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ABSTRACT

Efficiency and Stability of Peer-to-Peer File Sharing Systems
Wei Qian Sang
In recent years, Peer-to-Peer (P2P) applications, from traditional file sharing to P2P live
audio/video streaming, have become very popular. Among the P2P applications, P2P file
sharing remains one of the most popular applications and its traffic has been dominating
the Internet bandwidth for the past years. In this paper, I will mainly study the efficiency

and stability of the P2P file sharing systems.

In the P2P file sharing networks, the upload bandwidth of each peer is a very important
resource of the network. The efficient use of it will affect the system performance
significantly. Motivated by this fact, a stochastic model for P2P file sharing networks is
proposed and numerically solved to analyze how the performance of a P2P file sharing
network is affected by different parameters such as the piece numbers of the file, the
number of neighbours of a peer, and the seed departure rate etc. Based on this result,

some useful guidelines are also provided on how to design an efficient P2P system.

Stability is another important issue in P2P file sharing systems. In this thesis, a simple
fluid model is used to analyze the stability of BitTorrent-like P2P file sharing networks.
The resulting fluid model is a switched linear system and it is proved that such a system
is always globally stable. Numerical results based on extensive simulations are also

provided to support the theoretical proof.
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CHAPTER 1 INTRODUCTION

1.1 LITERATURE REVIEW

During the past decades, the Internet has developed very quickly. As a result, the Internet
has become a very important resource of information and sometimes, it is called “The

largest library ever created”. Through Internet, people can share information that they are
interested in. File sharing has been one of the important ways to share information. In the

current Internet, most file sharing is done in the Peer-to-Peer (P2P) fashion.

1.1.1 P2P Model and Client-Server Model

P2P is a communication model in which each node (or peer) [5] has the symmetric
capabilities and responsibilities [4]. Many new Internet applications have been designed
based on the P2P model, such as Instant Messaging, File Sharing, Collaborative
Community, IP Telephony, and High Performance Computing [10]. According to
statistics from Ellacoya Networks in June 2007 [6], P2P users account for 37 percent of

total Internet traffic, as shown in Figure 1.1 [7].



Figure 1.1: Percentages of total Internet traffic

The P2P model is significantly different from the client-server model. In the client-server
model, each node plays an asymmetric role as either a client or a server and a server must
be dedicated to serve other clients. On the other hand, in the P2P model, each
communication node provides functionalities of both client and server. Both P2P model
and client-server model have been widely used in Internet, and each has unique

advantages and disadvantages.

The client-server model is the traditional model that has been adopted by many
applications since the first day of the Internet. Client-server model is widly used in
Internet protocols such as HTTP, FTP and SMTP [8]. When you access the Internet, no
matter whether it is sending an email or just web browsing, you are in fact using the
client-server model. Therefore, we can say that the client-server model is the foundation

of the Internet.



With the centralization character, the client-server model has some advantages like ease
of server maintenance, ease of updating resources, security and service assurance in
dedicated servers etc., but the client-server model also has its own disadvantages. One of
the main problems is the scalability. For example, the popular web service is built based
on the client-server model. The web server normally works well if the load of service
requests is light. However, for very popular web servers like google.com, cnn.com etc,
there may be thousands of requests per second. Since a single server’s capacity is limited,
when the load is too high, the response time will increase significantly and users may
have to wait for several minutes for a simple web page to be displayed. Currently, the
solution is to use expensive servers with higher capacity and use multiple servers instead
of a single server. However, the solution is not elegant and the scalability is still limited.

The P2P model, on the other hand, could be a good solution to the scalability issue.

To overcome the poor scalability of the client-server model, the P2P model has been
introduced and developed. As we discussed before, the difference between the P2P model
and the client-server model is that with the P2P model, every node plays the same role as
both client and server, while in the client-server model, every node has different role as
either a client or a server. Generally, P2P systems are developed in a distributed fashion,
which means that normally there is no single centralized server in the system. While on

the other hand, a centralized server is normally necessary for client-server systems. The
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differences between Client-Server model and P2P model can be shown in Figure 1.2.

Client-Server Model P2P Model

Figure 1.2: Client-server model and P2P model

However, the P2P model is not a replacement of the traditional client-server model.
Instead, it should be looked upon as a good supplementary to the client-server networks.
In some applications, the two kinds of models are combined together to provide better
performance. For example, the Structured overlay Networks Application Platform (Snap)
[9] has been developed to combine the P2P model with the traditional client-server web
application model and provides significant performance improvement over the traditional
client-server based web server as well as new features such as load balancing and fault -

tolerance [9].



With the distributed and symmetric nature, the P2P model has advantages as follows:

Scalability

e In a P2P system, since each node plays as a client and a server at the same time,
when the load of the system increases (which means there are more clients
requesting service from the system), the number of servers also increase and
hence the service provided by the system increases. From the user’s point of view,
the performance of the system will not degrade when there are more users joining

the system. Hence, it has very good scalability.

Anonymity

e Peers (nodes) in P2P networks could be anonymous to each other.

Ease of sharing

e Peers can choose the best neighbours to communicate.

e Does not require a publication step (create a web page or upload to a server) to

share information

Low cost

e No demand for high capacity and expensive servers.

¢ No special managements or administrative issues.

Performance



e Performance could be better when there are more peers.

o Good load balance and no bottlenecks in servers as in the client-server mode.

Fault Resilience (robustness and reliability)

e System breakdown due to single point failure can be avoided.

e Dependence on a central server can be reduced.

1.1.2 Introduction of P2P File Sharing Systems

In a P2P file sharing system, the certain files are stored on users in the network. These
users are called peers or nodes and usually are individual computers. There is little or no
centralized control among these peers. Each peer acts as both a client and a server at the
same time. Each peer can initiate file requests to other peers, and also responses to file
requests from other peers. Usually, the downloading and uploading activities are going on

at the same time but neither of them is compulsory.

Before P2P file sharing became popular, the client-server model had been the most
commonly used method for file sharing on the Internet. With the client-server model, file
sharing can be easy to set up with http or ftp protocols. Even today, this method has still
been widely used. However, as we discussed before, the client-server model doesn’t work

well when the load of the server is very heavy and hence has very poor scalability. For a



given server, when the shared file is very large or there are too many client requests for
the file, the limited capacity of the server will seriously affect the response time of the
server and the download speed that the clients can obtain. This is the reason why P2P file

sharing applications have become so popular during recent years.

In the first generation of P2P file sharing networks, the client-server model and the P2P
model are mixed together. For example, in the Napster network [11,12,15,16], it is still
necessary to have a central server, which is normally utilized as the centralized file index
server. This kind of P2P model is called as centralized peer-to-peer model. In this model,
when a peer joins the file sharing network, it will first communicate with the server for
getting a list of peers that have the files. It can then start downloading the files from those
peers. Similar with the client-server model, the centralized P2P nétworks have a single
point of failure at the central server. Once the central server fails, the whole network may

not work anymore.

After Napster encountered legal troubles, the decentralized P2P model was introduced
into file sharing. New applications such as eDonkey [11,12,17,18], Gnutella [11,12,31],
BitTorent [11,12,24,27,34], FastTrack [11,12,20,21] were developed. These applications
are called the second generation and have soon become extremely popular. The traffic

generated by these applications is dominating the current Internet bandwidth.



There are also two other generations of P2P applications that have been developed. The
third generation is the indirect and encrypted P2P network [11, 12], and the fourth
generation is the P2P networks that support media streams [11, 12]. The third generation
of peer-to-peer networks are those that have anonymity features built in. And the fourth
generation of peer-to-peer networks supply the users with services that can send streams
instead of files over a P2P network, thus users can share live video without a centralized

server involved [11,12].

