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ABSTRACT

Lateral-Axial Coupling and Boundary Conditioning
of Vibrating Strings and Cables

Chien-Yu Chen

Strings and cables are often used to support loads. Made of stiffer and stronger
steel cables, the metal ropes find applications in heavy load bearing situations such as
cable supported bridges, elevator, cable car transportation systems, and in overhead
transmission line cables. Much more flexible and thin fibres, a key element in textile and
optic fibre industry, are wound on high speed bobbins. In most of string and cable
studies, very little attention has been given to the boundary condition that may affect their
motion. In this thesis, two case studies are analyzed to study the effect of boundary
condition on the string behaviour. In the first case, a string with a boundary condition in
between fully clamped and free state is studied. The effect of such a partially clamped
condition on the natural frequency has been tabulated. The second case investigates the
axial-transverse coupled motion of a fixed-fixed string supported at two points. The
nonlinearity of the tension during vibration is considered as well as the orbital motion of
the excited string. The simulation of string motion is done using numerical finite
difference method along with von Neumann and Courant stability conditions to ensure
minimum iteration errors. Experiments are conducted by tracking the string’s axial

motion with a dynamic force sensor and lateral motion with a stroboscope to record the
iii



orbital behavior. In addition fast Fourier transform (FFT) has been performed on sound

produced by the vibrating string to obtain the frequency spectrum.
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Chapter 1

Introduction

Strings, ropes and cables are used in many mechanisms, and their applications
vary from load carrying, signal/energy transportation to sound generation. Suspension
bridges, cable supported elevators, transmission lines and musical strings are few
examples among many cable structures. While single thread is flexible yet weak, a strand
can be significantly stronger. This principle can be readily verified from textile and fiber
reinforced materials. From manufacturing to applications, many industries are closely
tied to strings and cables. In many works, strings and cables are simply modeled as fixed
at both ends. However, this theoretical boundary condition does not necessary reflect the
reality. In electric transmission lines, cables are suspended from the tower supports
without clamping them, and in pulley system, cable at one side is always under higher
tension than the other. Various supports between the two fixed ends also condition the
string behavior such as in bridges and frets in musical instruments. All those examples

reflect various boundary conditions that different cable/string systems are subjected to.



Fig. 1.1. Cable car transportation system

1.1  Types of String Vibration

Vibrating systems can perform either free or forced vibration. In string and cable
systems, those that are driven by motors or engines such as elevators and cable cars are
undergoing forced vibration since they are continuously under the action of a force input.
Naturally, those systems will vibrate at the exciting frequency introduced by the applied
force. When an initial input is introduced and the system is left to vibrate freely at its
natural frequency, it undergoes free vibration and gets naturally damped out over time.
Some of the examples of free vibration include strings in musical instruments excited by
plucking, hammering or bowing, and electrical transmission lines and suspension bridges
excited by sudden strong wind. In the case of cable cars as shown in Fig. 1.1, besides the

applied force from the motor, it is also affected by wind. Irrespective of whether they



undergo forced or free vibration, all the cables exhibit, to a certain degree, three modes of
vibrations: transverse, axial and torsional. Acting perpendicular to the string, also known
as lateral vibration, the transverse motion is the most predominant behavior in strings and
cables. The axial vibration is introduced by string stretching during lateral motion. Also
known as longitudinal vibration, the axial motion is often ignored in analyses as its
magnitude is considered negligible compared to that of the lateral vibration. Not as
common as the two just mentioned, torsional vibration can be observed when strong wind
blows on ice accreted transmission line cables with an eccentric ice load. The three types

of motions are illustrated in Fig. 1.2.

<> Torsional vibration

Axial vibration s
N A N
N 2\

1 Transverse vibration

Fig. 1.2. Types of vibration on a fixed-fixed string
1.2 Fundamental and Partials

In vibrating systems, due to boundary conditions, only specific vibration modes
are possible. In a string fixed at both ends, the possible vibration modes are shown in Fig.
1.3. The longest wave allowed is called the fundamental, while all others are called
harmonics or partials. A harmonic is defined as integer multiples of the fundamental
frequency. A vibrating string seldom oscillates at a single frequency but rather as a

summation of fundamental and multiple partials where the fundamental is the dominant



frequency. This defines vibrating string pattern as a mixture of waves which typically
have whole number ratios between the frequencies. Acoustically, this mathematical
relationship between fundamental and partials represents a certain pattern in frequency

spectrum which is pleasant to human ears.

1st Harmonic - :
First Overtone w

Znd Harmenic

Second Overtone M
3rd Ha'monic *
Third Overtone

And soon..

Fig. 1.3. Standing waves between two fixed ends

Theoretically, harmonics or partials are at multiples of the fundamental frequency.
However, studies performed by H. Fletcher et al. [33] on piano strings have shown the
presence of inharmonicity due to nonlinear behavior of the stretched string due to string
stiffness. Inharmonicity is a common term referring to spectra in which one or several
partials are shifted slightly away from their harmonic positions. Since the inharmonicity
is directly affected by the string stiffness, there will be a higher degree of inharmonicity
in soft strings such as optical fiber and textile threads than in larger and stiffer steel
cables. According to H. Fletcher et al. [33], inharmonicity is not necessarily unpleasant;
and a slight inharmonicity actually adds a certain warmth to the sound. They further point

out that a small amount of inharmonicity in synthesized piano tones renders the sound

4



more natural. Due to inharmonicity, the term partial will be used in this thesis as it is

more appropriate than harmonic.

1.3 Literature Review

Since strings are one of the most common structural elements in many mechanical
systems, their vibrations have been extensively studied and well documented. However,
most of the studies simply consider completely fixed boundary condition which does not
always reflect the real situation. There are very few studies exploring the effect of

boundary conditions on the string vibration.

1.3.1 Axial-transverse string model

Historically, the vibrating string has sparked interest of several mathematicians
namely D’Alembert, Euler, Bernoulli, and Lagrange. While the 1D wave equation has
been known for a while, it had to wait until early 20" Century for some basic coupled
models to be proposed as in the book written by W. F. Osgood [79]. This initial work was
later improved by A. H. Nayfeh [74] with a truly 3D model that included axial and
transverse motion. He further proposed different conditions for soft and stiff strings based
on the amplitude of axial and lateral motions. However, the stress-strain relation used
turns out to be an approximation to Hooke’s law. This later misled works done by others
such as R. Narashima [73], J. A. Elliott [29, 30], C. E. Gough [42], N. B. Tufillaro [91,

92], H. P. W. Gottlieb [41], A. Watzky [99], etc. The correct model was proposed by E.
5



V. Kurmyshev [58] using the exact Hooke’s equation for elastic string with large
amplitude of oscillation. However, his attempt at solving the equations mathematically

could only include the fundamental mode.

1.3.2 Transmission line cable

In electricity transmission, huge columns are used to support the long overhead
transmission lines at various points. The cables are connected to the columns by
insulators which do not firmly clamp the cables to the supports as shown in Fig. 1.4. Such
cables are subject to a certain sag which allows wind induced oscillations. The cable
motion is generally classified into three types, namely, galloping, acolian and wake
induced vibrations. Among those, the low frequency large amplitude galloping oscillation
is the most important to be considered. J. P. den Hartog [28] presented one of the first
models for galloping vibration on an iced transmission line cable considering the
aerodynamic properties of the ice profile. Later, T. Ohkuma et al. [77, 78] did significant
works investigating factors that initiate and cause of the galloping leading to the
consideration of parameters such as the initial angle of wind attack, the initial icing angle
and the wind speed. A full multi span 3D model was proposed by J. Wang and J. L.
Lilien [97], which can predict the galloping behavior of the iced transmission lines within
an acceptable accuracy. However, among all the works, only aerodynamic aspects are

focused while neglecting the effect of boundary condition on the cable behavior.



Fig. 1.4. Transmission line cables

1.3.3 Suspension bridge

Developed in the early 19 Century, the modern suspension bridge has gained
wide popularity due to its long span capacity. However, with the collapse of the Tacoma
Narrows Bridge (see Fig. 1.5) in 1940 due to wind induced vibration, studies have mainly
focused on aerodynamic instability as reported by F. Bleich et al. [12]. Numerous studies
have also been carried out by several authors on particular bridges. However, all those
studies uniquely focused on the effect of wind and the aerodynamic force on the complete
bridge. C. Su et al. [89] have done investigations on a suspension bridge at various stages
of erection, however, the effect of various boundary conditions that the cables

experienced during construction was not discussed.



Fig. 1.5. Collapse of Tacoma Narrows Bridge

L. Caracoglia and N. P. Jones [16, 17] have studied the dynamic behavior of a simplified
cable network, composed of a set of interconnected truss elements. The transverse cables,
defined as cross-ties, were used to counteract the undesired oscillations induced by wind-
rain combination. C. Lemaitre and al. [61] have modeled the rainwater rivulets on a cable
subjected to wind action by proposing special criterion for the appearance and position of
rivulets. D. Q. Cao [15] et al. further investigated the effect of moving rivulets on the
cable dynamics while a complete model including the rivulet position and its movement
has been proposed by L. Wang and Y. L. Xu [98]. J. Kim and S. P. Chang [54] have
investigated the effect of an inclined cable with displaceable boundaries and derived the
dynamic stiffness for each degree of freedom. The boundary condition has finally gained
attention with works from M. A. Zarubinskaya, and W. T. van Horssen [105, 106]

investigating the effect of boundary conditions on the bridge by considering a rectangular



plate with two opposites sides simply supported and the other sides attached to linear

springs.
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Fig. 1.6. Zarubinskaya and van Horssen’s suspension bridge modeled [105, 106]
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1.3.4 Pulley, conveyor and winding systems

Belt drivers are used for transferring energy while pulley mechanisms are used for
winding fibers. In all cases, a circular disk, cylinder or cone is mounted on a shaft.
Rotating at a constant or variable speed, they are driving, driven or winding belts, cables,
or strings which are subjected to vibration due to mass unbalances. L. J. Cveticanin [26,
27] has reported several studies on textile machine rotors used for thread winding. His
main work deals with the rotor unbalanced due to the nonlinear thread tension. By
comparing analytical and numerical results, L. J. Cveticanin concluded that the amplitude
of vibration has tendency to decrease with time, and it will decrease faster if the angular
velocity is larger. However, only the first layer of winding was analyzed. C. N. Bapat [6]
investigated the effect of variation in mass density and tension of a string by using a multi

sections method where each section has different mass density and tension. The
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transverse vibration of an axially accelerating string was studied by M. Pakdemirli et al.
[82] performing stability analysis using an eight-term series solution. The results showed
that the instability occurs at much higher amplitudes and frequencies than typical devices
such as tape machines and band saws. Furthermore, based on work done by R. B. Bhat et
al. [11], a belt moving on an elastic foundation is unstable for any velocity larger than the
wave velocity in the belt material. L. Zhang and J. W. Zu [107, 108] have investigated
the non-linear vibration of moving belt considering the effects of elastic and viscoelastic

parameters, axial moving speed and the geometric nonlinearity.

