributed the total amount of 320 among 3 groups, as opposed to finding how many

groups of % make up 320 or that 320 is a —;— of what amount. Added to that, she stated on

the post-interview:

CG-4 (3a Post): If he drew it out, he would see, like, 400 [four flats®] and then 1
[one longg]. If he has to take % of that, he’s going to see that he can take half of

this [four flats] and this [one long] and then half of this gone [four flats and one
long or 410], but he’s looking at it like he’s taking this [points to the student’s
solution] and he’s just multiplying it across.

Here again, CG-4 distributed the total amount into two groups and was concerned
with the size of group; in doing so, she confused 410 +%— with 410 x % (her pictorial

solution that matched this response may be viewed in Figure 11). Taken together, CG-4’s
responses suggested that if the student took a fraction of the whole number, which is the
interpretation that is used for multiplication with fractions, the total would be distributed

into the correct number of groups, allowing the identification of the size of one group.
Contrary to this notion, the fraction in 320 +—;— and in 410 +% represents the size

of each group, or a fraction of the total value of one group. CG-4 was not the only
participant who demonstrated this particular combination of MDFs. In response to item

3a on the post-interview, CG-1 stated:

8 Aflatisa square base ten block representing 100 units,
® A long is a rectangular base ten block representing 10 units.
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Figure 11. CG-4’s pictorial solution on item 3a on the post-interview.
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CG-1 (3a Post): When you are given a benchmark like %, he should know that it

is % of the whole, so the answer is going to be less [than 410], so 205. So maybe

he is not estimating. I know we were taught to look at the numbers, look what

they are asking, look at the whole. So his misconception is that he doesn’t

understand whole and %

Note that CG-1 also stated that 410+% is the same as 410 x %, or knowing what -;— of

410 is. Indeed, on the post-interview, not only did CG-1 confuse a whole number divided
by a fraction with a whole number multiplied by a fraction, but she also proposed a
different response from the accurate one she offered on the pre-interview, contributing to
the control group’s lower Group SCK-DF Item Score on the post-interview.
Treatment Group

As I previously mentioned, compared to the control group, the treatment group
demonstrated a higher post-interview Total Group SCK-DF Score for Section I (see
Table 4). Furthermore, for this group, performance on 4 of the 5 items in this section
improved on the post-interview (see Table 4). Interestingly, the 4 items on which the
treatment group experienced an improvement in this area of SCK-DF were items that
involved procedural knowledge of division with fractions (i.e., items 1a, 2a, and 3a) That
is, the error in item 1a addresses two misconceptions of the algorithm: (a) inverting the
dividend instead of the divisor, and (b) forgetting to change the operation to
multiplication. The error in item 2a highlights a faulty rule of division that elementary

students often uphold: the divisor must always be larger than the dividend. On item 3a,
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the student applied the property of commutativity to division. Although the student error
in item 4a was conceptually-based, it addressed the concept of measurement division, a
concept of division with fractions that was also emphasized during the treatment group’s
content-focused instruction. Added to that, the treatment group did not receive any
content-focused instruction emphasizing the partitive division model. In line with this,
the item where the student error was couched in a partitive division with fractions word
problem (i.e., item 5a) was the same item that had a lower Group SCK-DF Item Score on
the post-interview.

Item 4a. The score increase from the pre-interview to the post-interview on item
4a was relatively small (i.e., 1 point) compared to the other Group SCK-DF Item Score
increases on items la, 2a, and 3a. In addition, upon closer examination of the
participants’ error analysis on item 4a on the pre-interview, it is interesting to note that
none of the participants identified the same error, and only 1 participant correctly
reported the hypothetical student’s error in the problem. The same participant who
correctly answered the question on the pre-interview was also the only participant to
accurately address this item on the post-interview.

The participant who was responsible for the slight Group SCK-DF Item Score
increase was TG-7. In particular, TG-7 was the only participant who did not receive a
SCK-DF Item Score of 2 on the pre-interview (her SCK-DF Item Score was 0) and
improved her score on the post-interview. Indeed, on the pre-interview she failed to
provide any analysis of the student’s error. On the post-interview, however, she
expressed that the student misunderstands the concept of a fraction, stating, “They are not

realizing that fractions again are a world on its own. You can’t just take 2 and abandon
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the 1, because it is not really 2, it’s %.” In other words, the hypothetical student applied

the denominator in the fraction as a whole number in the problem, changing the place
value of the number. The fact that the student was willing to use a number whose place
value is different suggested to TG-7 that the student clearly does not possess a relational
understanding of the numerator a denominator.

Although TG-8’s post-interview response also addressed the student’s
misconception of fraction concepts, her response suggested that the hypothetical student
incorrectly applied one of the three interpretations of a fraction. Based on the fact that
TG-8 was more specific when she addressed the student’s misconception of fraction
concepts, I contend that this was a more sophisticated response compared to the other
statements that proposed that the hypothetical student lacked a general understanding of
the concept of a fraction. In particular, TG-8 stated:

TG-8 (4a Post): What is interesting about this word problem, probably done on

purpose, is the fact that there is a 1 up here, which probably corresponds to 1

page, and there is a 2 here, which might, to her, correspond to 2 hours. She’s

saying that for 10 hours she can write 2 pages because for her, I guess she might
be taking a guess because for her she sees the 1 page and 1 page every 2 hours.

She might be thinking ratio, so she’s thinking of fractions as 2 separate numbers.

She doesn’t see the overall connection between the 2 numbers in a fraction. So

that’s her major misconception. She sees it as a ratio.

Indeed, TG-8 considered that the student applied a ratio understanding of fractions. In

other words, she suspected that rather than consider the fraction as % of 1 hour, the
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student believed that % represented the ratio of 1 page to 2 hours, indicating that there are

% of the number of pages compared to the number of hours. If the student did apply this

misunderstanding, then, it is logical that the number sentence would have been 10+ 2.
Item 5a. Surprisingly, the treatment group’s Group SCK-DF Item Score on item
5a on the pre-interview was 8 and was 6 on the post-interview. Indeed, on the post-
interview, 2 of the 4 participants (i.e., TG-7 and TG-8) received a lower score. TG-8’s
post-interview response, for example, indicated that the student possessed an
algorithmically-based misconception of division with fractions. Specifically, she stated:

TG-8 (5a Post): It is not commutative and I don’t know why she is multiplying.
You can multiply, but it has to be like this [she writes 4 % X -;—]. I don’t know

whether she did part of the problem in her head and decided to invert and multiply

instead of divide, but she forgot to invert the 2.

Similar to CG-3, although TG-8’s response had merit, the student primarily demonstrated
a misconception of the concept of partitive division, thus I did not issue an SCK-DF Item
Score of 2.

In addition, TG-7 admitted on the post-interview that the student had confused the
concept of division with the concept of multiplication. Based on the fact that the student
was able to perform the multiplication with fractions algorithm, however, TG-7
concluded that the source of the student’s misunderstanding of division with fractions
was not mathematical, but rather was a comprehension of the wording used in the

problem.
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Item 2a. In Section I, the greatest Group SCK-DF Item Score increases were
found on items 1a, 2a, and 3a (see Table 4). In addition, the participants in the treatment
group displayed fewer MDFs and the majority of the high frequencies of Division
Language were displayed on the post-interview by this group and for these three items.

Notably, on items 2a and 3a, the treatment group received the highest possible
Group SCK-DF Item Score. On the pre-interview on item 2a, for instance, 2 participants
(i.e., TG-5 and TG-8) emphasized the student’s misconception of fraction concepts
instead of considering the student’s specific difficulties with division with fractions. For
example, TG-5 reported that although the student falsely believed that the divisor has to
be bigger than the dividend, the actual source of the student’s inability (to attempt) to

solve the problem was a lack of a relational understanding of fractions. TG-5 stated:
TG-5 (2a Pre): Well, he doesn’t know that %, I think he doesn’t know that it can

be expressed as a decimal. He doesn’t realize it is a number. Yah, I think that is

part of the thing. Because he would do what did he say, yah, because he would do

3 divided by 4 probably, right, even though that the one [%] is bigger than the

other [%]. Yah, so I think that’s what he’s not getting.

With respect to TG-5’s performance on the post-interview on item 2a, he was more
concerned with the student’s inaccurate notion that the divisor must be larger than the
dividend than with the student’s relational understanding of fractions. In addition, TG-8
also commented on the student’s misunderstanding of the relationship between the

numerator and denominator on the pre-interview. More specifically, she stated that the
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student misunderstood that % is bigger than % because the value of the numbers in the

divisor’s numerator and the denominator are larger compared to the value of the numbers
in the dividend’s numerator and denominator.
TG-8 (2a Pre): I am wondering whether he is getting confused and whether he is
looking at the numbers as separate. The fact that 3 is bigger than 1, and 5 is bigger
than 4, which is not how he should be looking at fractions. That the bigger the
number doesn’t mean that the shaded parts are actually going to be bigger. He

needs to look at more the smaller the number, the bigger the part. That’s why I
v 1s . 3. . 1
don’t like this example because the 3 is actually bigger than the 1
What is awkward about her response is that she stated that the hypothetical student
. . 3. 1
correctly compared the two fractions in the problem (i.e., 3 is greater than Z) but that

the rationale supporting this comparison is faulty. In other words, although on the
interview item, there is no evidence that the student misunderstood how to compare
fractions, TG-8 considered that the hypothetical student lacked a relational understanding
of fractions based on his or her correct comparison of two fractions. In contrast, on post-
interview, TG-8 accurately compared the fractions in the problem, enabling her to
effectively consider the student’s misconception of division with fractions.

Item 3a. On the pre-interview on item 3a, TG-8 repeated this pattern of
demonstrating a misconception of division with fractions while at the same time
highlighting the same misconception in the student’s solution. That is, she falsely

identified an algorithmically-based error and made the following comment on the second
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part of the student’s solution, “He understands that he has to multiply, but he didn’t invert
the 2 numbers.”

CG-4 and TG-8 were not the only participants who expressed the very
misconception that was identified in the student’s solution. On the pre-interview on item
3a, for instance, TG-6 reported that in addition to thinking that the commutative property
is applicable to division, the rest of the student’s solution (i.e., the application of the
standard algorithm) was also incorrect. The latter substantiates the notion that the
participant misunderstood the standard algorithm because the student did invert the
divisor and multiplied the two numbers. Moreover, as it can be seen below in her
statement, TG-6 demonstrated the same combination of MDFs as CG-4 and CG-1, using

an interpretation of multiplication with fractions and confusing the number of groups in
the problem (i.e., that 320 is a % of the size of 1 group versus distributing 320 among

three groups).
TG-6 (3a Pre): Well he doesn’t understand first how to divide because if you were

going to divide it you would reverse this number [the fraction] so it would be 320

divided by 3 over 1 and not % divided by 320. He would reverse it, so this would

be wrong. He doesn’t understand that you would have to reverse this fraction, yah

the %, and also it couldn’t be % because it [320] is a whole number, so right

away you know % of that is at least 100 because 100 plus 100 plus 100 is 300, so

he doesn’t understand that.
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Taken together, TG-8 and TG-6’s MDFs lowered the treatment group’s Group SCK-DF
Item Score on item 3a on the pre-interview. Further, the fact that no MDFs were present
on the post-interview for this item suggests that correcting their own misconceptions was
perhaps the source of their enhanced analytical skills.

Item 1a. Similar to the control group, the treatment group received a low Group
SCK-DF Item Score on the pre-interview on item la primarily because none of the
participants in the treatment group accurately identified the algorithmically-based errors
in the student’s solution. Also of interest is the fact that none of the participants
demonstrated any MDFs either, implying that, in this case, there is no possible link
between the participants’ misconceptions and their error analysis skills on the pre-
interview. Contrary to the control group, however, 3 of the 4 participants in the treatment
group received SCK-DF Item Scores of 2 on the post-interview.

The participant whose score did not improve on the post-interview (i.e., TG-8)
confused one of the alternate division with fractions algorithms that was addressed during
the instruction sessions. Specifically, TG-8 emphasized the student’s relational
misunderstanding on the pre- and on the post-interview. At the same time, however, she
demonstrated her own fragmented understanding of the relationship between the
numerator and the denominator on the post-interview.

TG-8 (1a Post): It is obvious that she understands division with whole numbers, 6

divided by 6 she got correctly as 1, but what she is not able to do is to transfer her

understanding to fractions to division with fractions. This is a whole number

[referring to the fraction], you can’t divide it up [split it up]. Whatever you do to

SRR S
the 6, you have to do to the 1, but she’s treating r as if it is two separate numbers.
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She’s treating the denominator as a separate number. I am not sure she knows
how to handle the % The only thing I can think of also is that she is not dividing

6 by both numbers. She’s not dividing 1 divided by 6 and 6 divided by 6. If you
divide the 6 by 6 then you have to divide the 1 by 6. Six divided by 6 is equal to
1, and that’s fine, but 1 divided by 6 equals, you have to do the same thing to the
top and bottom for it to be the same ratio.
In accordance with what was written on her interview sheets (see Figure 12), TG-8
perhaps confused two strategies that were addressed during the instruction sessions: the
standard algorithm and the common denominators strategy. Indeed, the hypothetical
student’s answer was intended to suggest that he or she incorrectly applied the standard
algorithm. TG-8, however, suggested that the student failed to effectively perform the

common denominators strategy, suggesting that the accurate method of solving this
problem involved dividing across, or ﬁ Although it is possible that the student did

indeed incorrectly apply the common denominators strategy (given that the hypothetical
student did divide across), the misunderstanding, then, for both the student and TG-8 is
that the fractions need to have common denominators prior to dividing the two
numerators and dividing the two denominators.

Thus, in general, the results suggest that the treatment group displayed higher
post-interview SCK-DF Item Scores in Section I compared to the control group.
Although the control group demonstrated relatively high SCK-DF Item Scores in this

section on the pre-interview, the treatment group’s improved performance on the post-
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—+6=6+6=1

Figure 12. TG-8’s pictorial solution on item 1a on the post-interview.
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interview indicates a greater gain in this area of SCK following the content-focused
instruction.

Qualitative Analysis of Section 1I: Representing Numbers and Operations in Meaningful

Ways
For a list of the interview items in this section and their expected responses,

please refer to Figure 13. In analyzing the participants’ responses on the post-interview, it
becomes apparent that their performance on this section seriously widened the difference
in mean Total Group SCK-DF Scores for Section II between the two instructional groups
(see Figure 14). As it can be seen in Figure 14, the mean Total Group SCK-DF Score for
Section II on the pre-interview was virtually the same for both groups, indicating that on
the onset of the study, all participants demonstrated a similar ability to represent numbers
and operations in meaningful ways. On the post-interview, however, while the control
group’s mean Total Group SCK-DF Score for Section Il barely increased (on pre-
interview M was 4.40 and on the post-interview M was 4.60), the treatment group’s mean
Total Group SCK-DF Score for Section II on the post-interview (M = 7.20) was close to
the highest possible mean value. Indeed, unlike Section I, the fact that the treatment
group demonstrated a greater difference on the post-interview compared to the pre-
interview cannot be attributed to the treatment group displaying a substantially lower
Group SCK-DF Item Scores on the pre-interview (see Table 5). With respect to items 3b
and 5b, for example, both groups demonstrated the same Group SCK-DF Item Score on
the pre-interview. Along the same lines, on items 1b, 2b, and 4b, the difference in the
groups’ Group SCK-DF Item Scores on pre-interview was small (i.e., 1 point).

Overall, the frequency of Division Language increased from the pre-interview to
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Item | Pre-interview Post-interview Expected
Response
1b 1 1 Response
—+4=4+4=1 €+6=6+6=1 should address
4 the student’s
misconception
. Responses
will vary.
2b 1 3 1 4 Response
-+ P should address
45 3 4 the student’s
“I can’t do this because — is bigger | “I can’t do this because — is bigger | Misconception
5 7 . Responses
will vary.
than Z, so you can’t share less than E’ so you can’t share less
among more” among more”
3b 1 1 1 1 1 1 1 1.1 1 | Response
320+ ===+320=—X—=—] 410+ —=—+410=—X~—=—

303 37320 960 2 2 2" 410 820 | should address
the student’s
misconception
. Responses
will vary.