1.1.3 Introduction of BitTorrent

In the past few years, traffic generated by P2P file sharing has dominated the Internet
bandwidth. For exa;hple, in Germany, according to the P2P survey 2006 [26], the P2P file
sharing is still on the rise..Thi's survey was conducted during April to October 2006. In
the daytime, P2P traffic accounts for 30% share of all Internet traffic and it is 70% in the
nighttime. Between June and October 2006, the absolute data volume of P2P traffic has
risen by 10%. Among all P2P applications, BitTorrent occupied more than half of all P2P
traffic, which makes BitTorrent the most popular file sharing application in Germany. In
this thesis, the efficiency and stability of BitTorrent-like P2P file sharing systems will be

studied.

BitTorrent is a very popular P2P file sharing application. In a BitTorrent network, a peer



can download the file of interest from other peers and at the same time, it can act as a
server to upload to other peers. It uses a tit-for-tat [34] strategy as an incentive
mechanism to encourage peers to upload. In real networks, people find that BitTorrent
works extremely well for file sharing, especially for large, popular files. Many
experiments have also shown that BitTorrent has very good scalability. When the network
becomes very large, the performance of the network doesn’t degrade as what has been

observed with traditional HTTP or FTP protocols.

In the early versions of BitTorrent, special servers are still necessary for the network to
work properly. To download files from a BitTorrent network, a peer should first obtain a
torrent file. A torrent file is a small file that stores information about the file of interest,
such as the file’s length, name, hashing information, and the Uniform Resource Locator
(URL) of a tracker. These torrent files are normally listed on some file sharing websites
and there are also search engines that can be used to search the torrent files. Once a peer
obtains the torrent file, it connects to the tracker specified in the torrent file. A BitTorrent
tracker is an Internet server, which coordinates the communication between peers using
the BitTorrent protocol. The most important function of the tracker is to return a list of
peers that have the file of interest to the newly joined peer. As long as the new peer has
the information of other peers, it can start downloading the file from those peers and the
file exchanging process between peers will begin. During the file exchanging period,

peers will periodically communicate with the tracker and update statistics to the tracker.
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If the tracker goes down after a peer has already begun the file exchanging process with
other peers, the peer can continue its file exchanging. But no new peers will be able to

join the network anymore since they have no way to obtain information about other peers.

In BitTorrent file sharing networks, the tracker could be considered as the possible single
point of failure. To improve the reliability of BitTorrent, multi-tracker torrents and
tracker-less torrents are developed. With multi-tracker torrents, multiple trackers are used
instead of a single tracker which improves the reliability in the case that if a tracker fails.
With tracker-less torrents, every peer in the file sharing network can act as a tracker and
hence eliminate the requirement of a single tracker server. There are mainly two kinds of
tracker-less torrents methods: DHT-based implementations and Azureus 'Distributed

Database' [24,34] .

In P2P file sharing, files are divided into pieces of fixed size. For BitTorrent networks,
the default piece size is a quarter megabyte. Periodically, a peer will exchange
information with other peers about which pieces has already been downloaded. By this
method, a peer can know which pieces its neighbors have. Furthermore, pieces are further
broken into sub-pieces, which are usually sixteen kilobytes in size, and typically five sub-

piece requests are sent at once.

During the downloading process, peers usually have different pieces. When a new peer

10



joins the network, it has no pieces at all and hence can’t serve other peers. On the other
hand, peers with most pieces of this certain file may receive many requests and hence
will be busy on uploading. To select suitable pieces to request and to request them in a
good order are important for good performance. In BitTorrent, there are four major piece
selection strategies: strict priority, rarest first, random first and endgame mode. Strict
priority means that once a peer requests a single sub-piece in one particular piece, the
remaining sub-pieces of this piece will be requested before sub-pieces from any other
piece for this peer. This strategy guarantees that the peer can get complete pieces quickly.
Rarest first means that the rarest piece in the network should be downloaded first. It is
designed to improve the survivability of the network. For example, if a piece has only
one copy in the network and the peer that has this piece leaves the network, then no peers
in the network can download the whole file anymore. With the rarest first policy, the
possibility of this situation will be decreased. Random first is an exception to rarest first
and it is applied only to new peers. When a peer is new and has no pieces at all, the peer
will randomly select a piece to download. After the first piece is downloaded completely,
the peer changes to rarest first policy. This strategy ensures that new peer can get the first
piece as quickly as possible and can start to serve other peers soon. Endgame mode is
applied when a peer has downloaded all pieces except the last one. In this situation, the
peer will send the last piece request to all neighbor peers. This strategy is used to avoid
the delay of the download. However it may also cause the peer to receive multiple copies

of the last piece and hence wastes some bandwidth. The four strategies work together and
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make the piece selection algorithm of BitTorrent. [24, 34]

1.2 RELATED WORK AND RESEARCH OBJECTIVES

BitTorrent has been one of the most popular P2P file sharing applications and has
attracted a lot of research attention. While early work on P2P systems has mainly focused
on system design and traffic measurements, [27, 28, 41], some recent research has
emphasized performance modeling. In [29], a closed queuing system is used to model a
general P2P file sharing system and basic insights on the stationary performance are
provided. In [30, 31], a stochastic fluid model is used to study the performance of P2P
web cache (SQUIRREL) and cache clusters. In [36, 38], a branching process is used to
study the service capacity of BitTorrent-like P2P file sharing in the transient regime and a
simple Markovian model is presented to study the steady-state properties. In [46], a
spatio-temporal model is proposed to analyze the resource usage of P2P systems. In [47],
an approximation for the life time of a chunk in BitTorrent is proposed. In [48], the
authors present an extensive trace analysis and modeling study of BitTorrent-like systems.
In [42], the authors studied the behavior of peers in BitTorrent and also investigated the
file availability and the dying-out process. In [37], a simple fluid model is proposed to

study the performance and scalability of BitTorrent-like P2P systems.

Although a lot of research has been conducted in the area of P2P file sharing, there are
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still some important issues that are not understood very well. In this thesis, two important
problems in P2P file sharing, the efficiency and the stability will be studied. More
specifically, the objectives of this research are shown as follows:

Propose a stochastic model to study the utilization of upload bandwidth in BitTorrent-like
P2P file sharing systems.

By solving the proposed stochastic model, gain some insights on how the performance of
a P2P file sharing network is affected by different parameters.

Obtain some useful guidelines on how to design an efficient P2P file sharing system.
Study the stability of the fluid model proposed in [37]. More specifically, prove that the
fluid model proposed in [37] is globally stable.

Simulate BitTorrent-like P2P file sharing systems extensively and verify the theoretical

results that have been obtained.

1.3 THESIS ORGANIZATION

This thesis will be presented as follows:

Chapter 2 Efficiency of P2P file Sharing: In this chapter, the efficiency problem of
P2P file sharing system is analyzed for a BitTorrent-like system. In section 2.1, the
motivation is described. In section 2.2, assumptions of the system are given. Under the

condition that the system is in steady state, a stochastic discrete-time model is proposed

13



and analyzed. In section 2.3, by numerically solving the model proposed in section 2.2,
we obtain some important insights on how the performance of P2P file sharing will be
affected by different parameters. Then in the last section, we will give guidelines on how
to design an efficient P2P file sharing system based on our theoretical and numerical

results.

Chapter 3 Analysis of Global Stability: In this chapter, the global stability of
BitTorrent-like P2P file sharing systems is analyzed in detail. In section 3.1, the
motivation of this study is described. In section 3.2, the simple fluid model proposed in
[37] is discussed. In section 3.3, the local stability of the fluid model is summarized. In
section 3.4, the global stability of the fluid model is analyzed under three different initial
conditions. Under all these initial conditions, the global stability of the system is proved.
In section 3.5, the fluid model is numerically simulated under different initial conditions
to verify our theoretical results. In the last section, the contribution of this study is

summarized.

