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ABSTRACT

Detecting Influenza Epidemics Using
Hidden Markov Models with Bayesian Approach

Seyed Yousef Mousavinasab

In this thesis, we present a statistical method for detecting influenza epidemics. First, we
use a hidden Markov model with Bayesian approach to partition the influenza data into
two groups, one group for the epidemic states and another one for the non-epidemic
states. Then, we detect the start of the epidemic phase of the disease through introducing
a warning threshold. This warning threshold is efficient in increasing the detection rates
while decreasing the false alarm rates. Finally, we compare the established hidden

Markov model with the traditional seasonal ARIMA model.
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1 Introduction

1.1 Overview

Infectious diseases continue to be a major cause of human suffering and death around the
world. They are responsible for more than 10 million deaths every year, which represent
one third of annual mortality for the entire planet. In particular, they are directly
responsible for about 40% of deaths in the developing countries. Infectious diseases
continually threat all persons, regardless of age, sex, lifestyle, ethnic background and
socioeconomic status. They have imposed a very heavy financial burden on the society.
Despite that a great deal of efforts has been made to prevent and control the infectious
diseases, they continue to be a common and significant problem of modermn medical
science [1-4].

In order to obtain a better understanding of the transmission mechanisms of infectious
diseases and to predict their spread, it is essential to apply statistical modeling. In recent
years, many successful statistical models have been proposed to interpret and predict the
dynamics of infectious diseases. They play an important role in helping make public
health decisions on the control of infectious diseases. These models are adapted to a
variety of different practical circumstances, depending on the disease involved, the
community being studied and the kind of epidemiological or administrative questions
being asked.

For successful modeling, it is crucial to understand the course of infection within an
individual and the patterns of infection within communities of people. Aspects of the
model that require careful choice include the number of population variables and
equations needed for a sensible characterization of the system, the typical relationships
among the various rate parameters, and the form of the mathematical expression that
captures the essence of the transmission process. In this thesis, we present a new
statistical method for detecting influenza epidemics, which uses hidden Markov model
(HMM) with Bayesian approach. In the following two sections, we will give a brief

introduction to HMM and Bayesian approach, respectively.



1.2 Hidden Markov Model (HMM)

Hidden Markov Model (HMM) is a powerful statistical tool for modeling random systems
that can be characterized by an underlying process generating an observable sequence.
The well-known Russian mathematician, Andrey Andreyevich Markov, gave his name to
the mathematical theory of Markov processes in the early twentieth century; however, the
theory of HMMs was systematically developed by Baum and his colleagues in the 1960s
[5].

An HMM, as the name suggests, is a Markov model in which the states cannot be
observed (i.e., hidden) but symbols that are consumed or produced by transition are
observable. In recent years HMM and its simple extensions are widely used in a variety
of fields including computer vision, natural language understanding, speech recognition
and synthesis, Biostatistics (to name a few). Often HMMs are a usual way of modeling a
system and in other cases they are “force-fit” to a problem to which they are not quite
ideal. The vast popularity of HMMs is that very fast and linear time algorithms exist for
some of the most important HMM problems [6].

In an HMM, the unobserved sequence of states follows a Markov chain, which
determines the probabilities of the observed states. For instance, given a binary time
series, each event might be generated by one of two Bernoulli distributions. The process
switches from one distribution to another one according to the state of the hidden Markov
chain, in this manner generating state dependence.

Let T be a realization of an integer-valued random variable with a complex

distribution. An HMM is then defined as a set of T discrete scalar variables Q,, and T
other variables X|,. Q,; and X,, may be either discrete or continuous (and either
scalar- or vector-valued). Further, for an HMM we have that {0, X} are independent
of {0, X, }10., and X, is independent of{Q > Xy 1O, forall z€1:T . Let
© be the state space with cardinality|®| < co. Then each Q, takes its values in the finite

set® .
The above definition of HMM is very flexible in the sense that it does not limit the

number of states in the Markov chain or the implementation of the dependencies (e.g.,



general regression, probability table, etc.). The only condition for a joint probability
distribution (over an appropriately typed set of random variables) to form an HMM is that
it follows the above-mentioned conditional independence rules.

From this definition, we can deduce the following properties for an HMM:

1) Since {Q,,X,,} are independent of {Q,, ,,X,,,}|0,, and X, is independent of

{Q(,:T)\,,X (m\,}l Q,, the future is conditionally independent of the past given the present.
In particular, Q, is independent of Q,,_,| O, ,, which means that the variables Q,, form a
discrete-time, discrete-valued, first-order Markov chain.

2) The independency of {Q,X,,} and {0, ,,X,,}|0Q,, implies that Q,is
independent of {0, ,, X, }|O, . This means that forl </ <¢<T, givenQ, ,, X, is
unable to affectQ, . However, givenQ, ,, O, is not necessarily unaffected by the future

variables.

