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Abstract

Numerical Study of Primary Breakup of Liquid Sheets

Mohammad Movassat

The primary breakup of liquid sheets into ligaments has a great effect on the size,
velocity, and penetration of the droplets produced further by the disintegration of
ligaments. The generated ligaments can be categorized in two general types based on
their orientation with respect to the flow field; span-wise and stream-wise ligaments. This
work contains a two- and three-dimensional computational study of the primary breakup
of a viscous liquid sheet. A Volume of Fluid (VOF) based code is used to solve the
governing equations and capture the interface between the liquid sheet and the
surrounding gas. Since the interaction between the liquid and gas is the major source of
the breakup, the liquid-gas interface boundary is modified in this work and it is
implemented using linear stability analysis.

The variation in the breakup time and breakup length of liquid sheets with fluid
properties is investigated by a two-dimensional study. Fluid properties are stated in three
non-dimensional numbers: Weber number, Ohnesorge number and the gas to liquid
density ratio. The liquid surface tension shows a stabilizing effect by increasing both the
breakup time and breakup length of liquid sheets. The liquid viscosity has more
complicated effects; it increases the breakup length while at a certain range of Weber
numbers, increasing the viscosity decreases the breakup time. Increasing the surrounding

gas density decreases both breakup length and time. The study is extended to three-

it



dimension to capture the stream-wise ligaments as well as span-wise ligaments captured
in two-dimension. The effect of fluid parameters on the formation of stream-wise
ligaments is presented. A mesh refinement study is conducted which demonstrates that
providing at least 7 computational cells per sheet thickness would lead to results which

are not dependent on the mesh size.
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1. Introduction

1.1. Overview

Liqud sprays are used in many industrial processes. Among these processes are
combustion in jet engines, internal combustion engines, icing phenomenon on the wings
of aircrafts, heat exchangers, industrial washing and cleaning processes, ink-jet printers,
coating, painting, and environmental protection. The diameter and velocity of the
produced droplets from the spray are two most important characteristics of liquid sprays.
These characteristics are greatly affected by the breakup of the initial liquid streams into

ligaments and furthermore, by the disintegration of these ligaments into smaller droplets.

In most spray applications, liquid streams come out of an injector through a nozzle. There
are many types of injectors which provide energy needed for the breakup of liquid
streams into small droplets. Energy can be provided through various mechanisms such as
liquid pressure, air pressure, rotation of cups or disks, vibration or acoustics, and electric
fields [1]. The disintegration of liquid streams into small droplets can be divided into two
main processes; primary and secondary breakup. Primary breakup, which is the subject of
the present work, is defined as the disintegration of liquid streams into smaller ligaments.
These ligaments may be formed in different orientations with respect to the direction in
which the liquid stream flows. Further breakup of the generated ligaments into smaller
droplets is called secondary breakup. The two mechanisms are shown in Figure 1.1. The
primary breakup of liquid streams downstream of the nozzle exit can be caused by

various phenomena. The most important of these are turbulence within the liquid and gas



phases, implosion of cavitation bubbles, and aerodynamic forces acting on the liquid

stream.

nozzle tip liquid stream

\ / ligaments

primary breakup secondary breakup droplets

Figure 1.1 Breakup of the liquid sheet

Generally, the pressure drops along the spray nozzle results in liquid acceleration.
Therefore, a high level of turbulence is generated within the liquid phase which has a
destabilizing effect on the liquid once it exits the nozzle. Additionally, at sharp edges
along the flow path inside the nozzle, the streamlines are contracted such that the
effective cross-section of the flow is reduced and the flow is accelerated. According to
Bernoulli’s law this causes a reduction in the static pressure and local static pressure may
be decreased to a value as low as the vapor pressure of the liquid. This phenomenon is
called cavitation which may generate bubbles inside the nozzle [2]. These bubbles may

be exploded downstream causing instabilities on the liquid stream.

Turbulence and cavitation effects, mentioned above, occur inside of the nozzle and
generate disturbances on the surface of the liquid stream exiting the nozzle. Upon

emerging from the nozzle, aecrodynamic forces rising from the interaction between the



liquid and surrounding gas amplify the generated disturbances and cause the liquid
stream to breakup. The growth of instabilities depends on the flow characteristics and

shape of the liquid stream exiting the nozzle.

In most of the cases liquid stream emerging from a spray nozzle is in the form of a
circular jet or sheet as shown in Figure 1.2. Primary breakup of liquid jets has been
extensively investigated, [3], [4], and [5]. Concerning the primary breakup of liquid
sheets, particular attention has been paid to the atomization of flat sheets because of their
simplicity, extensive use, and additionally because they provide a convenient model for
both experimental and theoretical studies. Present work studies the primary breakup of
planar liquid sheets. A review of previous studies conducted on the primary breakup of
liquid sheets follows. These studies can be divided into experimental and

theoretical/numerical works.

Figure 1.2 Two types of liquid streams, (a) liquid jet, (b) liquid sheet
(Photos from, (a) www.irphe.univ-mrs.fr, (b) www.mie.utoronto.ca/labs/MUSSL)



1.2. Previous works

1.2.1. Experimental Works

Initial studies on the disintegration of planar liquid sheets were conducted by Hagerty and
Shea [6]. Their work included a theoretical and experimental investigation of inviscid
liquid sheets moving in an inviscid gaseous medium. The experimental setup consisted of
a slender orifice producing a flat sheet of liquid. The orifice was subjected to harmonic
waves with different frequencies to produce a spectrum of instabilities on the liquid sheet.
It was concluded that only two types of instabilities may grow on the surfaces of the
liquid sheet. Either the two surfaces of the sheet oscillate in-phase to produce sinuous
waves, i.e. anti-symmetric mode, or the two surfaces may oscillate out of phase to
generate dilatational waves, 1.e. symmetric mode. These two modes are shown in Figure
1.3 for a sheet with the undisturbed thickness of 2A. Aerodynamic forces rising from
interactions between the liquid sheet and surrounding gas were introduced as the main
source of the breakup of the liquid sheet. Surface tension force was introduced as the
main force counteracting the disintegration process. Since the liquid sheet and

surrounding gas were assumed to be inviscid, viscous effects were not investigated.

(a) (b)

Figure 1.3 Two types of instabilities, (a) anti-symmetric, (b) symmetric



Dombrowski and Fraser [7] performed a photographic investigation on the disintegration
of liquid sheets considering the effects of surface tension, viscosity and density on the
stability of the liquid sheet. To study the effect of these parameters independently, a wide
variety of liquids were used at a constant liquid-air relative velocity by adjusting the
injection pressure to achieve the same flow rate. Results showed that surface tension has
a stabilizing effect on the liquid sheet. Additionally it was noticed that with an increase in
viscosity, the position of the disintegration of the sheet (i.e. breakup length) might move
much further away from the nozzle exit. Results were presented using non-dimensional
numbers including Weber number, which can be stated based on the gas or liquid density,

Reynolds number, and gas to liquid density ratio.

U?h Uh
We, =P , We = R Rezp[ . & (I.1)
o o V% Py

where p;, pg, i, and o are liquid density, gas density, liquid viscosity and surface tension,
respectively. U is the relative velocity between the liquid and gas and 4 is half of the

sheet thickness.

Dombrowski and Fraser [7] studied the mechanisms of the formation of liquid ligaments
from liquid sheets as well. They deduced that in the disintegration of liquid sheets the
formation of ligaments is a necessary stage before the production of droplets. Two
mechanisms for the formation of ligaments were identified; ligaments formed at the free
edge of stable sheets and ligaments formed during the disruption of sheets. The latter,

produces two types of ligaments, span-wise ligaments and stream-wise ligaments which



is dependent on the orientation of the formed ligaments as demonstrated in Figure 1.4

which shows the top view of a liquid sheet at two different flow conditions.

Flow
direction

(a) (b)

Figure 1.4: Two types of ligaments, (a) span-wise, (b) stream-wise
(Photos from Li et al. Physics of Fluids, 16, 2004)

Mansour and Chigier [8] conducted some experiments to study the aerodynamic
instabilities formed on the surface of the liquid sheets emerging from a two dimensional
nozzle. Detailed measurements of the frequency of the oscillation of the liquid sheets
were made. Based on these results, three distinct modes for breakup of liquid sheets were
found. At low liquid flow rates, the sinuous mode waves are dominant. At intermediate
liquid flow rates both the sinuous and dilatational waves are superimposed on the
surfaces of the liquid sheet. With a further increase in liquid flow rate, the liquid sheet
oscillations mainly become of the dilatational type. It was also shown that the effect of
introducing air into the nozzle is similar to the effect of inducing forced vibrations on the

nozzle.



An experimental study on the liquid film disintegration regimes was done by Carvalho et
al. [9] In their study, disintegration and breakup of liquid sheets into sprays were studied
considering a flat liquid sheet surrounded by two air streams. Three different
experimental techniques were used: back light and laser light sheet illumination to
measure the amplitude of instabilities, strobe light illumination to quantify the breakup
length and frequency of liquid sheets, and laser attenuation technique to measure the
frequency and then compare with visualization technique. Three distinct breakup regimes
were identified to be consistent with the results obtained by Mansour and Chigier [8].
They showed that at low liquid velocities (<1 m/s) sinuous waves are dominant while at
high liquid velocities (> 3 m/s) dilatational waves dominate the breakup processes. At
intermediate liquid velocities both sinuous and dilatational waves are observed to grow
on the liquid sheet. Not only the effect of the relative velocity between the liquid and gas
on the breakup of liquid sheets was studied, but also the variation in breakup lengths with
absolute values of the liquid and gas velocities was considered. The effect of the gas
injection angle on the breakup length was investigated as well. Although they considered
some 3-D characteristics of liquid sheets such as the spray angle, their results are based

on the formation of only span-wise ligaments.

Stapper et al. [10] conducted a thorough experimental study on the effect of liquid
properties on the breakup length and breakup mechanisms of liquid sheets. Three liquids
were selected that would demonstrate the differences in viscosity, surface tension, and
density effects on the breakup mechanisms. The major source for the sheet breakup was
identified to be the span-wise vorticities. These vorticities are generated as a result of the

shear force rising from the relative velocity between the liquid and surrounding gas. The



span-wise vortical waves extend to the edges of the sheet and propagate in the stream-
wise direction. Additionally, stream-wise waves are present at the nozzle tip and extend
through the length of the sheet at fixed span-wise locations. These stream-wise waves are
attributed to stream-wise vortices generated by background disturbances and amplified by
the close coupling with the span-wise vortices. They identified two mechanisms of sheet
breakup; cellular breakup and stretched stream-wise ligament breakup which are

described bellow.

Cellular Breakup regime occurs at high relative velocities between the liquid and gas.
This mechanism is characterized by the presence of span-wise vortical waves that are
approximately equal in strength to the stream-wise vortical waves. As the sheet is
extruded by the shearing action of the air, the membranes stretch between the span-wise
and stream-wise vortical waves, forming cell-like structures. The span-wise vortical
waves separate into span-wise ligaments. The small droplets in the spray distribution
originate from the bursting of membranes. Larger droplets are associated with the
breakup of the span-wise ligaments.