Chapter 4 Conclusions and future Work: In section 4.1, the conclusions of this thesis are

summarized. In section 4.2, some possible future works are discussed.
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CHAPTER 2 EFFICIENCY OF P2P FILE SHARING

2.1 MOTIVATION

As has been discussed in Chapter 1, in P2P file sharing, a certain file is divided into many
pieces. The size of each piece ranges from several hundred kilobytes to several
megabytes. When a new peer joins the network, it begins to download pieces from other
peers. As long as it obtains one piece of the file, the new peer can start to serve other
peers by uploading pieces. Since peers are downloading and uploading at the same time,
when the network becomes large, although the demands increase, the service provided by

the network also increases. Hence, the performance of the P2P network scales very well.

In a P2P file sharing network, each peer contributes to the network through uploading and
hence the upload bandwidth of each peer is a very important resource of the network. The
efficient use of it will impact the system performance significantly. However, little
research has been done in this area. We first observe that the number of pieces that a

given peer has is an important factor that affects the upload bandwidth utilization. For
example, when a peer first enters the network, it has no pieces at all and hence can not
upload to anyone. The upload bandwidth utilization is zero in this case. On the other hand,
when a peer has most of the pieces, it is very likely that it can upload to others and hence
the utilization is close to one. Motivated by this fact, a stochastic model is proposed to

study the peer distribution with regards to the number of pieces that a peer has. More
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specifically, P will be determined, which is the probability that a random peer has i
pieces, where 0 <i < N and N is the total number of pieces of the served file. Note that in
BitTorrent, peers that have the whole file are called seeds, while other peers are called
downloaders. After the peer distribution is obtained, this result is used to study how the
efficiency is related to different network parameters, such as the number of pieces, the

number of neighbours, and the seed departure rate.

2.2 STOCHASTIC MODEL

2.2.1 Model Assumptions

In this section, the assumptions for the stochastic model will be described:

BitTorrent-like P2P file sharing network
There are many P2P file sharing applications available in the current Internet. However,
BitTorrent has been one of the most popular applications for the past years. So, in this

thesis, BitTorrent-like P2P file sharing networks are studied.

Steady State
From real trace measurements, it has been observed that three are three stages in
BitTorrent-like P2P file sharing networks, a growing stage, a stabilizing stage, and a

decaying stage. The stabilizing phase is normally the one that most of downloads take

16



place and hence it is the one that determines the performance of the system. In this

chapter, a P2P file sharing system that is already in the steady state is considered.

Piece number N
In P2P file sharing systems, a certain file is divided into many pieces. In this chapter, the

total number of pieces of the served file is assumed to be N.

Peer distribution P;
Peer distribution Pi indicates the probability that a random peer has i pieces, where
0<i< N. In this chapter, the P2P network is assumed to be very large and in the steady

state. Hence the peer distribution {P;} doesn’t change with time.

Number of Neighbours L

Peers in a P2P network will communicate with each other. When a peer enters the
network, it first gets a list of peers from the tracker. These peers are called the new peer’s
neighbours. In this chapter, for the simplicity of analysis, I assume that the number of

neighbours of each peer is fixed at L.

Piece distribution
For a given peer with i pieces, I assume that these pieces are chosen randomly from the

set of all pieces of the file. This is a reasonable assumption because BitTorrent-like
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systems take a rarest first piece selection policy when downloading. Hence, it is unlikely
that the network has significantly more copies of a piece than copies of other pieces. I

also assume that these pieces are chosen independently with other peers. In P2P networks,
a peer is normally downloading from many neighbor peers at the same time. Hence, a
single neighbor's effect on the given peer's pieces can be neglected and it is reasonable to

assume the independence between peers.

Upload and Download bandwidth

Since we are interested in the efficient use of upload bandwidth, for simplicity of analysis,
I assume all peers have the same upload bandwidth and the download bandwidth is
unlimited. I use a discrete time model and without loss of generality, I assume that the

upload bandwidth of a peer is one piece per time slot.

No downloader departure
For the simplicity of analysis, I assume that once a peer enters the network, it will not
leave the network until it downloads the whole file. Hence, there is no downloader

departure in this model.

Seed departure rate y
The seed departure rate y represents the probability that a seed leaves the system in any

given time slot.
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Peer arrival rate A

The peer arrival rate A represents the number of new peer arrivals per time slot.

Other notations that will be used in this chapter are also listed below:
F(i, j) probability that peer B has no pieces that peer A is interested in,
where peer A has i pieces and peer B is a neighbour of peer A with j pieces.

rix  the probability that a peer with i pieces downloads £ pieces in the current time slot.

M the average number of peers in the system.
T the average time a peer stays in the system.
Ty the average download time of a peer. (i.e., the time from the moment that a peer

enters the system until it becomes a seed)

Ty the average time a seed stays in the system.

Note that although our model is relatively simple, it has all the important features of a

typical P2P file sharing network and we expect the model can shed some light on further

research of P2P file sharing efficiency.
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2.2.2 Model Analysis

With the assumptions described in last section, the stochastic model can be shown as
Figure 2.1.
L .

A

T Y Ty ~=Ti1,0 ~==Tip k. ™N- v TN, ’

Figure 2.1: A stochastic and discrete-time BitTorrent-like P2P file sharing model

In BitTorrent-like systems, when a peer obtains a new piece, it will update this

information with its neighbours and hence a peer knows what pieces its neighbours have.

At the beginning of a time slot, a peer will send requests for pieces to its neighbours if a

neighbour has pieces that the peer is interested in. At the same time, the peer will also

receive requests from its neighbours. If the peer receives more than one request, it will

randomly pick up one of the requests to fulfill. Note that in a real BitTorrent network,

peers will fulfill requests according to a built-in incentive mechanism. How the incentive

mechanism will affect the performance is out of the scope of this thesis and is part of the

future work.
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Next, the analysis of two peers in a neighbourhood will be considered. It is assumed that
peer A has i pieces and peer B is a neighbour of peer A withj pieces. F(i, j) is the
probability that peer B has no pieces that peer A is interested in, i.e., peer A has all the

pieces that peer B has, then F{(i, j) can be expressed by,

-

0, i<j
N-j

M
L i

In a given time slot, if peer B has pieces that peer A is interested in, peer A will send a

piece request to peer B. Since peer B has L neighbour peers, it may receive more than one
piece request. According to our assumptions, if peer B receives more than one request, it
will randomly pick up one request to fulfill and the piece request from peer A will only
have a certain probability to be fulfilled. Next, the probability that peer A could get one

piece from peer B in the given time slot will be calculated.

