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ABSTRACT
A Novel Enhanced Compression Scheme for Digital Images and

its Application for Medical Imaging

Lakshmi Sugavaneswaran

With the advent of digital technology, the amount of digital medical images generated is
increasing at an exponential rate. When used in interactive telemedicine applications,
these raw images need a huge storage unit, thereby necessitating the use of high-
bandwidth medium for transmission. In order to reduce the cost of transmission and
enable archiving, especially for medical applications, image compression is performed.
Most of the existing research in compression is focused on minimizing mathematically
tractable, easy to measure, distortion metrics like the peak signal-to-noise ratio (PSNR)
for gray scale and root mean square error (RMSE) for color coded images. These metrics
often poorly correlate with the visual quality of the image as the human visual sensitivity
characteristics are not incorporated in these evaluation techniques. For digital images,
especially for medical images, perceptual quality of image is important along with
compression efficiency since diagnosis is done based on the visual attributes of the
réconstructed image.

This thesis is concerned with the problem associated with obtaining an enhancement in
the quality of the image with lossy compression schemes. An enhanced image
compression scheme using the nearly-orthogonal wavelet to achieve an enhancement in

the perceptual quality of the image is proposed. This approach differs from the
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conventional design scheme in that it incorporates the human visual system (HVS)
characteristics directly in each sub-band of the wavelet decomposed image. The
enhancement in the visual quality of the reconstructed image is achieved by using the
newly derived contrast sensitivity function band peak-average (CSF-BPA) mask at each
decomposition level during wavelet transformation phase in the compression system. The
nearly-orthogonal wavelet is used to achieve improved compression performance for low
and medium bit rate applications. The proposed scheme is further extended for perceptual
medical image compression application for images such as x-ray, MRI and ultrasound
scan. The dependency of the calculated PSNR to the observed visual quality has been
addressed for some of the standard images as well as for medical images. The presence of
additive white Gaussian noise (AWGN), which is the most common source for image
artifacts, is considered during the evaluation of the performance of the scheme. The
effectiveness of the proposed scheme is demonstrated and compared with that of the
conventional scheme through extensive quantitative and qualitative assessments. Finally,

a multiplier-less design for the implementation of the BNC 17/11 wavelet filter in a

FPGA or ASIC hardware is proposed.
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Chapter 1

Introduction

1.1 Introduction and Motivation

Telemedicine is beneficial for populations living in remote regions. With the advent of
interactive applications, it is currently being used for online consultation, monitoring and
diagnosis services offered by medical experts. The implementation of such a system
requires an image sending station, a transmission channel, and an image review station.
Such a system needs a huge storage unit and a very high-bandwidth medium to transmit
the raw medical data and hence, increases the cost of transmission. In order to provide a
cost-effective solution, transmission over the low-bandwidth medium is considered a
good alternative. This helps the medical images such as ultrasound, x-ray, CT scan, and
fMRI scan in applications like teleradiology, and video conferencing. The main
advantages of digitally represented images are that they enable electronic archiving and
efficient transmission over the network, and provide useful manipulation of diagnostic
information. Hence, the quality of storage and transmission of medical images has a
significant potential towards patient care [1, 2]. In spite of offering perfect reconstruction,
lossless compression methods provide a maximum compression ratio of only 2:1, and
even if transmitted through a high speed DSL line, it is very time consuming. For
instance, a 512 x 512 image takes about 7 hours to be transmitted. Table 1.1 clearly

illustrates the storage space and transmission time constraints to be met for different

uncompressed multimedia data types.



Table 1-1 Uncompressed storage space and transmission time requirements for

different multimedia data types [1].

Data Duration/ Uncompressed Transmission
Size size time
(B for bytes)
A page of text 11”7 x 8.5 4-8 KB 1.1-22sec
Speech 10 sec 80 KB 22.2 sec
Grayscale image | 512 x 512 262 KB 1 min 13 sec
RGB image 512x 512 786 KB 3 min 39 sec
Medical image | 2048 x 1680 516 MB 23 min 54 sec
Video 640 x 480, 1 1.66 GB 5 days 8 hrs
min (30
frames/sec)

Hence, in order to achieve an improvement in the compression performance, the
application of certain high quality lossy compression methods would be acceptable, if
nearly-lossless image reconstruction without much loss in the diagnostic content is
ensured [3]. Consequently, most of the modern image compression strategies exploit the
fact that the human visual system (HVS), as the ultimate consumer of an image, is an
imperfect sensor. For these compression schemes, an exact bit-for-bit representation is
unnecessary and the data can be coded in a non-invertible or lossy fashion. Based on the
HVS characteristics, the lossy image compression can be classified as

a) visually lossless, in which the reconstructed image is visually indistinguishable

from the original, and

b) visually lossy, in which the reconstructed image contains visible artifacts or

distortions.



To facilitate this, most of the state-of-the-art image compression algorithms employ the
discrete wavelet transform (DWT). The DWT not only approximately decorrelates the
image and provides good energy compaction, but also establishes a multi-resolution
representation of the signal input. This type of representation attempts to mimic the
decomposition performed by the cortical basis, with a relatively low complexity. The
wavelet-based algorithms also incorporate psychophysical results based on traditional
sub-band distortion, white-noise distortion and/or contrast masking based on the value of

luminance rather than the image pixel value [4].

1.1.1 Compression Principle

A common characteristic of most images is that the neighboring pixels are correlated and
therefore contain redundant information. This redundant information available in the-
image data is reduced for achieving a less correlated representation or compressed
version of the image. The two fundamental features of any compression process are
redundancy and irrelevancy reduction. Redundancy reduction aims at removing
duplication from the signal source (image/video). Irrelevancy reduction omits parts of the
signal that will not be noticed by the signal receiver, namely the HVS. In general, three

types of redundancy can be identified [5].

o Spatial redundancy, where correlation exists between the neighboring pixel
values.

o Spectral redundancy, where correlation exists between different spectral bands.

o Temporal redundancy, where correlation exists between the adjacent frames in a’

sequence of images (in video applications).



Research in image compression aims at reducing the number of bits needed to represent
an image by removing the spatial and spectral redundancies as much as possible. Since

our focus is on still image compression, the effect of temporal redundancy is not

considered in this thesis.

1.1.2 Compression techniques

A brief description of the classification of compression techniques is provided in this sub-
section. Based on the quality of the retrieved image, any compression technique can be
broadly classified as lossless and lossy.

(a) Lossless compression: Lossless compression attempts to reconstruct a compressed
image so that its quality matches the original image [6]. Although lossless compression
sounds ideal, it does not provide much compression and the file size remains quite large.
For this reason, lossless compression is used where detail information is extremely
important, for example, when planning to make large prints. Lossless compression is
offered in the form 6f TIFF and RAW file formats for use in digital cameras.

) Los&y compression: Lossless compression is not a practical solution for many
applications. Hence, most of the recent digital cameras offer lossy compression in
addition to or in place of lossless compression, and this may result in some image
degradation. In many situations, such as posting images on the web or making small to
medium sized prints, the image degradation is not that obvious.

In general, a picture can be compressed much more than a text, since it allows a higher
degree of information loss and there is more redundancy in a picture than in a text. A 5:1
compression ratio is considered good when a lossless compression scheme is employed.

Some of the lossless compression schemes in use are statistical compression methods



such as -Huffman-coding, entropy-coding, arithmetic coding, predictive coding methods
(can be either lossy also), discrete cosinus-transform (DCT) (used in JPEG algorithm)
and CCITT group 1 to 4. For achieving a higher compression ratio of upto 100:1, lossy

compression methods like fractales, splines and wavelet-based coders (EZW, EBCOT,

LZC, SPIHT, etc) are employed.

1.2 Scope of the thesis

‘Medical advancements, taking advantage of the digital technology, have paved the way
for interactive teleradiology and many new medical imaging techniques. Each medical
image generated in a hospital has about 1 million bytes on an average. The size and
number of such images are: large, and compression offers a means to reduce the cost of
storage and increased speed of transmission. There is a precipitous fall in the cost of
:storage with the increase in the capacity and the cost of transmission, resulting in a strong
:demand for medical image compression. The quality of the final reconstructed digital
image is of great importance for these images, since diagnosis is done based on the visual
. attributes of the reconstructed image. Hence, for images where need for smooth quality is
more critical, lossless compression schemes are employed. These schemes provide a
maximum compression ratio of 4:1. To achieve higher compression ratios, certain lossy
compression algorithms are used provided the HVS characteristics are considered. The
integration of the HVS mbdel in image compression for better perceptual quality has
: spawned a wide range of research. The complex perceptual-based compression schemes
proposed in [1, 7, 8, 9] are costly to develop, implement and deploy. Inthis dissertation,

- we have attempted to develop a scheme for the enhancement of the visual quality of the



reconstructed compressed images with reduced complexity. A contrast sensitivity
function (CSF) masking method is proposed here for use with the nearly-orthogonal
wavelet transform, and the overall effect analyzed. An extensive evaluation of the system
performance in the noisy environment is conducted for a variety of standard test and
digital medical images. Also, a multiplier-less design for the BNC 17/11 wavelet filter is

proposed for implementation in a FPGA or ASIC hardware.

1.3 Thesis Organization

- The dissertation consists of five chapters. Since most of the compression algorithms are
applied to graphical images, the basic concept of graphical image storage has been
introduced in this chapter. Chapter 2 provides a brief overview about multi-resolution
analysis (MRA) and wavelets. An introduction to orthogonal and biorthogonal wavelet
families is also provided. The symmetry conditions are described along with a brief
discussion about BNC wavelets. A description of perceptual modeling of the HVS is
given. A brief overview about the perceptual modeling of the HVS using the CSF is
provided. A concise background is given for the CSF model and the different quality
assessment metrics. A state-of-the-art overview pertinent to the CSF models and
perceptual image compression approaches are also described. Chapter 3 presents our
contribution towards enhanced digital image compression. A novel CSF band peak-
average (CSF-BPA) sub-band specific mask is derived using the Mannos and Sakrison’s
model. Further, a scheme incorporating this newly-deduced CSF masking and using the
recently explored BNC wavelets is proposed in an attempt to achieve an enhancement in
the perceptual quality of the reconstructed medical image. A multiplier-less design for the

implementation of the BNC 17/11 filter in a FPGA or ASIC hardware is also proposed.



Chapter 4 is dedicated to the analysis of the compression results. A performance
comparison is made between the most commonly used JPEG-standard CDF 9/7
biorthogonal wavelet system and two of the recently explored nearly-orthogonal or
biorthogonal nearly coiflet (BNC) wavelets, namely, the symmetrical BNC 17/11 wavelet
and the asymmetrical BNC 22/14 wavelet, for a variety of standard test natural and
digital medical images. These include the objective and subjective qualities of the
reconstructed images for different wavelet types, for a specific range of compression
ratio, with and without the application of the CSF masking. Chapter 5 draws the main |
conclusions from the thesis dissertation and highlights the contributions. Some

recommendations for future work are also provided.



Chapter 2

Multi-resolution analysis and its extension
to wavelets

This chapter presents an overview of the multi-resolution analysis, its extension to
wavelet study and perceptual modeling of the human visual system. The various

assessment techniques for testing the image quality of the reconstructed image are also

discussed in brief.

2.1 Multi-Resolution Analysis (MRA)

A signal or an image is composed of a smooth background and fluctuations, usually
referred to as details. The distinction between the background and the fluctuations is
determined by the resolution or the scale below which the details cannot be detected. At a
given resolution, a signal is approximated by ignoring all fluctuations below that scale.
With an increase in the reésolution, finer details are added, providing a better
approximation of the signal. At infinite resolution, the exact signal can be recovered. In
analytical representation, consider a function f{?) and let j be the resolution level. At each
resolution the function is composed of background f;(#) and fluctuation dj(t) information
specific to j. The function at the next level of resolution j+I, is given
as,

w1 =f;®+d;@®). The original function f(?) is recovered when the resolution is

infinite.



Mathematically,

O =£,0+ 3 d, (1)

k=J

where the time instant, # = 1, 2,.., o. This type of analysis of a signal, where there is
simultaneous presence of different resolutions is referred to as multiresolution analysis.
The above equation represents one way of analyzing a multi-resolution signal. Similarly,
one can view the space of functions that are square integrable, L*(R), as composed of a
sequence of signal (approximation) and detail (fluctuations) subspaces V; and W;. At each
level ‘j°, the sum of smooth and detail signals combine into a multiresolution of the input
image or signal at a finer level j+1 as shown in Fig. 2.1. In short, the given image or
signal is divided into different scales of resolution. To summarize, a multiresolution
analysis of L*(R) is a nested sequence of subspaces {V;}jez (Z is the set of all integers)
such that the following conditions are met.

e Two detail subspaces (W} W;.;) of different resolution are orthogonal and the
detail subspace (W) at a given resolution j is orthogonal to the approximation
subspace (¥)) in the same resolution.

e All square integrable functions are included in the finest resolution level and the
zero function is included in the coarsest level. As the resolution becomes coarser
i.e. when j tends to infinity, all the details will be removed and only a zero
function will remain.

o The third condition is scale invariance. This states that all the spaces (V)) are
scaled versions of the core space (V). If f{t) is in V}, i.e,, there is no detail

information for scales lower than 1/2/, then f{2¢) is obtained by squeezing f{?) by a



factor of 2. Here f{2¢) does not have any detail information for scales lower than
12,

e The subspaces V; should be shift invariant.

Signal at level ‘)’ Details at level

(Local averages) (Local differences)

Signal at level j+1

<«—{—— I? - Completeness of space
V;— Signal subspace

Vo (contained in next
v, subspace)

W; — Details subspace

Wi

Vier = Vi (1) W;

Figure 2-1 Representation of multi-resolution analysis

Wavelets constitute a special class of basis functions for I*(R). At a given resolution of
an image or a signal, scaling functions @(2t — k) form the basis function for a set of

approximate coefficients (smooth signals), and the wavelet functions w(2't - k) generate
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the set of detail coefficients. A single wavelet generates a whole basis and the functions
®(2t - k) & w(2t — k) are obtained by dilation and translation (for all j & k) [10, 11, 12].

A detailed description about the wavelet transform is provided in the following section.

2.1.1 Wavelet basics

Wavelets are functions defined over a finite interval of time, having an average value of
zero [13]. The basic idea behind the wavelet transform is to represent any arbitrary
function f{#) as a superposition of a set of wavelets or basis functions. These basis
functions or baby wavelets are obtained from a single prototype wavelet called the
mother wavelet by dilations or contractions (scaling) and translations (shifts). Wavelets
are broadly classified as continuous and discrete. There are two kinds of transforms
defined for these wavelet types, namely, the continuous wavelet transform (CWT) and
the discrete wavelet transform (DWT). The CWT of a function f{?) is defined by

t-7

| - .
y(z,5)= 0[ f (t)ﬁw (—s-)dt 2.1)

where ¢ represents time, 7 represents translation, s represents scale, y(?) is the mother
wavelet and y'(t) is the complex conjugate of y. The original function f{#) can be

reconstructed using the following inverse relation given as follows.

1 7% t— ds
)= — r(@, 8y ( ) dr— 2.2)
e, 11 AT
where C, I W(C)I ¢ is called the admissibility constant

11



The DWT of a digital signal x[#] is calculated by passing it through a series of low pass
and high pass filter banks (one such filter bank is shown in Fig. 2.2 where g[n] and h[n]
represent the impulse response. of the low pass and high pass filter respectively). The
filtered low pass and high pass coefficients are then interpolated or decimated, and the

process is repeated till the required decomposition is achieved before further processing.

The DWT is defined by the following equation:

M=+ glnl= 3 xlk].gln] @3)

k=~

Eowepass

x{n]

Figure 2-2 Block diagram of a filter bank
The discrete wavelet transform (DWT) of a finite length signal x(#) having N components
is expressed by an N x N matrix. The DWT transforms a signal from the time domain to
the joint time-scale domain. This means that the wavelet coefficients are two-
dimensional, i.e., to compress the transformed signal not only are the coefficient values
cdded but also their position in time. For an image signal, the position in time is
expressed as its position in space. The wavelet transformed image is represented using
trees (root-descendant relation between the different spatial frequency regions) because
of the sub-sampling that is performed in the transform. Each of the coefficients in the

lower sub-band has four descendants in the next higher sub-band.

12



For a single level wavelet transform, the signal is passed through a pair of filters, one
being a low-pass and the other a high-pass (see Fig 2.2). The low and high pass filter
banks are designed with some imposed orthogonality or biorthogonality criterion. The
theory behind orthogonal and biorthogonal wavelets is provided in Section 2.2. The low
pass (LP) filtered output values or the approximation coefficients are obtained through an
averaging of the neighboring pixel values. The high pass (HP) filtered output values or
the detail coefficients are obtained through differencing the neighboring pixel values. At
each level as shown in Fig 2.3, the signal is decomposed into low and high frequencies.
Due to the decomposition process the input signal must be a multiple of 2", where » is the
number of levels as shown in Fig. 2.4. The pair of LP and HP filters at the input end is
referred to as the analysis filter banks (AFB) and at the output end those used for

performing the inverse transform are usually referred to as the synthesis filter banks

(SFB).