3) The random variables X,, form a general discrete time stochastic process. Since
X, is independent of {Q(I:T)\,,X (m\,}l O, , assigning a value to Q,, makes the distribution
of X, independent of all X, for t'#1, i.e., all the variables in both the future and the
past. One implication is that X, is independent of X ,, |{0,,0,.,}, which follows since X;
is independent of {X ,+1:Qt+1}| O, and X, isindependent of X,,,|0,,;-

The above conditional independence properties imply that, for a given T, the joint

distribution over all the variables may be expanded as follows:
T T
pxr.49:7) = plg, )H rq, g, )H p(x lgq). (L.1)
t=2 t=1

From (1.1) we conclude that the following quantities are required to parameterize an

HMM: the distribution over the initial chain variable p(g,), the conditional “transition”
distributions for the first-order Markov chain p(g, | g,_,), and the conditional distribution
for the other variables p(x, | ¢,) . These quantities correspond to the classical definition of

HMM [6].



Let us label the initial distribution of Q asz, where 7 is a vector of length|®}.
Then, p(Q, =i) =7x,, where =z, is the i" element of 7. The observation probability
distributions are denoted by b,(x) = p(X, =x|Q, = j) and the associated parameters
depend on b,(x)'s family of distributions. The Markov chain is typically assumed to be

time-homogeneous, with stochastic matrix 4, where (4), = p(Q, = j|Q,, =i) forall .

We represent the collection of all HMM parameters as /li(ﬂ, A,B), where B represents
the parameters corresponding to all the observation distributions.

In most applications, the Markov chain (,, is hidden and the variables X, are
observed. Therefore the Markov model is referred to as a hidden Markov model. Note
that for some values of 7, X, might be also missing or hidden. Also note that in some
cases X,, is hidden and Q,, is observed, which again leads to an HMM. Hereafter
without loss of generality, we call O, the hidden variables and X, the observations.

With the above definition, an HMM can be simultaneously viewed as a generator and
a stochastic acceptor. Like any random variable, say “Y ”, one may obtain a sample from

that random variable (e.g., flip a coin), or given a sample, say y, one may compute the
probability of that sample p(Y = y) (e.g., the probability of heads). To sample from an
HMM, we first take a set of samples g,, from the Markov chain Q,, . For this we first
generate gq,, then proceed by generating g, using the conditional distribution of
0, given Q, . After generating g, at each time point # we produce a sample of X, using
p(X, |q,), the observation distribution according to the hidden variable value at time ¢.

This is explained in [7] by an example where we first choose a sequence of urns and then

a sequence of balls from each urn. To sample just from X ,, we follow the same

procedure, i.e., although we do not need samples g,, we have to generate them anyways.
Note that to generate each sample of X, , we need a new and different sample of O, .

Generating different samples of X,, based on a fixed observation g,, and using

marginal distribution p(X,, |q,,) does not reflect the HMM properties. This is because



in HMM two different observation samples typically originate from two different state
assignments to the hidden Markov chain. In other words, to reflect the HMM properties

each sample x,must be generated according the marginal distribution

(X)) = Z p(X,;,9,,) and not from the conditional distribution p(X,; |g,,) for some

O
fixed hidden variable assignment g, .

Although a collection of values x,, have presumably been produced according to some
specific (but unknown) assignment to the hidden variables, a givenx,,, could have been
produced from one of many different realizationsgq,, . The probability p(x,,) can be

computed by marginalizing away all possible assignments to O, as follows:

plx,) = Zp(xlzT »Gyr)

=" p(q, )H (4,19, )H plx 1q,).

We will use two ways to graphically depict an HMM. The first way is to use a directed
state-transition graph as in Figure 1.2A.

Figure 1.2A: Stochastic finite state automaton [9] view of an HMM. In this case, only the

possible (i.e., non-zero probability) hidden Markov chain state transitions are shown [8].



In this illustration each node represents one of the states in ® and an edge connects

node i to node j if and only ifa; > 0. A directed state-transition graph does not show

HMM’s output distributions or the conditional independence properties. Only the
allowable transitions in the HMM’s underlying Markov chain are illustrated by this

graph. The transition matrix associated with Figure 1.2A is as follows [8]:

a, a, a, 0 0 0 0 0
0 a, 0 ay ay 0 0 0
0 0 ay a, 0 0 a,y O
e 0 0 0 wa, a5 a, 0 0
0o 0 0 0 0 0 a,;, O
0 0 0 0 0 0 0 ag
0 a, 0 0 0 0 0 ay
a;, 0 0 0 0 0 0 oag

where the explicitly mentioned a;’s have non-zero values. Starting from a particular
state j at a certain time, one can produce an observation sample from the
distributiond; (x) , which is the observation distribution corresponding to state j, and then

advance to the next state according to the non-zero transitions.