1.4 Objectives and Scope of Thesis

The survey of work done has shown extensive vibration studies on various string
and cable systems found on suspension bridges, trolley cars, elevator cables, electric
transmission line cables, musical stringed instruments, and textile bobbins. However, in
most of the works, the boundary condition analysis has been widely neglected and they
considered the string and cables as completely fixed at both ends. The aim of the present
study is to explore the effect of boundary condition on string vibrating with two case
studies. The first case verifies the effect of a partially clamped end on the behavior of the
string vibration. This investigation explores what has been neglected in many cases by
simply considered the string to be completely fixed. The second case considers a string
fixed at both ends and supported at two points making the lateral vibration to take place
between the supports while the axial vibration induced by lateral motion occurs between

the two fixed ends. This is one of the first and few studies of coupled model where the
10



boundary position for axial and transverse vibrations of a coupled system is different. For
the simulation, the numerical method is used to obtain the string behavior without solving
the wave equations analytically. An experimental setup is built to compare simulation
data with actual results for the fixed string with supported section. For the partially fixed

model, only simulation results are presented.

1.5 Thesis Organization

After the brief introduction in Chapter 1 about the type of string vibrations and the
literature review, Chapter 2 covers the transverse and axial string vibrations with classical
boundary condition. In Chapter 3, boundary conditioning of string vibration is analyzed
with a partially clamped string and an axial-transverse coupled case where the transverse
vibration only occurs in a section of the string length while the axial vibration covers the
complete string. Caused by the uneven reflection of the travelling waves, the boundary
conditioning is directly the cause of beat phenomenon. Covered in Chapter 4, beat
phenomenon is the interference between two or more vibrations with closely spaced
frequencies. Chapter 5 deals with the simulation of equations derived in Chapter 3.
Besides simulation results, methods such as finite difference and digital waveguide in
string simulation are also presented. In Chapter 6, the experiment and the collected data
are discussed and compared with the simulation results from previous chapter. Finally,
Chapter 7 concludes this thesis by summarizing the work done and outlines

recommendations for future research directions.
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Chapter 2

Strings with Classical Boundary Condition

After the brief literature review in Chapter 1, the classical case study of vibrating
string will be reviewed in this chapter. As one of the fundamental vibration system
studies, the oscillating string offers the advantage of mathematical simplicity while still
providing on understanding toward more complex systems, such as the vibrating
membrane which is merely a 2D combination of vibrating string models. In addition, the
knowledge of string vibration can be extended to include beam vibration, which can be
viewed as axial string vibration if the beam is replaced by a slender cylindrical rod. In
this chapter, the transverse and axial vibrations are studied individually with classical

boundary condition that considers both ends of the string to be completely fixed.

2.1 1D Transverse Vibration

From transmission line cable to clothes line, the freely vibrating stretched string is

commonplace in daily life. In all the cases, transverse vibrations are possible in two

12



perpendicular planes. In this thesis, the plane of excitation is always defined as y , while
z 1s perpendicular to the x—y plane. By considering only a single plane as shown in

Fig. 2.1, it is possible to derive a wave equation from the forces acting on the string
where it is distributed from the equilibrium position after plucking. The free vibrating

string is assumed to be of negligible stiffness, uniform linear density, and stretched to a
tension 7, . For small transverse displacement (#” ), the tension is assumed to be constant

throughout the string. Also dissipative force (damping) is not considered in this analysis.

TpSiNOx+ax

Fig. 2.1. Transverse vibration string segment

Let the x coordinate of a point on the string represent its horizontal distance measured
along the string from the left-hand support, and its y coordinate the transverse
displacement measured from the equilibrium position. Consider a segment of the string of
infinitesimal length as indicated in Fig. 2.1. It is reasonable to assume cos@~1 and
sin@~tan@ for small transverse displacement. Then the difference between the x
components of the tension at the two ends of the element ds cancel out each other. For
transverse motion, the y components are given by

13



o*u”
or?

pdx

= (T,sin8),,, —(T,sinH), 2.1

x+0x

where pdx is the mass of the element of the string. Considering only the first two terms

of Taylor’s series expansion:

Foerdo) = £+ LD gy 2.2)

ox
the Eq.(2.1) can be expressed as

o*u’

o(T, sin )
ot - o

= (T, sin0), +@dx—(n sin@), = L2207 (2.3)
X

pdx Ox

Since the transverse displacement of the string is considered small, and correspondingly

Y
that the angle @ is small, sin § is approximated as tan# which is equal to et The

equation obtained is the well known wave equation

o 24)
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o

T . . . o
where ¢, = _[-2 is the velocity of wave propagation in transverse direction expressed as
yo)

a relation between the tension applied to tighten the string and the string mass per unit

length. The wave equation can be solved mathematically by separation of variables and
the solution takes the form of u”(x,t) = X(x)T(¢) where X(x) and T(¢) are the space

and time portions of motion. Substituting into Eq. (2.4) and separating the variables gives

X = izz (2.5)
X T
This leads to the following expressions
X'+ X =0 (2.6a)
T+7°cET =0 (2.6b)

where —7? is an arbitrary constant. The general solution of the above two differential

equations are

X (x)=Gcos(rx)+ H sin(rx) (2.7a)

T(t) =Jcoslc,rt)+ K sin(c, 7t) (2.7b)
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Since the boundary condition is assumed to be fixed at both ends (let x =0 for the

position of string at left end and x = L, for the one at right end), the boundary condition

commands the amplitude of motion to be zero at both supports and the solution of Eq.

(2.7a) becomes

G=0 (2.82)

Hsin(7L,)=0 (2.8b)

Considering the non-trivial solution, sin(zL,)=0, which provides the value of the

arbitrary constant 7 as,

=" (2.9)

The corresponding string motion is given by

u’ (x,t)= Zsin(ﬂj J cos[nﬂcT[j +K° sin(mrcrtj (2.10)
n=1 LT LT LT

where J' = HJ and XK' = HK are arbitrary constants that are determined from the initial
conditions. For a string excited at the midpoint with an impulse of H , the equation of

motion without damping is
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uy(x,t)=gz—12-sin(ﬂ)sin n | cos| 2Er! 2.11)
2 L L

The string motion described by Eq. (2.11) is shown in Fig. 2.2 where the string is
bouncing back and forth between the maximum upward position representing the initial
condition (Fig. 2.2a) and the maximum downward position (Fig. 2.2g) formed by

reflected waves from fixed boundary condition at both ends.

p———
| — Y —
e

=" Ia,%____}
A A

\

\

Fig. 2.2. Motion of a single oscillation cycle of string with an initial impulse

displacement at center

Clearly, from Eq. (2.11), the natural frequencies of transverse oscillation are

w o n |T
vy 0 T o 2.12
So =1 2r 2m 2L\ p @12)
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From the above equation, it can be seen that the frequency of the string can be modified
by choosing the value of mass and length of the string as well the tension applied. In
musical stringed instruments, where a wide range of frequencies is desired, the player is
constantly varying the resonance frequency by holding at various locations of the strings
such as in the case of guitar and violin. Mass also has a significant role to determine the
string natural frequency. The best example is again found in musical instruments where
some strings with thin core are covered with one or several layers of windings (see Fig.
2.3). This approach directly increases the mass without affecting too much the stiffness
and tension applied, thus producing significantly lower frequencies without lowering the

tension and making the string too slack to play.

dlll
&I
=i
2B

Fig. 2.3. Different types of string winding
2.2 2D Transverse Vibration

During vibration, it is easily observable that strings have tendency to follow an

orbital motion rather than simply oscillate on a fixed plane corresponding to the initial
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impulse excitation direction. The phenomenon was first observed by Hunton as reported
by H. Harrison [45]. The reference to other subsequent experiments can be found in the
book by A. H. Nayfeh and D. T. Mook [74]. It is observed that the whirling motion,
sometimes also referred to as ballooning or tubular motion occurs when the amplitude
and frequency of a plane excitation and the phase difference between the response and
the excitation exceeds certain critical values. An experimental study by T. C. Molteno
and N. B. Tufillaro [68, 69] suggests that the string does the following bifurcation
sequence: periodic — quasi-periodic — chaotic — quasi-periodic — periodic. W. T. van
Horssen et al. [94, 95] have since studied extensively the stability problem of the string
and have proposed equations for various whirling orbits where some are shown in Fig.
2.4. Since it is not germane to the current studies, the stability analysis will not be
covered in this thesis. However, it is important to point out that it has been long
appreciated that the two perpendicular transverse modes decay at different rates, since the

coupling to the soundboard via the bridge is different for the two planes.

Fig. 2.4. Various whirling orbits [94]
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Despite the absence of proven theory for the exact cause of the whirling motion from
original excitation direction, it is clear that the motion between the two transverse
vibrations is merely a phase shift of 90 degree with a certain difference in amplitude.

Similar to the motion described by Eq. (2.11) for y plane, the z plane equation is

obtained by replacing cos(anTt) by sin( ercT t) considering no amplitude change.

T T

u® (x,0) = ﬁzizsin(%)sin(’zﬂjsm(””c” ) (2.13)

2.3 Axial Vibration

Besides transverse vibration, another important type of wave motion is the
propagation of longitudinal waves in the string. Also known as axial vibration, it is
perhaps the type of vibration the most common in daily life. In fact, sound is defined as a
longitudinal vibration of particles of the medium through which the sound travels. The
axial vibration of a string is derived similar to that of the vibration of a bar. While the
string is executing lateral vibrations, the transverse amplitude is small compared to the

string length, and thus the string can be assumed to be straight in the axial direction.
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dl

——— released string
dx_ tightened string
ds

vibrating string

Fig. 2.5. String at different states

From Fig. 2.5, the strain equation is defined as

ds—dl ds—dx dx-dl
£ = = +

dl dl dl @19
The stress is defined as
o= 1:;‘ (2.15)
When the stress is divided by strain, it gives the Young’s modulus, E as
g o _E/4 (2.16)
£ £

where A is the cross sectional area of the string. After rearranging, the force applied in

axial direction is expressed as
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(2.17)

F =AE(ds—dx+dx—dl)

dl dl

dx —dl

Since T, = AE ( ) is the initial tension applied to tighten the string, which can be

=% 41

rewritten as d/ = TL , Eq. (2.17) can be expressed as:
)

Fx(x):<AE+T,,)[ds"d")

+T (2.18)

o

Let u* =ds—dx, which is the axial displacement of the string during longitudinal

vibration, Eq. (2.18) becomes:

F(x)=(E+T)2 41, (2.19)
Ox
u* u* + du*
A —r
Fx | : . Fx+dx
x x+dx

Fig. 2.6. Axial vibration string segment

The net force applied on an infinitesimal element is expressed as the difference between

the forces exerted at position x and x + ¢x.
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o’u”
pdx? =F 0L, (2.20)

where pdx is the mass of the element of the string. Again Eq. (2.20) can be approximated

using the first two terms of Taylor’s series expansion as in Eq. (2.2), and substituting Eq.