High pass Level 3 coefficients
Level 2 coefficients
Level {1 coefficients

n]

Figure 2-3 Representation of a 3-level filter bank

For a 1-D DWT, the input array (row or column matrix) is passed through the AFB and

decomposed into ‘n’ (user-defined) levels. The decomposed signal is further processed

13



and transmitted. At the receiver end, the received signal is reconstructed back to the
original size array by passing it through the SFB. The 2-D DWT can be visualized as 1-D
DWT applied individually to the row and column matrices of the input [14]. The wavelet.

filter transformed coefficients are obtained by calculating the average and difference

between adjacent pixels.

+ Level 3 Level 2 Level 1

o
0 n/B n/4 fn/2 fn

frequency

Figure 2-4 Frequency spectrum of a 3-level DWT space

2.1.2 Significance of wavelet-based compression

Despite the advantages of the JPEG compression scheme (based on DCT) such as
simplicity, satisfactory performance and availability of special purpose hardware for
implementation, there exist certain shortcomings. The input image needs to be divided
into blocks and the correlation across the block boundaries is not eliminated. This results
in noticeable and annoying “blocking artifacts”, particularly noticeable at low bit rates as
shown in Fig. 2.5. Lapped orthogonal transforms (LOT) attempt to solve this problem by
using the overlapping blocks smoothly. Although blocking effects are reduced in LOT
compressed images, increased computational complexity of such algorithms do not

justify wide replacement of DCT by LOT.

14



®)

Figure 2-5 (a) Original and (b) reconstructed Lena (with DC component only) using

DCT to show blocking artifacts

The performances of the wavelet-based codecs are found to be comparable with the
lossless schemes. These codecs have been designed based on the following observations.
1. A natural image has a low pass spectrum. The energy of the sub-bands decreases with

decreasing scale (i.e. high resolution) when a wavelet transformation is performed.
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2. Large wavelet coefficients are more important than small wavelet coefficients. This is
due to the fact that just the large coefficients are sufficient to define the image and the HF
or small coefficients add only the fine details of the image.

Over the years, the wavelet transform has gained widespread acceptance in signal
processing, especially in image compression. In many applications, wavelet-based
schemes (also referred to as sub-band coding) outperform other coding schemes. Wavelet
coding schemes with higher compression | avoid blocking artifacts, since their basis
functions have variable length and there is no need to divide the input image into blocks.
Wavelet-based coding is more robust for transmission and for decoding errors, and also
facilitates progressive transmission of images. In addition, they are better matched to the
HVS characteristics. In view of their inherent multi-resolution nature [5], wavelet coding
schemes are especially suitable for applications where scalability and tolerable
degradation are important. All of the above mentioned advantages are considered for

employing the wavelet transform for this study.

2.1.3 Relation between filterbank and wavelet transform

Daubechies [15] was the first to discover that the discrete-time filters or quadrature
mirror-filters (QMFs) can be iterated and that under certain regularity conditions will lead
to continuous-time wavelets. This has proved to be a very practical and extremely useful
wavelet decomposition scheme, since FIR discrete-time filters can be used for -
implementation. The latter follows from the fact that the orthonormal bases correspond to
a subband coding scheme with exact reconstruction property using the same finite
impulse response (FIR) filters for decomposition as well as for reconstruction. There are

several ways in which wavelet transforms decompose a signal into various subbands.

16



These include uniform decomposition, octave-band decomposition and adaptive or

wavelet-packet decomposition. Out of these, octave-band decomposition is the most

widely used one. This is a non-uniform band splitting method that decomposes the lower

frequency part into narrower bands, and the high-pass output at each level is left without

any further decomposition. Fig. 2.6 shows the various subband images of a 3-level

octave-band-decomposed Barbara image using the popular CDF-9/7 biorthogonal

wavelet [5, 10, 11]. Like JPEG, wavelets can compress an image into a very small file

without a noticeable degradation. Also, wavelets offer the following additional

advantages for image signal analysis:

CMYK image processing [16]: All commercial implementations of JPEG
(discrete cosine transform and Huffman coding form the underlying algorithm.)
are restricted to RGB and gray-scale images. But the ISO standard defines only
the RGB procedure, so any file containing non-RGB data would be deemed
proprietary format and would not be portable. In contrast, all of the wavelet
implementations can handle CMYK color model and multi-channel images.

Lossless or lossy: Wavelets offer a theoretically lossless compression. That is, an
image that has been compressed and decompressed can be bit-for-bit identical
with the original image. For the lossless compression case with a specified

compression ratio requirement, wavelets promise to yield a smaller file compared

to PDF’s ZIP (flate) algorithm.

Artifacts: For moderate compression, wavelet artifacts are less objectionable than
JPEG artifacts. Wavelet artifacts are smooth blurs that can often blend into the

surrounding imagery, while JPEG artifacts surround each detail with clouds of

17



visual "echoes". The difference is most pronounced with text over an image

background.
e, | c,
e JLLH
LL, LH
CLH | CLH,
e { L LH
LH, LL LH,LH
H L H W
@
(b) (c)

Figure 2-6 (a) Spectral Decomposition (b) Original Barbara

(c) Octave-band representation for Barbara.
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2.2 Wavelet Classification
2.2.1 Orthogonal wavelets

The scaling function {#(t —k)} satisfies orthonormality. Thus we have, in the frequency

domain (@ is the radial frequency),

i|¢(m$—27d)|2 =1 2.4)
k=-0

under conditions
<¢jk=¢j1> = Oy (2.52)
Vv ) = 8,8, (2.5b)
(Byowy) = 0 2.50)

where (1) ¢, is the scaling function with the it position along the x-axis for a scale of 2

(2) y; is the wavelet function with the i™ position along the x-axis for a scale of 2/
(3) J, k and [ are integers

1 = f
(4) Delta function, &, = 1=J
710 otherwise

If a set of bgsis functions {¢(t —k)}are not orthonormal, it is difficult to orthogonalize
them in the Fourier space. The scaling ¢(z — k) and wavelet y (¢ - k) functions are said to
be orthogonal if

H(0)G(@)+ H(w+1)G(w+7)=0 (2.62)
where H(w)and G(w)are the transfer functions of the low pass (A[#]) and high filter

(g[n]) respectively.
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This equation relates the coefficients appearing in the wavelet equation to those

appearing in the dilation equation. The orthogonal wavelet (satisfy orthogonality criteria)
filters g[n] and A[n] are chosen such that, g[n]=(-1)" #[1-n]. Here, a single set of low-

pass and high-pass filter is used. These wavelets are obtained using spectral factorization

techniques.

2.2.2 Biorthogonal wavelets

A basis that spans a space need not necessarily be orthogonal. In order to gain a greater
flexibility in .the construction of the wavelet bases, non-orthogonal wavelets are
employed. For example, it is well-known that the Haar wavelet is the only known wavelet
that is compactly supported, orthogonal and symmetric. In many applications, the
symmetry of the filter coefficients is also desirable, since it results in linear phase of the
transfer function. For the construction of the biorthogonal wavelet systems that are
compactly supported symmetric wavelets, the orthogonality conditions are relaxed.

Here, in contrast to the construction of orthogonal wavelets, the spectral factorization is
not needed. Instead of one set of low-pass and high-pass filters for the orthogonal case,
two sets are considered for the biorthogonal case, one for the decomposition or analysis

and the other for the reconstruction or synthesis. There exist a dual for each of the scaling

(g(), ¢7 () and wavelet (y(¢),¥(t)) functions. In other words, the inner product of the
scaling function and its dual is the delta function J§,; a similar result is true for the

'j,

wavelet function, that is,

20



and (2.6b)
(WUW,‘) = 5;'/

2.2.3 Symmetry conditions

For audio, image and many other DSP applications, one of the highly desirable filter
characteristics is the linear phase, which corresponds to the symmetry of the associated
wavelet system. There are two types of symmetry defined for any kind of a wavelet
system, namely, the whole-point symmetry (WPS) and the half-point symmetry (HPS).
Table 2.1 summarizes the two types of symmetry for wavelet systems. For a WPS (HPS)
wavelet system, all the four filters have odd (even) length [17]. Unfortunately, there does
not exist any non-trivial WPS or HPS two-channel orthogonal wavelet system [18, 19],

i.e., for any non-trivial two-channel wavelet system, symmetry and orthogonality cannot

be achieved simultaneously.

2.2.4 Biorthogonal Nearly Coiflets (BNCs)

Wavelets are classified as belonging to biorthogonal and orthogonal family based on the
type of the scaling and wavelet functions used. The biorthogonal wavelets are constructed
such that they have temporal symmetry as compared to the orthogonal wavelets. For most
image compression applications, the standard CDF 9/7 wavelet filter is used because of
its linear phase response.

To achieve higher compression ratios, coiflet wavelets [17] can be used. Coiflets are
high-performance orthonormal wavelet systems, which emphasize the vanishing

moments for both the scaling and wavelet coefficients. These coiflet wavelets when used

21



for image compression provide a better compression performance. These coiflet wavelets,

though orthogonal, are found to be closer to a symmetric wavelet.

Table 2-1 Types of symmetry for wavelet systems

Whole-point symmetry (WPS) Half-point symmetry (HPS)
h[n] = h[-n] h[n]=h[1-n]
gln]l=gl-n] gln]=-gl[l-n]

h{n] = h[-n] h{n] = h{1-n]
gln] = gl-n] : gln]=-g[1-n]
$O=9(-1) $()=90-1)
(@O =y(-1) @) =-y(1-1
#(t) = p(-1) o) =¢(1-1)
(@) =y(-1) y(@®)=-y1-1)

The orthogonal wavelets, irrespective of the fact that they provide better compression
ratios in comparison with the biorthogonal wavelets, seldom satisfy symmetry
requirements for achieving a linear phase response. The biorthogonal wavelets satisfy
both the symmetry and linear phase requirements. BNC wavelets [4, 19, 20] were
developed to overcome the problem of having symmetrical orthogonal wavelet systems.
BNC wavelets are the recently explored biorthogonal wavelet systems, which are
considered to be the biorthogonal counterparts of certain coiflet families. These filters are
realized when the orthogonality constraints are relaxed for the coiflet wavelet and the

vanishing . moments are equally distributed for the scaling and wavelet functions of a
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regular biorthogonal wavelet system. The resulting wavelets have interpolating scaling
functions, linear phase filter banks and dyadic fractional filter coefficients which can be
easily implemented using a multiplier-less architecture.

These new class of biorthogonal wavelets have been developed both for the even-ordered
and odd-ordered conditions, and their comparative performances have been studied. In
this category, the BNC 22/14 (asymmetric realization) [20] and BNC 17/11 [19, 21] are
claimed to have the best performance among all the BNCs. The filter coefficients for
BNC 17/11 and BNC 22/14 are given in Table 2.2 and 'fable 2.3, respectively [19]. The
frequency response of the analysis and synthesis filters for the BNC 17/11 wavelet have
been compared with the standard CDF 9/7 response in [19]. Fig 2.7 gives the analysis and
synthesis frequency response characteristics for not only the CDF 9/7 and BNC 17/11,
but also for the BNC 22/14 wavelet filter. From the figure, it is seen that these BNCs give
a response comparable to the 9/7 wavelet [19]. The response of the BNC 17/11 wavelet
filter is found to be closer to the standard filter response. Also, these BNC wavelets
possess maximum number of vanishing moments. In applications such as signal
compression and denoising, it is desirable for the analysis function to have vanishing

moments and regularity, and for the synthesis function to possess smoothness. The
scaling function @(x) and the wavelet function y(x) and their corresponding duals é(x)

and /(x) for a given set of analysis (A, ;) and synthesis (gg, g;) filters are defined by the

following equations:

#(x) =2 by (n)p(2x —n) .7

F(x) =2 g, (n)¢(2x ~n) 2.8)
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w(x) =2 by (n)¢(2x - n) 2.9)

F(x) =2 g, (n)p(2x—n) (2.10)

Table 2-2 Filter coefficients for BNC 17/11 wavelet [19]

‘BNC 17/11 — Symmetric wavelet

Analysis Filter 0.8402696692 0.4090630083 -.1073757602 -.0621741791

0.0533641923 0.0073357876 -.0135767155 -.0006712263 0.0010068394

Synthesis Filter | 0.7568252267 0.4226067872 -.0331456304 -.0814830079

0.0082864076 0.0124296114

Table 2-3 Filter coefficients for BNC 22/14 wavelet [19]

BNC 22/14 — Asymmetric wavelet

Analysis Filter 0.51620125 0.05573021 -.10097515 0.01279669 0.02604553

-.00659508 -.00465364 0.00085361 0.00068975 -.00005047

-.00004270

Synthesis Filter |:0.45822144 0.11455536 -.06873322 -.01963806

0.01527405 0.00208282 -.00176239

Equations (2.7) and (2.8) converge to compactly supported basis functions for regular

filters if both the following assertions hold [13]:

DB (n) =2

and @.11)

> m(m)=+2
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Figure 2-7 Low-pass frequency responses of analysis and synthesis CDF9/7, BNC 17/11

and BNC 22/14 wavelet filters. (a) Analysis LPF. (b) Synthesis LPF.
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These biorthogonal nearly coiflet wavelets are hence found to be appropriate for
representing discrete-domain data. The significant properties of these wavelets are listed
as follows.

o Sparse representations for smooth signals

¢ Interpolating scaling functions

e Linear phase filterbanks

o Dyadic fractional filter coefficients.
These properties promise superior rate-distortion performance, better perceptual quality,

and lower computational éomplexity in the field of image coding [17].

2.3 Perceptual models

Perceptual based techniques promise performance gains such that an image interpreted by
the human eye provides perceptual accuracy. Due to the non-linear nature of the HVS,
the degree of effort required to attain an acceptable perceptual accuracy varies relative to
the image. The rendering algorithms based on perception of the HVS take advantage of
this phenomenon and attempt to expend only “just-necessary” effort over the image to
meet the perceptual accuracy criteria. To accomplish this, certain computational models
are proposed for the visual system [22]. These vision models [2, 22, 23] predict the
variations in the sensitivity of the human vision with respect to the background

illumination levels, the spatial frequency and scene contrast features.

2.3.1 Contrast Sensitivity Measurement

Distortion is a signal superimposed on the original image by the coding process and leads

to a degradation of the image quality. This is not perceived by a human observer and
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perceptually lossless compression can be obtained as long as the magnitude of the
distortion is below the level of visibility threshold. The visual acuity or visual threshold
depends mainly on the spatial frequency, the luminance value and the contrast value of
the background. More information about these factors can be found in [24].

The contrast sensitivity function can be considered as a “spatial frequency response” of
the human visual system at low to moderate light levels. It is an input-output function of
the overall visual system, in the same sense that a computer vision system has a spatial
frequency response. At low to moderate input levels, the visual system can be viewed as
a linear system. But at higher levels, the system becomes nonlinear. In terms of visual
perception, the CSF is defined by the sensitivity plotted as a function of the spatial
frequency. Here, the sensitivity is measured as the reciprocal of the minimum visible
contrast of sinusoidal grating stimuli. A sinusoidal grating is simply a two-dimensional
(2-D) sinusoid plus a bias or background to maintain positivity. The sensitivity is
normally measured for a few frequencies to define a CSF curve that is plotted on a
logarithmic scale. This procedure is carried out based on the assumption that the actual
CSF curve is quite smooth, even though the measurements may be noisy, so that a few
observations (sensitivity-frequency pairs) can be used to define the shape of the curve.
This same assumption leads to the conclusion that the CSF measurements can be used to
estimate the parameters in some functional (mathematical) representation of the CSF
function for a given subject or group of subjects. In other words, the measured sensitivity
data can be fit to some mathematical model, and in the fitting process, a small number of

parameters in the model can be determined from the measured data. This is analogous to
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a simple linear regression, in which noisy data can be fit by a straight line with two
parameters.

Given the appropriate model, the estimated parameters represent the entire CSF curve or
equivalently, a small number of estimated parameters represent the CSF for the
experimental subject or group of subjects. If a model adequately represents the CSF from
individual subjects, then the CSF differences between subjects or groups should be
encoded in the different model parameters. Therefore, the estimated parameters quantify
the differences, and they form the basis for further psychophysics studies of the
individual differences. In robotic vision, the CSF curve can be viewed as a one-
dimensional (1-D) input-output function representing human vision at low to moderate
light levels and in steady-state. Various threshold contrast and supra-threshold contrast
measurements have been made, and various models have beent developed based on the
contrast threshold of the HVS [22, 25, 26, 27, 28, 29]. Some of the available CSF models

for the HVS are discussed in the following sub-section.

