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Abstract

Spatially-Adaptive Wavelet-based Techniques for Despeckling of
Synthetic Aperture Radar and Medical Ultrasound Images

Mohammed Imamul Hassan Bhuiyan, Ph.D.
Concordia University, 2007
Synthetic aperture radar (SAR) and ultrasound imaging systems are widely used
for applications in remote sensing and medical diagnosis, respectively. However, the
SAR and ultrasound images get corrupted by speckle noise during the process of
image generation. The presence of speckle gives these images a granular appearance,
thus hampering the interpretation of the image and reducing the efficiency of the
algorithms in performing tasks such as compression, segmentation and classification.
Hence, it is crucial to reduce the speckle from the SAR and ultrasound images before
performing analysis or processing of these images.

The objective of this thesis is to develop efficient wavelet-based methods for an
improved reduction of the speckle from SAR and medical ultrasound images at a
reduced computational cost. It is shown that the symmetric normal inverse Gaussian
(SNIG) distribution is highly suitable for modelling the wavelet coefficients of the
log-transformed reflectivity. Bayesian minimum mean absolute error, minimum mean
squared error and maximum a posteriori estimators are developed using the SNIG
PDFs. Fast and efficient techniques are introduced to estimate the model parameters
from the noisy wavelet coeflicients. A fast and efficient technique is presented to
calculate the Bayesian minimum mean absolute error and minimum mean squared
error estimators, while closed-form expressions are obtained for the Bayesian maxi-
mum a posteriori estimators. New methods of reduced complexity are proposed to

incorporate the spatial dependencies of the wavelet coefficients with the Bayesian
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estimation processes. Extensive simulations using synthetically-speckled, SAR and
medical ultrasound images are carried out to study the performance of the proposed
techniques and the results show that they perform better than several existing tech-
niques in terms of the peak signal-to-noise ratio, speckle statistics, edge preservation
index, structural similarity index, ability to suppress the speckle in the homogeneous
regions and visual quality, without an undue increase in computational complexity.
Finally, it is shown that the SNIG PDF can also be used to advantage in developing
an efficient method for the classical case of reducing the additive white Gaussian noise

from natural images.
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Chapter 1

Introduction

1.1 Introduction

The use of digital images in applications ranging from personal archive to medical
diagnosis and remote sensing for the exploration of earth and planetary resources,
has now become widespread. A major problem regarding the use of digital images
is the corruption of these images by noise during their acquisition and transmission.
Among the various types of noise, speckle noise (which is a multiplicative noise) is
prevalent in different imaging systems such as the synthetic aperture radar (SAR)
and ultrasound [1].

The SAR is widely used in various applications for earth and planetary explo-
rations, for example monitoring of agricultural crops and the effect of deforestation,
search and rescue operations, and target detection. The reason for using a SAR
imaging system is basically due to its ability to generate images of a wide area ter-
rain irrespective of the weather conditions or the ambient illumination. In addition,
with appropriate design, the SAR imaging systems can also be used to image the
objects that are underneath the foliage and in some cases, even beneath the earth

surface [2]. Speckle noise gets introduced in a SAR image due to the non-coherent



character of the backscattered signals, a consequence of having targets that are small
in comparison to the wavelength of the radar signal. It is manifested in a SAR image
in the form of a granular pattern, thus making it difficult for the human experts to
interpret the image content, and diminishing the efficiency of the algorithms that are
employed to perform various image processing tasks such as compression, segmenta-
tion and scene classification. Hence, reduction of the speckle noise is often required
as a pre-processing step in practical applications involving the SAR images.
Ultrasound is a coherent imaging system like the SAR; however, it uses sound
waves instead of microwaves, and is widely used to image muscles and internal or-
gans of the human body for diagnostic purposes. The wide-scale popularity of the
ultrasound among the clinicians as well as the patients is due to the various advan-
tages such as non-invasiveness, harmlessness to the human body, cost-effectiveness,
reliability, accuracy and portability, that it offers. The speckle noise appears in a
ultrasound image, when the scale of the objects (such as liver and kidney) is too
small to be resolved by the sound waves having a large wavelength. The speckle noise
reduces the contrast of the ultrasound images and obscures diagnostically important
details, thus hampering the process of clinical diagnosis. It has been reported that
the speckle noise can reduce the ability of the clinicians to detect lesions by a factor of
eight [3]. Besides, it reduces the efficiency of the algorithms for automatic processing
of ultrasound images. Therefore, suppression of the speckle in ultrasound images is

critical in enhancing the diagnostic ability of the clinicians.

1.2 Motivation

A number of methods have been proposed in the literature in order to reduce the

speckle in SAR and medical ultrasound images in the spatial domain [4-14]. Although

2



these methods result in removing the speckle in the homogeneous regions, most of
them do so at the expense of blurring the image details. In addition, the performance
of these filters are, in general, dependent on the size and orientation of the window
used for computing the values of the local statistics that are utilized in the filter
functions. The speckle noise is often expressed with a multiplicative model, where
the observed image is given by a product of the underlying reflectivity and speckle
[15]. The multiplicative model is motivated by numerous observations that in the
homogeneous regions of speckled images, the noise variance is a function of the sample
mean, indicating that the noise variance is higher when the signal amplitude is higher
[15]. The homomorphic scheme for filtering the speckle noise was introduced by
Jain [16]. In this scheme, the speckle noise is first converted into an additive noise via
a logarithmic transformation of the speckled image, and then Wiener filter is applied
on the log-transformed image to reduce the additive noise. The resulting image is
subjected to an exponential operation for obtaining an image with reduced speckle.
However, this method blurs the important details of the image since the Wiener filter
is essentially a low-pass filter. An important feature of the homomorphic approach is
the possibility of using it as a general framework for speckle reduction by using more
efficient filters in lieu of the Wiener filter.

Recently, the multi-scale wavelet transform has provided a major breakthrough
in signal denoising [17-19]. The traditional Fourier transform is basically applicable
for periodic signals. In contrast, many practical signals contain jumps and disconti-
nuities. Digital images provide a good example of such a signal, since they contain
homogeneous regions separated by edges and line structures. For such signals, the
wavelet transform can provide a nearly-optimal sparse representation in the frequency

domain. Compared to the traditional Fourier transform, the wavelet representation



requires a fewer number of coefficients due to the local oscillating property of the
wavelet transform; large coefficients are generated for the wavelets overlapping the
singularities, whereas small-valued coeflicients are obtained for the non-overlapping
wavelets. Various methods have been proposed in the literature based on an efficient
exploitation of the sparsity of the wavelet transform coefficients for despeckling the
SAR and medical ultrasound images. Among them, the simplest ones are based on
using ad hoc thresholding of the wavelet coefficients within a homomorphic frame-
work [20-26]. In general, these methods perform better than the spatial-domain
filters. However, these methods depend on parameters such as the threshold that are
selected on an ad hoc basis, and may provide images with bias in the homogeneous re-
gions. In the past few years, wavelet shrinkage methods based on Bayesian formalism
using a prior probability distribution function (PDF) to model the wavelet coefficients
corresponding to the log-transformed reflectivity have been successfully applied for
the reduction of speckle from SAR and medical ultrasound images [27-29]. However,
none of the above methods take into consideration the dependencies of the wavelet
coefficients, while it is known that by providing a spatial adaptation to account for
these dependencies, a considerable improvement in the performance of the denoising
methods can be obtained [30].

A number of spatially-adaptive methods have been proposed in the literature for
despeckling SAR and medical ultrasound images [31-43]. Most of these methods are
able to provide a sound despeckling performance, at the expense of being computa-
tionally intensive, while some of them [31-33] are dependent on parameters selected
manually. The high computational complexity of [35] is essentially due to the fact
that one has to find the parameters of a two-state Gaussian prior by using a time-

consuming expectation-maximization (EM) algorithm. The methods in [36-39] incur
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a high computational cost, since one has to obtain the parameters of the prior PDF for
each noisy coeflicient, and calculate the Bayesian maximum a posteriori (MAP) esti-
mates of the noise-free coefficients using iterative numerical methods. Moreover, the
methods in [36-38] produce over-smoothed images, since some of the signal-dominant
coefficients are mistaken as that of the noise due to the signal-dependent nature of
the noise and thereby, get unduly reduced in magnitudes. It should be mentioned
that the methods [36-39] do not actually address the problem of reducing the speckle
noise from the medical ultrasound images. Furthermore, the methods in [40], [42]
require the estimation of the signal moments through a computationally exhaustive
process, while the method in [43] is spatially not fully adaptive, since most of the
coefficients are set to zero using the subband-adaptive Bayes-shrink threshold given
in [44].

From the above discussion, one can see that there is a scope for further investi-
gation of wavelet-based Bayesian techniques that provide an improved performance
in speckle reduction without increasing the computational cost substantially. While
for improving the performance, it is necessary to use a better model for the statistics
of the wavelet coefficients, it is essential at the same time to develop efficient meth-
ods with reduced complexity for obtaining the model parameters and the Bayesian
estimates, and to provide spatial adaptation towards the dependencies of the wavelet
coeflicients in order to reduce the computational time. Both these aspects, should

therefore, be considered in developing efficient despeckling methods.

1.3 Scope and organization of the thesis

The objective of the proposed work is to develop new homomorphic spatially-adaptive

wavelet-based non-ad hoc techniques that have the ability to reduce the speckle noise
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from the SAR and medical ultrasound images with an improved performance, while
at the same time being computationally less demanding. In order to investigate
the suitability of employing the symmetric normal inverse Gaussian (SNIG) PDF in
modelling the wavelet coefficients corresponding to the log-transformed reflectivity,
studies are undertaken. Based on these studies, several spatially-adaptive despeckling
methods are developed using these SNIG PDFs. Extensive simulations are carried out
using synthetically-speckled images as well as SAR and medical ultrasound images to
study the performance of the proposed methods, and compared the results to those
of several existing techniques for despeckling. The thesis is organized as follows.

In Chapter 2, a new wavelet-based spatially adaptive method is proposed for
speckle reduction from the SAR images, where a Cauchy PDF is used for modelling
the wavelet coefficients of the log-transformed reflectivity image. An efficient and
fast method is introduced for obtaining the Bayesian minimum mean absolute er-
ror (MMAE) and minimum mean squared error (MMSE) estimates of the noise-free
coefficients, while a closed-form expression is obtained for the Bayesian MAP estima-
tor. In addition, a method with a reduced complexity is presented to incorporate the
dependencies of the wavelet coefficients with the Bayesian estimation processes.

In Chapter 3, we first show that the SNIG PDF, a generalized version of the
Cauchy PDF, is a highly suitable prior for modelling the wavelet coefficients of the
log-transformed reflectivity corresponding to the SAR images. Based on this, an
improved method is developed by using the SNIG PDF, for despeckling the SAR
images. The proposed method is a combination of a local linear MMSE (LMMSE)
estimator with a Bayesian MMSE or MAP estimator. The Bayesian estimators are
developed employing the SNIG PDF. A fast and eflicient technique is proposed to

estimate the parameters of the SNIG PDF from the noisy wavelet coefficients.



In Chapter 4, a detailed experimental study is carried out to demonstrate the
effectiveness of the SNIG PDF as a prior for modelling the wavelet coefficients of the
log-transformed reflectivity corresponding to medical ultrasound images. Based on
the results of this study, a fast and efficient spatially-adaptive method using the SNIG
PDF is proposed to despeckle the ultrasound images. A spatially-adaptive threshold
is obtained using a Bayesian MAP estimator that is developed using the SNIG PDF.
An efficient and fast technique is presented to estimate the SNIG parameters from
the noisy wavelet coefficients.

An alternative simple and fast method for despeckling the ultrasound images is
proposed in Chapter 5, where a Maxwell distribution is employed as a prior to model
the noise coeflicients to incorporate the heavy-tailed character of the log-transformed
speckle noise. Using the assumed Maxwell prior in conjunction with a Gaussian
PDF, for modelling the signal coefficients, a Bayesian MAP estimator is developed to
denoise the coefficients corresponding to the log-transformed ultrasound images.

Since we assume that the log-transformed speckle noise is Gaussian distributed,
the proposed methods can also be adapted to the classical case of reducing additive
white Gaussian noise from natural images, and hence, a new and efficient spatially-
adaptive wavelet-based method is provided in this regard in Chapter 6. A maximum
likelihood (ML)-based technique is proposed to estimate the parameters of the SNIG
PDF from the noisy wavelet coefficients.

Finally, some concluding remarks highlighting the contributions of the thesis and

suggestions for future work are provided in Chapter 7.



Chapter 2

Despeckling of SAR Images Using
Cauchy PDF

2.1 Introduction

SAR images are widely used in various remote sensing applications, such as surface
surveillance, earth source monitoring, and mine detection. However, since these im-
ages are inherently corrupted by speckle noise, the interpretation of the image content
becomes difficult and the efficiency of the algorithms in performing tasks such as com-
pression and segmentation, is reduced. Hence, speckle reduction is a critical step in
the processing of SAR images. As explained in Chapter 1, most of the wavelet-based
despeckling methods suffer from shortcomings including the dependency on ad hoc pa-
rameters, over-smoothing of the image, and high computational complexity. In view
of this, a spatially-adaptive method using a Cauchy PDF to model the wavelet coefhi-
cients of the log-transformed reflectivity, for despeckling the SAR images, is proposed
in this chapter [45,46]. Extensive simulations are carried out using synthetically-
speckled images as well as SAR images, and the performance of the proposed method
compared with that of several existing techniques. The chapter is organized as fol-

lows. Some preliminaries concerning the wavelet transform are provided in Section



2.2. Modelling of the wavelet coefficients using the assumed statistical priors is dis-
cussed in Section 2.3, and using these models a method for despeckling the SAR
images is developed in Section 2.4. Simulation results are described in Section 2.5,

and some conclusions provided in Section 2.6.

2.2 Some Preliminaries on the Wavelet Transform

In this section, a brief introduction to the multi-scale discrete wavelet transform is
provided. A multi-scale decomposition of a one-dimensional signal f(z) by the wavelet
transform using the scaling function ®(z), and the wavelet function, ©(z), is given
by [1]

€)= 3 eant)Punl2) + 3= T buf0)Bs(a) (2.)

w=wg v

where wy is an arbitrary scale, ¢y, (v) and b,,(v) represent the approximation and detail
coefficients, respectively. The first sum in this equation uses the scaling function to
provide an approximation of f(z) at a particular scale wg, whereas for each higher
scale w > wy, the second sum adds a finer resolution to the approximation part to

supply an increasing detail [1]. The terms @, ,(z) and ©,,,(z) are obtained as

Qo) = V2 w0 P(27¥0x —v) (2.2)
Ou(z) = \/F@(Q‘wx—v)

1

where ® and © denote the scale function and the mother wavelet function, respec-

tively. The approximation and detail coefficients are calculated as

cwo(V) = (f(T), Puyn(T)) (2.3)
- / F(2) Py () dz



bu(v) = (f(z),Ou.(z)) (2.4)

= [1@e

In practice, one deals with the discrete samples of a continuous function. The

wavelet expansion for M discrete samples of f(z) is given by

f(z) = \/_ZWq:.wo, +—ZZW@wv wo(T) (2.5)

w=wo v
The coefficients Wy (wo, v) and We(w, v) corresponding to the discrete wavelet trans-

form of f(z) are obtained as

Wq:.(’LUO,’U) = \/'——; wov (26)

We(w,v) = (2.7)

=Y /()0
Mallat [47] has provided an efficient and fast algorithm for computing the discrete
wavelet transform coefficients, and a block diagram of this algorithm is shown in Fig.
2.1. The algorithm uses an iterated two-channel filter bank. The two filters hy and hy
form a quadrature mirror filter (QMF) bank. The output coefficients of the low-pass
filter are called the approximation coeflicients, while those of the high-pass filter the

detail coefficients. The coefficients at a particular scale w are calculated as

We(w,v) = he(—t)* We(w+1,t), t=2v, v>0 (2.8)

We(w,v) = hge(—t)* We(w+1,v), t=2v, v >0 (2.9)

Note that hy(t) = ho(—t). A subsampling by a factor of 2 is performed at each level
of the decompositions in order to keep the number of coefficients constant and equal

to the length of the signal being decomposed throughout the whole decomposition
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Figure 2.1: Wavelet subbands with 3-level decomposition of a 1-D signal
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Figure 2.2: Wavelet subbands with 3-level decomposition of a 2-D signal

scheme. A two-dimensional extension of the Mallat’s algorithm is straightforward.
At each decomposition level, the signal is decomposed along the row and column direc-
tions by using low-pass and high-pass filters alternately. At any decomposition level
g, the input to the algorithm generates four subbands: an approximation subband
LL,, and three detail subbands LH,, HL, and HH, that are called the horizontal,
vertical and diagonal subbands, respectively, which provide information about the
signal features in the corresponding directions. The approximation subband LL, is
used to obtain the subbands at level ¢ + 1. Thus, the decomposition of an input up
to a level g generates one approximation subband and 3¢ detail subbands. Fig. 2.2

shows a 3-level decomposition of a 2-D signal.
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2.3 Modelling of the Wavelet Coefficients

Let y(k, ) denote the (k, {)-th pixel in a SAR image of intensity format, s(k, ) the cor-
responding reflectance, and n(k,!) the multiplicative speckle component. Assuming

the speckle to be fully developed, y(k,!) is expressed as [16]
y(k,1) = s(k,On(k, 1) + ne(k,1) (2.10)

where n, represents additive noise (such as thermal noise). Since the additive noise
is negligible compared to the multiplicative part [29], we can ignore it and (2.10)

becomes

y(k, 1) = s(k, Dn(k, 1) (2.11)

It should be noted that the speckle noise n is uncorrelated and independent of y, and
follows a particular PDF depending on the type of the SAR image. The intensity-
format image is obtained by taking the squared magnitude of the complex backscat-
tered signal [48]. For an L-look SAR image in the intensity format (obtained by
averaging L independent intensity-format images of the same scene), the PDF of the

speckle noise has a gamma distribution given by

LLnL—le—Ln

Pr(n) = D) (2.12)

with E(n) = 1 and var(n) = 1/L, E(.) and var(.) being the expectation and vari-
ance operators, respectively [48].The image in amplitude format can be obtained by
square root of the corresponding image in intensity format. The speckle noise in an
amplitude-format image can be obtained as

Pas(n) = 2nP;(n?)

QLLn2L—le—Ln2

= ) (2.13)
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Note that (2.13) is basically the Nakagami distribution whose mean is 1 and the

variance is given by 4= [49]. With the log-transformation, (2.11) becomes
Y(k,1) = X(k,1) + N(k,1) (2.14)

where Y = In(y), X = In(s) and N = In(n). The mean and variance of N for
an intensity-format image are (0, L) — In(L) and ¢(1, L), respectively, where (i, .)
denotes the i-th polygamma function [49]. For an amplitude-format image, the mean
and variance of N are £(¢(L) — In(L)), and 39(1, L), respectively [49].

The discrete wavelet transform (DWT) of a two-dimensional image to a level J
results in an approximation subband LL; as well as 3J subbands LH,, HL, and HH,
with horizontal, vertical and diagonal orientations, respectively, where ¢ = 1,2,--.J
[47]. The approximation subband contains the low-frequency portion of the image,
and thus possesses most of the information of the image. On the other hand, the
subbands LH,, HL, and H H, respectively provide information about the horizontal,
vertical and diagonal features in the image. Since the wavelet transform is a linear

operation, after applying the DWT on (2.14), we obtain

gi(p,m) =zi(p,m) +7n.(p,m), i=1,23 (2.15)

where gi(p,m), z}(p,m), and ni(p,m) denote the (p,m)-th wavelet coefficient, at
level ¢ with orientation 4, of the log-transformed SAR image, the corresponding log-
transformed reflectance and the corresponding speckle noise component, respectively.
The values 1, 2, and 3 for ¢ correspond to the horizontal, vertical and diagonal ori-
entations, respectively. For notational simplicity, the subscripts will be dropped, and
we will use g, x and 7 in subsequent discussions.