4b Kate’s mom bought 6 bars of Harriet has a paper to write for her Response
chocolate for her and her friends. If | political science course. She has set | should address
1 aside 10 hours to write the paper. It | the student’s
each person had — Ofa bar Of 1 misconcepﬁon
2 takes her — of an hour to write a . Responses
chocolate, how many people 2 will v
altogether ate chocolate? page. How many pages can she write ary-
in 10 hours?
6+2=3
10+2=35
5b 1 1 Response
Jerry bought 35 pounds of flour Nigella used 4 Z cups of flour to should address
Jor $2.00. How much did he pay per | bake 2 lemon meringue cakes for a th? student 3
. misconception
pound? dinner party. Shelly, one of her R
. . Responses
dinner guests loved the cake so much .
will vary.

2X 3% = 2—30 or $6.66 per pound

she decided to bake one lemon
meringue cake the next day. How
much flour did Shelly use to bake this
cake?

2X4l=£ or 8l cups of flour
4 4 2

Figure 13. A description of the interview items in Section II and the expected responses.
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4 - -8 — Control Group
=8 Treatment Group

Mean Total Group SCK-DF
Score for Section I

Pre-interview Post-interview

Time

Figure 14. A group comparison of the mean Total Group SCK-DF Score for all the items

in Section II.
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Table 5
A Group Comparison of Group SCK-DF Item Score, Frequency of Division Language

and Misconceptions of Division with Fraction for Section Il at Both Time-points (N = 8)

Pre-interview Post-interview

Variable Control Treatment Control  Treatment

Item 1b
Group SCK-DF Item Score 3 2 4 7
Division Language 1 5 5 8
Misconceptions of Division 2 4 4 2
with Fractions (MDF)

Item 2b
Group SCK-DF Item Score 4 5 5 8
Division Language 1 3 4 4
Misconceptions of Division 2 0 2 0
with Fractions (MDF)

Item 3b
Group SCK-DF Item Score 6 6 6 7
Division Language 1 1 2 4
Misconceptions of Division 3 1 3 0
with Fractions (MDF)

Item 4b
Group SCK-DF Item Score 4 3 2 6
Division Language 0 0 6 0
Misconceptions of Division 0 1 0 0
with Fractions (MDF)

Item 5b
Group SCK-DF Item Score 5 5 6 8
Division Language 1 3 5 6
Misconceptions of Division 2 2 0 1
with Fractions (MDF)
Total Group SCK-DF Score
for Section II (M) 22 (4.40) 21(4.20) 23 (4.60) 36 (7.20)

96



the post-interview for both groups in this section (see Table 5). Interestingly, both groups
demonstrated high Division Language frequencies on the same items (i.e., items 1b and
5b) on the post-interview. In addition, the control group also demonstrated a substantial
increase in the frequency of Division Language on the post-interview on item 4b.
Furthermore similar to the performance on Section I, the highest number of MDFs was
displayed on items 1b and 3b. Added to that, the treatment group experienced a decline in
the frequency of misconceptions for all items on the post-interview. Contrary to the
treatment group’s performance, the control group demonstrated a reduction in the
frequency of MDFs for 2 of the S items only, possibly explaining why the control group’s
improvements from the pre-interview to the post-interview was not as great as that of the
treatment group.
Control Group

Compared to Section I, the control group’s performance on the pre-interview for
this section was not as strong, indicating that at that time-point, the participants possessed
adequate analytical skills but their ability to effectively address the difficulties that were
identified was weaker. On average, at both time-points, only 1 participant per item
suggested a follow-up problem that would actually address the student’s misconceptions
as opposed to finding the correct answer. Added to that, a few of the participants
proposed problems that were either pedagogically problematic or suggested that the
student solve the problem in a manner in which they were not capable.

Despite these issues, all 4 participants in the control group demonstrated an
increased SCK-DF Item Score on the post-interview on at least 1 item (see Table 2).

Moreover, 2 participants (i.e., CG-2 and CG-3) offered multiple ways of addressing the
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student’s difficulty with the problem, and with the topic of division with fractions, on
items 1b, 3b, 4b, and 5b on the post-interview. Further in this regard, CG-2 made links
between division with fractions and other mathematical concepts and rules on the post-
interview on items 3b and Sb. Taken together, these two positive developments highlight
some improvement in the control group’s ability to represent mathematical ideas in
meaningful ways on items that addressed both procedural and conceptual knowledge of
division with fractions.

Item 4b. Surprisingly, despite the fact that the control group did not demonstrate
any MDFs on item 4b at either time-point, their Group SCK-DF Item Score for this item
on the post-interview was the lowest score in this section (see Table 5). Indeed, although
the content-focused instruction for this group emphasized a conceptual understanding of
division with fractions, the group demonstrated difficulties in addressing the student’s
misunderstanding of the concept of measurement division. CG-4, for example, received
an SCK-DF Item Score of 2 on the pre-interview because she presented a meaningful

way of addressing the student’s error, which involved using manipulatives to solve 6 +2
1. . . .
and 6+ 5 in order to provide the student with the opportunity to compare both problems.

On the post-interview, however, CG-4 received an SCK-DF Item Score of 0. In

particular, the word problem she would have provided to the student was:

CG-4 (4b Post): She does 6 chores in % of an hour. How many chores can she do

. . . . 1 ;
in one hour? So that she’s seeing different, not necessarily the 5 but different

fractions in that section where she is actually looking for the whole with the

fraction to see.
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Not only is her reasoning for suggesting this problem unclear, but the numbers in the

partitive division word problem would not correct the misunderstanding that dividing by
% is the same as dividing by 2.

Unlike CG-4, CG-2’s response on the post-interview demonstrated an improved
understanding of how to address the student’s difficulties with this topic. On the pre-
interview, for instance, CG-2 commented on how she would encourage the student to use
manipulatives, or act out the problem, to obtain the correct answer. Unfortunately, the
misconception that this suggestion addressed was not in line with her error analysis on
item 4a.

Conversely, in her post-interview response, CG-2 considered the link between
mathematical problems and student learning objectives. That is, given that the word
problem I provided in the interview involved the context of time, CG-2 realized that
modifying the context of the word problem would be more effective in facilitating the use

of manipulatives. The word problem she suggested on the post-interview was, “Her
doggy has 10 milk bones for the week. And she decides to take % of a milk bone to give

him per day. How many days will the dog get a piece of milk bone?” Similar to the

problem I presented in the interview, the word problem she suggested required the
student to find how many groups of % are in the total amount of 10.

Item 1b. Slightly greater than the post-interview Group SCK-DF Item Score on
item 4b was the post-interview Group SCK-DF Item Score on item 1b (see Table 5). The

increase in Group SCK-DF Item Score from the pre-interview to the post-interview was
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largely attributed to CG-1’s performance on the post-interview. On that interview, she
suggested:
CG-1 (1b Post): I could give her the same problem with different numbers but
showing her from the beginning, the grids and stuff like that that we worked with.
Let’s say, um, like the piece of ribbon and stuff like that because I find that it
really helps. So starting with that, showing her how to split it up so that she could
see it visually, and then doing it through symbols.
Indeed, using a ribbon, couched in the appropriate measurement division problem, can be
an effective method for justifying the invert and multiply algorithm. The reason,

however, that this suggestion is problematic is because the number sentence in the
.1 . . .
problem is 7 + 4, and therefore using this number sentence in a problem where one have

a certain length of ribbon, although mathematically feasible, and one would like to know

how many pieces fit into that ribbon is pedagogically awkward. That is, it implies finding
how many 4 foot pieces fit into a ribbon that is % of a foot long. Interestingly, also on the

post-interview, CG-1 responded to this problem with the same type of division problem
but improved her response by acknowledging that in order to improve the student’s
understanding of the algorithm, the number sentence presented in the interview should be

modified. In particular, to address the student’s algorithmically-based misconception, she

would use a measurement division word problem whereby 4 is divided by%. Thus,

similar to CG-2’s performance on the post-interview on item 4b, CG-1 also demonstrated
an improved understanding of the crucial role numbers play in meeting student learning

objectives.
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Also of interest on the pre-interview is the MDF CG-3 displayed on items 1b and

2b. More specifically, on item 1b, she stated:

CG-3 (1b Pre): So I would say, so take % and draw % in. And then you’d be like,

if you had to divide that one, if you had to divide the % by 4, and then colour,

what would be, if you had to divide by 4, what would be left basically? So you
NP 1 1

divide it by 4 and you get, what’s one of those, you get the 1 of the 7

CG-3’s pictorial solution may be viewed in Figure 15. In other words, rather than apply a
partitive interpretation when modeling a fraction divided by a whole number, CG-3
represented the fraction using a part-whole model and re-partitioned the shaded area
according to the value of the whole number. What she failed to explain is why the answer
is a fraction of this re-partitioned area, suggesting that the CG-3 confused the act of
partitioning with the act of division.'® Although it may be argued that CG-3 may not have

had this specific misconception because her final statement is mathematically accurate
« a1 1, . .
(“you do end up multiplying 7 by 2 ), I believe that the only reason this appears to be

mathematically reasonable is because of the numbers that were in the problem. This
notion is supported by CG-3’s response to 2b on the pre-interview. CG-3’s pictorial

solution is presented in Figure 16. In particular, she suggested that she would encourage

1 1
10 To address why a fraction of Z is the answer, I will use the same problem, Z +4 . If an area that

represents Z is re-partitioned into fourths, the answer to this problem is one part of the partitioned area

because by re-partitioning the fraction into fourths, one is essentially creating four groups. Therefore the
size of one group is the answer.

101



—+4->4-Z—4=1

Figure 15. CG-3’s pictorial response on item 1b on the pre-interview.

102



]

Figure 16. CG-3’s pictorial response on item 2b on the pre-interview.
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the student to model the solution, and proceeded by attempting to model the solution to

%+§ herself. As she modeled the problem, she explained:
.. | 1
CG-3 (2b Pre): Again, pictures, so you draw it... 1 So you have 1 and you need

to divide the % by %, so um, you take, oh, I forget how to illustrate this. Now I
don’t remember how to do this. You take, I don’t know what I would do. So if I

took, ah, if you were dividing % by % it would be like...can you, can you say that
you want to take % of the% or is that misleading? [This question was directed to
me and [ did not respond]. Or you want to find what % of % is? Because if we
were dividing % by % it would be, you would take the% and you would divide it

into %, and then you would have this section of the entire square which when you
divide it all into equal parts...Oh no what have I done [she redraws another

model]. So this is your original % and this is your %, and if you had to divide the

entire square in equal parts it gives rY which isn’t the answer I am looking for. I

don’t know why, I am blanking.
Based on this statement, it is clear that CG-3 was not aware of how to use the partitive
interpretation of division to explain the solution to a fraction divided by a whole number
or a fraction divided by a fraction. Unfortunately, because this misconception was

demonstrated by CG-3 and CG-2 on the post-interview as well, perhaps the content-
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focused instruction was not effective in correcting this misunderstanding despite the fact
that the partitive model was addressed during the instruction sessions.
Item 3b. Of all the items in this section, the highest Group SCK-DF Item Scores
on the post-interview were on items 3b and 5b. With respect to 3b, 3 participants (i.e.,
CG-1, CG-2, and CG-3) received an SCK-DF Item Score of 2 on the pre-interview. CG-
2, for instance, stated:
CG-2 (3b Pre): So just with the picture, drawing out the...actually 320 would be
hard to draw out, so then I would definitely not use this problem. I would
probably use a smaller...either 32. If we could work with a grid, I think it would
be easy to count out 32, like a graph paper, like a big graph paper. I think there
wouldn’t be a problem working with the number 32, and it would still be similar
and familiar to this one in context. And yah, we’d have to draw, like draw it so
that he could see where he went wrong because he seems to start to understand
the algorithm, just the value of it changes when you place numbers in different
spots.
In other words, in order to challenge the student’s belief that division is commutative, she
would use a smaller number that is easier to represent semi-concretely, and demonstrate
that switching the order of each of the numbers changes the role of the number, thus
producing a different quotient.
Unlike CG-2’s response, CG-4’s proposition on the pre-interview was both
pedagogically and mathematically problematic, and addressed finding the correct answer
to the problem. Moreover, she restated the combination of MDFs that she initially

presented on item 3a on the same interview. She stated:
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CG-4 (3b Pre): Well, I would get him to start from the beginning again and we

could sit down and draw out our 320 circles or squares and then divide that like
deal them out into thirds. So that he can see that it is % of 320 gives you a certain

number and that so we would get the answer for this. And I would get him to do
this also to see the difference between the two equations, to show him that it is not
the same thing.
The reason why I propose that her suggestion is pedagogically problematic is because
drawing 320 objects is long and tedious and an overall ineffective way to represent 320.
Further, as a consequence of her MDFs, I also considered that the manner in which she

would scaffold the student in finding the correct answer would also be problematic
because, as I previously mentioned, she confused 320 +% with 320 x % and believed that

320 should be distributed among three groups. Although her response on the post-
interview remained the same, her SCK-DF Item Score increased by 1 point because her
suggestion was in line with the student error that she identified in item 3a.

In contrast, CG-1’s SCK-DF Item Score decreased by 1 point, explaining why the
Group SCK-DF Item Score for this item remained unchanged from the pre-interview to
the post-interview. More specifically, rather than correct the student’s misunderstanding
of division with fractions, CG-1’s follow-up strategy on the post-interview emphasized
finding the correct answer.

Item 5b. CG-1, however, was one of the participants who demonstrated a higher
SCK-DF Item Score on the post-interview on item 5b. Like to CG-1, CG-2’s score also

improved on the post-interview. In particular, CG-2 initially attempted to correct the
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student’s misconception on the pre-interview by demonstrating the concept of partitive

division with whole numbers (i.e., 2 divided by 4). Following that, she explained that she
would apply this reasoning to model the solution to the task at hand (i.e.,2 + 3%). In

doing so, however, the solution strategy she suggested was inaccurate (see first sentence
of the excerpt below). She stated:
CG-2 (5b Pre): So even for myself, I think this is where I would come in, like $2

divided by 3, how much would that give me? And then your last pound, work
with only 1 of it as if it was [sic] a whole number, but yah, I would go back to
working with whole numbers, because with just whole numbers in the problem,
maybe he would be able to see division. It was probably just scary to see the%

and the money. How am I going to divide if this looks bigger than this and all

that?
That is, CG-2 explained that because the number of groups was a fraction (i.e., 3%),

when the goal is to find out how much 1 pound costs, one cannot distribute the $2 among
3 pounds and then address the fraction afterward; clearly, she did not understand how to

model a partitive division problem when the number of groups is a fraction. Rather, the
correct method of modeling this problem is to consider how much is in % of 1 group, and
then multiply that value by 3 to find the size of 1 group. Given that there are 10 thirds in
3%, $2 would be distributed among 10 groups whereby each group represents —:1)’- of 1

group. Subsequent to the content-focused instruction, however, her response on this item
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improved because she provided the student with a word problem that addressed the
student’s understanding of the concept of multiplication in addition to the partitive
interpretation of division.

In addition, having a fractional number of groups not only impacted CG-1’s
ability to model the problem; it also affected several participants’ understanding of the
number sentence reflected in the word problem. Indeed, despite the fact that the word

problem on the pre-interview specifies that the goal is to find how much flour costs per

pound if 3% pounds of flour costs $2, several participants suggested that the number

sentence that corresponds to that word problem was 3% + 2, perhaps indicating that a

fractional number of groups was problematic for the participants to consider at the onset
of the study. In fact, several participants from both groups displayed this
misunderstanding (i.e., TG-5 on item 5a, and CG-3 and CG-4 on item 5b). It is important
to note that for this section, this particular MDF would not negatively impact the SCK-
DF Item Score because when addressing the student’s misunderstanding of partitive
division, different numbers can be used, thus a fractional number of groups may be
replaced with a whole number.