2.3.2 Review of CSF models

Several models and approximations for the CSF have been proposed in the literature [22,
25, 26, 27, 28, 29]. Some are based on fundaméntal theory, but most have been
formulated by curve fitting procedures. In each case, the general form of the model
equation has been assumed, and the parameters of the model equation adjusted

empirically to achieve a good fit to an experimental CSF curve. Some of the candidate

models are discussed in this section.
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(a) Sakrison and Algazi’s CSF

Sakrison and Algazi [30] suggested a model of the form

CSF() = K,[1+K,.f? Je™" (2.12)
where f'is the radial spatial frequency.
Sakrison and Algazi’s CSF model is based on the rate-distortion theory analysis for
optimal imaging encoding. Their optimal frequency weighting, which was then compared
to a CSF, is given as

CSF() =[1+0.0572] e’ @.13)

Equation (2.12) is a generalization of their weighting function, with fitting parameters K,
K; and a. Here the number of parameters is P = 3. These three parameters will be adjusted
to achieve the optimal fit to the CSF data.

The peak sensitivity occurs at the frequency

o =K, -a)/aK,) (2.14)
The sensitivity is obtained by evaluating (2.13) at the frequency f = fna. Here, the

sensitivity at very low frequencies does not go towards zero. Instead, the sensitivity

approaches K, which was unity in the original model.

(b) Mannos and Sakrison’s CSF

Mannos and Sakrison [25] continued the image encoding studies based on the rate-

distortion theory and empirically arrived at the frequency weighting function defined by

CSF(f) = 2.6(0.0192 +0.144. f ) 141" (2.15)

where the radial spatial frequency is given by
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f=f+f} (2.16)

J/x and f;, being the spatial frequencies in the x and y-axis respectively. Like the Sakrison
and Algazi expression in (2.12), the Mannos and Sakrison freqiency weighting function
has an amplitude (sensitivity) which approaches K, at very low frequencies. The peak
- sensitivity in the Mannos and Sakrison equation occurs at the central spatial frequency.

This model is found to correlate more accurately with the band pass behavior of the HVS

characteristics [25].

(¢) Modified Dooley CSF

Dooley [31], as noted in Levine [32], suggested an altemative expression for representing

the contrast sensitivity function at each spatial frequency f, given by
CSF(f)=5.05[1-e* 1%/ 2.17)
(d) Pelli, Legge and Rubin’s CSF

Pelli et al [26] suggested that a simple parabolic fit to CSF would be fast, can easily be
implemented in a spreadsheet and is sufficiently accurate for a narrow range of
frequencies near the peak sensitivity. Their equation for sensitivity is

[S~S,1=-K[f - fo] (2.18)
which is a parabola on log-sensitivity (S) versus log-frequency (f), with a peak at the
coordinates (fy, Sp). The parameter K is a “shape factor” which controls the width of thé
parabola. The number of parameters is P = 3, but Pelli and colleagues set K = 1.15 to

reduce the number of parameters to P = 2. In terms of sensitivity CSF and frequency f, -

their more general equation is
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log CSF —log CSF, = —K[log f —log £, * (2.19)
0 0

(e) Ahumuda’s CSF Filter

Ahumuda [33] modeled the CSF characteristics to be the balanced difference of two
Gaussians with the centre and surround frequencies represented by f; and f; with a, and a;
as the corresponding amplitudes. The CSF is given as

CSF(f)=a,e!"™ —a,e/'" (2.20)

Based on Ahumuda’s test results the default values are set as, a. = 1, a; = 0.685,

f:=97.3227 and f; = 12.1653.

(f) Daly’s CSF

Daly [29] modeled the CSF of the HVS such that it describes sensitivity variations as a
function of the radial spatial frequency, light adaptation level (luminance level L), image
size and lens accommodation due to distance, orientation and eccentricity. This model
possesses a band pass characteristic and anisotropic behavior caused by a lack of

sensitivity in the region of 45 degrees. This model corresponds well with the oblique

effect. Daly’s CSF is given by

02
CSF(f) = (% + 1J 142,161+ 0.06¢™ (2.21)

(g) Movshon and Kiorpes CSF

This is the simplest representation of CSF using a three parameter exponential function,

first described by Movshon and Kiorpes [27]. It is given by

CSF(f)=a.fe? (2.22)
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where f'is the spatial frequency in cpd (cycles per degree), and a and b are constants. In
general, the values of @ and b are chosen as 75 and 0.2 respectively. This model possesses
a band-pass shape for the achromatic CSF. For color images, a 2-D form of the equation
is used. The main limitation of this model is that it is the same for all viewing conditions

such as luminance level and viewing distance.

(h) Barten’s CSF

Barten [28] proposed a slightly complicated model for square root integral (SQRI) image
quality model. This contrast sensitivity model begins with the optical modulation transfer
function (MTF) of the human eye, which is expressed as a Gaussian function. The MTF
is then modified with models of photon and neural noise to obtain an isotropic band-pass
shape. The modified MTF is now a function of the pupil diameter, image size and

luminance level. This model provides slightly greater flexibility to varying vieWing

conditions and luminance (L). Barten’s CSF is defined as

CSF(f) = a.f €*"V1+0.06.2%7 (223)

where a and b are constant terms defined by

-02
a= 440{1 + 91)
L

~0.15
b= 0.3{1+m)
L

Daly, Barten, Movshon and Kiorpe’s CSF models presumed a low pass characteristic for
the visual acuity function. The modified Dooley model [31] is considered the best based
on the calculated value of the rms error at the N frequencies used in the least-squares.

However, this model provides a good fit only at few points and the resulting function
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does not provide a good fit to the HVS characteristics at lower and higher frequencies.
Mannos and Sakrison’s model [25] matches the human visual characteristics more

closely by assigning a band pass model for the contrast sensitivity function.

2.4 Image Quality Measurement

To evaluate the effectiveness of digital image processing techniques, one often compares
the quality of the image before and after a digital image processing procedure. In
compression applications, to compare two compression strategies, the image quality of
the final reconstructed image generated by each method is compared. If the quality of the
image is found to be similar, then the one that requires fewer bits for coding is considered
to be superior in performance. Surprisingly, the measurement of the image quality is not a
straightforward procedure as it sounds to be, and usually two types of image quality
assessment, namely, objective assessment and subjective assessment, are to be employed

[34]. Each of these assessment techniques along with their merits and drawbacks are

discussed in the following section.

2.4.1 Objective assessment

The objective quality assessment of an image or a signal is made using certain criteria,
such as the root mean square error (RMSE) and peak signal-to-noise ratio (PSNR) values.
Let f{x,y) be the input image (of size M x N) to a processing system such as a filter,
subsampling system, transformation stage, or a compression sub-system and g(x,y)

represent the output of the system. Then, the mean square error (MSE) E,; of the system

is defined as
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M-IN-1

E, =ﬁ > e(x,y) (2.24)

x=0y=0
where e(x,y) is the error component obtained by calculating the difference between the
original and reconstructed image or signal.

The root mean square error (RMSE) is defined as

B = Ep, (2.25)
The signal-to-noise ratio (SNR) is widely used as a metric in evaluating the objective
quality of the image. It is usually referred to as SNRy,s or SNRms depending on whether

the mean square error or the root mean square error value is considered. SNR is

defined by
M-IN-1

D> ey’

SNR . =10log,, | =222 — 2.26
ms g10 . W'Ems ( )

and

SNR, . =+SNR . 2.27)
The peak signal-to-noise ratio (PSNR) is a modified version of SNRy,s and is the ratio
between the maximum possible power of a signal and the power of corrupting noise that

affects the fidelity of its representation. It is defined as follows

2
PSNR=10log,, (2E5 ) ] (2.28)

ms

In this assessment technique, a larger (smaller) value of the PSNR corresponds to a better
(worse) image quality, which implies that the output image corresponds well (poorly) to

the original image. But, this interpretation does not consider the characteristics of the
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visual stimuli. The perception of the HVS is not simple and generally needs higher level
processing to understand its non-linear response. Thus, the SNR does not always provide
a very reliable assessment of the image quality. As an example, IGS quantization
technique which is used to achieve a higher compression performance, (only 4 bits
instead of the usual 8 bits are used for quantization) produces a higher subjective quality,
but because of the low-frequency quantization noise and added high-frequency random
noise, it results in a lower SNR value.

The objective assessment scheme can be modeled easily and provides the ease for
hardware implementation. The primary advantage of mathematical metrics is that they do
not require any information about the viewing conditions, need not necessarily adapt to
local image content and the computations are simple. These measures are good indicators
of distortion for random errors. Since image pixels are correlated, these distortion
indicators cannot provide reasonable approximation for these correlated errors. One main
argument used against mathematical metrics is that they typically provide a single
number for the entire image, and thus cannot reflect the spatial variations in the image

quality.

2.4.2 Subjective assessment

This assessment technique takes into account that, in estimating the visual quality of a
signal (image or video), the human observer will be the ultimate decision maker. Hence,
such an evaluation plays an important role in visual communication applications. Any
technique for a subjective assessment is imperfect. Each method may have incorrect
assumptions built in, and plausible alternatives invariably exist for any interpretation of

the data [35]. Hence, observers are invited to subjectively evaluate the perceptual quality
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of the reconstructed images, and are asked to rate the pictures based on a mean opinion
score (MOS) scale, which is usually a five-scale rating system. This rating system is used
by Bell Laboratories and has also been adopted to be the standard scale in CCIR
. Recommendation 500-3 (CCIR 1986). As per CCIR recommendations [36], the 1-5
rating is defined by the following factors.

i. Artifacts are not noticeable.

ii. Artifacts are just noticeable.

iii. Artifacts are definitely noticeable, but not objectionable.

iv. Artifacts are objectionable.

v. Artifacts are extremely objectionable.
The subjective analysis is usually performed using the blind test procedure. Blinding is a
basic tool to prevent conscious and unconscious bias in research. Because of the complex
response of the HVS, typical measurements of the image system quality such as the
detective quantum efficiency, mean transfer function and SNR cannot always be used to
determine the conditions for optimal perceptual image quality. The Just Noticeable
Difference (JND) is determined by a group of random observers and also their mean
opinion score analysis is recorded. This can be done using single-blind testing, double-
blind testing or triple-blind testing.
(a) Single-Blind Trial
In a single-blind trial, the observers are not aware that they are the so-called "test"
subjects fof the experiment. This trial is used by the experimenter either when he knows
all the facts about the experiment, or when it is assured that no bias will be induced by

him/her. However, the catch here is that the observers are influenced by interaction with
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the researchers, which is usually referred to as the “experimenter effect”. Single-blind
trials are risky in certain research domains like psychology and social science, where the
experimenter may consciously or unconsciously influence the behavior of the subject.

(b) Double-Blind Trial

Double-blind describes a stringent way of conducting the quality assessment experiment,
usually on human subjects, in an attempt to eliminate any subjective bias on the part of
both the observers and the researchers. The double blind method is an important part of
the scientific method, used to prevent research outcomes from being ‘influenced’ by the
-placebo effect [37] or observer bias. These experiments are usually carried out to achieve -
a higher standard of scientific rigor. In a double-blind experiment, neither the individuals
nor the researchers are aware of the outcome. Double-Blind research is an important and
widely used tool in many fields of research such as medicine, psychology, social sciences
and forensics.

(c) Triple-Blind Trial

Triple-blind trials are double-blind trials in which the statistician interpreting the results
also does not know which intervention has been given. Sometimes ‘triple-blind’ is used
to mean that multiple investigators are all blinded to the protocol (such as the clinician
giving the treatment and a radiologist or pathologist who interprets the results) [37]. This
kind of assessment is motivated by the fact that pixel-by-pixel based distortion

measures/metrics fail to give a correct assessment. The error metric accounts for several

mechanisms of HVS.
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2.5 HVS-based image compression: A brief review

Safranek- and Johnston [9] proposed a peréeptual image coder (PIC) in which each
subband is quantized using a uniform quantizer with a fixed step size. The step size is
determined by the JND threshold for uniform noise by the most sensitive coefficient in
the subband. Different approaches to perceptually motivated bit allocation have been
proposed by Malo et al [38] and O’Rourke et al [39] using the sine wave CSF [7] which
does not correlate well with the actual HVS structure. Pappas et al [40] have studied
different coding algorithms and compared their performance for supra-threshold image
compression. Their. study included coding schemes like JPEG, Safranek’s perceptual
JPEG [43], Safranek and Johnston’s PIC [9] and the Said-Pearlman’s SPIHT algorithm
[41], which is based on Shapiro’s embedded zero-tree wavelet algorithm [42]. They have
shown that at low bit rates, the performance of SPIHT and the PIC coders perform best,
and that they provide the best correlation with subjective quality evaluation. Also the
authors have reported that scaling of the threshold quantizer step sizes in the PIC
produced the best performance for visually lossy compression, and not for visually
lossless compression contradicting Safranek’s [43] conclusion.

All these methods exploit the frequency and orientation sensitivity of the HVS to some
extent, but do not fully exploit the locally varying masking thresholds, which differ for
each transform coefficient based on the image content under consideration. This
limitation may result in allocating too many bits to less sensitive coefficients, resulting in
over-coding of some image components or in unnecessary visible artifacts.

Hontsch and Karam [7] proposed a locally adaptive perceptual image coding which

-eliminates the necessity of transmitting the side information for perceptually enhanced
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coding. Here, the per-coefficient quantizer step size is produced for each subband. It uses
a simple perceptual model and exploits the low pass character of the perceptual masking
for natural images in estimating the local amount of available masking. But this method
does not fully adapt to the local changes in the available masking. Also, the cost of the
locally adaptive quantization without side information is a constraint on the order of
transmitting the transform coefficients. This method has shown an improvement of about
20% - 30% in comparison with PIC. Some methods have used the HVS properties in
wavelet-based image compression. Antonini et al [44] have used vector quantization
followed by HVS-based allocation of bits to each subband. The number of bits assigned
to each subband is computed via a weighted mean-squared-error (MSE) distortion
criterion in which the weights are determined based on Campbell and Robson’s sine
wave CSF [45]. This approach has been reported to have a performance comparable to
that of the previous non-HVS based methods of higher complexity; but, the CSF model
assumes a low pass structure for the HVS model.

Lai and Kuo [46] have introduced a scheme in which the contrast sensitivity and visual
masking adjustments are performed within the context of a wavelet-based algorithm that
uses the Haar filters. Detection thresholds are measured using a low pass representation
of the CSF. Watson et al [47] have measured luminance thresholds for both individual
wavelet basis function and simulated wavelet subband quantization distortions in an
unmasked detection experiment.

. Albanesi [48] has proposed a method for incorporating the HVS characteristics directly
into the transfer stage of a wavelet-based coder using the HVS model characterized by

Mannos and Sakrison [25]. This approach uses the wavelet 9/7 filters, and region-of-
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interest coding [7]. Nadenau and Reichel [49] have developed a HVS scheme that uses
the entire W subspace of the CSF DWT decomposition as filters for color image
compression using the biorthogonal 9/7 wavelet system. A performance improvement,
based on the value of the PSNR, of 13% to 49% has been reported in comparison with
Albanesi’s method. Nadenau et al [50] have also reintroduced the CSF filtering scheme
along with a CSF masking scheme. They have incorporated the HVS properties into a
wavelet-based coding algorithm via a noise-shaping filtering stage which precedes
quantization. The main objective of this approach is to shape the frequency spectrum of
the quantization noise to match the inverse of the CSF. This proposed filtering of the
transform coefficients via a subband-specific “HVS filter” has been found to increase the
compression ratio performance by approximately 30% over baseline JPEG 2000 for
images containing near-threshold luminance and color distortions. However, only results
for the CSF filtering and not CSF masking have been reported in [50].

Several perceptual quantization approaches have been proposed [4, 9, 33, 38, 43, 47] and
the main problem associated with these approaches is the need for true perceptual
quantization, which requires the computing and making use of image-dependent, locally
varying, masking thresholds. Thus, locally-varying masking thresholds are needed both
for encoding and decoding. This, in turn, adds to the storage needed as this side
information is sent to the decoder end, thus affecting the bit rate significantly.

A CSF masking scheme, which is based on image content, has been reported by Ramos
and Hemami [51]. In this scheme, the grayscale images are segmented into smooth, edge
and detail regions and the mask is applied to each of these three regions. The main

drawback of this scheme is that the weighting mask values are determined by trial and
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error and does not directly incorporate the CSF. Also, the results indicate a decrease in
the PSNR value when a mask is applied, and a slight perceptual improvement is achieved
only at low bit rates. Two similar approaches have been proposed by Beegan et al [52]. A
“CSF mask” is used to adjust the transform coefficients prior to quantization. Beegan et
al designed and evaluated two CSF masking methods. Their experimental results show
that the 11-weight DWT-CSF mask provides a better PSNR performance, and the band-
average CSF mask subjectively outperforms the DWT-CSF mask for all the image types
under consideration [52].