Stretched stream-wise ligament breakup mechanism occurs at low relative velocities
between the liquid and gas. This mechanism is dominated by the stream-wise vortical
waves. As the sheet is stretched by the co-flowing air, the stream-wise vortices are
amplified with thin liquid membranes stretched between. When the membranes burst, the
liquid film forms small drops, while the vortical waves form stream-wise ligaments.
Stream-wise ligaments and membranes formed between are shown in Figure 1.5 which is

a more close view of Figure 1.4 (b).



flow direction

stream-wise
ligaments

membrane

Figure 1.5: Stretched stream-wise ligament breakup mechanism

1.2.2. Theoretical/Numerical Studies

First theoretical studies on the breakup of liquid sheets were conducted by Dombrowski
and John [11] assuming infinite sheets in the span-wise direction. The linear stability
theory was applied on the liquid sheet. This theory assumes small disturbances with a
spectrum of wavelengths, growth rates, and frequencies move on the surface of the liquid
sheet. Linearized governing equations for the liquid are solved to find the relation
between the wavelength and growth rate of the waves. Extensive description of the linear
stability theory is explained in Chapter 3 of this work. Dombrowski and John [11]
postulated that the size of the generated ligaments is related to the wavelength of the most
unstable wave traveling on the surface of the liquid sheet. It was proposed that sinuous
waves break into ligaments which are equal to half of the most unstable wavelength,

while dilatational waves make ligaments which are equal to the full wavelength.

A temporal linear stability analysis was done by Xianguo et al. [12] considering a thin
viscous liquid sheet moving in an inviscid gaseous medium. The effects of liquid and gas

properties on the breakup time of liquid sheets were studied. It was shown that for small



gas to liquid density ratios, sinuous waves dominate the breakup of the sheet. For the first
time, it was proposed that breakup of the liquid sheets might be categorized into two
regimes; aerodynamic instability and viscosity-enhanced instability. For sinuous
disturbances, viscosity amplifies instabilities at small Weber numbers for viscosity-
enhanced regime, while liquid viscosity reduces the growth rate of instabilities at large
Weber numbers for aerodynamic instability regime. At intermediate Weber numbers,
liquid viscosity has complicated effects due to the interaction of the two regimes.

One year later, Li [13] extended the linear analysis from temporal to spatial to study the
effect of liquid properties on the breakup length of liquid sheets. The study of the spatial
evolution of liquid sheets is more descriptive as experimental observations show that
breakup of liquid sheets does not occur at the nozzle exit but further downstream of the
nozzle. It was shown that the gas to liquid density ratio has a great effect on the growth
rate of instabilities traveling on the sheet. Considering spatial analysis, surface tension
and liquid viscosity have a stabilizing effect on the breakup of the liquid sheet. The

stabilizing effect of viscosity was in contrast to the results based on the temporal analysis.

Senecal et al. [14] applied the linear stability theory on liquid sheets to calculate the size
and velocity of the droplets generated in pressure-swirl atomizers used in internal
combustion engines. A temporal stability analysis was performed on the sheet to find
breakup time. They considered both sinuous and dilatational instabilities and showed that
sinuous waves are more unstable at small gas to liquid density ratios. They identified two
regimes for the primary breakup of liquid sheets. It was shown that at relatively low

Weber numbers, long waves dominate the breakup process but by increasing the Weber
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number, the wavelength of the most dominant instability decreases. Gas based Weber
number of 27/16 was introduced as the criterion between the long wave and short wave
regimes. After finding the primary breakup time and length and the size of the generated
ligaments, Rayleigh’s theory [3] was applied to find the droplet size generated by further
breakup of the ligaments. The calculated drop size distribution was used to model drop
deformation and penetration in internal combustion engines using the KIVA [15] code.
The results obtained were in an agreement with the experimental data.

Inoue [16] was the first who performed a 3D analytical and numerical study on the
breakup of the liquid sheets using vortical mixing layers. In his work, the initial liquid
sheet only contains span-wise vortices. Downstream of the nozzle, stream-wise vortices
are generated due to the coupling with span-wise vortices. It was shown that just by
subjecting the liquid sheet to small amplitude three-dimensional disturbances vortex
filaments, which are initially in span-wise direction, would deform. This deformation
would then cause the vortex lines to have both span-wise and stream-wise components.
The stream-wise component would grow further and become as the same strength as the
span-wise component. This component would make the sheet breakup in the stream-wise
direction. However, as mentioned earlier, the initial amplitude and the location of the

initial disturbance has a great effect on the primary breakup of liquid sheets.

The most thorough theoretical and numerical studies of planar liquid sheets have been
conducted by Mehring et al. [17] and Kim et al. [18]. Mehring et al. [17] reviewed
theories about distortion and disintegration of liquid streams as their work included both

liquid jets and sheets. Two dimensional temporal analysis was accomplished to find the
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breakup time of liquid sheets. The study composed of the linear and non-linear instability
analyses. The results of the linear stability analysis were almost the same as the results of
Senecal et al. [14]. It was shown that the results of the linear analysis are valid during the
initial evolution of the disturbances. For a growing disturbance, the non-linear effects

become dominant.

The basis for non-linear analysis is due to the presence of a non-zero vorticity
component, span-wise vorticity, convected by the flow field according to Kelvin’s
theorem [19]. The liquid sheet is considered to be covered by a vortex sheet. The vortex
sheet is descritized into a finite number of vortex panels, whose strength is not initially
known. The vortex strength of each panel is found by considering that there is no mass
flux normal to the surface of the liquid sheet. Two components of velocities on each
computational panel are calculated based on the vortex strengths. Results based on this

method demonstrate consistency with previous experimental data.

Both linear and non-linear analyses conducted by Mehring et al. [17] considered temporal
analysis to find the breakup time of liquid sheets. Kim and Sirignano [18] published a
review paper on 2D and 3D linear and nonlinear analyses of dilatational and sinuous
waves on inviscid infinite and semi-infinite planar liquid sheets which cover most of the
theoretical works done on the breakup of liquid sheets. The basis of the breakup of
infinite sheets (temporal analysis) was described above. The stability analysis of semi-

infinite sheets is further described.
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A semi-infinite liquid sheet moving in the x-direction (infinite span is in the z direction)
as shown in Figure 1.6 was studied. The liquid sheet is modulated at the nozzle exit (x=0)
to make instabilities in both x and z directions with different wave numbers &k and /,

respectively. The wave number is defined as 27/4 where 4 is the wavelength. Applying

linear stability analysis, the results of the 3D analysis with /=0 was identical to the 2-
dimensional results of previous works. For/ = 0, it was shown that the most unstable
waves are the ones with the same wave numbers in the x and z directions (i.e. when k=/).
For small amplitude disturbances, the results based on the linear stability theory were
consistent with the results of the non-linear analysis. By increasing the amplitude of
disturbances, non-linear effects would rise and thus the linear analysis is not valid

anymore.

nozzle tip

Figure 1.6: Semi-infinite liquid sheets

Non-linear results showed that most unstable waves are those with the same wave
numbers in the x and z directions. Results demonstrated that while there is no velocity
component in the z direction at the nozzle exit, this component is non-zero further
downstream. The generated velocity in the z-direction makes stream-wise vorticities
leading to the generation of stream-wise ligaments from the liquid sheet. This was
concurrent to the theoretical results of Inoue [16]. Kim et al. [18] reported that for a

specific range of Weber number, ligaments detached from the liquid sheet are both in
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span-wise and stream-wise directions which is consistent with the cellular breakup

regime proposed by Stapper et al [10].

Recently, Lin et al. [20] investigated three types of linear theories to study the stability of
the liquid sheets; temporal analysis, spatial analysis, and spatial-temporal analysis. As
mentioned in their work, the temporal theory is most commonly used because of its
simplicity, while the spatial theory is used less but it is more descriptive due to
considering that breakup occurs in the region downstream of the nozzle exit. Spatial-
temporal analysis was introduced as the most complete linear theory to study the
behavior of instabilities growing on liquid sheets. Some examples were demonstrated in
which pure temporal or spatial analysis would lead to the damping of instabilities while

disturbances would grow using spatial-temporal analysis.

Gaster [21] published a brief but very interesting note concerning the comparison of the
results based on the temporal and spatial analyses. It was shown that the growth rate of
disturbances in both analyses can be mathematically related. However it should be noted
that one can not obtain the breakup length (calculated from spatial analysis) based on the
breakup time (calculated from temporal analysis) and the absolute velocity of the liquid

sheet. Only growth rates of two analyses can be related using the liquid sheet velocity.

Most of the theoretical and analytical works mentioned earlier were based on 2D and 3D
linear and non-linear stability analyses of liquid sheets. Although these analyses consider
precise boundary conditions at the interface of the liquid sheet and surrounding gas,

higher order terms of governing equations are neglected. It is important to note that these
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methods do not track the liquid-gas interface as physically there is a sharp discontinuity
in the density of the materials at the interface. Several numerical methods have been
developed to track or capture the interface between liquid and gas phases, especially
when the interface has large distortions. These methods are summarized in the next

section.

1.3. Numerical Methods in Two-phase Flows

1.3.1. Overview

The available methods to model two-phase flows can be divided into two classes; fixed
grid (Eulerian), or moving grid (Lagrangian). In Eulerian methods, there is a predefined
grid that does not move with the interface. In Lagrangian methods the interface is a
boundary between two sub-domains of the grid. In both cases the grid may be structured

or unstructured which facilitates the analysis near the interface.

The two methods differ in the manner in which the fluid elements are moved when their
new velocities have been computed. In the Lagrangian case, the grid simply moves with
the computed element velocities, while in an Eulerian calculation it is necessary to
compute the flow of fluid through the mesh. This flow, or convective flux calculation,
requires an averaging of the flow properties of all fluid elements that find themselves in a

given mesh cell at a given time [22].

Convective averaging results in a smoothing of all variations in flow parameters, in

particular, it results in the smearing of discontinuities such as free surfaces. The only way
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to overcome this loss in resolution for free surfaces is to introduce some special treatment
that recognizes a discontinuity and avoids any averaging across it [22]. Since the method
applied in the present work is a fixed grid method, a brief review of the mostly used

FEulerian methods follows.

1.3.2. Height Functions

A simple way to represent a free surface is to define its distance from a reference line as a
function of position along the reference line. For example, in a 2D domain with a
rectangular mesh of cells of width Ax and height Ay, one might define the vertical height,
h, of the free surface above the bottom of the mesh in each column of cells. This would

approximate a curve h = f (x,t) by assigning values of 4 to discrete values of x as shown
in Figure 1.7. This method does not work well when the slope of the boundary dh/dx,

exceeds the mesh aspect ratio Ay/Ax and does not work at all for multi-valued surfaces

having more than one y value for a given x value. This is a severe limitation because

many simple shapes, such as bubbles or drops can not be treated [22].

Figure 1.7: Height Function
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The time evolution of the height function is governed by a kinematic equation expressing
the fact that the surface must move with the liquid.
a lex (12)

where (u,v) are liquid velocity components in the (x,y) coordinate directions. The
height function method is directly extendable to 3-dimensional problems for single-

valued surfaces by h = f (x, y,t).

1.3.3. Line Segments

A generalization of the height function method uses chains of short line segments at each
computational cell. Coordinates for each point must be stored and for accuracy it is best
to limit the distance between neighboring points to less than the minimum mesh size.
Therefore, slightly more storage is required for this method, but it is not limited to single-

valued surfaces. One example of line segments method is shown in Figure 1.8.