It has been shown by Mallat [47] that, in general, the distribution of the wavelet

image coeflicients is non-Gaussian, symmetric, and sharply peaked around zero with
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heavy tails. Achim et al. [29] have demonstrated that the distribution of the wavelet
coefficients of the log-transformed reflectance can be quite accurately described by a
symmetric alpha-stable PDF. However, the alpha-stable PDF does not have a closed-
form expression. This hampers the estimation of the alpha-stable parameters from
noisy data [50], and makes it impossible, even approximately, to obtain a closed-
form expression for the Bayesian estimator. In addition, the lack of a closed-form
expression for the PDF increases the complexity of obtaining the Bayesian estimates
numerically. It may be noted that there are two special cases of the alpha-stable
PDF that have closed-form expressions, namely, the Gaussian and Cauchy PDFs.
The Gaussian PDF is obviously not suitable for describing the distribution of the
wavelet image coefficients. On the other hand, the Cauchy PDF is unimodal and
symmetric, having a sharp peak around zero with heavy tails. Thus, in this chapter,
the Cauchy PDF given by

Py(z) = l_7 (2.16)

2 + 12
where v is the dispersion parameter, is adopted as a simple prior for modelling the
wavelet coeflicients of the log-transformed reflectance image. It is to be noted that
the Bayesian estimation in the wavelet domain with the Cauchy prior has been shown
to provide an effective reduction of speckle in SAR images [45]. Note that the Cauchy
PDF requires the estimation of the dispersion parameter only.

Several authors have shown that the distribution of the log-transformed speckle
can be well-approximated by a Gaussian distribution [49,51]. Hence, the log-transformed
speckle noise is assumed to be additive white Gaussian noise (AWGN) with a zero
mean and a standard deviation of o,,. Note that the log-transformed speckle noise

remains zero-mean white Gaussian with the same standard deviation in the wavelet
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domain due to the orthogonality of the DWT. The corresponding PDF is given by

Pyn) = ﬂiﬂ% exp(—n?/20%) (2.17)
2.4 Proposed Method for Despeckling

In this section, we describe the proposed spatially adaptive wavelet-based method for
suppressing the speckle in SAR images. The proposed method utilizes a Bayesian
MMAE estimator or a Bayesian MAP estimator, with spatial adaptation towards the
dependency of the wavelet coefficients. Both the estimators are developed using the

Cauchy PDF. The Bayesian MMAE and MAP estimators are described below.

2.4.1 The Bayesian MMAE and MAP Estimators
The Bayesian estimate is obtained by minimizing the Bayes risk function given by [52]

R(zlg) = [ Clalg),a]Puy(zlg)dz (2.18)
The Bayesian estimate is obtained as

#(g) = argmin [ C[2(9), 2] Pujy(xlg)de (2.19)
where the right side of (2.19) is the cost averaged over the conditional distribution of
x given g, Py y(z|g), and C(.) is the cost function. The Cauchy distribution has no
finite second order moments. An MMAE estimator is obtained by using the absolute
error cost function |Z(g) — z| for C[Z(g), z] in (2.19). The MMAE estimator can be
shown to be a conditional median of z given g [52]. However, the conditional PDF,
Py)4(z]g), is symmetric around zero for the assumed prior and hence, the conditional
median of z coincides with its conditional mean. The resulting Bayesian estimator is
given by

2(9) = [ 2Pulalg).d (2:20)
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Using Bayes’ theorem, (2.20) can be written as

29) = [aPuylalg)da
f Pglm(glx)Pz(x)wdw
Py(9)
f Pglz(glx)PZ(x)xd‘r
ng|z(g|£C)Px(.T)d$
[ Fy(g — ) Po(x)zdz
[ Fy(g — z)Po(x)dz

(2.21)

Using the definition of convolution, (2.21) can be written as

~ v _ Pn(g)*x F(g)
Z(g) = P (g) * Polg) (2.22)

where F(z) = xzP,(z), and * denotes the convolution operator. Thus, instead of
employing direct numerical integration for each coefficient, the Bayesian MMAE es-

timates of the coefficients of a subband are obtained using the following steps.

1. Let gmin and gme, denote the minimum and maximum values of the subband,

respectively. We define h as

Gmaz — Gmin
h=>——" 2.23
7 (2.23)

where Ny = \/SZsup, SZsup being the number of coefficients in the subband.

2. Obtain the values of gy, , defined as Gk, = Grmin + ksh, where gimin = gmin + /2

and k, = 0,1,- -, N, — L.

3. Obtain the vector n, = [ns,n2,- -+, 1k, ], where n¥ = P,(g)|

9=§ks :

4. Form the vector x, = [z, 22, -

Q’x

-+, xhe, - -], where 2k = Py(z)|

g I=5}cs :

5. Obtain the vector Fy = [F!, F2 ... F* ...} where Fks = F(z)|

T=Gkg"
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6. Obtain the vector X = [Ty, T3, -+, Tk,, - - -] using
X = (F*ng)./(xq * 1) (2.24)
where ./ denotes element-wise division.

7. For any arbitrary g, where g € [gk,-1, k,), the corresponding Bayesian estimate
T is obtained using the cubic spline interpolation method [53] and the value of

Zk,, the ks-th element of x.

Note that the convolution operation is carried out at a limited number of points using
the fast Fourier transform (FFT) algorithm [53], thus reducing the computational
effort in obtaining the MMAE estimates.

The Bayesian MAP estimate is obtained using the cost function given by C[Z(g), z] =
1in (2.19) for |Z(g) — z| > A and 0 otherwise, where A > 0. The MAP estimate is
expressed as

Z(g) = argmax Py,(z|g) (2.25)

Using Bayes’ theorem, (2.25) becomes

Z(g) = argmaxPy,(z|g)

Pe(9)

= argmax Py ,(g|z)P(z)

= argmax

= argmax Py(g — z)Px(z) (2.26)

The MAP estimate is obtained by differentiating the logarithm of the argument in

(2.26), and setting the derivative to zero:

0, (g-x)’ _
pal et In P,(z)] = 0 (2.27)
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which results in
r—g
2
Iy

where p(z) = —In P,(z) and p/(z) = %p(x). A first-order approximation of the MAP

+p'(z) =0 (2.28)

estimator is given by [54]

Z=g-0p(9) (2.29)
where p'(x) is the derivative of p(x) = —In P,(z). The drawback with the first-order
approximation in (2.29) is that the sign of Z can be different from that of g, since

?'(g) is highly discontinuous near zero. To overcome this problem of over-shrinkage,

the following approximate solution for the MAP estimator has been proposed in [54]

Z(g) = sign(g) max(|g| — o2|p'(g)],0) (2.30)
With the assumed Cauchy prior, we have |p'(g)| = Irfb . Thus, we obtain
g) = sign(g) max(0,lg] — 03] 52— 231)
Z(g) = sign(g)max 79_077724_92') (2.

In order to obtain the Bayesian estimates, we need to estimate the parameters
v and o, from the noisy coefficients. A computationally simple method has been

proposed in [45] for estimating the parameter « of the Cauchy prior by minimizing

[ 184(@) = 8y(w) exp(—w?) do (2.32)

where @(w) is the empirical characteristic function corresponding to g, given by

$g(w) = ¢o(w)¢y(w) (2.33)

where
¢o(w) = exp(—7lw]) (2.34)
tn(w) = exp(~Zwl) (2.35)
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The integral in (2.32) is then calculated using the Gauss-Hermite quadrature [53] as

00 =Q
/_oo Mw) exp(—w?)dw ~ Z Ui (wy) (2.36)

where Mw) = ¢4(w) — ¢4(w), w's are the roots of the Hermite polynomials of order
@, and v,’s are the weights associated with these roots. Note that as a consequence
of (2.36), the computational complexity for estimating the dispersion parameter is
reduced, since the empirical characteristic function is evaluated at a limited number
of points. The standard deviation of the log-transformed noise is obtained as [55]

5. = MAD(g(p,m))
" 0.6745

9(p,m) € HH, (2.37)
where MAD denotes the median absolute deviation operation.
2.4.2 Incorporation of Spatial Dependence

Both the Bayesian MMAE and MAP estimators assume that the wavelet coeffi-
cients are mutually independent. However, the magnitudes of the wavelet coef-
ficients are known to show dependency within the subband as well as across the
subbands [30], [56]. Hence, the Bayesian estimators shrink the coefficients without
providing any spatial adaptation towards such dependency. In several image coding
methods [56], [57], the statistical model of a wavelet coefficient is conditioned on
its contextual neighbors. In [56], the dependencies of the wavelet coefficients (both
intra-scale and inter-scale) are characterized by a linear predictor of the magnitude
of the coeflicients residing in a contextual neighborhood comprising adjacent coeffi-
cients within the same subband as well as the cousin and parent coefficients. Note
that the absolute values or the squared magnitudes of the neighboring coefficients
are correlated, and hence, they are useful for providing contextual information [58].

On the other hand, wavelet coefficients, being approximately uncorrelated [56], do
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not provide much information about the context. However, Liu and Moulin [30] have
observed that the dependency is mostly intra-scale and the additional incorporation
of the inter-scale dependency provides a marginal gain in denoising.

In this chapter, we propose a method with reduced complexity to incorporate
the intra-scale dependency of the wavelet coeflicients with the Bayesian shrinkage
process. Let g(p,m) represent the (p,m)-th wavelet coefficient in a subband. The
corresponding denoised coefficient obtained via the Bayesian estimator is denoted by
Z(p, m). The associated shrinkage value F'(p,m) is obtained as Z(p,m)/g(p,m). In
the proposed method, the shrinkage factors of the neighbors of the coefficient Z(p, m),
within a D x D neighborhood that have the same sign as F(p,m) are used to form
the vector S. The linear predictor of the magnitude of the coefficient Z(p, m) can be
obtained as |Z(p, m)|predicted = >p WpCp, where Cp and Wp are the P-th element
of a d. x 1 vector V comprising the amplitudes of the coefficients corresponding to
S, and the d. x 1 weight vector W, respectively [56]. The maximum value of d,.
is D? — 1. The weight vector W is obtained by minimizing the squared error, i.e.,
(|2(p,m)| — =p WpCp)? = (|Z(p,m)| — WTV)?, where T is the transpose operation.
By differentiating the squared error with respect to W and setting the derivative to
zero, we get

W = (VVI)"'V|z(p, m)| (2.38)
The modified shrinkage value F(p,m) is obtained as

= S pSpW,
Flom) = S5

where Sp and Wg are the R-th element of S and W, respectively, and p is a weighting

+ (1 - p)F(p,m) (2.39)

factor (0 < p < 1). The denoised wavelet coefficient is now obtained as

Z(p,m) = F(p,m)g(p, m) (2.40)
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Note that in [35], the shrinkage values are modified using the optimal hidden states
of the wavelet coefficients obtained through a computationally intensive iterative pro-
cess. The probability of each coefficient having a particular state is maximized. A
single cycle of the iterative process consists of maximizing the states for all the coef-
ficients in a subband carried out sequentially. Several cycles are needed for obtaining
the optimal hidden states of the coefficients. However, in the proposed method, the
shrinkage value of a wavelet coefficient is modified using weights obtained from a
closed-form expression that requires the inversion of a small-sized matrix whose max-
imum size is 8 X 8, (assuming D = 3), thus reducing the corresponding computational
complexity. Since most of the noise power is concentrated in the fine scales, namely,
the subbands at levels 1 and 2 [59], the modification of the Bayesian estimates is
carried out in these subbands only. The values of p in (2.39) are set to 0.6 and 0.5

for the subbands at levels 1 and 2, respectively.

2.4.3 Summary of the Proposed Method

In order to get the despeckled image, an exponential operation is performed on the
inverse transform of the denoised coefficients obtained from (2.40). Since the mean
of the log-transformed speckle noise is biased [49], an adjustment is needed to remove
the associated mean-bias for avoiding radiometric distortion, especially for high noise

levels [35]. The adjustment is carried out as

B = A—1(0,L)—In(L) for the intensity-format image

1
= A- 5(1[)(0, L) —In(L)) for the amplitude-format image (2.41)

where A denotes the inverse transform of the denoised coeflicients. The denoised

image 7 is obtained as § = exp(B). Note that we need to know the number of looks
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(L) to carry out the adjustment. We propose to estimate L as

L = argmin(c? —(1,L)) for the intensity-format image
L n
1
= argmin(o? — —4(1,L)) for the amplitude-format image (2.42)
L " 4

A block diagram of the proposed method for denoising a SAR image is shown in
Fig. 2.3. The shift operator 2" means a positive shift of the log-transformed SAR
image by r samples, whereas z~" a negative shift by r samples. The shifting and
unshifting operations correspond to the implementation of the proposed method in

the cycle-spinning mode, explained later in Section 2.5. A summary of the proposed

Modify shrinkage | |Dencised wavelet

values using (2.40) coefficients
SAR
mage —— MMAE/MAP
'\ﬂ] owT estimator 1owT
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Yand o,

Mean of the log-transformed
speckle noise

Modify shrinkage | |Denoised wavelet

values using (2.40 coefficients
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MMAE/MAP - +
n estimator IDWT +

Estimate
Yand o,

Modify shrinkage Denoised wavelet
values using {2.40 coefficients
MMAE/MAP 5
E estimator [OWT
Estimate
Yand o,

Figure 2.3: Block diagram of the proposed wavelet-based despeckling technique.
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despeckling technique is also provided below.

—

. Carry out the log-transformation of the SAR image.
2. Apply the DWT on the log-transformed image.
3. Estimate the parameters v and o, using (2.32) and (2.37), respectively.

4. Obtain the estimates using the Bayesian MMAE estimator from (2.22) or the

Bayesian MAP estimator from (2.31), and modify them using (2.40).
5. Perform the inverse-transform of the coeflicients obtained in Step 4.

6. Subtract the mean of the log-transformed noise from the quantities achieved in

Step 5.

7. Perform the exponential transformation of the values obtained in Step 6 to get

the denoised image.

2.5 Simulation Results

Extensive simulations are carried out using synthetically speckled and SAR images to
investigate the performance of the proposed method. The proposed spatially-adaptive
wavelet-based method using the Bayesian MMAE and MAP estimators are referred to
as SA-WBMMAE and SA-WBMAP schemes, respectively. The performances of the
two schemes are compared with those of the methods of WIN-SAR [29], Fukuda and
Hirosawa [31], WBDT [33], Zeng and Cummings [27], and I-MAP filter [11], referred
to as WIN-SAR, FH, WBDT, ZC, and GMAP methods, respectively. Daubechies’
Symlet wavelet [60] of order 8 is used for a 4-level decomposition of the images. For

estimating the dispersion parameter v, the value of @ in (2.36) is set to 20. It should

23



be noted that the DWT is not shift-invariant, resulting in ‘specks’ in smooth regions
and ‘ringing’ around the edges [61]. However, the lack of the shift-invariance property
associated with the DWT can be overcome by using the cycle-spinning technique [61].
It has been shown in [62] that by implementing the DWT-based denoising method
in the cycle-spinning mode, a performance equivalent to those using the traditional
redundant wavelet transforms, such as the stationary wavelet transform (SWT), can
be achieved. Hence, the proposed method is implemented in the cycle-spinning mode
with four shifts, where the noisy images are circularly shifted by zero, one, two and
three pixels both in the horizontal and vertical directions. Next, these images are
processed by the proposed despeckling technique, unshifted by the same number of
pixels, and averaged to obtain the despeckled image. It should be mentioned that
the parameter -y is estimated for the zero shift only. To ensure a fair comparison, the
WIN-SAR, and ZC methods are also implemented in the cycle-spinning mode with

the same number of shifts. A 5 x 5 square window is used in the GMAP method.

2.5.1 Synthetically-speckled Images

In order to study the performance of the proposed schemes in smoothing and edge
preservation, two noise-free images, namely, House and Boat taken from [63] and [64],
respectively, are used for generating the synthetically speckled images in intensity
format. The images comprise 256 x 256 and 512 x 512 pixels, respectively, and are
commonly used by the image processing community for evaluating the performance of
wavelet-based denoising methods [35], [29]. A synthetically-speckled image is gener-
ated by multiplying a noise-free image with speckle noise simulated using (2.12). Five
different values of L are considered in this chapter. It should be noted that the lower

the value of L, the higher is the level of the noise. The performance criteria used are
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the peak signal-to-noise ratio (PSNR), structural similarity index (SSIM) [65], and
the statistics of the speckle noise described by the mean and variance of the ratio of
the noisy image and the corresponding denoised image. For perfect despeckling, R,
the ratio of the corresponding pixel values in the noisy and despeckled images should
have a unit mean and a variance equal to 1/L. The values of the various performance
criteria are calculated by repeating the experiments four times that employ the same
setting except for the speckle noise which is generated using different random seeds,
but with the same distribution, and finally averaging the corresponding values. The

PSNR is given by

PSNR=10lo (—2—5—2) (2.43)
- £10 MSE .
where the M SFE is given by
P M
MSE— ZZ Skl_5k12 (2,44)

k:=1

N
It
—

and Sk, Sk; and P X M denote the (k,{)-th pixel of the noise-free image s, its
denoised counterpart §, and dimension of the image, respectively. Table 2.1 shows
the PSNR values (in dB) for the synthetically-speckled images. It can be observed
from this table that, for all the images, the proposed SA-WBMMAE scheme provides
PSNR values that are larger than those of the other methods, including that of the
proposed SA-WBMAP. Table 2.2 illustrates that among all the methods, the value of
the mean of R provided by the GMAP method is closest to unity. However, among
the remaining methods, SA-WBMMAE provides a mean that is closest to unity. Note
that a significant deviation from the unit mean is an indication of the radiometric
distortion [48]. Table 2.3 shows the values of the variance of R provided by the
different methods. The quantities in the parentheses are the actual values of the

variance of R for the various values of L. It is seen that the values of the variance
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Table 2.1: Values of PSNR for different images
L

Method 3 4 5 6 7

House
SA-WBMMAE || 22.39 23.11 23.77 24.40 24.66
SA-WBMAP 20.91 21.88 22.72 23.58 24.01

WIN-SAR 21.48 22.52 23.42 24.19 24.61

WBDT 16.92 17.98 18.82 19.44 19.96

FH 12.53 14.53 16.16 17.66 18.84

7C 16.95 17.99 18.93 19.72 20.16

GMAP 18.76 19.81 20.36 21.25 21.56
Boat

SA-WBMMAE || 2365 | 24.26 | 24.81 | 25.12 | 25.46
SA-WBMAP 21.12 | 22.18 | 23.04 | 23.54 | 24.16

WIN-SAR 22.14 | 23.13 | 2392 | 2442 | 24.85
WBDT 16.84 | 17.93 | 18.75 | 1941 | 19.95
FH 1251 | 1469 | 1648 | 17.96 | 18.97
ZC 18.78 | 20.42 | 21.59 | 2237 | 23.18
GMAP 19.06 | 20.01 | 20.77 | 21.36 | 21.75

provided by SA-WBMMAE are closer to the actual values than those of the other
methods in most of the cases. Thus, in most cases, the proposed SA-WBMMAE
scheme yields mean and variance of R that are closer to the actual values than those

of the other methods.
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Table 2.2: Mean values of R
Method 3 4 o 6 7
House
SA-WBMMAE || 0.9865 | 0.9869 | 0.9875 | 0.9873 | 0.9877
SA-WBMAP 0.9601 | 0.9682 | 0.9731 | 0.9767 | 0.9784
WIN-SAR 0.9644 | 0.9750 | 0.9839 | 0.9854 | 0.9879
WBDT 0.9129 | 0.9292 | 0.9393 | 0.9462 | 0.9514
FH 0.9417 | 0.9513 | 0.9626 | 0.9599 | 0.9643
7C 1.1219 | 1.0848 | 1.0630 { 1.0517 | 1.0426
GMAP 1.0042 | 1.0030 | 1.0022 | 1.0022 | 1.0015
Boat
SA-WBMMAE || 0.9971 | 0.9982 | 0.9975 | 0.9966 | 0.9972
SA-WBMAP 0.9635 | 0.9734 | 0.9783 | 0.9809 | 0.9833
WIN-SAR 0.9748 | 0.9803 | 0.9869 | 0.9920 | 0.9917
WBDT 0.9158 | 0.9321 | 0.9427 | 0.9491 | 0.9548
FH 0.9624 | 0.9560 | 0.9600 | 0.9582 | 0.9670
ZC 1.1590 { 1.1144 | 1.0862 | 1.0679 | 1.0599
GMAP 1.0067 | 1.0065 | 1.0058 | 1.0055 | 1.0053
Table 2.3: Values of variance of R
L
Method 3 4 0 6 7
(0.3333) | (0.2500) | (0.2000) | (0.1667) | (0.1429)
House
SA-WBMMAE || 0.3047 | 0.2271 0.1816 0.1490 | 0.1263
SA-WBMAP 0.2392 0.1833 | 0.1480 0.1254 | 0.1074
WIN-SAR 0.2906 0.2235 0.1800 | 0.1503 | 0.1300
WBDT 0.1179 0.0956 | 0.0811 0.0713 | 0.0641
FH 0.6643 0.3167 1.6173 0.0760 | 0.0542
ZC 0.3001 0.2029 0.1498 0.1237 | 0.1026
GMAP 0.2485 0.1845 0.1462 0.1218 | 0.1038
Boat
SA-WBMMAE || 0.3256 0.2451 0.1930 | 0.1589 | 0.1389
SA-WBMAP 0.2412 0.1855 0.1485 0.1233 | 0.1077
WIN-SAR 0.3052 0.2318 0.1856 0.1549 0.1340
WBDT 0.1201 0.1247 | 0.0835 0.0722 0.0653
FH 16.93 0.1132 0.0673 | 7.0154 | 0.0548
ZC 0.3800 0.2609 | 0.1901 0.1469 | 0.1286
GMAP 0.2463 0.1820 | 0.1435 0.1174 | 0.0999
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It might be noted that the PSNR is not always a good indication of the visual
quality [65]. Recently [65], the SSIM index which is based on measuring the structural
similarity between a reference image and its distorted version (e.g., in our case, the

despeckled image), has been proposed as a performance indicator, given by

(uspz + C1) (20 5+ Cy)