Assuming X be the number of requests that B receives besides A’s request, then X is a
Binomial random variable with parameters L—1 and g;. Here L—1 is the maximum number
of requests B could receive besides A’s request; g; is the probability that a randomly

picked neighbour of B sends request to B. g; can be expressed as follows,

9, = 2 R(-F(k, ) @
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Let Prob {X=k} be the probability that X=k, which means that besides peer A’s request, the
number of requests that B receives is equal to k. Because X is a Binomial random variable,

we have

Prob{X =k} = (Lk_ quj. (1-g,)"* 3)

The probability that peer B fulfill the request of peer A will then be,

L-1
G, = —LProb{X=k}
7= k+]
&1 (L-1] k L1k
=) — (1
k=ok+1[ i ]q,( q;)
=L_l (L 1) ( q)le
~ (k+D)L-1-k)! 9

1 E L! k+l( ~q. )L—l—k
q S k+DL-1-k) /
1

L

’ ~( L K+l L-1-k
=L_kz(k+l) =g,
& L L-m
:L_qj;(m]qj (l_qj)
_ 1_(1_q_,')L
Lq, (4)

With Eq. (4), we can obtain the probability that peer A downloads a piece from a

randomly selected neighbour peer,

S, = Z};(l -F(i, )G, - (5)

According to the BitTorrent protocol, at any given time slot, a peer only sends one
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request for a given piece. Therefore, for a given peer with i pieces, the maximum number
of requests that can be sent by this peer is D=min(L, N—i). We can see that the number of
pieces that it downloads in the same time slot is then a Binomial random variable with
parameters D and S;. The probability that a peer with i pieces downloads £ pieces in this

time slot, can be expressed as

ey Jsta-so, ©

where i=0, 1, ... , N-1 and k=0, ..., D.

With Egq. (6), we can obtain the average download rate of a peer with i pieces,

min(L,N-i)

d, = kr; . ™

k=1
Since the system is in the steady state, the peer distribution doesn’t change with time. So

we have

min{i,L)

F= Z E—k’}—k,k (8)

k=0
where i=1,0, ... , V.
When a peer has downloaded all the pieces, it becomes a seed. Once a peer becomes a
seed, it will serve other peers until it leaves this system. In the last section, we have
defined the seed departure rate as y and peer arrival rate as 4. Since the system isin a
steady-state, the total seed departure rate equals to the new peer arrival rate. Hence, we
have

P()=PO’6,O+PN7' )
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Solving Eq. (6), Eq. (8) and Eq. (9), we can obtain the peer distribution {P;}, where
i=0, ..., N. Note that it is hard to get a closed form peer distribution. However, the
equations can easily be numerically solved and the results will be discussed in the next

section.

Once we know the peer distribution, we can use it to study important performance such
as the average download time of a P2P network. Let M denote the average number of
peers in the system, T denote the average time a peer stays in the system, and 7; denote
the average download time of a peer. Applying the Little’s Law [33, 39] to the whole
system, the seeds, and the downloaders respectively, we can get the following equations

relating to M, T, and Ty,
M =AT
MP, =4 1

I

M(-P,)==1AT, (10)

From Eq. (10), it is easy to get the average time a peer stays in the system:

1
T=__ (1)
Py
and the average downloading time:

T, =1—PN
Py

(12)

Next, we will study how the system performance can be affected by different parameters
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such as the number of pieces N, the number of neighbours L, and the seed departure rate

y etc.

2.3 NUMERICAL RESULTS

Peer Distribution

This simulation is under the condition that the total number of pieces N=200, the number
of neighbours L=20, and the seed departure y=0.01. Figure 2.2 presents the peer
distribution as a function of the number of pieces that a peer has.
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Figure 2.2: Peer distribution

We can see when i<180, peers are almost uniformly distributed. And when i>180, the
probability that a peer has i pieces increases when i increases. That is because when one
piece has most pieces (i>180), it can’t fully utilize all of its neighbours anymore and

hence its download rate decreases. We call it the end-game effect. In BitTorrent, there is
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an end-game mode to deal with this issue.

Download Rate Distribution

This simulation is under the condition that the total piece number N=200, neighbour
number L=20, and the seed departure y=0.01. Figure 2.3 presents the average download
rate as a function of the number of pieces that a peer has.
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Figure 2.3: Download rate distribution

We can clearly see that when i<180, the download rate is almost a constant. This explains
the reason that in BitTorrent, the download rate of a peer can normally remains at a high
value for most part of the download process. When i>180, however, the download rate

keeps decreasing and that also explains the result in Figure 2.2.
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The Effect of Seed Departure Rate

This simulation is under the condition that the total piece number N=200, neighbour
number L=20, and the seed departure ¥ is changed from 0.01 to 0.9. Figure 2.4 presents

. . T .
the normalized download time —% as a function of the seed departure rate .
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Figure 2.4: The effect of seed departure rate

We can see when 7 increases, the download time also increases because there is less seeds
in the system. However, if y>0.3, when y increases, the download time doesn’t change
much. This tells us that the seed departure rate affects the system performance but it is
not significant once y is greater than some thresholds. Note that when y is too large, it

may happen that no single seed in the system and hence cause the survivability problem

of the network.

27



The Effect of Piece Number
This simulation is under the condition that neighbour number L=20, the total piece

number N and the seed departure y satisfying yN=2, and N from 25 to 300. It shows that
how the average download time is affected by the number of pieces.
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Figure 2.5: The effect of piece number

In Figure 2.5, we can see that when N increases, the average download time decreases as
expected since larger N means a peer is more likely to upload to its neighbours. And with
the increase of piece number, the decrease of average download time is initially very
sharp, and then slows down. Note that we are keeping yN a constant because when N

increases, the length of each time slot decreases (assuming the file size is a constant),

hence we need to adjust y accordingly.
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The Effect of Neighbour Number

This simulation is under the condition that N=200, the seed departure y=0.01, and the
neighbour number L from 2 to 20. It shows that how the average download time is
affected by the number of neighbours.
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Figure 2.6: The effect of neighbour number

In Figure 2.6, we see that when L=6, the download time is the smallest. The explanation
is that when L is too small, the probability that a peer can upload to its neighbours is
small and hence not very efficient. However, when L is too large, the end game effect will

be significant and will increase the download time.

2.4 CONCLUSION

In this chapter, a stochastic model has been proposed to analyze the efficiency of P2P file

sharing. By solving the model numerically, we are able to gain some important insights
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on how the performance of P2P file sharing is affected by different parameters.
Furthermore, based on these results, some guidelines can be obtained to design an

efficient P2P file sharing system.

The following conclusions are drawn from the results:

1. The end game stage affects the performance significantly. To improve the performance,
it is important to alleviate the end game effect.

2. If not considering the survivability, the seed departure rate doesn’t affect the
performance significantly when it is large enough. Hence, as long as we have at least one
seed in the system, it is not necessary to ask seeds to stay in the system for a long period
of time.

3. Too many neighbours may affect the performance adversely since it causes more
severe end game effect. Therefore, it is important to choose a reasonable number of

neighbours.
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CHAPTER 3 ANALYSIS OF GLOBAL STABILITY

3.1 MOTIVATION

From real trace measurements, it has been observed that a BitTorrent-like P2P file sharing
network has three phases [35], a growing phase, a stabilizing phase, and a decaying phase.
In the stabilizing phase, the system enters a “steady state”, in which the number of peers
and the performance of each peer are relatively stable. The stabilizing phase is normally
the one that most of the downloads take place and hence it has significant impact on the
system performance. A lot of research has been done on the performance analysis in the
stabilizing phase. However, theoretically, it is still not clear to us whether a P2P file
sharing system always has a stabilizing phase. And if not, what are the conditions
required for the system to be stable. For example, if the number of peers in the system
never enters a steady state and keeps oscillating, it will be meaningless to analyze the
steady state performance. Hence, the stability of a P2P system is a fundamental problem
for any serious P2P performance analysis which is addressed in this chapter. As far as we
know, this is the first work to theoretically analyze the global stability of BitTorrent-like
P2P networks. Note that there are some works in the literature on the stability of P2P
networks. However, the stability studied in those works is not as same as the stability we
studied here. For example, in [44], the stability of Chord-based P2P systems is studied.
The stability there, however, is mainly about how stable or robust the overlay network

connections can be maintained if there are peers leaving the system. While in this chapter,
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we are interested in whether the system will ever enter into a steady state, in which we

can then analyze the performance such as the average download rate of each peer etc.