Figure 1.8: Line segments

The evolution of a chain of line segments is easily accomplished by moving each point

with the local fluid velocity determined by interpolation in the surrounding cells. There is
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one serious difficulty with the line segment method; when two surfaces intersect,
segment chains must be reordered, possibly with the addition or removal of some chains
[23]. In a general case, the detection of intersections and determining how a reordering
should be done is not a trivial task. Also the extension of the line segment to three-
dimensional surfaces is non-trivial. Linear ordering for two-dimensional lines does not

work for three-dimensional surfaces.

1.3.4. Marker Methods

In marker methods, marker particles are used to identify phases. Interfacial or surfer
marker methods use marker particles only on the interface. Volume marker methods have

marker particles in the whole domain.

For two-phase flows, surfer markers are more accurate than volume markers because they
track the exact location of the interface [24]. However where there are more than two
phases, it may become difficult to handle the complexity of triple lines. Volume markers
then afford a simple way of dealing with the problem. However an additional difficulty is

that volume markers become distorted as time goes by and may need remeshing.

An illustration of the surfer marker method, in two particular cases, is shown in Figure
1.9. An advantage in using surface markers is that it allows forming very thin liquid
bridges that do not break as shown in Figure 1.9 (a). However this is a real gain only in
some cases. The situation may be made quite clear by considering the spiraling wave in
Figure 1.9 (b). If both phases have the same viscosity and density and there is no surface

tension, the interface is transparent to the fluid i.e. the fluid, in a way does not know that
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there is an interface. The phases are only distinguished by their color. In that case it

makes sense to track details smaller than the grid size [25].

(a)
Figure 1.9: Marker method

Marker methods have other advantages including the high degree of accuracy that may be
achieved by representing the interface through high-order interpolation polynomials. This
accuracy may allow improving the accuracy of surface tension calculations. While the
marker methods have the mentioned advantages, they suffer from a significant increase in
required computer storage. They also require additional computational time to move all
the points to new locations. Therefore it is natural to seek an alternative without

excessive use of computer resources.

1.3.5. Volume of Fluid Methods

At each cell of the computational mesh, it is customary to use one value for each
independent variable. The Volume of Fluid (VOF) method introduces a scalar field, f,

called volume fraction whose value is unity at any point occupied by the fluid and zero
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otherwise. The average value of fin a cell would then represent the fractional volume of
the cell occupied by the fluid. In particular, a unit value of f would correspond to a cell
full of fluid, while a zero value would indicate that the cell contains no fluid [22]. Cells
with f values between zero and one must then contain a free surface. A schematic
showing how the volume fractions are defined at computational cells is illustrated in
Figure 1.10. Generally VOF algorithms consist of two main parts; reconstruction and

propagation.

i

Figure 1.10: VOF method

The key part of the reconstruction step is the determination of the orientation of the
interface. This is equivalent to resolve a unit normal vector in 2D or 3D. The normal
direction to the interface lies in the direction in which the value of f changes most rapidly.
After calculating the derivatives of f, these values can be used to determine the normal
vector of the interface. By knowing the normal vector and the value of f at each cell, the

line (in 2D) or surface (in 3D) representing the interface could be determined.
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The second step of the VOF algorithm is propagation. Once the interface has been
reconstructed, its motion by the underlying flow field must be modeled by a suitable
advection algorithm. The volume fraction advection equation can be stated as:
0 0 5

%+ul+vl+w—f=0 1.3
Ot ox Oy 0z (1.3)
where u, v, and w are the velocities in the x, y, and z direction. Fractional step or operator-
split methods will be described in which volume fraction, £, is advected each time along
one spatial direction. Intermediate f values are calculated during this prbcess, and the

final f field is obtained only after advection of the interface along all coordinate

directions.

One extensively used method to calculate fluxes along the x-direction is shown in Figure
1.11 where all of the liquid right to the bold solid line will cross the right boundary of the
corresponding cell during time Az. The liquid velocity in the x-direction is assumed to be
u. For each cell, two contributions are calculated, the liquid fluxes entering the cell from
its neighbors and the amount of liquid contained at the beginning of the step in the

control volume which remains there.

Figure 1.11: Operator split method to advect the liquid
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VOF methods are more efficient compared to the other methods described above for
several reasons [25]:

1. They preserve mass in a natural way, as a direct consequence of the development
of an advection algorithm based on a discrete representation of the conservation
law.

2. No special provision is necessary to perform reconnection or breakup of the
interface and in this sense the change of topology is implicit in the algorithm.

3. They can be relatively simply extended from two dimensional to three
dimensional domains.

4. The scheme is local in the sense that only the f'values of the neighboring cells are
needed to update the f value in each cell. For this reason, it is relatively simple to
implement these algorithms in parallel, in particular within the framework of

domain decomposition techniques.

However, in problems considering breakup, VOF methods suffer from being dependent
on the mesh size since the breakup is captured based on the numerical errors. This
dependency rises from the geometric nature of the steps including interface

reconstruction and calculating the normal vectors [26].

Table 1.1 summarizes the notable volume tracking methods published since 1974. For
each method important aspects of the interface reconstruction and volume advection
algorithms are listed. Reconstruction features include piecewise constant and piecewise

linear methods, as well the methodology used to calculate the normal vector of the
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interface which can be either operator-split or multidimensional. Similarly, time
integration of the volume advection equation can be done in an operator-split or

multidimensional manner.

Table 1.1: Review of VOF methods

Author(s) Reconstructed interface geometry Time integration
DeBar (1974) Piecewise linear, operator split Operator split
Noh and Woodward Piecewise constant, operator split Operator split
(1976)
Hirt and Nichols Piecewise constant, multidimensional Operator split
(1981)
Chorin (1980) Piecewise constant, multidimensional Operator split
Barr and Ahurst Piecewise constant, multidimensional Operator split
(1984)
Ashgriz and Poo Piecewise linear, Operator split Operator split
(1991)
Youngs (1982) Piecewise linear, multidimensional Operator split
Pilliod and Puckett Piecewise linear, multidimensional Multidimensional
(1992)

In the early 1970’s, the first three volume tracking methods were introduced: Debar’s
method, Hirt and Nichols VOF method, and Noh and Woodward’s SLIC method. Each of
these methods had a different way to reconstruct the interface. The Debar’s algorithm
used a piecewise linear interface calculation (PLIC). In PLIC methods the interface is

defined at each computational cell by a slope and an intercept. The slope of the interface

23



1s calculated based on the volume fractions of neighboring cells. The SLIC method used a
piecewise constant approximation in which the interfaces within each cell are aligned
with one of the mesh coordinates. The VOF method also used a piecewise constant
approximation in which interfaces are forced to align with mesh coordinates but are
additionally allowed to be aligned with more than one mesh coordinate. The difference
between the PLIC and SLIC methods can be investigated through Figure 1.12. In both
cases, the real interface is shown by the thin solid line while the approximated interface is
illustrated using bold solid line segments. As shown in Table 1.1, most volume tracking
algorithms published to date fall into one of these three interface reconstruction
categories. DeBar’s piecewise PLIC choice for the reconstructed interface geometry is
generally preferred in modern volume tracking algorithms. The reconstruction method

used in the present work is that of Youngs® which lies in the piecewise linear category.

(a) (b)
Figure 1.12: Two interface reconstruction method, (a) PLIC, (b) SLIC
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1.4. Objectives

The objective of the present study is to model the primary breakup of planar liquid sheets.
A numerical simulation of a thin liquid sheet is performed to study the effects of fluid
properties, including liquid viscosity, surface tension and gas to liquid density ratio, on
the breakup time and breakup length of liquid sheets. A Volume of Fluid (VOF) based
code is used to solve governing equations and capture the interface between the liquid
and gas. Piecewise linear algorithm of Youngs [27] is implemented to reconstruct the free
surface. Since the major source of the primary breakup of liquid sheets is the
aerodynamic interaction between two phases, the liquid-gas boundary needs special
treatment to reduce the effect of mesh size on the breakup of liquid sheets associated with
VOF methods. Linear stability theory is used to implement liquid-gas interface boundary.
Depending on the type of simulation performed, temporal or spatial linear stability theory

is applied. The objectives of this work can be stated as:

e Capture span-wise ligaments using 2D simulation.

¢ Study the effect of fluid properties on the breakup time of liquid sheets applying
temporal linear stability analysis at liquid-gas interface.

o Study the effect of fluid properties on the breakup length of liquid sheets applying
spatial linear stability analysis at liquid-gas interface.

e Extend the analysis to 3D to capture both span-wise and stream-wise ligaments.

e Study the effect of fluid properties on the formation of stream-wise ligaments.
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1.5. Thesis Outline

Mathematical formulation, numerical model used to solve the governing equations, and
applied boundary conditions are described in Chapter two. Modification of interface
boundary condition using linear stability theory is explained in Chapter three. Results for
two- and three-dimensional analyses are presented in Chapter four. Chapter five

concludes the work and gives suggestions for the extension of this work.
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2. Mathematical Formulation and Numerical
Methodology

The computational code solves the governing equations for the liquid phase and
introduces the effect of the surrounding gas at the liquid-gas interface boundary. The
equations governing the flow field are mass and momentum conservation as well as
volume fraction advection equations. Mathematical formulation of these equations is
presented following by the description of the numerical scheme used to discritize
equations and applied boundary conditions. It would be helpful to note that equations are

generally explained in 3D, but for clarity the figures are illustrated in 2D.

2.1. Mathematical Formulation
Mass and momentum conservation equations can be stated as:

VV=0 2.1

1 (2.2)

—a—K+V-(I717):——Vp+iV-r+g+lF'b
ot p p p

where ¥ represents velocity vector, p the pressure, p the fluid density, 7 the shear stress
tensor, g gravitational acceleration, and Fb is the total body force (per unit volume)

acting on the fluid. The fluid is assumed to be Newtonian, therefore the shear stress

tensor can be written as:

r=ulvv +(vi) ) 23)

where 4 is the dynamic viscosity of the fluid. The most important body force considered

in this work is the surface tension force. This force is applied by implementing the
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Continuum Surface Force (CSF) model proposed by Brackbill et al. [28]. In the CSF

model surface tension force is calculated as:

Fer (%)= o [ x(7)i(3)5(% - 7)ds 2.4)
S

where o is the liquid surface tension at the interface, « is the local curvature, n is the
local unit normal to the interface, and ¢ is the Dirac delta function. In equation (2.4), S
corresponds to the area of the free surface. X and y are vectors indicating the location in
which the force is calculated and the location of free surface, respectively. Curvature is
defined as:

-

K=-V-i 2.5)

Calculating 7 requires a method to represent the interface between the two phases (liquid
and gas). As mentioned in the first chapter, a VOF method based on a piecewise linear
reconstruction of the interface is used to capture the interface between two fluids. VOF

methods assume a scalar field, f, called volume fraction which is defined as:

f=0 no liquid phase
0< f <1 interface

f=1 within liquid phase

Since the volume fraction represents the volume occupied by the liquid, it should be

advected by the flow field. The equation which governs volume fraction advection is:

of (-
—(3£t+(V-V)f=O 06

Following the advection, the interface is reconstructed by the piecewise linear method
proposed by Youngs [27]. The normal vector to the interface is calculated using the

gradient of the ffield as:
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n =

This vector is applied to find the local curvature from equation (2.5), and finally calculate

the surface tension force using equation (2.4).

