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ABSTRACT
Face Recognition under Significant Pose Variation

Feng Yang

Unlike the frontal face detection, multi-pose face detection and recognition techniques,
still face the following challenges: large variability of environments such as pose,
illumination and backgrounds, and unconstrained capturing of facial images. We
introduced a new system to deal with this problem. First, a two-step color-based
approach is used to find a candidate area of face from original picture. Then a rough
estimator of five poses is created using AdaBoost technique. In order to accurately locate
the candidate face, multiple statistical shape models-ASM (Active Shape Models) are
proposed to estimate an accurate pose of model of the input image and to extract facial
features as well. In the recognition step, we use a geometrical mapping technique to deal

with the pose variation and face identification.
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1 Introduction

1.1  Overview

Human face recognition has been an active research topic in the field of pattern
recognition for decades. Unlike other existing identification technologies such as
fingerprint and iris recognition, face recognition has some outstanding characteristics such
as non-intrusive and user-friendly interfaces, which mean the face recognition can be
carried out without any human intervention or even awareness of the user. Based on these
advantages, there are many potential practical applications so far, for example,

identification in banking, mug shot searching, security monitoring and surveillance.

Much progress has been made in face detection and recognition in recent years, especially
in case of face processing under controlled conditions. The most popular approach studied
over two decades was frontal face detection and recognition. Sung and Poggio [1] found a
classifier based on the difference feature vector which is computed between the local
image pattern and the distribution-based model. Papageorgiou [2] proposed a detection
technique based on an overcomplete wavelet representation of an object class [45]. Both
are carried out by performing a dimensionality reduction to select the most important basis
function in the first place; and then a Support Vector Machine (SVM) is trained [2] to
develop final prediction. The SNoW learning architecture was adopted by Roth [3] for

learning in the presence of a very large number of features.



Unlike the frontal face detection, most non-frontal face detection techniques in the
literature are view-based [39], in which several face models are built; each describes faces
in a given range of view. Therefore, explicit 3D modeling is avoided. Pentland et al {39]
partitioned the views of face into five channels, and developed a multi-view detector by
training a separate detector network for each view. Viola and Jones [9] built a fast
multi-pose face detection system. In their work, a cascade of boosting classifiers is built
on a set of Haar-like features [2] that integrates the feature selection and classifier design
in the same framework. Schneiderman and Kanade [10] used multi-resolution information
in different levels of wavelet transform. The system consists of an array of two face
detectors in a view-based framework. Each detector is constructed using statistics of
products of histograms computed from examples of the respective view. It has achieved
the best detection accuracy in the literature, while it is very slow due to the computation

complexity.

Another technique directly related to the face detection is face feature extraction (actually
it is a part of face detection—accurate face detection). One earlier approach for feature
extraction was proposed by Yuille et al.[14]. In this approach, parameterized deformable
templates are used to minimize a predefined fitting function. Recently, the Active Shape
Model (ASM) and Active Appearance Model (AAM) [15] were proposed as two effective
techniques for feature extraction. In those techniques, a constrained statistical shape model

is adopted, which offers fast and stable performance.

As successor of face detection, face recognition has always received significant attention.

Turk and Pentland [6] introduced a first successful face detection and identification



system by using eigenfaces. Lin et al.[11] proposed an automatic face detection and
recognition system by using a Probabilistic Decision Based Neural Network (PDBNN)
which includes three components: a face detector, an eye localizer and a face recognizer.
Blanz and Vetter [12] suggested an approach combing 3D shape and texture which is
estimated using a single image. The estimate is achieved by fitting a statistical, morphable
model of faces to the image. The model is learnt from textured 3D data collected with a
laser-stripe scanner. A probabilistic PCA-based model is used to represent the statistical
variation of shape and texture of human heads. Phillips [13] applied SVM methods in face
recognition and made an impressive achievement with high recognition rate by using a
support vector machine as the classifier given a set of points belonging to two classes. A
SVM can find a hyperplane that separates the largest possible fraction of points of the
same class on the same side, while maximizing the distance from either class to the

hyperplane.