3.2 FLUID MODEL

In this chapter, the simple fluid model proposed in [37] will be used to analyze the global
stability of BitTorrent-like systems. In [37], the performance and the local stability of
BitTorrent-like P2P systems have been studied, and some useful results have been

obtained. In this section, a description of the fluid model will be given firstly.

In BitTorrent systems, there are two types of peers. The first kind of peers is seed, which
has all pieces of the served file and only performs uploading. The second kind of peers is
downloader, which has only partial (or none) of the file and can perform downloading
and uploading at the same time. Without loss of generality, we assume the size of the
served file is 1, and the following notations will be used to describe a BitTorrent-like P2P
network that serves the given file [37]:

x(t) number of downloaders (also known as leechers) in the system at time t.

y(t) number of seeds in the system at time t.

A the arrival rate of new peers and 4 >0.

H the uploading bandwidth of a given peer and x>0. We assume that all peers have

the same uploading bandwidth.
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c the downloading bandwidth of a given peer and ¢ > 1. We assume that all peers
have the same downloading bandwidth.

0 the rate at which downloaders abort the download and 8 >0.

% the rate at which seeds leave the system and y >0.

n indicates the effectiveness of the file sharing, and 7 takes values in [0, 1]. More

details about 7 can be found in [37, 38].

Here we assume that the seed departure rate y >0, which is always true in real networks
since no peer will stay in the system forever. Note that in the unrealistic case y =0, seeds

never leave the system. Hence eventually the number of seeds in the system will go to

infinity and the system is unstable. In this chapter, we always assume ¥ >0.

The deterministic fluid model for the evolution of the number of peers (downloaders and

seeds) used in [37] is given by:

% = A= 0x(t) —min{cx(t), u(mx(t) + y(t)} ,
% = min{ex(z), 4(x(®) + y(O)} - 7 ¥(0) (12)

The minimum operation in Eq. (12) determines whether the uploading bandwidth u or the
downloading bandwidth ¢ is the constraint of the system. Because of the minimum

operation, the whole system is a non-linear system.

Before we start the stability analysis, we will give some stability definitions [32] firstly.

33



For a system X = f{x), where f: R" — R" may be linear or non-linear, a point x, is an
equilibrium point if f{x,) = 0. The system is globally stable if for every trajectory x(z), we
have x(z) — x, as t — . The system is locally stable near x, if there is an R > 0, such that
if the initial condition x(0) is near the equilibrium point, i.e., ||x(0) — x. || < R, then x(?)
— x, as t — oo. Obviously, if a system is globally stable, then it must be also locally
stable. The reverse is generally not true. However, if the system is linear, i.e., f(x)=A4x,
then local stability is equivalent to global stability. A linear system is stable if and only if

all the eigenvalues of the matrix A have negative real parts.

Letting % = % =0 in Eq. (12), we can obtain the equilibrium point of the system as

p A
S
1+ —
B+
y=—"es (13)
1+—
q +ﬂ)

where x and )_z are the equilibrium values of x(?) and y(#) respectively and

1 11,1 o . ey
— =max {— ,—(—— l)} . However, it is still not clear to us whether this equilibrium
B cnp vy

point is stable or not. As we will see later in next section, the system is governed by two

different linear systems depending on whether cx > u(n x + y) or not. This type of system

is called switched linear system and it is normally hard to determine the global stability

of such a system.

34



Next, we first summarize the result of local stability of the system and discuss the

difficulties in determining the global stability.

3.3 LOCAL STABILITY

From Egq. (12), we see that the system behaves differently when cx>p( 7 x+y) and

Cc— .
] X. For convenmence,

cx<p( 77 x+y). Solving the equation cx=p( 7 x+y) gives us y=

we define k= """ When y>kx, cx(t) <p(7 x(t)+y(t)) and the downloading bandwidth
M

is the constraint. When y<kx, cx(ty>p( 7 x(t)+y(t)) and the uploading bandwidth is the

constraint. So y=kx divides the (x, y) plane into two areas (see Figure 3.1).

Note that the equilibrium point obtained in Eq. (13) may fall into area I or area 11

depending on the system parameters. More specifically, when 1 > l(l - l) , we will

c nop

have y > kx , which means that the equilibrium point is in area I and when ! < l(l - l) ,
c nHvy

we have ; < kx and the equilibrium point falls into area II. Whenl _1 (l - l) , the

c nH vy

equilibrium point falls exactly on the line y=kx.

In area I (y>kx), we have
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% = 21— 0x(t) - ex(?),

L x)-70). 14
In area II (y <kx), we have

% = A= 0x(t) — p(nx(t) + y(2)) = A+ (=0 — un)x(t) + y(),

D e+ 70~ 7200 = inx(O)+ (=)0 (15)

Both Eq. (14) and Eq. (15) are linear systems. The whole system Eq. (12) is a so-called

switched linear system.

The linear system Eq. (14) has two real eigenvalues A ;=—(6¢ +c)and A,=—y.Both
eigenvalues are negative. So Eq. (14) is always a stable system. If the equilibrium point is
in area I, it is then locally stable. Solving Eq. (14), we see that x(2) and y(z) take the
following forms

x(f) = x + x,e”

y(t) = )_z + yle‘w“)' +y,e” if y#6+c
y(O)=y+ye” + e if y=6+c¢ (16)

where (x, )_/) 1s the equilibrium point and x;, y;, y, are some constants.

Note that in Figure. 3.1, we assume that ¢> g7 and hence £>0. This is normally the case
in real networks since 7 <1 and the downloading bandwidth ¢ is normally greater than

the uploading bandwidth u. If c<un, then we always have cx<u(7nx+y) and the whole
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system is always governed by Eq. (14). The system is reduced to a simple linear system
and from the analysis above, the system is always stable (both locally and globally).

Hence, in the rest of the paper, without loss of generality, we assume that ¢ > un.

In area 11, the linear system described by Eq. (15) may or may not be stable depending on
the parameters. For example, if y <u, we see that when ¢ goes to infinity, y(?) will also
goes to infinity and hence the system is unstable. On the other hand, when » >u, we can
show that both eigenvalues of Eq. (15) have negative real parts. Hence the system is

stable.

When the equilibrium point falls into area II, we have:l < l(l - —1—) . Hence y >u and the
c nHu .

equilibrium point is locally stable.

In summary, no matter whether the equilibrium point is in area I or in area II, it is always
locally stable. The only exception is when the system equilibrium point is on y=kx, the
boundary of these two linear systems. In this case, we will not be able to use linear
analysis to determine even the local stability of the system. Hence, simply studying the
two linear systems separately is not enough and we need to consider the whole system

together and study it’s global stability.

Note that the system we studied here is a switched linear system. While the linear system

37



in Eq. (14) is always stable, the other linear system in Eq. (15) may or may not be stable.
Hence, depending on the system settings, the whole system may switch between two
stable linear systems or between one stable and one unstable system. The global stability

of such a system is normally very tricky and a survey on this issue can be found in [45].

The main difficulty in the stability analysis of a switched linear system lies in the fact that
the system may be governed by two different linear equations alternatively. Even if both
linear systems are stable, the whole system may still be unstable. Fortunately, for the

fluid model in Eq. (12), we are able to apply the Lyapunov function [32] to prove that this

system is indeed globally stable.
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Figure 3.1: A linear transform of the system
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3.4 GLOBAL STABILITY
We first prove a simple but useful property of the system described by Eq. (12).
Proposition 1 If the initial condition of the system x(0) =0 and y(0)=>0, thenx(t)=0,

y()20 forallt.