The second way to graphically depict HMMs is illustrated in Figure 1.2B.

Xt~1 Xt Xt+1 Xr+2

Figure 1.2B: A hidden Markov model

This method shows how HMMs are one instance of a directed graphical model (DGM),

also called Bayesian network [10]. In this case, the HMM conditional independence



properties are shown but the hidden Markov-chain topology is unspecified. That is, using
any of the equivalent schemas such as the directed local Markov property, the conditional
independence properties implied by Figure 1.2B are identical to those expressed in the

definition of HMM. For example, the variable X, does not depend on any of X, ’s non-
descendants ({Q.ry,» X7 }) givenX,’s parentQ,. When one considers the HMM

statistical dependencies, this directed graphical model is preferred to the directed state-
transition model. On the other hand, when one analyzes the underlying hidden Markov

chain topology, the directed state-transition model is more useful.

1.3 Bayesian Approach

Bayesian data analysis is based on Bayes’ theorem (Bayes’ rule). Let us first understand
the Bayes’ rule. Suppose we want to make inference about a random variable @ through

observing another random variable, say “y”. Let p(@) be the distribution of €. If 8 and
y are statistically independent, then p(y,8) = p(y)p(8). However, if 6 and y are
dependent, then the dependence of y on @ is displayed by p(y,8) = p(y | &) p(6) . By the

definition of conditional probability, p(€]y) =£(—J(—/%. Then, we obtain Bayes’
ply

theorem:

_ P& 19)p0)

17
p(@]y) 20)

p(@|y) is called the posterior distribution of 8 given the observed data y while p(6)
is called the prior distribution.

In the case of n possible outcomes (4,,...,6,), we have
_P»18)p6)  p18)

POy w@)pr16)

p@;|y)

Set © =(6,,...,0,) . Then, the continuous multivariate form of Bayes’ theorem is



r(y1©)p(©) _ p(y|©)p(®) _
r(») J’p( 1| ©)d®

p@|y)=

Similar to the univariate case, the prior distribution of the unknown parameters is
assumed to be p(®), while p(® | y) is the posterior distribution given the prior p(®)
and the data y.

The methods of maximum likelihood (ML) and Bayesian analysis are closely related.
Let /(®|X) be the assumed likelihood function. According to the ML estimation, we
compute the maximum of / (as a function of © given the data X ) and would use the
local curvature to construct confidence intervals. Hypothesis testing follows using the
likelihood-ratio (LR) statistics. The strengths of ML estimation rely on its large-sample
properties, namely that when the sample size is sufficiently large, we can assume both
normality of the test statistics about its mean and that LR tests follow the yx°
distributions. These good features do not necessarily hold for small samples.

An alternative way to proceed is to start with some initial knowledge/guess about the

distribution of the unknown parameters, p(®) . By Bayes’ theorem, we have that

1
O|X)=——"p(X|0©) p(®
p(@]X) p(X)p( |©)- p(®)

= (normalizing constant)- p(X | ©)- p(®)
= Constant - Likelihood - Prior,

where p(X |®)=1(®| X) is just the likelihood function. Since our concern is to make

inference about © is a constant with respect to ® . Because of this, the posterior

(X
distribution is often written as p(®| X) « I(®| X)p(®), where the symbol o« means

“proportional to”. Note that the constant p(X) normalizes p(X |®)- p(®) to one, and
hence can be obtained by integration, p(X)= L (X |9)- p(©)dO. By taking logs and

ignoring the constant, the effect of the data can be seen:

log (posterior) = log (likelihood) + log (prior).



A critical feature of Bayesian analysis is the choice of the prior. The role of the prior
depends on the amount of data that we have in use. The basic limit theorem of Bayesian
probability theory tells us that the posterior probability converges to the actual
distribution as more data arrives. This also means that the influence of the prior on the
posterior distribution diminishes as more data arrives. The point here is that when the
data contain significant information, even a bad prior does not greatly influence the
posterior. If the posterior is highly dependent on the prior, then the likelihood function
may not contain sufficient information. However, if the posterior is relatively stable over
a choice of priors, then the data indeed contain significant information.

Often, only a subset of the unknown parameters is really of concern to us, the rest
being nuisance parameters that are really not of concern to us. A very strong feature of
Bayesian analysis is that we can remove the effect of the nuisance parameters by simply
integrating them out of the posterior distribution to generate a marginal posterior

distribution for the parameters of interest. We write the vector of unknown parameters as

0 =(0,,0,), where ®, is the vector of nuisance parameters. Integrating over ®, gives

the desires marginal as
p©,1y)=[ p(®,,0,])d0,.