To summarize, the previous research to achieve better perceptual image compression has
attempted to integrate the HVS model during the quantizer design, coder design or in
contrast and luminance masking methods. However, the computational complexity
involved in the design of the coder and quantizer is relatively high when compared to the
incorporation of masking methods in a compression system. Also, most of the approaches
proposed earlier have used the conventional biorthogonal 9/7 wavelet filter, and the
evaluation is done solely for noise-free images. This wavelet has irrational filter
coefficients. Some of the recently explored wavelet filters [19, 20, 53] promise superior
performance compared to the standard 9/7 wavelet for compression application and also
possess rational filter coefficients. This thesis work is concerned with proposing a new
scheme for low-complexity medical image compression incorporating the HVS

characteristics for enhanced perceptual quality of the reconstructed image.
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2.6 Summary

This chapter has provided a brief introduction about the multi-resolution analysis and the
wavelets. In order to facilitate the understanding of the HVS, the perceptual modeling of
the HVS using contrast sensitivity function has been discussed in brief. The state-of-the-
art overview pertinent to CSF models and perceptual image compression approaches has

also been presented in this chapter.
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Chapter 3

Proposed approach for image
compression

3.1 Introduction

In a given image, the neighboring pixels are correlated and contain redundant
information. If this redundant information can be removed or reduced, a less correlated
representation of the image is obtained. Image compression is achieved by reducing the
number of correlated pixels. To facilitate the compression process, there exists a variety
of transforms. Image compression using discrete wavelet transform (DWT) has proven to
be an efficient tool for achieving higher compression ratio [5]. The main advantage of
using this transform is that it retains both frequency and spatial information in contrast to
existing transform like discrete cosine transform (DCT), where only the frequency
information is retained.

In a DWT, the image is decomposed into low frequency or approximation coefficients
and high frequency or detail coefficients. The approximation coefficients contain
maximum information about the image and hence, they are considered significant for the
reconstruction. The detail coefficients are highly correlated and can be removed to a
certain extent. Most of the current research is focused towards the development of

compression schemes that provide a higher compression ratio without much loss of

uncorrelated information.
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3.1.1 Conventional Wavelet-based Compression

A conventional wavelet-based image compression scheme is shown in Fig 3.1. Wavelet
transform is a filtering process that uses an orthogonal or a biorthogonal wavelet filter
bank. The input image pixels are first transformed into spatial coordinates using the 2-D
DWT. Here, a large proportion of the low frequency information is converted into fewer
coefficients. This minimizes the amount of information to be coded and transmitted. The
transformed wavelet coefficients are then quantiibd with a given level of accuracy. The
step size of the quantizer is selected to meet the desired distortion limit and the bit rate
considerations. The quantized bits are coded usiﬁg lossy or lossless coding techniques,
for transmission through a channel. At the receiver end, these compressed bits are
decoded and the transmitted image reconstructed using the inverse-DWT (IDWT).

It is evident from the literature survey presented in Chapter 2 that most of the existing
compression schemes aims to achieve a better peak-signal-to-noise ratio (PSNR) and
mean-square-error (MSE) metrics for a given ‘compreyssion ratio. Usually, for the
performance assessment of the compression schéme, only objective metrics are used.
However, the quality of the reconstructed image is also subjective in nature. Most of the
existing quality assessment schemes are objecti{le in nature. These schemes do not
provide a meaningful assessment for applications like remote sensing and telemedicine,
where the visual quality of the reconstructed image'is of paramount importance.

In the following sub-section, we present a compression scheme, to address the
shortcomings of the conventional wavelet-based cc;mpression scheme, in order to achieve

a good visual quality and an acceptable objective measure.

44



Analysis Stage

X n-level > . - To Channel
’ "| 2-DDWT Coding
Synthesis Stage
[ — n-level g Decoding [¢«—— From Channel
2-DIDWT

Figure 3-1 A conventional wavelet based image compression scheme, where x; represents
the original image and y; represents the reconstructed image

3.2 Proposed Work

In this section, we discuss the desired characteristics of each of the functional blocks in
the compression scheme and the focus of this thesis work. The proposed nearly-
orthogonal wavelet-based compression scheme using a novel band peak-average mask

(BPA mask) is explained in the later sections.

3.2.1 Focus

In general, the performance of a compression scheme depends on the following factors.

» Selection of the filter (application-specific)

> Selection of the codec (lossy or lossless)

» Accuracy of the quantizer (number of bits used)
The visual characteristics influence the way in which the reconstructed image is
perceived by a human observer. Hence, incorporating modules that account for the
human eye sensitivity (HVS) characteristics in a compression scheme will result in an
enhancement of the visual quality in the final image. This implementation needs to be

done in a way so as to obtain an optimal combination of objective and subjective
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performance. The HVS characteristics can be imposed in one of the following operations,
namely, wavelet transform, quantization and coding. The design of the codec and
quantizer sub-systems are complex in nature compared to wavelet transform sub-system.
Considering the complexity involved in the design and implementation of the HVS-based
codec and quantizer modules, the HVS characteristics are incorporated in the wavelet
transform to achieve the desired enhancement in the perceptual quality of the image in
this thesis work. An investigation of the existing algorithms also shows a good potential
for achieving an improvement in the visual quality of the image, when an optimal
masking is used combined with an appropriate wavelet filter. The masking module needs
to be designed in such a way that its response shares a good correlation with the HVS
which is, in fact, an important issue in the research work of this thesis. Such a module, if
designed, can provide a cost-effective solution to the problem discussed in section 3.1.1
associated with the perceptual quality of the image. Furthermore, this enhancement has to
be achieved without an increase in the overall complexity specified in terms of the
computational procedure and the transmission of the coded image information.

In this thesis, the focus is mainly on two issues namely, the design of a new masking
method and the selection of a suitable filter. The design of the masking method is
discussed in Section 3.2.4. The selection of a suitable filter influences the perceptual
quality of the reconstructed image for low and medium bit-rate applications up to a
certain extent [19, 21, 44, 46]. This is in view of the fact that the regularity and
smoothness of the filter effects the quality of the image. The wavelet filter is selected

based on the compression requirements and the application.
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Most of the in-use compression systems employ the standard biorthogonal CDF 9/7
wavelet; but, its filter coefficients are irrational and hence, need an infinite precision
implementation resulting in a high computation complexity [19]. In particular, it rules out
the possibility of using multiplication-free processing for hardware implementation.

A new class of nearly-orthogonal wavelets [19], usually referred to as biorthogonal
nearly coiflet (BNC) wavelets, has been developed in order to improve the objective
performance and to facilitate the implementation. Some of these wavelet filters possess
rational coefficients, and provide higher compression ratios because of the presence of
additional vanishing moments in their wavelets and the scaling functions. The BNC
wavelets are obtained by sacrificing one vanishing moment in the analysis low frequency
stage. Their frequency response is then tailored such that they have an increased width
for their pass band. This results in a reduction of the ringing oscillations in the first side
lobe. This feature aids in the retention of relatively more high frequency components or
detail energy. Considering these features, it has been inferred that these wavelets have the
potential for providing a superior rate-distortion performance, better perceptual quality
and lower computational complexity, compared to the conventional wavelets in the field
of image coding.

In our investigation, we have considered the conventional CDF 9/7 and the biorthogonal
nearly coiflet wavelet filters. The proposed scheme for image compression, as discussed

in the next sub-section, includes a new masking module and uses the BNC filtering for

the wavelet transform.
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3.2.2 Proposed scheme for image compression

In this thesis, a digital image compression scheme is proposed to improve the perceptual
quality of the final reconstructed image. This scheme comprises of two stages, namely,

the analysis and synthesis stages, as shown in Figure 3.2 [61]. The analysis stage consists

of the following three functional blocks:

(a) wavelet transform employing the BNC wavelet,

(b) masking module, and

(c) coder.
Analysis stage
X n-level |
‘ BNC Coder {—p
DWT To Channel
Synthesis stage
vi n-level
<«—{ BNC : \ ¢ | Decoder {¢—
IDWT Cinv(fy) From Channel

Figure 3-2 Proposed scheme for enhancement of perceptual quality reconstructed

compressed grayscale images, where x; represents the original image and y; represents the

reconstructed image

The synthesis stage also consists of three functional blocks each of which performs the
inverse operation corresponding to each of the analysis stage blocks. The masking

module plays a significant role towards achieving an enhancement in the perceptual
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quality. The characteristics of the masking module need to be determined in accordance
with the human visual sensitivity characteristics. In particular, some of the high
frequency components usually get attenuated during the coding stage, resulting in a loss
of the edge information, and the masking module should reinforce these high frequency
components with reference to the perception of human eyes. Also, the use of such a
module results in a uniform distribution of the visual errors, thereby converting them into
symmetric error components. Such errors are usually less perceived by the human eyes.
In other words, by uniformly distributing the visual errors, the masking module aids in
achieving higher compression ratios, as it tends to make the artifacts less pronounced at
higher compression rates. The masking module thereby improves the visual quality of the
reconstructed image.

In addition to the masking considerations, the selection of an appropriate filter bank is
crucial for the image quality and the system design. In general, a good filter is needed to
have a perfect reconstruction of the image. The perfect reconstruction property assures
that the input energy is completely transferred through the filter. The filter should also be
symmetric, have linear phase characteristics and should possess good filter regularity
allowing acceptable number of vanishing moments [11]. Use of symmetric filters can
minimize the detection of false edges while the vanishing moments in a wavelet
correspond to the degree of approximation that can be achieved at each decomposition
level. Considering all the above mentioned criteria, a symmetric orthogonal wavelet filter
can be used for the compression application. Hence, the recently explored BNC wavelet
filters [4, 19, 20] are chosen in this thesis work. Further, research [10] has shown that a

short-length low pass filter (LPF) in the synthesis stage accumulates fewer ringing
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artifacts than a long filter, resulting in a reduction of the most significant perceptual
distortion in wavelet transform-coded images. The BNC wavelet filters are chosen with
long-length LPF in the analysis stage so as to retain maximum information, and with a
relatively short LPF in the synthesis stage.

The masked-wavelet coefficients are coded for transmission. In order to facilitate the
coding and decoding processes, the standard zero-tree wavelet-based set partitioning in
hierarchical trees (SPIHT) codec [41] is used. This codec is chosen as it is considered as
the premier state-of-the-art algorithm in image compression, and is proven to have
excellent coding performance. Also, SPTHT produces an optimal embedded bit stream,
i.e., the bit stream can be truncated at any instant with a guarantee to yield the best
possible reconstruction [41].

Compared to the conventional compression system (see Fig 3.1), the proposed scheme
shown in Fig 3.2 has the following two differences:

1) The DWT and the IDWT blocks of the proposed scheme employ the BNC
wavelet filters for the n-level decomposition and reconstruction operations so as
to obtain an improved rate-distortion performance for higher compression ratios
with an ease of computation.

2) The contrast sensitivity function (CSF) masking modules, using the mask values
obtained by the proposed masking scheme, are included in the analysis and
synthesis stages between the DWT and the Coder, and the Decoder and the IDWT

stages, respectively, in order to improve the perceptual quality of the final

reconstructed image.
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In the proposed scheme, the masking modules are represented by the CSF mask and the
inverse CSF mask units in Fig 3.2. The input x; denotes the original image and y; the
reconstructed image. The input digital image is split into desired number of frequency
and orientation selective levels, using the DWT employing the BNC wavelet filters,
instead of the conventional biorthogonal CDF 9/7 wavelet. The number of decomposition
levels used, represented by », depends on the input image size. For a given M x N image,
n is chosen to be less than or equal to 2™™™" A higher value of # leads to a higher
compression ratio, but may lead to a removal of certain essential bits other than the
redundant ones and this in turn, can result in the presence of visible artifacts in the
reconstructed image.

In the analysis stage of the proposed scheme, a CSF masking module is used to address
the issue of the loss of high frequency components. This is achieved by applying a mask
(Ci(fs)) to each sub-band of the wavelet coefficients. The mask values are obtained using
the proposed band peak-average (BPA) mask method [61] described in Sections 3.2.3 and
3.24.

The masked wavelet coefficients are then coded using the zero-tree based SPIHT coder
and transmitted through a channel. At the receiver end of the channel, these bits are
decoded using the SPIHT decoder. The decoded wavelet coefficients are passed through
the inverse masking filter block before reconstruction as image pixels using the inverse
BNC-DWT block. The proposed scheme is also extended for the enhancement of the

reconstructed medical images, such as the x-ray and ultrasound scan in the presence of

additive noise information.
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3.2.3 CSF masking model

In this section, we will discuss about the selection of a suitable CSF model for use in the
generation of the mask values. The two important parameters of the HVS [54] for any
given CSF model are the contrast threshold and the contrast sensitivity. Contrast
threshold of the HVS is defined as the limit of visibility of a low contrast pattern before it
becomes indistinguishable from the background field for a fixed value for luminance.
The inverse of this parameter denotes the contrast sensitivity. The basic structure of the
CSF model is bell-shaped or Gaussian in nature. The location of the peak in the curve
depends on the viewing distance. For human perceivable signals like image and speech,
contrast threshold (for images) or the limit of audibility (for speech signal) parameter
needs to be considered during the development of perceptual-based processing sub-
systems. This is due to the fact that the final processed signal is ultimately analyzed by a
human observer. For the computation of the contrast threshold, the widely-used Mannos
and Sakrison’s CSF model [25] is used. This model defines a band-pass structure for the
HVS and its analytical representation corresponds well with the human vision model at
various spatial frequencies. Fig 3.3 shows the Mannos and Sakrison’s CSF model defined
by (2.15).

CSF masking is defined as the process of desensitizing the visual system to certain
stimulus, using the values of contrast threshold. This is performed by providing weights
based on desired perceptual importance to the wavelet-transformed coefficients, and
subsequently inverting them after the decoding stage. A simplified representation of the
proposed scheme, incorporating the CSF masking and inverse masking blocks, is shown

in Fig 3.4. From the figure it can be seen that the CSF masking module is visualized as a
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sub-band specific multiplier. The wavelet transformed image coefficients obtained from
the BNC-DWT stage are masked or weighted relative to their perceptual importance in
accordance with the visual sensitivity characteristics. This is obtained by multiplying the

weights computed from the CSF curve with the wavelet coefficients specific to their

.........................................

.............
.....................

....................................

.............................

250 200 150 100 50
Spatial Frequency (fx) 0

Figure 3-3 Mannos & Sakrison’s CSF model curve
spatial sub-band. These coefficients are then coded and transmitted into the channel. At
the receiver end, the received coded information is decoded and an inverted CSF mask is
applied. The inverse mask filter is used so as to achieve an enhancement both in terms of
the contrast and the perceptual quality of the reconstructed image. Moreover, the masking
and inverse masking filters are chosen in such a way that they do not introduce any

additional distortion in the compression system. The mask factors are determined directly
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from the CSF curve using the band peak-average mask algorithm given in the following

section. This technique is simple to implement and a luminance-independent processing

is achieved.

3.2.4 Proposed band peak-average CSF mask (CSF-BPA mask)

We now describe a technique for obtaining the CSF weighting coefficients defined as the
CSF band peak-average (CSF-BPA) mask. The CSF plotted for a viewing distance of 3
feet (~ 1.5 x screen height) and background luminance of 100 cd/m? defined over a
maximum spatial frequency of 64 pixels/degree is shown in Fig 3.3. In this masking
method, the CSF curve is normalized and broken into m different spatial frequency
bands. The value of m is equal to n + 1, where 7 is the number of decomposition levels
used in the DWT-BNC stage. For a 5-level wavelet decomposition of the image, n = 5
and m = 6. The weight of the CSF mask for each sub-band is computed as the peak-
average value of the curve specific to that sub-band as given in the following mask

calculation algorithm, Finally, the HF weight factor is normalized to unity.

Reconstructed

Image image

Wavelet
»| Decomposition Codec

CSF Mask Inverse CSF
mask

Figure 3-4 Block diagram of CSF masking block for compression applications
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Figure 3-5 6-weight band peak-average CSF mask model for a 5-level wavelet
decomposition, where Ln represents the low frequency sub-band of an n-level

DWT and Hnrepresents the high frequency sub-band of an n-level DWT

Algorithm: Mask calculation
1. Compute the CSF curve using the Mannos and Sakrison’s transfer function [26]
normalized for a luminance value of 100 cd/m” and a viewing distance of 3 feet.
2. Divide the curve into m different spatial frequency regions. Now, each region

represents the part of the CSF within each of the approximation and detail sub-

band.

3. Divide each of the m sub-bands further into » sub-levels.
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4. Calculate the peak average of n values in each sub-band and represent the band-
peak average values as p, Pp.r ..., p2, p1 and g, respectively (starting from the
origin of the curve).

5. The weights for the LH', HL', and HH' sub-bands are given by p,.

6. Similarly the weights for the LH*, HL?, and HH? sub-bands are given by p,.;. In
each subsequent level, this scheme of weighting is followed for each of the band
pass sub-bands.

7. Atthe final level the weight of the final low frequency band, LL" is given by g¢;.

8. The lowest weight, p,, is taken as unity (since the HF is normalized to unity).

The 6-weight CSF-BPA mask values obtained for a 5-level image decomposition
structure are shown in Fig 3.5. In the following section we discuss the proposed

multiplierless design structure for the FPGA implementation of the lifted BNC 17/11

wavelet filter coefficients.