Item 2b. Slightly lower than the post-interview Group SCK-DF Item Score on
items 3b and 5b was the control group’s post-interview Group SCK-DF Item Score on
item 2b. In addition, the control group’s Group SCK-DF Item Score for this item was
higher on the post-interview compared to the pre-interview. Contributing to this increase

were CG-2 and CG-3’s post-interview responses on this item.
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As I previously mentioned, CG-3’s pre-interview statement on item 2b involved a
more complicated method of demonstrating to the student that the two fractions can in
fact be divided. More importantly, however, she selected a method that she herself
struggled with when carrying it out. In contrast, on the post-interview, CG-3’s answer
was a simple and effective method of demonstrating to the student that the divisor can be
bigger than the dividend. She proposed:

CG-3 (2b Post): Can you divide one cake, one cake only, can you divide it in two.
And yes, if you cut it in half they each get —21— Just emphasize that you can divide

smaller numbers by bigger numbers. I would go back to whole numbers [be]cause

the problem isn’t necessarily fractions and a lot of kids say that.

In other words, her statement highlighted her knowledge of common student
misconceptions, a crucial pedagogical tool to have.

Finally, although CG-1’s score did not change from the pre-interview to the post-
interview, the strategy she proposed on the post-interview illustrated her efforts to
incorporate what was discussed during the content-focused instruction. That is, she
suggested that she would help the student to use a factors and product word problem,
stating that it is that interpretation that helped her consider that it is possible that a
division problem can comprise divisor that is larger than the dividend.

Treatment Group

Unlike the control group, the treatment group’s performance in this section

parallels that from Section L. Indeed, in comparing the pre-interview items from these two

sections, the Group SCK-DF Item Scores were virtually identical for all but 1 of the
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items, highlighting the treatment group’s inadequate knowledge regarding both of these
areas of SCK-DF at the onset of the study.

After receiving content-focused instruction of division with fractions, however,
the treatment group’s ability to represent mathematical concepts and procedures in
meaningful ways (Section II) was slightly more enhanced than their analytical skills
(Section I). This notion is substantiated when the treatment group’s post-interview Group
SCK-DF Item Scores is compared as a function of section (the treatment group’s post-
interview mean Total Group SCK-DF Score for Section I was 6.60, and for Section 11
was M= 7.20).

In addition, based on the information from Table 2, it is evident that this pattern
of development also emerges at the participant level (i.e., on the post-interview, the
treatment group’s ability to represent numbers and operations was superior compared to
their analytical skills). That is, in examining the number of participants whose score
increased from the pre-interview to the post-interview, I note, for instance, that on items
1 and 2, the same number of participants (i.e., 3) demonstrated a higher SCK-DF Item
Score on the post-interview in both sections. Moreover, on items 3 and 4, at least 1
participant improved his or her SCK-DF Item Score on the post-interview in both
sections (see Table 2). In fact, the primary difference between the treatment group’s
performance in Section I and the SCK-DF Item Scores in Section II is that the Group
SCK-DF Item Score on item 5b was higher compared to that of the Group SCK-DF Item
Score on item 5a. It is important to note, with respect to this finding, that irrespective of

the fact that the treatment group’s content-focused instruction did not address the
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partitive interpretation of division with fractions, the treatment group demonstrated post-
interview improvements in representing this concept in meaningful ways.

Similar to the control group, the participants in the treatment group offered
multiple ways of addressing the student’s misconception and made links between
division with fractions and other mathematical concepts and procedures. Specifically, all
4 participants proposed multiple methods on at least one of items 1b, 2b, 4b, and 5b on
the post-interview. Moreover, TG-5 and TG-8 made links between division with fractions
and other mathematical topics on items 1b and 3b. Interestingly, it was TG-8 who
displayed a SCK-DF Item Score increase on 9 of the 12 interview items on the post-
interview. Second to TG-8, was TG-5, who demonstrated a SCK-DF Item Score increase
on 6 of the 12 interview items on the post-interview.

Item 2b. As illustrated in Table 5, the treatment group received the highest Group
SCK-DF Item Scores on items 2b and 5b. With respect to 2b, 2 participants from the
treatment group received an SCK-DF Item Score of 2 on the pre-interview. Therefore,
TG-6 and TG-8’s improvements on the post-interview were largely responsible for the
post-interview Group SCK-DF Item Score of 8.

TG-6, for instance, received the lowest possible SCK-DF Item Score on the pre-
interview because she provided an ambiguous response to correcting the hypothetical
student’s misunderstanding of division with fractions. Specifically, she stated:

TG-6 (2b Pre): Well, I would give him a problem where he could draw out to see

the parts, where he could visually see it, and then maybe go through the model

with the words, and then model with the symbols, so he sees the connection

between all three. That’s what I would do.
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Subsequent to the content-focused instruction, however, her response demonstrated a
more accurate understanding of the student’s misconception, and an enhanced knowledge
of how to address the topic of division with fractions in a more meaningful manner. She
suggested:

TG-6 (2b Post): I would make sure he understands what a fraction divided by a

whole number is before I would start this, and I would show him this with a
model. That you can find a portion of a fraction, that even though it is%, I would

draw it for him and show him that you can still find a portion of a fraction, and
that is why we reverse it, to find the portion.
Note that, with her example of a fraction divided by a whole number, not only is the
divisor bigger than the dividend, but when one multiplies by the reciprocal of a whole
number, one is looking for a fraction of a fraction.
Item 5b. In contrast to item 2b, TG-6 was the only participant who received an
SCK-DF Item Score of 2 on the pre-interview. She stated:
TG-6 (5b Pre): I would give her, maybe, whole numbers. Make sure she
understands the basics, like the foundations, the whole number. Like this would
be 3 divided by, 2 divided by 3. Just to see like, uh, 3 divided by 2, sorry
[participant means 2 divided by 3] to understand that she knows how to divide,
she knows how to multiply in this type of context. So, if Jerry bought 3 pounds of
flour for $2, how much did he pay per pound? And have her do that to understand
that you know how to do it how to solve it. And then maybe I would introduce

fractions as a second base [bringing it to another level] but I would really make
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sure that she understands how to divide a whole number by a whole number. Yah,
even if the answer is a fraction, to make sure she understands the foundation of it.

Notwithstanding the fact that, like several others, she confused the number sentence (i.e.,
.. 1 . . .
itis 2+ 3-3—), her response emphasized enhancing the student’s understanding of the

partitive interpretation of division with fractions. In addition, although TG-6 received the
highest score on the pre- and post-interview, her post-interview response was slightly
better because she offered two ways of addressing the student’s misconception: using a
partitive division word problem and working with numbers in a symbolic context.

Item 1b. Of interest is the improvement in the Group SCK-DF Item Score on item
1b on the post-interview (see Table 5). On the whole, on the pre-interview, the treatment
group overlooked the notion that it is crucial to consider whether numbers in the problem
effectively meet student learning objectives. More specifically, on the pre-interview, 2
participants (i.e., TG-5 and TG-6) received an SCK-DF Item Score of 0, and the other 2
participants (i.e., TG-7 and TG-8) received an SCK-DF Item Score of 1. In contrast, on
the post-interview, all but 1 of the participants received an SCK-DF Item Score of 2. The
substantial difference in the Group SCK-DF Item Score on the post-interview, is
evidence that, for this item, the participants in the treatment group benefited from the
content-focused instruction.

To illustrate, CG-5’s response, addressed a misconception that he did not
previously identify on item 1a on the pre-interview. He stated:

TG-5 (1b Pre): Well, I don’t know, I would give her a whole number of things.

One, I guess, just to see if she knows how to divide, and I guess the other thing

that is confusing is because the whole number is the divisor, so it is not exactly
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clear that she knows that this is 4 over 1. One of the points would be to put the
whole number over here as the dividend, or whatever, and then I guess the other

one would be to make this 4, make it clear that it is a fraction, like, I don’t know,
ooy 2 . .
make it like 3 or something. I guess I would try those two things.

Although this answer would address the misconception of division with fractions, TG-5
did not identify this misconception earlier during his analysis of the student’s solution.
On the post-interview, however, TG-5 offered multiple ways of improving the
student’s understanding of the algorithm on the post-interview, making links between
semi-concrete and symbolic representations of the algorithm. He stated:
TG-5 (1b Post): Well, anything to show her the idea of division. Show her an
operation with the dividend [he pointed to the divisor and I corrected him after he
finished this statement] as a fraction, so I guess you got to show her how to do the
algorithm. So, I guess you got to draw that out. Initially, we would have a whole
number divided by a fraction, draw it for her, and see if she gets that. And I guess

we could do one of the proof things we talked about to show her how that works
and you could show her how to rewrite it, 6 over % as a complex fraction. Just so

she understands that it is the divisor that has to be reciprocated, also the
multiplication thing because she’s not doing that.
Based on this statement, I argue that the content-focused instruction had a positive impact
on his post-interview response for this item because I considered that he became more

attuned to the critical role numbers play in making mathematical ideas meaningful.
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In addition, TG-8’s response was also problematic on the pre-interview in that she
failed to acknowledge that a fraction of a set of objects can be, and is in her case, a whole
number. She stated:

TG-8 (1b Pre): Maybe I would give it to her in a word problem instead of like

this, so I would go, if I had % box of cookies and I wanted to divide it into 4, I

would go, uh, I have % dozen cookies, I have 12 cookies and I give % them to my

friend, my friend wants to give 3 of her friends including herself an equal amount
of cookies, so there is 4 of them, how many cookies does each person get? If
give it to her that way, then she can model it, there’s no word problem attached to

this, is there? It’s symbolic, you can’t give her symbolic right off the bat when
you don’t even know if she understands this [points to %]. ..especially if she’s a

beginner.
Clearly, her word problem is not an example of a meaningful way to address the student’s
algorithmically-based error. That is, aside from being lengthy and confusing, the type of
word problem (i.e., partitive) is not connected to the standard algorithm. Further, because
the number sentence in the problem was a fraction divided by a whole number, she
overlooked the fact that using numbers may in fact be a more simplistic method of
making the algorithm meaningful.

Conversely, on the post-interview, TG-8 considered the possibility that it might

be confusing to address the student’s misconception using the same numbers in the
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problem (i.e., % +6), and instead, she suggested that she would use %+ 2. In doing so,

she realized:
TG-8 (1b Post): I guess what I am also seeing here is that you’re déubling the
number of parts...it is hard to explain to a child why the answer would work out
that way, and first they would have to have number sense. This, to her, should
actually make sense if she understood division of fractions, if she modeled it out.
So, I guess I would like to do a lot of word problems without her even having to
do the symbolic. Then, when she sees patterns such as this one, that when you
divide the number of parts doubles, like look that this, 4 multiplied by 2 is 8,
maybe that is why the number of parts then. What I might do is explain the
wonderful method that you taught. I can teach why the inverse works if she
recognizes that pattern, that’s why it is good to work with small numbers.
Note that, because she considered different numbers, she became more conscious of the
notion that if the correct numbers are chosen, symbols can also be an effective method of
promoting understanding.
Item 4b. Another item on which the treatment group demonstrated a substantially
low Group SCK-DF Item Score on the pre-interview was item 4b. In general, 3
participants promoted the use of pictures to help the student find the correct answer. TG-
6, for example, proposed:

TG-6 (4b Pre): And to help her understand, I would have her draw out the 6 bars
of chocolate and say well, ok, now divide them. If each person had % a bar of

chocolate, I would divide each bar into halves to show her.
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While this suggestion would be effective for the student, it would only provide the
student with an alternate solution strategy as opposed to correct the student’s
misunderstanding.

On the other hand, 3 of the 4 participants’ response to this item improved on the
post-interview. For instance, TG-5 stated:

TG-5 (4b Post): I would draw this because if you could do one page per hour, you

would multiply it. So if we look to find what hours, “how many do you finish in 1

hour?” 2. So then if you want to do your same thing, if it takes an hour to write a
. , . . 1
page, how many pages can you write? 10, ok that’s obvious. Say so it takes > an

hour, if you write quicker will you have more pages or less pages? So yah, you

could say that 10 divided by 1 is 10, 10 hours divided by 1 hour is 10. 10 divided
by % an hour, and then you got to show the algorithm I guess. But I would use

that counting thing to show that the number should be bigger than 10, 10 divided
by 1 is 10, 10 divided by % should be bigger because you are writing quicker.

Although TG-5’s response to this item focused on finding the correct answer, his
proposition was indicative of some progress because he addressed a key concept in
division: the smaller the size of each group, the more groups can be made.

Item 3b. Similar to the control group, the treatment group’s Group SCK-DF Item
Score on item 3b on the pre-interview was 6, and the score only slightly increased on the
post-interview (see Table 5). In fact, TG-8 was the only participant who improved her

SCK-DF Item Score on the post-interview. On the pre-interview, TG-8 identified two
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misconceptions: the misuse of the commutative property and an algorithmically-based
error. She responded to these misconceptions by suggesting:

TG-8 (3b Pre): Because, maybe if he is just starting to learn the commutative

property, maybe if he is just transferring his knowledge, than 320 is too big for

him. Smaller numbers might be easier. Also, I would probably want him to model
it because it’s the best. I wouldn’t want him to directly go to symbols. 320 is
harder to model than 12. I would show him why the algorithm, I wouldn’t even go
to the algorithm, I would have him model first. I would do this after [ would
explain the commutative property of division, I would have him model how to
solve a problem like this, and this is why I would have him use smaller numbers
too.

It is important to note that despite having noticed the student’s difficulties performing the

standard algorithm, she contended that it would be inappropriate to address the algorithm

in subsequent problems.

On the post-interview, however, it was evident that her abilities in representing
numbers and operations improved. At the beginning of her response to this item on the
post-interview, she stated that she would use smaller numbers and address the misuse of
commutativity with an equal sharing problem (i.e., “if I have 6 cookies for 2 friends, is
that the same as 2 cookies for 6 friends?”’). Adding to that, she proposed that she would
also discuss whether addition and subtraction is commutative. Although compared to her
pre-interview response, these suggestions are clearly indicative of a more effective way
of addressing the student’s misconception; her final remarks for this item truly highlight

her maturation in this area of SCK. She stated:
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TG-8 (3b Post): Basically, what I would do is I would have him use way smaller
numbers. If I use these numbers [410 and %] then because he knows the

answer. ..that might help him. If I go 6 divided by 2, 6 times 1 over 2, 6 divided
by 2 [represented as a fractiong] is 3. So these are the steps that I would be

showing him. I’d say to him, when your doing multiplication and division like
you said in our lessons, they are related to one another, therefore the number
sentence can be modified without changing the problem. So it can be 3 times
something equals 6. So that’s the number sentence. I am going to try to get him to
realize it [that division is the inverse of multiplication], but if he doesn’t get with
multiplication and division, he’ll probably get it through addition and subtraction.
Now the task is getting the x alone, the question mark alone [which is what she
used for x] and the best way to do that would be, you can get rid of the 2 by
multiplying, dividing it by itself, because 2 divided by 2 is 1 and 1 times a
question mark is the question mark itself. So there is no point in putting the 1
down, so 6 divided by 2, are you proud of me yet, is 3 and then there you go. Here
we are just...because if he’s doing this [using commutativity] maybe it is just a
fluke that he got this right.

In other words, unlike on the pre-interview where she identified an algorithmically-based

error but refused to address it with the student afterwards, on the post-interview TG-6

offered a mathematically reasonable justification (i.e., division is the inverse of

multiplication) of the algorithm as a “just in case” measure.
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Although TG-6 did not positively or negatively impact the post-interview Group
SCK-DF Item Score on item 3b, her pre-interview response to this item highlighted the
relationship between a teacher’s error analysis skills and the ability to represent key
mathematical concepts. That is, rather than identify the student’s difficulty with
properties of division, she considered that the student did not posses the appropriate

understanding of the concept of dividing a whole number by a fraction. Unfortunately,
her reasoning behind her analysis was faulty (i.e., confusing 320 +% with 320+ 3),

impacting her ability to effectively address the misconception she identified.

TG-6 (3b Pre): And again, I would do it through pictures and draw it for him and

show him. Maybe I would do something like 300 divided by % so that way they

could see something like it is really...see that it is 100, 100, 100. That is what %

And then maybe move on to other numbers like 400 and 500...work with whole

numbers first and then like add in the 20s and 320, 340.