(2.19) into Eq. (2.20) gives

, 0" O'u”

G = @.21)

AE+T, . . L e .
where ¢, =  is the velocity of wave propagation in axial direction and it is

P

expressed as a relation between the initial tension applied and three properties of the

string: its cross section area, modulus of elasticity and density. Note that in many string
analyses, the initial tension 7| is not considered as the strain equation used doesn’t
consider the initial tension. Like transverse motion, the solution to Eq. (2.21) is obtained

by the method of separation of variables discussed previously and a similar solution is

obtained as

W (1) = Zsin(i@j J cos(n”c"t J+K‘[ A ] 2.22)
n=1 LA LA LA
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where again J° and K~ are arbitrary constants that are determined from the initial

conditions. The string length subject to axial vibration is represented by L ,. The natural

frequency is now expressed as

fx_a),f_ n [AE+T,
"2z 2L, p

(2.23)

It is seen from the above equation that the axial natural frequency is controlled by similar
parameters as in lateral vibrations except that it also depends on the string cross sectional
area and Young’s modulus of string’s material. In axial vibration applications such as the
elevator cables, the length of cable holding the elevator is constantly varying as the
elevator moves up and down as well as the tension applied due to the change in total
mass of passengers. It therefore offers a wide range of natural frequencies when

operating.

2.4 Summary

In this chapter, axial and lateral motions have been studied individually with
classical boundary conditions represented by a fully clamped string at both ends. From
the equations obtained, both transverse and axial vibration natural frequencies are very
similar where they vary with respect to string length, initial tension and string density. In
addition, the axial vibration is submitted to the influence of further parameters namely the

cross section area and the Young’s modulus of string material. The coupling between
24



transverse motions is briefly presented where they are considered to be separated by a
phase difference of 90 degrees while the transient motion is ignored. In the next chapter,

the effect of boundary conditions on string behavior will be studied.
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Chapter 3

Boundary Conditioning

In string vibration analysis, most of the works simply consider the string to be
firmly fixed at both ends. However, cables and strings sometimes are actually exposed to
various boundary situations which differ from the fully clamped boundary conditions. In
the previous chapter, the individual axial and transverse vibrations were presented with
the classical fixed-fixed boundary condition at both ends of the string. In this chapter, two
case studies are used to explore the effect of different boundary conditions on the string
motion. The first case attacks the situation where one end is subject to a partial clamped
condition. Since the reflected wave from partially clamped and fully clamped ends do not
necessarily match each other, the standing wave pattern (see Chapter 4) is expected to
vary with time. The second case seeks the coupled motion between axial vibration in the
complete string and the lateral vibration in a portion of the cable. This situation exists
when, fixed at both ends, the string is supported at two intermediate points between
which the lateral vibration takes place. Since the two supports allow the string to slide,

the longitudinal vibration induced by lateral motion occurs along the complete length of
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the string. This special case investigates the effect of boundary conditions located at

different positions for a coupled system.

3.1 Effect of Partial Clamping

In this section, the effect of partial clamping at one end of the string is analyzed.
This represents a more realistic boundary condition in several string/cable systems where
the end is not completely fixed as in transmission lines and pulley systems. The model is
illustrated in Fig. 3.1. The slider allows deflections along a transverse direction while

preventing the displacements of the string end along the string.

Fig. 3.1. String with partial clamped end

The equation of lateral motion is again the wave equation presented in Eq. (2.4), but with

slightly different boundary conditions:

u,,=0 (3.1a)

Tsinf =—ku’

=L, (3.1b)

27



Considering small transverse displacement for metallic string, the tension is assumed to

be uniform throughout the string. In addition, with small angle 8, it is possible to replace

) . ou’ e .
sin @ with tan & which is equal to S The boundary condition in Eq. (3.1b) becomes

3.1c)

Applied to the wave equation, the above boundary conditions will govern or condition the
behavior of the string. The wave equation can be solved using the method of separation

of variables as a combination of Egs. (2.7a) and (2.7b).
u’(x,t)= (G cos(tx)+H sin(rx))(J cos(c,7t) + K sin(c, rt)) (3.2)

With the boundary conditions from Egs. (3.1a) and (3.1c), the following equation is

obtained

G=0 (3.32)

~ksin(d,)=T rcos(d;) (3.3b)

After rearranging,
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Tz

tan(zL, ) = - 3.4

The above equation is a transcendental equation whose roots (7) can be found

graphically as the points of intersection of the right hand and left hand sides of Eq. (3.4)

(see Fig. 3.2) [63].

fr)
J

Fig. 3.2 Graphical solution of transcendental equation

From Eq. (3.4), the string length directly influences the period of tangent curve, and
therefore the approximate range of fundamental and the partials. The straight line formed
by right hand side of Eq. (3.4) will vary if the stiffness at the end of string changes, thus
intercepting the tangent curve at different positions giving different values of 7. The

natural frequencies are represented by:

P LI (3.5)
2 2« p 2
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Fig. 3.3. Graphical solution of Eq. (3.4) with L =0.25m
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Fig. 3.4. Graphical solution of Eq. (3.4) with L =5.00m

30




From Fig. 3.2, it is clear that the straight line does not cut the periodic tangent curve at
the exact same position for each repetition. This suggests the presence of inharmonicity
due to the partially clamped end condition of the string. Inharmonicity is defined as
partials slightly shifted away from their harmonic positions. In Figs. 3.3 and 3.4, cases of
variation in string length and stiffness are shown. While string length and tangent line’s
period are inversely proportional, it is clear that a smaller period leads to a smaller
variation in inharmonicity between partials while larger period causes bigger variation.
Since at higher partials, the straight line is more and more intercepting the vertical
portion of the tangent line, This suggests that higher partials are more and more harmonic
between them. Ultimately, inharmonicity will stabilized with a constant difference

between consecutive partials. It is also interesting to point out that at low stiffness,
partials are only at odd multiples of fundamental only (i.e.: f, =3f,, f; =5/, fi =7/,

etc.). Natural frequencies for various stiffnesses for and different string lengths have been

tabulated in Tables 3.1 to 3.3.

Table 3.1. Fundamental frequency (f;) with respect to stiffness and string length

. String length (L)
Stiffness (¥) 0.25m 0.50 m T.00m 5.00m
5 N/m 1.006¢, Hz | 0.505¢c, Hz | 0255c, Hz | 0.054c, Hz
50 N/m 1049c, Hz | 0546c, Hz | 0294c, Hz | 0.076¢c, Hz
500 N/m 1345¢, Hz | 0.758c, Hz | 0420c, Hz | 0.095¢, Hz
5000 N/m 1857¢, Hz | 096lc, Hz | 0492¢, Hz | 0.099¢, Hz
= N/m 2.000¢, Hz | 1.000c, Hz | 0.500c, Hz | 0.100¢, Hz

Tension applied (7)) = 100 N
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Table 3.2. First partial frequency (f,) with respect to stiffness and string length

_ String length (L, )
Stiffness (£) 0.25m 0.50m 1.00 m 5.00 m
5 N/m 3.002¢, Hz | 1502¢c, Hz | 0.753c, Hz | 0.15lc, Hz
50 N/m 3.018c, Hz | 1.517¢, Hz | 0767¢, Hz | 0.164¢, Hz
500 N/m 3.158¢, Hz | 1.644c, Hz | 0867c, Hz | 0.193c, Hz
5000 N/m 3.723¢c, Hz | 1924c, Hz | 0980c¢, Hz | 0.199¢, Hz
= N/m 4000c, Hz | 2.000¢, Hz | 1.000c, Hz | 0200c, Hz

Tension applied (7,) =100 N

Table 3.3. Second partial frequency (f;) with respect to stiffness and string length

. String length (L,.)
Stiffness (k) 025m 050 m L.00m 5.00 m
5 N/m 5002¢, Hz | 2502¢, Hz | 125lc, Hz | 025lc, Hz
50 N/m 5010¢, Hz | 2510¢, Hz | 126lc, Hz | 0259¢, Hz
500 N/m 5097¢, Hz | 2.594c, Hz | 1335¢, Hz | 0.290¢, Hz
5000 N/m 5610c, Hz | 2.889¢, Hz | 147lc, Hz | 0299¢, Hz
o N/m 6.000c, Hz | 3.000¢, Hz | 1.500c, Hz | 0.300c, Hz

Tension applied (7,) =100 N

Table 3.4. Third partial frequency (f,) with respect to stiffness and string length

: String length (L,)
Stiffness (£) 0.25m 0.50 m 1.00 m 500 m
5 N/m 7001c, Hz | 3501c, Hz | 1.75lc, Hz | 035lc, Hz
50 N/m 7.007¢, Hz | 3.507¢, Hz | 1.757¢, Hz | 0357¢, Hz
500 N/m 7071¢, Hz | 3.570c, Hz | 1816c, Hz | 0386c, Hz
5000 N/m 7518c, Hz | 3.856c, Hz | 1962¢, Hz | 0.398¢, Hz
o N/m 8.000c, Hz | 4.000c, Hz | 2.000c, Hz | 0.400¢, Hz

Tension applied (7,) =100 N
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Table 3.5. Fourth partial frequency (f;) with respect to stiffness and string length

Stiffness () String length (L)
0.25m 0.50m 1.00 m 5.00m
5 N/m 9.001¢, Hz 4.501¢, Hz 2251¢, Hz 0.451¢, Hz
50 N/m 9.006c, Hz | 4.506c, Hz | 2256¢, Hz | 0.456c, Hz
500 N/m 9.056¢, Hz 4.555¢, Hz 2.303¢, Hz 0.483¢, Hz
5000 N/m 9.446¢, Hz 4.827¢, Hz 2452¢, Hz 0.483 ¢, Hz
o N/m 10.000¢, Hz 5.000¢, Hz 2.500¢, Hz 0.500¢, Hz

Tension applied (7)) = 100 N

Table 3.6. Fifth partial frequency (f;) with respect to stiffness and string length

) String length (L, )

Stiffness (k) 025m 0.50 m 1.00m 500m
5N/m 11.001c, Hz | 550lc, Hz | 2751c, Hz | 055lc, Hz
50 N/m 11.007¢, Hz | 5.505¢, Hz | 2.755¢, Hz | 0555¢, Hz
500 N/m 11.046¢, Hz | 5.545¢, Hz | 2.79c, Hz | 0.580¢c, Hz