3.3 Proposed design for BNC 17/11 filter

In a wavelet-based image compression scheme, the selection of the filter bank is often
crucial in determining the performance of the scheme, and a careful selection of the filter
band enables superior quality for a broad class of images. For compression applications, a
wavelet filter should possess finite filter length (FIR), enable perfect reconstruction of the
input and meet the regularity constraints. An FIR filter is needed for proper hardware
implementation. The approximation and the detail signals generated at each level should
contain the necessary information for perfect reconstruction of the approximation signal

at the next higher resolution level. For wavelet-based image compression schemes,
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regularity is another important constraint as it influences the number of vanishing
moments in the filter and aids in the reduction of oscillatory distortion. BNC wavelet
filters [19, 20] provide high filter regularity and smoothness in the pass-band. These
filters also have a linear phase response, which helps in the preservation of perceptually
important image edges.

In the next sub-section, the convolution structures are briefly described following which
the proposed design for the realization of BNC 17/11 wavelet filter [19] in the FPGA

hardware is discussed in detail. The subscripts ‘e’ and ‘o’ refer to the corresponding even

and odd components.

3.3.1 Realization of convolution structures

A convolution structure can be realized either in the form of non-polyphase or a
polyphase structure, as shown in Fig 3.6.

(a) Non-polyphase structure

In a non-polyphase structure, in the analysis stage, decimation (or down-sampling) is
performed after filtering and this discards half of the samples computed by the filters.
Fig. 3.6 (a) shows the analysis side of a filter bank, where a filter
hin] =(h, h),hy,h;...) <> H(z) is followed by a downsampling operation. This
necessitates the filters to operate at double the input rate. In the synthesis phase,
interpolation (or up-sampling) is performed before filtering, which means half of the
filter multiplications are performed through zero operations. Thus, half of the
mathematical operations are wasted. Hence, a non-polyphase structure is inefficient in

terms of throughput, regardless of the direct form or cascade form implementation of the

filters.
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Figure 3-6 Direct form representation of analysis filters. (a) Non-polyphase structure.
(b) Polyphase structure.

(b) Polyphase structure

Polyphase structures were developed to overcome the unnecessary overhead faced with

the use of the non-polyphase structures. In a polyphase structure (see Fig 3.6(b)), the

filter is separated into odd and even powers as follows.
H@Ez)=hy+hz'+hz? +hz” +...
= (ho +hz? +hz* +) +z7 (h+hz? +hz? +.)
=H,(z*)+z"'H,(z%) (3.1
Here,
H,(z2) & (ho, h,, h, ,) (even components 4, )
H,(z) o (h1 , by, hs,...) (odd components, A,,,,)

where i = 1, 2, 3,..,N/2 -1. Once the even and odd components are separated, the order of

the downsampling and the filter is exchanged, according to the first Noble identity [45].
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The structure so obtained is computationally equivalent to the original, but is more
efficient, since double throughput is obtained as the unnecessary multiply-by-zero
operations are avoided. A similar transformation is applied on the synthesis side of the
filter bank. Theoretically, such a structure provides twice the throughput in comparison
with the original structure. In an FPGA implementation, the actual increase in throughput
depends on many hardware timing parameters, and may not always equal the theoretical
throughput. More detail about these two realization structures can be found in [14]. In the

following section, the polyphase structure for the realization of the BNC wavelet filter is

provided.

3.3.2 Proposed structure for BNC 17/11 filter using lifting coefficients

Figure 3.7 shows the non-polyphase structure for a two-channel filter biorthogonal bank.
The analysis low pass and high pass filters are defined by the transfer functions H(z) and
G(z) respectively. The low pass and high pass filters on the synthesis side are defined by
F(z) and J(2).

Fig 3.8. shows the polyphase structure for a two-channel filter bank. Here, the input
signal X(z) is split into even and odd phases and is inputted into the corresponding
polyphase form of the analysis filter. The analysis filters defined using polyphase

representation are defined as follows.
H(z)=H,(z)+z'H,(2) (3.2)

G(z) =G,(2)+27'G,(2) (3.3)
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D'
High pass component
» Gz) > l52 — Vi — T2 —4{ J@)
Figure 3-7 A non-polyphase structure for a two-channel biorthogonal filter bank
The output at the analysis stage is given by the values of Vy(z) and V,(2).
V@ |H.(2) H,(2)|| X.(2)
= 3.4)

n@| |G G,@]z7X,()

The reconstructed signal X (2) is obtained at the output of the synthesis stage.

oo TRE @ [HE)
Hasl I{E@5~ijLﬂfJ ©)

To obtain perfect reconstruction [14],

Lo 1
F (2).H,(z)=z L'l o] (3.6)
where
[H@ H,@
H””Lﬂ)@w} D
and
_[FG) 7,0
Fp(z)—[Fe(Z) Je(Z)} (3.8)
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are the analysis and the synthesis polyphase matrices respectively, of the two-channel

filter bank. When the polyphase matrices satisfy the perfect reconstruction condition

(3.6), the reconstructed signal is a delayed version of the original signal.

x[n]=x[n—-n,]

For a BNC 17/11 wavelet, the analysis and synthesis filters are given by the following

equations.

H(z)=h, +h1(z+z_1)+hz(z2 +z'2)+h3(z3 +z‘3)+h4(z4 +z“‘)

+h(Z2° 42+ b (2 + 27+ B (2T +2T7)+ By (2P + 27

G(z)=g02+g1(22 +1)+g2(z3 +z‘1)+g3(z4 +Z_2)

F@)=f,+fiz+z )+ £, +z2)+ f,(z* +27)
+ £, + 27+ f,(2° +270)

J@)=joz+ jjA+z2)+ j,(z+27)+ j,(22 +27)+ j,(2° +27)

+g, (2 +z)+g,(z% +2z7Y)
4 5

12

-

Figure 3-8 A polyphase structure for a two-channel filter bank

Analysis
Polyphase
matrix
Hyfz)

ﬁu—n—...-'ﬂ-!’

— Y R

Synthesis
Polyphase
matrix
Falz}

+j5(Z4 +Z_6)+j6(25 +Z—7)+j7(26 +Z—8)+j8(z7 +Z—9)

(3.9)

(3.10)

(3.11)

(3.12)
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The values of h[n] and g[n] are provided in Table 2.2 and the synthesis filters are defined

as follows.
Jn}=(-1)" hln]

fIn]=(=1)" g[n]

Substituting the values of H(z), G(z), J(z) and F(z) in (3.7) and (3.8),

{hs(z4 +z‘4)+h6(z3 +z7%)+ {h7(z4 +z'3)+h5(z3 +z)+
H (2= h,(z* +z‘2)_+h2(z+z“)+~ho} h3(22+z‘1)-_l-hl(z+l)} (3.13)
? {85(23 +z 2)+g3(22 +z7) {g4(z3 +2z 1)+g2(22 +1)
+g,(1+2)} + 802}
{Ld+2)+ f,(z7 +2%) e+ 1@ +2)+ j, (272 +27) +]
+ [z +2°)} Js(Z7 +2°)+ jg (27 + 2%}
F = 3.14
»@ U + £z +2) Gz ez |G
+f4(22 +z_2)} +j5(zz+z_3)}

The factorized filter matrix H , (z)" is obtained by decomposing the filters {H(z), G(z)}

using the algorithm proposed in [59].

. =l s@][ 1 0][k o
H,(2) _1;[[0 1 ][ti(z) 1}[0 1/k} G-19)

This factorization is not unique, and a number of {s4(z), #(z)} pairs that lead to the same
analysis and synthesis polyphase matrices can be obtained. We have factorized the BNC

17/11 polyphase matrix into eight two-tap “predict” and “update” filters with a scaling

step at the end.

62



1 a,(+z7)
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0o 1

H,(2) =
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1 0][1 ga+zH|[ 1

a,(1+2) 1]’ [o 1] \:,32(1+z)

1 0“1 51(1+z*‘)] 1

r,A+z) 1170 1 16,(d+2)

i

0
1

0]

1-.

It v
|11 1/g

(3.16)

where a,, a,, B, B,,71,7,,0,,0, and g are the lifting [see Appendix I] coefficients

obtained during the factorization and their values are listed in Table 3.1. From (3.16), the

scheme for the realization of the BNC 17/11 forward wavelet transform has four lifting

steps (four pairs of predict P, and update U, sequences) as shown in Fig 3.9. The z-

transforms of the predict operators, P;, P, P; and P, and the update operators, U;, U, Uj;

and Uy are listed below.

Py=a; *(I+2)
Uy =ax* (1+z7)
Py=p4;*(1+z)
Uy =B * (1+z7)
P3;=y; *(1+2)
Us =72 * (1+2")
Py=0d; *(1+z)

Uy =6, * (1+27)
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Figure 3-9 A single lifting step for BNC 17/11 wavelet filter

Table 3-1 Quantized and un-quantized lifted coefficients for BNC 17/11 wavelet filter

Lifted filter coefficients
Symbol Un-quantized representation Quantized representation

al -1.5 -3/2=-1.5
a2 0.187499 3/16 =0.1875
Bl -0.36673 -3/8 =-0.375
B2 -0.12843 -1/8=-0.125
yl 0.7301155 3/4=0.75
y2 -0.440046 -7/16 = -0.4375
ol 0.2‘181397 7/32=0.21875
02 0.91063233 29/32 =0.90625

¢ 1.19 5/4=1.25

The design structure for the BNC 17/11 analysis filter bank using the lifting scheme, i.e.,

implementation for the matrix H,(z), is as shown in Fig. 3.10. For an input signal x; let x;
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(%2i+1) denote the even (odd) indexed samples. The approximation and detail coefficients
generated during each of the predict (update) stage at the analysis phase of the filter bank
is represented as a;” (d;") representing the low-pass (high-pass) coefficients, where m = 0,

1,2, 3, 4. The equations for obtaining these values are given as follows.

1) Splitting phase:
d’=x,, (3.18)
a’ =x, (3.19)
2) Predict & Update phase:
d'=d’-a,*@a’ +a,") (3.20a)
a'=a’-a,*(d_ ' +d) (3.20b)
d}=d'-B,*(@a' +a,) (3.21a)
a’=a' -B,*d. ]’ +d}) (3.21b)
d’=d’-y,*@’+a.’) (3.22a)
a’=a’-y,*d.+d?) (3.22b)
d'=d>-8*@a’+a,’) (3.23a)
a'=a’-8,*d_>+d}) (3.23b)
3) Scaling phase:
d,=d’/¢ (3.24a)
a,=¢*a’ (3.24b)
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The synthesis stage of the filter bank is obtained by inverting the scaling coefficients and
by reversing the sequence of the predict and update stages as shown in Fig. 3.11. From
the figure, it can be seen that if the scaling factors ¢ and 1/c¢ are ignored and the
synthesis stage immediately follows the analysis stage (i.e., no compression), and the
output of the analysis stage is exactly inverted regardless of the values of
a,,0,, By, By, 71, V2,.0,and 6,. For implementation in fixed-point hardware the lifted
coefficients are approximated. This approximation is done in such a fashion that a
multiplierless architecture can be realized. The approximated lifting coefficients are then
used for the realization of the filter structure. Jer Min Jou [56] proposed a hardware
architecture for the implementation of biorthogonal wavelets. This structure incorporates
symmetry property and uses polyphase decomposition. Considering the advantages
offered in terms of the computational efficiency and the ease for realization offered by Jer
Min Jou’s architecture, we have extended this architecture for the realization of the odd
length nearly-orthogonal filters (BNC 17/11 filter to be specific). In this thesis, an
architecture for the realization of the BNC 17/11 wavelet filter using a pipelining

approach is proposed. The lifting approach for the BNC 17/11 wavelet filter has been

discussed in Section 3.3.2.

The complete structure for the BNC 17/11 filter is shown in Fig 3.12. The main
advantage of this scheme is that the same structure can be used for both the forward and
reverse DWT operations in view of the addition of the multiplexer unit. Further, the use
of pipelining facilitates the reduction in computation time. The direction of operation
(forward or reverse) is determined by the multiplexer unit using a select input signal.

When the input to the select line is ‘0°, a forward DWT operation is performed and the
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approximate and detail coefficients are obtained across the output lines Out_1 and Out 2
respectively. For a select line input of ‘1°, the lifted coefficients responsible for the
reverse DWT operation are selected. At each clock cycle, there are two input samples
entering the system, In_1 and In_2. While performing the DWT, the even and odd
samples are given across the input lines, In_1 and In_2, and for the case of the inverse
DWT, the approximate and detail coefficient values are used at the input. Once the
computation is performed, the final results (wavelet coefficients) are obtained as the
output through the data lines, namely, out_1 and out_2.

This design can be implemented either on a FPGA or ASIC chip. In this design, a total of
8 shifters/ multipliers, 16 adder units, 36 registers (8 for coefficients, 16 for pipelining

and 1 for delay) and 8 multiplexers are employed.

3.4 Potential applications of the proposed scheme

Since the mask values are calculated in advance, no side information needs to be
transmitted between the source and the destination. This, in turn, avoids the possibility of
bit overhead and facilitates a low entropy representation of the image. Potential areas of
application of the proposed scheme are as follows.

» Medical applications such as storage and transmission of medical data such as

X-ray, MRI and ECG
> Biosignal processing
> Internet multimedia, audio and speech compression applications

> Video compression and perceptual watermarking
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3.5 Summary

In this chapter, we have first studied the limitations of the conventional compression
system. Then, in order to overcome some of these limitations and to obtain an enhanced
compression performance as well as to facilitate a multiplication-free hardware
realization, we have developed a compression scheme for digital images. In place of the
conventional wavelets, the nearly-orthogonal wavelet filters have been used in this
scheme in order to obtain an improvement in the compression efficiency. A CSF masking
method (CSF-BPA mask) has been proposed for achieving an enhancement in the
perceptual visual quality of the reconstructed image. This masking module has been used
in conjunction with the nearly-orthogonal discrete wavelet transform in the proposed
scheme. Further, this scheme has been extended for perceptually-enhanced reconstruction
of digital medical images. Finally, a multiplierless design structure for fixed-point

realization of the BNC 17/11 wavelet filter in a FPGA or ASIC hardware has also been

proposed.
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Chapter 4

Simulation Results

In Chapter 3, a new scheme for the enhancement of the perceptual quality of the
reconstructed compressed grayscale images has been proposed. The proposed scheme
uses the nearly-orthogonal discrete wavelet transform (DWT) integrated with the contrast
sensitivity function (CSF) masking stage. The mask values have been derived from the
Mannos and Sakrison’s CSF model [26] curve using the proposed band peak-average
(BPA) mask method. The nearly-orthogonal DWT uses either of the recently explored
biorthogonal nearly-coiflet (BNC) wavelets, namely, the symmetric BNC 17/11 wavelet
-[19] or the asymmetric BNC 22/14 wavelet filter [20].

In this chapter, the performance of the proposed scheme is studied and compared with
that of the previously used CSF-DWT mask [52] and the conventional scheme employing
the standard biorthogonal 9/7 wavelet filter [18]. In order to facilitate this, the proposed
scheme is tested on a variety of standard test and medical images. The characteristics of
the chosen test images are quite distinct in terms of their high frequency and low

frequency content. The images considered for compression analysis fall into the

following broad categories.
(a) Natural images - Lena, Barbara and Baboon
(b) High-detail images - Pot, Cambridge, Boat and Text

(c) Medical scan images - MRI, Ultrasound scan, X-Ray and Diatoms.
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The original test images can be found in Appendix - II for reference. The input image is
first corrupted with additive white Gaussian noise (AWGN) before processing. The
noise-added image is then wavelet decomposed and coded using the SPIHT coder [41].
At the receiver end, the transmitted bits are decoded with the use of a SPIHT decoder and
the image is reconstructed using the inverse DWT. Simulation is carried out using
MATLAB and the wavelet toolbox. The results are collected by reconstructing the image
using each of the three wavelet filters, namely, CDF 9/7, BNC 17/11 and BNC 22/14
while switching between the three CSF modes (CSF off, CSF-DWT mask on & CSF-
BPA mask on) under different noise variances and compression ratios. The performance
of the scheme is studied using both objective (quantitative) and subjective (qualitative)
assessment metrics. The calculated value of the peak signal to noise ratio (PSNR) is used
for the objective assessment of the quality of the reconstructed image. The subjective
assessment is conducted by carrying out a double blind test procedure on the
reconstructed images. Further, a no-reference quality index [57] is calculated to verify the
correlation between the objective and subjective test results. In addition to the above
mentioned assessments, the - principal component or the eigen vector analysis is

performed by calculating and plotting the values of eigen vectors for the original and the

reconstructed images.