Her statement, in fact, highlights how the link between error analysis and representing
numbers and operations meaningfully can be positively or negatively mediated by the
teacher’s mathematical knowledge.

In sum, the interview data demonstrates that both groups’ performance on the pre-
interview in this section was poor. Following the content-focused instruction, however,
the treatment group displayed an enhanced ability to represent numbers and operations in
meaningful ways. The control group, on the other hand, only demonstrated a slight

improvement in this area of SCK-DF.
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Qualitative Analysis of Section II1: Justifying Mathematical Rules and Procedures

The pre- and post-interview items and the expected responses may be viewed in
Figure 17. With respect to the participants’ ability to justify the invert and multiply
algorithm, both groups demonstrated a parallel pattern of development in SCK-DF (see
Figure 18). That is, based on Figure 17, the control group and treatment group
demonstrated comparable mean Total Group SCK-DF Scores for Section III on the pre-
interview. Moreover, on the post-interview, both groups experienced similar gains in
SCK-DF in this section.

A comparison of the Group SCK-DF Item Scores for each group and the
frequencies of Division Language and MDFs on items 6 and 7 may be viewed in Table 6.
In particular, for both groups, the (a) Group SCK-DF Item Scores on items 6 and 7 were
higher on the post-interview, (b) frequency of Division Language in the responses
increased on the post- interview, (c) responses to item 6 contained no MDFs at both time
points, and (d) responses to item 7 contained some MDFs, but the frequency of these
misconceptions decreased on the post-interview.

Control Group

Item 6. As it can be seen in Table 6, the control group’s Group SCK-DF Item
Score on item 6 increased on the post-interview. Indeed, on the pre-interview, 2 of the 4
participants responded to item 6 using the measurement division interpretation to model a
solution and subsequently used the model to justify the steps of the standard algorithm.
These 2 participants, however, received an SCK-DF Item Score of 1 because their

response did not address the remainder in the answer. That is, when using the

measurement interpretation of division to model 7 + 3’ 11 groups of three are identified,
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Item | Pre-interview Post-interview Expected
Response

6 Larry’s vegetable garden is 7 | Brian is 5 feet tall. He decides | Response
feet long. If each vegetable that he wants to measure should
takes up 3 of a foot, how himself and he notices that he | address

5 ’ has a bunch of pieces of string | why you

many different types of on his desk. If every piece of multiply by
vegetables can Larry plant? string is 2 of a foot, how many the.

7 reciprocal
pieces does Brian need to of the
figure out how tall he is? divisor.

Responses
will vary.
7 Response
5.3 7 5 should
1278 15 11 address
why you
multiply by
the
reciprocal
of the
divisor.
Responses
will vary.

Figure 17. A description of the interview items in Section III and the expected responses

whereby the participants were asked use the context of the problem to explain why the

divisor is inverted and the two values are multiplied.
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Mean Total Group SCK-DF Score for Section 111

Pre-interview Post-interview

Time

=@ = Control Group
=& Treatment Group

Figure 18. A group comparison of the mean Total Group SCK-DF Score for all the items

in Section III.
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Table 6
A Group Comparison of Group SCK-DF Item Score, Frequency of Division Language

and Misconceptions of Division with Fraction for Section IIl at Both Time-points (N = 8)

Pre-interview Post-interview

Variable Control Treatment Control Treatment

Item 6
Group SCK-DF Item Score 2 5 7 8
Division Language 5 6 7 10
Misconceptions of Division 0 0 0 0
with Fractions

Item 7
Group SCK-DF Item Score 1 1 3 5
Division Language 5 8 8 15
Misconceptions of Division 12 8 6 1
with Fractions (MDF)
Total Group SCK-DF
Score for Section III (M) 3 (1.50) 6 (2.00) 10(5.00) 13 (6.50)
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but there are two remaining parts that do not complete 1 group of 3 parts. According to
.2

the model, the two parts appear as though they represent the fraction 3 because each

whole was previously partitioned into fifths. Therefore, as part of the justification, the

. 2, . . . 2
participant must address how the 3 in the model is connected with the remainder, or 3

The other 2 participants in the control group received an SCK-DF Item Score of 0 on the
pre-interview.

In contrast to the control group’s performance on the pre-interview, all of the
participants’ post-interview responses to item 6 included an accurate model of the
solution and an appropriate justification of the steps in the standard algorithm. Indeed,
CG-3 was the only participant whose post-interview score on this item did not increase,
primarily because she repeated the same mistake from the pre-interview: she failed to
address the remainder.

Item 7. Similar to item 6, the control group demonstrated a higher Group SCK-DF
Item Score on item 7 on the post-interview compared to this group’s Group SCK-DF
Item Score on the pre-interview (see Table 6). In particular, on the pre-interview, only 1
participant (i.e., CG-2) received an SCK-DF Item Score of 1, and the rest received an
SCK-DF Item Scores of 0 for this item. CG-2, for instance, applied the same solution
method that was used for the previous item, failing, however, to accommodate her
strategy to the context of a fraction divided by a fraction, thus resulting in an incomplete
Justification of the standard algorithm. Specifically, she frequently expressed the
misconception that the size of each group corresponds to the numerator of the divisor, as

oppose to the product of the numerator of the divisor and the denominator of the
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dividend. Further, she did not comment on the fact that as a result of forming groups of

the wrong size, her number of groups did not correspond to the quotient of the problem.
. o . . . 5 3
For instance, as part of her justification of the standard algorithm using ") + rE she

stated:

CG-2 (7 Pre): Why it would work is because if you have % of something and
you would divide it by %, the twelfths, you are making more parts in them and
then you are looking technically for how many groups of 8 you’ll have in this 1%,

and you are actually looking for how many 3 groups of 8 you’ll have in the %
So, if you are looking for that then you are going to multiply the number, your

whole that you are working with which is %, you are going to multiply that with

your % So 5 multiplied by 8 is 40, and then because you are looking for the 3

groups in the 12 you’ll divided that by 3 to give you your answer.

Overall, the low pre-interview Group SCK-DF Item Score on item 7 is largely
attributed to participants in the control group confusing the concept of division with
fractions with the concept of multiplication with fractions (as an example of this
misconception, see Figure 19). Indeed, as a consequence of this misconception, all 4
participants modeled the solution to finding a fraction multiplied by a fraction. Although
it may be argued that applying a conceptual understanding of multiplication with
fractions does not, in this case, indicate a misconception of division with fractions

because both numbers are fractions and because the dividend is multiplied by the inverted
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The number sentence is:

2,32
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Figure 19. CG-4’s pictorial response on item 7 on the pre-interview.
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divisor, the participants produced a model of the dividend being multiplied by the divisor,
clearly substantiating a misconception in their understanding of how to model a fraction
divided by a fraction. Added to that, 1 participant misunderstood the standard algorithm
and expressed that all fractions, irrespective of whether the fraction is the dividend, the
divisor, or both, are inverted.

Contrary to the substantial improvement the control group demonstrated on item
6, only slight improvements of the control group’s Group SCK-DF Item Score was found
on item 7 (see Table 6). More specifically, all 4 participants gave responses similar to
that of CG-2 on the pre-interview for item 7. As a consequence, more participants
demonstrated the misunderstanding of the size of the group and failed to realize that
because of their understanding of the size of each group, the total number of groups was
inconsistent with the quotient in the problem. Interestingly, however, as a result of using
this strategy to respond to the problem, all of the participants used Division Language to
communicate their response on the post-interview, whereas CG-2 was the only
participant who used Division Language to respond to this item on the pre-interview. In
addition, none of the participants repeated the misconceptions displayed on the pre-
interview, contributing to a overall decrease in the control group’s frequency of MDFs on
the post-interview, despite the fact that new misconceptions arose as a consequence of the
strategy that was employed to address the item (see Table 6).
Treatment Group

Item 6. As 1 previously mentioned, the results for the treatment group’s responses
to items 6 and 7 are similar to that of the control group. To begin with, the treatment

group’s Group SCK-DF Item Score on item 6 increased from the pre-interview to the
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post-interview (see Table 6). Specifically, on the pre-interview, 3 of the 4 participants
used the measurement division interpretation to model the solution and to highlight how
the model may be used as a means of justifying the standard algorithm to students.
Different from the control group, however, 2 of the 3 participants addressed the
remainder, contributing to the treatment group’s higher Group SCK-DF Item Score for
this item on the pre-interview. The participant who did not receive any points for this
item on the pre-interview was TG-5. As it can be seen in his response, TG-5 verbally
explained the model, but failed to understand how this type of division problem can be
used to justify the steps in the standard algorithm:

TG-5 (6 Pre): Because we are supposed to be able to draw this, and I think this is
how you draw it... g ..OKk, so we are talking about how many total fifths there

are, so there is [sic] 35 fifths. I think, 35 over 5, hmmm...if we took three on each
33 , .
we would get, ah g, g, I don’t know how to do this.

On the post-interview, all of the participants received an SCK-DF Item Score of 2
for this item. Of particular interest, 1 participant in the treatment group did not use
conceptual knowledge of division with fractions to answer the question. Indeed, TG-7
explained the algorithm using the mathematical rule that division is the inverse of
multiplication. That is, when you change the operation from division to multiplication,
the position of the numbers change such that the dividend becomes the product, and the
divisor becomes one of the two factors. As a result of solving for the dividend, both sides

of the equal sign are multiplied by the reciprocal of the divisor.
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Item 7. The treatment group’s increase in Group SCK-DF Item Score from the
pre-interview to the post-interview on item 7 was greater compared to that of the control
group’s (see Table 7). Indeed, although both groups’ Group SCK-DF Item Score on the
pre-interview was 1, 2 participants from the treatment group received an SCK-DF Item
Score of 2, and 1 participant received an SCK-DF Item Score of 1 on the post-interview.
In fact, one of the 2 participants who received an SCK-DF Item Score of 2 was the same
participant who received an SCK-DF Item Score of 1 on the pre-interview; thus, unlike

CG-2, this participant improved her score on the post-interview. In particular, TG-8’s
. . 5.3 . Co. .
response to item 7 (i.e., T + §) on the pre-interview involved applying the same

reasoning used on item 6:

TG-8 (7 Pre): The 12 has to come in where the 3 is, but I don’t get why. So it is 5
multiplied by 8, but then I want to divide it in groups of three because it isé, SO

40 divided by 3, which is going to be 36, 40 divided. I don’t get why you do 12

multiplied by 3, that’s why I am stuck, I don’t know what to do with the problem.
She continued to misunderstand the size of the groups and concluded by using
interpretations of addition with fractions and multiplication with fraction in place of a
concept of division with fractions. She stated:

TG-8 (7 Pre): So, first what you have to do is make common denominators,

because you can’t add twelve’s and eights [sic]. First, I do rows of 5 and then

rows of 8, and then what I do...so that gives me 40. After I highlighted the 1—52—, I
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only needed % of that, so I guess up here you get 5 multiplied by 8 and 12 in each

row, because 3 groups of 12, and 12 in each row.

In other words, at first she stated that she wanted to add the two fractions but then she
modeled el x%, illustrating her misuse of the concept of division with fractions. After

her participation in the instruction sessions, however, she used procedural knowledge of
division with fractions and displayed a mathematically reasonable strategy that was not
addressed during any of the instruction sessions. More specifically, she combined various
mathematical rules and invented a strategy to explain the steps in the algorithm. She
responded:

TG-8 (7 Post): The way how I would do it is that I want to focus on this number

[%], I want to get rid of the lil and the way how to do that is by multiplying by

its inverse. Yah, I can multiply by its inverse and the reason why is because % is
equal to 1. When you multiply by its inverse, you end up getting the same product

in the numerator and in the denominator and you are making it 1. So %
. e Y A .. . ..
multiplied by 1 is 5° 15 times 1 is itself [I mean], divided by 1, sorry, is itself.
- - . 5 . 7
But the problem is, is because I multiplied this guy [ﬁ] I have to multiply the 5

11
by —1.
by <1
That is, analogous to the rule that justifies the equal additions algorithm (i.e., adding the

same value to the subtrahend and the minuend will not modify the difference), she
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demonstrated that multiplying the same value to the dividend and the divisor will not
change the quotient. Therefore, when you multiply both fractions by the reciprocal of the
divisor, the result is the dividend multiplied by the inverted divisor whose product is
divided by 1 (because the product of any number multiplied by its reciprocal is 1), and
the quotient of any number divided by 1 is itself, substantiating why the divisor is
inverted, and why the two numbers are multiplied.

Similar to TG-8, TG-7’s response on the post-interview also comprised
procedural knowledge of division with fractions as opposed to conceptual knowledge of
the topic. Contrary to TG-8, TG-7 spontaneously proposed two methods of justifying the
standard algorithm to a student. After using the same justification that was used on item 6

(.e., -Z—+% = % X i) she stated:
c

TG-7 (7 Post): But I know you showed us in class with a measurement division
problem, but I think I would have to think it out, think it over, because the
divisions [sic] and you need to know how many parts and it’s big and I think
maybe that would be too hard for them to understand. Also, if there would be
another way to demonstrate it, because of the size of the numbers, because there is

20 parts, 20, so it is hard to break it down. I think this one [the formula], the a

over ¢ [general reference to §+§ = % X g], we can’t use...could we use; we
c
could use the complex function [fraction] in this one right? % divided by big, big

.5 . . .
line T Get rid of the denominator and make it over 1, because any number over

.. 1 . e e
1 is itself. So ?1, and it becomes a multiplication and that also shows the, um, we
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could have done it even for the previous one because it’s got whole numbers. It is

a lot easier to do it with the, and the common denominator...can we find a

common denominator? Yah, we could use the common denominator, but you

don’t see the reciprocation [sic] on that one.
On item 7 on the pre-interview, however, for which she received an SCK-DF Item Score
of 0, she stated, “Well, I guess 1 would do the same kind of problem, I would show it to
them through pictures, because to show it to them only symbolically would be confusing,
it is too difficult.” Taken together, not only did TG-7 use symbols and algorithms on the
post-interview, contradicting her statement during the pre-interview, “to show it to them
only symbolically would be confusing,” but for both items 6 and 7 on the post-interview,
she used procedural knowledge, despite the fact that item 6 is conducive to using the
concept of measurement division because of the measurement division word problem that
is presented in it.

Summary of Results

In summary, 7 out of the 8 participants’ SCK-DF improved as a result of
receiving content-focused instruction. Overall, both types of content of instruction
benefited participants’ ability to justify the standard algorithm used with division with
fractions. Moreover, the content-focused instruction promoted the use of Division
Language and in several cases reduced participants’ MDFs. In addition, the comparison
of the pre-interview responses to the post-interview responses indicated that instructional
content that combined conceptual and procedural knowledge of division with fractions
had a greater impact on the participants’ skills in representing mathematics in meaningful

and pedagogically-appropriate ways. As a consequence of experiencing gains in this
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particular area of SCK (i.e., Section III), the participants in the treatment group
experienced relatively larger gains in SCK-DF compared to the magnitude of change of

SCK-DF experienced by the participants in the control group.
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CHAPTER 5: DISCUSSION

In line with the link between a teacher’s mathematical content knowledge and
student performance in mathematics (Hill et al., 2005), Ball et al. (2005) proposed that
the content of preservice teachers’ mathematics methods coursework should comprise
content-focused instruction, designed to facilitate preservice teachers’ development of
specialized content knowledge (SCK) of mathematics. In this regard, the first objective of
the present study was to examine whether content-focused instruction addressing division
with fractions would enhance preservice teachers’ SCK of this topic. Moreover, the type
of mathematics content knowledge (i.e., conceptual and procedural) that would foster
preservice teachers’ SCK is not well understood. For this reason, a second objective of
this study was to examine the impact of type of instructional content (i.e., conceptual
content, or a combination of conceptual and procedural content) on preservice teachers’
gains in SCK of division with fractions (SCK-DF).