5000N/m | 11.388¢, Hz | 5.800¢, Hz | 2944c, Hz | 0598¢, Hz
» N/m 12.000¢c, Hz | 6.000c, Hz | 3.000c, Hz | 0.600¢, Hz

Tension applied (7)) = 100 N

From the data in Tables 3.1 to 3.6, the comparison between the partials and the
fundamental has been tabulated below (see Table 3.7). Notice that at low stiffness,
partials are almost at odd multiples of fundamental frequency. In general speaking,

decrease in stiffness and string length leads to greater inharmonicity.
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Table 3.7. Inharmonicity with respect to stiffness and string length

Stiffness (£) Ratio 0.25m O.SS(;r;rrllg e l(.g:))m 5.00 m
L1 2.984 2.974 2.953 2.796

Ll 4.972 4.954 4.906 4.648

5 N/m filf, 6.959 6.933 6.867 6.500
51 f 8.947 8.913 8.827 8.352

£l f 10.935 10.893 10.788 10.204

LS 2.877 2.778 2.609 2.158

filf 4.776 4.597 4289 3.408

S0 N/m fil f; 6.680 6.423 5.976 4.697
fil f 8.585 8.253 7.673 6.000

filf 10.493 10.082 9.371 7.303

LS 2.348 2.169 2.064 2.032

il f 3.790 3.422 3.179 3.053

500 N/m filf, 5257 4.710 4324 4.063
£l f 6.733 6.009 5.483 5.084

£l f 8.213 7315 6.652 6.105

Ll 2.005 2.002 1.992 2.010

il s 3.021 3.006 2.990 3.020

S000N/m 177 % 4.048 4.012 3.988 4.020
filf 5.087 5.023 4.984 4.949

£l f 6.132 6.035 5.984 6.040

L1 2.000 2.000 2.000 2.000

I 3.000 3.000 3.000 3.000

= N/m filf, 4.000 4.000 4.000 4.000
filf 5.000 5.000 5.000 5.000

filf, 6.000 6.000 6.000 6.000

Tension applied (7,) =100 N
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3.2 3D Coupled String Model

In the previous chapter, the transverse and axial vibrations have been presented
separately. For a string excited laterally, axial vibration also takes place since it is
induced by lateral motion. In this section equations of coupled axial and lateral motions
will be considered. The nonlinearity of the tension due to large lateral oscillations of the
string will also be considered in the coupled model. For the coupled model, the variation
of boundary condition between axial and transverse motions will be explored with the
case of a fixed-fixed string with two supporting points, A and B as shown in Fig. 3.5. As

illustrated, the transverse vibration will only occur inside this section (Z,) while the axial

vibration takes place along the complete length of the string (L, =L, + L, + L,) .

le Ly

A\

2

Fig. 3.5. String model

Since early work by W. F. Osgood [79] almost a century ago, several models have been
proposed, including E. V. Kurmyshev’s [58] model derived from A. H. Nafey’s [74]
work which is by far the most accurate. However, modification is required to convert E.
V. Kurmyshev’s soft string model to apply on metallic strings. The derivation first starts

by considering an element of the string as shown in Fig. 3.6.
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Fig. 3.6. String segment

Considering the equilibrium of the element,

—=dT (3.6)

where i(x,?) is the displacement vector written as i +u” j +u°k . The tension vector is

defined from Hooke’s stress-strain relation

. L, —L
Foap| 2 =5 |9 AE(@—1)+TO@ ar (3.7)
ds ox ox | ds

—_

dar . . .
where d—r is the unit vector. The vector between the two ends of the string segment of
s

Fig. 3.6 is expressed as
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n n A X R y n z A
dr =(dx+du®)i +dv’ j+du’k = 1+6u i+au j+au k |dx (3.8)
ox Ox Ox

and its magnitude is expressed as

2 2 5 1/2
x y z
ds=|[1224 ] ([0 [ dx (3.9)
Ox Ox ox

The value of % and ? in Eq. (3.7) is derived using Egs. (3.8) and (3.9) by expanding
s

to the second order using Taylor series. Depending on whether the amplitude of string

oscillation is large or not, two cases are stated as following:

0[ ou” J _ 0[(aLyJ - 0[( o J J (3.10a)

ox Ox ox

o[a”xj o[aiy = O(a“ZJ (3.10b)
o

Ox
where O is the Landau notation for the order of the function and it is used to characterize

the relationship between the displacement in the three axis. For highly flexible strings, E.
V. Kurmyshev considers that the axial and transverse vibrations are having similar
amplitudes by using condition stated in Eq. (3.10b). In the case of metallic strings and

cables, it is more suitable to use the case expressed by Eq. (3.10a). Note that the two
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cases are not distinguished in many works even though they lead to different equations of
motion as shown in A. Watzky’s [99] work. Expanding Eq. (3.9) with respect to Eq.

(3.10a) to second order gives

x y 2 z 2
LR AR [ e 3.11)
ox o 2l & o

Similarly,

- - (3.12)

Put Eq. (3.12) into Eq. (3.8) by keeping up to first and second orders for axial and lateral

motions, respectively, to obtain

22 YL v . :
izf_ﬂz l—l Ou + ou i+6u j+6u A (3.13)
ds dxds 2{\ ox Ox Ox Ox

With Egs. (3.11) and (3.13) back into tension vector equation, it gives

38



_ . 2 \2 2\2 "
Fo|T (T +ap) 2 L AE (O | [ou P25 M E a4
ox 2 Ox ox Oox ox

Knowing the tension vector, Eq. (3.6) is then expressed as

2 .x x y 2 z 2
6142 :_6_ (T, + AE) Ou +£ ou N ou (3.15a)
ot Ox P ox  2p|\ Ox Ox

o%u’ T oouw

P :;aéx :, (3.15b)

(3.15¢)

o' T, a(au
or’ pé’x

Comparing the above equations with individual equation of motion from lateral, Eq.
(2.4), and axial vibration, Eq. (2.21), it clearly indicates that the axial vibration is under
the influence of the two lateral motions. Considering the mathematical challenge the
additional terms bring in the axial vibration and the need to simulate all the partials, it
will be simpler to solve the above set of equations by using a numerical method.
Although the wave equations are identical for both lateral motions, Egs. (3.15b) and
(3.15c¢), there is actually a phase difference between the two in view of the orbital motion.
Since the above equations are solved using numerical method, the analyze will be

presented in Chapter 5 with the complete simulation results.
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Fig. 3.7. Spectrum of a piano note with phantom partials marked by circles [3]

It is worth mentioning that in the acoustic analysis of a piano frequency spectrum, studies
have suggested that the longitudinal vibration is considered to be the source of phantom
partials (see Fig. 3.7). First pointed out by I. Nakamura and D. Naganuma [72], they have
found a series of partials having one-fourth of inharmonicity compared to the main
partials from fundamental. J. Woodhouse [101] later stated that the amplitude of those
partials seems to be modulated according to the longitudinal modal frequencies. Works
done by J. Bensa [9] and B. Bank [1, 2, 3, 4, 5] further implemented the phantom partials

into their piano sound synthesis to obtain more realistic sounds.

3.3 Summary

In this chapter, two cases of boundary study has been investigated analytically. In

the first case representing a partially fixed string, inharmonicity was observed which may
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lead to beat phenomenon in the string motion. The inharmonicity increases with decrease
in string length and stiffness. At extreme case, the partials will be shifted in such way that
they are near to odd multiples of fundamental frequency. In Chapter 4, the beat
phenomenon between closely spaced frequencies and between fundamental and
inharmonic partial(s) are investigated. The second case was a axial-transverse coupled
model. The particularity of this model is that the position of boundary for transverse and
axial vibrations are at different location. From the derived equations, the transverse
motion is influencing axial vibration while the transverse motion remains unaffected by
axial vibration. For the two case studies, it is possible to obtain simulation of the string
motion with the wave equation and the boundary conditions. In Chapter 5, finite element
method is presented as it allows modeling of complete behavior of string motion without

dealing individually with each mode.
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Chapter 4

Beat Phenomenon

As mentioned earlier, the partially clamped string produces inharmonicity while
the 3D coupled vibration that occurs on different string lengths may also present
inharmonicity between axial and transverse vibrations. In this chapter, a very interesting
phenomenon that occurs when two vibrations of slightly different frequencies interfere
together will be discussed. This is the well known beat phenomenon, where the amplitude
builds up and then diminishes in a regular pattern as shown in Fig. 4.1. The beat
phenomenon is very common in mechanical applications where two mechanisms are
operating at approximately, but not exactly, the same speed. Because of the high loads
induced during the amplitude increase which may cause large stresses beyond designed
safety limits, the beat phenomenon is a very important design consideration. Beyond
mechanical, it is also well known in acoustical and electrical fields. In musical
instruments, it may affect greatly the quality of the music while the properties of beat
phenomenon are used to transmit signals through amplitude modulation techniques. Since

the variation of the boundary condition in strings and cables will introduce closely spaced
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natural frequencies, beat phenomenon can occur and it is important to study this
phenomenon. Furthermore, beat phenomena between the fundamental and the slightly

inharmonic partials are quite interesting.

ampilitude

time

Fig. 4.1. Two vibrations of same amplitude and close frequencies (@, = @,)

4.1 Introduction

A good example of a system exhibiting the beat phenomenon is when two or more
pumps are connected to the same pipe, and the rotating speeds of each pump are not
exactly the same due to slightly different slip speeds of their drive motors. The pulsating
vibration or beat becomes noticeable in the system and its amplitude may go beyond what
is acceptable, even though the vibration level of each pump is within acceptable limits.
Similarly, beat can also occur in pulley/belt systems. For instance, a drive and driven
pulley of the same nominal diameter are capable of producing beats if belt slippage
occurs causing both to run at slightly different speeds. It can also form with vibration
originating from a single source. This happens when the forcing frequency is close to the

natural/resonant frequency of the system. While vibrating at its own frequency close to
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system’s natural frequency, the vibrating source excites the responding member causing
it to oscillate at its resonant frequency which in turn produces beating in the system with
the input frequency. Acoustically, a beat can be described as a distinct fluctuation in
volume which has a wobbling sound. When playing two same notes, if the pitch
(frequency) of one of the notes is slightly raised or lowered, a beat begins to appear. The
same analogy applies to noise generated by moving mechanisms. The larger the
discrepancy between the two frequencies, the faster is the beat. This will be explained

mathematically in the following section.