SSIM = 2.45
(2 + 12+ Co)(0F + 02+ Cy) (2.45)
where C and C; are small positive constants and
Loy
Bs = S Sk, (2.46)
PM -1 k=1i=1
1 P M
bs = Bar 1 Sk, (2.47)
P =1 2 2
D) LTS
Oy = 577 1 (sk,l - ,us) (248)
PM -1 k=11=1
S (G )
B= o 3 (G- 2) (2.49)
PM —1i315
0 1 P M
= B 1 — ps) (kg — pg 2.
0= B —1 k;l;(&c,t ths) Bkt — 3) (2.50)

The SSIM index is reported to be a more reliable metric for assessing the visual quality,
and has been used in the literature for comparing the performance of the different
denoising algorithms in terms of the visual quality [66]. Hence, we compute the values
of the SSIM for the various methods, and list the same in Table 2.4. It can be seen
from this table that the proposed SA-WBMMAE scheme performs better than the
other techniques in most of the cases, and especially so when the noise level is high.
Figs. 2.4 and 2.5 show the noise-free House and Boat images and the corresponding
noisy images for L = 7 as well as the despeckled images obtained using the various

methods. It can be seen from these figures that SA-WBMMAE provides a despeckled
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Table 2.4: Values of SSIM. The optimal value for the SSIM is 1.
L

Method 3 4 5 6 7

House
SA-WBMMAE || 0.5100 | 0.5352 | 0.5532 | 0.5726 | 0.5788
SA-WBMAP 0.3952 | 0.4416 | 0.4743 | 0.5058 | 0.5269

WIN-SAR 0.4787 | 0.5232 | 0.5496 | 0.5790 | 0.5978

WBDT 0.2188 | 0.2543 | 0.2831 | 0.3083 | 0.3289

FH 0.1985 | 0.2424 | 0.2773 | 0.3064 | 0.3354

ZC 0.2812 | 0.3118 | 0.3360 | 0.3547 | 0.3724

GMAP 0.3644 | 0.3956 | 0.4252 | 0.4580 | 0.4726
Boat

SA-WBMMAE || 0.5969 | 0.6223 | 0.6401 | 0.6535 | 0.6707
SA-WBMAP 0.3972 | 0.4391 | 0.4775 | 0.5061 | 0.5324

WIN-SAR 0.5107 | 0.5544 | 0.5864 | 0.6089 | 0.6253
WBDT 0.2290 | 0.2617 | 0.2883 | 0.3112 | 0.3318
FH 0.2065 | 0.2457 | 0.2810 | 0.3097 | 0.3332
ZC 0.5066 | 0.5271 | 0.5402 | 0.5535 | 0.5857
GMAP 0.3682 | 0.4004 | 0.4298 | 0.4532 | 0.4791

image that is of better visual quality than those given by the other methods. It
should be mentioned that compared to the proposed schemes, the WIN-SAR method
is computationally intensive. For example, the average CPU time to process 256 x
256 images (in MATLAB) by the WIN-SAR method is 17.61 minutes, whereas the
time taken by the SA-WBMMAE and SA-WBMAP are 47.91 secs and 56.54 secs,
respectively. For a particular subband of size S, x S;, the computational complexity
of the SA-WBMMAE and SA-WBMAP schemes are roughly O(Sklog.Sk) + O(Sk) +

O(d35:S,), and O(S,S,) + O(d3S,.S,), respectively, where the maximum value of d,

is 8 and Sp = /5, x Sy,
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Figure 2.4: (a) noise-free House image. (b) noisy House image. Denoised images
using (c) SA-WBMMAE, (d) SA-WBMAP, (e) WIN-SAR, (f) WBDT, (g) FH, (h)
7C, and (h) GMAP.
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Figure 2.5: (a) noise-free Boat image. (b) noisy Boat image. Denoised images using
(c) SA-WBMMAE, (d) SA-WBMAP, (e) WIN-SAR, (f) WBDT, (g) FH, (h) ZC, and
(h) GMAP.
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2.5.2 SAR Images

Three AIRSAR images from the NASA/Jet Propulsion Laboratory [67] taken over
the Cooktown, Collier, and Ajkwa are used in our experiment. The three images
are shown in Figs. 2.6 (a)-(c). The Cooktown, Collier, and Ajkwa images are of
366 x 364, 651 x 701, and 421 x 612 pixels, respectively. Since the noise-free images
are not available, the values of the equivalent number of looks (ENL) and mean-bias
are used for comparing the performance of the various methods. The ENL is used
as an objective measure in the literature to assess the ability of a denoising method
in reducing the speckle in the homogeneous regions. For the intensity-format image,

the ENL is given by

M2
ENL = —*% 2.51
- (251)
whereas for the amplitude-format image the ENL is expressed as
4 M}
ENL = (— - 1) —h 2.52
- V. (2.52)

where M}, and V}, represent the mean and variance computed using the pixels in a
homogeneous region of the image [35]. For a particular homogeneous region, the value

of the mean-bias is calculated as

Mean-bias = W x 100% (2.53)
hn

where M}, and M}, represent the mean value of the region for the noisy image and its
despeckled version, respectively. For the ENL calculation, two uniform areas, Regions
1 and 2, have been used in each SAR image (see Figs. 2.6 (a), 2.6 (b), and 2.6 (c)).
These regions comprise 29 x 69 and 22 x 50 pixels for the Cooktown, 54 x 111 and
25 x 33 pixels for the Collier, and 28 x 139 and 59 x 33 pixels for the Ajkwa. The

ENL values are listed in Table 2.5. It can be seen from this table that SA-WBMMAE
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provides larger values of ENL in comparison to the other methods, thus indicating a
better ability to suppress the speckle noise in the homogeneous regions. Zoomed-in
section of the SAR images (the region within the broken lines in Fig. 2.6 (a)-(c))
and the corresponding zoomed-in sections of the despeckled images using the various
methods are shown in Figs. 2.7, 2.8 and 2.9. It can be seen from these figures that
SA-WBMMAE not only smooths the speckle noise better than the other techniques,
but also retains the edges and line structures well. Although the GMAP method
gives images with sharper edges, it introduces ‘specks’, an undesirable artifact, in the
denoised images. Similar artifacts are also present in the despeckled image provided
by the WIN-SAR method. Table 2.5 also shows that the mean in the homogeneous

regions provided by the proposed method has very little bias.

()
Figure 2.6: SAR images: (a) Cooktown (b) Collier, and (c) Ajkwa.
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Table 2.5: ENL values for Regions 1 and 2 in Figs. 2.6 (a), (b), and (c)

Region 1 Region 2
ENL | Mean-bias | ENL | Mean-bias

Cooktown
Before Despeckling | 9.10 - 8.16 -
SA-WBMMAE 111.69 0.18 143.44 1.07
SA-WBMAP 73.23 -0.01 77.46 0.71
WIN-SAR 89.43 -0.04 99.87 0.82
WBDT 31.84 0.46 36.69 -0.50
FH 44.85 0.11 43.68 -0.03
ZC 56.28 4.71 59.45 5.45
GMAP 67.23 0.96 71.79 1.44

Collier
Before Despeckling | 6.19 - 6.25 -
SA-WBMMAE 28.60 1.12 33.79 1.13
SA-WBMAP 23.55 0.82 25.39 -0.35
WIN-SAR 25.27 0.82 29.78 0.78
WBDT 10.71 -2.91 28.97 -3.186
FH 13.83 0.46 12.31 -4.85
ZC 22.77 5.79 26.81 5.37
GMAP 17.22 1.59 12.84 1.14
Ajkwa

Before Despeckling | 8.23 - 8.32 -
SA-WBMMAE 55.57 0.38 79.12 0.96
SA-WBMAP 45.40 0.15 55.89 0.48
WIN-SAR 51.16 0.15 65.22 0.48
WBDT 22.92 -9.86 18.68 -5.97
FH 24.36 -0.79 21.27 -2.90
ZC 40.81 4.67 49.18 5.12
GMAP 37.80 1.08 31.53 1.38
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Figure 2.7: (a) Zoomed-in section of the Cooktown image. Corresponding denoised
images using (b) SA-WBMMAE, (c) SA-WBMAP, (d) WIN-SAR, (e) WBDT, (f)
FH, (g) ZC, and (g) GMAP.
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Figure 2.8: (a) Zoomed-in section of the Collier image. Corresponding denoised
images using (b) SA-WBMMAE, (c) SA-WBMAP, (d) WIN-SAR, (e) WBDT, (f)
FH, (g) ZC, and (g) GMAP.
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Figure 2.9: (a) Zoomed-in section of the Ajkwa image. Corresponding denoised
images using (b) SA-WBMMAE, (c) SA-WBMAP, (d) WIN-SAR, (¢) WBDT, (f)
FH, (g) ZC, and (g) GMAP.
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2.6 Conclusion

In this chapter, a new spatially-adaptive homomorphic wavelet-based method has
been introduced for the speckle reduction in the SAR images. The SAR images
have been logarithmically transformed to convert the speckle noise into an additive
noise. The wavelet coefficients of the log-transformed reflectance have been modelled
using a Cauchy prior with a zero-valued location parameter. Bayesian estimators,
namely the MMAE and MAP estimators, have been developed using the Cauchy
prior. A new method, based on a linear predictive model, has been proposed for
incorporating the spatial dependence of the wavelet coefficients with the Bayesian
estimation process. Simulations have been carried out using synthetically speckled
images to investigate the performance of the proposed methods, and compared with
that of some of the existing methods. The results have shown that the proposed
method using the Bayesian MMAE estimator performs better than the others in
terms of the PSNR, speckle statistics, SSIM and visual quality, whereas the proposed
method using the MAP estimator gives a performance comparable to that of the
former and better than that of some of the other methods considered. Finally, we have
presented the results of experiments performed using SAR images, and shown that
the proposed method using the MMAE estimator provides a better speckle reduction

in the homogeneous regions, while still preserving the edge and line structures well.
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Chapter 3

Despeckling of SAR Images Using

Symmetric Normal Inverse
Gaussian PDF

3.1 Introduction

The technique for despeckling SAR. images described in the previous chapter uses a
Cauchy PDF to model the wavelet coefficients corresponding to the log-transformed
reflectivity. However, since the Cauchy PDF has only one parameter, it may not be
possible to capture the statistics of the wavelet coefficients accurately. In this chap-
ter, we consider the symmetric normal inverse Gaussian (SNIG) PDF, a generalized
version of the Cauchy PDF, as a prior and show its effectiveness in modelling the
wavelet coefficients of the log-transformed reflectivity. An efficient wavelet-based is
then developed using the SNIG PDF, to reduce the speckle in the SAR images [68].
Extensive experiments are carried out using synthetically-speckled and SAR images,
and the performance of the proposed method compared with that of several existing
techniques. The rest of the chapter is organized as follows. In Section 3.2, we consider
various estimators and in Section 3.3, we use these estimators to present a method

for despeckling. Simulation results are provided in Section 3.4 and some concluding
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remarks given in Section 3.5.

3.2 LMMSE, MMSE and MAP Estimators

The proposed denoising method in the wavelet domain involves local LMMSE filtering
of the coefficients of the log-transformed SAR image. The second-order signal mo-
ments utilized in the LMMSE filtering are obtained from the preliminary estimates
of the noise-free coefficients determined by employing a Bayesian MMSE or MAP
estimator. We will now discuss the LMMSE and the Bayesian MMSE and MAP

estimators.

3.2.1 LMMSE Estimator

Let y(k,1) be the (k,1)-th pixel in a SAR image. Assuming the speckle to be fully

developed, y(k,!) can be expressed as [29]
y(k,l) = s(k,)n(k,1) (3.1)

where s and n represent the reflectance image and speckle noise, respectively. Upon

the logarithmic transformation, (3.1) becomes
Y(k,1) = X(k,1) + N(k, 1) (3.2)

where Y = In(y), X = In(r), and N = In(n). Since the wavelet transform is a linear
operation, the wavelet coeflicients of the log-transformed SAR image can be expressed
as

9o(p,m) = i (p,m) + my(p,m), i=1,2,3 (3.3)

where gi(p,m), zi(p,m) and 7;(p,m) are the (p, m)-th wavelet coefficients at level ¢

with orientation ¢ of ¥, X and N, respectively. The values 1,2, 3 for ¢ correspond
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to the horizontal, vertical and diagonal orientations, respectively. For notational
simplicity, g, z, and n are used in subsequent discussions. As described in Chapter
2, the noise in the wavelet domain is also zero-mean Gaussian with a variance of 02.

The PDF of the Gaussian noise is given by

Fy(n) = exp(~1°/207) (3.4)

1
V2rmoy,
Let us denote the LMMSE estimate of the noise-free coeflicient by Z(g). Given

that g is the noisy coefficient, one can write [69)

where f is a shrinkage factor, obtained as

f = argmfinE[(f—x)Q]

_ B
© E(«?) 40?2 (3:6)

2

xz

Since the wavelet filters are high-pass, we assume that E(z) = 0. Thus, E(z?) = ¢
and (3.6) becomes

0.2

f= (3.7)

2 2
az—f—crn

where o2 denotes the variance of z. In order to gain optimal performance from (3.5),

the local distributions of the wavelet image coefficients are assumed to follow a Gaus-

2

, can be reliably

sian PDF with spatially-varying signal variances [70-72]. Since o
estimated using the robust method of [55] from the coefficients of the subband with
diagonal orientation at level 1, the performance of the LMMSE estimator heavily

depends on the knowledge of the signal variances. It has been shown that the perfor-

mance of the LMMSE estimator can be improved by calculating these variances from
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preliminary estimates of the noise-free coefficients obtained by ad-hoc thresholding of
the noisy coefficients [70,72]. However, global Bayesian shrinkage methods can pro-
vide a better denoising performance as compared to the thresholding techniques [29],
and thus can be expected to give more reliable preliminary estimates. Hence, the
signal variances are estimated from the denoised coefficients obtained by employing
a Bayesian MAP or a Bayesian MMSE estimator globally. These estimators are de-
scribed in the next subsection. The signal variance of a coefficient can be obtained
by employing a sample estimator within a local neighborhood. Given that the size
of the neighborhood is D x D, the sample estimator corresponding to the (p, m)-th
coefficient in a subband is

| oz oo

C=f 2 X EHp—im-j) (3.8)

i=—(M)/2 j=—(M)/2

where M = D — 1, and Z represents the denoised coefficients obtained by using the
Bayesian estimator. Note that a large difference between a coefficient and one of its
neighbors indicates the presence of an edge, while a small difference indicates that the
coefficients belong to the same homogeneous region. Hence, for estimating the signal
variance of a coefficient, a weighting function is proposed, in which larger weights are
attached to the neighbors that are closer to the central coefficient. The weighting

function W (p, m) for the (p, m)-th coefficient is given by

Wpm) = e (3.9)
,m) = e 2% :
P Varo,
where o, is a scale factor, and A(p,m) is

A(p,m) =Z(p,m) — Z(p — i,m — j) (3.10)

Then, it follows from (3.8) that the corresponding signal variance can be estimated
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x M .
Sy Zom e W (0,)
Since the LMMSE estimates expected to be better denoised as compared to the

o (3.11)

Bayesian ones, further improvement in the performance of the estimator can be
achieved by obtaining o2 using 7 in place of Z in (3.10) and (3.11). Since the noise
is more dominant in the finer scales such as the subbands at levels 1 and 2, this

re-estimation of o2 is carried out at levels 1 and 2 only.

3.2.2 Proposed Bayesian MMSE and MAP Estimators

The Bayesian estimates are obtained by applying a Bayesian MAP or MMSE estima-
tor globally on the coefficients of the log-transformed SAR image g. For this purpose,
we propose to use a symmetric normal inverse Gaussian (SNIG) PDF [73] to model
the global distribution of the coefficients in a subband. The SNIG PDF is a mixture

of an inverse Gaussian and standard normal distributions, and expressed as

Ky (avé? + z?)
N o

where K»(£) denotes a modified Bessel function of the second kind with index A,

P.(z)=A (3.12)

given by
1
2/ Yexp —§§(z+z dz (3.13)

and A = M [73]. The parameter ¢ controls the shape of the SNIG PDF, and ¢
is a scale parameter. The shape of the PDF is influenced by « in that the steepness
of the PDF increases monotonically with increasing «. Fig. 3.1 shows an example of
the SNIG PDF for various values of a. It is noted that the parameter o has strong
similarity with the parameter « of the alpha-stable PDF. The SNIG PDF results in

a Gaussian distribution of variance o2 = % when a — o0 and § — oo such that ;‘i— i
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finite, whereas the Cauchy distribution is obtained when a — 0 [73].

10°

Probability

20 10 0 10 20 30
Data

Figure 3.1: Effect of a on the shape of the SNIG PDF, with § = 1. The vertical axis
is shown on log-scale.