2.2. Numerical Model

The numerical model is based on RIPPLE [29] code. RIPPLE is a two-dimensional
Eulerian fixed-grid code developed for free surface flows. The development of RIPPLE

to 3D was done by Bussmann et al [30].

Equations (2.1), (2.2), and (2.6) are discretized on a Cartesian mesh. As originally
described in the marker and cell (MAC) method [31], velocities are specified at the cell
faces and pressure at each cell center. The scalar f'is discretized by integrating over a cell

volume, Q.

ij.x » to obtain the volume fraction f; ,, .

1
e [ a2 (2.8)

Lk,

fi

Cells filled with the liquid are characterized by f, ;, =1, empty cells by f; ;4=0,and
cells which contain a portion of the interface by 0 < f; ; ; <l. While the pressure p,
represents the value of pressure at the center of cell (i, j, k), the volume fraction Siju 18

an integral quantity associated only with the volume of cell(i, j,k). It would be

inappropriate to interpret f, ,, as the value of fat the center of the cell (i, 7> k).
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Equations (2.1) and (2.2) are solved using a two-step projection method in which the

forward time discretization includes two sub-steps. First, an intermediate velocity, V' is

computed explicitly from convective, viscous, gravitational and body force accelerations

based on the known velocity, 17", for a time step At.

v-v”" v 1=
=-V.-WV| +=V-c"+ g+ —F] 2.9
A7 ( y‘ - g ol (2.9)
The next step is to project F'into a divergence free velocity field. Basically this

V" *!should include the effect of the pressure

projection states that the new velocity field
force and satisfy continuity equation which are stated mathematically in equations (2.10)

and (2.11), respectively.

A R (2.10)
BV
v-rm)=o @2.11)

Substituting equation (2.10) into equation (2.11), after rearrangement, would result in
equation (2.12) in which the pressure at time step n+/ is unknown and should be

calculated implicitly based on the known intermediate velocity.

~ (2.12)
V. _l_vp”“ =LV-V'
ol At

Note that the summation of equations (2.9) and (2.10) yields to the complete momentum

conservation equation.
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The right hand side (RHS) of equation (2.9) is discretized according to the conventions

typical of the finite volume methods [32]. Integrating equation (2.9) over a control

volumeQ, -

—Al; » (-7 o =- J, v (77 ) da+ % Jy-cdas| gdos % f, Frdo s

Applying Gauss’ theorem to convert the first two volume integrals on the RHS of

equation (2.13) over the control surface S, and assuming that other integrants are

constant within the volume Q, ., , equation (2.13) yields to:

— —

V'—V" 1 Suln A 1 y - 1 =
At — Q4 'szk g <V e )dS * LY i ‘L,._m (T s }ZS TE T ;Fb (2.14)

L)

n, is the unit normal vector of the surfaceS, ;, facing outside of the volume Q-

Discretization of each of the terms in equation (2.14) would follow. In summary, the
algorithm which advances the solution in time includes:

e compute V' explicitly.

n+l

e solve the equation (2.12) to find p"* implicitly.

e compute V"' from equation (2.10) and apply boundary conditions on ¥"*'

n+l

e compute the new volume fraction distribution "' using equation (2.6)

¢ reconstruct the interface using equations (2.5) and (2.7).
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2.2.1. Convection

Consider discretization of the x-component of the convective term in equation (2.14). A
2D control volume used to discretize this term, the x-momentum control volume, is

shown in Figure 2.1. The convection term in equation (2.14) can be stated as:

v .
1 1 k 1 1

i+, j+- k i+ j— .k ’
2] 2 272 ! 2} 2 2

A -/
w'+1 'k+,1,<u>"+']:j,k+]' w'+l ‘k_l<u>"+l,j,k—]f
ik 2772 ke 277 2 (2.15)

Az

The flux velocitiesu” , v and w” represent the rates of transport of the quantity <u> in

or out of the control volume of Figure 2.1. Flux velocities are defined at the faces of
momentum control volumes and are basically calculated by the interpolation of the
surface velocities of the computational mesh. These velocities are shown in Figure 2.2

and are calculated as below.
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Figure 2.1: Control volume used to compute the convection term, shaded control volume
is the x-momentum control volume
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Figure 2.2: Flux velocities defined at the faces of the momentum control volumes

For two neighbor cells filled with the liquid, the flux quantity (u) is approximated by the
method of Van Leer [33]. As an example, (u}l_j (at the left face of control volume

showed in Figure 2.2 can be stated as:

_ P _
ul At
u , a”L(%) R ul', >0
ik 2 Ox i Ax;
2 L .
(w) . = - - (2.17)
i.j.k A
. u’” At
u —ﬂa“ ou 14+ 22 ul’ <0
it~k 2 Oox L Ax; "
5 i

where the velocity gradients are approximated as:
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(2.18)

Equation (2.17) corresponds to the first order upwind approximation when o™ =0 and
to a conditionally unstable second order central difference when a' =1. Details of
calculating @ can be found in the work of Bussmann [34]. Due to complications, for

control volumes at the interface, strict upwind scheme is applied (a** =0).

2.2.2. Viscosity

The viscous term in the equation (2.14) can be expanded as:
or or, or_ ). (Or, Or, Or, \. (o0r_ Or, dr_\»

Ver=| = +—+—"1|i + —t——F—— | t——+—=k (2.19)
Ox Oy 0z Ox oy 0z Ox Oy 0z '

Similar to the convection part, only the x-component of the viscous term is explained.

Expansion to the y- and z-components is straightforward. The x-momentum control

volume used to discretize the viscous term is shown in Figure 2.3.

Each component of the above equation is evaluated based on the neighboring velocities.

Expansion of each term in equation (2.20) can be stated as:
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Figure 2.3: The x-momentum control volume used to calculate viscous forces
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where y is the dynamic viscosity of the liquid phase.

2.2.3. Surface Tension

The method applied to implement the surface tension force is based on the Continuum
Surface Force model proposed by Brackbill et al. [28] .This force is implemented using
equation (2.4). Since the J function in Equation (2.4) is infinity at the interface and zero
elsewhere, discretization of this term requires more consideration. Finite approximation
of 0 assumes that the surface tension force is applied at the vicinity of the interface

including couple of computational cells. By this method, ¢ and hence the surface tension
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force are smoothed. Another issue to calculate surface tension force is evaluation of the

normal vector, 7, ,,, in equation (2.4).
As described by Bussmann [34], 7, ,, is calculated by evaluating the gradient of
smoothed f; ;, . The same J function used to smooth surface tension force is applied to

smooth f; ., values. The complete formulation of § can be found at [34]. As an example,

smoothed values of volume fraction at the cell (i;)), f

i

 » can be stated as:

fi,j = 0'396fi,j + 0'1229(fi+1_j + i1 + fi.j+1 + fi.j—|)+ O'Ozgl(fm.jﬂ + i-1,j+1 + i+1,j-1 + fi—l.j—l) (2'22)

where the coefficients come from the definition of the finite J function.

2.2.4. Pressure
At this stage, the explicit change in the velocity field due to convection, viscous forces,

and the surface tension force, has been made and the intermediate velocity, 7', has been
calculated. Solving the equation (2.12) implicitly follows. Discretization of equation
(2.12) at a computational cell yields to a set of equations including all of the neighboring

cells. A 2D schematic of this stencil is shown in Figure 2.4.
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Figure 2.4: Stencil used to solve the pressure equation

A straightforward discretization of equation (2.12) will give:

a"’jv’fpi,j,k + Zanbpnb = bi,j,k (223)

nb

where the index nb includes each of the six neighboring cells. The coefficients are

defined as:
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where densities at cell faces are calculated as the average density of two neighbor cells

and D, ;, is the non-zero divergence of the intermediate velocity calculated as:

S VPR I S PR Co o
Bk ik sk ik ke ik (2.25)

Equation (2.23) along with coefficients stated in equations (2.24) and (2.25) yields to a
set of equations represented by a positive definite matrix. This set of equations is solved
at each time step using an Incomplete Cholesky Conjugate Gradient solver [35].
Appropriate boundary conditions are applied at the domain boundaries depending on the

specific problem.
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The next step for calculating the new velocity field is to update the calculated
intermediate velocity field by including the effect of the pressure term. As an example for

the x-momentum control volume shown in Figure 2.1:

n+l n+l

+ ' At pi+ j _pi.‘.
W'l oo=u, - L (2.26)

The final process at each time step is to advect the volume fraction based on the new

calculated velocity field.

2.2.5. Volume Fraction Advection

As described in chapter one, volume fraction advection in VOF methods consists of two
parts, interface reconstruction and the evaluation of fluxes of the liquid across the cell
faces. As mentioned before, Youngs’ [27] method is applied which uses a piecewise

linear interface calculation (PLIC).

In Youngs’ method, the interface is represented by a plane within each interface cell
knowing the volume fraction, fi j k » and the normal vector, ﬁ,-’ j k- In 2D, the interface
1s simply a line crossing the cell. Figure 2.5 shows the volume fraction at each
computational cell in a 2D problem. The real interface is shown by a thin solid line. The

position of the interface and the velocities at the cell faces are used to determine the

liquid fluxes across each face during each time step.
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Figure 2.5: Interface representation at computational cells, PLIC method

Liquid fluxes across the cell faces are calculated based on an operator-split method. In
this method, fluxes are calculated in each direction independently and in order. Following
the calculation of fluxes in each direction, intermediate interfaces are reconstructed.
Directional biased is minimized by changing the order of the advection from one time
step to the next. Figure 2.6 illustrates a simple schematic showing the flux advection in
the x-direction. Following is the method used to calculate the volume fraction advection.

2 At

Figure 2.6: Volume fraction advection

The advection calculation begins with a reconstruction of the interface, followed by

evaluation of a first interim field f;,, :
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n n+l n+l
fi’j!kQ’ ! _(ui+ljk<f>”l’ka _u,--ljk<f>f—l,j." JAyJAZkAt
= 27 ? 2" : (2.27)
"” Qi
where
Qs = u —(qujk —ui_]jk)ijAzkAt (2.28)
27 27

The interim field is reconstructed and the field is advected in the second direction:

f;jj,kQ;,j,k _(v”” <f>i,j+%,k - v"H <f>i’j_l,k JAxiAzkAt

1 1
i.j+=.k i,j-=.k
-J 7’ J >

2
fif',’k = . (2.29)
o] Qi’jyk
where
Q= _[Vi a Y j_lkJAx,-AzkAt (2.30)
45 g5

n+l

The second interim field is then reconstructed, followed by the evaluation of f"’,

fl"ij:,Jk - wfl+.l 1 <f>ij k+l - WTVTI 1 <f>,-jk_l AxiijAt
n+l I,I’IHE T2 "j’kﬂi 2 2 31
Jisx = 5 (2.31)

ijk

In the above equations the order of the advection is x-y-z. The ( f ) refers to the volume

fractions of the flux volume and thus are not equal to the volume fractions of considering

cell unless the cell is full or empty or the interface lies parallel to the flux direction.
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Youngs [27] presents geometric algorithms to evaluate < f ) for various interface

geometries. These algorithms are somehow complex and are not repeated here.