All those works have achieved satisfactory recognition rate on frontal faces with limited
variation of expression, lighting and controlled pose. One of the key remaining problems
in face recognition is the need to handle the large variability in appearance due to change
in pose and illumination (e.g. in an unconstrainted environment) since the relatively
unconstrained environment imposes more challenges compared to conventional frontal

face recognition. These extra challenges include the following;:

1. Large variability of operating environments such as pose, illumination and

backgrounds).

2. Nearly unconstrained capturing of facial images.



In this thesis, we will introduce a mug shot identification system which can precisely
detect the multi-pose faces and recognize them using geometrical mapping approach.
When a police department analyzes suspects’ photos, since a large amount of pictures
taken from unconstrained and constrained environment need to be processed, it is very
inefficient to handle all this work manually. The overall goal of our research is to develop
an automatic system which detects the face within a complex background and varying
pose, and recognizes the corresponding object from a frontal and profile mug shot

database.

1.2 Problem Statement

According to the literature and experiment results, the problem of automatic face

recognition involves three key steps/subtasks:
1) Detection and localization of faces
2) Feature extraction and accurate normalization of faces
3) Identification and/or verification.

The first step in any automatic face recognition systems is to detect faces within images.
Face detection, however, has always been regarded as a challenging problem in the field
of computer vision, due to the large intra-class variations caused by the changes in facial
appearance, lighting, pose and expression. Such variations result in the face distribution to
be highly nonlinear and complex in space. Moreover, in the applications of real life, the

pose variations make the distribution of human faces in feature space more dispersed and



complicated than that of frontal faces. It further complicates the problem of robust face

detection.

After roughly detecting the candidates of face area, the output from the face detector
contain faces with varying scale, position and pose. Those unaligned facial images (Figure
1) can not be directly used in identification since it may potentially cause extremely high
rate of failures. Moreover, in order to archive satisfactory result in recognition step, we
need an accurate extraction of salient facial features for normalization purposes and pose
estimation must be made in the mean time. However, there are two problems with
achieving this goal. First, the 2-D data provided by conventional cameras lacks the
sensitivity and features required for accurate 3-D pose estimation of arbitrarily shaped
objects. Second, approach of pose estimation requires operation which is difficult to

perform feature extraction.

Figure 1: Unaligned Facial images after face detection

The difficulty in face recognition is magnified by necessity to deal with variations, such as
pose, illumination and expression. Among all kinds of variations, pose variation is the
hardest one to model and therefore contributes most of the recognition error to a

recognition system. Due to time constraints, we did not consider the complex issues of



illumination and expression in this thesis. The difficulty with pose variation is that, the
intra-subject variations can be as large as, or even larger than the inter-subject variations

when pose variation is present.

1.3 Research Contributions

Since multi-pose faces have different facial features, in order to train the face detector with
varying pose, image sets with five poses for training and testing were collected manually

from internet. The number of training and testing face image sets are shown in the

following table:

fll"‘(')se d.;itaset ‘ testiﬁg ‘ | tralmng
Left 90 200 1000
Left 45 200 1000
Front 200 4918
Right 45 200 1000
Right 90 200 1000
Non face 200* 15000%*

Table 1: The number of training and testing face image sets

* This number is fixed, but the actual nonface images vary in each training task.



**This is total number, but the actual number of non faces used during training is
same as the number of faces

To deal with the face detection in pose variation, first, we adopted the color-based

approach to speed up the whole processing, then we introduced a machine learning
approach — based on AdaBoost- which selects a small number of critical visual features
from a larger set and produces efficient classifiers and combines more complex classifiers.