To address these objectives, I explored the development of eight preservice
teachers’ SCK-DF. The participants were assigned to one of two treatment conditions
(i.e., conceptual content, and a combination of conceptual and procedural content). The
preservice teachers” SCK-DF was assessed by conducting pre- and post-interviews,
which measured the three areas of SCK as it pertains to the topic of division with
fractions. In general, the results support the hypotheses that (a) providing the preservice
teachers with content-focused instruction promoted the development of SCK-DF, and
that (b) the preservice teachers who received instruction that comprised a combination of
conceptual and procedural knowledge of division with fractions demonstrated greater

gains in SCK-DF compared to the preservice teachers in the control condition. I will now
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continue with a discussion of these results, their implications for future research, and
concluding remarks.
Effects of Content-Focused Instruction on Developing Preservice Teachers’ SCK-DF
With respect to the first research objective, 7 of the 8§ preservice teachers’ SCK-
DF improved after having received content-focused instruction on division with fractions.
Moreover, I found evidence that initially, the preservice teachers possessed a fragmented
SCK-DF (i.e., 5 of the 8 Total SCK-DF Scores ranged from of 11 to 12, meaning that the
majority of the preservice teachers received interview scores that were half of the
maximum score). Following the content-focused instruction, however, five of the post-
interview scores almost doubled. Taken together, these results suggest that instruction
emphasizing either conceptual or a combination of conceptual and procedural knowledge
of division with fractions had a positive impact on the preservice teachers’ SCK-DF.
Although, the development of all three areas of SCK has not to my knowledge
been previously examined, the suggestion that the preservice teachers’ overall
improvement in SCK-DF was associated with the content-focused instruction is
consistent with the Rittle-Johnson et al.’s (2001) theory that mathematical knowledge
develops iteratively. That is, because SCK is a type of mathematical knowledge, 1
propose that the development of SCK parallels the development of conceptual and
procedural knowledge in other areas of mathematics. Simply put, Rittle-Johnson et al.
found that improvements in one type of knowledge (i.e., conceptual or procedural)
promoted the development of the other type of knowledge, as well as sustained or
extended already existing knowledge. Thus, I suggest that in the case of the current study,

improvements in one area of SCK promoted incremental developments for the other SCK
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areas, contributing to the participants’ overall improvement in their SCK-DF following
the content-focused instruction.

Further in this regard, the results from the present study illustrated that both
groups’ SCK-DF only developed in the same fashion for the items in one section, namely
Section III. Moreover, of the three sections within the interview, it was found that the
highest mean number of participants demonstrated improved post-interview scores in
Section III (i.e., M = 5.00 compared to M = 3.80 and 2.20), implying that, on average,
the preservice teachers’ ability to justify the invert and multiply algorithm was the area of
SCK that benefited the most from the content-focused instruction. Based on this, I argue
that it is the development of this particular area of SCK that contributed to the
participants’ overall SCK-DF progress on the post-interview.

This particular finding is not surprising given that the content-focused instruction
primarily addressed ways of justifying the invert and multiply algorithm. More
specifically, both groups received instruction that demonstrated how the measurement
model can be used to justify the standard algorithm for division with fractions. Note that,
although this method was addressed during the mathematics methods course before I
began conducting the pre-interviews, some of the participants on the pre-interview
displayed a propensity to confuse how the measurement division model is linked with the
steps in the standard algorithm. In addition, none of the participants was capable of
transferring his or her understanding of this strategy to a novel context (i.e., a fraction
divided by a fraction). As a consequence of the manifestation of this difficulty, on the
pre-interview, nearly all of the participants attempted to apply the concept of

multiplication with fractions when modeling a fraction divided by a fraction. Taken
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together, at the beginning of the current study, the preservice teachers demonstrated some
conceptual understanding of division with fractions, but their comprehension was
inflexible and fragile, highlighting a weak schema of this topic (Baroody, Feil, &
Johnson, 2007).

Baroody et al. (2007) used the terms weak and strong schemas to highlight the
contrast between deep and superficial mathematical knowledge. That is, weak schemas
refer to mathematical understanding that entails, “...generalizations local in scope [with]
low standards of internal (logical) consistency, precedent-driven comprehension, and no
logical basis for a priori reasoning (i.e., predictions are looked up)” (p. 117, Baroody et
al., 2007). Baroody et al. proposed that strong schemas “...involve generalizations broad
in scope, high standards of internal (logical) consistency, principle-driven
comprehension, and principled bases for a priori reasoning (i.e., predictions are derived
logically)” (p. 117). In line with this reasoning, the preservice teachers on the pre-
interview (a) failed to generalize their conceptual understanding of the standard
algorithm, (b) switched from applying a conceptual understanding of division with
fractions to multiplication with fractions, and (c) were unable to flexibly apply their
existing knowledge to derive a solution, illustrating that a weak schema underscored their
superficial conceptual understanding of the invert and multiply algorithm.

After the content-focused instruction, however, the preservice teachers displayed
a stronger schema for justifying the standard division with fractions algorithm, suggesting
that their understanding of this procedure deepened. Evidence that substantiates the
presence of a stronger schema for the algorithm lies in the fact that on the post-interview,

7 of the 8 participants accurately applied the measurement division model to explain how
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to divide a whole number by a fraction. Added to that, although all the participants were
unsuccessful in extending a conceptual understanding of division with fractions to a
fraction divided by a fraction, none of the participants confused the concept of division
with fractions with multiplication.

According to Rittle-Johnson et al.’s (2001) theory of iterative development, this
development of understanding should yield developments in the other two areas of SCK.
Consistent with this notion, some participants demonstrated improved post-interview
scores on the items in Sections I and II as well. The argument that the other two areas
improved as a result of enhancing the preservice teachers’ knowledge of justifying a
mathematical procedure is acceptable because elementary students’ common
misconceptions of division with fractions, and methods of correcting these
misunderstandings, were not addressed during the content-focused instruction. In general,
however, fewer of the preservice teachers increased their scores on items that assessed
their error analysis skills and abilities to represent numbers and mathematical operations
in meaningful ways (i.e., Section I and II). For instance, following Section III was the
preservice teachers’ performance on the items in Section II, whereby an average of 4
participants improved on the post-interview. Moreover, it was found that on average,
only 2 participants improved their scores on the items in Section L.

At first glance, this last finding may be interpreted as being inconsistent with the
results from Tirosh (2000), because she found that the treatment in her study improved
the preservice teachers’ error analysis skills. It is important, however, to consider that her
treatment instruction addressed children’s misconceptions of division with fractions in

addition to multiple ways of justifying the algorithm using procedural mathematics. With
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respect to the current study, the control group’s type of content was conceptual
knowledge of division with fractions; thus, I could only present one method of justifying
the algorithm to the participants in that group. Moreover, as I previously mentioned, the
content-focused instruction was not designed to highlight student misconceptions.

Finally, virtually all of the participants in the control group received the highest
item scores on the majority of the items on the pre-interview in Section I, contributing to
a relatively low mean number of participants who improved their scores on the items in
this section on the post-interview. Taken together, it may be suggested that the low mean
number of participants who improved their scores on the items in Section I was the result
of a combined effect of the treatment group progress and the control group sustained
understanding of this area of SCK. Because these notions begin to delve into the area of
group differences, I will elaborate on these interpretations when I discuss the results
pertaining to the second research objective.

In addition to improved post-interview scores, the content of the preservice
teachers’ responses to the items in Section II on the post-interview provide additional
support for the notion that this area of SCK (i.e., representing numbers and mathematical
operations in meaningful ways) was enhanced. That is, some of the preservice teachers
proposed multiple methods of addressing the hypothetical student’s misunderstanding of
division with fractions, or offered multiple solution methods. More importantly, however,
irrespective of the type of content of instruction the preservice teachers received, they
considered multiple perspectives of the problem on items that comprised conceptually-
based and procedurally-based errors. Furthermore, even though the treatment group’s

content-focused instruction did not address the partitive model of division with fractions,

140



2 participants in this group were able to present two methods of correcting the student’s
misunderstanding of partitive division with fractions on the post-interview. Thus,
consistent with the theory of iterative development, it is possible that enhancing the
preservice teachers’ justification skills using at least one of the two types of mathematical
knowledge (i.e., conceptual or procedural) benefited their ability to represent numbers
and mathematical operations in relevant ways for problems that addressed both types of
knowledge. On the whole, despite the fact that the content of instruction only slightly
overlapped for both groups, and that only one area of SCK was emphasized, in general,
the participants experienced an overall improvement in SCK-DF, which involves both
conceptual and procedural knowledge.
Group Differences in SCK-DF

In terms of the second research objective, the quantitative and qualitative analyses
supported the hypothesis that the treatment group experienced greater gains in overall
SCK-DF compared to the control group following the content-focused instruction
sessions. In particular, the Mann-Whitney U tests revealed that the ranked pre-interview
scores resulted in a distribution of high and low ranks in both groups. Following the
content-focused instruction, the data revealed that the control group comprised the
majority of the lower ranks of the post-interview scores. Further, only one post-interview
score from the control group was tied with two post-interview scores in the treatment
group, thus none of the treatment group’s post-interview scores was out-ranked by the
control group’s post-interview scores. Taken together, the results from the Mann-

Whitney U tests imply that the groups’ SCK-DF developed differently as a function of
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the type of content of instruction each group received during the content-focused
instruction.

The qualitative analysis was used as a means of determining how the type of
content of instruction enhanced the groups’ SCK-DF. In general, the analysis yielded
several interesting findings and provided some insight into the source of the difference
found between the two groups on the post-interview.

To begin, as I previously mentioned, the participants from the control group
demonstrated high group item scores in Section I on the pre-interview compared to the
participants from the treatment group, who received relatively low group items. Thus, as
a result of this difference, in this area of SCK at the onset of the study, the post-interview
group item scores for the items in this Section are not easily comparable. That is,
although the treatment group displayed higher post-interview scores for the items in
Section I, it is difficult to interpret the treatment group’s greater gain in error analysis
skills. Although I will use the groups’ item scores from Section’s II and III as a basis for
interpreting the groups’ differential gains in SCK-DF, I will briefly discuss the group
differences found in Section L.

Group Differences for Section I

It is interesting to note that the treatment group’s performance on the post-
interview for the items in Section I highlights a relationship between the type of content-
focused instruction this group received and the development of their error analysis skills.
More specifically, on the pre-interview, the treatment group’s analysis of the
procedurally-based errors was not as strong compared to that of the control group’s.

Following the content-focused instruction, however, the control group’s performance for

142



these items declined slightly while the treatment group clearly demonstrated an improved
understanding of these types of errors.

Moreover, while the treatment group’s awareness of a hypothetical student’s
misunderstanding of the concept of measurement division improved, their analysis of the
student’s understanding of the partitive model declined on the post-interview, perhaps as
a consequence of receiving conceptual instruction that only emphasized the measurement
model. Taken together, because the treatment group’s instruction emphasized both
conceptual and procedural content knowledge of division with fractions, it is logical that
the treatment group would develop a greater sensitivity to a student’s performance on the
procedures as well as understanding the measurement model associated with division
with fractions.

The notion that the treatment group’s development in their error analysis skills
was, in part, associated with the content-focused instruction is consistent with what was
demonstrated in Tirosh (2000). Indeed, like the preservice teachers in Tirosh, the
preservice teachers in the treatment group in this study received multiple ways of using
mathematical procedures to understand the division with fractions algorithm. Thus, the
treatment group’s post-interview performance on the items in Section I suggest that this
group’s awareness of several procedurally-based methods, in addition to the
conceptually-based method for solving division with fraction problems, provided the
group with knowledge of more mathematical concepts and procedures associated with

this topic, which elementary students often misunderstand.
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Group Differences for Section II

The qualitative analyses also revealed that the preservice teachers’ ability to
represent numbers and operations in meaningful ways was the only area of SCK where
both groups’ SCK-DF developed differently. Indeed, both groups demonstrated relatively
low scores on the pre-interview. Observable differences were found, however, on the
items in this section on the post-interview, whereby the treatment group outperformed the
control group. In general, the treatment group’s responses to the items in Section II were
less dependent on the context of the problem, thus addressing the hypothetical student’s
general misconception. On the whole, these findings suggest that the type of content (i.e.,
conceptual or a combination of conceptual and procedural knowledge) of instruction
created a gap in the group’s capacity to meaningfully represent operations and numbers
differently, contributing to the differential outcome in the groups’ overall development of
SCK-DF on the post-interview.

Although the treatment group demonstrated greater gains in their development of
SCK-DF in Section II, it should also be noted that participants from both groups
demonstrated an improved understanding of the importance in strategically selecting

numbers and activities when enhancing students’ understanding of mathematics. Similar
to the Chinese teacher in Ma (1999) who noticed that the numbers in 13 + 1 would easily

lend themselves to using the distributive property once the divisor was inverted and the
two values were multiplied, more preservice teachers from both groups on the post-
interview considered the role of numbers and the context of word problems compared to

the pre-interview. In line with what Ball et al. (2005) and Hill et al. (2005) suggested, this
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development implies that a deepened understanding of either type of mathematical
content is a critical competency for effectively promoting learning objectives.
Group Differences for Section 111

Based on the case study of Ms. Daniels in Eisenhart et al. (1993), I hypothesized
that promoting conceptual and procedural mathematical content during the content-
focused instruction sessions would provide the preservice teachers with a greater
opportunity to understand the standard algorithm. That is, because Ms. Daniels’
conceptual knowledge of the division with fractions algorithm was limited, and her
procedural knowledge was superficial, she experienced obstacles in her quest for teaching
for understanding. Consistent with my hypothesis, the results from this study indicated
that although both groups’ growth in justifying the standard algorithm progressed in the
same direction, group differences in developmental gains were found. More specifically,
2 participants from the treatment group were capable of accurately responding to item 7
on the post-interview, illustrating that, compared to the other participants, they possessed
a stronger grasp of the standard algorithm.

Based on this result, [ propose that the treatment group may have developed a
deeper understanding of the algorithm as a consequence of having both types of content
emphasized during the instruction sessions. Further, in line with the theory of iterative
development (Rittle-Johnson et al., 2001), the groups’ differential gain in knowledge of
the standard algorithm may explain why the ability to represent numbers and operations
developed differently for each group. In other words, in accordance with the reasoning
that areas of SKC may be enhanced as a consequence of the improvement of one area of

SCK, perhaps the quality of this development is an additional factor. For this reason, I
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suggest that at the source of the treatment group’s greater gain in SCK-DF was their
deeper understanding of the division with fractions algorithm that developed as a
consequence of the type of content of instruction. Thus, this quality of knowledge may
have had a greater impact on the development of the other two areas of SCK.

Furthermore, the treatment group’s performance on the items in Section III imply
that instruction addressing mathematical procedures in a meaningful manner can promote
a deep procedural understanding (Star, 2000, 2002a, 2002b, 2005; Star & Seifert, 2006),
and that it is possible to possess deep procedural knowledge of this topic. Evidence that
some of the preservice teachers developed deep procedural knowledge is based on the
fact that 1 of the 2 participants from the treatment group invented her own algorithm to
correctly answer item 7 on the post-interview. Indeed, this finding aligns with Carpenter
et al.’s (1998) observations of children’s invented algorithms, indicating that invented
algorithms are not only based on a connected knowledge of mathematical concepts, but
algorithmic invention may also emerge from a deep and flexible understanding of
mathematical procedures. In line, then, with what Carpenter et al. and Kamii and
Dominick (1998) suggested, if students’ use of invented algorithms is a goal of effective
mathematics instruction because it denotes flexibility in thinking about numbers and
operations and can result in more efficient methods of mathematical problem solving,
then a student’s understanding of mathematical procedures is just as important as his or
her knowledge of mathematical concepts.

In addition, the second participant who accurately responded to item 7 on the
post-interview, of her own volition, offered multiple ways of justifying the algorithm.

The notion that this denotes a deeper understanding of the algorithm is based on Ma’s
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(1999) suggestion that the Chinese teachers possessed a more comprehensive

understanding of division with fractions compared to the U.S. teachers, in part, because
. 31
they were knowledgeable of multiple methods to compute lz + 5

Taken together, the performance of these 2 participants for the items in Section III
on the post-interview has several implications for the conceptualization of procedural
knowledge and the debate regarding its role in the instruction of mathematics. First,
understanding the mathematical procedures that underscore the standard algorithm can
clearly provide students with the opportunity to understand how to solve several types of
division with fraction problems. Indeed, the control group’s responses to the items in
Section III suggest that having an adequate conceptual understanding of division with
fractions does not easily extend to problems where both the dividend and the divisor are
fractions, implying that there are situations where procedural knowledge of the standard
algorithm is relevant (Budd et al., 2005).