2.2.6. Time Step Restriction

Since the evaluation of the convective, viscous and surface tension forces are performed
explicitly, there should be a restriction for the computational time step to guarantee that
the fluxes are not advected more than one computational cell at each time step. To

implement this restriction, Courant number should be less than one.

max[lu’,j.k A Pt sy .At} <1 (2.32)

Ax, T Ay, T Az

H

Additionally, the momentum can not diffuse more than one cell per time step:

P min|i (Axi )2 (ij )2 (Axi )2 (Azk )2 (Azk )2 (ij )Z

A <— (Axi)2+(ij)2’(Axi)2+(AZk)2’(Azk)2+(Ayf)2

(2.33)
Y7,

And finally, there is a time limitation in modeling surface tension force as proposed by

Brackbill et al. [28]:

< [ minfl P2 o, 7, 0,7 @39

The minimum time step is selected from equations (2.32), (2.33), and (2.34) to guarantee

stability of the solution.

44



2.3. Boundary Conditions

Boundary conditions required to solve the governing equations for the liquid phase
generally consists of two parts; one is the boundary conditions needed at the
computational domain boundaries and the other one is the boundary condition required at
the liquid-gas interface. A boundary condition at the interface is needed because the
computational code only solves the governing equations for the liquid phase and the
effect of the surrounding gas is implemented by the means of the interface boundary
condition. This section includes the domain boundary condition required for different
problems and explains the method used to implement the interface boundary. Interface
boundary is modified in this work and is applied using linear stability theory which is

described completely in Chapter 3.

2.3.1. Domain Boundary Conditions

Based on the type of the problem being considered, domain boundary conditions are
defined. Different problems reviewed in this study are shown in Figure 2.7. The 2D
analysis considers both breakup time and breakup length of liquid sheets. The 3D
analysis studies the breakup length of liquid sheets considering inflow/outflow
boundaries in the stream-direction and periodic boundary condition in the span-direction.
Following is a brief description about domain boundary conditions applied for each type

of problems.
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2D 3D

A 4 Y
Breakup time Breakup length

h 4

Periodic in the span
direction

Figure 2.7: Flow chart of the analyses performed

To study the breakup time of the liquid sheet, time evolution of the sheet is considered
and it is assumed that what happens in the computational domain is repeated exactly in
the neighboring domains. As a result, a periodic boundary condition is required in the
flow direction. As the main flow is assumed to be in the x-direction, boundary conditions
in this direction are set to periodic. A periodic boundary is developed and added to the
VOF solver explained in Chapter 2. Details of the developed code are presented in

Appendix A. The boundary condition in the z-direction is set to outflow boundaries. The

boundary conditions for temporal analysis are illustrated in Figure 2.8.

X

periodic —# periodic

Figure 2.8: Boundary conditions for temporal analysis
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To find the breakup length of liquid sheets, the spatial evolution of the sheet is studied.
As a result, the liquid sheet comes in the computational domain through an inflow
boundary and leaves the domain from an outflow boundary. Domain length is defined
such that the liquid sheet disintegrates into smaller ligaments before leaving the
computational domain. Boundary conditions in the z-direction are set to outflow as

shown in Figure 2.9.

outflow

outflow

Figure 2.9: Boundary conditions for spatial analysis

For three-dimensional problems a periodic boundary condition is applied in the third
direction (y-direction) while keeping inflow-outflow boundary in the flow direction. This

type of the analysis includes 3D effects not affected by the presence of the free edge.

2.3.2. Interface Boundary Condition

Since the aerodynamic forces acting on the liquid-gas interface are the major source of

the breakup process, the free surface boundary has a significant effect on the results.The
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velocity boundary condition at the free surface is implemented by defining two velocities;
external and tangential velocities. External velocities are imposed at cell faces between
an interface cell and an empty cell while tangential velocities are defined at faces

between two empty cells next to interface cells. These velocities are demonstrated in

Figure 2.10.
Wi jk+1/2
I
“ivif2 |k
. b ——
L k=112
H,A_lfz . k\-’ iJ f+ TWIH,J,}C_l)Q
Shindel Uiv1f2, )k
i
Wi jk-1/2
(a) (b)

Figure 2.10: Interface velocities, () external velocity, w, ; .y, (b) tangential velocity,

1

Uiv1/2,j.k

External velocities are set according to the continuity equation. For example, in Figure

2.10 (a):

— Waas Wi jk-112 )+ Wi j.k-Y2 } —Az/Ax (ui+l/2,j,k Ui,k ) (2.35)

where ug and y; are the gas and liquid viscosities and wg,, is the constant gas velocity in
the z-direction. Tangential velocities are calculated based on the continuity of the shear

stress across the interface. For instance, in Figure 2.10 (b),
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= | )
Uik = *\Ugas ~Uiny2,j k-1 )T Wivy2,j k-1 (2.36)

Hi

Uges is the gas velocity in the x-direction. ug, and wy, are constant through the
simulation. Since the order of the magnitude of the gas viscosity is smaller than that of
the liquid viscosity, ug,s and wg,s have a small effect on the interface velocity. In the
problems where the gas velocity and pressure are important, the mentioned boundary
conditions underestimate the effect of the gas phase and may lead to smearing the
instabilities generated on the liquid-gas interface. To overcome this problem, the
interface boundary condition has been modified for the present work and is implemented

using the linear stability theory.
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3. Linear Stability Theory

Linear stability analysis assumes that there are infinite number of infinitesimal
disturbances traveling on the surfaces of the liquid sheet. These disturbances have
different wavelengths, frequencies and growth rates. The general mathematical

formulation of these disturbances is a function of space and time and can be stated as:

7= Real (7, expli(lx — ot ))) 3.1

where 7 is the disturbance amplitude (deviation from the undisturbed sheet) and is
measured from the sheet centerline as indicated in Figure 3.1, # is the initial amplitude, £

is the wave number (k = 27/4 where 4 is the wavelength), and w is the wave frequency.

Figure 3.1: Disturbances traveling on the liquid sheet

The instability with the highest growth rate is identified as the most unstable disturbance
which causes the liquid sheet to breakup into smaller ligaments. To find the most
unstable wave, a mathematical function between wavelengths, frequencies and growth
rates which satisfies the governing equations of the flow field is required. This
mathematical function is so called “dispersion equation”, [12], and obtaining this
equation has been the main subject of the linear stability analyses conducted so far [12],

[13],[14],[17], and [18].
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Linear stability analysis can be performed either temporally or spatially. Temporal linear
stability analysis is responsible to find the breakup time of liquid sheets while the
breakup length of liquid sheet is analyzed based on the spatial linear stability analysis.
Because the difference between the temporal and spatial analyses is in the boundary
conditions applied, the governing equations needed to be solved are first described

following by the appropriate boundary conditions required for each analysis.

Since it is assumed that disturbances are small and infinitesimal, small disturbance
variables are added to the flow variables. Therefore, each variable has two parts; the main
part and the disturbance part. Since the main flow is assumed to be in the x-direction, the
main velocities in the y- and z-directions are assumed to be zero. The flow variables can

then be stated as:

u=U+u

v=v

_ 3.2)
w=w

pP=pr

where the small variables demonstrate the disturbance variables. Governing equations for

fluids contain mass and momentum conservation equations and are stated as:

ox o oz (3.3)
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on _ou _ow _ou_ 1dp (0% 0u 0%

—HU— VAW _—=————+U S+t t 3.4
ot Ox Oy oz p Ox ox° oy Oz

o v _ov _ov  1op [0 v oW
—+uU—+v—+tw—=———-—+Y 2+ 7t (3.5
ot ox oy 0z p oy ox- oy° oz

ow _ow _ow _ow 1 [d*w o*'w o*w

AU — AV AW =t (3.6)
ot Oy 0z p 0z Ox Oy 0z

These equations are identical to the governing equations (2.1) and (2.2), expanded for 3-
dimensions and neglect the body force. Surface tension force considered in section 2.2.3
as a body force would be implemented in linear stability analysis as a boundary
condition. The next step is to implement the variables from equation (3.2) to the
governing equations (3.3), (3.4), (3.5), and (3.6). The idea of the linear stability theory is
to linearize the governing equations by neglecting second and higher order terms
containing disturbance variables. Additionally, main flow variables can be considered
constant and the derivatives of these variables are therefore zero. By these assumptions

equations (3.3), (3.4), (3.5), and (3.6) become:

—t+—+—=0
x oy oz (3.7)
ou . ou 1 [0*uw o*u 0’u
AU =t o ; (3.8)
ot Ox p ox ox° oy® 0z

2 2 2
> oy L [a;ﬁz ava
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ow ow 1dp (0w 0*w 0w
—+U—=-—F+v +—t+— (3.10)
ot Ox p Oz ox? oy oz

As an example to demonstrate when higher order terms are neglected, consider one of

convective terms in the x-momentum equation:

=U—+U—+u—+u—=U—+u—=U—
Ox Ox Ox Ox Ox Ox Ox Ox Ox

ou +u)8(U+u) oU ou oU ou _ ou oOu  0u
Appropriate boundary conditions are required to solve linearized governing equations. As
mentioned before, these boundary conditions depend on the type of the analysis
conducted. Boundary conditions needed for each analysis and resulting solution, i.e.
dispersion equation, are presented separately for temporal and spatial analyses. Although
the linearized governing equations and boundary conditions presented in this chapter are
for viscous liquid sheets, it would be helpful to note that inviscid dispersion equation is
used through this work. To investigate viscous effects on the breakup process, the liquid

viscosity is changed in the computational code keeping the maximum growth rate and the

corresponding wavelength equal to those of the inviscid case.

3.1. Temporal Linear Stability Analysis

To investigate the time evolution of the liquid sheet, temporal linear stability analysis is
applied at the liquid-gas interface. This theory deals with the effect of different flow
parameters on the breakup time of the liquid sheet. Consider equation (3.1) which

represents the general equation of the disturbances. In the temporal analysis, & has only a
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real part, k=k,, while w has both real and imaginary parts, o= w,+i®;. The reason for
these definitions is further explained. Simplifying equation(3.1) with the assumptions

made for k£ and w gives:

n= Real(’?o exp[i(er - (a)r + ia)i )t)])

1 = Real(n, exp(ik, x —io,t + w;t))

7 = Real(n, exp(o,1)exp(i(k, x - o,1)))

G.11)
n = 1 explo;t)Real(expli(k, x - w,1)))

n=1, exp(a)it)Real(cos(k,x - a)rt)+ isin(k,x - a)rt))

n = 1 expl@;t)cos(k, x - @,1)

In equation (3.11) 5 is a constant and the value of cos(k,x —,t) is limited between zero
and one. However the exponential part, exp(w;z) , which is a function of time, is

responsible for the growth of the disturbance amplitude, #. This fact demonstrates the
reason for the assumptions made to define k& and w. In equation (3.11), £, is the wave
number, ®, is the wave frequency and w; is called the growth rate. Using equation (3.11)
as the disturbance amplitude, the location of the sheet surface measured from the sheet
center line can be stated as (sheet thickness is 24):

z=th+n (3.12)
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The next step is to set the appropriate boundary conditions. As the main flow is in the x-
direction and only the variation in time is important, the boundary condition in this
direction is periodic. At the liquid-gas interface, three boundary conditions should be
satisfied: (1) the velocity of the interface is equal to the time derivative of the location of
the interface, (2) the shear stress is zero at the interface, and (3) the surface tension effect

is equal to the pressure jump across the interface. These can be stated mathematically as:

w= %Zl =1, exp(a),.t)x [a),. cos(k,x — a),t)+ o, sin(k,x - a),t)]

%Jriw-:o (3.13)
0z Ox

ow d’n
-p,+2u,—+p, =0 —
Pyt Py Pg Py

These boundary conditions are applied at the liquid sheet interface. The location of the
interface is calculated based on equation (3.12). There are various methods to solve
equations (3.7), (3.8), (3.9), and (3.10) by applying the above mentioned boundary
conditions. The most practical one is using the stream and potential functions approach.
This method is presented in [12] and [14] and not repeated here. As mentioned before,
the result would be an equation which states the relation between the wave numbers and
growth rates of the waves traveling on the liquid sheet (so called dispersion equation).