4.1 Quantitative Assessment

The PSNR, measured in decibels (dB), is used as the metric for assessment of the
quantitative or objective performance of the proposed scheme incorporating the nearly-
orthogonal wavelet transform and the deduced CSF-BPA mask. The PSNR value is

calculated with reference to the original test image. Tables 4-1 and 4-2 give the
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quantitative results of the simulation indicating the PSNR and the computation time of
the reconstructed Ultrasound scan and a zoomed portion of noise-free MRI images
respectively without the application of the CSF mask. From these tables, it is seen that,
for low and medium bit rates, the BNC wavelets, in addition to providing a higher PSNR,
take less computation time in comparison with the standard CDF 9/7 wavelet. For a
compression ratio of 0.5 bpp, a maximum PSNR improvement of 0.13 dB is achieved for
the reconstruction of the Ultrasound scan image and 0.26 dB for the MRI image using the
BNC 22/14 wavelet. However, it is evident that, among the BNC wavelets, the BNC
17/11 wavelet facilitates a faster processing of the image for a variety of low bit rates as
compared to the BNC 22/14 wavelet.

Tables 4-3, 4-4 and 4-5 give the PSNR results for the reconstructed set of eleven test
images compressed at different rates and corrupted with noise variances 8, 13 and 26,
respectively. The values in bold font indicate the highest values of PSNR and the
corresponding filters for each of the images. In this assessment metric, the performance is
estimated based on the calculated PSNR value. In other words, higher the PSNR better is
the performance.

From Table 4-3, corresponding to an added noise variance of 8, it is seen that, for three of
the eleven reconstructed images under consideration (Barbara, Diatoms and Text), the
application of the mask has resulted in a reduction in the overall PSNR, with a maximum
of 2 dB reduction for the Diafoms image. For the other eight images, the application of
the mask shows a significant improvement in the PSNR value. A maximum PSNR
improvement of 2 dB is achieved for the case of Lena with the application of CSF-BPA

mask integrated with the BNC wavelet transform. Further, it is noticed that the CSF-BPA:

74



mask outperforms the previously used CSF-DWT mask by achieving an increase in

PSNR of 1 dB recorded for the Lena test image.

From Table 4-4, corresponding to an added noise variance of 13, a pattern similar to that

of the case when the images are corrupted with a noise variance of 8, is observed. Here

also, the application of the mask has resulted in a reduction in the overall PSNR for three

Table 4-1 PSNR and computation time results for noise-free Ultrasound scan image

reconstructed without the application of the CSF mask.

CDF 9/7 BNC 17/11 BNC 22/14
bpp PSNR Time PSNR Time PSNR Time
(dB) (sec) (dB) (sec) (dB) (sec)
0.125 74.1149 8 74.1196 8 74.2007 8
0.250 74.5788 28 74.6621 30 74.6660 34
0.500 74.6020 124 75.7173 105 74.7300 109

Table 4-2 PSNR and computation time results for MRI image reconstructed without the
application of the CSF mask.

CDF 9/7 BNC 17/11 BNC 22/14
Bpp PSNR Time PSNR Time PSNR Time
(dB) (sec) (dB) (sec) (dB) (sec)
0.125 74.2818 9 74.3357 9 74.3530 8
0.250 74.9573 23 75.0679 22 75.2126 21
0.500 75.0950 95 75.1681 91 75.2628 99
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Table 4-3 PSNR results for reconstructed set of standard test and medical images
corrupted with zero-mean AWGN of variance 8.

bpp No mask CSF-DWT mask CSF-BPA mask

97 | 17m1 | 2214 97 | 1111 | 22/14 97 | 11 | 2214
Barbara
0.20 | 69.6499 | 69.7685 | 69.7149 | 70.1895 | 70.1067 | 70.2625 | 70.6087 | 70.6970 | 70.8241
0.40 | 68.8360 | 68.9458 | 68.8582 | 70.3336 | 70.3722 | 70.4608 | 70.7108 | 70.7941 | 70.9602
0.60 | 67.4849 | 67.5481 | 67.6053 | 70.3117 | 70.3565 | 70.3532 | 70.8170 | 70.8864 | 71.0352
Lena
0.20 | 71.1971 | 71.3219 | 71.2999 | 72.4732 | 72.4754 | 72.5367 | 73.3083 | 73.6664 | 73.5721
0.40 | 69.4504 | 69.5244 | 69.4529 | 72.2369 | 72.3386 | 72.4833 | 73.1469 | 73.2993 | 73.4696
0.60 | 67.6766 | 67.7643 | 67.7649 | 72.0879 | 72.154 | 72.1667 | 73.1653 | 73.5499 | 73.4140
Baboon
0.20 | 69.7623 | 69.9090 | 69.9791 | 68.8520 | 68.9650 [ 69.0251 | 68.1919 | 68.2803 | 68.0014
0.40 | 68.5789 | 68.7038 | 68.7019 | 67.3087 | 67.3340 | 67.3722 | 67.3776 | 67.4219 | 67.4670
0.60 | 66.7994 | 66.9113 | 66.9636 | 65.3169 | 65.3946 | 65.4596 | 65.3164 | 65.3764 | 65.3769
Boat
0.20 [ 70.5011 | 70.6857 | 70.5160 | 71.2553 | 71.2110 | 71.2355 | 71.6405 | 71.7300 ! 71.6238
0.40 | 69.1516 | 69.2801 | 69.2496 | 71.3266 | 71.3962 | 71.2966 | 71.6885 | 71.8175 | 71.7626
0.60 | 67.5613 | 67.6521 | 67.6948 | 71.2175 | 71.2874 | 71.1747 | 71.7205 | 71.8086 | 71.7596
Diatoms
0.20 | 69.1957 | 69.2753 | 69.2047 | 67.3439 | 67.4527 | 67.3994 | 67.1219 | 67.2046 | 67.0369
0.40 | 68.9303 | 69.0516 | 69.0688 | 67.6710 | 67.7213 | 67.6294 | 67.3727 | 67.4570 | 67.2889
0.60 | 67.7633 | 67.8235 | 67.7855 | 66.6632 | 66.7275 | 66.6313 | 66.4007 | 66.4797 | 66.3137
Pot
0.20 | 70.8925 | 71.0772 | 71.0460 | 70.5006 | 70.5653 | 70.5906 | 70.7802 | 70.8303 | 70.7497
0.40 | 69.5769 | 69.7066 | 69.5955 | 70.6620 | 70.8017 | 70.7050 | 70.8332 | 70.9429 | 70.9564
0.60 | 67.9309 | 67.9868 | 67.9002 | 70.5575 | 70.6482 | 70.5925 | 70.8551 | 70.9350 | 70.9420
Text
0.20 | 67.0543 | 66.9852 | 66.9488 | 65.1699 | 65.1935 [ 65.1330 | 65.0673 | 65.0525 | 65.0062
0.40 | 69.0999 | 68.9733 | 68.8836 | 65.6008 | 65.5287 | 65.4447 | 65.3886 | 65.3533 | 65.3184
0.60 | 69.0224 | 68.9787 | 68.8989 | 65.7062 | 65.5866 | 65.6590 | 65.5536 | 65.5014 | 65.4581
Ultrasound scan
0.20 { 72.1091 | 72.2155 | 72.2563 | 72.5150 | 72.6316 | 72.7228 | 73.1207 | 73.2320 | 73.3112
0.40 | 69.8032 | 69.9422 | 70.0640 | 72.1897 | 72.3060 [ 72.5538 | 73.0914 | 73.1956 | 73.2983
0.60 | 68.2471 | 68.3011 | 68.2386 | 72.2685 | 72.3541 | 72.4448 [ 73.1169 | 73.2011 | 73.3321
MRI
0.20 | 72.4972 | 72.5141 | 72.3810 | 73.0109 | 73.0314 | 73.0631 | 73.2720 | 73.3497 | 73.0491
0.40 | 70.4430 | 704171 | 70.2446 | 72.5425 | 72.4886 | 72.5558 | 73.1571 | 73.2048 | 73.1065
0.60 | 68.4846 | 68.4603 | 68.3761 | 72.4315 | 72.4501 | 72.4790 | 73.0491 | 73.1897 | 73.1081
X-Ray
0.20 | 70.8177 | 70.7750 | 70.5652 | 69.6789 | 69.7256 | 69.8312 | 69.9760 | 69.9162 | 69.9341
0.40 | 69.2126 | 69.1553 | 68.9642 | 69.5811 | 69.5587 | 69.7292 [ 69.9132 | 69.9192 | 69.9922
0.60 | 67.5927 | 67.5511 | 67.4631 | 69.5902 | 69.6205 | 69.7579 | 69.8805 | 69.9235 | 69.9954
Cambridge
0.20 | 68.4995 | 68.5916 | 68.7418 | 69.6933 | 69.7898 | 69.8988 | 69.7941 | 69.8155 | 69.8003
040 | 68.2339 | 68.3192 | 68.3127 | 69.8959 | 69.9667 | 69.9706 | 70.0369 | 70.1207 | 70.1142
0.60 | 67.2406 | 67.2997 | 67.2873 | 69.7651 | 69.8175 | 69.8091 | 70.0804 | 70.1321 | 70.1547

76




Table 4-4 PSNR results for reconstructed set of standard test and medical images
corrupted with zero-mean AWGN of variance 13.

bpp No mask CSF-DWT mask CSF-BPA mask

97 | 1711 | 22714 97 | 1711 | 22/14 97 | 17711 | 2214
Barbara
0.20 | 68.8529 | 68.8591 | 68.8499 | 67.6738 | 67.7776 | 67.9041 | 67.6291 | 67.6301 [ 67.4943
0.40 | 67.6094 | 67.7407 | 67.6680 | 66.9432 | 66.9517 | 67.1094 | 66.5253 | 66.6152 | 66.6043
0.60 | 65.4431 | 65.5259 | 65.4611 | 64.3204 | 64.3336 | 64.4534 | 64.0118 | 64.0842 | 64.2394
Lena
0.20 | 70.4063 | 70.4266 | 70.2626 | 71.6622 | 71.7812 | 71.9662 [ 72.2373 | 72.7405 | 72.6305
0.40 | 66.7354 | 66.8164 | 66.6859 | 71.1647 | 71.1974 | 71.3654 | 72.2826 | 72.9975 | 72.5566
0.60 | 65.6221 | 65.6900 | 65.6477 | 70.7208 | 70.7534 | 70.9146 | 71.9785 | 72.2641 | 72.2370
Baboon
0.20 | 67.5443 | 67.6225 | 67.5628 | 68.5125 | 68.5661 | 68.5887 | 68.5939 | 68.6982 | 68.6733
0.40 | 65.1723 [ 65.2114 | 65.2034 | 68.5688 | 68.6475 | 68.6366 | 68.8879 | 68.9432 | 68.9643
0.60 | 64.7510 | 64.8127 | 64.8180 | 68.5242 | 68.6120 | 68.6764 | 68.9646 | 69.0189 | 69.0577
Boat
0.20 | 69.3532 | 69.4347 | 69.3775 | 70.5083 | 70.5979 | 70.6634 | 70.7193 | 70.8781 | 70.8554
0.40 | 66.4671 | 66.5549 | 66.4620 | 70.1981 | 70.2589 | 70.2335 | 70.8549 | 70.9539 | 70.9074
0.60 | 65.4756 | 65.5488 | 65.5383 | 69.8971 | 69.9701 | 69.9548 | 70.6576 | 70.7380 | 70.7374
Diatoms
0.20 | 67.5203 | 67.6830 | 67.7851 | 65.9254 | 66.0827 | 66.0393 | 65.7227 | 65.7942 | 65.6142
0.40 | 66.7332 | 66.9437 | 66.9054 | 66.0844 | 66.1348 | 66.1137 [ 65.9017 | 65.9723 | 65.7788
0.60 | 65.9257 | 66.0781 | 66.0769 | 66.0393 | 66.0144 | 66.0049 | 65.8938 | 65.9654 | 65.7695
Pot
0.20 | 69.3812 | 69.4757 | 69.3651 | 69.9958 | 70.0241 | 69.9980 | 69.9748 | 70.1052 | 70.1011
0.40 | 66.9786 | 67.0463 | 67.0371 | 69.7980 | 69.8461 [ 69.7108 | 70.1271 | 70.1984 | 70.1785
0.60 | 65.9344 | 66.0095 | 66.0158 | 69.4680 | 69.5394 | 69.4559 | 69.9390 | 70.0183 | 70.0041
Text
0.20 | 65.8542 | 65.8155 | 65.8185 | 64.7545 | 64.7511 | 64.7144 | 64.6299 | 64.6304 | 64.6154
0.40 | 66.9045 | 66.8405 | 66.8047 | 64.7782 | 64.7923 | 64.7920 | 64.8305 | 64.7883 | 64.7507
0.60 | 66.9184 | 66.8733 | 66.8212 | 65.0326 | 65.0310 | 65.0461 | 64.9985 | 64.9945 | 64.9781
Ultrasound scan
0.20 | 70.2306 | 70.1842 | 69.9735 | 71.0797 | 71.2717 | 71.3933 | 71.9767 | 72.0410 | 71.8980
0.40 | 67.3978 | 67.4803 | 67.4665 | 70.9158 | 71.0046 | 71.0431 | 71.8186 | 71.9439 | 71.9568
0.60 | 66.0672 | 66.1622 | 66.1752 | 70.5618 | 70.6458 | 70.7873 | 71.7547 | 71.7858 | 71.7873
MRI
0.20 | 69.3799 | 69.4599 | 69.4567 | 70.8536 | 70.8884 | 70.9067 | 71.2567 | 71.2897 | 71.2544
0.40 | 67.9778 | 68.0340 | 68.0138 | 70.4717 | 70.5376 | 70.6123 | 71.0296 | 71.0588 | 71.0594
0.60 | 66.5577 | 66.6546 | 66.6023 | 70.3622 | 70.4276 | 70.4297 | 71.0135 | 71.0439 | 71.0343
X-Ray
0.20 | 67.7960 | 67.8178 | 67.7701 | 68.4290 | 68.5015 | 68.5020 | 68.6232 | 68.6713 | 68.7254
0.40 | 66.6671 | 66.6781 | 66.7221 | 68.2761 | 68.3652 | 68.4089 | 68.5542 | 68.5946 [ 68.6844
0.60 | 65.7016 | 65.6911 | 65.6826 | 68.2064 | 68.2490 | 68.3643 | 68.5620 | 68.5940 | 68.6310
Cambridge
0.20 | 68.4783 | 68.5438 | 68.5055 | 69.2817 | 69.4043 | 69.4019 | 69.3689 | 69.4525 | 69.4937
0.40 | 65.5895 | 65.5756 | 65.5107 | 69.1309 | 69.1861 [ 69.1667 [ 69.4992 | 69.5422 | 69.5383
0.60 | 64.9310 | 64.9570 | 64.9448 | 68.9463 | 68.9855 | 68.9683 | 69.4442 | 69.4969 | 69.5291
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Table 4-5 PSNR results for reconstructed set of standard test and medical images
corrupted with zero-mean AWGN of variance 26.