Furthermore, because participants from the treatment group did demonstrate a
strong conceptual understanding of the topic after the content-focused instruction, it
appears that an appropriate understanding of mathematical procedures does not, as Kamii
and Dominick (1998) suggested, harm the development of conceptual knowledge. Rather,
because mathematical knowledge develops iteratively (Rittle-Johnson et al., 2001) and
the two types of mathematical content knowledge are mutually related (Rittle-Johnson &
Alibali, 1999), promoting a meaningful understanding of mathematical procedures can
complement students’ conceptual knowledge of mathematics.

Overall, the treatment group’s gain in SCK-DF suggests that the notion that facts

versus higher order thinking accurately characterizes the dichotomy between procedural
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and conceptual knowledge is false (Wu, 1999a). Rather, and consistent with what
Kilpatrick et al. (2001) and Star (2005) espoused, achieving the goal of mathematical
proficiency requires fluency in both mathematical concepts and procedures.
Some Positive Effects of the Content-focused Instruction
The Frequency of Division Language

The preservice teachers’ use of division language was not a concern when the
study and interview measures were designed. Based on Sfard’s (2000) premise that
mathematical communication is the vehicle for constructing mathematical knowledge, I
considered that the participants’ use of formal vocabulary of division with fractions
warranted some investigation. Indeed, formal vocabulary (see Zazkis, 2002) such as
finding the number of groups, the size of groups, invert and multiply, divisor, dividend,
and quotient the topic of division with whole numbers and with fractions was not only
accessible to the participants in the content-focused instruction sessions, but was also
emphasized in their textbooks and in the mathematics methods course content.
Irrespective of their exposure to formal mathematical terminology, participants’
responses on the pre-interview often comprised informal terms (Zazkis, 2002; e.g., “4
divided by 4” instead of “there is 1 group of 4 in 4). Thus, in these instances, no
interpretation of division was communicated when they were conveying the concept of
division with fractions. As such, I was concerned with whether the content-focused
instruction would increase the use of formal division vocabulary (i.e., Division
Language) on the post-interview.

This reasoning was based on the results from Zazkis (2002), where she suggested

that the use of formal mathematical vocabulary supported preservice teachers’
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understanding of mathematical concepts. Zazkis’s conclusion transpired from the results
of a study that was designed to examine preservice teachers’ learning and understanding
of fundamental number theory concepts. Although examining preservice teachers’ formal
and informal vocabulary was not an objective of her study, Zazkis noted themes
regarding mathematical communication that emerged from the interviews, particularly
with respect to the concept of divisibility. With regard to how the participants interpreted
the meaning of the word divisible, for example, she noted that some participants would
inconsistently use formal vocabulary. More specifically, she suggested that as the
participant’s confidence in his or her ability to respond to the question declined, so did
the use of formal vocabulary, highlighting a positive relationship between their
mathematical knowledge and the application of proper terminology to convey that
understanding. Similarly, in the current study, the preservice teachers used formal
vocabulary more often on the post-interview, irrespective of their prior awareness of the
proper terms, perhaps illustrating an improved confidence in their understanding of
division with fractions.
Participants’ Misconceptions of Division with Fractions

Other benefits of the content-focused instruction included a reduction in the
number of misconceptions the preservice teachers demonstrated on the post-interview.
The content-focused instruction, for instance, appeared to have improved their accuracy
in performing and understanding the invert and multiply algorithm. Indeed, similar to
what was found in Ball (1990a), Tirosh (2000), and Tirosh et al. (1998), some of the
participants in the current study experienced difficulties applying the invert and multiply

algorithm on the pre-interview. Following the content-focused instruction, only 1
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participant continued to display an algorithmically-based error on the post-interview.
Considering the subject of the content-focused instruction sessions, it is logical that
instruction that justifies the steps in the standard algorithm would positively impact future
performance on applying the algorithm.

Moreover, perhaps the participants’ inadequate understanding of the standard
algorithm underscored their general inability to identify the algorithmically-based errors
in item la on the pre-interview. That is, only 1 participant on the pre-interview
considered that the hypothetical student presented in item 1 misunderstood the division
with fractions algorithm. In fact, on the pre-interview, the majority of the participants did
not comment on the topic of division with fractions when addressing this student’s
algorithmically-based error. Rather, the preservice teachers were often concerned with
the possibility that the student lacked a relational understanding of fractions, or that the
student confused the concept of division with the concept of multiplication.

The fact that the preservice teachers were concerned with the student’s conceptual
understanding when the student demonstrated a procedural misunderstanding contradicts
what was found in Osana, Rayner, Desrosiers, and Levesque (2007). More specifically,
prior to receiving any instruction in a mathematics methods course, the preservice
teachers in Osana, Rayner et al. relied heavily on their procedural knowledge of
multidigit subtraction to analyze fictitious student solutions. It was found, that the
preservice teachers’ justifications of ratings assigned to the students’ solutions were
primarily concerned with the application of the standard algorithm for multidigit

subtraction.
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It is possible, however, that the preservice teachers in the present study possessed
a stronger conceptual understanding of fractions, division, and division with fractions
because they did receive conceptually-based instruction of these topics in the
mathematics methods course prior to the study. Most likely, however, because some of
the preservice teachers in the current study did hold misconceptions of the steps involved
in the standard algorithm used with division with fractions, their impaired understanding
could have hampered their ability to detect algorithmically-based errors. In other words,
without an accurate understanding of how the algorithm is applied, it becomes
increasingly difficult to notice when the algorithm is performed incorrectly. Furthermore,
this notion is also supported by that fact that the preservice teachers’ error analysis for the
other items with procedurally-based student errors (i.e., rules associated with division)
emphasized procedural knowledge.

Taken as a whole, these conclusions are consistent with results from van Dooren
et al. (2002), who suggested that preservice teachers’ mathematical content knowledge
influences their evaluations of student solutions. Specifically, it was found that the
preservice teachers’ scoring decisions of hypothetical student solutions were guided by
the way in which they would have solved the problem as well as their understanding of
the mathematics involved in it. In line with this reasoning, then, it is plausible to consider
that in the current study, the preservice teachers’ error analysis skills were influenced by
the quality of their understanding of the mathematical content in the problem.

Other Effects of the Content-Focused Instruction
Although the preservice teachers’ algorithmically-based misconceptions were

virtually absent on the post-interview, some misconceptions of division with fractions
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still persisted after the content-focused instruction, and some possibly developed as a
consequence of it. Specifically, participants from both groups demonstrated two
misconceptions: (a) confusing the action of division with the act of partitioning an area
and (b) acting out the partitive model using a whole number of groups when the number
of groups represented is a fraction.

I contend that the source of these two misconceptions was the preservice teachers’
lack of discernment regarding selecting the appropriate model of division on items that
were presented in absence of a word problem (see items 1 and 3). In particular, the
preservice teachers who demonstrated these misconceptions either did not use a concept
of division to interpret the problem or selected a model of division that was more
complicated based on the numbers in the problem. With this observation, I suggest that in
line with Carpenter et al.’s (1999) notion of direct modeling, the preservice teachers
demonstrated the propensity of relying on the context of the word problems to orientate
the effective manipulation the of numbers using one of the two division models.

With respect to the former misconception (i.e., confusing the action of division
with partitioning), because of the symbolic context, there was no explicit model of
division with fractions presented. As such, some of the participants used informal
language to model their solution. That is, rather than model the solution to a division with
fractions problem using either a measurement (i.e., finding the number groups of a certain
size) or a partitive (i.e., finding the size of one group) interpretation, their description of
the process of division was ambiguous and thus made it difficult for him or her to
conceptualize the answer (i.e., either the size of one group or the number of groups of a

certain size; Zazkis, 2002).
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On the other hand, the second misconception (i.e., acting out the partitive model
and using a whole number of groups when the number of groups is represented as a
fraction) had less to do with the use of informal vocabulary and more to do with
difficulties modeling an interpretation of division with fractions in the absence of the

structure of a word problem. One of the participants who, for example, accurately

modeled 4—‘1;+ 2 in accordance with the partitive structure of the word problem,

incorrectly applied the partitive interpretation to model 320 +% and 410+ % Note that,

when the context of the item was symbolic, she failed to apply a model of division that
was consistent with the number sentence (i.e., either finding how many groups are in the
total amount when the size of one group is a fraction or finding the size of one group
when the number of groups is a fraction). On the other hand, when the interview item
provided a word problem, thus clearly outlining the model of division, the participant
understood how to manipulate the numbers in the problem in accordance with the model
of division.

Further supporting the notion that some preservice teachers experienced
difficulties applying models of division in symbolic contexts were data from the post-
interview. Despite having effectively applied the measurement model to justify the
algorithm on item 6, none of the participants successfully extended this understanding to
answer item 7. A primary difference between these items was that the division problem in
item 6 was presented within a word problem while the division problem in item 7 was

symbolic. As a consequence of this, the preservice teachers who did use the measurement
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model to respond to item 7 demonstrated misconceptions of justifying the algorithm that
did not emerge on the pre-interview.

It is important to consider that, within a numerical context, the problem solver
bears the choice of which model to apply, and to effectively carry out this decision, an
abstract and flexible understanding of the interpretations of division is a necessity. In
particular, one must consider the numbers in the problem and also consider the
constraints that are inherent to each interpretation. The partitive model, for instance, is
convenient when (a) the divisor is less that the dividend, (b) when the divisor is a whole
number, and (c) when the quotient is less that the dividend (Fischbein, Deri, Nello, &

Marino, 1985). For this reason, applying a measurement interpretation of division to
model 320 +% or 410 +% is a more logical choice''. This is not to say that the partitive

model is impossible to use in these cases; considering the partitive model in these
situations requires an understanding that will violate the constraints of the partitive
model. This is evidently an understanding that certain preservice teachers in the present
study did not possess.

Similarly, Tirosh and Graeber (1990) found that of the 15 preservice teachers that

contended that the quotient is always less than the dividend, 5 participants maintained
. . 1

this misconception even when they were asked to calculate 4 + 5 In fact, one of the

participants incorrectly calculated that 8 is the quotient of 4 +.5, and that 2 is the

quotient for 4 +%, even though she had specifically stated that .5 = % Based on this

" This notion was addressed and justified during the instruction sessions (see Appendix E). In particular, I
suggested that for a whole number divided by a fraction, the measurement model is a more appropriate
choice, and for a fraction divided by a whole number, the partitive model works best. I also demonstrated
how both models are used to solve a problem with a fraction divided by a fraction.
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result, and on the fact that several preservice teachers admitted that they were unaware of
the measurement model, Tirosh and Graeber suggested that as a consequence of only
using the partitive model of division, the preservice teachers lacked a simpler way of
interpreting division problems that violated the model’s constraints of the partitive model.
In terms of the present study, this notion implies that the preservice teachers
demonstrated a reliance on the partitive model as a means of solving division with
fraction problems, and in certain situations, this involved a more complicated
conceptualization of the problem, perhaps confusing their understanding of how to
effectively apply the model in accordance with the number sentence.

Although the results from the interviews in Tirosh and Graeber (1990) provide a
framework for understanding this misconception, they do not give insight into the
resilience of this misconception, particularly with respect to the control group. Indeed,
only participants from the control group continued to display this misconception on the
post-interview, lending support to the notion that, as a consequence of the treatment
group’s developed knowledge of procedures associated with division with fractions, they
possessed more ways of understanding division with fractions, thus granting them more
access, compared to the control group, to alternative interpretations for symbolic division
with fractions problems.

Because the notion that the treatment group’s content-focused instruction was
associated with correcting this misunderstanding, it is possible that aspects of the control
group’s content-focused instruction contributed to the resilience of this misconception. It
is possible, for instance, that the reason the preservice teachers from the control group

experienced difficulties applying interpretations of division with fractions within
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symbolic contexts is because these concepts were only presented within the context of a
word problem during the content-focused instruction. Moreover, the preservice teachers
in the control group practiced their understanding of the concepts of division with
fractions by developing word problems using a specified number sentence and a
particular interpretation of division with fractions. Although successfully conceiving
pedagogically appropriate word problems is an indication of an adequate understanding
of a given concept of division with fractions (Ma, 1999), perhaps the few practice
problems did not provide the participants in the control group with enough experience in
understanding division with fraction concepts in a more flexible manner.

Some Insight into Other Interesting Findings

On the pre-interview, several participants placed the divisor in the spot for the
dividend when addressing a partitive division word problem (i.e., item 5). Because the
preservice teachers had only developed an understanding of partitive word problems
within the context of whole numbers before the intervention, I suggest that they
experienced difficulties intuitively conceptualizing a fractional number of groups.

In support of this, when Graeber, Tirosh, and Glover (1989) examined preservice
teachers’ misconceptions of multiplication and division, they found that the majority of
problems that the preservice teachers answered incorrectly comprised divisors that were
larger than the dividend. That is, the preservice teachers would write numerical
expressions of these problems whereby the divisor was situated in the number sentence as
the dividend. Three of these problems, for instance, involved a decimal number divided
by a larger whole number (e.g., 3.25+5, .75+ 5, and 1.25+5). This being said,

however, these types of problems were easier compared to those in which a whole
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number dividend was divided by a larger whole number. With further investigation of
this pattern, Graeber et al. suggested that the only reason the divisor and dividend were
not interchanged when the dividend was a decimal number was because the preservice
teachers were fueled by the desire to avoid decimal number divisors. One participant, for
example, reported that she initially did write 5 + 3.25, but changed her response when she
realized that the divisor was a decimal number. Thus, the results from Graeber et al.
imply that, among preservice teachers, the misconception that the divisor has to be a
whole number appears to be stronger than the notion of the size of the divisor relative to
the dividend.

Similarly, in the present study, several preservice teachers on the pre-interview

confused the role of the dividend and the divisor when the divisor was a mixed fraction

and was larger than the dividend (i.e., 2+ 3%). In accordance with Graeber et al. (1989),

. . . . |
it is possible that the preservice teachers proposed a number sentence that situated the 35

as the dividend because they may have inadvertently misunderstood that divisors must be
whole numbers.

In summary, the results from the current study elucidated four key findings
regarding the preservice teachers’ development of SCK-DF. Firstly, the content-focused
instruction was found to improve the preservice teachers’ overall SCK-DF. Moreover, the
data addressing the second research objective supported the hypothesis that a
combination of conceptual and procedural mathematical content of division with
fractions generated greater gains in SCK-DF than the control group. In addition, the

frequency with which the preservice teachers used formal vocabulary to communicate
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notions of division with fractions was greater on the post-interview for both groups.
Finally, in general, the content-focused instruction contributed to a reduction in the
presence of misconceptions of concepts and procedures associated with division with
fractions for both groups.

More generally, these findings underscore the benefit of providing preservice
teachers with content-focused instruction, particularly in the development of specialized
content knowledge. This undertaking is essentially critical given the impact of a teacher’s
common and specialized content knowledge on his or her students’ performance in
mathematics (Hill et al., 2005). With this new information, this study makes a significant
contribution to the growing interest in understanding how mathematics methods courses
can effectively shape preservice teachers’ mathematical knowledge before they join the
workforce.

Limitations and Future Research

The findings from the current study, however, should be interpreted cautiously as
a result of the small sample. Despite the fact that non-parametric statistical analysis
revealed differences in the groups’ SCK-DF following the content-focused instruction,
this study should be conducted with a larger sample to confirm that the treatment effect
can be replicated with a sample that more closely resembles the preservice teacher
population. Another potential limitation of the current study is the number of conditions
that were used to examine the preservice teachers’ development of SCK-DF. In line with
this reasoning, future research should consider including a condition where only
procedural knowledge is addressed in a deep and meaningful manner to tease out the role

of procedural knowledge in absence of conceptual understanding. Finally, preservice
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teachers’ development of SCK was only examined within the context of one topic of
elementary mathematics. Although there is a strong argument supporting my decision to
examine the development of preservice teachers’ SCK within the topic of division with
fractions, an ideal extension of this study would be to examine this development
longitudinally, and across several topics within elementary mathematics.