Proof: From Eq. (12), it is easy to see that if x(?) = 0,

w0 _ 450,
dt

and when y(t) = 0,
dy(t)
s = 1)20.
7 unx(t)

Sox(1)>0, y()>0ifx(0)> 0 and y(0)> 0.

This proposition tells us that under any initial condition x(#) > 0 and y(t) > 0, the system
will always be limited to the first quadrant of the (x, y) plane. For practical networks, this
obviously should be true, since the number of seeds and downloaders cannot be negative.
Although the proposition itself is simple and quite obvious, later we will see that the
simple approach used here can be very useful in the study of the global stability of the
fluid model in Eq. (12). Briefly speaking, we will study the global stability by applying a
similar approach to that used in the proof of Proposition 1. What we will show is that no

matter what the initial condition is (as long as x(0) > 0 and y(0) > 0), the system described
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by Eq. (12) will stay in either area I or area II forever after a finite time. Hence, after a
finite time, the system is reduced to a simple linear system and we can then study its

stability by using linear analysis.

For the convenience of analysis, we next do a linear transform of the system as shown in
Fig. 3.1, where the x axis is the switching line y=kx. Let ¥ =tan” k . We then have

x =xcos¥ + ysin'V

y' =—xsin¥+ycos'V.

In the new (x' , y') plane, if the system is in area I, y’ >0 and if it is in area II, y' <0.

We are interested in how the system switches between area I and area II. So we will study

& when y’ =0 (i.e., along the x axis, or along the line y = kx). Along the x axis, we

have

dl = ——idisin‘}’+ﬂcos‘{’

dt dt dt

= —(A-Ox—cx)sin¥ +(cx—yy)cos¥

sin'V

= —(A—0x—cx)sin¥ + (cx — ykx) .

= ((%+9+c—7)x—/1)sin‘l’.

r

Obviously, when the system enters area I from area II, we have %}— >0 and hence
t
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i . Similarly, if the system enters area II from area I, & <0 and we

> -
c+k(@+c—y) dt
kA .
have x <————— . Here we see that when the system switches between area I and
c+k(@+c—y)

area 11, the number of downloaders x(?) has to satisfy certain conditions.

Next, we consider three cases: the equilibrium point in area I, in area II, and on the line
y=kx. We will show that in all three cases, the number of occurrences of switching
between area I and area II is always finite and hence after a finite time, the system will

either stay in area I forever or stay in area II forever.

Lemma 1 If 1 > 1 (—1— - l) , the system will stay in area [ forever after a finite time and

c np

system is globally stable.

Proof: When 1 > 1 (l - l) , the downloading bandwidth is the bottleneck and the
c Ny

equilibrium point of the system is in area I. If initially, (x(0), y(0)) is in area I and
(x(t),y(t)) is in area I for all time t, then the system is obviously stable. If initially,
(x(0),y(0)) 1s 1n area II or the system enters area II after a finite time, we next prove that it

will enter area I within a finite time. We consider two cases here, Eq. (15) is stable and

Eq. (15) is unstable.

If y > u, Eq. (15) is stable. But its equilibrium point is in area 1. So after a finite time, the
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system will enter area L.

If ¥ < u, Eq. (15) is unstable. It is easy to show that with Eq. (15), y(?) increases to 1

while x(?) goes to zero. Again, after a finite time, the system will enter area I.

We denote the time that the system enter area I by #y. Next, we will prove that when ¢>1¢,

the system is always in area 1.

Now, we will consider when the system is in (x , y ) plane. After the system enters area I,

Eq. (14) takes effect. If y # @+ ¢, from Eq. (16), we can write y (¢) in the following
form.
YO =y 43 4y (17)

for t>1,, where y', yl' and yz' are some constants. y corresponds to the equilibrium

value of y (¢). Since we know that the equilibrium point is in area I, we have ; > 0. At

dy'(tO) > O

time 7=ty, the system enters area I from area II. So obviously, we should have »
5

Hence, the initial condition for Eq. (17) is y (¢,) =0 and ii)-)?‘l(t—") > 0. It is easy to see that
t

¥ (f) has at most one extremum point for £>2,. If a time ¢, exists such that y'(z,) <0, then
¥ (t) will have at least two extremum points. So y'(£) > 0 for all £>1, and the system is

always in area [ after #,.
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Similarly, if ¥ =8+ ¢, we can write y'(f) as
y(@)= ; + J’1'e—ﬂ + Y2'te—ﬂ
for £>ty. Again, y'(f) has at most one extremum point for >, and we can prove that

y () 20 for all £>1,.

So, when the downloading bandwidth is the bottleneck, we prove that after a finite time #,

the system will always be in area I and hence, the system is globally stable.

Similarly, when 1.1 (l - l) , we have the following lemma. Note from the definition,

c nu

area I (y<kx) includes the line y=kx.

Lemma 2 If L (l —l) , the system will stay in area | or area 1I forever after a finite

c nou

time and system is globally stable.

Proof: When 1.1 (l - l) , the equilibrium point is on the line y=kx and it is the
c nHvy

equilibrium point of both Eq. (14) and Eq. (15). Note that in this case, y >u and hence
both Eq. (14) and Eq. (15) are stable linear systems. So if after a finite time, the system is
always in area I or area Il and never switches again, the system is globally stable. If not,

we assume that at time ¢y, the system enters area I from area II. Similarly to the proof of
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Lemma 1, we can prove that the system will never go back to area II after time #). Note

that the only difference is ; =0 here and it will not affect the proof. Hence, the system is

also globally stable in this case.

When ! < 1 (—1— - l) , the uploading bandwidth is the bottleneck. The equilibrium point is
/4

c nHu
in area II and the linear system Eq. (15) is stable. If both eigenvalues of the system Eq.
(15) are real, we can use the same approach as before to prove the global stability.
However, when the eigenvalues of the system Eq. (15) are complex, the analysis becomes
much more complicated. We will need to introduce a Lyapunov function to study the
system. Without loss of generality, we assume that the system is initially in area II. Note
that if the system is initially in area I, we can always wait for it to enter area II and study
the system from then on. Let t,;, i =0, 1, - - - be the time point that the system enters area
I from area II the (i+1)th time, £,;+; be the time point that the system enters area Il from
area | the (i+1)th time. Then at ), the system enters area I from area II the first time, and
at ¢;, the system enters area II from area I the first time. If we have a finite set of such
time points, then the system always stays in area II after a finite time and the system is
obviously stable. So, next we will prove the set of {z,;} is finite. We first introduce two

useful lemmas.
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Lemma 3 If l<l(l—-l), for any i=0, 1, ..., Ij)'(tzl.ﬂ)
c nu Y

dy (t)
dt

<| y"(t2i)| , where j'(£) =

Proof: Without loss of generality, we will prove l ¥ (¢, )l < l V{2, )I . Note that in the time
period [ty t;], the system is in area I and recall that in area I, y'(¢) takes the following

form,

y ()= ; + yl'e'w”)' + y2'e"f if y#0+c

y ()= ;+ ye"+y,te”  ify=0+c,

where y', y, and y, are all are some constants.

Letz=/y (1)~ ¥, 7 (£)]", since in area I, the system is linear, we will have

dz(t)
dt

=Az(1),

where the matrix A takes the form

A= ,
aq a

and a,, a, are two constant. Since the linear system in area I is stable, the eigenvalues of

A should have negative real parts, from which we can derive that ¢;<0 and a,<0.