In Bayesian data analysis the posterior probability distribution characterizes the
uncertainty in the model estimated from a given set of data. One way to explore the
posterior and hence characterize parameter uncertainty is to employ the Markov Chain
Monte Carlo (MCMC) technique, which effectively generates a random sequence of
model realizations. There are several sources for description of MCMC algorithms for
HMMs. Readers are referred to [11] for an excellent overview. For further information on

Bayesian statistical modeling, [12, 13 and 14] are suggested.



2  Analyzing Influenza Data Using HMMs with
Bayesian Approach

In this chapter, we will use HMM with Bayesian approach to analyze the influenza data.
The influenza virus causes one of the world’s most serious breathing illnesses. It is
potentially fatal and infects humans in tens of millions every year. The influenza virus
changes or mutates every year. These changes cause seasonal epidemics of respiratory
infections which are sometimes life threatening. Although many people regard the flu as
a seasonal annoyance, influenza can lead to serious complications such as bacterial
pneumonia and, for the elderly patients, influenza can be fatal [15].

Since early detection of influenza epidemics could have a serious impact on the
number of lives saved, we place great emphasis on influenza surveillance by monitoring
indicators of the spread of epidemics. In the following, we will analyze a monthly
incidence rates data by applying HMM with Bayesian approach to estimate model
parameters as well as introducing a warning threshold for detecting the start of the

epidemic phase of the disease. We start with the data.

2.1 Influenza Data

The data set was obtained from the Sentinel Network of 500 general practitioners in
France. Herein, we use the data collected between January 1991 and December 2005
(available at www.b3e_jussieu.fr/sentiweb/). Figure 2.1A depicts the time series of the
monthly incidence rates data. It shows a clear mixture of two dynamics: the non-epidemic
dynamic with incidence rates that vary according to a seasonal pattern (low-level
dynamic) and the epidemic dynamic, in which the incidence rate increases sharply at

irregular intervals.

10



Monthly Influenza Incidence Rates in France
(1991-2005)
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Figure 2.1A: Monthly influenza incident rates, France, 1991-2005

The current approach to influenza surveillance implemented by the Center for Disease
Control (CDC) [15] is based on Serfling’s method [16], which models the incidence rates

due to influenza by the cyclic regression equation:
27t . 2m
M, =y + Pt+5cos(—)+esin(—) +e,, (2.1)
r r
where u, is the number of susceptible to influenza in month ¢. The parameter y is the

baseline monthly incident rates, without seasonal and secular trends, and e, is noise,

which is assumed to have mean zero and variance o’ . The component St describes
. 27t . 2m .
secular trend, and the sine-wave component & cos(—)+ £sin(—) models period of
r r

influenza epidemics. Assuming that the errors are uncorrelated and normally distributed,
the standard least squares method is used to estimate the model parameters y, 8,5,¢,0°

from non-epidemic data, and to compute confidence intervals about the predicted values.

The predicted values are given by

1



A A A

1, =74 B, 148, cosC) 522, (22)
r ¥

The confidence bounds are computed as p,+¢,,,SE(u,), where SE(u,) is the estimated
standard error of the prediction, and ¢,,, is the (1—a/2)percentile of a Student’s

tdistribution. The confidence bounds are used to define a time varying epidemic
threshold that is adjusted for trend and seasonal effects [15].

Because of delays in detection due to the nature of the data, Serfling’s method has
been adapted to monitor either the proportion of influenza disease or hospital visit data
for influenza [17, 18]. Although applied to data that should provide earlier indications of
epidemics, the detection is still based on cyclic regression and suffers from two failures:
the need for non-epidemic data to model the baseline distribution, and the fact that
observations are treated as independent and identically distributed. The need for non-
epidemic data is a fundamental obstacle toward the development of an automated
surveillance system for influenza and it is overcome by the use of HMMs to segment the
time series of influenza indicators into epidemic and non-epidemic phases. L. Start and F.
Carrat [19] introduced this model.

We briefly review the following sort of HMMs, which is employed in our work.

Figure 2.1 B: Standard hidden Markov model

Figure 2.1B depicts the graphical model for the standard HMM. Each pair of vertices

represents a mixture model that is a pair (z,,y,),t=1,...,n, withz, € {l,.. K}
andy, |z, ~ f,,(y,), where K is the cardinality of the state space. Generally the y,'s are

observed and the sequence {z, }:’zl called the state sequence, is assumed to be unobserved



or hidden. For ¢ € {l,...,n}, y, is conditionally independent of all the remaining variables

conditional on z, . That means:

Py, | ¥1seesVisZ1ser2) =Py, | 2,), (D
Pz, | Yyseos V15215 2,) = P(2, | 2,1) - (1I1)
Equation (II) follows a Markov chain of order 1 with transition probability
matrix P =(p;), where p, =P(z,=j|z,,=i),i,j=L...m;t=2,...n.
We assign Gaussian distributions to the 2-state HMM (m = 2), non-epidemic and

epidemic rates, by using Serfling’s cyclic regression method. The model is implemented
by Bayesian approach using the software WinBugs. The main idea is to learn the model
from the data; that is, to estimate the model parameters form the data. This can be
achieved by considering prior distributions for parameters via WinBUGS, which is

described in the following section.