bpp No mask CSF-DWT mask CSF-BPA mask

977 | 1711 | 22714 97 | 1111 | 22114 97 | 17m1 | 22114
Barbara
0.20 | 59.6835 | 59.7797 | 59.7506 | 59.7185 | 59.7306 | 59.7370 | 59.7017 | 59.7062 | 59.7125
0.40 | 60.0206 | 60.0972 | 60.0884 | 60.0733 | 60.0972 | 60.0905 | 59.9544 | 59.9625 | 59.9699
0.60 | 60.6056 | 60.6856 | 60.6790 | 60.2698 | 60.2744 | 60.2807 | 60.1157 | 60.1160 | 60.1233
Lena
0.20 | 59.6390 | 59.6695 | 59.6887 | 59.6852 | 59.6891 | 59.7076 | 59.6715 | 59.6772 | 59.6774
0.40 | 59.9146 | 60.0066 | 60.0253 | 60.0311 | 60.0536 | 60.0516 | 59.9166 | 59.9200 | 59.9282
0.60 | 60.5190 | 60.5770 | 60.5800 | 60.2262 | 60.2288 | 60.2372 | 60.0739 | 60.0711 | 60.0813
Baboon
0.20 | 59.3032 | 59.3394 | 59.3490 | 59.3465 [ 59.3549 | 59.3651 | 59.3092 | 59.3118 | 59.3157
0.40 | 59.6484 | 59.6969 | 59.7222 | 59.7181 | 59.7432 | 59.7368 | 59.5773 | 59.5865 | 59.6080
0.60 | 60.1765 | 60.2384 | 60.2402 | 59.9207 | 59.9255 |59.9233 | 59.7385 | 59.7437 | 59.7464
Boat
0.20 | 59.7652 | 59.8001 | 59.8232 | 59.8023 | 59.8042 | 59.8094 | 59.7745 | 59.7839 | 59.7768
0.40 | 60.1060 | 60.1684 | 60.1738 | 60.1473 | 60.1644 | 60.1693 | 60.0241 | 60.0292 | 60.0326
0.60 | 60.6961 | 60.7662 | 60.7662 | 60.3481 | 60.3493 | 60.3477 | 60.1793 | 60.1842 | 60.1864
Diatoms
0.20 | 60.6290 | 60.6707 | 60.6856 [ 60.4077 [ 60.4261 | 60.4226 | 60.3511 | 60.3714 | 60.3652
0.40 | 61.0075 | 61.0988 | 61.1256 | 60.7428 | 60.7608 | 60.7916 | 60.6011 | 60.6101 | 60.6074
0.60 | 61.7205 | 61.7855 | 61.7886 | 60.9492 | 60.9663 | 60.9754 | 60.7791 | 60.7789 | 60.7636
Pot
0.20 | 60.0972 | 60.1301 | 60.1455 | 60.0928 | 60.0952 [ 60.0966 | 60.0606 | 60.0736 | 60.0683
0.40 | 60.4092 | 60.4953 | 60.5253 | 60.4322 | 60.4425 | 60.4619 [ 60.3085 | 60.3148 | 60.3178
0.60 | 61.0555 | 61.1304 | 61.1466 | 60.6411 | 60.6433 | 60.6400 | 60.4731 | 60.4727 | 60.4729
Text
0.20 | 61.0256 | 61.0498 [ 61.0632 [ 60.8639 | 60.8812 [ 60.8751 | 60.8396 | 60.8425 | 60.8407
0.40 | 61.4769 | 61.5228 | 61.5510 | 61.1808 | 61.1943 | 61.1871 | 61.0730 | 61.0791 | 61.0730
0.60 | 62.2123 | 62.2373 | 62.2272 | 61.3852 | 61.3990 | 61.3868 | 61.2907 | 61.2773 | 61.2562
Ultrasound scan
0.20 | 60.2441 | 60.2781 | 60.2896 | 60.3052 | 60.3138 | 60.3300 | 60.3004 | 60.2999 | 60.2983
0.40 | 60.5857 | 60.6356 | 60.6536 | 60.6479 | 60.6599 | 60.6669 | 60.5369 | 60.5390 | 60.5385
0.60 | 61.2833 | 61.3531 | 61.3643 | 60.8523 | 60.8552 | 60.8586 | 60.7086 | 60.6997 | 60.6936
MRI
0.20 | 61.4382 | 61.4742 | 61.5013 | 61.5564 | 61.5632 | 61.5839 | 61.5495 | 61.5507 | 61.5476
0.40 | 61.9915 | 62.0421 | 62.0449 | 61.8812 | 61.8832 | 61.8894 | 61.7668 | 61.7709 | 61.7774
0.60 | 62.5490 | 62.5834 | 62.5743 | 62.1257 | 62.1143 | 62.1080 | 61.9912 | 61.9940 { 61.9890
X-Ray
0.20 | 61.3369 | 61.3663 | 61.3847 | 61.3322 | 61.3459 | 61.3351 | 61.3201 | 61.3244 | 61.3302
0.40 | 61.9276 | 61.9881 | 61.9954 | 61.6416 [ 61.6535 | 61.6562 | 61.5440 | 61.5521 | 61.5537
0.60 | 62.5809 | 62.6176 | 62.6187 | 61.8916 | 61.8944 | 61.8725 | 61.7884 | 61.7960 | 61.1775
Cambridge
0.20 | 59.3242 | 59.3575 | 59.3520 | 59.3454 | 59.3514 | 59.3524 | 59.3100 | 59.3104 | 59.3117
0.40 | 59.6281 | 59.6879 | 59.7076 | 59.7107 | 59.7117 | 59.7188 | 59.5632 | 59.5730 | 59.5721
0.60 | 60.1501 | 60.2214 | 60.2201 | 59.8947 | 59.9010 | 59.8873 [ 59.7190 | 59.7245 | 59.7155
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images, namely, Barbara, Diatoms and Text. A maximum reduction (2 dB) in PSNR is
observed in the reconstruction of Diatoms. The CSF-BPA mask outperforms the CSF-
DWT mask by providing an improvement in PSNR of 0.7 dB for the case of the Lena
image.

Table 4-5 gives the PSNR results for the reconstructed set of images corrupted with a
zero-mean AWGN with a noise variance of 26. From the table, it is observed that, with
the increase in the amount of noise, there is a considerable reduction in the calculated
PSNR. Here, the number of images showing a decrease in PSNR performance has
increased from three to eight in comparison with the previous noise conditions. This
accounts for 73% of the total images under analysis. A maximum reduction of 0.4 dB is
noticed for the case of the Diatoms image. A maximum PSNR improvement of 0.2 dB is
achieved with the use of the CSF-DWT mask.

In view of the above mentioned results, for most of the images, the BNC wavelets
provide a better PSNR in comparison with the standard CDF 9/7 wavelet irrespective of
the application of the CSF mask. An improvement in the range of 0.8 - 2.0 dB is obtained
when the BNC wavelet is used with integrated CSF-BPA mask. Also, the CSF-BPA
mask offers a PSNR improvement in the range of 0.2 - 1.0 dB over the previously used
CSF-DWT mask. The application of the CSF mask reduces the overall PSNR value for
Baboon, Pot and Text images irrespective of the amount of noise. When the noise
variance is increased beyond 23, the decreasing trend of the PSNR value is more
pronounced among the standard test and medical images. For example, when the variance

is increased to 26, eight images show poor PSNR performance.
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4.2 Qualitative Assessment

Figs. 4-1 — 4-17 present the visual performance for the various filters and mask
conditions under specific compression ratios. Fig 4.1 shows the results for a noisy Lena
image compressed at 0.6 bpp and reconstructed without the application of the CSF mask.
It can be seen that the absence of masking leaves significant amount of noise in the
recovered image. On a hardcopy, there is no noticeable difference among the
performance of the CDF 9/7 and BNC filters. However, the reconstruction using the BNC
wavelets shows reduced visibility of noise pixels at certain regions (near the eyes and the
nose). Also, in terms of the computation time required by each of the filters, the BNC
17/11 wavelet outperforms the other two filters.

Figs. 4-2 and 4-3 show the results of the reconstruction of the Lena image using the CSF-
DWT mask and the CSF-BPA mask respectively. The overall quality of the image,
defined in terms of the amount of noise in the reconstructed image, seems to have
improved with the application of the mask. This result can be verified by comparing these
images with Fig. 4-1 (reconstruction with the absence of mask). The deduced CSF-BPA.
mask seems to preserve more features, namely, the lips, nose, lower eyelashes and
feathers (attached to the hat) in comparison with the CSF-DWT mask, which can be
verified by comparing Figs. 4-2 and 4-3. The overall contrast is also enhanced.

The Cambridge image reconstructed under three different masking modes is as shown in
Figs. 4-4, 4-5 and 4-6 respectively. The visibility of the tomb, the side windows and the
hoisted flag in the right comer of the image frame seems to have enhanced with the
application of the mask. The clarity of the entrance structures and their shape has

improved in the reconstructed image when the HVS masking is considered during
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compression. Also, the reconstruction using the BNC wavelet appears to have improved
clarity of the image pixels and reduced overall noise in comparison with the standard
CDF 9/7 wavelet. BNC 22/14 wavelet shows comparable performance with that of BNC
17/11 wavelet except for the fact that being a long even-order filter with more vanishing
moments, it results in additional smoothing effect in the overall picture quality.

From the reconstructed X-Ray results shown in Figs. 4-7, 4-8 and 4-9, it can be noticed
that the use of the BNC wavelet filters integrated with CSF-BPA mask enhances the
perceptual quality compared to that obtained using the standard CDF 9/7 wavelet filter.
For the case of reconstructed Barbara image (see Fig 4-10.), which is an overly textured
image, the BNC 17/11 wavelet retains more of the checkered pattern on the side of the
table cloth, a behavior which is expected from longer filters [19]. The difference between
the BNC 17/11 and the BNC 22/14 wavelets is difficult to demonstrate in a hardcopy.
However, in a high quality reproduction, it is noticed that the BNC 17/11 wavelet
(symmetric odd-length filter) exhibits less ringing than the BNC 22/14 wavelet
(asymmetric even-length filter) does. In fact, a close inspection of the figures shows that
the BNC 17/11 filter exhibits less visually disturbing ringing than the CDF 9/7 filter does.
In effect, for still image coding, the BNC 17/11 wavelet retains high frequencies without
any significant ringing artifact.

The Boat and Baboon are balanced images with sharp edges, smooth sections and
textured areas. Hence, for analysis of such images these prominent features are to be
considered. In the reconstructed Boat image, shown in Fig 4-11., the clarity of the image
pattern after reconstruction has improved considerably at the cost of a reduction in the

overall sharpness. The shapes of the additional structures are well preserved by the
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application of the CSF-BPA mask. As expected, the images reconstructed using the BNC
wavelets have an enhanced visual appeal.

In the reconstructed compressed Baboon test image shown in Fig 4-12., the visibility of
the block boundaries is reduced and false patterns within the blocks are eliminated when
BNC wavelet is used with integrated CSF masking (using CSF-BPA mask).

For the case of the reconstruction of Text (see Fig 4-13) and Pot (see Fig 4-14) test
images, the BNC wavelets when used with integrated CSF masking (with CSF-BPA
mask) has resulted in a reduction in the overall noise activity. Further, an enhancement in
the image contrast is noticed leading to a slight improvement in the perceptual quality.
For the case of MRI image shown in Fig 4-15., the reconstructed image is slightly
smoothened with the application of CSF mask. The decrease in the blur of the
reconstructed image is achieved at the cost of smoothening of the image.

The results of the reconstruction of Ultrasound scan image, shown in Fig. 4-16, shows a
similar perceptual quality improvement as seen for the case of X-Ray images. The edges
of the womb are preserved slightly better without any blur with the application of
masking used integrated with the BNC wavelet in place of the CDF 9/7 wavelet. In the
reconstruction of Diatoms test image (see Fig 4-17), the overall contrast is enhanced with
a reduction in the noise activity thereby an increase in the clarity of the edges. However,
the overall contrast has reduced and the edges are slightly smoothened.

In an attempt to compare and judge the performance of the filters under different masking
conditions, the Lena, Barbara and X-Ray images, reconstructed at two compression rates,
namely, 0.2 bpp and 0.6 bpp, are provided in Figs. 4-18 — 4-23. It is observed from the

figures that the BNC wavelets reconstruct the image with an enhanced perceptual quality
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Figure 4-1 Comparison of visual image quality of the reconstructed Lena image

compressed at 0.6bpp (with no mask). (a) Original corrupted with zero-mean AWGN of
variance 26. Image reconstructed using (b) CDF 9/7 (¢) BNC 17/11 (d) BNC 22/14
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Figure 4-2 Comparison of visual image quality of the reconstructed Lena image
compressed at 0.6bpp (with CSF-DWT mask). (a) Original corrupted with zero-mean
AWGN of variance 26. Image reconstructed using (b) CDF 9/7 (¢) BNC 17/11 (d) BNC
22/14
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Figure 4-3 Comparison of visual image quality of the reconstructed Lena image
compressed at 0.6bpp (with CSF-BPA mask). (a) Original corrupted with zero-mean
AWGN of variance 26. Image reconstructed using (b) CDF 9/7 (¢) BNC 17/11 (d) BNC
22/14
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Figure 4-4 Comparison of visual image quality of the reconstructed Cambridge image
compressed at 0.6bpp (with no mask). (a) Original corrupted with zero-mean AWGN of
variance 13. Image reconstructed using (b) CDF 9/7 (c) BNC 17/11 (d) BNC 22/14
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Figure 4-5 Comparison of visual image quality of the reconstructed Cambridge image
compressed at 0.6bpp (with CSF-DWT mask). (a) Original corrupted with zero-mean
AWGN of variance 13. Image reconstructed using (b) CDF 9/7 (¢) BNC 17/11 (d) BNC
22/14
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Figure 4-6 Comparison of visual image quality of the reconstructed Cambridge image
compressed at 0.6bpp (with CSF-BPA mask). (a) Original corrupted with zero-mean
AWGN of variance 13. Image reconstructed using (b) CDF 9/7 (¢) BNC 17/11 (d) BNC
22/14
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Figure 4-7 Comparison of visual image quality of the reconstructed X-Ray image

compressed at 0.6bpp (with no mask). (a) Original corrupted with zero-mean AWGN of
variance 13. Image reconstructed using (b) CDF 9/7 (¢) BNC 17/11 (d) BNC 22/14
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Figure 4-8 Comparison of visual image quality of the reconstructed X-Ray image
compressed at 0.6bpp (with CSF-DWT mask). (a) Original corrupted with zero-mean
AWGN of variance 13. Image reconstructed using (b) CDF 9/7 (¢c) BNC 17/11 (d) BNC
22/14
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Figure 4-9 Comparison of visual image quality of the reconstructed X-Ray image
compressed at 0.6bpp (with CSF-BPA mask). (a) Original corrupted with zero-mean
AWGN of variance 13. Image reconstructed using (b) CDF 9/7 (c) BNC 17/11 (d) BNC
22/14
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Figure 4-10 Comparison of visual image quality of the Barbara image compressed at
0.4bpp and reconstructed using the BNC 17/11 wavelet. (a) Original corrupted with zero-
mean AWGN of variance 26. Image reconstructed with (b) no CSF mask (¢) CSF-DWT
mask (d) CSF-BPA mask.
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Figure 4-11 Comparison of visual image quality of the Boar image compressed at 0.4bpp
and reconstructed using the BNC 17/11 wavelet. (a) Original corrupted with zero-mean
AWGN of variance 26. Image reconstructed with (b) no CSF mask (¢) CSF-DWT mask
(d) CSF-BPA mask.
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Figure 4-12 Comparison of visual image quality of the Baboon image compressed at
0.4bpp and reconstructed using the BNC 17/11 wavelet. (a) Original corrupted with zero-
mean AWGN of variance 26. Image reconstructed with (b) no CSF mask (¢) CSF-DWT
mask (d) CSF-BPA mask.

94



(a) (b)

© (@

Figure 4-13 Comparison of visual image quality of the Text image compressed at 0.6bpp
and reconstructed using the BNC 17/11 wavelet. (a) Original corrupted with zero-mean
AWGN of variance 6. Image reconstructed with (b) no CSF mask (¢) CSF-DWT mask
(d) CSF-BPA mask.
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Figure 4-14 Comparison of visual image quality of the Pot image compressed at 0.6bpp
and reconstructed using the BNC 17/11 wavelet. (a) Original corrupted with zero-mean
AWGN of variance 26. Image reconstructed with (b) no CSF mask (¢) CSF-DWT mask
(d) CSF-BPA mask.
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Figure 4-15 Comparison of visual image quality of the MRI image compressed at 0.4bpp
and reconstructed using the BNC 17/11 wavelet. (a) Original corrupted with zero-mean
AWGN of variance 3. Image reconstructed with (b) no CSF mask (¢) CSF-DWT mask
(d) CSF-BPA mask.
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Figure 4-16 Comparison of visual image quality of the Ultrasound scan image
compressed at 0.4bpp and reconstructed using the BNC 17/11 wavelet. (a) Original
corrupted with zero-mean AWGN of variance 26. Image reconstructed with (b) no CSF
mask (¢) CSF-DWT mask (d) CSF-BPA mask.
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Figure 4-17 Comparison of visual image quality of the Diatoms image compressed at
0.4bpp and reconstructed using the BNC 17/11 wavelet. (a) Original corrupted with zero-
mean AWGN of variance 13. Image reconstructed with (b) no CSF mask (c) CSF-DWT
mask (d) CSF-BPA mask.
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BNC 22/14

Figure 4-18 Comparison of visual image quality of the reconstructed Lena image
(corrupted with zero-mean AWGN of variance 26 compressed at 0.2 bpp) under different
filtering and masking conditions. The number of resolution levels used is 5.
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No CSF mask | CSF-DWT mask | CSF-BPA mask

BNC 17/11

BNC 22/14

Figure 4-19 Comparison of visual image quality of the reconstructed Lena image
(corrupted with zero-mean AWGN of variance 26 compressed at 0.6 bpp) under different
filtering and masking conditions. The number of resolution levels used is 5.
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No CSF mask | CSF-DWT mask | CSF-BPA mask

CDF 9/7

BNC 17/11

BNC 22/14

Figure 4-20 Comparison of visual image quality of the reconstructed Baboon image
(corrupted with zero-mean AWGN of variance 26 compressed at 0.2 bpp) under different
filtering and masking conditions. The number of resolution levels used is 5.
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No CSF mask | CSF-DWT mask | CSF-BPA mask

CDF 9/7

BNC 17/11

BNC 22/14

Figure 4-21 Comparison of visual image quality of the reconstructed Baboon image
(corrupted with zero-mean AWGN of variance 26 compressed at 0.6 bpp) under different
filtering and masking conditions. The number of resolution levels used is 5.
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CDF 9/7

BNC 17/11

BNC 22/14

Figure 4-22 Comparison of visual image quality of the reconstructed X-Ray image
(corrupted with zero-mean AWGN of variance 13 compressed at 0.2 bpp) under different
filtering and masking conditions. The number of resolution levels used is 5.
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CDF 9/7

BNC 17/11

BNC 22/14

Figure 4-23 Comparison of visual image quality of the reconstructed X-Ray image
(corrupted with zero-mean AWGN of variance 13 compressed at 0.6 bpp) under different
filtering and masking conditions. The number of resolution levels used is 5.
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for a given compression ratio, in comparison with the standard CDF 9/7 wavelet. It is
also evident that there is a significant reduction in the visible distortion of the
reconstructed image. Also, a majority of the linear features corresponding to the image

are successfully reconstructed independent of the image size.