The motivation for using the SNIG PDF for describing the global statistics is as fol-
lows. First, the global distribution of the wavelet image coefficients are in general
symmetric, non-Gaussian with heavy tails [47]. Second, it has been shown in [73]
that the NIG PDF can model the heavy-tailed processes more effectively than the
well-known alpha-stable PDF. Third, the SNIG PDF has a closed-form expression.
On the other hand, the alpha-stable PDF, not having a closed-form expression, ham-
pers the process of estimating the parameters from the noisy data and increases the
complexity of the Bayesian estimation process [46]. The effectiveness of the NIG
PDF in describing the global distribution of the wavelet image coeflicients has also
been demonstrated in [37] and [74]. In order to study the goodness-of-fit of the SNIG
PDF, the SNIG and alpha-stable PDFs are matched to the empirical PDFs of the

coeflicients of the various subbands of the log-transformed reflectivity corresponding
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to the NASA/JPL SAR images, namely Sanfrancisco!, Cooktown and Collier. Since
the noise-free reflectivity corresponding to the real SAR image is not available, the
proposed method for despeckling (using the Bayesian MAP estimator) is applied on
the image. The result is considered as a reasonable approximation of the underly-
ing true reflectivity; the resulting reflectivity is then log-transformed and subjected
to a 3-level wavelet decomposition. The parameters of the SNIG and alpha-stable
PDFs are now estimated using the well-known statistical softwares, fBasics [75] and
STABLE [76], respectively. In order to compare the goodness-of-fit of the PDFs, the
variance-stabilized p-p plots [77] corresponding to the two PDFs (SNIG and alpha-
stable) were obtained. For a particular prior PDF, the variance-stabilized p-p plot

can be obtained by plotting F,(z)* against F,(z)!, where

F.(z)' = %arcsin( F.(z)) (3.14)
F(z)t = %arosin( Fo(2)) (3.15)

F,(z) and F,(z) being the cumulative density function (CDF) corresponding to the
prior and empirical PDFs, respectively. The p-p plots for the various subbands are
shown in Figs. 3.2, 3.3 and 3.4. It can be observed from this figure that the SNIG
PDF follows the empirical density more accurately than the alpha-stable PDF does,
since the plot of the former is closer to the linear plot than that of the latter; the
deviation of the latter is particularly pronounced at the two ends. Based on all the
above observations, the SNIG PDF is chosen to describe the global distribution of

the wavelet coefficients.

lobtained from the authors of [39]
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Figure 3.2: The variance stabilized p-p plots of the empirical, SNIG and alpha-stable
PDF's for the various subbands of the SAR image, Sanfrancisco. The solid, broken and
dotted lines correspond to the empirical, SNIG and alpha-stable PDFs, respectively.
The vertical and horizontal axes correspond to the CDF of the prior and empirical
PDFs, respectively.
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Figure 3.3: The variance stabilized p-p plots of the empirical, SNIG and alpha-stable
PDFs for the various subbands of the SAR image, Cooktown. The solid, broken and
dotted lines correspond to the empirical, SNIG and alpha-stable PDF's, respectively.
The vertical and horizontal axes correspond to the CDF of the prior and empirical
PDFs, respectively.
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Figure 3.4: The variance stabilized p-p plots of the empirical, SNIG and alpha-stable
PDFs for the various subbands of the SAR image, Collier. The solid, broken and
dotted lines correspond to the empirical, SNIG and alpha-stable PDFs, respectively.
The vertical and horizontal axes correspond to the CDF of the prior and empirical

PDFs, respectively.
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The Bayesian MMSE estimate is given by [45]

A [ P)g—z)Py(x)zdx
A9 = TR R o

(3.16)

Since it is not possible to get a closed-form solution for (3.16) when the SNIG density
is used, the MMSE estimates are obtained numerically using the method described
in the previous chapter. On the other hand, the Bayesian MAP estimate can be

obtained using
Z(g) = argmaxPy(g — z)P;(x) (3.17)

Using the approach of Hyvarinen [54] described in Chapter 2, an approximate closed-

form solution for the MAP estimator can be obtained as

z(g) = sign(g) max(|g| — o;p'(9)], 0) (3.18)

where p/(x) is the derivative of p(z) = —In P,(z). When P,(z) is the SNIG PDF, we

have
p/(g) — 29 + ag KO(aV 5 + g )
Frg VPt PE(a/E  g)

In order to develop the Bayesian estimators, we need to have the values of the param-

(3.19)

eters of the SNIG PDF. A technique, based on the minimum distance method [78],
is proposed to estimate the parameters of the SNIG PDF. Since the log-transformed
signal and noise are independent, the characteristic function associated with the noisy

wavelet coeflicients are given by

¢g(w) = ¢o(w).¢y(w), (3.20)
where

$ow) = eV (3.21)

$p(w) = el (3.22)
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The parameters of the SNIG PDF are estimated by minimizing the following integral

/_ ‘: 16,(w) — ()] exp(—w?)dw (3.23)

In the above integral, &Eg(w) is the empirical characteristic function corresponding to

the log-transformed noisy image in the wavelet transform domain, and obtained as

) = - Y- expliwg(t) 324

where g¢(t) is the t-th coefficient in a subband having N, coefficients. The integral in
(3.23) can be evaluated approximately by using the Gauss-Hermite quadrature [53]

as

=Q
(o o]
/ AMw). exp(—w? Zwl/\ wy) (3.25)
where A(w) = |¢,(w) — ¢,(w)], w;’s are the roots of the Hermite polynomials of order
@, and v;’s are the weights associated with these roots. Note that as a consequence of
the approximation, the computational complexity in evaluating the integral in (3.23)
for estimating the parameters is considerably reduced. As mentioned earlier, the

2

noise variance, o, can be estimated from the coefficients in the finest subband with

diagonal orientation using the robust method given in [55].

3.3 Proposed Method for Despeckling

The given SAR image is first log-transformed. The wavelet coeflicients of the log-
transformed image are denoised by using the LMMSE estimator given in (3.5). The
second-order signal moments utilized by the LMMSE estimator are calculated from
the approximately noise-free coeflicients obtained from a Bayesian MMSE or MAP

estimator. These estimators are developed by using a SNIG PDF for modelling the
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wavelet coefficients of the log-transformed reflectance. The LMMSE-filtered coefhi-
cients are inverse-transformed, followed by an exponential operation to get the de-
speckled image. It should be noted that the mean of the log-transformed noise is
not zero. Therefore, the assumption of a zero-mean Gaussian distribution will in-
troduce a bias in the denoised image. In order to avoid this problem, the mean
of the log-transformed speckle is subtracted from the outputs of the inverse trans-
form [35]. It should be mentioned that during LMMSE filtering using the signal
moments estimated from the Bayesian MAP estimates, the coefficients that are set
to zero according to (3.18) are not changed. The proposed method is given in the

form of an algorithm in the following.

Proposed Speckle Reduction Algorithm

Step 1  Carry out the logarithmic transformation of the SAR image.
Step 2 Perform the wavelet decomposition of the log-transformed noisy image.
Step 3  Obtain the Bayesian MMSE estimates from (3.16) or the Bayesian
MAP estimates from (3.18).
Step 4 Once the Bayesian estimates are obtained, find the second-order signal
moments using (3.11).
Step 5 Using (3.5) and the values of the signal moments obtained in Step 4,
determine the LMMSE estimates of the noise-free coefficients, namely, 7.
Step 6  Obtain the estimates of the second-order signal moments of the LMMSE
filtered coefficients in subbands at levels 1 and 2 using (3.11),
where Z is replaced by Z.
Step 7 Using (3.5) and the signal moments obtained in Step 6, determine the
LMMSE estimates for the coefficients in the subbands at levels 1 and 2.
Step 8 Perform the inverse wavelet transform of the LMMSE filtered coefficients
Step 9 Subtract the mean of the log-transformed speckle from the outputs
of the inverse transform obtained in Step 8.
Step 10 Apply an exponential operation on the values obtained in Step 9.
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3.4 Simulation Results

Extensive simulations are carried out in MATLAB using synthetically-speckled and
SAR images to study the performance of the proposed despeckling method, and
compare it with those of several existing methods. The proposed spatially-adaptive
method using the Bayesian MAP and MMSE estimators are referred to as SABMAP
and SABMMSE schemes, respectively. The performance of these schemes are com-
pared with those of the methods of SA-WBMMAE [46], MAP-UWD [39], WIN-
SAR [29], Pizurica et. al. [34], and Kuan filter [15], and referred to as SA-WBMMAE,
MAP-UWD, WIN-SAR, PZ, and Kuan methods, respectively. The various wavelet-
based methods are implemented using a 4-level wavelet decomposition with the Daubechies
wavelet [60] of order 8. The results of the MAP-UWD method have been provided
by the authors of [39]. Since the DWT is not shift-invariant, the denoised image is
affected by the pseudo-Gibbs phenomena, resulting in ‘specks’ in smooth regions and
‘ringing’ around the edges [61]. To overcome this problem, the proposed method is
implemented in the cycle-spinning mode [61] by applying it to several shifted versions
of the input noisy image. The corresponding results are then shifted back, and sub-
sequently averaged to obtain the denoised output [61]. It has been shown in [62] that
the denoising methods using the orthogonal DWT with cycle-spinning can provide
a performance equivalent to those employing the shift-invariant wavelet transforms.
Furthermore, since in practice the wavelet decomposition is carried out for a few lev-
els [35], it is sufficient to carry out the cycle-spinning operation for a limited number
of shifts instead of all possible shifts, thus reducing the associated computational
complexity. In order to ensure a fair comparison, the SA-WBMMAE, and WIN-SAR

methods are also implemented in the cycle-spinning mode. For cycle-spinning, the
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noisy images are circularly shifted both in the row and column directions by zero,
one, two and three pixels. However, the parameter estimation is required for the zero
shift only. The results of the Kuan method are obtained using a 7 x 7 square window.

The value of M in (3.11) is set to 1.

Table 3.1: Values of PSNR for different images

L
Method 3 4 5 6 7
House
SABMAP 26.79 | 27.63 28.34 | 28.81 29.21
SABMMSE 26,72 | 27.64 28.20 | 28.80 | 29.24
MAP-UWD 25.28 - 26.63 - 27.75
SA-WBMMAE || 25.36 | 26.06 26.85 | 27.19 | 27.64
WIN-SAR 24.90 | 25.99 26.76 | 27.39 | 27.98
Kuan 23.06 | 23.92 | 24.60 | 24.97 | 25.32
Boat

SABMAP 26.56 | 27.42 | 28.04 | 28.52 28.93
SABMMSE 26.66 | 27.41 27.94 | 28.45 28.83
MAP-UWD 26.76 - 27.92 - 28.91
SA-WBMMAE || 26.06 | 26.68 | 27.28 | 27.72 | 27.99
WIN-SAR 2495 | 2596 | 26.69 | 27.24 | 27.79
Kuan 23.01 23.92 24.63 | 25.09 | 25.39

3.4.1 Synthetically-speckled Images

Two noise-free images namely, House and Boat are used for obtaining synthetically-
speckled images in the amplitude format. The House image is of 256 x 256 pixels, and
obtained from [63], while the 512x 512 Boat image is taken from [64]. A synthetically-
speckled image is generated by multiplying a noise-free image with simulated speckle
noise. Five different values of L are considered for simulating the speckle noise.
Table 3.1 shows the PSNR values (in dB) obtained by the various methods for the
synthetically-speckled images. It can be seen from this table that in general the

SABMAP performs better than the other methods in terms of the PSNR. In order
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to compare the performance of the various methods in terms of the visual quality,
the noise-free images and their noisy versions (for L = 7), and the corresponding
despeckled images obtained by the various techniques are shown in Figs. 3.5 and
3.6. From these figures, it is clear that the proposed method provides despeckled
images with a visual quality that is better than those provided by most of the other
techniques. Both the SABMAP and SABMMSE schemes not only smoothens the
speckle noise substantially, but also retain important signal features such as the edges
and line structures. In order to substantiate this observation, the values of the edge
preservation index () proposed in [79] and the structural similarity (SSIM) index
introduced in [65] are calculated for the various despeckled images shown in Figs. 3.5
and 3.6, and listed in Table 3.2. Among these two indices, the latter has been defined

in Chapter 2, and the former is expressed as

T = —~ _T
5 = o -a-&) (3.26)
V(s —55,8 - 5).T(5 - 51,5 — )

T(Sl, §l) = Z Z Sl(k’ l)'gl(k7 l)

where s; and §; are the high-pass filtered versions of the noise-free image s and de-
speckled image §, respectively, obtained by using a 3 x 3 standard Laplacian operator,
the overline operator denoting the mean value and Px M the dimension of the images.
It can be seen from Table 3.2 that the proposed method provides larger values for g3
as compared to those provided by the other methods, indicating a better preservation
of the edges. Also, both SABMAP and SABMMSE have SSIM indices that are higher
than those of the other techniques except for that of the MAP-UWD [39] for which

the values are slightly lower.
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Figure 3.5: (a) Noise-free House image. (b) noisy House image. Denoised images
using (¢) SABMAP, (d) SABMMSE, (e) SA-WBMMAE, (f) MAP-UWD, (g) WIN-
SAR, and (h) Kuan.
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Figure 3.6: (a) Noise-free Boat image. (b) noisy Boat image. Denoised images using
(c) SABMAP, (d) SABMMSE, (e) SA-WBMMAE, (f) MAP-UWD, (g) WIN-SAR,
and (h) Kuan.
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Table 3.2: Values of the edge preservation index () and SSIM for the various methods

House
Method I} SSIM
SABMAP 0.7956 | 0.7793
SABMMSE 0.7999 | 0.7773
MAP-UWD 0.6381 | 0.7816
SA-WBMMAE | 0.7176 | 0.6718
WIN-SAR 0.7154 | 0.7239
Kuan 0.3203 | 0.6220
Boat
Method 8 SSIM
SABMAP 0.6833 | 0.8012
SABMMSE (0.6901 | 0.8023
MAP-UWD 0.6600 | 0.8085
SA-WBMMAE | 0.6236 | 0.7644
WIN-SAR 0.5843 | 0.7568
Kuan 0.2059 | 0.6424

A legitimate question arises as to how much improvement in denoising can be
attributed to the use of the signal variances obtained from the Bayesian estimates
and the subsequent incorporation of these variances in LMMSE filtering of the wavelet
coefficients, as compared to directly estimating the signal variances from the noisy
coefficients. For this purpose, an experiment is performed using the synthetically-
speckled Boat images for various values of L. The signal variances are estimated

directly from the noisy data by
o2 = max(E(g®) — 02,0) (3.27)

and used for the LMMSE filtering of the noisy coefficients, where the values of E(g?)
are obtained by using g instead of Z in (3.8). The corresponding values of the PSNR
are plotted along with those obtained from the SABMAP and SABMMSE in Fig. 3.7
for various values of L. It is seen from this figure that both SABMAP and SABMMSE
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Figure 3.7: Comparison of the PSNR values for LMMSE filtering using signal vari-
ances estimated directly from the noisy data using (3.27) with those obtained using
the SABMAP and SABMMSE.

provide much better PSNR values as compared to those obtained from the LMMSE

filtering with signal variances estimated from the noisy coefficients.

3.4.2 SAR Images

Two amplitude-format 4-look NASA /Jet Propulsion Laboratory (NASA/JPL) images
of 512 x 512 pixels are used in our experiment. The images are provided to us by the
authors of [39]. The first image represents an airport in Ontario, while the second the
Sanfrancisco Bay area, and are referred to as the Airport and Sanfrancisco images,
respectively. Figs. 3.8 (a) and 3.9 (a) show the Airport and Sanfrancisco, respectively.
The corresponding despeckled images obtained by the various methods are shown in
Figs. 3.8 (b)-(h) and 3.9 (b)-(h). It can be observed from these images that the
proposed method smoothens the speckle well, and in addition, retains the important

signal features such as the edges, textures and strong reflector points.
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(a) (b) (o)
(d) () ()

(g) (h)

Figure 3.8: (a) The Airport image. The corresponding denoised images using (b)
SABMAP, (c) SABMMSE, (d) SA-WBMMAE, (e) MAP-UWD, (f) WIN-SAR, (g)
PZ, and (h) Kuan.
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Figure 3.9: (a) The Sanfrancisco image. The corresponding despeckled images using
(b) SABMAP, (c) SABMMSE, (d) SA-WBMMAE, (e) MAP-UWD, (f) WIN-SAR,
(g) PZ, and (h) Kuan.
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In order to illustrate further the superiority of the proposed method, we calculate
the values of the equivalent number of looks (ENL) and the mean-bias using (2.52)
and (2.53), respectively, over several homogeneous regions of the Airport image for
the various methods. The averages of these values are listed in Table 3.3. From Table
3.3, one can see that the proposed method using either the MAP or MMSE estimator
outperforms the other methods in terms of the ENL, thus indicating a better ability
to suppress the speckle noise in the homogeneous regions. Also, it is noted that
the mean-bias provided by the various methods including the homomorphic ones are
negligibly small. This is in conformity with the observation in [37,46] that, in practice,
the homomorphic wavelet-based filtering of SAR images using a statistical criterion
introduces very little bias in the homogeneous regions.

Table 3.3: Average of the values of ENL and mean-bias calculated over several ho-
mogeneous regions for the Airport image

ENL | Mean-bias

Before despeckling | 2.74 -

SABMAP 78.48 -1.59
SABMMSE 78.85 -1.58
MAP-UWD 53.55 -4.66
SA-WBMMAE 54.80 -1.65
WIN-SAR 33.53 -1.03
PZ 34.35 -0.02
Kuan 18.70 -0.02

3.4.3 Computational Complexity

The various methods have been implemented in MATLAB on a 2.4 GHz Intel Pentium
IV computer. The average CPU time taken by the various methods in order to
process the synthetically-speckled images are given in Table 3.4. It is seen from

this table that the SABMAP scheme is computationally much less expensive than
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Table 3.4: Average CPU time (in seconds) for the synthetically-speckled images

Method House Boat
(256 x 256) | (512 x 512)
SABMAP 34.07 57.42
SABMMSE 59.92 107.24
SA-WBMMAE 45.48 147.01
WIN-SAR 1052.10 1553.50
Kuan 12.05 48.75

the other techniques for despeckling except for the Kuan method whose performance
is well below that of any other methods. It should be mentioned that the time
spent for obtaining the parameters of the SNIG PDF remains the same regardless of
the size of the image, since the parameters are obtained by minimizing (3.23) for a
fixed number of roots of the Hermite polynomial. For a particular subband of size

Sz xSy, the complexity corresponding to the SABMAP and SABMMSE are roughly
0(55,8,D?) + O(S,S,) and O(55,5,D?) + O(SklogaSk) + O(Sy), respectively, where

Sk = \/Sz X Sy.

3.5 Conclusion

In this chapter, an efficient wavelet-based spatially-adaptive method for reducing the
speckle in SAR images has been presented. The proposed method is a combination
of the local LMMSE filtering and global Bayesian estimation that makes use of the
SNIG PDF. The global statistics of the wavelet coefficients have been characterized
by a SNIG PDF, whereas the local distribution of the coefficients has been described
by a Gaussian distribution with locally-varying second-order signal moments. This
combination has been used to provide an effective despeckling of the SAR images at
a reduced computational cost through an improved LMMSE filtering of the noisy co-

efficients by utilizing two Bayesian estimates that are approximately noise-free. The
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two Bayesian estimators, namely, the MAP and MMSE estimators have been devel-
oped using the SNIG PDF. An efficient method with reduced complexity has been
provided for estimating the parameters of the SNIG PDF from the noisy data. The
performance of the proposed method has been studied using synthetically-speckled
and SAR images, and compared with those of some of the existing methods. The
results have shown that for the synthetically-speckled images, the proposed method
using the Bayesian MAP or MMSE estimator can perform better than the others
in terms of the PSNR, edge preservation index, structural similarity index and the
visual quality. The results of our experiments with SAR images have shown that the
proposed technique can provide a better speckle suppression in the homogeneous re-
gions, while retaining the edges, textures, and strong reflector points. The proposed
method has also been shown to be computationally less expensive than the other

wavelet-based techniques.
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Chapter 4

Despeckling of Medical Ultrasound
Images Using SNIG PDF

4.1 Introduction

Ultrasonography is one of the most popular imaging techniques used by the clinicians
for medical diagnosis. However, the ultrasound images are inherently corrupted by
the speckle noise, which gives the image a granular appearance and obscures the
diagnostically important details, thus hampering the detection of the pathologies
by an expert human observer. In addition, the speckle noise reduces the contrast
of the image and complicates the image processing tasks such as compression and
segmentation.

In Chapter 3, an efficient method using the SNIG PDF to reduce the speckle in
SAR images was proposed. Since the speckle also occurs in the ultrasound images, it
is worth investigating the effectiveness of using the SNIG PDF for despeckling these
images. A detailed study is first conducted to determine the appropriateness of the
SNIG PDF in modelling the wavelet coefficients of the log-transformed reflectivity
corresponding to medical ultrasound images. Based on this study, a computation-

ally fast, spatially-adaptive method for an efficient reduction of the speckle noise
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from medical ultrasound images, is proposed in this chapter [80-82]. It employs the
Bayesian MAP estimator, developed in Chapter 3, to denoise locally the wavelet
coefficients of the log-transformed ultrasound images. A moment-based technique
is introduced to estimate the parameters of the SNIG PDF from the noisy wavelet
coefficients. The performance of the proposed method is extensively studied using
synthetically-speckled and medical ultrasound images, and compared with those of
several existing techniques. The chapter is organized as follows. First, the problem of
reducing the speckle noise in wavelet domain is outlined in Section 4.2. The Bayesian
MAP estimator and a method of estimating the SNIG parameters are described in
Section 4.3. Using this estimator, a method for despeckling the ultrasound images
is proposed in Section 4.4. Simulation results are presented in Section 4.5 and some

conclusions given in Section 4.6.