4.2 Beat Equation

Mathematically speaking, a beat is simply two vibrations with closely spaced
frequencies interfering with each other. It is represented by the summation of the

respective sinusoidal expression of two vibrations as in Eq. (4.1).
u(t) = Gsin(w,t) + H sin(w,t) 4.1)

From the above equation, it is hard to get a feeling of the actual behavior of beat

phenomenon. This equation can be rewritten in a form of amplitude modulated sinusoidal

+ ~o :
process. By assuming @, = (%) and @, = (%) , Eq. (4.1) can be written as:

u(t) = Gsin((@, +@,)t)+ Hsin((@, — @, )t) (4.2)
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Using the trigonometry identity of

sin(w, * @,) = sin @, cos @, * cos @, sin @, (4.3)

and rearranging, the final equation is obtained as

u(t)=(G+H) sin( “ J;a)z t]cos( @ ; D2 tj

(4.4)
+(G - H)sin(a)1 ;a)z tjcos(a)1 42-602 tj

A beat phenomenon also appears between sine and cosine oscillations. It results with a
beat that has a phase shift compared to two sine oscillations together. From Eq. (4.4), for
positive amplitude, the first portion clearly will have significant effect since its
coefficient is the sum of the amplitudes. The second portion has smaller influence,
especially when the two amplitudes are close to each other. The graphical representation
of Eq. (4.4) is shown in Fig. 4.2 where each of the two portions of Eq. (4.4) is an
individual beat of different amplitude range with a phase shift of 90° between them. The
addition of the second portion of Eq. (4.4) smoothes out the fluctuation of the beat
presented by first portion. In the case where the amplitude difference is large, the beat
will eventually be harder to notice as the amplitude modulation decreases. Therefore,
considering positive G and H , the first portion of Eq. (4.4) can be considered as the one

creating beat while the second portion is reducing the beat phenomenon.
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Fig. 4.2. Two vibrations of different amplitudes (G =1.5, H = 0.5) and close frequencies

(0, = w,)

For two vibrations of same amplitudes (G = H), the Eq. (4.4) is simplified to:

u(t)=2H sin(%z)cos( G ;“’2 t) (4.5)
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Fig. 4.3. Graphic representation of beat equation (Eq. (4.5))

The behavior of Eq. (4.5) is depicted in Fig. 4.1 and the graphical representation is shown
in Fig. 4.3. The beat frequency refers to the rate at which the amplitude modulation
occurs which is the envelope of the signal (second graph of Eq.(4.3)). It is equal to the
simple arithmetic difference between the two interfering frequencies, and bigger is the

difference, higher will be the beat frequency thus faster will be the beat. From Eq. (4.5),

. w, — o. . . (o+o ,
one can view cos('thj as the beat envelope, while Sln(-szl‘) being the

47



vibration inside the envelope. The graphical representation of Eq. (4.5) is shown in Fig.

4.3.

4.3 Beat Frequency

In many applications, the beat frequency phenomenon is employed as the fundamental
principle of operation. In the case of a sensitive Doppler pulse probe used to detect the
movement of the blood through an artery, the frequency of the reflected sound can be
mixed with the source frequency to produce a beat frequency. Any artery constriction or
obstruction can be detected by an increase in the blood speed in the artery as a change in
beat frequency. Similarly, radar speed detectors operate under the same principle where a
wave is transmitted to the moving vehicle. The transmitted wave is bounced back with a
shift in frequency caused by Doppler effect. The device then detects the beat frequency
between the directed and reflected waves to provide a measure of the vehicle speed. As
illustrated in Fig. 4.3, beat phenomenon is produced when a given frequency is
modulated by another. This led to the first method used to broadcast commercial radio
known as amplitude modulation (AM) where a modulating signal (first graph of Fig. 4.3)
is multiplied with a carrier wave (second graph of Fig. 4.3) using a frequency mixer. The
output of this process (third graph of Fig. 4.3) is a signal with the same frequency as the
carrier but with peaks and troughs that vary in proportion to the strength of the
modulating signal. Besides amplitude modulation (AM), there are other forms of wave

modulations such as frequency modulation (FM) and phase modulation (PM). It is
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important to mention that both FM and PM in telecommunication are actually angle

modulation and represented by the following equations:

Up, (1) = sin(ot + sin(ot)) (4.6a)

up,, (t) = sin(wt + cos(wt)) (4.6b)

A real frequency modulation equation should be of the following form:

U, ()= sin((a) + sin(a)t))t) 4.7)

Comparing to FM band, which is also widely used in commercial radio applications, AM
has a narrow bandwidth which limits the quality of sound that is received. Besides
limited fidelity, the adjacent radio stations transmitted by AM tend to interfere with each
other. Since the 1970’s wideband FM has been preferred for musical broadcasts due to its

higher audio fidelity and noise-suppression characteristics.

4.4 Wave Interference

Beat phenomenon is simply a specific case of wave interference. Any oscillation
interacting with another in the same medium is wave interference. Depending on how
they interact, the perception of the vibration varies. Two types of wave interference can

occur: constructive when they are in phase resulting in the addition of both amplitudes,
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and destructive interference when they are out of phase and subtract each other as shown
in Fig. 4.5. The wave interference of traveling waves is the concept behind the digital

waveguide modeling method discussed further in Chapter 5.

N el

inphase +

Constructive
interference

— Destructive
v 180° out interference

+ of phase =

Fig. 4.4. Wave interference and phase

The modes of vibration associated with resonance in extended objects such as strings and
beams have characteristic patterns called standing waves. A standing wave pattern is a
vibration pattern created within a medium when the vibration frequency of the source
causes reflected waves from one end of the medium to interfere constructively with
incident waves from the source such that specific points along the medium appear to be
standing still. It can be seen as interference of two waves of the same amplitude and
frequency (and therefore same wavelength) travelling in opposite directions. With
variation of boundary condition, the reflected wave is therefore expected to differ slightly

to disturb the standing wave pattern.
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4.5 Inharmonicity

As defined earlier, inharmonicity is a common term referring to spectra in which
one or several partials are shifted slightly away from their harmonic positions. Since beat
phenomenon appears between two close frequencies, this leads to the investigation of the
effect of inharmonic partials. Graphically, the summation of fundamental and its first
harmonic partial of same amplitude is as shown in Fig. 4.6 resulting in amplitude
addition, while the vibration repeats itself at the fundamental frequency. In comparison,
the effect of inharmonicity from the partial is illustrated in Figs. 4.7 and 4.8. At first
sight, it seems like a beating phenomenon, but upon a closer look, the mean value varies
in a harmonic fashion while the absolute amplitude of the envelope remains constant
instead of increasing and decreasing as shown previously. It is interesting to note that the

vibration of the fundamental (®,) and the first inharmonic partial (@,) repeats itself at
the frequency of ,a)2 —20),' instead of |w2 "(‘)1| as suggested by the beat equation. There

is also a phase shift if the partial is slightly higher or lower than twice the fundamental

frequency.
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When multiple partials are considered, the way the inharmonicity varies will greatly
affect the behavior of the signal. For fundamental and first and second harmonic partials,
the behavior is shown in Fig. 4.9 which is quite similar to that shown in Fig. 4.6. With
inharmonicity, if all the partials decrease or increase in frequency from their harmonic
positions, the outcome in Figs. 4.10 and 4.11 shows similarities with those in Figs. 4.7
and 4.8 where the mean varies harmonically with the amplitude of the envelop remains
almost constant. However, from the sound generated, beating is audible which is caused

by the inner and denser section (Figs. 4.7 and 4.8).

amplitude
L o o
lé—r—
——
—
oy

time

Fig. 4.9. Fundamental (®,) and first two (®,,®,) harmonic partials of same amplitude,

(@, =20, 05 =30,)
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Fig. 4.10. Fundamental (®,) and first two (@,,®,) inharmonic partials of same

amplitude, (@, ~ 20, & v, >20,;0, =30, & 0, >30,)
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Fig. 4.11. Fundamental (@,) and first two (@,,®,) inharmonic partials of same

amplitude, (0, ~ 20, & v, <20,;0, ~30, & 0, <3w0,)

In the case where a partial is slightly at higher frequency while another is slightly lower,
the vibration patterns in Figs. 4.12 and 4.13 show no sign of clear beat phenomenon.
However, from audio clips generated, the inner denser section seems to cause beat
phenomenon which is at higher beat frequency than in Figs. 4.10 and 4.11. From Table
3.7, inharmonic partials often all shift at higher or lower frequencies. Mix cases like in

Figs. 4.12 and 4.13 are very rare.
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Fig. 4.12. Fundamental (@,) and first two (®,,®,) inharmonic partials, of same

amplitude, (@, ~ 20, & 0, <20,;0, =30, & 0, > 3w,)
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Fig. 4.13. Fundamental (®,) and first two (@,,®,) inharmonic partials of same

- N
¥ T

amplitude
- O

'
L]

time

amplitude, (@, ~ 20, & 0, >20,;0, =30, & 0, <3w,)

In the case of partially fixed string with high stiffness, Figs. 4.14 to 4.16 have been
obtained from data for £=5000N/m and L, =0.25m from Table 3.7. The inharmonic

partials in this case are all shifted at higher frequencies. They clearly show that any
additional inharmonic partials will modify the signal waveform, and influences the beat

phenomenon formed in the inner darker section.
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Fig. 4.14. Fundamental (@,) and first (@,) harmonic odd partials of same amplitude,

i

Fig. 4.15. Fundamental (®,) and first two (@,,®;) harmonic odd partials of same
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Fig. 4.16. Fundamental (@,) and first three (w,,®;,®,) harmonic odd partials of same

amplitude, (@, =2.0lo,;0, =3.020,;0, =4.050,)
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For the partially fixed string with low stiffness, it has been shown in previous chapter that
partials are inharmonic at close to odd multiples of fundamental frequencies. The
combination of fundamental and its first two harmonic odd partials of same amplitude is
as shown in Fig. 4.17. Any addition of higher odd harmonic partials will simply increase

the amplitude while the signal form remains unchanged.

amplitude
o

time
Fig. 4.17. Fundamental (@,) and first two (@,,®,) harmonic odd partials of same

amplitude, (@, =3w,;0, =5w,)

For inharmonic odd partials, Figs. 4.18 to 4.20 have been obtained from data for £ =50

N/m and L, =0.25 m from Table 3.7. Again, any additional of inharmonic partials,

despite odd multiples only, will form beat phenomenon from the inner denser sections.
As a simple rule, any additional inharmonic partials will intensify a beat like denser

section at center of the signal.
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Fig. 4.18. Fundamental (w,) and first (w,) inharmonic odd partials of same amplitude,

(w, =2.88w,)
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Fig. 4.19. Fundamental (®,) and first two (@,,®,) inharmonic odd partials of same

amplitude, (@, =2.88w,;0, =4.78w,)

amplitude

time

Fig. 4.20. Fundamental (@,) and first three (,,®,,®,) inharmonic odd partials of same
amplitude, (@, =2.88w,;0;, =4.78w,;0, = 6.68w,)
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4.6 Summary