Irrespective of these limitations, the results from the current study are promising
and suggest that because of the limited body of research that has examined preservice and
inservice teachers’ SCK, there are a number of pathways that future research could take.
For example, it would be worth examining whether and how moderate or high levels of
mathematics anxiety interfere when content-focused instruction is used a vehicle for
developing preservice teachers’ SCK. In addition, this research question would also
contribute to the paucity of research that has examined whether experiencing
mathematics anxiety compromises performance in mathematics in a variety of anxiety-
evoking situations, such as attending a mathematics methods course.

Indeed, research that has examined the relationship between preservice teachers’
conceptual and procedural knowledge of fractions and mathematics anxiety concluded
that inadequacies in both types of mathematical content knowledge were associated with
high levels of mathematics anxiety (Rayner et al., 2007). Further in this regard, and in
line with the empirically supported links between working memory, mathematics anxiety,
and performance in mathematics (Ashcraft & Kirk, 2001; Ashcraft, Kirk, & Hopko,
1998; Faust, Ashcraft, & Fleck, 1996; Hopko, Ashcraft, & Gute, 1998), Ashcraft and
Kirk (2001) suggested that math anxious students may suffer from a lack of working

memory resources during instruction; resources that are needed to deeply learn and
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understand mathematical concepts and procedures. Based on the prevalence of
mathematics anxiety within the preservice teacher population (Baloglu & Kogak, 2006;
Bessant, 1995; Hembree, 1990; Kelly & Tomhave, 1985), it is plausible that experiencing
mathematics anxiety could moderate any of the associated benefits of content-focused
instruction.

Another interesting research question involves comparing the development of
preservice teachers’ SCK as a function of a variety of instructional methods designed to
enhance preservice teachers’ mathematical knowledge. With respect to the current study,
the instruction sessions followed a model of direct instruction where the mathematical
concepts and procedures associated with division with fractions were discussed, and the
preservice teachers were required to complete practice problems to demonstrate that the
instructional content was consolidated. Conversely, Quinn (2001) examined a
mathematics methods course that was premised on the importance of incorporating the
appropriate use of manipulatives, technology, and cooperative learning to effectively
facilitate preservice teachers’ construction of meaningful mathematical knowledge.
Quinn found that this strategy of instruction significantly increased the preservice
teachers’ mathematical content knowledge upon completion of the mathematics methods
course. In addition, other research has demonstrated the benefits of complex problem
solving on student performance in mathematics (Cognition and Technology Group at
Vanderbilt, 1992), particularly in a cooperatively learning environment. Taken together,
given that these pedagogical techniques enhance mathematical learning, it is possible that
they would equally promote preservice teachers’ development of a variety of types of

mathematical knowledge, including SCK.
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Moreover, although I had not initially intended to examine the frequency of
formal vocabulary and the prevalence of the participants’ misconceptions of division with
fractions, the investigation of these constructs nonetheless contributed to understanding
the preservice teachers’ knowledge of division with fractions prior to and following the
content-focused instruction. The results from this examination could inspire future
research to consider the role of mathematical language in preservice teachers’ or
elementary students’ gradual construction of stronger schemas of mathematical concepts
and procedures.

Finally, it would be valuable to ascertain whether the association between
content-focused professional development and inservice teachers’ development of SCK
mirrors the relationship 1 found between content-focused instruction and preservice
teachers’ development of SCK. As I previously revealed in Chapter 2, a comparison of
the findings from Ma (1999) to what was found in Ball (1990a), Tirosh (2000), and
Tirsoh et al. (1998) suggest that the mathematical knowledge inservice teachers possess
is different to that of preservice teachers. In particular, Ma (1999) indicated that inservice
teachers demonstrated inadequacies in his or her conceptual and procedural knowledge of
division with fractions. As such, the type of content that facilitates preservice teachers’
gains in SCK may have a differential impact on inservice teachers’ development of this
type of mathematical knowledge for teaching.

Conclusions

The results from the present study offer two important contributions to the

research on enhancing preservice teachers’ specialized content knowledge. The first is

that content-focused instruction has the potential of promoting the development of
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preservice teachers’ SCK. The potential effect of content-focused instruction offers a new
perspective on the body of literature concerned with the content of mathematics methods
courses. Understanding that improvements in preservice teachers’ mathematical content
knowledge facilitates SCK is particularly important based on the findings from Hill et al.
(2005).

The second contribution from the current study concerns the finding that greater
gains in SCK-DF was associated with instruction that comprised a combination of
conceptual and procedural content regarding division with fractions. This finding outlines
the role of procedural knowledge in mathematics learning and builds on the findings from
Star and Seifert (2006) by demonstrating that deep procedural knowledge can be
developed during instruction on elementary mathematics. Further in this regard, while it
is not clear whether deep procedural knowledge can exist for all topics addressed during
elementary mathematics, it is evident that preservice teachers’ conceptual and procedural
competence should be emphasized during their coursework with the goal of developing a

deep understanding of both types of content knowledge.
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Name

1) For each picture below, write a fraction to show what part
is gray:

1.1) 1.2) 1.3)

1.1) 1.2) 1.3)

2) Circle the fractions that show what part of each circle
below is gray:

oy L0302 02y 1 L 2
4 5 10 9 3 5
3) Compute the following equations:
31) 2 32) 2
5 10
1 2
+— +=
3 s
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72
8
+4l
2

3.4)

| —|on

3.6)

3.3)

7
10

_1
10

3.5)

NN~

3.7)
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4) Write one fraction that is the same as each fraction below,

1 2
for example: —=—
2 4
4.1) 2_ 4.2) 1
6 5
43) 2= a4) 1o
16 6

5) a. Four people are going to share these two pizzas equally. Colour in one
person’s part.

O C

b. Write a fraction that shows how much one person gets

6) a. Three people are going to share these pizzas equally. Colour in one

person’s part.
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b. Write a fraction that shows how much one person gets

7) a. Six people are going to share these five chocolate bars equally. Colour in
one person’s part.

b. Write a fraction that shows how much one person gets

8) Fill in the missing numbers:

W

1
8.1) g 10 8.2)

H|—

1
8.3) 25‘5 g4 3
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9) Circle a, b, c, or d below to show what part of this circle
is gray:

10a) John ran %of a mile on Thursday and %of a mile on Friday. How far did he

run altogether on the two days?

10 b.) Draw a picture to show your work.
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Pre-interview of Specialized Content Knowledge of Division with Fractions

Part I and I1. The following problems were given to a fifth-grade class to. practice

division with fractions.
1
1) —+4
) 4

1 3
2)—=+—
)4 5

3) 320+~
3

Below are some students’ answers to these problems.

For %+ 4, Mary’s solution looked like this:

—+4=4+4=1

Question:
a) In analyzing her answer, what is Mary’s understanding of division with fractions?

b) What problem would you give her to help correct her misconceptions of division with
fractions?
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For l+§, Jim’s answer was:
4 5

. 3. .. 1
“I can’t do this because 3 is bigger than r so you can’t share less among more”

Question:
a) In analyzing his answer, what is Jim’s understanding of division with fractions?

b) What problem would you give him to help correct his misconceptions of division with
fractions?
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For 320+ %, Billy’s answer was:

320+1=L.320= L
3 3

1 1
— X —=
3 320 960

Question:
a) In analyzing his answer, what is Billy’s understanding of division with fractions?

b) What problem would you give him to help correct his misconceptions of division with
fractions?
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Part I and II cont. The following word problems were written on the blackboard in a Mr.
Heads fifth grade classroom. He then asked each of the students to solve the word
problem and write the number sentence reflected in the word problems. Here are some
examples of some of the answers two students provided.

Kate’s mom gave 6 bars of chocolate to her and her friends. If each person had % ofa

chocolate, how many friends had some chocolate?

Suzy’s number sentence for this word problem was

a) In analyzing her answer, what is Suzy’s understanding of division with fractions?

b) What problem would you give her to help correct her misconceptions of division with
fractions?
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Sabrina’s answer for the following word problem was

Jerry bought 3% pounds of flour for $2.00. How much did he pay per pound?

2% 3% = % or $6.66 per pound

Question:
a) In analyzing her answer, what is Suzy’s understanding of division with fractions?

b) What problem would you give her to help correct her misconceptions of division with
fractions?
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Part III. During a class on division with fractions, one of your students asks you to
explain why the standard algorithm works. You have a word problem and a number
sentence written up on the blackboard already and decide to use both of those
representations to answer the student’s question.

The word problem is the following:

Larry’s vegetable garden is 7 feet long. If each vegetable takes up % ofa

foot, how many different types of vegetables can Larry plant?
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The number sentence is:

5 3

12

185




Appendix C

Post-interview Items

186



Post-interview of Specialized Content Knowledge of Division with Fractions

Part I and II. The following problems were given to a fifth-grade class to practice

division with fractions.

1
1) —+6
)6
1 4
2) —+—
)3 7
3) 410+~
2

Below are some students’ answers to these problems.

For %+ 6, Shira’s solution looked like this:

—+6=6+6=1

Question:
a) In analyzing her answer, what is Shira’s understanding of division with fractions?

b) What problem would you give her to help correct her misconceptions of division with
fractions?
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For—+ i, Phil’s answer was:
3 7

. 4., .. 1
“I can’t do this because 7 is bigger than 3’ s0 you can’t share less among more”

Question:
a) In analyzing his answer, what is Phil’s understanding of division with fractions?

b) What problem would you give him to help correct his misconceptions of division with
fractions?
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For, 410+ % David’s answer was:

1
27410 82

(=]

a) In analyzing his answer, what is David’s understanding of division with fractions?

b) What problem would you give him to help correct his misconceptions of division with
fractions?
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Part I and II cont. The following word problems were written on the blackboard in a Mr.
Heads fifth grade classroom. He then asked each of the students to solve the word
problem and write the number sentence reflected in the word problems. Here are some
examples of some of the answers two students provided.

Harriet has a paper to write for her political science course. She has set aside 10 hours

to write the paper. It takes her % of an hour to write a page. How many pages can she

write in 10 hours?

Jen’s number sentence for this word problem was

10+2=5

Question:

a) In analyzing her answer, what is Jen’s understanding of division with fractions?

b) What problem would you give her to help correct her misconceptions of division with
fractions?
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Jamie’s answer for the following word problem was

Nigella used 4% cups of flour to bake 2 lemon meringue cakes for a dinner party. Shelly,

one of her dinner guests loved the cake so much she decided to bake one lemon meringue
cake the next day. How much flour did Shelly use to bake this cake?

2><4l=§i or 8l cups of flour
4 4 2

Question:

a) In analyzing her answer, what is Jamie’s understanding of division with fractions?

b) What problem would you give her to help correct her misconceptions of division with
fractions?
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Part II1. During a class on division with fractions, one of your students asks you to
explain why the standard algorithm works. You have a word problem and a number
sentence written up on the blackboard already and decide to use both of those
representations to answer the student’s question.

The word problem is the following:

Brian is 5 feet tall. He decides that he wants to measure himself and he notices that he
has a bunch of pieces of string on his desk. If every piece of string is % ofa

foot, how many pieces does Brian need to figure out how tall he is?
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The number sentence is;

7 5

15 11
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Assessments of Content for the Control Group

Instruction Session 1

Imagine that you are teaching division with fractions. To make this
meaningful for kids, something that many teachers try to do is relate
mathematics to other things. Sometimes they try to come up with real-
world situations or story problems to show the application of some
particular piece of content. Using the interpretation of division with

fractions that was discussed today, what would you say would be a good

story or model for 9+ %?
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What about for 4§+% ?

Instruction Session 2 & 3

Assessments of content will be identical to the assessment of content for Instruction
Session 1 except the numbers will be different.
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Assessments of Content for the Treatment Group

Instruction Session 1

Imagine that you are teaching division with fractions. To make this
meaningful for kids, something that many teachers try to do is relate
mathematics to other things. Sometimes they try to come up with real-
world situations or story problems to show the application of some
particular piece of content. Using the interpretation of division with

fractions that was discussed today, what would you say would be a good

story or model for 9+ %?
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What about for 4—§-+% ?
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Instruction Session 2

For the following two division with fractions problems, explain why %+% = a X %.
c

385
11 6
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6 3

13
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Instruction Session 3

For the following two division with fractions problems, solve each problem twice using a
different strategy each time.
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6
11

3
20
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Session 1 %

k2

he Measurement Model

imilarities between interpretations of @
division and interpretations of e
division with fractions

4

An example... |

Mary has 6 feer of ribbon. ay
She plans on making racelers
with this ribbon, Esch

braceler requires .:_ of 3 foor of
ribbon. How many bracelets can

A«Jazy make?

Represent the J
Strip 4
&
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e 4
Divide Each Foot into »

Thirds
&
TLTLITTITTI IR i ] e
—
I foot
Kamwﬁﬂm&rdEKt&aamu§u$
%mmmtu&m}w}y

S 6-— you avery = lwéw

Brnection to the Algorithm y

6+2=6x3
3 2

Creating b groups of 3

How Many N
Groups? 1

L
ection to the Algorithm.
cont.

®
o

Finding how many groups of %‘s

subtract groups of %95 from

18,and count the number of
groups which looks like
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Fraction Divided by a «

How can this be solved? ',

Fraction 1
& 1 cup
3 1
2.2 P
42 “ -

Stacy has %af 2 cup of flour, For her

brownie recipe she ne&d&i- cup. i she
wants to use all of her flour, how manyg

can she use the recipe?

e Problems to Consider ’|

« When trving to make connections ®
between the model and the algorithm
do not illustrate 3 groups of 2, bt
you do “see” the §

£

i,
S’
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o . —
rnate Explanation .
Using this Model °

» Find a common denominator 31
42

&

We next divide Dy 32 because 8 x 4 = 32 « 1 full group of 37 and 16 of 32

- How many groups of 32 in the shaded area?
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The Partitive Model

The nunber ng@at:h aroup is unknown
sharpenier. Famems. Simeke. L, Empecs, 1905

C@?ﬁtrol Group

4 yomato plants, There are e
Session 2 same number of IM3IToRs ON each plant.
Al iogether there are 20 romaloes. How
HANY I0Matnes are there on eam ﬁmam
plam?

i

Division With Fractions Whole-Number Divisors

£

» The total am@unt is a fraction

» The mtezpr&iiaimn extends iself to

division with fractions

il ¢ is a whole number

«  Two situations

1. Division of a fraction by a whole % Fraction + Whole Number {i. :
mumber number of groups; =/

2. Division of a fraction by a fracﬁon 4

]

|

the size of each group

208



For example...

v 1
suzy 1— hours to do 3 of her
chores, 4

it

How much time does it take to do one
chore? :

éi;xxxx\m’%‘{gg~~z;

Fractional Divisor

- Total amou§ is a fraction
- §\S;»\

ing for the size of one

group

Fraction + Fractional Number of
Groups

= the size of each group

For example...

Aidan found ot that if she walks really
fast during her morning exercise,
h .

: 1
can cover 2-

miles in 3 of an
hour. 4

s

She wonders how fast she is walking
in miles per hour.

= “%
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Using a Number line

What to do?

+ To find out how many miles are
M o 4
walked in Lhour, find how many

e

+ How many halves are in each guarter
or distributing halves across d
groups

porysicher that%:%, therefore the ¥ remaining

halues nan be evenly distributed ndo 3 gmup%ﬁ"

[

wherelry sarh group receives an additional g ==

w

Aidan walks 3-;- miles in 1 hm%r
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actors
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The Algorithm

Lan the aigmi;ttma be taught using
pmceﬁmesmﬁ still be meaningful for

- S
«  Understanding is important

1. Wulliple sirategies L g ~ﬁ’§‘ﬁ

2. Understanding the mathematical wassamng
that the algorithm is based on #

3. Frastions that are not conducive {6 semi-
cuncrete or concrete methods

A Key Féctor in Understanding
the Algorithm

+ The inverseézd muitiply rule is
based on th principie that division

wholeipambers is the inverse of
%mg whole numbers {Wy,

An example...