Now, let

0
p=|" :
0 4,
where 4, > 0,4, >0 are two constants and define the Lyapunov function
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V(z)=2"Pz=4(y'()-y) + L) (18)
Then V(z)=—-z"Qz , where

Q=—(ATP+PA)=[ _('?1”7‘1‘)}

~(h+Aa)  ~2ha,

Since a;<0, a,<0, if we let 4, =4, ay, it is easy to see that 0> 0 and V(z) <0.S0, V() is
a non-increasing function of time ¢. Since ¢,>1,, we have V(z(t;)) <V(z(ty)). Note that at ¢y
and t;, y (t,)=y'(t,) =0. So, from Eq. (18), we have

@) <]y @) -

Next, we consider the system’s behaviour in area II. Without loss of generality, we
consider the time period ¢ € [, t;/. Note that here we are studying the case that the
eigenvalues of the system Eq. (15) are complex numbers. So, y (¢) will take the
following form,

V() ==y +Ae W cos(w(t —1,) + @),
where ; >0,4>0,a>0,0>0,and ¢ are some constants. Note that y (£,) =0, so

cos¢g = y; >0 and we have— 7 /2 < ¢ < /2. The derivative of y'(¢) can then is shown

to be
¥ (£) = —Aae "™ sin+ 4e "™ cos(w(t —t,) + ¢ + B),

La
where a =va® +»* and f=tan" —.

(7
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1 1,1 1
Lemma4 Jf —<—(— ——¥) in the time period t € [t,,1,], the system is in area I and we have
c nnH

1. There exists a constant € >0. Iflj/(tl)l <¢g, then t,=w , i.e., the system will
stay in areall forever after t,.

2. If't, is finite, then

)<l ).

Proof: Let { be the first local maximum point of y'(f). Then from j () = 0, we can get

ot 427 =P70 g
®
y() = —; +Ae W cos B . (19)

Note that y'(¢,) = —4asin(¢ + B). When y'(t,) < Aasin #, we have — B < ¢ < 0. At time
t;, we also have y'(,)=0,i.e., Acosg = ; .So, A= ;/cos¢ < ;/cosﬂ . From Eq. (19),
we see that

Y sy -,
since £ —t, > % , v () is strictly less than zero. So, if we let & = ;a sin 8, when
\ V(¢ )| <g<Aasinf, y'(f) <0, i.e., the system will never go back to area I again and

t,=0.

Now, if ¢, is finite, from the previous proof, we know that0< ¢ <z /2. From

y'(t)=y(t,) =0, we have
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; =Acos¢g = Ae ¥ cos(w(t, —t,)+ ).
It is easy to see thatw(t, —¢t,) = 2(7w — ¢) = = . We also have 3—;— <o(,-t)+¢<2x.
Hence
37
o(t, -tl)+¢+,327+,8.
Since ¢, <f, we also have o(t, -t,) + ¢ + B <27 . So,

37”+,Bs(o(t2—t])+¢+,8s2n.

Now, if 0< ¢+ B <7/2, we have
—3-;-’-32”—(¢+ﬂ)s27z.
and from @(t, —1,) 2 2(7 - ¢), we know
o(t, - 1)+ ¢+ f22n~g)+ ¢+ f=2m+2f-(p+ )2 2x~($+ B).
Hence
sin(o(t, —1,) + ¢+ B| <[sin(27 — (¢ + B = sin(g + B)|.
If 7/2<¢+ B <x,then
37”sm(¢+ﬁ)szn.
Since (t, —1,) 2 7, we have a(t, —t,)+$+ 27 +4+ f and
sin(w(t, —t,) + ¢ + B)| < sin(z + ¢ + B) =sin(¢ + B) .

So, in both cases, we always have [sin(@(t, —1,) + ¢ + B)| < |sin(¢ + ﬂx . And finally, we

have

7)) _ |4ae ™ sina(t, —1,)+ ¢+ B)|
)| | Aasin(¢ + )
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Now, with the help of Lemmas 3 and 4, we will also have the global stability for the third

case l<l(l—l).

c nH Y

Lemma 5 If 1 < 1 (l - —1—) , the system will stay in area Il forever after a finite time and
c nu

the system is globally stable.

Proof: From Lemmas 3 and 4, we have

] <y @) se = [ ] <e = [ @)

So, for a given ¢ = ;a sin £, when i is large enough, we have ; ¥ (t,,,)| < € and from

Lemma 4, after 25+, the system will stay in area II forever. Hence the system is globally

stable.

Finally, combining the three cases from Lemmas 1, 2, and 5, we have our main theorem.

Theorem 1 For any initial condition x(0)>0 and y(0)>0, the fluid model described by Eq.

(12) is always globally stable.

49



Note that Theorem 1 is a very strong result. It is true for any reasonable network
parameters A, c, u, 7, @ and y. The only exception that the system is unstable is when
y =0, which means that seeds will never leave the system and it will not happen in any
real network. The result also implies that BitTorrent-like P2P systems are inherently
stable and agrees with many observations in real BitTorrent networks. Hence it provides a

solid theoretical support for steady state performance analysis of P2P networks.

3.5 NUMERICAL RESULTS

We numerically simulated the fluid model with different parameter settings and different
initial conditions. In all of our simulations, we find that the system converges eventually,
although it may take different time to converge depending on the settings. Note that
validation of the fluid model has been done in [37]. Hence here we only study the
stability of the fluid model and will not compare the fluid model with the Markov model

or real trace of BitTorrent-like networks.
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Figure 3.2: The evolution of the number of seeds (downloading bandwidth constraint)
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Figure 3.3: The evolution of the number of downloaders (downloading bandwidth constraint)

In Figures 3.2 and 3.3, we simulated the fluid model under different initial conditions. We

chose the following parameters for this simulation: 4 =1, 2=0.00125, ¢=0.002,

@ =y =0.001. We also set 77 =1. This is in keeping with our observation regarding the

efficiency of the download as described in [37]. The time unit is one minute. Note that

with this setting, we have £=0.6 and the line y=0.6x is the boundary of area I and area Il.
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From Eq. (13), we can find the equilibrium point in this case is x=333 and y =667. We
compared the system under four different initial settings. The initial number of
downloaders x, and the number of seeds y, are shown in the figures. In the first initial
setting, we have xy=0 and yy=1, which is the normal case when a new P2P system starts
with one seed and no downloaders. The second initial setting x,=20, =600 and the third
initial setting xy=600, y,=20 fall into area I and area II respectively. The last setting
yo=700, y~420 falls exactly on the line y=kx, which is the boundary of area I and area II.
From the figures, we can see that the number of downloaders becomes steady when time
is around 2000 minute, while the number of seeds takes a much longer time, at around
6000 minute, to converge. Overall, the whole system converges to the equilibrium point
and remains in the steady state after =6000. In this simulation, since y <p, we know that

downloading bandwidth is the bottleneck and the equilibrium point is in area I.
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Figure 3.4: The evolution of the number of seeds (uploading bandwidth constraint)
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Figure 3.5: The evolution of the number of downloaders (uploading bandwidth constraint)

In Figures 3.4 and 3.5, we have the same setting as the first simulation, except that now

we set ¥ =0.005. With the change of 7, the new equilibrium point is x=375 and y =125.

The boundary line is the same as before y=0.6x. Now, the uploading bandwidth becomes

the bottleneck and the equilibrium point falls into area II. In this setting, we have the

similar result as before. After /=2000, the whole system reaches the equilibrium point.

numberof seeds

500

500 [

400 |}

200 }

100}

x0=100, yO=600
x0=600, yO=100 - 4
x0=700, yO=420

0 500 1000 1500 2000 2500 3000 3500 4000

time {min}

Figure 3.6: The evolution of the number of seeds (switching line)
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Figure 3.7: The evolution of the number of downloaders (switching line)

In the last simulation (shown in Figures 3.6 and 3.7), we set y =0.00333.