Then we utilized the quantization output of the previous detector, and a rough estimator of

five poses, namely left profile, left 45 degree, front, right 45 degree and right profile was
created. The following Figure 2 shows this process

Non faces
/// / ‘\a | h ~
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/f / ! \“ \' \
/ v N
/ / - \
// £ \ \ \
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Figure 2: Rough face detector & pose estimator




Since the previous output still contains faces with varying scale and position, and the
estimated pose is not accurate enough to continue the recognition task, the direct use of
unaligned facial images will potentially lead to identification failure. We need to
accurately locate the candidate face. To this end, nine statistical shape models- ASM
(Active Shape Models) are adopted to estimate the accurate position of model of the input
image and to extract facial features as well. Based on results of rough pose detectors, we
utilize ASMs of adjacent poses on detected image, for example, carrying out ASMs of
degree of Left 45, Left 22.5 and Left 67.5 on previously roughly detected left 45 degree
face, since the best ASM has the smallest deviation (the detailed explanation described in
section 4.6.2 below), not only the accurate facial features can be found but also the more
realistic pose 1s estimated in the same time. Figure 3 shows the process of accurate facial
feature detection. Please note that the three ASMs in the middle of the figure are not the

same when dealing with different candidates, but they are always adjacent to each other.
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Figure 3: Accurate face detector
In the recognition step, we adopted geometrical mapping technique to deal with the pose
variation, which essentially maps each face image onto the surface of a 3D ellipsoid. All
recognition is then performed on the surface of the ellipsoid. Geometrical mapping could
be considered as one way of registering the faces, compensating the pose variation and as
well as reducing the intra-subject variations. The following Figure 4 shows the overall

architecture of our algorithms.



Cotor-based AdaBoost rough
detection detection

il

Feature extraction
and normalizaion

Edge detection

JL

Geometry assisted face recognition

The pipeline of algorithm

Best match result

Figure 4: Algorithm architecture.
The matching process for candidate images is shown in Figure 5. The results of our
research were published in 20th Canadian Conference on Electrical and Computer

Engineering (CCECE 2007) [44].
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input image
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Detection
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Detection

ASM-based
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extraction

Geometrical
mapping
Identification

Qutput

Figure 5: Face recognition process flow.

1.4 Organization of Thesis

The remainder of this thesis is organized as follows. In chapter 2, we give an overview of
related works on face detection and recognition. In chapter 3, we introduce the major face
database used in this thesis and discuss data standard, data collection and preprocessing.
Chapter 4 illustrates each processing model of detectors in detail. In the chapter 5,
geometry assisted face recognition approach is presented and applied to pose-robust face

recognition.



2 Background and Related Work

Since there are too many publications related to face detection and face recognition to
thoroughly review them all. We discuss following ones which represent the state of the art

and are the most frequently used in the literature and most relevant to our work.

2.1 Face Detection Approaches

There are many ways to detect a face in a scene. Here is a list of the most common

approaches in human face detection.
2.1.1 Skin Color

The color of human skin is distinctive from the color of many other natural objects, hence
color is a very important feature that can be used for face detection. Analyzing the
skin-tone color statistics, researchers observed that skin colors are distributed over a small

area in the chrominance plane and the major difference between skin tones is intensity.

In the beginning of the color-based face detection algorithm, color segmentation is used to
classify skin and nonskin color pixels in the input image. There are many ways for this
classification [41][42], and we chose the simplest method. It is based on the fact that skin
color is compactly clustered in color spaces such as TSL, YCbCr, and HSV with separated
luminance and chrominance components. Thus the image is filtered so that only regions
likely to contain human skin are marked. This filter was designed using basic

mathematical and image processing functions. The binary skin map and the original image

12



together are used to detect faces in the image. Notice that the criterion for color pruning
used in this stage is quite relaxed, therefore, a higher false acceptance rate than a more
intricate color-based detection approach is likely to happen. However, for an initial
detector in the whole detector cascade, we would rather focus on the speed rather than

accuracy and the overall detection performance is reinforced by the succeeding process.
2.1.2 Active Shape Model

Recently, a lot of research have been done on face alignment. Active shape model (ASM),
first proposed by Cootes etc[17], is considered to be an efficient method for face
alignment and feature localization. ASM is generally divided into three parts: a shape

model, an appearance model and the search procedure.