4.2 Problem Formulation

Let G(k,!), Xy(k,!) and N,(k,{) denote the (k,!)-th pixel of an ultrasound image,

the corresponding reflectivity and the speckle noise, respectively. One can write
G(k,1) = Xu(k,))Nu(k, 1) + &(k, ) (4.1)

where &(k,[) is an additive noise (such as the sensor noise) [16]. In practice, the

additive noise can be ignored (28], and thus (4.1) becomes
Gk, 1) = Xu(k, )N, (k, 1) (4.2)

Goodman [83] carried out a detailed statistical analysis of the speckle noise, and
showed that the magnitude of a fully-developed speckle noise can be modelled by a

Rayleigh distribution. The speckle noise is considered to be fully developed, when the
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number of scatterers in the resolution cells is large. Partially-developed speckle can
be modelled by using prior distributions such as the Rician, Rician inverse Gaussian
and K PDFs [84]. In this work, the speckle noise is assumed to be fully developed
and correlated but independent of the reflectivity X, [28]. The multiplicative noise
in (4.2) can be converted to an additive one by log-transformation of the noisy image
providing

Gilk, 1) = Xi(k, 1) + Ny(k, 1) (4.3)

where G;, X; and N; are the logarithms of G, X, and N,, respectively. It has been
demonstrated by a number of authors that the distribution of the log-transformed
speckle is close to a Gaussian PDF [49,51]. In fact, even if the noise is not fully
developed, for practical purposes the Gaussian PDF is sufficient for approximating the
distribution of the log-transformed speckle [43]. Since the discrete wavelet transform
(DWT) is a linear operation, the wavelet coefficients of the log-transformed ultrasound

image can be expressed as

9:(p,m) = zi(p,m) + my(p,m), i=1,2,3 (4.4)

where gi(p,m), i(p,m) and n}(p, m) are the (p,m)-th wavelet coefficients, at level
g of a subband with orientation 7, corresponding to G;, X; and N, respectively.
The values 1,2, and 3 for i correspond to the subbands with horizontal, vertical
and diagonal orientations, respectively. The subbands at the level ¢ with horizontal,
vertical and diagonal orientations are denoted by LH,, HL,, and H H,, respectively.
For notational simplicity, we will drop the subscripts and use only g, z and 7 in the
subsequent discussion. After the wavelet decomposition, the problem is to reduce
the noise term 7 and preserve the signal z as much as possible. Since the DWT is

orthogonal, we assume that the noise 7 in the wavelet domain follows a Gaussian
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distribution with a zero-valued mean and variance Uf]. To validate this assumption,
the speckle noise is simulated by low-pass filtering a complex Gaussian random field,
and then taking the magnitude of the filtered output. The filtering is carried out using
a 3 x 3 window, since such a short-term correlation is sufficient to account for real
speckle noise [41]. The simulated noise is subjected to a 3-level wavelet decomposition.
The empirical PDFs of the various wavelet subbands are then fitted with a zero
mean Gaussian PDF. For a particular subband, the variance of the Gaussian PDF is
estimated from the coefficients of that subband. The empirical and fitted Gaussian
PDFs for the LH; and H L, subbands are shown in Fig. 4.1. It can be observed that

the Gaussian PDF's closely match the corresponding empirical ones.
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Figure 4.1: Plots of the empirical and Gaussian PDFs for the LH, and H L, subbands
of simulated noise.

4.3 Bayesian MAP Estimator

In the proposed method, the reduction of the speckle noise in ultrasound images is
carried out in the wavelet domain by means of a threshold that is obtained from a

Bayesian MAP estimator. In order to develop the MAP estimator, the wavelet coeffi-
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cients of the log-transformed reflectivity, x, are modelled by using a SNIG PDF. The
efficacy of the SNIG PDF in modelling the wavelet image coefficients is studied using
a number of different medical ultrasound images that include the neonatal brain, kid-
ney, gall-bladder, liver, pancreas, heart and breast. These images are obtained from
ftp://wuerlim.wustl.edu/pub/dicom/images and http://www.telin.rug.ac.be/ sanja/.
Among these two image depositories, the former contains DICOM image files do-
nated by various vendors at the annual meetings of the Radiological Society of North
America between 1993 to 1996, and the latter the images used in [34]. DICOM is the
acronym for Digital Imaging and Communications in Medicine, and widely accepted
by the medical community as a tool for distributing and viewing medical images.
Since the original noise-free images are not available for modelling, the ultrasound
images are first processed by the GenLik method [41]. The resulting images are con-
sidered as reasonable approximations of the respective noise-free images, which are
subsequently log-transformed and subjected to a 3-level wavelet decomposition. The
distributions corresponding to the wavelet coefficients of the various wavelet subbands
are then matched with the SNIG, alpha-stable and GG PDFs. For this purpose, the
parameters of the GG PDF are estimated using the method of [85], whereas those
of the SNIG and alpha-stable PDFs using the well-known statistical softwares fBa-
sics [75] and STABLE [76], respectively. The goodness-of-fit provided by the various
PDFs are evaluated in terms of the widely used Kolmogorov-Smirnov (KS) statistics,
given by

dis = max |Fu(z) - Fa(a) (4.5)

where dgg, F,(x) and F,(z) denote the KS statistics, the cumulative density function

(CDF) of the prior PDF and the empirical CDF, respectively [53]. The averages of
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the values of the KS statistics for the various PDFs are shown in Table 4.1. It can be
seen that the SNIG PDF is able to fit the wavelet coefficients more closely than the
GG PDF does. Also, it is to be noted that the SNIG PDF fits the coefficients at least
as well as the alpha-stable PDF does, and in many cases even better. To substantiate
this observation, the empirical, and the corresponding fitted SNIG, alpha-stable and
GG PDFs of the LHy and H L, wavelet subbands for ultrasound liver and neonatal
brain images are shown in Figs. 4.2 and 4.3. It is observed that that the SNIG PDF
fits the wavelet image coefficients better than the alpha-stable and GG PDFs do.

Table 4.1: Average values of the KS statistics for various images. For each case, the
first, second and third rows show the corresponding average values obtained using

the SNIG, alpha-stable and GG PDFs, respectively. The results shown are averaged
over 17 images.

Level | LH HL HH

0.0318 | 0.0357 | 0.0318
3 0.0256 | 0.0256 | 0.0227
0.0623 | 0.0712 | 0.0962
0.0272 | 0.0457 | 0.0520
2 0.0249 | 0.0795 | 0.1294
0.0858 | 0.1119 | 0.1650
0.0611 | 0.1134 | 0.1135
1 0.1649 | 0.3161 | 0.4715
0.3053 | 0.5338 | 0.3976

The Bayesian MAP estimator is given by [68]
#(g) = sign(g) max(|g| - o3| B],0) (4.6)

where
2g ag  Kolayé® + g%)

B:
RN i S AN )

Note that (4.6) is basically a thresholding operation, wherein the threshold is o3| Bl.

(4.7)
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Figure 4.2: Plots of the empirical, SNIG, alpha-stable and GG PDFs for the LH; and
H L, subbands of an ultrasound lver image: (a) LHs and (b)H L,. The vertical axis

is on log-scale.
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Figure 4.3: Plots of the empirical, SNIG, alpha-stable and GG PDF's for the LH;, and
H L, subbands of an ultrasound neonatal brain image: (a) LH; and (b) HL,. The

vertical axis is on log-scale.
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We will now describe a method for estimating the parameters of the SNIG PDF,

l.e., @ and 8. The characteristic function of the SNIG PDF is given by [73]
¢o(w) = exp(da — 0V a? + w?) (4.8)
The corresponding cumulant generating function is obtained as

Cr(w) = Ing¢,(w)
= da—0Va?+ w? (4.9)

The cumulants of the SNIG PDF can be obtained from (4.9) as

ow

i = V-1 (4.10)

Ky = (=J) w=0

Using (4.10), the first four cumulants are obtained as

=

w

I

o o
Rl R

K! =
(4.11)
Using (4.11), expressions for the parameters o and § are obtained as
K?
a = 4|3=
K3
§ = ak? (4.12)

In order to make the Bayesian MAP estimator spatially adaptive, the cumulants are

estimated from the local neighbors. For the (p, m)-th coefficient, the second- and
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fourth-order signal moments, denoted by @(p,m) and r/n\‘;(p, m), respectively, are

first estimated as

m2(p,;m) = max((mi(p,m) - 03),0) (4.13)
mi(p,m) = max((mi(p,m) — 6mZ(p,m)o? — 30?),0)

The values of T/n\g(p, m) and @(p, m) are obtained using a D x D square window as

] @nz o

mipm) =55 3. Y glp—im—j) (4.14)
i=—(M)/2 j=—(M)/2

_ 1 2 )

mg(pm) =57 X g(p—i,m—j)* (4.15)
i==(M)/2 j== (D)2

where M = D — 1. Next, the corresponding second and fourth order cumulants are

obtained as

——— e

2 — 2
K2 = m?

— — 2

K% = max((m%—3m2),0) (4.16)

Simard et al. [86] have shown that the speckle noise in practice is correlated, and
mostly concentrated at the lowest subbands. In order to take the speckle correlation
into account, the value of o, is obtained using the coefficients in the lowest subbands

with diagonal orientation as
D, + D,

0y = 0= (4.17)

where
Dy = MAD(g(p,m))/0.6745), g(p,m) € HH, (4.18)
D, = MAD(g(p,m))/0.6745), g(p,m) € HH, (4.19)

and C is a smoothing factor that can be used by a clinician for controlling the degree

of smoothing of the speckle noise in the ultrasound image. To illustrate this, the
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shrinkage function corresponding to (4.6) is shown in Fig. 4.4 for several values of C.
One can observe that the zero zone of the shrinkage function widens with the increase
in C. Thus, the clinician can use C' to control the extent of smoothing the speckle

noise. This fact is further demonstrated using simulations in Section 4.5.

150 T T T T T

= = = Identity function -
1001 —C=1 . .““

===C=15 s ’

....... C=2 e !.

o
S
T

Denoised coefficients
o

. .
0 50 100 150
Noisy coefficients

Figure 4.4: Shrinkage function for the proposed MAP estimator for different values
of C.

4.4 Proposed Method for Despeckling

In the proposed method, the given ultrasound image is first log transformed. Next,
the resulting image is subjected to the wavelet transform, and the corresponding
wavelet coefficients processed by using the proposed Bayesian MAP estimator. The
resulting coeflicients are then inverse transformed, followed by an exponential opera-
tion to obtain the despeckled ultrasound image. The proposed method will be called
SNIG-shrink, since it carries out a soft-thresholding operation with a threshold ob-

tained from a Bayesian MAP estimator using a SNIG PDF. It should be mentioned
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that the DWT is not shift-invariant, thus leading to pseudo-Gibbs phenomena such
as ringing around the edges, and specks in the homogeneous regions [87]. These
drawbacks can be overcome by implementing the denoising method using redundant
transforms such as cycle-spinning, stationary wavelet transform (SWT), and dual-
tree complex wavelet transform (DT-CWT) [61,87]. The DT-CWT [87] is a recently
introduced redundant transform, which is nearly shift-invariant and consists of two
parallel real DWTs, where the first DWT gives the real part and the second one the
imaginary part of the complex coefficients. Thus, a single stage decomposition of
an image provides seven subbands with one approximation subband, and six detail
subbands, three containing the real parts, and the remaining three the corresponding
imaginary parts of the complex wavelet coefficients. The DT-CWT provides a better
directional and rotational selectivity than the SWT and DWT do, and is computa-
tionally efficient. Due to these advantages, the DT-CWT, in addition to the DWT,
is employed for implementing the proposed method. Since the DT-CWT consists of
two real orthogonal DWTs, the proposed method can be extended to the DT-CWT
domain by implementing it for each of the DWTs. The proposed method is given in

the form of an algorithm.

Proposed Algorithm for Despeckling
Step 1. Perform log-transformation of the ultrasound image.
Step 2.  Apply the wavelet transform on the log-transformed image.
Step 3. Find the value of the parameters a and § using (4.12)
that of o, with (4.17)
Step 4. Obtain the Bayesian MAP estimates using (4.6).
Step 5. Obtain the inverse-transform of the MAP estimates.
Step 6. Perform an exponential transformation of the values
obtained in Step 5.
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4.5 Simulation Results

Simulations are carried out in MATLAB in order to study the performance of the
proposed method using synthetically-speckled and real medical ultrasound images.
The performance of the proposed method is compared with those of GenLik [41],
Bayes-shrink [44], and homomorphic Wiener filter [16]. The proposed SNIG-shrink
method is implemented with the orthogonal DWT and the redundant DT-CWT using
the Symlet wavelet of order 8 [60] and Farras wavelet [88], respectively; these referred
to as SNIG-shrinkl and SNIG-shrinkII schemes, respectively. The value of D in
(4.14) and (4.15) is set to 9 and 13 for the subbands at levels 4 and 3, respectively,
and to 23 for the subbands at levels 1 and 2. The smoothing factor C in (4.17)
is set to 1.5. The synthetically-speckled images are generated by multiplying noise-
free reference images with a speckle noise simulated by passing a complex Gaussian
random process through a low-pass filter, and then taking the magnitude of the filtered
output. The low-pass filtering is performed using a 3 x 3 window, since a short-term
correlation is sufficient to account for real speckle noise [41]. By varying the standard
deviation of the complex Gaussian random process, it is possible to generate realistic
speckle noise of different strengths. The synthetically-speckled images are obtained
by corrupting the widely used Lena, Barbara and MRI images with noise for various
standard deviations. The signal-to-noise ratio (SNR) is used as an objective criterion

for comparing the performance of the various methods, and can be expressed as

SNR = 101ogm(“i—x) (4.20)
E

where Vx and Vg represent the variance of the noise-free image X and F, respectively,
where E' is the difference between X and its despeckled version. here Vy represents

the variance of the noise-free image X, and Vg that of the image FF = X -X , X being
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Table 4.2: Values of the SNR (in dB) for the various methods
™ 04 0.5 0.6 0.7 | 08 0.9 1

Method

Synthetically-speckled Lena image
Homomorphic 13.42 13.10 12.79 12.47 12.13 11.74 11.30

Wiener
Bayes-shrink 15.72 14.06 12.55 11.24 10.04 9.25 8.41
GenLik 17.30 15.72 14.39 13.29 12.38 11.47 10.61

SNIG-shrinkI 16.91 15.63 14.60 13.66 12.77 12.01 11.44
SNIG-shrinkII | 17.89 16.57 15.39 14.53 13.62 12.90 12.18
Synthetically-speckled Barbara image
Homomorphic 9.74 9.57 9.39 9.18 8.95 8.69 8.44

Wiener
Bayes-shrink 14.10 12.22 10.70 9.45 8.32 7.35 6.53
GenLik 13.91 12.76 11.87 11.11 10.46 9.82 9.31

SNIG-shrinkI 15.71 14.33 13.19 12.16 11.19 10.32 9.48
SNIG-shrinkII 16.68 15.27 14.08 13.04 12.10 11.22 10.35
Synthetically-speckled MRI image
Homomorphic 13.31 13.20 12.95 12.80 12.58 12.36 12.18

Wiener
Bayes-shrink 18.22 16.25 14.69 13.36 12.24 11.25 10.29
GenLik 18.92 17.18 15.90 14.69 13.59 12.75 11.88

SNIG-shrinkl 18.61 17.03 15.74 14.68 13.61 12.68 11.77
SNIG-shrinkIT || 19.00 17.56 16.20 14.95 13.98 13.21 12.33

the despeckled version of X. The values of the SNR calculated for the various methods
for different values of the standard deviation of the complex Gaussian random process,
on, are shown in Table 4.2. It should be mentioned that for a particular noise level,
the value of SNR is calculated by averaging the values obtained by repeating the
experiments four times. It is seen from Table 4.2 that the SNIG-shrinkII scheme
outperforms all the other methods including the GenLik.

For a qualitative comparison, the despeckled images obtained by using the various
methods on three synthetically-speckled noisy images, for g, = 0.7, are shown in Figs.
4.5,4.6 and 4.7. It can be observed from these figures that the proposed SNIG-shrinkII

scheme suppresses the speckle noise most effectively, preserving at the same time the
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Figure 4.5: (a) Noise-free Lena image, (b) the corresponding noisy image for o,, = 0.7.
Denoised images obtained using the (c¢) homomorphic Wiener, (d) Bayes-shrink, (e)
GenlLik, (f) SNIG-shrinkl, and (g) SNIG-shrinkII.
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Figure 4.6: (a) Noise-free Barbara image, and (b) the corresponding noisy image
for o, = 0.7. Denoised images obtained using the (¢) homomorphic Wiener, (d)
Bayes-shrink, (e) GenLik, (f) SNIG-shrinkI, and (g) SNIG-shrinkII.
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Figure 4.7: (a) Noise-free MRI image, and (b) the corresponding noisy image for
o, = 0.7. Denoised images obtained using the (c) homomorphic Wiener, (d) Bayes-
shrink, (e) GenLik, (f) SNIG-shrinkl, and (g) SNIG-shrinkII.
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important details. On the other hand, the homomorphic Wiener filter [16] blurs the
important signal features, while the images obtained by the Bayes-shrink [44] method
are still noisy. To further substantiate our observations, we calculate the values of
the edge preservation index § [79] and the structural similarity (SSIM) index [65]
for the various methods using the different images synthetically speckled with a noise
simulated for o, = 0.7. Among the two indices, the former is utilized for assessing the
ability of a denoising method to preserve the edges, whereas the latter for signifying
the visual quality of the denoised image. The optimal value for either of the two
indices is unity. The values of these indices for the various methods are listed in Table
4.3. It is seen that SNIG-shrinkII consistently gives a larger value of # compared to the
other methods, indicating a better preservation of the edges in the denoised images.
In addition, it generally provides a better performance in terms of the SSIM index

than the other techniques. To observe the visual performance of the various methods

Table 4.3: Values of the edge preservation index () and SSIM for the various methods

Index | Homomorphic | Bayes-shrink | GenLik | SNIG-shrinkI | SNIG-shrinkII
Wiener
Lena
Ié] 0.6443 0.6007 0.6922 0.7565 0.7935
SSIM 0.7794 0.6083 0.7701 0.7692 0.8235
Barbara
Jé] 0.3618 0.7157 0.7317 0.7576 0.8785
SSIM 0.6130 0.5769 0.7151 0.8015 0.8518
MRI
Ié] 0.6026 0.6141 0.6640 0.6962 0.7189
SSIM 0.8359 0.8351 0.8748 0.8777 0.8937

on medical images, ultrasound images of liver, obstetric, neonatal brain, kidney, and
intraductal papilloma are used in our experiments. We use the value of 1.5 for the
smoothing factor C, since the same value is utilized with the synthetically-speckled

images. As no noise-free reference images are available, the performance of the various
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methods are compared from a qualitative point of view. For this purpose, the noisy
liver and obstetric images and the corresponding despeckled versions obtained by
using the various methods are shown in Figs. 4.8 and 4.9. Similar results are obtained
for the neonatal brain, kidney, and intraductal papilloma images, but are not shown
here. Note that the SNIGshrink-II not only smooths the noise quite effectively, but
also retains the important details such as the edges and textures. In keeping with our
previous observations for the synthetically-speckled images, the images obtained by
employing the Bayes-shrink [44] are noisy, while those of the homomorphic Wiener

filter [16] are blurred.

(d) () (f)

Figure 4.8: (a) An ultrasound lver image. Denoised images obtained using the
(b) homomorphic Wiener, (c) Bayes-shrink , (d) GenLik, (e) SNIG-shrinkl, and (f)
SNIG-shrinkII.

The proposed method is also computationally fast. To illustrate this, the average

CPU time to process the different images used in our simulation (carried out on a 2.4
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Figure 4.9: (a) An obstetric ultrasound image. Denoised images obtained using the
(b) homomorphic Wiener, (c) Bayes-shrink, (d) GenLik, (e) SNIG-shrinkl, and (f)
SNIG-shrinkII.

GHz Pentium IV computer with 768 MB RAM) are shown in Table 4.4 for the various
methods. It is noted that SNIGshrink-II takes, on an average, at least 50% less time
as compared to the GenLik method. Although the Bayes-shrink and homomorphic
Wiener methods are faster than the other techniques, their performance is also well
below that of the others. The bulk of the computational cost of the proposed method
can be attributed to the parameter estimation phase. For a particular subband of
size S; x Sy, the corresponding computational complexity of the proposed method
can be obtained as 0(45,5,D?).