The inviscid solution can be stated as;

N
w;h Pg /P k.h
had by SN W nhlk h)—{k h nhlk 4 3.14
(U) [Weg J ng,/p,ﬂanh(k,h)xx/ e, xtanh(k,h)~ (k. k)xp, [ p, +tanh(k,h))  (3.14)
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where We, is the gas-based Weber number. The main velocity of the liquid sheet and half
of the sheet thickness have been used to non-dimensionlize the variables. As equation
(3.14) shows, the parameters affecting the dispersion equation are gas to liquid density
ratio and gas based Weber number. This fact indicates that these parameters determine
the most unstable wave traveling on the surfaces of the liquid sheet. To show the
variation of the dispersion equation with flow parameters, equation (3.14) is plotted for
different gas to liquid density ratios and different Weber numbers. The maximum growth

rate and corresponding wavelength can be found by solving the equation: dw, /dk, =0.

Figure 3.2 (a) shows that at a constant gas to liquid density ratio, the maximum growth
rate increases by increasing the Weber number. Additionally, since the ligament size is a
function of the dominant wavelength, an increase in the Weber number decreases the
dominant wavelength which leads to the formation of smaller ligaments. The effect of the
gas to liquid density ratio on the dispersion equation is illustrated in Figure 3.2 (b). As the
gas to liquid density ratio increases, the maximum growth rate increases as well. The

ratio, po/p; does not change the most unstable wavelength considerably.
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Figure 3.2: Solution of inviscid dispersion equation for (a) pg/p;=1/100 (b) Wez=0.5



At this point, the boundary condition required at the liquid-gas interface required for the
computational code can be implemented. This implementation contains the following

steps described below:

Calculate Weber number and gas to liquid density ratio based on the sheet

velocity, thickness and fluid properties.

e Find the maximum growth rate and corresponding wavelength by solving the
dispersion equation for the non-dimensional numbers specified above.

e Apply the values corresponding to the most unstable wavelength to the
disturbance equation, 7 = 77, exp(w,¢)cos(k,x —,1).

e Estimate the time derivative of the location of the surface, w=0r/0¢ , to find the

boundary velocity at computational cells containing the interface.

3.2. Spatial Linear Stability Analysis

To study the effect of flow parameters on the breakup length of the liquid sheet, spatial
linear stability analysis is required. This theory assumes that the evolution of the liquid
sheet in the space causes instabilities to grow and leads to the breakup of the liquid sheet.
The development and implementation steps of the spatial theory are similar to those of
the temporal theory. Again consider equation (3.1) which represents the general equation
for the disturbances. In the spatial analysis, @ has only a real part, ®= w, while the &
contains both real and imaginary parts, k=k,+ik;. By applying these assumptions, the

disturbance equation becomes:
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n = Real(, expli((k, + ik, )x - ,1)])

n= Real(no explik, x - kix— ia),t))

1 = Reallry, exp(~ k;x)explilk,x - w,1)))
(3.15)
1 =1y exp(~ k;x)Real(exp(ilk, x - @,1)))

1 =1, exp(~ k,x)Real(cos(k, x — ) isin(k, x - ,))

17 =11y exp(- k;x)cos(k, x — o,1)

where w, is the wave frequency, &, is the wave number, and £; is the growth rate of the
instabilities. As demonstrated by equation (3.15), in spatial analysis, the exponential part
of the disturbance equation is a function of space and may grow as the liquid sheet
evolves in the x-direction. This fact can justify the way & and w are defined in the spatial
analysis. Next step is to solve the linearized governing equations that are subjected to

appropriate boundary conditions.
The boundary conditions in the x-direction are inflow and outflow at the left and right

boundaries, respectively. The boundary conditions needed at the liquid-gas interface can

be stated as:
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w= on = 1,0, exp(— k,x)sin(k, x — o,1)

ot
6_u+@:0 (3.16)
0z Ox

-p+2 @z+ —06—22
P+ LH o Py o2

The physical explanation of these boundary conditions is the same as the temporal ones
mentioned before. The solution of the linearized governing equations by implementing
the above boundary conditions would result in the dispersion equation for the spatial
linear stability analysis. The method, which has been used to find the dispersion equation,
is the stream and potential functions approach [13]. Details of the calculations are not

repeated here. The inviscid solution of the dispersion equation can be stated as [13]:

) Py Pr=khiWe, )"
k,.h—(k,h)x[ e 1) (3.17)

where We, is liquid-based Weber number. The maximum growth rate and corresponding

wavelength can be found by solving dk; /dk, = 0. The effects of Weber number and gas

to liquid density ratio on the maximum growth rate and corresponding wavelength are
illustrated in Figure 3.3. As the Weber number increases, the maximum growth rate
increases as well and the most unstable wave shifts to smaller wavelengths (See Figure
3.3 (a)). Figure 3.3 (b) demonstrates the solution of the dispersion equation at We,=500
for two different gas to liquid density ratios. The maximum growth rate increases at
higher gas to liquid density ratios. In contrast to the temporal case where the gas to liquid

density ratio does not affect the dominant wavelength considerably, in the spatial case the
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dominant wavelength decreases significantly as the gas to liquid density ratio increases.
The same approach as the temporal analysis is required to implement the liquid-gas

interface boundary condition in the computational code.

14X10 : : , ;
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Figure 3.3: Inviscid solution of dispersion equation for spatial analysis for (a)
pe/P1=1/1000 (b) We=500
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4. Results

Numerical results based on the solution of the governing equations by implementing
appropriate boundary conditions are presented in this chapter. Two-dimensional and
three-dimensional results are presented in separate sections. As mentioned in the first
chapter, span-wise ligaments are captured by 2D analysis while 3D analysis is required to
capture both types of ligaments. Although 3D analysis is just an extension of the problem
to the third dimension, this extension captures the stream-wise ligaments, generated
physically due to 3D effects. In all the simulations it is assumed that the liquid sheet is
leaving the nozzle exit with the main velocity of U in the x-direction and the surrounding

gas is stationary.

4.1. Two-Dimensional Results

The formation of span-wise ligaments is studied while investigating the effect of the fluid
properties on the breakup process. In this section, the variation of the breakup time with
fluid parameters is first presented followed by the study of the effect of these parameters
on the breakup length of liquid sheets. Since the temporal dispersion equation is defined
according to the gas-based Weber number, We, is used to present the results for the
breakup time, while the results for the breakup length are presented based on the liquid

based Weber number, We,.
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4.1.1. Breakup Time

The breakup time of the liquid sheet is defined as the time required for the liquid sheet to
disintegrate into smaller ligaments. Since the evolution of the sheet by time is considered,
as described in chapter 2.3, the boundary condition in the x-direction is periodic and the
interface boundary condition is implemented using temporal linear stability analysis
described in section 3.1. The effect of the fluid properties and flow parameters on the
breakup time of liquid sheets is studied through three non-dimensional numbers: gas
based Weber number, Ohnesorge number and gas to liquid density ratio which can be

stated mathematically as:

ngzh H Pg
We_ = ; Oh =, We, [Re=—"——- ; — 4.1
foo !/ (o,0m)* P D

the physical meaning of Ohnesorge number can be interpreted as the ratio of viscous

force to surface tension force.

The grid size is selected to initially provide eight computational cells per sheet thickness
with Ax = Az. Since the boundary condition in the x-direction is periodic, the domain
length in this direction is set equal to one wavelength corresponding to the maximum
growth rate, A,.. The initial amplitude of the disturbance, 7y, in equation (3.11) is equal
to 79 = 0.075 Amax [12]. More discussion about the effect of the initial amplitude of the

disturbance on the breakup is presented in section 4.3 of this chapter.

Non-dimensional breakup time is defined ast* = tU/h . To show that ¢ is only a function

of the non-dimensional parameters (We, Oh, and pg/p;), three different cases with
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different flow parameters but the same Weber and Ohnesorge numbers are shown in
Table 4.1. For all three cases, the gas to liquid density ratio is equal to p./p,=1/100.
Results show that although the surface tension has been increased three times from case 1
to case 3, by changing the sheet velocity and liquid viscosity appropriately to keep Weber

and Ohnesorge numbers constant, the variation in ¢ is smaller than 2.2%.

U(m/s) h(m) g (N/m) u (kg/ms) Weg | Oh ¢
Casel | 7.7 250x1078 30x107° 27x1073 05| 1.0 | 345
Case2 | 11 250x107¢ 60x107> 38x1072 0.5 | 1.0 | 34.01
Case3 | 13.4 250x107° 90x107° 47x1073 0.5 1.0 33.77

Table 4.1: Exclusive dependency of the non-dimensional breakup time on the non-
dimensional parameters for p/p; = 1/100

Figure 4.1 illustrates the time evolution of a 500 um thick liquid sheet. 7 corresponds to
the breakup time. Figure 4.1 (a) demonstrates the initial disturbance imposed on the
liquid sheet. By marching in time, the instability is amplified due to the interaction
between liquid sheet and the surrounding gas as shown in Figure 4.1 (b). Enhancement of
the disturbance thickens some parts of liquid sheet and shrinks other parts as illustrated in
Figure 4.1 (c). Finally the liquid sheet breaks from thin parts and disintegrates into
smaller ligaments as shown in Figure 4.1 (d). The effect of the gas to liquid density ratio
can be identified by comparing Figures 4.1 and 4.2. As the gas to liquid density ratio
increases the dominant wavelength decreases slightly resulting in ligaments with smaller
size. A comparison between Figures 4.1 and 4.3 demonstrates the effect of Weber
number. Increasing Weber number causes a decrease in the dominant wavelength
corresponding to the maximum growth rate. The disintegration of liquid sheets into
ligaments equal to half of the most dominant wavelength is obtained in all cases, which is

the characteristic of the sinuous type of the disturbances considered in this work.
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(b)
(c)
d

Figure 4.1: Time evolution of the liquid sheet for We,=0.3, Oh=1, and p/p;=1/1000, (a)
£=0,0)t=7T/M4,()f=37/4,d)=T7
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Figure 4.2: Time evolution of the liquid sheet for We,=0.3, Oh=1, and p/p;=1/500, (a)
£=0,b)'=7/4,(c) =37 /4,(d)t'=7
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Figure 4.3: Time evolution of the liquid sheet for We,=0.5, Oh=1, and py/p,;=1/1000, (a)
£=0,b)=7/M4,()t=3F/4,d)t=T7
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The varations in the breakup time with the gas based Weber number is illustrated in
Figure 4.4 for different gas to liquid density ratios for Oh=1. As the Weber number
increases, the breakup time decreases showing the stabilizing effect of the liquid surface
tension on the breakup process. Additionally, Figure 4.4 demonstrates that the breakup
time decreases at higher values of the gas to liquid density ratio. This behavior is reported

in[1], [12], and [14].
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Figure 4.4: Effect of We, and p,/p; on the breakup time for Oh=1

Li et al. [12] reported that at some specific range of We,, which includes the range
considered in this work, liquid viscosity has a destabilizing effect on the breakup process
and the breakup time decreases by increasing the viscosity. This phenomenon is studied

in the present work by changing the liquid viscosity while keeping the maximum growth
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rate and the corresponding wavelength constant and equal to those of the inviscid case.
Figure 4.5 illustrates the variation in the breakup time with Ohnesorge number for
different Weber numbers at po/p/=1/500 and pg/p;=1/1000. Results demonstrate that
breakup time decreases as the Ohnesorge number increases showing the destabilizing

effect of the liquid viscosity which is consistent with the work of Li et al.[12]
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Figure 4.5: Effect of the Ohnesorge number on the breakup time, (a) po/p;=1/500, (b)
pe/pi=1/1000
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4.1.2. Breakup Length

Breakup length is defined as the length in which the ligaments are separated from the

liquid sheet. This length is shown in Figure 4.6.