In this chapter, the wave interference between two closely spaced frequencies and
between fundamental and inharmonic partials was presented. From the graphs obtained,
the beat phenomenon clearly occurs between two closely spaced frequencies. In the case
of fundamental and inharmonic partials, beat phenomenon is observed to take place
inside the signal formed by a denser section. The graphical representation of various beat
phenomena is important since they will help in recognition of beating from the simulation
and experiment string motions observed. They will be covered in Chapter 5 and 6,

respectively.
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Chapter 5

Simulation

In Chapter 3, equations representing 3D coupled vibration were presented. Often,
the exact solution is hard to obtain from partial differential equations. Simpler methods
have been developed to bypass the mathematical challenge. After studying beat
phenomena due to inharmonicity in Chapter 4, it will be interesting to see how the
complete string will behave with a certain degree of inharmonicity. For the wave
equation, the two most popular modeling techniques are finite difference and digital
waveguide approaches. The finite difference method is the direct numerical solution of
the equation, and the digital waveguide is the discretization of the traveling wave
solutions of the wave equation. The digital waveguide has enjoyed a huge popularity in
synthesized music due to its fairly accurate sound reproduction. For string motion
however, the finite-difference method provides better results as the simulation is not
divided into traveling waves, thus representing the actual standing wave of the string
motion. The finite difference is also easy to use in 2D and 3D structures. In this thesis,

only the finite difference method is used and the explanation will be focused on this

60



approach to provide background to the simulation obtained from the equations derived
previously. In this chapter, the fundamental concept of the finite difference method will
be presented and a brief presentation of the digital waveguide is followed, since it is
related to finite difference method. Finally, string motions will be presented in the later

sections of current chapter.

5.1 Finite Difference Method

Finite difference string model has gained wide popularity since it is directly
connected to the wave equation and is straightforward to use for single as well as
multiple dimensional structures. Moreover, connecting different structures together is
relatively simple. However, its application has been limited by some serious drawbacks
such as the stability concern and the numerical dispersion. The latter means a slight shift
in the modal frequencies from the continuous system (real solution), which can, in some
cases, limit the accuracy of the model using this method. However, the difference is

negligible for low frequency vibration in strings and cables.
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Fig. 5.1. Central difference space-time grid

In finite difference modeling, the solution of a partial differential equation is computed
by replacing derivatives by finite differences. Either forward, backward or central
difference schemes are used, but due to stability concern, the central difference scheme is
preferred. Discrete time modeling of spatially continuous vibrating system such as a

string involves discretization of both space and time on a grid of x,, =mAx and £, = nAt

as shown in Fig. 5.1.

4

ux—l ux ux+1

Fig. 5.2. First order central difference scheme
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The central difference is a two-point scheme that uses the neighboring points (either left
and right, or top and bottom) to obtain the derivative using the average value of the two
points and the known grid size. Considering the grid shown in Fig. 5.2, the derivative

with respect to space is represented by the following central difference scheme:

du U, —u
u'(x,t)= x,! ~ x+1L x=1,4 (51)

dx 2dx

Ux-1 Uy Uyt

Fig. 5.3. Second order central difference scheme

As for the second order derivative, it can be expressed as a central difference between

two first order derivatives.

dux+0.5,t _ dux—O.S,t

du . Ax Ax
u'(x,t)=—>* =~ 5.2a
(x,1) o ~ (5.2a)
) ux+l,l ux,l _ ux,l ux-l,t
d Uy Ax Ax (5.2b)
dx’ Ax
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2
du,, N

ux+1,t - 2ux,! + ux—l,t

o e (5.2¢)
Similarly, the second order central difference on time grid is expressed as
d2ux,t ~ ux,t+1 - 2ux,t + ux,t—l (5 3)
dr’ A?? '

The combination of Eq. (5.2c) and (5.3) is the finite difference form of the ideal wave
equation (Eq. (2.4)) using central difference scheme. After rearranging, the ideal wave

equation becomes:

(5.4)

With known initial impulse amplitude and boundary condition at both ends, the finite
difference method automatically computes the next value of the element at position x
from the past state of the string including neighboring positions data, without solving the
wave equation analytically. In addition, unlike the close-form solution, the numerical
method automatically considers all the partials in the simulation. The finite difference
scheme has proven so far to be easy to derive, takes little storage and executes quickly.
Unfortunately, the finite difference method is not always stable and it may be useless in

cases such as the forward time centered space difference scheme. To find out if a given
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numerical scheme is stable or not, the von Neumann stability analysis is a fine tool that

can give a first simple validation. [84]

The von Neumann stability procedure, in principle, performs a spatial Fourier transform
along all spatial dimensions reducing the finite difference scheme to a time recursion in
terms of the spatial Fourier transform of the system. It is important to underline that the
von Neumann stability analysis a) does not take into account the boundary effects; b)
assumes that the coefficients of the finite difference equations are sufficiently slowly
varying to be considered constant in time and space. Under these assumptions, the
solution can be seen as a sum of eigenmodes which at each grid point has the form of [84,

86, 87]

u(x,fy=u,, =u,,=£"e"" (5.5)

Ng

where K=27” denotes the wave number (which can have any value) where A is the

wavelength, and & = £(x) is a complex number called amplification factor that depends

on x . The criterion for stability is defined as the value of « that keeps the amplification

factor less than 1 as stated below:

e =¢¢ <1 (5.6)
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The amplification factor, £(x), is found by applying Eq. (5.5) in Eq. (5.4)

£= ( Cz‘i’ ) (2 cos(kx))+ 2[1 —( crAt j J—l (5.7)

Ax 4

whose solution is [79, 81]

E=1+ (%Atj (cos(loc) — 1)1L %\/(Cﬁt) (cos(loc) — 1)2 + 2(cos(l<x) — 1) (5.9)

By applying Eq. (5.8) into the condition represented by Eq. (5.6), it gives lflz =1. This
means that there is no amplitude dissipation in the presented finite difference scheme.
Actually, for all central difference schemes, the von Neumann stability condition is
always satisfied. In some other schemes, it is only satisfied with certain conditions
leading to specific requirement concerning the value of Ax and A¢. Unfortunately, for
methods such as forward time central space, the condition can not be met and thus they

are unconditionally unstable. [84]
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Fig. 5.4. Schematic diagram of Courant stable and unstable choices of time and space

steps (At and Ax) [84]

If the von Neumann condition is satisfied without any requirement, the Courant-
Friedrichs-Lewy stability criterion is used to determine the grid size. Often called simply

the Courant condition, it states that the system is numerically stable for [84]

2
(CTA’) >1 = Av>c A (5.9)
Ax

In the MATLAB simulation of the ideal wave equation developed for the present thesis,

the grid is chosen to fit Af = QAj’ where the value of Ax used is always 1 cm, and the
Cr

velocity of wave propagation is defined by the tension and mass per length of the string

as in ¢, = £ . Similarly, for axial vibration, the grid is selected following Af =—,
V o €4

where ¢, = AL+, . The above procedure has been applied to all finite difference

P

models presented in this study.
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5.2 Digital Waveguide Method

Interestingly enough, the above Courant condition is the connecting bridge
between finite difference and digital waveguide methods. First introduced by J. O. Smith
[86, 87] in 1983, the digital waveguide modeling technique is based on D’Alembert’s
traveling wave solution for the ideal wave equation. This method is especially well suited
for simulation of 1D resonators such as vibrating string, acoustic tube and thin bar.
Considering its easy to use, low computation cost and fairly accurate sound synthesis, the
digital waveguide method has enjoyed a great amount of popularity in the computer
music field. Developed from D’Alembert’s traveling wave solutions, the two traveling
waves are discretized to form a set of bidirectional delay lines. Filters are added to
simulate environment changes to the traveling waves, and the whole is presented as a

feedback loop model (see Fig. 5.6).

x + ¢t = const, X = ¢t = const.
\\/ t‘} \//
AN P .
N, f=x L O 1
N AN
N N
AN 1 N // I //
AN N 7 7
N N s
N\ 7 P4
£5/2 } N 7N Z 7K £, /2
/
\\ \\ P /
e S Ve
N4 s £(
f\\ /,\ v x)
(7] '\\ IA\\ ’/ -
/ x

Fig. 5.5. D’ Alembert’s traveling waves [43]
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Fig. 5.6. Digital waveguide model of ideal string fixed at both ends [84]

Consider the grid size to follow ¢, = % as stated earlier, Eq. (5.4) is then simplified into

y — Y Y — 7Y
ux,t+1 - ux+1,t + ux—l,t ux,t—l (510)

Consider the D’ Alembert’s traveling wave solution to the wave equation as

u(x,t)=u,, =u(x—ct)+u(x+ct) (5.11)

Its discretized version then takes the following form

u,, = u(mAx - cnAt) + u(mAx + cnAt) (5.12)

Applying Eq. (5.12) to Eq. (5.10) gives
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u(mAx — c(n+1)At) + u(mAx + c(n+ 1)Ar)

= u((m + D+ cnar) + u{(m — 1)x ~ent) (5.13)

The above relationship is only valid if and only if ¢, = % , which is the assumed speed
t

of traveling waves in the digital waveguide method. Therefore the finite difference and

digital waveguide are equivalent if and only if the specific case of Courant condition of

cp = ax is applied in finite difference scheme.
A

5.3 Simulation Results

In the previous chapter, various equations of string motion were derived. In the
present work, all simulations are performed using MATLAB 7.0 with the numerical
method previously described. First, considering the string’s lateral motion, it is possible
to obtain the motion of the string after being excited to validate the simulation’s accuracy
with known results. According to Fig. 2.2, any excited string with an impulse
displacement should bounce back and forth between the imaginary boundaries drawn by
the maximum upward and downward lateral displacements. For the simulation, the string
is considered to be excited at one third of its length, and the motion is presented in Fig.
5.7. Drawing all lines together gives a boundary defined in Fig. 5.8. As expected, all
curves lie inside the maximum displacement curve toward the top and bottom. This
validates the modeling technique with known results from Fig. 2.2 for an undamped

string.
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Fig. 5.7. Complete lateral motion cycle for a string excited at %
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Fig. 5.8. Combination of lateral motion of an undamped fixed-fixed string
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For the 1D numerical method model, the individual motion of each point on the string is
oscillating between the top and bottom boundaries shown in Fig. 5.8. The axial-
transverse coupling is much more complicated. When applying uncoupled longitudinal
and lateral equations into von Neumann and Courant stability criterion, they give
different space-time grids which make the coupling impossible unless we adopt one of

the two grids. Note that in both ideal transverse and axial wave equations, there is no
amplitude addition or dissipation as |§|2 =1 for both cases. From Courant stability

condition (Fig. 5.4), the axial vibration will be unstable using larger lateral grid since