Hencc:l _1 (—1— - l) , and the equilibrium point x=333, y =200 is on the line y=0.6x.

c npy

Again, we see that the system becomes stable after =3000.

From these simulations, we see that no matter where the equilibrium point is, in area I, in
area II, or on the line y=kx, the system converges under any given initial conditions.

Hence, it verifies our result that the fluid model is globally stable.

3.6 CONCLUSION
In this chapter, we used the fluid model to study the stability of P2P file sharing systems.
The fluid model of BitTorrent-like file sharing networks is a switched linear system. By

using Lyapunov function, we prove that such a switched linear system is always globally
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stable and hence provide a theoretical support for the steady state performance analysis of

P2P networks. We also verified our result by extensive simulations.

The model we used for the stability study is relatively simple. For example, all peers are
assumed to have the same downloading and uploading bandwidth. In [37], it has been
shown that this simple mdel can capture the fundamental behaviours of BitTorrent
networks. However, for more accurate performance analysis, we need to take
consideration of the peer heterogeneousness. The stability issue in such a more realistic

scenario is part of our future work.
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CHAPTER 4 CONCLUSIONS AND FUTURE WORK

4.1 CONCLUSIONS

The design of many new Internet applications is based on the peer-to-peer model. Among
those applications, P2P file sharing has been one of the most popular applications. In this
thesis, the efficiency and stability of BitTorrent-like P2P file sharing systems have been

studied.

In chapter 2, motivated by the fact that the upload bandwidth is the most important
resource in a P2P file sharing network, a stochastic model has been proposed to study the
peer distribution with regard to the number of pieces that a peer has. Under the
assumptions that the network is large and is in a steady state, a set of equations are
derived to describe the system. By numerically solving these equations, we are able to
obtain the peer distribution. Once the peer distribution is known, the performance of the
system can be analyzed. For example, by applying Little’s Law, we can obtain the
average download time of the system. More importantly, through this model, we are able
to understand how the performance of the system is affected by different network
parameters such as the seed departure rate, the piece number, and the number of
neighbours etc. We find that under different conditions, the influence of these parameters
is different to the performance. In some cases, a small change in the parameters may

affect the performance significantly. While in other cases, changes in parameters may still
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affect the performance, but not significantly. Based on these results, we get some useful

guidelines on how to design an efficient P2P file sharing network.

In chapter 3, a theoretical analysis for the stability of BitTorrent-like P2P file sharing
systems has been proposed. There is a lot of research on the steady state performance
analysis of P2P file sharing networks. However, theoretically, it is still not very clear to
us whether such a steady state always exists. Motivated by this fact, the fluid model
proposed in [37] has been used to study the global stability of BitTorrent-like P2P
systems. The fluid model proposed in [37] turns out to be a switched linear system, which
in general, is very hard to determine the global stability. Fortunately, for the fluid model,
we are able to prove that it is always globally stable under any reasonable initial
conditions. Our theoretical results have also been verified by extensive simulations. In all
the simulations, the system converges to the equilibrium point and hence a strong

theoretical support is provided for the steady state performance analysis of P2P networks.

4.2 FUTURE WORK

Although the models used in this thesis can capture all the important features of P2P file
sharing systems, they are still relatively simple because of the analysis simplification. For
example, in both models, we assume that all peers have the same upload bandwidth.
However, in real networks, peers may have different upload bandwidth and to make

things more complicated, the available bandwidth may even change with time. One of the
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future works is to make the model more realistic, for example, to take the peer
heterogeneousness into account in the model. In addition, although we obtained some
useful guidelines on how to Gesign an efficient P2P file sharing network in chapter 2, it is
still not very clear to us how to choose the network parameters to optimize the
performance in general cases. For example, we have shown that when the number of
neighbours is around six, the system perform the best in our simulations. However, if
other parameters like piece number, seed departure rate etc are changed, how should we
change the number of neighbours so that we can still maintain the best performance? To
answer these questions is also possible future work. Finally, in this thesis, the numerical
results are all obtained through simulations. We haven’t been able to do experiments in
real BitTorrent networks to test our results due to the complexity of the experiments. To

extensively verify our results in real networks is also part of our future work.
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APPENDIX A: Lyapunov Function

1. Definition of a Lyapunov candidate function
Let
VR =R
be a scalar function.
V is a Lyapunov-candidate-function if it is a locally positive-definite function, i.e.
V() =0
V(z)>0 VrelU

With U being a neighborhood region around x = 0

2. Definition of the equilibrium point of a system

Let
g R - R"
y=g(y)

be a arbitrary autonomous dynamical system with equilibrium point ¥":
0=g(y")

There always exists a coordinate transformation £ =¥ - ", such that:
t=g(z+y") = f(z)
0=f(z") = 2=0
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So the new system f(x) has an equilibrium point at the origin.

3. Basic Lyapunov theorems for autonomous systems

Let

be an equilibrium of the autonomous system

z = f(z)
And let
Viz) = %‘;—i = VVi = VVf(z)

be the time derivative of the Lyapunov-candidate-function V.

Stable equilibrium

If the Lyapunov-candidate-function V is locally positive definite and the time derivative

of the Lyapunov-candidate-function is locally negative semidefinite:

V) <0 vreB

for some neighborhood B, then the equilibrium is proven to be stable.

Locally asymptotically stable equilibrium

If the Lyapunov-candidate-function V is locally positive definite and the time derivative

of the Lyapunov-candidate-function is locally negative definite:
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V(z)<0 VzeB
for some neighborhood B, then the equilibrium is proven to be locally asymptotically

stable.

Globally asymptotically stable equilibrium
If the Lyapunov-candidate-function V is globally positive definite and the time derivative
of the Lyapunov-candidate-function is globally negative definite:

V(z)<0 VzeR"

then the equilibrium is proven to be globally asymptotically stable.

From Wikipedia, the free encyclopedia,

http://en.wikipedia.org/wiki/Lyapunov function.
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APPENDIX B: Little’s Law

1. Definition
In queuing theory, Little's result, theorem, lemma, or law says:

The average number of customers in a stable system (over some time interval), N, is
equal to their average arrival rate, A, multiplied by their average time in the system, T, or:

N =AT.

Although it looks intuitively reasonable, it's a quite remarkable result, as it implies that
this behavior is entirely independent of any of the detailed probability distributions
involved, and hence requires no assumptions about the schedule according to which
customers arrive or are serviced. The only assumption is that the system operates in a

first-come-first-served manner (FCFS).

It is also a comparatively recent result - it was first proved by John Little, an Institute
Professor and the Chair of Management Science at the MIT Sloan School of Management,

in 1961.

Handily his result applies to any system, and particularly, it applies to systems within
systems. So in a bank, the queue might be one subsystem, and each of the tellers another

subsystem, and Little's result could be applied to each one, as well as the whole thing.
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The only requirement is that the system is stable -- it can't be in some transition state such

as just starting up or just shutting down.

2. Mathematical formalization of Little's theorem

Let a(t) be the arrival rate to some system in the interval [0, t]. Let $(t) be the number of
departures from the same system in the interval [0, t]. Both a(t) and p(t) are integer
valued increasing functions by their definition. Let Tt be the mean time spent in the
system (during the interval [0, t]) for all the customers who were in the system during the
interval [0, t]. Let Nt be the mean number of customers in the system over the duration of
the interval [0, t].
If the following limits exist,

A= lim a(t)/t,

6 = lim 3(t)/t,

T=lmT,
and, further, if A = d then Little's theorem holds, the limit

N = lim M,
exists and is given by Little's theorem,

N =]T.

From Wikipedia, the free encyclopedia, http://en.wikipedia.org/wiki/Little's law.
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