Mary wants to #uy a series of desks for

L

her room. Thewall that she will place

gainst measures 103% feet.

Each 1999}

o
desk is 4— feet fong. How many"” . S0 F g
desks should Mary buy? mEn=kisthe sameasm =nxk
when m, #, and ¥ are whole numbers
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Extending the Rule

wWEH =&'is§hesamaasm=nxk
swhen m, #n, and k are whole numbess

»

X
Solve for “k” or N

a EAgN: 4
‘| Multiply both sides of };"g";

For this Reason

a ¢ d a
e e e W e
b d ¢ b

Back to the example...

measures w% feet.

Each

desk is .t% feet long. How many”

desks should Mary buy?

Mary wants fof’ﬁuy a series of desks for
her room. The wall that she will place
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Division is the Inverse of

Multiplication
3,17 3.1
s g =7 0—=4—x?

0= 4o=?  Woodox

st

Solve for “?"

PELN 4
33 B

(.2);( H}-E-:.}ﬁx (_.3_3_.) %7
149 16 33 1149

f—gf'-]xmizn?
n148 16

,:;%;Finish the Calculation Using
~ the Distributive Property

33 .3 (33 { 3
125 1075 "{149}" 10% 16}

['_3'_?_ wolf32,3 .
149" } 14916 A

o

Distributive Property

Continued

C zzoxm‘bﬁ
189 x16 1384
c 5280799
EXTTRETT™
c 370 zﬂl
z&a—d 2383

B
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-

2y

-
e

Two Al
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Applying the Rule for
Common Denominator

Seeing the Comme
Denominator Rule in A

f
o
o

tion
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For the following problem:

the prineiple for equivalm Tractions comes i)
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Concordia

UNIVERSITY

t % g
3 3
L3 3
2,
k3 L
2

CONSENT FORM TO PARTICIPATE IN RESEARCH

I agree to participate in a program of research being conducted by Vanessa Rayner, a graduate student in
the MA Child Study Program, of the Department of Education at Concordia University, in collaboration
with her advisor, Dr. Helena Osana, of the Department of Education at Concordia University.

A. PURPOSE

1 have been informed that the purpose of the research is to study the development of specialized
mathematics knowledge of division with fractions. This will involve providing preservice teachers with one
of two types of instruction on this topic. Prior to and subsequent to receiving instruction on this topic, the
preservice teachers’ specialized knowledge of division with fractions will be assessed through two
individual interviews to detect any changes in their understanding. In addition, another purpose of the study
is to determine which type of instruction yields greater gains in their specialized knowledge of this topic.
This research is important in part because it will help Dr. Osana best organize and teach future mathematics
methods courses for students at Concordia University.

B. PROCEDURES

The research will be conducted at the university. I will be asked to participate in a two 45-minute individual
interviews that will be digitally audio-recorded. These interviews will be conducted before and after three
1- hour and 15-minute instruction sessions that will take place once a week for three consecutive weeks.
During these sessions, I will be audio-recorded and towards the end of each instruction session, I will be
asked to complete some paper-and-pencil practice problems on the topic of fractions for 20 minutes.

C. CONDITIONS OF PARTICIPATION

e My participation in the research project is completely voluntary and confidential.

e  Should I agree to participate, only the Principal Investigator, Ms. Vanessa Rayner, will know of
my decision, and will not inform the instructor of this course. Only the Principal Investigator will
have access to the consent forms and will keep them in a secure location during the project’s
duration.

e Should I agree to participate, I will not inform Dr. Helena Osana of my participation until after the
final grades for EDUC 388/4 have been submitted. Additionally, Dr. Osana will not have access to
any information that will be able to identify me as a participant.

e During the project’s duration, all data will be stored in a locked box in a locked research office,
and will be accessed only by the Principal Investigator. During and after the project , all data will
be stored in a locked cabinet in a locked research office, and will be accessible only to the
Principal Investigator.

e I understand that the data from this study may be presented and/or published, but no identifying
information will be disclosed.

¢ My participation in the research project will not be graded, nor it will it influence my grade in
EDUC 388/4.

o IfIdecide at any time that I do not wish to continue participating, I have been told to contact Ms.
Vanessa Rayner, at v_rayner@education.concordia.ca (or on FirstClass) or 514-240-7134 and all
information about and from me will be erased from the research files.

e If I have any questions at any time about this project, I have been informed to contact Ms. Vanessa
Rayner, at v_rayner@education.concordia.ca (or on FirstClass).
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I HAVE CAREFULLY STUDIED THE ABOVE AND UNDERSTAND THIS
AGREEMENT. I FREELY CONSENT AND VOLUNTARILY AGREE TO
PARTICIPATE IN THIS STUDY.

FULL NAME (please print):

SIGNATURE:

DATE:
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Ss Interview | Item
Name

Evidence

Codes

P Codes

Score
0,1,2)

Response addresses the concept of division

Response notices the errors in the algorithm
(inverting the wrong number and dividing
versus multiplying

Alternate error identified by Ss

1b

Demonstrates misconceptions of division
with fractions while addressing the follow-up
problem

The follow-up problem suggested would
address the misconceptions suggested earlier

2a

Response addresses the concept of division

Response notices the errors in the students
statement (the divisor can be bigger)

Alternate error identified in the students
response

Misunderstands the students statement (i.e.,
believe that the first half of the students
statement is false and/or that the second half
is true)

| 2b

Demonstrates misconceptions of division
with fractions while addressing the follow-up
problem

The follow-up problem suggested would
address the misconceptions suggested earlier

3a

Response addresses the concept of division

Response notices the errors in the students
answer (misuse of the commutative property)

Response notices that the algorithm was
applied correctly

Alternate error was identified

1 3b

Demonstrates misconceptions of division
with fractions while addressing the follow-up
_problem

The follow-up problem suggested would

address the misconceptions suggested earlier
4a

Associates the problem as a multiplication
problem with whole numbers

Associates the problem as a measurement
division problem

Identifies students misunderstanding of the
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problem (that it is a measurement division
problem, looking for the number of groups
vs. a partitive division problem where the
total is being split in 1/2 or divided into 2

groups)

Believes that the students error is not
mathematical

Explains error from a mathematical
perspective. Use of terminology for concepts
of division (i.e., measurement or partitive).

| 4b

Use the appropriate model of division as a
follow-up problem (i.e., measurement)

Use alternate model of division or operation
to address misconception

Sa
|

Associates the problem as a partitive division
problem

Identifies students misunderstanding of the
problem (that it is a partitive division
problem, looking for the size of each group
vs. a multiplication problem where the
number of groups and number in each group
is known)

Believes that the students error is not
mathematical

Explains error from a mathematical
perspective. Use of terminology for concepts
of division (i.e., measurement or partitive).

| 5b

Use the appropriate model of division as a
follow-up problem (i.e., partitive)

Use alternate model of division or operation
to address misconception

| 6

Appropriately justifies why the algorithm
involves multiplication

Appropriate justifies why the algorithm
involves inverting the second number in the
number sentence

*Explains the remainder (notice whether the
model was completed during the explanation
or whether the accurate answer was
calculated)

|7

Appropriately justifies why the algorithm
involves multiplication

224




Appropriate justifies why the algorithm
involves inverting the second number in the
number sentence

*Explains the remainder (notice whether the
model was completed during the explanation
or whether the accurate answer was

calculated)
1

225




Appendix H

Interview Scoring Rubric
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Ttem Scoring Guideline . ' L ‘ ‘

la No error or unreasonable error identified.
Reasonable error identified.
Correct error identified.

1b Follow-up problem does not address misconception.
Follow-up problem addresses finding the correct answer and/or not all
misconceptions identified were addressed.

Follow-up problem addresses all misconceptions identified.

—_—OUN = O

2a No error or unreasonable error identified.
Reasonable error identified.

Correct error identified.

2b Follow-up problem does not address misconception.
Follow-up problem addresses finding the correct answer and/or not all
misconceptions identified were addressed.

Follow-up problem addresses all misconceptions identified.

—_— O = oI

3a No error or unreasonable error identified.
Reasonable error identified.

Correct error identified.

3b Follow-up problem does not address misconception.
Follow-up problem addresses finding the correct answer and/or not all
misconceptions identified were addressed.

Follow-up problem addresses all misconceptions identified.

—_— O = o

4a No error or unreasonable error identified.
Reasonable error identified.

Correct error identified.

4b Follow-up problem does not address misconception.
Follow-up problem addresses finding the correct answer and/or not all
misconceptions identified were addressed.

Follow-up problem addresses all misconceptions identified.

—O N = O|N

5a No error or unreasonable error identified.
Reasonable error identified.

Correct error identified.

5b Follow-up problem does not address misconception.
Follow-up problem addresses finding the correct answer and/or not all
misconceptions identified were addressed.

Follow-up problem addresses all misconceptions identified.

— O N = O

N

6 0 Unable to link response to the steps of the algorithm.
1 Can only justify part of the algorithm. Note if answer was calculated and remainder
not explained, score as 1.
2 Able to justify the algorithm and if the accurate answer was calculated the remainder
was explained.

7 0 Unable to link response to the steps of the algorithm.
Can only justify part of the algorithm. Note if answer was calculated and remainder

not explained, score as 1 (only if the problem was modeled)

2 Able to justify the algorithm and if the accurate answer was calculated the remainder

was explained (only if the problem was modeled).

ey
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Appendix 1

Analysis of Specialized Content Knowledge of Division with Fractions (ASCK-DF)
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Student Codes

Section I (items 1a through 5a). Analyzing Student Solutions. The following codes
were used only once per item and reflect the participants identification of the student’s
misconceptions of division with fraction or students’ misconceptions in general.

Interview Question: /n analyzing his or her answer, what is his or her understanding of
division with fractions?

Algorithmically based mistake (AB) - The student demonstrated a computational “bug”
most likely as a result from memorizing the algorithm without understanding it.

ABI- inverting the dividend instead of the divisor

ABM- forgetting to multiply the dividend and inverted divisor
ABNI- both the dividend and the divisor should be inverted
ABF- inverting all fractions

b N

Intuitively based mistake- (IB) — Errors that result from using intuitions held about
division as oppose to knowledge about division.

5. IBW- the divisor must be a whole number
6. IBD- the divisor must be less than the dividend
7. IBQ- the quotient must be less than the dividend

Mistakes based on procedural knowledge (PB) — Errors that result from a fragmented
procedural understanding of division with fractions (i.e., the properties of this operation).

8. PBC- division is commutative

Mistakes based on conceptual knowledge (CB) — Errors that result from a fragmented
conceptual understanding of division with fractions (i.e., the properties of this operation).

9. CBI- applying an incorrect interpretation of division (i.e., rather than looking for
how many groups of a certain size makes up the total amount, confused the
fraction as a number of groups. For example rather than finding how many groups

1 . . .
of 3 there are in the total amount, the total amount was equally distributed into 2

groups)

10. CBO- using the wrong operation because of misunderstanding that when
information regarding the number of groups or size of a group is missing in the
problem is indicative of a division problem.
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11. CBF- the student misunderstands concepts of fractions (i.e., part-whole, quotient
and ratio)
12. NEA- no analysis of error. Restated what is written on the interview.

Section II (items 1b through 5b). Representing Numbers and Operations in
Meaningful Ways. The following codes were used only once per item but can be used in
combination with one another. The codes reflect how the participant would address the
student’s error.

Interview Question: What problem would you give him or her to help correct his or her
misconceptions of division with fractions?

Focus on How to Obtain the Correct Answer (CA) — The participant described a problem
that would help show the student how the correct answer can be obtained using the
following methods:

CAP- using pictures to model the problem

CAM- using manipulatives to model the problem

CAS- using symbols to model the problem

CAA- using an algorithm to model the problem

CADP- used more than one method

CAL- made links to other mathematical concepts and procedures

CAW-PD OR MD OR FP- using a word problem, either partitive, measurement or
factors and product

NSk =

Focus on Challenging the Student’s Misconception (CM)- The participant described a
problem that would challenge what the student displayed using the following methods:

8. CMP- using pictures to model the problem

9. CMM- using manipulatives to model the problem

10. CMS- using symbols to model the problem

11. CMA- using an algorithm to model the problem

12. CMDP- used more than one method

13. CML- made links to other mathematical concepts and procedures

14. CMW-PD OR MD OR FP- using a word problem, either partitive, measurement
or factors and product

Section III (items 6 and 7). Justifying Mathematical Rules and Procedures. The
following codes were used only once per item but can be used in combination with one
another. The codes reflect how the participant justifies the standard algorithm used with
division with fractions.

Interview Question: During a class on division with fractions, one of your students asks
you to explain why the algorithm requires the divisor to be inverted and the two values t
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be multiplied. You have a word problem and a number sentence written up on the
blackboard already and decide to use both of those representations to answer the
Student’s question.

Ability to Answer the Question (JA)
1. JANL- able to model the problem but could not link what they did to the
algorithm
2. JAL- able to model the problem and linked what they did to the algorithm
3. JAI- unable to answer the question

Strategy Used to Answer the Question (JA)
4. JAS- used the same method for both items
5. JADPM- offered more than one answer
6. JADPI- used a strategy not addressed during the instruction sessions

Mathematical Knowledge Used to Answer the Question (JA)
7. JAP- used procedural knowledge
8. JAC- used conceptual knowledge

Participant Codes

I (all items). The Participants’ Understanding of Division with Fractions. The
following codes can be used as often as they appear within every response and are used to
describe the participants understanding of this topic.

Division Language (DA)- this includes using division language to answer the question
(i.e., making reference to the number of groups, the size of each group, the whole or total
amount)

1. DL- division terminology (e.g., divisor, dividend, or quotient)

2. DL-P- rule associated with division and division with fractions (e.g., invert and
multiply)

3. DL-MD OR PD- terminology that expresses the concept of partitive or
measurement division (e.g., groups, number of groups, and a word problem)

Division with Whole Numbers (DW)- this includes using their knowledge of division
with whole numbers to respond to the question.

Unclear Statement (US)- the participant’s statement was unclear.
Error Statement (ER)- the participant’s statement comprised an error (e.g., whatever

your number is you have to make it into the full ratio of what they are like the same thing
and then so your getting your total number of little squares and your taking)
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Misconceptions of Division- this includes the same codes as in the previous error
analysis section.

Algorithmically based mistake (AB) - The participant demonstrated a computational
“bug” most likely as a result from memorizing the algorithm without understanding it.

4. ABI- inverting the dividend instead of the divisor

5. ABM- forgetting to multiply the dividend and inverted divisor
6. ABNI- both the dividend and the divisor should be inverted

7. ABF- inverting all fractions

Intuitively based mistake- (IB) — Errors that result from using intuitions held about
division as oppose to knowledge about division.

8. IBW- the divisor must be a whole number
9. IBD- the divisor must be less than the dividend
10. IBQ- the quotient must be less than the dividend

Mistakes based on procedural knowledge (PB) — Errors that result from a fragmented
procedural understanding of division with fractions (i.e., the properties of this operation).

11. PBC- division is commutative

Mistakes based on conceptual knowledge (CB) — Errors that result from a fragmented
conceptual understanding of division with fractions (i.e., the properties of this operation).

12. CBI- applying an incorrect interpretation of division (i.e., rather than looking for
how many groups of a certain size makes up the total amount, confused the
fraction as a number of groups. For example rather than finding how many groups

1 . o .
of 5 there are in the total amount, the total amount was equally distributed into 2

groups)

13. CBO- using the concept of the wrong operation, namely multiplication with
fractions, to describe the concept of division with fractions

14. CBF- the participant misunderstands concepts of fractions (i.e., part-whole,
quotient and ratio)

15. CBP- the participant confuses the act of partitioning an area with the act of
division

16. CBN- the participant confuses the number sentence and situates the total as the
divisor instead of the dividend.

Misconceptions of the Division with Fractions Algorithm (MA)- misconceptions
participants demonstrated while justifying the standard algorithm.

17. MA-div- the participant demonstrated misconceptions of what number acts as the
divisor :
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18. MA-mult- the participant demonstrated misconceptions of which two numbers
are multiplied
19. MA-FB- the participant falsely believes their justification reflects the answer
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