2.2 HMM for Incidence Rates Series

As Figure 2.1A shows, the time series of influenza incidence rates often reveal trend and
seasonality. We apply Serfling’s method to model the data. This requires prior

distributions [20] for the parameters which are introduced as follows forj=1,..,K

(focused on the case K =2 in our work).

7; ~dnorm(0.0,1.0E-6),

B; ~ dnorm (0.0,1.0E - 6),

5]. ~ dnorm (0.0,1.0E -6),

g; ~dnorm(0.0,1.0E - 6),

o ; ~dgamma(0.001,0.001),

P,k ~ dbeta 1y,
where “dnorm( u,0)” represents normal distribution with mean x and varianceo’,
V&

L . [04 )
“dgamma(a, f)” represents gamma distribution with mean — and variance —,
a

13



“dbeta(x, B)” represents beta distribution with mean and variance

a+

af
(@+pB) +(a+pB+))

state j, j =1,...,K . The model has been implemented in the WinBUGS package.

and p,,, denotes the vector of K transition probabilities from

“WinBUGS” (the MS Windows operating system version of BUGS: Bayesian
Analysis Using Gibbs Sampling) is a versatile package that has been designed to carry
out MCMC computations for a wide variety of Bayesian models [21]. The software is
currently distributed electronically free-of-charge from the BUGS Project website:

http://www.mre-bsu.cam.ac.uk/bugs/winbugs/contents.shtml. WinBUGS assumes a

Bayesian model in which all quantities are treated as random variables. The model
consists of a defined joint distribution over all unobserved data (parameters and missing
data) and observed quantities (the data); so we need to condition on the data in order to
obtain posterior distribution over the parameters and unobserved data [21].

By running the WinBUGS program with 10000 iterations (the source code is available

in Appendix), the parameters in Equation (2.1) are summarized in Table 2.1.

~ Transition |

probabilities |

0.728

0.864 0.136
0.286 0.714

Table 2.1: Estimated parameters in cyclic regression and transition probabilities in HMM

with Bayesian approach

Thus, Equation (2.2) for epidemic and non-epidemic states is given by

s =109.2+0.0491+86.67 cos((7) + 33 31sin(%),
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[, =4783+1.224r+ 897.4005(%) +323.3 sin(—’g) .
Therefore, the model for the surveillance data is presented by

Iut = (1 - Z)lune,t + Zlue,t >
where Z=0 for non-epidemic state and Z=1 for epidemic state. This model follows a
mixture Gaussian distribution, with its parameters depending on the epidemic and non-

epidemic states.
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Figure 2.2A: Sequence of epidemic and non-epidemic states

15



4500 -
4000 | '
3500 T ,
3000 - : . '
2500 .
o0 | .
: + e S 8 i o 0
1500 | & 4 4 AR A A B
14 LA RERER LR
1000 i &1 M R S i LA o p R
SN LA I I N R
P00 U BL e i a L sl ee s S
07L(_(_L.(_LLLLLC—LLC—LLL(—LL(—C—(—LLLLL—C—(—
AT E RS ES SR RS SR FEF RS S SRS 4

Figure 2.2B: Fitted model based on HMM with Bayesian approach

Through visual judgment, we can see that the model describes the data well. The curve
fluctuates with observed data, which shows robustness of the model for detecting
epidemic and non-epidemic phases as well as forecasting. More precise comparison of
the established HMM with the traditional SARIMA model using statistical criterions will
be given in Chapter 3.

The term epidemic refers to the uncommon sudden increase of the occurrence of a
disease and is defined as the occurrence of the incidence that exceeds the expected one.
This déﬁnition thus assumes a mixture of two phases, non-epidemic phase for the

expected incidences and epidemic phase for the excess incidences, which is shown in
Figure 2.2C.
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Figure 2.2C: Normal/normal model with Bayesian approach

2.3 Warning Threshold for Epidemic Detection

In this section, we will introduce a statistical method for detecting the starting point of the
epidemic phase of the influenza disease, which can be applied to other infectious diseases
where detection of the epidemic phase is concerned. To this end, we conduct the receiver
operating characteristic (ROC) analysis, which is briefly introduced as follows.

The ROC curve analysis [22, 23] is an effective method for evaluating the performance
and accuracy of diagnostic tests by considering decision thresholds. The ROC
methodology is appropriate in situations with binary classifications, for example,
epidemic/non-epidemic, disease&/normal cases, which has a wide range of applications in
medicine. Graphically, an ROC curve is a plot of the relationship between sensitivity (y-
axis) and its 1-specificity (x-axis) for the binary classifier system. Each point on the
graph represents a possible diagnostic cutoff value (threshold) and the empirical ROC
curve is formed by all possible decision thresholds. Let us consider a two-group

diagnostic test for deciding whether a certain disease, in a particular area, is in epidemic
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or non-epidemic phase. In practice, the distributions of the test results will overlap as
shown in Figure 2.3A, which means that we seldom observe a complete separation

between the two groups [24].