V4

-

X

/

Nozzle exit
plane -

breakup length

A

Figure 4.6: Breakup length

As described in chapter 2.3, boundary conditions required to solve the governing
equations to find the breakup length is inflow/outflow in the x-direction and
outflow/outflow in the z-direction. Furthermore, the boundary condition needed at the
liquid-gas interface is implemented using spatial linear stability analysis. Non-
dimensional parameters used to study the effect of flow parameters on the breakup length
of liquid sheets are the same as the ones used in section 4.1.1 except, the Weber number

1s stated based on the liquid density.

pUh p
Wey =~ ;  Oh=—f ; £ 4.2)

2

c ) (/010"’)0'5 P

Similar to temporal analysis, the grid size is selected to have eight computational cells
per sheet thickness at the inlet boundary with Ax = Az. To guarantee that the liquid sheet

breaks into ligaments before leaving the computational domain, the domain length in the
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x-direction is defined as six times the dominant wave length corresponding to the
maximum growth rate, 4,,,.. The initial amplitude is defined as 1y = 0.05 4,,,, in equation

(3.15) [13].

The non-dimensional breakup length is defined as the ratio of the breakup length to the

sheet thickness, L’ = L/2h. Similar to the temporal analysis, to demonstrate that the

breakup length is only a function of the above mentioned non-dimensional numbers,
three different cases were examined with different flow conditions but with the same
Weber and Ohnesorge numbers at the same gas to liquid density ratio. These cases are
shown in Table 4.2. Comparing cases 1 and 3 indicates that even by doubling the surface
tension but changing the sheet main velocity and the liquid viscosity to have the same

Weber and Ohnesorge numbers, the change in the non-dimensional breakup length is less

than 2.1%.

U(m/s) h(m) o (N/m) u (kg/ms) We, Oh I
Case 1 8.6 250%107° 30x1073 77%x1073 500 1.0 18.76
Case 2 12 250%x107° 60x107> 110x1073 500 1.0 19.16
Case 3 15 250%10°° 90x1073 136x1073 500 1.0 18.92

Table 4.2: Exclusive dependency of the non-dimensional breakup length on the non-
dimensional parameters for p,/p; = 1/800

Evolution of a liquid sheet with a thickness of 500 um, py/p; = 1/1000, and Oh=1 for
different Weber numbers is shown in Figure 4.7. As indicated by the spatial linear
stability theory, the most dominant wavelength decreases as the Weber number increases.

Moreover, the breakup length decreases at higher values of the Weber number.
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Figure 4.7: Spatial evolution of the liquid sheet with p,/p;=1/1000 and Oh=1 for various
Weber numbers (a) We, =500, (b) We;=400, (¢c) We;=300
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To illustrate the effect of the gas to liquid density ratio on the spatial evolution of the
liquid sheet, two different cases are shown in Figure 4.8 for We,=400 and Oh=1. The

breakup length decreases at higher values of the gas to liquid density ratio.
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Figure 4.8: Spatial evolution of the liquid sheet with We; = 400 and Oh=1 for various gas
to liquid density ratios (a) pg/p;=1/800, (b) pg/pi=1/1200
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Figure 4.9 demonstrates the variation of the non-dimensional breakup length with the
Weber number, We,, for different gas to liquid density ratios for Oh=1 (sheet thickness =
500 um). As the Weber number increases, the breakup length decreases which
demonstrates the stabilizing effect of the liquid surface tension on the breakup
mechanism. Additionally, at higher values of the p,/p;, the breakup length decreases. The

same behavior has been reported by Li [13].
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Figure 4.9: The effect of Weber number on the breakup length for different gas to liquid
density ratios for Oh=1

Li [13] reported that the liquid viscosity stabilizes the liquid sheet by increasing the

breakup length. Similar to the temporal part described in section 4.1.1, to investigate the
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effect of the liquid viscosity, variation of the breakup length as a function of Ohnesorge
number is studied while keeping the maximum growth rate and corresponding
wavelength constant and equal to those of the inviscid case. The variation of breakup
length with Ohnesorge number is shown in Figure 4.10 for We~=100 and p./p,=1/1000.
As viscosity increases, the disturbances grow slower which results in an increase in the

breakup length consistent with the work of Li [13].
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Figure 4.10: Variation of the breakup length with Ohnesorge number for We,;=100 and
pe/Pi=1/1000
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4.2. Three-Dimensional Results

In this section, the liquid sheet is extended in the y-direction to include 3D effects in the
breakup phenomenon. The results of the spatial linear stability analysis described in
section 3.2 are used to find the maximum growth rate and the corresponding wavelength
in the flow direction to implement the interface boundary condition. The 3D results are

presented assuming periodic boundary condition in the span-direction (i.e. y-direction).

The liquid sheet emerging from the nozzle would have initial instabilities in the span-
direction right at the nozzle exit. These instabilities might be generated due to the inner
nozzle flow and the explosion of cavity bubbles as described in section 1.1. Generally,
these instabilities have different wavelengths. Kim et al. [18] have shown that among all
the instabilities in the span-direction, the one with the same wavelength as the most
dominant wave in the flow direction would be dominant. Hence, once the wavelength
corresponding to the most unstable wave in the flow direction (x-direction) is determined
by the linear stability analysis (discussed in section 3.2) this wavelength is used to
introduce the instabilities in the span-direction (y-direction) as well. The major difference
between instabilities in the x- and y- directions is that the waves in the x-direction are
moving while instabilities in the y-direction are stationary. In this work it is assumed that
the liquid sheet is periodic in the span direction and it is disturbed by a wave with the
wavelength equal to the most dominant wave in the flow direction. (A case with no initial

disturbance in the span-direction is presented in Appendix B.)
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Since the major goal of a three-dimensional analysis is to capture both kind of ligaments
generated, the formation of span-wise and stream-wise ligaments are presented first
followed by the effect of fluid properties on the breakup process. Figure 4.11 (a)
illustrates a 3D view of the liquid sheet. Figures 4.11 (b) and (c) show the volume
fraction of the liquid in stream- and span-direction planes respectively (shown in Figure
4.11 (a)). It can be seen that span-wise ligaments are generated similar to the 2D analysis
(Figure 4.11 (b)). Additionally, stream-wise ligaments are captured (Figure 4.11 (c)). The

generation of stream-wise ligaments is due to three-dimensional effects.

(b) ©

Figure 4.11: 3D liquid sheet, (a) 3D view, (b) span-wise ligaments, (c) stream-wise
ligaments
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To investigate how stream-wise ligaments are generated, Figure 4.12 shows velocity
vectors at the cross section of the liquid sheet downstream of the nozzle exit. As indicated
by circles, velocity vectors have a component in the span direction, y-direction. Since
there is no initial velocity in the y-direction and the velocities induced at the liquid-gas
interface by the linear stability analysis are only in the z-direction, this span-wise velocity
is generated due to 3D effects. The velocity in the y-direction along with the velocity in
the z-direction make pairs of counter-rotating vorticity vectors which are in the flow
direction, x-direction, and are called stream-wise vorticities. These vorticities cause the
liquid sheet to rotate in the flow direction and are responsible for the generation of

stream-wise ligaments.

z

13— v
%Z{&\
A

Figure 4.12: Stream-wise counter-rotating vorticities

The generation of the span-wise ligaments has been presented completely in section 4.1.2
where the 2D spatial analysis is discussed. Consequently, the remainder of this section
deals with the formation of the stream-wise ligaments. Since the formation of stream-
wise ligaments is due to the generation of stream-wise vorticities, the effect of fluid

properties on the strength of the stream-wise vorticities, x-vorticities, is studied. The x-

79



vorticities would be presented at planes where the stream-wise ligaments start to form as

shown in Figure 4.13.

/_\' stream-wise
| ligament

Cross section where the x-vorticity is illustrated

Figure 4.13: Top view of the liquid sheet

Figure 4.14 illustrates the effect of the gas to liquid density ratio on the strength of the
stream-wise vorticity for We;=500 and Oh=1. Since the dominant wavelength decreases
by increasing py/p;, the intensity of the x-vorticity is higher in larger gas to liquid density
ratios. Figures 4.15 and 4.16 show the variation of the x-vorticity with the Weber number
for two different py/p;. By increasing the Weber number, the intensity of the stream-wise
vorticities increase due to the higher values of the sheet velocity and smaller dominant
wavelengths. The effect of the viscosity on the strength of the stream-wise vorticity is
illustrated in Figures 4.17 and 4.18 for two different Weber numbers. The lower
Ohnesorge numbers lead to stronger counter-rotating vorticities demonstrating the

stabilizing effect of the viscosity in the spatial analysis.
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Figure 4.14: Effect of gas to liquid density ratio on the stream-wise vorticity for We,=500
and Oh=1, (a) pg/pi=1/500, (b) pe/pi=1/700, (c) po/pi=1/800
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Figure 4.15: The effect of Weber number on the x-vorticity for py/p; =1/700 and Oh=1,

(a) We, = 500 (b) We; = 400
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Figure 4.16: The effect of Weber number on the x-vorticity for po/p; =1/1000 and Oh=1

(a) We; = 500, (b) We, = 400
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Figure 4.17: Effect of Ohnesorge number on the x-vorticity for p/p; =1/700 and We, =

500, (a) Oh = 2, (b) Oh=3
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Figure 4.18: Effect of Ohnesorge number on the x-vorticity for py/p; =1/700 and We, =

300, (a) Oh = 2, (b) Oh=3
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As mentioned in Chapter 1, liquid breakup predicted by VOF methods is mostly based on
the numerical errors rising from geometric reconstruction of interfaces associated with
VOF methods [26]. This section shows that implementing interface boundary condition
by linear stability analysis leads to results in which the grid size is not the main source of

breakup.

Table 4.3 shows the variation in the breakup length of the liquid sheet for various mesh
sizes for We; = 500, Oh = 2, p,/p; = 1/1000. Since it is more straightforward to define a
unique breakup length in 2D rather than in 3D, the results are based on the 2D analysis
described in section 3.2. The breakup length is presented as the time average over two
period time of the moving liquid sheet. The number of cells per sheet thickness increases
by refining the mesh size and keeping the sheet thickness constant. Figure 4.19 shows
that the breakup length has an oscillatory behavior but the change in the breakup length is
less than 13% illustrating that the mesh size is not dominant in the breakup process. This
fact is a significant achievement in using VOF methods to model the breakup

phenomenon as these methods are highly dependent on the grid size [26].