— >>-—, However, the lateral vibration is stable with smaller axial grid but results in

Cr €4
slightly downward shift of the curves as shown in Fig. 5.10 compared to Fig. 5.9. Despite

the small inaccuracy, the difference remains small after one second, thus validating the

application of axial grid size in lateral vibration simulation.
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For a coupled system, considering the coupled equations rewritten below, it is impossible
to apply the von Neumann stability criteria on Eq. (5.14a) due to the multiplication of

partial differential terms at right hand side of the equation.

o*u* (T, +AE) &*u* AE( 0w’ 8w’ ou® 0°u’
7 >t >+ 5 (5.14a)
ot p Ox p\ Ox Ox Ox ox
o’w T, o'’
Py =;" P (5.14b)
2, .z 2 .z
ou _Lou (5.14¢)

o p ox’

The simulation of the coupled system is illustrated in Fig. 5.11 using axial grid resulting
in slightly amplitude downward shift for lateral motion as explained earlier. The axial
displacement is considered to be initiated by lateral motion and its behavior depicts

strange beat phenomenon mixing long and short beats.
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Fig. 5.11. Coupled system behavior at g

For the string with a partially clamped end, the lateral motion simulation illustrated in
Fig. 5.12 shows very little difference with the fixed-fixed version portrayed in Fig. 5.7.
However, once plotted together in Fig. 5.13, the string motion is not bound exactly inside
the area formed by the two maximum downward and upward displacements. If the two
maximum displacements are observed closely, it is clear that they are slightly different

from each other. This suggests that the string motion may vary in the long term and no

longer follows the boundary shapes after one cycle.
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Effectively, due to variations of the reflected wave from partially clamped and fixed
ends, there is a small phase shift between the two. This signifies that the long term string
motion is no longer bound between the limit drawn in Fig. 5.13. After a few early cyclic
motions, the string is bouncing like the top illustration of Fig. 5.14. The string motion
keeps changing and finally completely switches sides to tilt toward right side as shown in
the bottom illustration of Fig. 5.14 before slowly bouncing back to tilt toward left side
after several cycles. This oscillatory motion between tilting toward right and left sides
repeats itself since there is no damping in the simulation. It is worth mentioning that the
effect of tilting in the opposite direction tends to decrease with an increase in string
stiffness of the twisted thread material used to lift the string. A slightly more exaggerated
stiffness value was used in Fig. 5.14 to better emphasize the observation regarding the

continuous shifting in tilt direction.
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Fig. 5.12. Complete lateral motion cycle for a string lifted at one end excited at §
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Fig. 5.13. Combination of lateral motion of an undamped fixed-partially clamped string
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Fig. 5.14. Rightmost (bottom) and leftmost (top) tilts of fixed-partially clamped string

When plotting the motion of various points on the string as portrayed in Fig. 5.15, the
presence of a beat is obvious. Finally, a very curious behavior of the string with one end
lifted is shown in Fig. 5.16 where the frequency amplitude curve finishes abruptly at the

lifted end instead of finishing smoothly like in the case of string without lifting.

78



Depending on the stiffness of the supporting material, the softer the stiffness, the more

abrupt will be the amplitude curve finish at the lifted end.
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Fig. 5.15. Oscillation at various position of the string with partially clamped end at x = L

0.5 BHTT

o o
MO

00 0o
N IOMN) S

S o
rmom

0

05 L

I

LT

A T SR

i i
l I
1 i
! I
! I

i I\ 1
0.1 02 03 04 05 06 07 08B 08 1
1 I 1 1 1 AN L WM?%W
0.1 02 03 04 05 06 07 D08 08 1
1 i - 1 1 WWW
0.1 02 03 04 05 0b 07 08 09 1
time (s)

79



s o e 1
ol L
100 _
200 . \ ’_ﬂ_ﬂ,'
3 s o
00 s, PR 50 70
400 - T 50
o - 40
500 M .o<”T 30
~ 20
600 10 . -
frequency (Hz) string position

Fig. 5.16. Combined FFT of all points on a fixed-partially clamped string

B \"

1500 .
1000t “I'""
500 e "l"l!l'l- ’
.! " nll"“'"
>
'-‘ ! ,..nlmuur-' -
o e
200 . <
N .
300 N P &0 70
400 Ty 0
1 N SR o
% 10 20
frequency (Hz) 600 string position

Fig. 5.17. Combined FFT of all points on a fixed-fixed string

80



5.4 Summary

In this chapter, the finite difference method has been presented with basic stability
analysis. As a special type of finite difference scheme, the digital waveguide is briefly
discussed. The behavior of the coupled system is modeled using an axial grid since it
allows both axial and lateral motion to be stable. The obtained results are quite surprising
as the axial motion is showing beat phenomena, resulting from interference between
fundamental and inharmonic partials. For a string with a partially clamped end, the
simulation shows a phase shift in the reflected wave from the partially clamped end
resulting in a beat phenomenon. In Chapter 6, the simulation results will be validated

with those obtained from experiment.
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Chapter 6

Experiments

In previous chapters, theoretical studies and a computer simulation were
presented. However, any theoretical analysis needs to be validated with actual results. In
this chapter, experiments are carried out to verify the case of coupled motion of fixed-
fixed string with supported points. The experiment is first described and the actual output
is compared to the string model derived in the previous chapter. It is important to mention
that guitar strings were used in current experiment due to their ready availability in
wound and unwound forms, and good quality-price ratio. They are therefore a test bench
to other type of strings and cables. The scheme of the experiment setup is shown in Fig.
6.1, and it is designed to enable monitoring the tension and sound pressure variation as

well as the orbital motion of an excited string.
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Fig. 6.1. Experiment setup diagram

6.1 Experiment Apparatus and Setup

The setup is fairly simple where the string is fixed at one end by a clamp playing
the role of a fixed support. The other end is attached to a turning knuckle allowing
various tensions to be applied by tightening the string. The knuckle is mounted to a fixed

support via a set of dynamic and static force sensors. Two supports then lift the string at

specific positions simulating the transverse vibration boundary conditions.

Fig. 6.2. Static load cell SW-500C from Transducer Techniques
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Table 6.1. Static load cell SW-500C specifications

Rated output (R.0.) 2 mV/V nominal
Nonlinearity 0.1% of R.O.
Hysteresis 0.1% of R.O.
Nonrepeatability 0.05% of R.O.
Zero Balance 1.0% of R.O.
Compensated Temp. Range | 60° to 160°F

Safe Temp. Range -65° to 200°F
Temp. Effect on Output 0.005% of Load/°F
Temp. Effect on Zero 0.005% of R.O./ °F
Terminal Resistance 350 ohms nominal
Excitation Voltage 10 VDC

Safe Overload 150% of R.O.
Calibration Included Compression
Optional Calibration Tension

Fig. 6.3. Digital strain gauge P3500 from Measurement Group
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Connected to a digital strain indicator, the static force sensor SW-500C indicates the
tension applied to tighten the string. With a rated output of 2 mV/V and a load capacity of
500 Ibs force, the sensor can be set to various gauge factors. From Table 6.2, a gauge
factor of 0.400 will give a full scale count of 20 000 for 500 lbs force, which means a
precision of 0.025 1b force. In order to facilitate the reading, the gauge factor of 1.600 has
been chosen to have 5 000 counts for the 500 lbs force allowing an accuracy of 0.1 1b
force. With the current setting, it will be possible to tighten the string accurately at any
desired tension by turning the rotating knuckle with the feedback displayed on the digital

strain gauge from the static force sensor.

Table 6.2. Strain gauge P3500 gauge factor setting

G.F. SETTING
FULL
SCALE TRANSDUCER SENSITIVITY IN mV/V
COUNTS LS mVIV 20 mV/V 30mV/V
1000 6.000 8.000 12.000. -,
1200 5.000 6.667 10.000
1500 4.000 5333 $.000
2000 3,000 2.000 6.000.
2500 2.400 3.200 4.800
3000 2, 2667 4.000
4000 1.500 2.000 3.000
5000 1.200 1.600 2.400
6000 1.000 1333 2.000
7000 0.857 1143 1714
8000 0.750 1,000 1.500
9000 0.667 0.889 1333
10060 0.600 0.800 1.300
12000 0.500 0.667 1.000
15000 0.400 0.533 0.800
20000 0.300 0.400 0.600
4000 xﬂ;’— 4000 x 2
FS=—or — OF =g
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Since the nonlinearity of the tension during string vibration is considered in the analytical
model, the dynamic force sensor is used to monitor the behavior of tension variation after
plucking. To minimize error induced by the force sensors, special care has been taken in
selecting appropriate devices with high rigidity. The dynamic load cell is capable of
supporting tension up to 100 lbs (444.82 N), which exceeds the needs of the current

experiment.

Fig. 6.4. Model 912 quartz dynamic load cell from Kistler Instrument

Table 6.3. Dynamic load cell model 912 specifications

Range: Compression To 5 000 lbs
Range: Tension To 100 Ibs
Resolution 0.002 1b
Overload 20 percent
Sensitivity (nominal) 50 picocoulombs/Ib.
Resonant frequency (nominal) (no load) | 60 000 Hz
Rigidity 20 x 10 in./Ib.
Rise Time 10 microseconds
Linearity (zero based best straight line) *1 percent
Capacitance (nominal) 58 picofarads
Insulation resistance (min.) 10" ohms
Temperature sensitivity 0.01 percent/°F
Temperature range -400 to +300 °F
Side force (max.) 100 lbs

Shock and vibration 10 000 g’s

Due to the rigidity of the sensor, a signal conditioner is used to amplify the voltage

produced by the quartz dynamic load cell. This same signal is then input into the
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oscilloscope and the analyzer along with sound pressure from the tip clip microphone in
order to obtain data in both time and frequency domains. Both machines are set so that

the recording is triggered by the signal coming from the dynamic force sensor.

Fig. 6.5. Analyzer and oscilloscope

Besides the microphone, a webcam is positioned close to the string to record the sound
into a laptop. Since the sampling rate from webcam can reach 44,000 Hz (44,000
recording per second), the data from webcam will be analyzed where microphone is only
used to verified the initial setting since oscilloscope only records 1,000 points. The sound
clips obtained are later on analyzed in MATLAB to perform a Fast Fourier Transform
(FFT) on specific sound segments. In addition, a stroboscope is used to capture the orbital
motion of the string while resonating. Basically, the stroboscope is set to be a bit off from
the natural frequency of the string to capture the orbital motion (if it is set at the same
frequency, the string will always appear stationary). In summary, devices used in current

experiment are listed below in Table 6.4.
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Table 6.4. Devices used in current experiment

Device Company Model
Signal analyzer Briiel & Kjar 2035
Oscilloscope Agilent 54624A
Amplifier/signal conditioner Unholtz-Dickie D22PSOX
Strain indicator Measurements Group P3500
Stroboscope General Radio Strobotac 1531-AB
Omnidireactional tie clip Nexxtech 3303013
microphone
Webcam Logitech Messenger
Dynamic load cell Kistler 920
Static load cell Transducer Techniques SW-500C

Fig. 6.6. Experiment setup

6.2 Experimental Results

For the experiment, a set of PhosBronze Acoustic series guitar string from Dean
Markley Strings Inc. is used. Guitar strings are simply a test bench for current study. The
selection is basically made due to its low price, availability, high quality, various sizes

and presence of wound and unwound strings. As the name indicates, the winding is made
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of phosphorous bronze and the core is made of steel. The properties of each string are

shown below in Table 6.5.