Criterion value

" =
B | | a8

™ TP
FN IFp

Test result

Figure 2.3A: Overlap of distributions

There are four possible outcomes from the binary classification (positive or negative
epidemic) for every possible cut-off point or criterion value: 1) There will be some
presence of epidemic cases correctly detected as positive which is called true positive
(TP). 2) Some presence of epidemic cases will be detected as negative (non-epidemic),
then it is called false negative (FN). 3) Some non-epidemic cases will be correctly
detected as negative which is called True Negative (TN). 4) Some non-epidemic cases
will be detected as positive (epidemic) which is named false positive (FP). The outcomes

for the test are summarized in the following table:
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Epidemic

Test Present N Absent n Total
True False

Positive . a . c atc
Positive Positive
False True

Negative ) b ) d b+d
Negative Negative

Total atb c+d

Sensifivity | = % Soecific _ 4

ensitivity P pecificity ctd

Table 2.2 Chart outcomes of a test

Herein sensitivity is the probability that a test result will be positive when the epidemic is
present (true positive rate) and specificity is the probability that a test result will be
negative when the epidemic is not present (true negative rate). Thus the ROC curve can
be formed by plotting the fraction of true positive (sensitivity) versus fraction of false
positive (1- specificity).

In Section 2.2 we have considered two Gaussian distributions with different
parameters for uncovering epidemic and non-epidemic states of the data. In order to
obtain the empirical distributions for the epidemic and non-epidemic states, we
partitioned the data into two separate groups by using HMM and considering the trend
and seasonality for the two Gaussian distributions. Bayesian approach has been used to
estimate the parameters.

Usually there is an overlap between the two distributions for the epidemic and non-
epidemic states. Hence, the warning threshold for detecting epidemic (WTDE) should be
a point in the common region of the two distributions. In order to balance the sensitivity
and specificity for detection, we conduct the ROC analysis (see Figure 2.3B), which has
been introduced in the above. The introduced WTDE is a valuable indicator for public
health managers to make decisions. If a health surveillance system finds that the disease
incidences go beyond the WTDE, then it would be the time for taking special and more

preventive actions in involved areas.
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Figure 2.3B: Receiver operating characteristic (ROC)

After using an HMM to uncover the hidden states (epidemic and non-epidemic states),
we are able to fit a proper empirical (Gaussian) distribution for each group. Since there is
an overlap between the two distributions (see Figure 2.3C), the WTDE should be a point
in the common region of the two distributions. We set the lower bound of the common
region to be the lower bound of the confidence interval for the epidemic distribution, and
set the upper bound of the common region to be the upper bound of the confidence
interval for the non-epidemic distribution. Then, we search the best choice of the WTDE
by conducting the ROC analysis. Finally, the WTDE is defined to be the point with the

best-balanced sensitivity and specificity, see Table 2.3.
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'Bmi»Epidemic

hreshold

253.785 0.931 0.16 0.055 0.179

Table 2.3: Cutoff point for warning epidemic states

All computations have been performed using WinBUGS and Matlab as well as SPSS for
some statistical analyses.

To compare the agreement between HMM and WTDE for detecting epidemic and
non-epidemic states, we consider the Kappa Statistics [25]. Kappa statistics is a common
tool for comparing the agreement against that might be expected by chance. Kappa
statistics can be thought of as the chance-corrected proportional agreement, and possible
values range from positive-one (perfect agreement) to zero (no agreement above that
expected by chance) to negative-one (complete disagreement), which is calculated as

follows:
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Kappa statistics= (Observed agreement - Chance agreement) / (1 - Chance agreement)

HMM
Total
Non-epidemic | Epidemic
Count count count
(percent) (percent) (percent)
122 1 123
Non-epidemic
(67.8%) (0.56%) (68.36%)
= 0 57 57
o | Epidemic
E ) (31.66%) (31.64%)
Total 122(67.8%) 58(32.22%) 180

Table 2.4: Comparison of HMM and WTDE results for influenza data

Observed agreement = (122+57) / 180 = 0.983,
Chance agreement = 0.678 * 0.683 + 0.322 * 0.316 = 0.564,
Kappa statistics = 0.96.