An interesting aspect of the proposed method is that by changing the value of C in
(4.17), it is possible to achieve different levels of noise removal, while maintaining the

edges. To illustrate this, the despeckled images obtained by applying the proposed
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Table 4.4: CPU time in seconds for the various images

Image Homomorphic | Bayes-shrink | GenLik | SNIG-shrinkl | SNIG-shrinkII
Wiener
Lena (256 x 256) 0.20 0.82 3.87 1.37 1.54
Barbara (512 x 512) 0.28 1.37 17.00 2.95 4.85
MRI (240 x 224) 0.10 0.25 2.84 0.95 1.32
Liver (336 x 384) 0.28 1.12 6.69 2.16 2.46
Obstetric( 384 x 448) 0.28 1.37 9.56 2.63 3.24
Neonatal brain (256 X 256) 0.20 0.31 3.88 1.26 1.65
Kidney (256 x 256) 0.29 0.35 3.85 1.26 1.47
Intraductal papilloma (256 x 256) 0.19 0.38 4.36 1.19 1.60

SNIG-shrinkII scheme on the ultrasound image of liver of Fig. 4.8 (a) using various
values of C are shown in Fig. 4.10 . Note that with an increase in the value of C, the
speckle noise is reduced more, while a stable behavior regarding the retention of strong
signal features is maintained. This is an useful feature of the proposed method since it
allows a clinician to control the extent of smoothing of the speckle noise as opposed to
the diagnostically important details and visual quality, and indicates the robustness
of the proposed method with respect to the wide variability of the ultrasound images
and the requirement to process the images on a case by case basis [41]. As to the

optimal value of C, from our experiments it is found to be in the range of 1.5 to 2.
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Figure 4.10: Effect of C on the performance of the SNIG-shrinkII using the ultrasound
liver image: (a) C =1, (b) C = 1.5, (c) C =2, and (d) C = 3.
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4.6 Conclusion

In this chapter, we have proposed a wavelet-based spatially adaptive thresholding
technique for reducing the speckle noise from ultrasound images. The threshold has
been derived from a Bayesian MAP estimator, which is developed using a SNIG PDF
for modelling the wavelet coefficients of the log-transformed reflectivity. The justifica-
tion for employing the SNIG PDF has been shown through an extensive experimental
study using ultrasound images of various organs of the human body. In order to pro-
vide a spatial adaptation to the intra-scale dependency of the wavelet coeflicients,
the parameters of the SNIG PDF have been estimated using the intra-scale neigh-
boring coefficients. For this purpose, a simple and fast method has been presented.
The performance of the proposed despeckling method has been extensively investi-
gated using synthetically-speckled and ultrasound images. It has been shown that for
the synthetically-speckled images, the proposed method outperforms the conventional
techniques as well as the recent GenLik technique, in terms of the SNR, edge preserva-
tion index, structural similarity index, and visual quality. For the ultrasound images,
it has been observed that the proposed method ensures an effective suppression of the
speckle noise while retaining important details such as the edges and textures, thus
resulting in despeckled images of good visual quality. In addition, the method offers
the examining physician the latitude in balancing the smoothing of the speckle noise

against maintaining the diagnostically important details of the ultrasound image.
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Chapter 5

Despeckling of Medical Ultrasound
Images Using Maxwell PDF

5.1 Introduction

In the despeckling method proposed in Chapter 4, the wavelet coefficients of the log-
transformed ultrasound images were denoised employing a Bayesian MAP estimator,
developed using the SNIG and Gaussian PDFs, for modelling the coefficients corre-
sponding to the log-transforms of the reflectivity and speckle noise, respectively. How-
ever, the distribution of the log-transformed speckle is actually a Fisher-Tippet PDF,
which is asymmetric and has heavy tails, indicating the presence of some large-valued
noise pixels [89]. Owing to the linearity and orthogonality of the wavelet transform,
a similar statistic can be expected for the wavelet coefficients corresponding to the
log-transformed noise. Since a Gaussian PDF is symmetric and not heavy-tailed,
some large-valued coefficients that actually correspond to noise are misrepresented
as signal coefficients due to the modelling of the noise coefficients with the Gaussian
PDF [89]. On the other hand, unlike the Gaussian PDF, the Fisher-Tippet PDF is
mathematically not tractable. To address this problem, Oleg and Tannenbaum [89]

have proposed a pre-processing technique to remove the large-valued noise pixels so
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that the log-transformed noise and the corresponding wavelet coeflicients can be mod-
elled with a Gaussian PDF. However, this technique is highly heuristic and dependent
on the thresholds selected on an ad hoc basis.

The objective of this chapter is to develop an efficient and computationally fast
technique for despeckling the medical ultrasound images by taking into account the
heavy-tailedness of the log-transformed speckle noise [90]. For this purpose, the mag-
nitudes of the wavelet coeflicients of the log-transformed noise are modelled by a
Maxwell PDF. The Maxwell PDF is chosen for several reasons: it is heavy-tailed,
requires the estimation of a single parameter, and offers mathematical tractability.
The coefficients corresponding to the log-transformed reflectivity are modelled by a
conditional Gaussian PDF. Using the assumed PDFs, a closed-form Bayesian MAP
estimator is developed to denoise the wavelet coeflicients of the log-transformed ul-
trasound images. It should be mentioned that the Gaussian PDF is a special case
of the SNIG PDF; however, it is not possible to obtain a closed-form expression for
the MAP estimator using the SNIG and Maxwell PDFs. Simulations are carried out
using synthetically-speckled and medical ultrasound images to study the performance
of the proposed method and to compare it with that of several existing methods. This
chapter is organized as follows. In Section 5.2, the proposed Bayesian MAP estimator
is described, and using this estimator, a method for despeckling medical ultrasound
images is introduced in Section 5.3. Simulation results are presented in Section 5.4

and some conclusions provided in Section 5.5.

5.2 Proposed Bayesian MAP Estimator

The proposed Bayesian MAP estimator is developed in the DT-CWT domain [91]

in view of its shift-invariance, computational efficiency and improved directional and
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rotational selectivity. Using the MAP estimator, the DT-CWT coefficients of the
log-transformed ultrasound image are denoised. Let g,(p, m), z,(p, m) and n,(p, m)
denote the (p, m)-th wavelet coefficient at level ¢ of a particular subband of the DT-
CWT of the log-transforms of the ultrasound image, the corresponding reflectivity
and speckle noise, respectively. Since the wavelet transform is a linear operation, one
can write

9q(pym) = T4(p, M) + 14(p, M) (5.1)

For notational simplicity, the subscripts and indices are dropped and g, z and 7 are
used in subsequent discussions. In order to develop a Bayesian MAP estimator for de-
noising the coeflicients, we need to assume certain statistics regarding the coefficients
corresponding to the signal and noise i.e., x and n. The signal coeflicients are assumed
to be locally Gaussian distributed with known values for the signal variances. This
assumption has been widely adapted by the image processing community [70-72].
To further validate this assumption, an experiment is conducted using a ultrasound
kidney image. First, the image is despeckled by the GenLik method [41] using the
software available in [92]. The resulting image is considered as a reasonable approx-
imation of the underlying reflectivity, and subjected to a DT-CWT up to 3 levels.
Next, the values of the kurtosis of the wavelet coefficients are computed within a 3 x 3
local neighborhood for the various subbands. The average of these values are shown
in Table 5.1. It can be observed from this table that the values are very close to 3,
the value of the kurtosis of a Gaussian distribution. The assumed Gaussian PDF is

given by
1

Vemo,

where o2 is the signal variance. The magnitudes of the noise coefficients are modelled

P, (z) = exp(—z%/202) (5.2)
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Table 5.1: Values of average kurtosis calculated for the various wavelet subbands.
LH, HL and HH denote the subbands with horizontal, vertical and horizontal orien-
tations, while Re and I'm indicate whether the subband contains the real or imaginary
part of the complex coefficients.

Level | LHRe | LH™
1 2.75 2.52
2 2.72 2.76

HLRe HLIm
1 2.7 2.68
2.71 2.78

HHRe HHIm
1 2.99 3.00

2.96 2.97

using a Maxwell PDF
2 _ 2
Py(Inl) = \/gln'exf# n>0 (5.3)

The first- and second-order moments of the Maxwell PDF are 1 and 312, respectively.
Note that the noise coeflicients have positive as well as negative values. We assume
that both the types are equally probable. The corresponding prior for modelling the

noise coefficients is then given by

Py(n) = 0.5P(In)I(n) + 0.5P,(|In))I(—n) (5.4)

where I(n) = 0 when 1 < 0, and 1 otherwise. Using (5.4), the mean and variance
corresponding to P,(n) can be found to be 0 and 3v?, respectively. The Bayesian

MAP estimator is given by [80]
Z(g) = argmaxP,(g— z)P,(z) (5.5)

The MAP estimate is then obtained by differentiating the logarithm of the argument

in (5.5), and setting the derivative to zero. The resulting equation is
(02 + v*)z® — z(2g02 + gv?) + 02(g* — 2*) = 0 (5.6)
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The solution of (5.6) is obtained as

) g(202 + 12) £ B
7 = max ( oI ) ,0 (5.7)
where
B = /v*g? + 8civ? + 80214 (5.8)

Since the noise in the wavelet domain is additive, the final form for the MAP estimate

is given by

|gl(20’£ + V2) — B, > (59)

T = sign(g) max < 20T+ 19
In order to obtain the MAP estimates, the parameters o2 and v are to be estimated
from the noisy coefficients. The signal variance of the (p, m)-the coefficient, o2(p, m),
is obtained using the coefficients of a D x D local neighborhood in (5.10) and (5.11)

as

o2(p,m) = max(ag(p, m) — 03’, 0) (5.10)

| Mz M
Uﬁ(p,m)=ﬁ o Y glp—im—j)? (5.11)

i=—M/2 j=—M/2

where 037 is the variance of the noise and M = D — 1. The parameter v is estimated
as

v=,/02/3 (5.12)

The value of o, is obtained by using (4.17). As in the method described in the
previous chapter, the parameter C can be used by the clinician to control the degree
of smoothing the speckle in the ultrasound images. In order to illustrate this, the
shrinkage function corresponding to (5.7) for various values of C is shown in Fig.

5.1. It can be observed that as the value of C increases, so the noisy coeflicients are
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shrinked more. The use of C in adjusting the extent speckle-smoothing is further

demonstrated through simulations in Section 5.5.
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Figure 5.1: Shrinkage function for the proposed MAP estimator for different values
of C.

5.3 Proposed Method for Despeckling

The given ultrasound image is first logarithmically transformed and subsequently
wavelet-transformed. The corresponding wavelet coefficients are denoised by using
the proposed Bayesian MAP estimator. The resulting coefficients are then inverse
transformed, followed by an exponential operation to obtain the despeckled image.
Since the DT-CWT tree contains two critically sampled branches, the noise standard
deviation is calculated for each branch utilizing the coeflicients of the corresponding
finest subbands in (4.17). The proposed method is given in the following in the form

of an algorithm.
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Proposed Algorithm for Despeckling

Step 1 Carry out log-transformation of the ultrasound image.
Step 2 Apply the DT-CWT on the log-transformed image.
Step 3 Estimate the parameters o2 and v using

(5.10) and (5.12), respectively.
Step 4 Find the value of 0, using (4.17)
Step 5 Determine the Bayesian MAP estimates employing (5.9).
Step 6 Obtain the inverse-transform of the MAP estimates.
Step 7 Perform an exponential transformation of the values

obtained in Step 6.

5.4 Simulation Results

Experiments have been carried out in MATLAB using synthetically-speckled and
medical ultrasound images to investigate the performance of the proposed method,
and compare it with that of SNIG-shrinkII [81], GenLik [41], Bayes-shrink [44], and
homomorphic Wiener filter [16]. The smoothing factor C' in (4.17) is set to 1.5.
The synthetically-speckled images are obtained by corrupting the widely-used Lena
and MRI images with noise for various values of o, where ¢,, denotes the standard
deviation of the complex Gaussian random process that is used to generate the noise.
The SNR is used as a performance criterion for the synthetically-speckled images. For
a particular noise level, it is calculated by repeating the experiments four times and
then averaging the corresponding values of SNR. The values of SNR obtained for the
various methods are listed in Table 5.2. It is seen that the proposed method performs
better than the other techniques in terms of the SNR, especially at high noise levels.
For a qualitative comparison, the denoised images obtained by applying the various
methods on the Lena and MRI images synthetically-speckled with a noise simulated
for 0, = 0.8, are shown in Figs. 5.2 and 5.3. It is seen from these figures that
the proposed technique provides images with a better visual quality in comparison

to the other methods. In order to substantiate this observation, the values of the
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Table 5.2: Values of the SNR (in dB) for the various methods

On

Method 0.4 0.5 0.6 0.7 0.8 0.9 1

Synthetically-speckled Lena image
Homomorphic 13.42 13.10 12.79 12.47 12.13 11.74 11.30

Wiener

Bayes-shrink 15.72 14.06 12.55 11.24 10.04 9.25 8.41
GenLik 17.30 15.72 14.39 13.29 12.38 11.47 10.61
SNIG-shrinkII || 17.89 16.57 15.39 14.53 13.62 12.90 12.18
Proposed 17.74 16.66 15.62 14.85 14.08 13.44 12.79

Synthetically-speckled MRI image
Homomorphic 13.31 13.20 12.95 12.80 12.58 12.36 12.18

Wiener

Bayes-shrink 18.22 16.25 14.69 13.36 12.24 11.25 10.29
GenLik 18.92 17.18 15.90 14.69 13.59 12.75 11.88
SNIG-shrinkII 19.00 17.56 16.20 14.95 13.98 13.21 12.33
Proposed 17.94 16.88 16.04 15.25 14.58 13.97 13.44

edge preservation index [79] and the SSIM index [65] are calculated for the various
methods using the images shown in Figs. 5.2 and 5.3, and the same listed in Table
5.3. It is seen from this table that the values of the indices provided by the proposed
method are higher than those of the other techniques, thus indicating its superiority

in preserving the edges and in providing better visual quality.
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(g)

Figure 5.2: (a) Noise-free Lena image, (b) the corresponding noisy image for o, = 0.8.
The denoised images obtained by using the (c) proposed, (d) SNIG-shrinkll, (e)
GenlLik, (f) Bayes-shrink, and (g) homomorphic Wiener methods.
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Figure 5.3: (a) Noise-free MRI image, (b) the corresponding noisy image for o,, = 0.8.
The denoised images obtained by using the (c) proposed, (d) SNIG-shrinkII, (e)
GenlLik, (f) Bayes-shrink, and (g) homomorphic Wiener methods.
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Table 5.3: Values of the edge preservation index (3) and SSIM index for the various
methods

Method Lena MRI
B SSIM 8 SSIM
Proposed 0.7914 | 0.8136 | 0.7066 | 0.8821
SNIG-shrinkII 0.7630 | 0.7895 | 0.6819 | 0.8757
GenLik 0.6227 | 0.7443 | 0.6197 | 0.8472
Bayes-shrink 0.6000 | 0.6128 | 0.5734 | 0.7937
Homomorphic Wiener | 0.6152 | 0.7339 | 0.6014 | 0.8174

Experiments are also carried out with neonatal brain and a obstetric ultrasound
images. The corresponding denoised images obtained employing the various methods
are shown in Figs. 5.4 and 5.5. It can be observed from these figures that the
proposed method ensures a good balance between effective speckle suppression and
the retention of diagnostically important details. On the other hand, the method of
homomorphic Wiener provides a good speckle suppression at the expense of blurring
the edges of the image, whereas the images obtained using the Bayes-shrink [44] are
still noisy.

An important aspect of the proposed method is that by varying the smoothing
factor C' in (4.17) while estimating o, it is possible for the clinician to choose the
level of noise smoothing, preserving the important details of the image as much as
is needed according to his expert opinion. To illustrate this, the proposed method is
applied to the obstetric ultrasound image with different values of C. The resulting
denoised images are shown in Fig. 5.6. It can be observed that with increasing C,
the speckle noise is reduced more, while the edges and textures of the image are
adequately preserved. This is indicative of the robustness of the proposed method in
view of the wide variability of the ultrasound images and the need to process them

on a case-by-case basis, even for a single patient [41]. The proposed method is also
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Figure 5.4: (a) An obstetric ultrasound image. Denoised images obtained using the
(b) proposed, (c¢) SNIG-shrinklIl, (d) GenLik, (e) Bayes-shrink, and (f) homomorphic
Wiener methods.
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Figure 5.5: (a) An ultrasound neonatal brain image. Denoised images obtained using
the (b) proposed, (c¢) SNIG-shrinklI, (d) GenLik, (e) Bayes-shrink, and (f) homomor-
phic Wiener methods.
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computationally fast. To illustrate this, the average CPU time (on a 2.4 GHz Pentium
IV computer with 768 Mb RAM) taken by the proposed, SNIGshrink-II and GenLik
methods are shown in Table 5.4. It is seen from this table that the proposed technique
is faster than the SNIG-shrinkII and GenLik methods. For a subband of size .S, x S,

the corresponding complexity of the proposed method is O(2S5,.5,D?).

Figure 5.6: Effect of C' on the performance of the proposed method using the obstetric
ultrasound image. (a) C =1, (b) C=15,(c) C=2and (d) C =3.

Table 5.4: CPU time in seconds for the various images

Method Lena | MRI | Obstetric | Neonatal brain
Proposed 0.72 | 0.67 1.64 0.70
SNIG-shrinkII 1.50 | 1.32 3.24 1.65
GenLik 3.87 | 2.84 9.56 3.88
Bayes-shrink 0.82 | 0.25 1.37 0.31
Homomorphic Wiener | 0.20 | 0.10 0.28 0.31
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5.5 Conclusion

In this chapter, a spatially-adaptive wavelet-based method has been proposed for the
reduction of speckle in medical ultrasound images. The real and imaginary parts
of the dual-tree complex wavelet coefficients corresponding to the log-transform of
underlying reflectivity have been modelled with a conditional Gaussian distribution.
The coeflicients corresponding to the log-transformed speckle have been modelled by
a Maxwell distribution. Using the assumed prior models, a Bayesian MAP estimator
has been developed with a closed-form expression. The proposed method is self-
sufficient, in the sense that the prior parameters are obtained from the noisy data.
It is also spatially adaptive, since the signal variances are estimated utilizing the
local neighbors. Experiments have been carried out using synthetically-speckled and
ultrasound images to compare the performance of the proposed technique with that
of several existing techniques. The results have shown that the proposed method
is superior to the other techniques in terms of the SNR, edge preservation index
and SSIM index. In addition, it is computationally fast and retains diagnostically

important features.
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Chapter 6

Image Denoising with SNIG PDF
and LMMSE Estimator

6.1 Introduction

A classical problem in image processing is the reduction of additive white Gaus-
sian noise (AWGN) from natural images. Numerous methods have been proposed to
deal with this problem among which the wavelet-based ones demonstrate the most
promising results [44,93]. Among the various wavelet-based techniques, the incor-
poration of the spatial dependence of the wavelet coefficients offers a superior per-
formance [58,59,62,70-72,94-105]. An important class of these methods includes
those that assume the local distribution of the wavelet coefficients to be Gaussian
with spatially varying variance and employs an LMMSE estimator locally in order
to denoise the coefficients [59,70-72,100-106]. These methods, in general, provide a
sound performance in denoising with low complexity. However, most of them incor-
porate the intra-scale dependency only and do not actually consider the inter-scale
dependency. A few methods incorporate the inter-scale dependency in addition to
the intra-scale one at the expense of a substantial increase in the computational com-

plexity [100,105], whereas the methods of [59] and [106] are dependent on parameters
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selected on an ad hoc basis.

The despeckling method described in Chapter 3 uses an LMMSE estimator for
denoising the wavelet coeflicients of log-transformed SAR images. Since the log-
transformed speckle noise is modelled as Gaussian, the method proposed in Chapter
3 can be adapted to the case of reducing the AWGN from natural images. However,
the LMMSE estimator in Chapter 3 incorporates the intra-scale dependency only. In
this chapter, a new LMMSE estimator is proposed that incorporates not only the
intra-scale dependency, but also the inter-scale dependency. The signal variances are
estimated from the approximately noise-free coefficients obtained using a Bayesian
MMSE estimator that is developed employing a SNIG PDF to model the wavelet
image coefficients. The use of the SNIG PDF is motivated by the results of an
extensive experimental study, which shows that it is highly suitable for modelling the
wavelet image coefficients. An ML-based method of moderate complexity is proposed
for estimating the parameters of the SNIG PDF from the noisy coefficients. The
performance of the proposed method is studied using typical noise-free images for
both the orthogonal and redundant wavelet transforms. This Chapter is organized as
follows. The proposed LMMSE estimator is discussed in Section 6.2, and the process
of obtaining the Bayesian estimates described in Section 6.3. Simulation results are

provided in Section 6.4. Finally, some concluding remarks are given in Section 6.5.