Table 6.5. Guitar string properties

String gauge/ Core & Mass per length Tension Frequency

Total & (mm) (mm) (x 10° Kg/m) N) (Hz)
0.33 0.33 0.7 127 329.63
0.43 0.43 1.2 125 246.94
0.66 0.38 2.7 173 196.00
0.91 0.42 4.9 168 146.83
1.17 0.46 8.2 168 110.00
1.42 0.50 12.3 144 82.41

Once attached, the string is tuned using an electronic tuner and the analyzer to obtain the
desired frequency. The tightening tension recorded from the strain gauge will be used for
simulation. Arbitrary plucks are applied upward to initiate the recording which is
triggered by the dynamic force sensor for both analyzer and oscilloscope. For each string,
FFT from both webcam and dynamic force sensor are presented as well as the tension
variation with time recorded by dynamic force sensor (see Fig. 6.7 to 6.23). The

experiment is performed four times for each string.
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Fig. 6.7. Dynamic force sensor signal recorded by oscilloscope for 0.33 mm string
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Fig. 6.19. Dynamic force sensor signal recorded by oscilloscope for 1.17 mm string
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Fig. 6.21. FFT of sound clip recorded for 1.17 mm string
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Fig. 6.22. Dynamic force sensor signal recorded by oscilloscope for 1.42 mm string
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Fig. 6.23. FFT of dynamic force sensor signal from the analyzer for 1.42 mm string
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From the sound data obtained, it is clear that the air ventilation system of the laboratory is
creating pulsations that interfere with the air displaced by the vibrating string. However,
it is possible to identify the frequencies of this noise by performing a FFT on a sound
sample of the room shown in Fig. 6.25. The values of those frequencies are shown with a
asterisk (*). In addition, there is a frequency that appears at around 35 Hz in all spectrums
of dynamic force sensor, and another at around 285 Hz for pressure sensors (microphone
and webcam). Since they remain unchanged for all strings, they are considered to be
noises from unknown sources, and thus are neglected. Both frequencies are marked with

a double apostrophe (“) in all spectrums.
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Fig. 6.25. FFT of sound clip recorded for room noise

In order to proceed further in the investigation, sound samples have been recorded from a

Yamaha acoustic guitar to obtain the frequency spectrum for each string as shown below

in Fig. 6.26.
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Fig. 6.26. FFT of sounds recorded for each string from a Yamaha guitar
6.3 Data Analyses

From the data presented previously, several observations have been made. First,

after neglecting the noises, there are two unknown frequencies marked by the caret sign
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(™). In Figs. 6.14, spectrums generated by the analyzer from force sensor have shown a
suspicious frequency at around 182 Hz. The partial of this frequency later appears in Fig.
6.20, the spectrum from force sensor, at around 542 Hz. Since in all those graphs, they all
appear close to an existing forcing frequency, it looks like they are the natural
frequencies of the experiment setup. As mentioned earlier in beat phenomenon, when a
vibration near a system’s natural frequency is induced, the system will end up vibrating at

its own natural frequency.

Table 6.6. Frequencies table

String gauge Desired Tuned Calculated* Calculgted*
(mm) Transverse Axial
Frequency (Hz)
0.33 329.63 322 323 739
0.43 246.94 246 246 772
0.66 196.00 194 194 470
0.91 146.83 143 143 380
1.17 110.00 110 110 319
1.42 82.41 83 83 279

*Calculated values are from tension used to tune the string rather than the desired tension

From FFT of sound clips recorded by webcam (Figs. 6.9, 6.12, 6.15, 6.18, 6.21 and 6.24),
partials have been compared to the fundamentals to verify inharmonicity in each string.
From Table 6.7, inharmonicity is observed in two of the four wind strings while in
unwind strings, partials are perfectly harmonic. Also, it is observed that the amplitude
decreases quickly for higher partials, therefore they will have negligible effect on the

string behavior.
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Table 6.7. Inharmonicity table

String gauge (mm) Jo (Hz) Al f fl fo e
0.33 322 2.000 N/A N/A
0.43 245 2.000 3.000 N/A
0.66 192 2.000 N/A N/A
0.91 141 2.021 3.033 4.043
1.17 110 2.000 3.000 4.000
1.42 83 2.012 3.024 4.036

N/A : Not available

The biggest surprise from experiment data is probably the missing of phantom partials
caused by axial vibration. From FFT of dynamic force sensors (Figs. 6.8, 6.11, 6.14, 6.17,
6.20 and 6.23), there is no sign of any phantom frequency. Even from the Yamaha
guitar’s frequency spectrums (Fig. 6.26), phantom frequencies are not visible. However,
the axial motion measured from the dynamic force sensor (Figs. 6.7, 6.10, 6.13, 6.16,
6.19 and 6.22) does show the presence of beat phenomenon as indicated in the
simulation, even in strings with harmonic partials (see Table 6.7). For bare string the
longer beats are more visible while for wound strings, the smaller beats are more
noticeable. Since beating occurs in with harmonic partials, the presence of axial vibration

due to tension modulation can be confirmed.

Finally, the orbital motion is observed with the video recorded under stroboscope. The
pictures below are made of frames taken from the video putting on top of another with
transparency to show the top-bottom and right-left motions. However, from the
observation, the orbital motion does not start until the amplitude of oscillation become

large enough and it takes more an elliptical form than circular as the amplitude
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perpendicular to the plane of motion is much smaller than the one acting on the excited

direction as shown in Fig. 6.33.

Fig. 6.27.Top and bottom (left), and right and left (right) string motions

6.4 Summary

In this chapter, the coupled motion of axial and transverse vibrations from a fixed-
fixed string with supported points is verified with an actual experimental testing. A set of
guitar strings is used and it is merely a test bench to other type of strings and cables.
From the data recorded, the presence of phantom partials due to axial-transverse coupling
can not be noticed. This maybe due to the amplitude of axial vibration being too small
compared to transverse motion to be picked up by the sensors. In guitar strings, partials
become negligible after first few. The beat phenomenon and the orbital motion are

observed in the axial vibration.
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Chapter 7

Conclusions

This chapter finalizes the current thesis by starting with a brief summary of the
major investigations covered. It is then followed by conclusions drawn from observation
obtained throughout the study. Finally, recommendations of future research topics are

suggested.

7.1 Summary

Being a fundamental system in vibration studies, the string is still a topic that can
go very deep. In this thesis, the frequency studies start with the investigation of various
aspects of beat phenomenon. Mathematical models of various string vibrations are
investigated to test the effect of different boundary conditions. Two case studies have
been proposed on a fixed-partially fixed string and a fixed-fixed string with two
supported points. Since the simulation of analytical model is done with finite difference,

this numerical method is briefly discussed along with the important von Neumann and
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Courant stability criteria. Both cases have been tested with computer model to obtain the
respective string motions. For the fixed-partially fixed string, extensive studies and
simulation have been done on the effect of the stiffness on the string natural frequency
and the inharmonicity introduced due to the nonhomogeneous boundary conditions. In
the second case, 3D axial-transverse coupled motion is modeled as well as its orbits. An
experiment has been setup to collect data from vibrating guitar strings fixed at both ends
with two supporting points. The use of guitar strings is merely convenient, and easy to
tune to its known natural frequency. In the testing, the data analyzer was used to obtain
directly the frequency spectrum while the oscilloscope recorded the behavior of string in
the time domain from the dynamic force sensor and the microphone. In addition, sound
sample was also captured by webcam to be further analyzed on the computer to perform

FFT. Finally, the orbital motion of vibrating string was validated with a stroboscope.

7.2 Conclusions

After studying the effect of boundary conditioning and beat phenomenon, the

following conclusions are drawn from the present analysis:

1. In the boundary conditioning problem, the inharmonicity is found in the partially
fixed string from analytical results. The degree of inharmonicity is defined by
string length, tension applied and stiffness of the partially fixed end. General
speaking, inharmonicity is more pronounced in shorter strings than longer ones.

Also at low stiffness, partials are close to odd multiple of fundamental frequency.
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2. For the 3D coupled string, the axial motion is exposed to influences from
transverse motions. However, for stiff metallic strings, the motion of axial
vibration is not influencing the behavior of lateral motions. Under the influence of
lateral motion, the simulation results of axial vibration clearly showed signs of
beat phenomenon. For the fixed-fixed string with two supporting points limiting
the string section where the lateral motion occurs, the variation of effective string
length for each mode of vibration was only affecting their respective natural
frequencies. In addition, since axial vibration is influenced by lateral motion, any
variation of supporting limiting the lateral vibration will in turn affect the axial
motion.

3. From beat phenomenon analysis, the vibration formed by fundamental and
inharmonic partials gives different beating mechanisms with each additional
partial. Any addition of inharmonic partial, odd multiple or not, will ultimately
lead to beat phenomenon in the inner and denser section of the signal.

4. From the experimental data, the frequencies from axial motion were not detected
in the recorded results. Also, it is quite unexpected that the partials became
negligible after 800 Hz. Slight inharmonicity was observed, especially in wound
strings, but due to the lack of higher partials, the inharmonicity pattern was not
clear. From the dynamic force sensor data, the axial motion of the string was
shown with slight beating. Finally, the orbital motion was observed, but further
studies are required to explain the mechanism behind that forces the string to

vibrate in circular fashion.
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7.3

Recommendations for Future Investigations

Considering the weaknesses and potential further investigations of current

research, several recommendations for future studies are suggested.

1.

The simple assumption of 90 degree phased shift between the two transverse
motions is not enough. Further studies of string stability, nonlinearity and
bifurcation are required to further explore the case of pure string vibration.

Other boundary conditions need to be explored. In actual life, most of the string
and cable systems are operated within boundaries of round edges like in the
pulley system and fiber wounding mechanism. Also, moving and accelerating
strings need to be investigated to further extend the current studies to main
engineering applications of cable and conveyor systems.

The simulation of fixed-partially fixed string required validation from actual
experiments.

Different type of string winding and cable strand and their effect on boundaries

can be carried out.
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