Computational cell per sheet thickness Non-dimensional breakup length
5.4 34.2
6.25 36.4
7.5 35.3
8.3 33.5
9.2 33.6
10.4 32.6
11.7 32.8
12.5 31.8

Table 4.3: The effect of the mesh size on the breakup length for We; = 500, Oh = 2, pg/p;
= 1/1000

86




40

-

LN B

20+

15_lllllll'IlllllllIlllllllllllllrl\llllllllIlll
4 5 6 7 8 9 10 " 12 13

Number of cells per sheet thickness

Figure 4.19: Variation of the breakup length with the mesh size
To investigate the effect of the grid size in 3D, a liquid sheet with a periodic boundary
condition in the span-direction is simulated considering three different gird sizes for We;
= 500, Oh = 2, pg/p; = 1/1000. The sheet thickness is fixed in all cases. The grid sizes
used are shown in Table 4.4. Case | represents a coarse mesh while case 3 is the finest

grid size used. The top views of the liquid sheet for these three cases are shown in Figure

4.20.
Case 1 Case 2 Case 3
Mesh size 10 um 8 um 6 um
Cell per sheet thickness 5 6.5 8.3

Table 4.4: Grid size used for the mesh study
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(c)

Figure 4.20: The effect of the mesh size on a 3D liquid sheet for We; = 500, Oh = 2, po/p,
= 1/1000, (a) case 1, (b) case 2, (c) case 3

Since the boundary condition in the span direction (y-direction) is periodic, the main flow

is in the x-direction, and there is no preference for the flow field at the left and right

boundaries (shown in Figure 4.20 (b)), the flow should have some symmetry with respect

to the centerline. As illustrated in case 1 for the coarse mesh, this symmetry is not

achieved while for two other cases the flow is almost symmetric with respect to the

centerline.

Based on the 2D and 3D mesh study mentioned above, it is concluded that at least

providing 6-7 computational cells per sheet thickness is required for the numerical

88



simulation. All of the 3D results presented in this work provide 8 initial computational

cells per sheet thickness with Ax = Ay = Az,

4.3. Effect of Initial Disturbance

Inoue [16] described that the initial amplitude of the disturbances affects the final results
of breakup. To investigate this effect, the breakup lengths of liquid sheets with the same

flow conditions but different initial disturbances, 7y, are compared.

Table 4.5 shows the non-dimensional breakup lenéth for We; =400, Oh=1 and
pe/pi=1/1000 for three different initial disturbances; 179 = 0. 044 max, Ho = 0.054may, and 5y =
0.067,5qc Where Anq is the most dominant wavelength. The breakup lengths are presented
at three different span locations: 1/4 of the wavelength, half of the wavelength, and 3/4 of
the wavelength in the span direction. These locations are shown in Figure 4.21 . Results
show that the breakup length of the liquid sheet depends on the initial disturbance and

decreases as #179 Increases.

1/4 span 1/2 span 3/4 span
no = 0.04Amax 25.6 26.8 23.5
Ho = 0.05Amax 20.4 244 20.4
N0 = 0.06Amax 17.6 17.4 17

Table 4.5: Effect of the initial disturbance on the non-dimensional breakup length
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Figure 4.21: Span-wise locations used in Table 4.5
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5. Closure

5.1. Conclusion

A two- and three-dimensional study of the primary breakup of liquid sheets is conducted
to capture span-wise and stream-wise ligaments. A VOF-based code is used to solve
governing equations for the liquid phase and to capture the interface between the liquid
and surrounding gas. Since the interaction between the gas and liquid is the major source
of the breakup phenomenon, the interface boundary condition is modified and it is

applied using linear stability analysis.

To capture span-wise ligaments, a two-dimensional analysis is performed. This analysis
includes investigating the effect of fluid properties on the breakup time and breakup
length of liquid sheets. Fluid properties are grouped into three non-dimensional numbers,
Weber number, Ohnesorge number and the gas to liquid density ratio. To implement
appropriate interface boundary conditions to study the breakup time and breakup length,
temporal and spatial linear stability analyses are performed, respectively. These analyses,
find the maximum growth rate and corresponding wavelength of the most dominant wave
traveling on the liquid sheet for each flow condition. These maximum values are used to
implement the interface boundary condition. It is shown that the non-dimensional
breakup time and length remain almost constant for different fluid properties but for the

same non-dimensional numbers.
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The liquid surface tension tends to stabilize the liquid sheet by increasing the breakup
time. Increasing the gas to liquid density ratio decreases the breakup time. In the certain
range of Weber number considered in this work, 0.1<Weg,<0.5, the liquid viscosity
destabilizes the liquid sheet by decreasing the breakup time. The results are consistent

with the work of Li et al [12].

The evolution of the liquid sheet in space is considered to investigate the effect of fluid
properties on the breakup length. It is shown that both liquid surface tension and viscosity
stabilize the liquid sheet by increasing the breakup length. Higher values of the gas to
liquid density ratios lead to smaller breakup lengths. The results show consistency with

the work of Li [13].

The study is extended to 3D to capture the stream-wise ligaments as well as the span-
wise ones. The sheet is perturbed in the span-direction by a wave with a wavelength
equal to that of the most dominant wave in the flow direction. However, it is shown that
even without disturbances in the span-direction, span-wise disturbances are generated due
to the 3D effects in addition to the effect of the free edge. To investigate the effect of
flow properties on the generation of the stream-wise ligaments, a periodic boundary

condition is applied in the span direction.

It is shown that stream-wise ligaments are formed due to stream-wise vorticities

generated downstream of the flow. These vorticities are generated due to the coupling

with span-wise vorticities. The study, concerning the effect of fluid properties on the
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strength of stream-wise vorticities, shows that decreasing the liquid surface tension and

viscosity and increasing the gas density, intensify the stream-wise vortices.

Finally, it is shown that using linear stability analysis to apply the interface boundary

condition may lead to results in which the mesh size is not a dominant parameter

controlling the breakup phenomenon. It is recommended to initially provide at least 7

computational cells to get realistic results.

5.2. Future Work

When a liquid sheet emerges from a nozzle exit, both temporal and spatial
instabilities grow simultaneously. Therefore, involving both effects in a unique
analysis would lead to more realistic results. In order to apply appropriate boundary
conditions at the interface, a new dispersion equation should be derived in which both
the wave number and wave frequency are complex numbers and the growth rate of

instabilities would be a function of both time and space.

As mentioned in the 3D result section, the 3D effects would induce some disturbances
on the liquid sheet. One issue that may be considered is that how much of these
disturbances are due to the presence of the free edge. In the other words, how far the
effect of the free edge can penetrate in the liquid sheet. As a preliminary study three
different cases with the same flow conditions but different lengths in the span-
direction are considered. The lengths considered are three, four, and five wavelengths

in the span direction. The velocity vectors and x-vorticities contours are shown in
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Figures 5.1 and 5.2. The left boundary is assumed to be symmetric. It can be seen that
an increase in the span-length changes the shape of the velocity vectors. Further

investigation of the free edge effect can be conducted as an extension to this work.
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Figure 5.1: Velocity vectors for different span length, (a) three-wavelength, (b) four-
wavelength, (c) five-wavelength
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Figure 5.2: x-vorticity contour for different span lengths, (a) three-wavelength, (b) four-
wavelength, (¢) five-wavelength

® Primary breakup explained in this work would result in formation, velocity and size
of the ligaments generated from liquid sheets. As stated in the introduction section,
the next step of the breakup is secondary breakup which is the formation of smaller
droplets from ligaments. The secondary breakup results in a distribution for final
diameter and velocity of droplets. Results of the present work can be used in a typical
spray model to track the trajectory of formed droplets. This model can include
combustion phenomenon. In this case the analysis has a wide range of application in

gas turbine combustion chambers and internal combustion engines.
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Appendix A

For the temporal analysis of liquid sheets, periodic boundary condition is required in the
moving direction. As the main flow is in the x-direction, description of implementing
periodic boundary condition in this direction is presented. First it is helpful to have a

quick and brief explanation about the code structure.

The computational gird consists of 3-D cubes extending in x-, y- and z-direction. Beyond
the computational mesh, there are extra grids called ghost cells required to implement
domain boundary conditions. Ghost cells are extended one grid besides the first and last
computational mesh in each direction. Figure A.1 shows computational and ghost cells in
a 2-D problem. Ghost cells are shown in the gray color. Figure A.1 also illustrates the
numbering used in the code. In 3-D problems, the numbering is extended in the z-

direction as well.
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(1, IMAX) | (IMAX , IMAX)

computational cell
corresponding to the

grid point (i,))

(1,1 (IMAX, 1)

Figure A.1: Structure of computational mesh

Ghost cells located at the left and right columns of Figure A.1 are used to implement the
periodic boundary conditions. For all of the left ghost cells, i = 1, 1 <j <JMAX while for

the right column of ghost cells, i = IMAX, 1 <j <JMAX.

Periodic boundary in the x-direction implies that the flow which exits from the right

boundary would enter to the left boundary or vice versa with the same flow variables. To
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implement this concept, the right ghost cells should be identical to the first column of
computational cells in the left. As well, the left ghost cells should have the same flow

variables as the first right computational cells. This concept is shown in Figure A.2.

ILEFT+]

Figure A.2

The above mentioned procedure is implemented for all flow variables at left and right
boundaries to apply the periodic boundary condition in the x-direction. As an example
suppose a variable called F. To have periodic boundary condition in the x-direction we

have:

DO J=1,JMAX

F(ILEFT,J )= F(IRIGHT-1,J)
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F(IRIGHT,J ) = F(ILEFT+1,])

END DO

where ILEFT and IRIGHT indicate ghost cells at left and right boundaries shown in

Figure A.2.

After finding each variable at each computational time, the above commands are used to
impose periodicity in the x-direction. As described in Chapter 2, all of the variables
except pressure are found explicitly. So implementation of periodic boundary is very

straightforward.

To calculate pressure, a matrix should be constructed. To form this matrix, all the
neighboring cells should be identified to each computational cell. To identify the right
neighbor of each cell a variable called “IJUMP” is used. The definition for this variable,
the way to identify the right neighbor, has been modified to implement periodic condition
in the x-direction. This modification is in such a way that at each computational row
shown in Figure A.2 (j constant) the cell “ILEFT+1” is introduced as the right neighbor

of cell “IRIGHT-1"".
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Appendix B

In order to show that span-wise (y-direction) instabilities could be generated due to 3D
and free edge effects, a case with no initial disturbance in the y-direction is studied.
Figure B.1 illustrates the liquid sheet moving in the x-direction with no initial disturbance
in the y-direction for We; =1000, Oh=1, and py/p; = 1/1000. 1t can be seen that as the
liquid sheet evolves in space, instabilities are generated in the span-direction. To
demonstrate the formation of these disturbances, Figure B.2 illustrates velocity vectors of
the liquid sheet at four different planes shown in Figure B.1. It can be seen that the free

edge and 3D effects induce instabilities in the span direction.

free edge

Figure B.1: Liquid sheet with no initial disturbance in y-
direction

104



fr7

105

-
0N A
(]
m 5
=
(-
3 Qo
- w)
W} ez ol
: SEFEEETH @

k\ £
“ i %
I 3 m
< (9]
i :
Y <
~~ by =~ m
B © . 2 3
N =

N

i S
\ >
Y Y .
H\M\ m
. e
+ 2

F

~hE

(LIl

A

3¥