For these counts, we find that the Kappa statistics is equal to 0.96, which indicates that
there is almost perfect agreement between the result specified by the two detection
methods (p-value < 0000...), where 58 and 57 months are detected as epidemic states by

HMM and WTDE methods, respectively.
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3 A Comparison of HMM with SARIMA Model

3.1 SARIMA Model for Incidence Rates Series

The Seasonal Auto Regressive Integrated Moving Average (SARIMA) model is a
traditional model for incidence rates data, which is conventionally described using the

Box-Jenkins notation system: (p,d,q)(P,D,Q).. The (p,d,q) term contains the
parameters of the non-seasonal part of the model and the (P,D,Q), term contains those

of the seasonal component, where s is the length of the seasonal period (=12 in our
case). The process for SARIMA modeling involves identification of the initial values
of p,d and g using the auto-correlation/partial auto-correlation methods and estimation
of the p (auto-regressive) and g (moving average) components to see if they contribute
significantly to the model or one or the other should be dropped [26]. Readers may refer
to [27] for details on SARIMA modeling.

Due to the nature of the data, the time series has significant seasonal variations (see
Figure 3.1A). To identify the appropriate SARIMA model to the monthly influenza data,
we start with making the series stationary by removing the gross features of seasonality,

see Figures 3.1B and 3.1C.

\ ACF of Morthly Wcidence Rebes Infivenizs dota Monthly Influenza Incidence Rates in France
(1991-2006)
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; | Ly . 2500
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2 IR T T 1000 &4 1 3 P
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* CENREEIERE TR LRy YR Tb ERLRLLYS

Figure 3.1A: Time series of influenza incidence rates and its ACF
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Figure 3.1B: Time Series of influenza data after differencing
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To determine the possible persistence structure in the monthly influenza data, the ACF
and the partial ACF (PACF) are used. The closeness of fits is checked using the
Portmanteau test (Q-statistics) [28]. The procedures is repeated until an appropriate

b (12)

by 02)

Figure 3.1C: ACF, PACF plots for time series of influenza disease

The seasonally differenced data is now stationary; however, the autocorrelation function

(ACF) has the significant values at lag 12 and 13.

model is found. A combination of Akaike information criterion (AIC) and Bayesian
information criterion (BIC) [29] is used to select the best SARIMA model among the
possible models that fulfill most of the diagnostic checks for the time series of influenza

disease. The best fitted SARIMA model for the data is

ARIMA (1,0,1) (1,0,1),, process with equation :
(1+0.02B) (1-0.97B) X, = (1+0.45B) (1-1.04B") W,,
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where B is the backward shift operator.

Morthly Incidence Rates ARIMA(1,0,1)x(1,0,1)x12
predicted
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Figure 3.1D: Fitted SARIMA model for the observed series

(The plot which assigns negative values to the influenza data is the fitted SARIMA model)

The computation required for fitting the SARIMA models to our data is carried out using
the ASTSA and SPSS.V12 computer packages.

Sometimes it is useful to describe the properties of the time series in a frequency
domain. The Fourier transform is a mathematical technique for transferring a domain
function into a frequency spectrum. The Fast Fourier Transform is a method for

performing this process more efficiently. The spectrum is defined as:
2
f(A)= —g—— Z 7 (h)exp(—iih), where y(h)is the autocoriance function.
Ty

From Figure 3.1E and the sample ACF, we except that the influenza incidence rates in
winter, specifically in January, would be more vulnerable to seasonal fluctuations. Using

frequency domain analysis, we attempt to verify that this is indeed true. By trying three
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smoothing constants (L = 1, 2, 3), we expect that the peak of the spectrum would be

around A= 0.0833, which corresponds to the period of twelve months.
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Figure 3.1E: Spectrum of monthly influenza incidence rates

It is nearly apparent that all of the powers are concentrated at the frequency of 0.0833,

which corresponds to the period of twelve months (see Figure 3.1E). Therefore, we are

confirmed by the spectrum analysis that there is a seasonal trend of twelve months for the

influenza data.

3.2 Model Comparison

In this section, the HMM established for the data in Chapter 2 will be compared with the

SARIMA model using various statistical criterions, such as. the Mean Square Error

(MSE) and the R?, as well as predicted values for the following five consecutive months.

The results are displayed in Table 3.1.
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ARIMA Non- 3.57E3 0.645 389 1124 |70 -199 18
Bayesian
HMM Bayesian 2.65E3 | 0.728 411 862 571 | 319 72
‘Observed-Values o
403 | 1459 |856 274 |60

Table 3.1:

criterions

il 4 13
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:

Comparison of SARIMA and HMM using MSE ,R*and predicted-values
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Figure 3.2A: Comparison of fitted SARIMA and HMM Bayesian models

(The plot which assigns negative values to the influenza data is the fitted SARIMA model)
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As expected, the HMM with cyclic regression model and parameters estimated by the |

Bayesian approach, has lower MSE and higher R’ than the SARIMA model. Also the
HMM makes generally more accurate predictions than the SARIMA model that assigns

negative values for some periods, which is not realistic. However, at month “182”,

February, the SARIMA model predicts a value that is closer to the corresponding

observation. Since the months of January and February are characterized by high rates of
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the reported disease (see Figure 2.2A), they are understood to be the epidemic phase for
the SARIMA model and the HMM as well. As long as predicted rates are drastically
above a given cutoff point during this period, the difference between the two predictions,
SARIMA and HMM, in relation to the observed value is not significant. Therefore, the
values predicted for these months are not representative of the overall fit of the model for
decision making. Consequently, the better performance of the SARIMA at month “182”
cannot be used to infer an advantage over its counterpart.