6.2 Proposed LMMSE Estimator

In this section, the proposed LMMSE estimator is discussed. Let a noise-free image

X be corrupted with i.i.d. additive white Gaussian noise N that has a zero-valued

2

mean and variance o°. The corresponding noisy image is denoted by G. One can
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write

G=X+N (6.1)

The DWT of a two-dimensional image up to level J results in the approximation
subband LL; as well as the subbands LH,, HL, and HH, with horizontal, vertical
and diagonal orientations, respectively, where ¢ = 1,2,---,J [47]. Since the wavelet

transform is a linear operation, after applying the DWT on (6.1), we get

g:(p,m) =z} (p,m) + miy(p,m), i=1,2,3 (6.2)

where g}(p,m), zi(p, m) and n;(p,m) denote the (p, m)-th wavelet coefficient at level
g with orientation 7 of G, X and NV, respectively, and ¢ = 1,2,and 3 correspond to
the horizontal, vertical and diagonal orientations, respectively. Note that, due to the
orthogonality of the DWT, 7 is also i.i.d. white Gaussian with a zero mean value and

variance 2. The PDF of 7 is given by

exp(—n*/20%) (6.3)

PAn) = o=

The LMMSE estimate of the (p, m)-th noise-free coefficient, Z(p,m), is obtained

Z(p,m) = &{(p,m).g(p,m) (6.4)
where g(p,m) and £(p, m) denote the noisy coefficient and the shrinkage factor, re-

spectively, and the shrinkage factor is given by

oy — _ Ta(@m)
£(p,m) = 2 (p.m) 1 52 (6.5)

where o2(p,m) is the variance corresponding to the (p,m)-th noise-free coefficient.

Eq. (6.5) can be written as
1

§= T+o (6.6)
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where
52

22, m) (6.7)

¢(p,m) =

For coefficients that have a large signal content, 02 >> &%, and hence, ¢ is quite

small; this results in a negligible shrinkage of these coefficients. On the other hand,

2

for a noise-dominated coefficient, 52 >> ¢2. Therefore, the corresponding value of
¢ is large resulting in a large shrinkage of the corresponding coefficient. The mean-
squared error in estimation corresponding to the LMMSE estimator, 8(p, m) is given
by [107]

0(p,m) = (1 = &)°0; + €5 (6.8)

The first part of the right sight of (6.8) represents the signal distortion while the
second the noise residual.

It is known that an LMMSE estimator provides an optimal performance when
both the signal and noise are Gaussian distributed [69]. Since the LMMSE estimator
is employed locally for noise reduction in wavelet domain, we assume the local distri-
bution of the coefficients to be i.i.d. Gaussian with zero mean and spatially-varying
variance. This assumption has been widely employed by the image processing commu-
nity [70-72,100-102]. Although the wavelet coefficients show intra-scale dependency,
it is highly local and valid only within a narrow local neighborhood, beyond which it
diminishes rapidly. The inter-scale dependency is strong only between a scale and its
corresponding parent scale, and decreases rapidly for the subsequent scales. In this
chapter, the intra-scale dependency is taken into account by obtaining the variance of
the Gaussian distribution using the coefficients within a square-shaped window. The
inter-scale dependency is included by incorporating it in the LMMSE estimator. As

to the size of the window, it is important to choose the one that is most appropriate
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for the local Gaussian assumption. For this purpose, we find the values of kurtosis
and skewness of the various wavelet subbands corresponding to three representative
images, namely Lena, Barbara and Boat using 3 x 3, 5 x5 and 7 x 7 neighborhoods. It
may be noted that the kurtosis defines the peakedness and the skewness the symme-
try of a distribution; these are 3 and 0, respectively, for a Gaussian distribution [53].
The average values of the kurtosis and skewness for the various subbands for Lena,
Barbara and Boat images are listed in Table 6.1. It is seen from this table that the
maximum deviation of the average value of the kurtosis for any of the images from the
true value of 3 occurs for the H H3 subband, and are 0.71, 2.46 and 3.52 for the 3 x 3,
5 x & and 7 x 7 window, respectively. The average values of the skewness differ from
the actual value of 0 by a small margin for all the three windows, the difference being
the least for a 3 x 3 window. Hence, we consider a 3 x 3 window for describing the
local distribution of the wavelet coeflicients, and approximate the local distribution
by a Gaussian distribution. This choice has also the added advantage that it results
in the smallest computational complexity.

The efficacy of the LMMSE estimator depends heavily on the accuracy of estimat-
ing the variance corresponding to a noise-free coefficient [71]. It has been shown that
by using variances estimated from coeflicients obtained by thresholding the noisy ones
with an ad hoc threshold, it is possible to enhance the performance of an LMMSE
estimator in denoising [70,72]. It is known that Bayesian shrinkage based on solid
statistical modelling of the global distribution of the wavelet coefficients can provide
better estimates of the noise-free coefficients [29,93]. In this work, we assume that the
coeflicients obtained using a Bayesian MMSE estimator are approximately noise-free,
and utilize these coefficients in obtaining the variances corresponding to the noise-

free coeflicients. The validity of this assumption is verified through simulations in the
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Table 6.1: Average values of kurtosis and skewness for various wavelet subbands of
the Lena, Barbara and Boat images. For each neighborhood size, these values are
shown in the first and second rows, respectively.

Neighborhood LH, I LH, l LHs I HI, l HL, I HL3 l HH, ] HHo [ HH3
size Lena
3x3 3.08 3.41 3.43 3.06 3.26 3.16 3.12 3.42 3.66
-0.0236 | -0.0123 0.0084 -0.0183 | -0.0037 0.0211 0.0002 -0.0098 | -0.0124
5x5 3.49 4.16 5.15 3.48 3.90 4.82 3.46 3.93 5.26
-0.0383 | -0.0274 | -0.0126 | -0.0226 0.0013 0.0696 0.0122 -0.0051 | -0.0147
Tx7 3.93 4.83 5.99 3.88 4.89 5.62 3.75 4.62 6.52
-0.0457 | -0.0446 0.0457 -0.0288 | -0.0181 | -0.0073 0.0086 0.0019 0.0020
Barbara
3x3 2.95 3.30 3.34 2.86 3.22 3.15 2.93 3.33 3.58
0.0578 0.0159 -0.0017 | -0.0066 0.0233 0.0416 -0.0035 0.0173 -0.0086
5% 5 3.37 4.05 5.15 3.44 3.98 4.77 3.17 4.03 5.56
0.0877 0.0177 -0.0306 | -0.0171 0.0260 0.0994 -0.0073 | -0.0314 | -0.0447
Tx7 3.75 4.73 5.50 3.99 4.77 5.06 3.36 4.68 5.96
0.1063 0.0843 0.0755 -0.0274 | -0.0124 | -0.0076 | -0.0090 | -0.0208 | -0.0233
Boat
3x3 2.98 3.32 3.22 3.10 3.46 3.41 3.02 3.53 3.71
-0.0135 0.0052 -0.0104 | -0.0135 | -0.0235 0.0467 0.0001 0.0069 -0.0133
5X5 3.42 4.23 4.68 3.75 4.36 5.20 3.26 4.23 5.46
0.0116 -0.0089 0.0093 -0.0349 | -0.0268 0.0801 0.0101 0.0238 -0.0025
7x7 3.84 4.88 4.97 4.30 5.32 5.61 3.49 5.10 5.87
0.0186 0.0174 0.0195 -0.0616 | -0.0589 | -0.0442 0.0199 0.0221 0.0154

next section. Let us denote the Bayesian MMSE estimates with Z(p, m). The signal
variance for the (p, m)-th coefficient is estimated as
1 woow
Apm)=1: > > Fp—im—j) (6.9)
=W j=—W

where M = (2W + 1)2. Note that the LMMSE estimator in (6.4) incorporates the
intra-scale dependency only since the variance of a coeflicient is obtained using local
neighbors within a square window.

It is well known that the magnitudes of the wavelet coefficients are strongly cor-
related across the scales. If a coefficient is large, the corresponding coeflicients of
the parent subband are more likely to have large magnitudes rather than small ones.
Since the strength of a signal depends on its standard deviation, it is likely that the
standard deviations of the coeflicients may also show a similar behavior across the

scales [106], [100]. Thus, if a coefficient has a large standard deviation, the corre-
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sponding coefficient of the parent subband may also have large standard deviations.
On the contrary, the standard deviation of the noise coefficients rapidly decays as one
goes up through the scales, indicating a poor parent-child correlation [106] and the
prominency of the noise in the finer scales. The correlation between the parent and
the corresponding children coefficients across the scales, being essentially due to the
images being piecewise smooth (that is, the homogeneous regions are separated by
edges), represents the edges of an image in the multi-scale wavelet domain [106]. The
reduction of the signal distortion is important as it affects the quality of the denoised
image considerably. Since such a distortion is often caused by the distortion of the
edges in the wavelet domain, one can exploit the parent-child correlation to reduce it.
For this purpose, we propose to use the standard deviation of the parent coefficient
to modify the shrinkage factor £. The modified shrinkage factor, &, is given by

~ 1
f=1 (6.10)

S

where

6’2

b = momreery M= P2 m=m2 )

0z(p1,m1) being the standard deviation of the (p;,m;)-th coefficient in the parent

subband. The modified shrinkage factor, f , 1s finally written as

ag(p,m) + O'Iﬂ(plx ml)

€= ) + oalprm) + 7 (612
and thus, the LMMSE estimates of the noise-free coefficient Z(p, m) becomes
z(p,m) = &(p,m).g(p,m) (6.13)
The corresponding mean-squared error in estimation, é(p, m), is given by
6(p,m) = (1= &)°ol(p,m) + £5° (6.14)
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From (6.7), (6.11), (6.6) and (6.12), it is noted that ¢ < ¢ and hence, £ < €. This
results in a decrease of the signal distortion at the expense of increasing the noise
residual, as seen from (6.8) and (6.14). However, this is acceptable for signal-dominant
coefficients since the magnitudes of such coefficients are generally much larger than
the corrupting noise. It is also acceptable for the noise-dominant coefficients since
the shrinkage factor is still large, the parent-child correlation is quite weak, and the
value of the standard deviation of the parent coefficient is rather small. Moreover,
most of the noise power is concentrated in the finer scales, namely, the subbands at
levels 1 and 2. Therefore, in order to further decrease the noise residual, the signal
variances are re-estimated using (6.9) from the denoised coefficients in the subbands
at levels 1 and 2. Using these variances, the noisy coefficients in the finer scales are
filtered again. Overall, we have a decrease in the signal distortion as well as the noise
residual, hence leading to an improvement in the visual quality of the denoised image,

as illustrated later through simulations in Section 6.4.

6.3 Obtaining the Bayesian MMSE Estimates

In this section, we describe the proposed Bayesian estimator for obtaining a set of
approximately noise-free coefficients that are used to obtain the signal variances. Nat-
ural images comprise mostly homogeneous regions and a few signal features such as
edges and textures. Since the homogeneous areas contribute to the wavelet coefficients
that are close to zero, while the edges and textures to a few large-valued coefficients,
the global distribution of the wavelet coefficients is symmetric having a sharp peak
around zero with heavy tails [47]. Recently, the normal inverse Gaussian (NIG) PDF
has been reported to be highly effective in modelling heavy-tailed processes [37,73,74].

Hence, we develop a Bayesian estimator based on modelling the global distribution
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of the wavelet coefficients with the symmetric NIG (SNIG) PDF. It should be noted
that the previously assumed local Gaussian assumption does not contradict the SNIG
PDF used in this section, since the latter is utilized for describing the global statistics
of the wavelet coefficients which are obviously non-Gaussian, while the former is used
for modelling the local distribution of the coeflicients. In order to justify the use of
the SNIG PDF and compare its efficacy with that of the well-known prior distribu-
tions, such as the GG and Bessel-K form (BKF) PDFs, a set of experiments is carried
out using thirty representative images. Among these images, the Boat, House, and
Fingerprint are taken from [108], and the rest from the well-known image databases,
the Waterloo Bragzone [64] and the USC-SIPI database [109]. The Frog and Moun-
tain images are of size 621 x 498 and 640 x 480, respectively, and the rest consists
of images of 256 x 256 and 512 x 512 pixels. Each image is subjected to a 3-level
wavelet decomposition followed by a process of fitting the SNIG, GG and BKF PDFs
to the coefficients in each subband. The parameters of the SNIG PDF are obtained
using the proposed ML-based method (described later in this section), whereas those
of the BKF and GG PDFs by employing the methods of [93] and [85], respectively.
The Kolmogorov-Smirnov (KS) statistic [53] is used to quantify the goodness-of-fit
provided by the various PDFs. Table 6.2 lists the average values of this statistic for
the various PDF's. It is evident from the table that in general the SNIG PDF is better
at modelling the wavelet coefficients as compared to the GG and BKF PDFs.

To show the effectiveness of the SNIG PDF graphically, the various PDFs are
plotted along with the empirical ones for the various subbands of three representative
noise-free images, namely, Lena, Barbara, and Boat. The three images and the corre-
sponding plots are shown in Figs. 6.1, 6.2 and 6.3. It is observed that in general the

SNIG PDF provides an excellent fit to the modes as well as the tails of the empir-
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Table 6.2: Average values of the KS statistics for various images. For each level, the
first, second and third rows show the corresponding average values obtained using
the SNIG, GG and BKF PDFs, respectively.

Level | LH HL HH

0.0309 | 0.0264 | 0.0218
3 0.0269 | 0.0239 | 0.0198
0.0980 | 0.0664 | 0.0852
0.0175 | 0.0189 | 0.0142
2 0.0214 | 0.0232 | 0.0173
0.1155 | 0.1117 | 0.1211
0.0128 | 0.0129 | 0.0096
1 0.0198 | 0.0214 | 0.0113
0.1725 | 0.3199 | 0.1256

Figure 6.1: Noise-free images: (a) Lena, (b) Barbara and (c) Boat.

ical distributions. The values of o estimated for the various subbands for the three
representative images are provided in Table 6.3. It can be seen that o increases with
decreasing subband level. The global distribution of the wavelet subbands becomes
more heavy-tailed for those at the lower levels. The results of Table 6.3 indicate that
the SNIG PDF is highly suitable for capturing the heavy-tailed character of the global
distribution of the wavelet coefficients, thus further motivating the use of this PDF

as a prior model.
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Figure 6.2: Each column shows the plots corresponding to the subbands at level 1
of the Lena, Barbara, and Boat images, respectively. The first, second and third
rows show the plots corresponding to the horizontal, vertical and diagonal subbands,
respectively. The solid, broken, dotted and dash-dot lines correspond to the empirical,
SNIG, GG and BKF PDFs, respectively.
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Figure 6.3: Each column shows the plots corresponding to the subbands at level 3
of the Lena, Barbara, and Boat images, respectively. The first, second and third
rows show the plots corresponding to the horizontal, vertical and diagonal subbands,
respectively. The solid, broken, dotted and dash-dot lines correspond to the empirical,
SNIG, GG and BKF PDFs, respectively.
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Table 6.3: Values of a estimated from the various subbands of the Lena, Barbara and
Boat images. For each case, the first, second and third rows show the values obtained
from the corresponding subband at levels 1, 2 and 3, respectively.

Image LH HL HH

0.1572 | 0.0593 | 0.2867
Lena | 0.0181 | 0.0096 | 0.0194
0.0062 | 0.0050 | 0.0067
0.0671 | 0.0160 | 0.0812
Barbara | 0.0094 | 0.0099 | 0.0115
0.0030 | 0.0061 | 0.0122
0.1202 | 0.0312 | 0.2967
Boat 10.0159 { 0.0059 | 0.0342
0.0065 | 0.0034 | 0.0092

We need to estimate the parameters a and ¢ from the noisy coefficients to employ
the SNIG PDF in denoising. An ML-based method is introduced for estimating
the parameters of the SNIG PDF. For estimating the parameters from the noisy
coeflicients in a subband, let a vector be formed comprising the coeflicients in that
subband. Let us denote the number of coefficients in the subband by NV, and the
probability corresponding to the n-th coefficient by P,(n). The proposed estimator

is then given by

-~ No
a,0 = arg max > In Py(n) (6.15)
@0 =1
where
1 o0 12
P,(n) = / Pas(g(n) — t)e™52 dt (6.16)
20 J-o0

By replacing —&~ with a new variable z, (6.16) can be written as
V2o

1 o]
Py(n) = NG /_oo P.s(g(n) — V202)e ™ dz (6.17)
The integral in (6.17) can be approximated by using the Gauss-Hermite quadra-
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ture [53] as

o0 , Q
[ Paslaln) = Vao2)e™ dz =Y wiPasly(n) - Vo) (618)

oo :
where z; is the r-th root of the Hermite polynomial of order ¢, and w; is the weight
associated with this root. The approximation error corresponding to (6.18) is given
by %fm(y), where f(v) = P,;5(g(n) — v20v), and 9 is the 2Q-th derivative
of f. Since f can be expressed in the form of a polynomial, the error is considered

small [110]. The proposed ML estimator is given by

. Ny Q
@, = argmax » ln(i 3" wiPas((9(n) — V20z;)) (6.19)
s 23 ﬁj:l

Note that the integral is computed at a limited number of points, thus resulting in a
reduction of the complexity associated with the process of maximization. Moreover,
we have found it sufficient to use the center values corresponding to the bins of a NV,-
point histogram of the subband, where N, = v/N,, instead of all the N, coefficients
in the subband, thus providing an additional reduction in the complexity of the

maximization process. The standard deviation of the noise is obtained as [55]

MAD(g(p,m))
0.6745

g(p,m) € HH; (6.20)

o=

A Bayesian MMSE estimator, using &, & and 7, is next developed to provide an

estimate Z(g) from the noisy observations. The Bayesian estimate is given by [111]

[ P,(g — z)Py(z)zdz

W) = TR om@d

(6.21)

Note that (6.21) does not have a closed-form expression for the SNIG PDF. Hence,
the Bayesian estimates are obtained numerically using the fast method described in

Chapter 2 [46].
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Figure 6.4: Plot of o, across the subband levels.

Assuming that the Bayesian MMSE estimates are approximately noise-free and
using (6.9), we obtain the signal variances that are utilized by the proposed LMMSE
estimator to reduce the noise from the wavelet coefficients. This assumption is veri-
fied through experiments, in which the values of the standard deviation of the noise
removed from the various subbands of noisy Lena, Barbara and Boat (by using the
proposed Bayesian MMSE estimator) are calculated for different noise levels. Next,
the values obtained for the subbands at the same level and orientation are averaged.
The averages are denoted by o, and plotted in Fig. 6.4 for the noise standard devia-
tions of 15 and 25. It can be seen that the values of o, are close to the actual values
of 15 and 25, thus indicating that the Bayesian MMSE estimates are approximately
noise-free. The various steps involved in denoising an image using the proposed

method are given in the following in the form of an algorithm.
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Proposed Denoising Algorithm

Step 1
Step 2
Step 3

Step 4

Step 5

Step 6

Step 7

Step 8

Carry out the orthogonal wavelet decomposition of the noisy image.
Estimate the parameters of the SNIG and Gaussian PDFs from
the coefficients of the noisy image.

Using (6.21) and the values of the parameters acquired in Step 2,
obtain the Bayesian MMSE estimates of the noise-free coeflicients
i e, Z.

Once 7 is determined, obtain the variances of the Bayesian MMSE
estimates of the coefficients in different subbands using (6.9).
Using (6.12) and the values of variances obtained in Step 4, obtain
the LMMSE estimates of the noise-free coefficients, namely,
from (6.13).

Obtain the estimates of the variances of the LMMSE filtered
coeflicients in subbands at levels 3, 2 and 1 using (6.9), where

is replaced by Z.

Using (6.12) and the variances obtained in Step 6, determine the
LMMSE estimates of the noise-free coefficients in the subbands

at levels 1 and 2 from (6.13).