4.3 Validation of qualitative assessment

The validation of the proposed scheme is performed by a subjective test, whereby a rating
scale and the pair-wise comparison approaches have been used to evaluate the set of
reconstructed images. Some of the high bit-rate applications make use of the Just
Noticeable Distortion (JND) threshold [38] evaluation of the image quality, but this
necessitates the original and compressed images to be displayed to the observer
alternatively for a short period of time, which may result in a biased decision from the
observer. For all the test cases, the original image is not made available to the observer
and the subjective impression of the quality of the reconstructed image is considered
more important than the fidelity of the original one.

A subjective image quality testing procedure was carried out over a group of expert and
non-expert observers. A double-blind test procedure was followed, where the observers
were asked to rate the reconstructed image, i.c., provide their opinion score, on a 1-5
rating scale. The mean opinion score results obtained from the test are tabulated in Table
4-6. The best performance score obtained for each image is highlighted in bold.
Basically, the observers were asked to judge the quality of the reconstructed images
displayed on a 300 dpi color monitor screen of a personal computer. The perceived

quality through the monitor is presumed to be good and none of the display related
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degradation is considered. The reconstructed images were viewed from approximately
two picture heights (about 3 feet).

For most of the test images, the perceptual quality is found to have improved with the
application of a mask. For seven of the eleven images, the BNC 17/11 wavelet shows a
better performance compared to the standard CDF 9/7 wavelet and the asymmetric BNC
22/14 wavelet. Overall, the BNC wavelets seem to provide perceptually soothing

reconstruction to any casual observer (expert or non-expert) irrespective of possessing an

Table 4-6 Mean Opinion Score results determined by Double Blind assessment

MOS with no MOS with

Image Noisy CSF mask applied CSF-BPA mask applied
CDF BNC BNC CDF BNC BNC
9/7 17/11 22/14 9/7 17/11 22/14
Lena 3.00 3.39 3.55 3.46 3.85 3.95 3.96
Barbara 2.80 3.10 3.09 3.13 3.28 3.32 3.33
Baboon 3.00 3.20 3.22 3.26 4.32 4.75 4.53
Boats 3.20 3.20 3.22 3.23 3.88 3.99 3.95

Cambridge 3.20 3.03 3.15 3.14 3.48 3.52 3.49

Diatoms 3.00 3.10 3.08 3.08 4.00 4.26 4.10
MRI 2.90 3.48 3.50 3.51 2.50 2.63 2.60
Pot 2.90 3.22 3.25 3.22 445 4.55 4.52
Text 2.50 3.45 345 3.46 3.66 3.65 3.65
Ultrasound

scan 2.00 2.33 2.30 2.33 3.56 3.88 3.48
X-Ray 2.50 2.89 2.85 2.82 3.60 3.88 3.79

Opinion Score : 1 - very poor, image rejected
2 - poor, quality needs a lot of processing to make it perceptible
3 - fair, quality may be acceptable with some processing
4 - good, very minimum perceptual distortion
5 - very good, no visible artifacts found

107



increased number of vanishing moments in comparison to the standard biorthogonal 9/7

wavelet.

4.4 Eigen vector analysis

Eigen vector plays an important role in image analysis. Eigen vector analysis (EVA)
involves a mathematical procedure that transforms a number of possibly correlated
variables into a smaller number of uncorrelated variables called principal components or
eigen vectors [58]. Because of this unique property, EVA is used in many areas of
research like face recognition, object recognition and illumination planning. Eigen
vectors are used to define the eigen regions, which are geometrical features that
encompass area, location and shape properties of an image region and are used for
principal component analysis or EVA. For image vectors of large dimensions, their
singular value decomposition (SVD) matrix is found to determine their eigen vectors. By
plotting the eigen vector of a reconstructed image, its correlation or closeness to match
with the original image is determined. The only limitation of using eigen vector technique
is that it is computationally complex and the accompanying cost is usually high. The
simulation environment can still be used for eigen vector analysis at no additional cost
except for the increase in the overall design and computation time.

Figs. 4-24 — 4-26 show the results of the eigen vector analysis on the reconstructed Lena,
Pot and Ultrasound scan images for three masking modes. The effectiveness of retaining
detail information is related to the kind of image pattern used. Fig 4-26 shows the

potential suitability of the masking scheme for use in medical image compression.
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Figure 4-24 Eigen region for Lena image. (a) Original. (b) Noisy. (c) with no mask.

(d) CSF-DWT mask. (¢) CSF-BPA mask.
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Figure 4-25 Eigen region for Pot image. (a) Original. (b) Noisy. (c) with no mask.

(d) CSF-DWT mask. (¢) CSF-BPA mask.
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Figure 4-26 Eigen region for Ultrasound scan image. (a) Original. (b) Noisy. (c) with no

mask. (d) CSF-DWT mask. (¢) CSF-BPA mask.
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4.5 No-Reference quality index analysis

Human observers can easily assess the quality of a distorted image without examining the
original image as a reference. By contrast, designing objective No-Reference (NR)
quality measurement algorithms has always been a very difficult task. Currently, NR
quality assessment is feasible only when prior knowledge about the types of image
distortion is available. In an attempt to address this issue related to design of a no-
reference quality index, Wang ef. al. [57] established a JPEG image database and
conducted a variety of subjective experiments on the images. Based on their experimental
results, they came up with a computational and memory efficient NR quality assessment
model for JPEG images. The NR quality assessment algorithm is an objective metric
where, unlike PSNR and MSE, the quality of the reconstructed image is assessed without
the necessity of having to examine the original image.

In this thesis work, we calculate the NR quality index, using the algorithm proposed in
[57], to further evaluate the performance of the compression scheme incorporating the
proposed masking method. Table 4-7 contains the NR quality index measurement values
for all the images under consideration. These measurements have been made over a scale
varying between 1 and 10, where an index value of 10 is considered equivalent to good
image quality and 1 for poor visual quality. From these measurements, it can be seen that
the perceived quality in about 50% of the cases, agrees with the subjective assessment
results and the rest with the objective assessment. This shows the inability of the
quantitative analysis metrics to predict closely the perceived quality of a reconstructed
compressed image. For most of the images, under consideration, the BNC 17/11 wavelet

used in conjunction with the CSF-BPA mask is found to offer a higher value for quality
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index in comparison to the standard CDF 9/7 wavelet and the BNC 22/14 wavelet. The
improvement in the compression performance (in terms of the final visual quality) by
using the BNC wavelets with integrated CSF-BPA mask over the previously used CSF-

DWT mask clearly corroborates with the previously mentioned assessment results.

Table 4-7 No-Reference Quality Index measurement results

Image Noisy No mask applied CSF-BPA mask applied

CDF | BNC | BNC | CDF | BNC | BNC
9/7 | 1711 | 22/14 9/7 17/11 | 22/14
Lena 7.55 | 8.90 8.98 9.00 8.76 8.75 8.79

Barbara 794 | 8.78 8.77 8.74 8.71 8.68 8.70

Baboon 7.79 | 889 | 8.82 8.82 9.02 9.06 9.01

Boats 8.68 | 9.01 9.01 8.90 8.75 8.78 8.77

Cambridge | 8.73 | 8.81 8.80 8.80 9.06 9.07 9.03

Diatoms 634 | 9.00 | 8.96 8.93 8.93 9.00 8.96

MRI 893 | 873 8.74 8.72 7.48 7.52 7.50
Pot 7.68 | 8.95 8.85 8.91 8.93 8.98 8.96
Text 7.56 | 9.20 9.11 9.09 9.25 9.28 9.25

Ultrasound | 7.11 | 8.80 8.71 8.80 8.75 8.73 8.75
scan

X-Ray 832 | 9.06 | 9.01 9.01 8.52 8.52 8.58

Quality Index: Scale ranges between 1 and 10
1 - Poor visual quality
10 - High visual quality obtained
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4.6 Summary

To summarize, in this chapter, the performance of the proposed system has been studied.
A performance comparison has been made between the most commonly used JPEG-
standard CDF 9/7 biorthogonal wavelet system and two of the recently explored nearly-
orthogonal or biorthogonal nearly coiflet (BNC) wavelets, namely, the symmetrical BNC
17/11 wavelet and the asymmetrical BNC 22/14 wavelet, for a variety of standard natural
images as well as digital medical images. An extensive evaluation has been carried out
using both the quantitative (PSNR) and the qualitative metrics (double blind test) for
different wavelet types, over a specific range of compression ratios, for various masking
conditions. The presence of the AWGN, which is the most common cause for the image
artifacts, is included in this evaluation. The subjective assessment procedure is followed
for both the expert and non-expert observers along with a no-reference quality assessment
metric.

Overall, from all the simulation results, it can be concluded that the BNC wavelets
provide a better PSNR and also shows an enhancement in the perceptual quality when
used in conjunction with the proposed CSF-BPA mask. The standard CDF 9/7 wavelet is
found to reproduce the edge features better in comparison with the BNC 17/11 and BNC
22/14 wavelets, but the detail pixels are greatly smoothened resulting in blurring of the
image. The BNC wavelets perform equally well for most of the image types. At low and

medium bit rates, the BNC 17/11 wavelet preserves the high frequency pattern better than

the BNC 22/14 wavelet do.
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Chapter S

Conclusions and Future work

5.1 Conclusion

Most of the existing efforts in the field of image compression have focused on developing
methods to minimize mathematically tractable, easy to measure, distortion metrics. These
distortion measures facilitate reasonable evaluation at high-bit rates. However, at low bit
rates these metrics fail to guarantee preservation of important perceptual qualities in the
reconstructed images. Integrating models of the human visual system (HVS) into the
coding algorithms have the potential to facilitate increased performance, defined in terms
of the image quality and bit rate. These perceptually-enhanced coding schemes attempt to
distribute the visual errors uniformly over the whole image resulting in the reduction of
visual artifacts in the final reconstructed image.

In this thesis work, a digital image compression scheme to achieve an enhancement in the
perceptual quality of the reconstructed compressed images has been developed. The
proposed system exploits certain important human visual properties like the contrast
sensitivity and the contrast masking. As an initial step to the proposed scheme, the effect
of contrast masking in the wavelet domain has been investigated. A band peak-average
contrast sensitivity function (CSF) masking method has been developed using the
Mannos and Sakrison’s HVS model. The wavelet transformed coefficients were masked

based on their perceptual importance using the derived CSF-BPA mask. The proposed
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scheme uses a nearly-orthogonal wavelet in lieu of the biorthogonal CDF 9/7 wavelet to
obtain a high compression performance.

The qualitative and quantitative performance of the proposed scheme, in enhancing the
performance of the quality of the reconstructed image, has been studied under different
masking conditions. The qualitative assessment has been done using the peak signal-to-
noise ratio (PSNR). The mean opinion score (MOS) values were obtained from a group
of observers in order to subjectively evaluate the quality of the reconstructed image. The
subjective evaluation has been done only to compare the artifacts obtained from the
transform themselves and not the tiling artifacts. Hence, the use of tiling was avoided
whenever possible. More specifically, tiling was used for ultrasound and X-ray image due
to their large size, where a tile size of 512 x 512 was employed. In order to perform the
subjective testing, some critical regions from the various lossy reconstructed images were
selected to be scrutinized. Many small regions of interest were considered instead of
whole images because of two main reasons.

1) Some of the test images are too large to be displayed at their original resolution
on a computer screen, and reducing their resolution hides most of the compression
artifacts.

2) Also, if the whole image is considered, there would have been too much
information for a human observer to analyze, and making an accurate and
meaningful comparison would have been difficult.

The subjective testing has been restricted to lower bit rates as the human eye often cannot
distinguish between a high bit rate lossy reconstruction of an image and the original. The

participants involved in the subjective testing came from diverse backgrounds, a few of
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them had any background in image coding and/or image processing while others were
end users with no special technical training. In order to further evaluate the performance
of the compression scheme incorporating the proposed masking method, the No-
Reference (NR) quality assessment has been performed using the algorithm proposed in
[50].

A comparison of the visual performance has been made with reference to the
conventional scheme. Based on the assessment results, the proposed scheme has been
found to preserve the visual quality by maintaining the semblance of the image edges.
Considering the simulation results, it can be inferred that the BNC wavelets are capable
of achieving state-of-the-art performance levels for lossy wavelet compression for gray
scale images. Further, it has been found that longer filters give a better approximation of
the transformed image and produces a greater contrast between the edges and the detail
pixels after the reduction of the additive Gaussian noise.

The absence of the mask preserves the high frequency components better, but more noise
appears at the output and the reconstructed image looks artificial due to the presence of
the artifacts. It has been found that when the magnitude of the compression artifacts is
close to the visual threshold, the subjective metrics correlate, better than the objective
metrics, with the perceptual quality of the reconstructed image. One of the most
significant inferences from this work is that the PSNR does not effectively take into
account the human visual perception and hence, does not correlate with the mean opinion

score. Finally, in order to implement the BNC 17/11 wavelet filter in a FPGA or ASIC

hardware, a multiplier-less design has been proposed.
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5.2 Scope For Further Research

At the present time, the only drawback for a wavelet-based compression is that it is
relatively new and not yet widely supported. Every photo-editing program and web
browser supports JPEG, while plugins are needed to view a wavelet-compressed image.
There is no public standard for the image portability and each vendor uses his/her own
file format. Below are some suggestions that can be considered for developing wavelet-
based perceptually enhanced compression and watermarking systems.

1) Wavelets: The work in this thesis has shown as to how the biorthogonal counterpart of
coiflet (nearly-orthogonal) wavelets aids in achieving higher compression ratios. In the
field of wavelet theory, there have been some recently-explored higher-order
multiwavelet systems [60]. It would be desirable to investigate these multiwavelets for
image processing applications.

2) 3-D HVS modeling: The proposed work exploits the CSF characteristics of the HVS
model in the 2-D domain. In reality, for a better understanding of the vision model, a 3-D
model needs to be used. The distortion maps generated using a 3-D non-linear model will
lead to the design of better perceptual coder systems.

3) Optimal FPGA design: In this thesis, a general design structure for implementation on

a FPGA chip has been proposed. It would be worthwhile to optimize the implementation

to obtain a low-power VLSI sub-system.
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Appendix - I
Lifting Scheme

The lifting scheme (Fig 1), formally introduced by Sweldens [59], is a well-

known method to create biorthogonal wavelet filters from the other existing wavelets. To

achieve this, a lazy wavelet is used. The low-pass # and / and the high-pass filters g

and g of a lazy wavelet are defined as follows.
hz)=h(z)=1

g(2)=8()=2"

The input signal x, is transformed into the approximation (x) and detail (y) signals using
the lazy wavelet transform. Then, the lifting steps, namely, predict and the update, as
defined by (1) and (2) are performed. In a predict step, the detail signal at next level is
predicted from the current level approximation samples. During the update phase, the
approximation signal at next level is updated based on the predicted values of the detail
signal. The prediction P (or dual lifting) and update U (or primal lifting) steps improve
the initial lazy wavelet properties.

yo[n] =y[n] — P(x[n]) (1)

xo[n] = x[n] + Uyo[n]) )
Several prediction and update steps are concatenated till the desired wavelet basis is
obtained. The prediction and update operators may be a linear or a non-linear
combination of x and y, and by construction the lifting scheme is always reversible.

Lifted wavelets are known as second generation wavelets. The main advantages of the
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lifted wavelets when compared to the new wavelets generated using classical methods are

given as follows.

x[n] , x[n]
e
U

x,[n] Lwr| | P U LWTH— x [n]

P
"é} > ¥n] *@5

Figure 1: Lifting scheme

¥(n]

I.Inverse existence: Since by structure every lifting step is reversible, the inverse
structure exists and this gives the inverse wavelet transform.

2.Critical down-sampling assured: Initial wavelet is modified with existing samples, so
no additional information (redundancy) is added.

3.Computational cost reduction: Lifting reduces the computational cost involved in a
standard filter implementation to one-half.

4.Memory savings: In-place lifting computation avoids auxiliary memory requirements
since lifting outputs from one branch may be saved directly in the other branch.

5.FIR decomposition: Daubechies demonstrated in [13] that every wavelet transform with
FIR filters can be decomposed into a finite number of lifting steps.

For images processing applications, the lifting filters are usually developed for the 1-D

case and then they are extended to the separable 2-D case by a succession of a vertical

and a horizontal 1-D filtering. This structure leads to a 4-band decomposition for each

resolution level and the LL (the low-pass vertical and low-pass horizontal band) is

successively iterated. For image compression purposes, bands with high frequency

components (the HL, LH and HH bands) are not recursively filtered.
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Appendix — 11
Original Images
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