Furthermore, the HMM Bayesian model can be justified by using another statistical
criterion: Deviance Information Criterion ( DIC). The DIC is defined in analogy with the
AIC. The model with the smallest DIC is regarded as the model that would best predict a
replicate dataset [30]. A brief introduction to DIC is as follows.

Let measurement of fit via deviance equal: D(data,0) = —2log L(data |8). We need
two quantities, which can be approximated using the MCMC sampler output in

WinBUGS; First, Daveraged over the posterior distribution of parameter, E, [D] and
Second, D evaluated at the posterior mean of parameter, D(E, [0]). Then complexity
measured by estimate of the “effective number of parameters” is
PD =E, [D] -D(E,,[0]
= D - D).
And finally the DIC is defined as

DIC = D(@) + 2PD (These quantities are easy to compute in an MCMC run.)

= D+PD or equal to “goodness of the fit + complexity”.

Models with smaller value of DIC are better supported by the data. The DIC is built
into WinBUGS and can be monitored by running the software. The calculated DIC for
our model, HMM Bayesian model, and SARIMA model, are 263 and 284, respectively.

Therefore, the value of the DIC criterion also confirms the appropriate selection of the

HMM Bayesian model for the data.
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3.3 Discussion

The HMM with Bayesian approach (MCMC) provides a highly flexible framework for
model exploration. The model established by using this approach has demonstrated its
efficiency through our data set in comparison with the traditional SARIMA model. Also,
an improved statistical method has been employed for developing the warning thresholds
for the influenza disease in France. The warning threshold is an effective and capable
indicator that can be used in health surveillance systems for strategic decision-making.

Influence of different prior distributions for the hidden Markov states is posed as a
further question for the future work. In addition, the lack of user-friendly computer
programs for utilizing HMMs makes it especially inconvenient when working with mixed
distributions. We expect to work with programmers to develop enhanced statistical
packages using, for example SPSS and S-Plus, in order to facilitate the further
implementation of HMMs.
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Appendix

WinBUGS Source Code for Analyzing Influenza Incidence Rates Data with
Bayesian Approach

model;
{
20 ~ dbern(plnit)
pinit ~ dbeta(1,1)
z[1] ~ dbern(p[1])
p[1] <- ((1-z0)*p01) + (z0*p11)
mean[1] <- ((1-2{1])*(mu0 + (betal * 1) + (deltal * cos(2 * pi * 1/12)) + (epsilon0 * sin(2 * pi * 1/12)}))) + (z[1]*(mu1 + (betat
* 1)+ (deltal * cos(2 * pi * 1/12)) + (epsilon1 * sin(2 * pi * 1/12))))

# Z= 0 means Non-Epidemic State & Z = 1 means Epidemic State

for(iin2:n){

z[i] ~ dbem(pli])

pli] < ((1-z[i-11)"p01) + ([i-1]"p11)

yli] ~ dnorm(meanil,taulil)

tauli} <-((1-z[i})*tau0) + (z[ij*tau1)

meanli] <- ((1-z[i})*(mu0 + (betal * i) + (deltal * cos(2 * pi * i/12)) + (epsilon0 * sin(2 * pi * i/12)))} + ([i]*(mu1 + (betat *
i)+ (deltat * cos(2 * pi * i/12)) + (epsilon1 * sin(2 * pi * i/12))))
}

tau0 ~ dgamma(0.001,0.001)
taut ~ dgamma(0.001,0.001)
p01 ~ dbeta(1,1)
p11 ~ dbeta(1,1)
mu0 ~ dnorm( 0.0,1.0E-6)
mu1 ~ dnorm( 0.0,1.0E-6)
beta0 ~ dnorm{( 0.0,1.0E-6)
beta1 ~ dnorm( 0.0,1.0E-6)
deltald ~ dnorm( 0.0,1.0E-6)
deltat ~ dnorm( 0.0,1.0E-6)
epsilon0 ~ dnorm( 0.0,1.0E-6)
epsilon1 ~ dnorm( 0.0,1.0E-6)
}

list(n=180,pi=3.14159,y=c(data)}

list(mu0=0,mu1=0,p01=0.5,p11=0.5,pInit=0.5,beta0=0,beta1=0,delta0=0,delta1=0,epsilon0=0,epsilon1=0,tau0=1 tau1=)
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