Perform the inverse wavelet transform to obtain the denoised image
using the LMMSE estimates of the noise-free coefficients obtained
in Step 7 for the subbands at levels 2 and 1 and in Step 5 for
those of the higher levels.

6.4 Simulation Results

Experiments are carried out using eight typical noise-free images, namely, Aerial,
Barbara, Boat, Bridge, Brodatz, Fingerprint, Lena, and Mandrill. The Boat and Fin-
gerprint images are taken from [108], the Aerial and Brodatz images from [109], and
the rest of the images from the Waterloo Bragzone [64]. A 4-level wavelet decom-
position is carried out using the Daubechies’ Symlet wavelet [47] of order 8. For
estimating the parameters of the SNIG PDF, the value of @ in (6.19) is set to 20.
The PSNR is used as a performance criterion and calculated (for a particular noise
standard deviation) by averaging the values obtained from repeating the experiments
four times. For the case of orthogonal wavelet transform, the performance of the

proposed method is compared with that of the Bayes-shrink [44], LCHMM [62], Bi-
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shrink [94], GSM [97], LAWML and LAWMAP [71], Th-Wiener {72], Arb-Win [101],
and ABE rule [103]. Among these methods, the results for the GSM method [97]
are obtained with the software provided by its authors in [108]. Table 6.4 shows the
values of the PSNR (in dB) for the various methods using the orthogonal DWT. It
can be observed from this table that the proposed method performs better than the
other techniques in most of the cases. For qualitative comparison, the noisy Lena
image (for ¢ = 25) and the corresponding denoised images obtained by using the
various methods are shown in Figs. 6.5 and 6.6. It can be seen from these figures
that the proposed method provides images that are of better visual quality than that
provided by most of the other techniques. The orthogonal DWT lacks shift-invariance
resulting in artifacts such as ’specks’ in the smooth regions, and 'ringing’ around the
edges. However, the proposed method smooths much of these distortions. To il-
lustrate this, a zoomed-in section of the denoised image obtained by the proposed
method along with that obtained by three other methods is given in Fig. 6.7. It is
seen from the figure that compared to the other methods, the artifacts are relatively
more smoothed by the proposed denoising technique. Overall, the proposed method
provides an image having a smoother look with less distortions in the homogeneous
regions and around the edges. The resulting visual quality is better than that of the
other methods, and can be attributed to the use of the proposed modified LMMSE
estimator that utilizes both intra and inter-scale dependencies in contrast to the other
methods employing LMMSE estimators that use only the intra-scale dependency. In
order to show that there is an improvement in the performance achieved by using
the modified LMMSE estimator in the proposed method, over that of using only the

Bayesian MMSE estimator or the MMSE in conjunction with the LMMSE estimator,
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Table 6.4: PSNR values for the various methods using orthogonal wavelet transform

[s3
Method 10 15 20 25
Lena
Proposed 34.70 32.80 31.42 30.39
3 x 3 LAWML 33.72 31.37 29.63 28.22
3 x 3 LAWMAP 34.25 32.33 31.00 29.96
5 x 5 LAWML 34.13 31.99 30.46 29.24
5 x 5 LAWMAP 34.31 32.36 31.01 29.98
Bayes-shrink 33.56 31.70 30.43 29.54
Th-Wiener 34.5 - - 30.1
Bi-shrink 34.36 32.36 31.19 30.15
Arb-Win 34.49 32.48 31.06 29.94
ABE rule 32.74 30.48 28.74 27.38
LCHMM 34.50 32.50 31.20 30.10
GSM 34.66 32.77 31.43 30.39
Barbara
Proposed 33.18 30.83 29.20 27.98
3 x 3 LAWML 32.32 29.72 27.93 26.53
3 x 3 LAWMAP 32.46 30.03 28.39 27.21
5 x 5 LAWML 32.54 30.09 28.43 27.15
5 x 5 LAWMAP 32.57 30.19 28.59 27.42
Bayes-shrink 31.58 29.37 27.81 26.62
Th-Wiener 32.9 - - 27.8
Bi-shrink 32.25 29.97 28.36 27.16
Arb-Win 32.73 30.34 28.73 27.50
ABE rule 31.28 28.79 27.03 25.71
LCHMM 33.10 30.80 29.20 28.00
GSM 33.13 30.68 29.03 27.83
Aerial
Proposed 30.22 27.93 26.43 25.35
5 X 5 LAWMAP 29.80 27.60 26.12 25.01
GSM 30.27 27.76 26.17 25.04
Boat
Proposed 32.76 30.83 29.47 28.42
5 x 5 LAWMAP 32.50 30.56 29.18 28.15
Bi-shrink 32.42 30.55 29.18 28.14
GSM 32.84 30.83 29.42 28.36
Bridge
Proposed 30.30 28.02 26.55 25.54
5 x 5 LAWMAP 29.96 27.80 26.39 25.36
GSM 30.29 27.83 26.35 25.33
Brodatz
Proposed 29.87 27.56 26.02 24.89
5 x 5 LAWMAP 29.48 27.21 25.68 24.56
GSM 29.79 27.27 25.71 24.60
Fingerprint
Proposed 31.75 29.54 28.04 26.91
5 x 5 LAWMAP 31.28 29.04 27.52 26.40
GSM 31.36 29.04 27.56 26.38
Mandrill
Proposed 29.61 27.37 25.87 24.70
5 x 5 LAWMAP 29.16 27.14 25.72 24.66
GSM 29.91 27.39 25.76 24.59
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Figure 6.5: (a) Noisy Lena image. Denoised images using (b) proposed method, (c)
Bayes-shrink, (d) ABE rule, (e) 3 x 3 LAWMAP, (f) 5 x 5 LAWMAP, (g) Arb-Win,
and (h) GSM.
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(g) (h)

Figure 6.6: (a) Noisy Barbara image. Denoised images using (b) proposed method,
(c) Bayes-shrink, (d) ABE rule, (e) 3x3 LAWMAP, (f) 5x5 LAWMAP, (g) Arb-Win,
and (g) GSM.
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Figure 6.7: Zoomed-in section of denoised Lena image obtained using (a) proposed
method, (b) 3 x 3 LAWMAP, (c) 5 x 5§ LAWMAP, (d) Arb-Win.
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we obtain the PSNR values for the two latter cases using three test images, Lena,
Barbara and Boat. For this purpose, the images are corrupted with noise having vari-
ous standard deviations. The noisy images are then denoised using only the Bayesian
MMSE estimator, or the MMSE in conjunction with the LMMSE estimator in the
proposed method. The corresponding PSNR values along with those of the proposed
method using the MMSE and modified LMMSE estimators are listed in Table 6.5.
From this table, it is clear that a significant performance improvement is achieved by
the addition of the LMMSE estimator. On average, the gain in PSNR over using the
Bayesian MMSE estimator alone is 1.35 dB. Note that the modified LMMSE estima-
tor utilizes signal variances obtained using local neighbors and the standard deviation
of the parent. Thus, both intra-scale and inter-scale information are exploited in the
LMMSE estimator that contribute to this improvement in performance. The average
improvement introduced by the modification in the LMMSE estimator over that of
using the non-modified one is 0.13 dB. This small improvement obtained by incorpo-
rating the inter-scale dependency through the use of the parent coefficient’s standard
deviation is in agreement with the observation of Liu and Moulin in [30], where it is
shown that that incorporating the inter-scale dependency on top of the intra-scale de-
pendency results in a marginal improvement in performance. It should also be noted
that the performance of the LMMSE estimator is considerably improved by using sig-
nal variances estimated from the Bayesian MMSE estimates that are approximately
noise-free. This can be observed by comparing the results of the proposed method for
the Lena and Barbara images with those obtained by the Th-Wiener [72] where the
variances are obtained from thresholded coefficients, or those of LAWML [71] where
the variances are obtained directly from the noisy coefficients. In order to investigate

the effect of repeating the proposed method on the objective as well as the subjective
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Table 6.5: PSNR values for the proposed method using the Bayesian MMSE estimator
only, MMSE and LMMSE estimators, and MMSE and modified LMMSE estimators
for the images, Lena, Barbara and Boat

Estimators used in Standard deviation of noise
the proposed method 10 | 15 [ 20 [ 25
Lena
MMSE only 33.89 | 32.01 | 30.71 | 29.75
MMSE and LMMSE 34.39 | 32.59 | 31.26 | 30.28
MMSE and modified LMMSE | 34.63 | 32.75 | 31.37 | 30.36
Barbara
MMSE only 31.84 | 29.49 | 27.89 | 26.70
MMSE and LMMSE 32.88 | 30.68 | 29.12 | 27.93
MMSE and modified LMMSE | 33.02 | 30.73 | 29.20 | 27.98
Boat
MMSE only 32.16 | 30.22 | 28.83 | 27.82
MMSE and LMMSE 32.63 | 30.72 | 29.40 | 28.34
MMSE and modified LMMSE | 32.76 | 30.83 | 29.47 | 28.42

quality of the denoised image, the proposed method is repeatedly applied to the noisy
Lena, Barbara and Boat images corrupted with noise of various standard deviations.
In view of the space considerations, the results for only the Lena image for different
number of repeatations for a noise standard deviation of 25 are shown in Fig. 6.8.
It is seen that repeated application provides little improvement either in terms of
the objective or the subjective quality. Moreover, it requires additional computation,
which is obviously not worthwhile.

As mentioned earlier, an orthogonal DWT is not shift-invariant. Since the redundant
wavelet transforms are shift-invariant, denoising methods employing such transforms
can offer a performance better than that using the orthogonal DWT. However, the
lack of the shift-invariance property associated with the orthogonal DWT can be
overcome by using the cycle-spinning technique proposed in [61]. It has been shown
in [62] that by implementing the orthogonal DWT-based denoising method in cycle-

spinning mode, a performance equivalent to those using the traditional redundant
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Figure 6.8: Denoised Lena image obtained by repeated application of the proposed
method. (a) Original noisy image (PSNR=20.17 dB), (b) Denoised image after the
first application (PSNR=30.38 dB), (c) Denoised image after the second application
(PSNR=30.50 dB), (d) Denoised image after the third application (PSNR=30.50 dB).
wavelet transforms, for example, the stationary wavelet transform (SWT), can be
achieved. In view of this, we consider the proposed method with cycle-spinning,
where the noisy image is circularly shifted by zero, one, two and three pixels in both
the horizontal and vertical directions. It should be mentioned that in the proposed
method the estimation of SNIG parameters is carried out for the zero shift only.
Recently, a new redundant wavelet transform called the dual-tree complex wavelet

transform (DT-CWT) has been proposed [87], that in addition to being shift-invariant

and computationally less demanding than the SWT, provides better directional and
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rotational selectivity. Therefore, we also extend our method to the DT-CWT do-
main. The results of our method are compared with those of [62], [98], [97], [99],
and [104]. The results for [97] and [99] are obtained using the softwares provided
in [108] and [92], respectively. Table 6.6 contains the PSNR values obtained using the
various methods. It can be seen that the values of the PSNR obtained by using the
proposed method in DT-CWT domain are higher than that obtained by the other
methods except for that of [97] in which case the PSNR values are comparable. Fig.
6.9 and 6.10 show the denoised images obtained by using the proposed method with
cycle-spinning and DT-CWT for the noisy Lena and Barbara (for o = 25) as well as
the corresponding denoised images obtained with the Probshrink [99] and GSM [97]
methods. It can be observed that the proposed method provides denoised images
that are of improved visual quality and comparable to that of [97]. In comparison to
the GSM method [97], the proposed method requires less computational time. For
example, on an Intel Pentium IV 2.4 GHz personal computer with 768 MB RAM, the
average CPU times (in MATLAB) to process the images of 256 x 256 and 512 x 512
pixels for our method are 9.17 secs and 26 secs, respectively. The corresponding CPU
times required by the GSM method [97], using the software available in [108], are
27.35 secs and 123.64 secs, respectively.

The comparatively low CPU time of the proposed method can be explained as
follows. The proposed method has only two steps. For an image of D, x D, pixels, the
complexity associated with the Bayesian MMSE estimation and LMMSE estimation
steps are given by O(Cp) and O(Cy), respectively, where Cg = DyDjlog: Dy, Cp, =
DyMD? Dy = D.Dp, the redundancy factor Dy = 4, the number of orientations
D, =3, D = \/B:x-Dy, and the window size M = 9. The overall complexity

of the proposed method is roughly O(Cy) as C, >> Cp. On the other hand, the
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complexity of the GSM method is roughly O(D?Rp), Rp being 2N, K,S,, where the
neighborhood size N,, = 10, the number of orientations K, = 8, and the length of the
sampling grid S, = 13. Since Rp >> DM, it is obvious that the proposed method
has a complexity that is much smaller than that of the GSM method, and hence,

requires a relatively low CPU time.
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Table 6.6: PSNR values for the various methods using redundant wavelet transform

o
Method 10 15 20 25
Lena
Proposed (cycle-spinning) 35.06 33.17 31.85 30.76
Proposed (DT-CWT) 35.46 33.62 32.27 31.36
LCHMM-SI 35.00 33.00 31.70 30.60
SAQOE 34.90 33.00 31.92 30.60
Proposed in [98] 34.75 33.03 31.87 30.89
GSM 35.63 33.67 32.68 31.70
Probshrink 35.09 33.26 31.92 30.89
Barbara
Proposed (cycle-spinning) 33.70 31.40 29.75 28.45
Proposed (DT-CWT) 34.38 32.10 30.42 29.22
LCHMM-SI 33.60 31.40 29.70 28.50
SAOE 33.30 31.10 29.40 28.20
GSM 34.47 32.20 30.58 29.32
Probshrink 33.83 31.44 29.77 28.47
Aerial
Proposed (cycle-spinning) 30.69 28.38 26.87 25.78
Proposed (DT-CWT) 31.01 28.60 26.94 25.85
GSM 31.08 28.72 27.17 26.03
Probshrink 31.08 27.76 26.17 25.04
Boat
Proposed (cycle-spinning) 33.24 31.31 29.92 28.90
Proposed (DT-CWT) 33.48 31.50 30.11 29.01
Proposed in [98] 3326 | 3122 | 3000 | 2895
GSM 33.58 31.69 30.36 29.33
Probshrink 33.23 31.29 29.92 28.87
Bridge
Proposed (cycle-spinning) 30.65 28.35 26.88 25.88
Proposed (DT-CWT) 31.04 28.59 27.05 25.96
GSM [97] 30.95 28.59 27.12 26.08
Probshrink {99] 30.52 28.14 26.66 25.65
Brodatz
Proposed (cycle-spinning) 30.32 27.75 26.46 25.35
Proposed (DT-CWT) 30.51 28.10 26.55 25.39
GSM 30.46 28.08 26.53 25.41
Probshrink 29.96 27.56 26.05 24.95
Fingerprint
Proposed (cycle-spinning) 32.25 30.10 28.59 27.42
Proposed (DT-CWT) 32.37 30.16 28.65 27.74
GSM 32.44 30.14 28.59 27.44
Probshrink 31.93 29.70 28.13 26.94
Mandrill
Proposed (cycle-spinning) 29.98 27.73 26.18 25.07
Proposed (DT-CWT) 30.67 28.23 26.56 25.37
GSM 30.55 28.15 26.58 25.44
Probshrink 30.00 27.61 26.00 24.85
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Figure 6.9: Denoised Lena images using (a) proposed method (with cycle-spinning),
(b) proposed method (with DT-CWT), (c) Probshrink, and (d) GSM.
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() (d)

Figure 6.10: Denoised Barbara images using (a) proposed method (with cycle-
spinning), (b) proposed method (with DT-CWT), (c) Probshrink, and (d) GSM.
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6.5 Conclusion

A new spatially-adaptive method using wavelet transform has been proposed in this
chapter for reducing noise in images corrupted by additive white Gaussian noise.
It has been shown that the SNIG PDF is very well suited to model the wavelet
coefficients. A maximum likelihood-based technique has been proposed for estimating
the parameters of the PDF, wherein the Gauss-Hermite quadrature approximation
has been used to carry out the maximization process in a computationally efficient
manner. A Bayesian minimum mean squared error estimator has been developed
using the PDF. The Bayesian estimates have been employed as preliminary estimates
of the noise-free coeflicients, which are utilized to obtain the signal variances, using a
relatively small local neighborhood, thus reducing the computational load. A modified
linear minimum mean squared error estimator that takes into consideration both
the intra-scale and inter-scale information has been introduced. Experiments using
typical noise-free images corrupted with simulated noise have been carried out to
investigate the performance of the proposed method, and compared it with those
of some of the existing denoising techniques. It has been shown that the proposed
method not only performs better than several standard methods in terms of the peak
signal-to-noise ratio, but also provides images with good visual quality. Besides, the
proposed method gives a performance competitive to that of the state-of-the-art GSM

method with a considerably less computational complexity.
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Chapter 7

Conclusion

7.1 Concluding Remarks

Synthetic aperture radar (SAR) and ultrasound are powerful imaging systems that
are extensively used in remote sensing and medical diagnosis, respectively. A major
problem with these systems is that the resulting images are inherently corrupted by
speckle noise. The objective of this thesis has been to develop efficient wavelet-based
techniques for reducing the speckle substantially in the SAR and medical ultrasound
images as compared to that achieved by the existing methods, without unduly in-
creasing the computational cost. The performance improvement has been achieved
by using efficient statistical models for developing Bayesian MMAE, MMSE and MAP
estimators and incorporating the spatial dependence of the wavelet coeflicients with
the Bayesian estimation processes. Fast and efficient techniques have been proposed
for estimating the model parameters, while incorporating the dependencies of the
wavelet coeflicients.

An efficient method, that uses the Cauchy PDF to model the coefficients corre-
sponding to the log-transformed reflectivity has been introduced, for despeckling the

SAR images. By using the spatial information to modify the Bayesian estimates,
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a considerable improvement in denoising has been achieved. This improvement is
due to the incorporation of the spatial dependencies with the Bayesian estimation
processes.

It has been shown through experimental studies that the symmetric normal inverse
Gaussian (SNIG) PDF is highly suitable for modelling the wavelet coefficients of the
log-transformed reflectivity corresponding to both the SAR and medical ultrasound
images. Efficient methods have been developed using the SNIG PDF for reducing
the speckle in these kinds of images. By using the SNIG PDF, it is possible to
achieve a substantial reduction in the speckle as compared to the existing methods
with a moderate increase in the complexity. The proposed techniques, although
homomorphic, cause very little bias. It is worth mentioning that among the two
methods to despeckle the SAR images, the one utilizing the SNIG PDF is the most
effective.

An alternative fast and robust technique to despeckle the medical ultrasound
images, that takes the heavy-tailedness of the log-transformed speckle into account,
has been introduced. By incorporating the heavy-tailedness of the log-transformed
speckle in the Bayesian estimator, a better performance in denoising has been achieved
over that obtained by the commonly-used Gaussian model. The proposed methods for
despeckling the ultrasound images are robust enough to withstand the wide variability
of the image features and to accommodate the processing of the images on a case-by-
case basis.

Finally, it has been shown that the SNIG PDF is also highly suitable for modelling
the wavelet coefficients corresponding to the natural images, and this has been used
to advantage for developing an efficient method for the classical case in reducing the

AWGN from these images.
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7.2 Scope for Further Work

The research work undertaken in this thesis can be extended in several respects. One
interesting area of investigation would be the development of efficient despeckling
techniques using the SNIG PDF for reducing the partially-developed speckle, observed
in highly heterogeneous regions of the image. Another challenging problem is the
direct incorporation of the speckle correlation in the Bayesian estimators.

As mentioned in this thesis, the distribution of the log-transformed speckle noise is
actually given by a Fisher-Tippet PDF. Therefore, it is worthwhile investigating as to
whether it is possible to develop an effective despeckling technique that incorporates
the Fisher-Tippet PDF in modelling the wavelet coefficients of the log-transformed
speckle noise. An obvious challenge is to develop a Bayesian estimator that uses the
Fisher-Tippet PDF in closed form, so as to reduce the computational cost. Even
though non-homomorphic methods for despeckling can be developed using the SNIG
PDF, a problem with such an approach is the dependency of the noise on the signal.
Therefore, it is necessary to develop an efficient method to discriminate between the

signal and noise coefficients, in order to denoise the corrupted signal.
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