1) Shape Model

In ASM, a face is represented by a set of labeled points (Figure 6). Each point represents
the position of a particular part of the structure. The model is trained by marking landmark
points on each of a set of training images. Statistical analysis of the relative positions of
the landmarks in different examples allows both the average shape and shape variation to

be modeled.



Figure 6: Face model with labeled points

2) Appearance Model

In ASM, local normalized derivative is used to describe the profile around each landmark

[18].

3) Search Procedure

Face alignment and feature localization is carried out by finding the desired movement for
each landmark with an initial position. Desired movement is achieved by finding the most

matched sub-profile, which passes by the original landmark point.
2.1.3 Edge-Orientation Matching

Since prominent facial features like face contour, eyes and mouth are often characterized
by relatively pronounced edges, edge information (with both strength and orientation)
proved to be effective in face processing [16]. The edge map of a given image region is
obtained by convolving the image with a horizontal and vertical 3x3 Sobel edge filter. The

Sobel method finds edges using the Sobel approximation to the derivative. It returns edges



at those points where the gradient of the image is maximum. The extraction of edge
information (strength and orientation) from a 2-D array of pixels /(x, y) (a grey-scale
image) is the basic feature calculation in detection framework. In this work, the Sobel
method was used for processing of edge detection. It is a gradient-based method which
needs to convolve the image I(x, y) with two 3 X3 filter masks. The convolution of the
image with the two filter masks gives two edge strength images Sx (x, y) and Sy (x, y). The
Edge-Strength image (ES), also known as Sobel gradient, and the Edge-Orientation image

(EO) are generated, given by

ES(X,Y) = /S, () +8, (x,Y) ¢))
EO(x,y)=arctan :z%:;,; (2)

The following figure is an example face processed by Sobel edge filter.

Figure 7: Face image after processed by Sobel edge filter
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The edge direction as stated in equation (2) takes on values from 0 to 2z. The direction of

an edge depends on whether the grey value changes from dark to bright or vice versa.
2.1.4 Boosting

A machine learning approach for face detection which is capable of processing images
extremely rapidly and achieving high detection rates by using a new image representation
called an integral image that allows for very fast feature evaluation. The integral image
can be computed from an image using a few operations per pixel. Once computed, any one

of these Harr-like features [2] can be computed at any scale or location in constant time.

Within any image sub-window, the total number of Harr-like features is very large, far
larger than the number of pixels. In order to ensure fast classification, the learning process
must exclude a large majority of the available features, and focus on a small set of critical
features, each weak classifier only depend on a single feature [9]. Figure 8 shows some
sample training faces including the features. As a result, each stage of the boosting
process, which selects a new weak classifier, can be viewed as a feature selection process.
AdaBoost provides an effective learning algorithm and strong bounds on generalization
performance combining successively more complex classifiers in a cascade structure
which dramatically increases the speed of the detector by focusing attention on promising

regions of the image

The idea behind boosting is to sequentially employ a weak learner on a weighted version
of a given training sample set to generalize a set of classifiers of its kind. Although any
individual classifier may perform slightly better than random guessing, the formed

ensemble can provide a very accurate (strong) classifier. Viola and Jones [9] build the first
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real-time face detection system by using AdaBoost, which is considered a dramatic

breakthrough in the face detection research

Figure 8: Training image with feature

2.2 Face Recognition Approaches

A general statement of the face recognition problem can be formulated as follows: Given
still or video images of a scene, identify or verify one or more persons in the scene using a
stored database of faces. This thesis considers only still images. The basic approaches to

recognition of still faces are reviewed next.
2.2.1 Principal Component Analysis

It is well known that there exist significant statistical redundancies in natural images [19].
For a limited class of objects such as face images that are normalized with respect to scale,
translation, and rotation, the redundancy is even greater [20]. One of the best global
compact representations is KL/PCA, which decorrelates the outputs. Turk and Pentland

[6] suggested a classic operation on this approach:

1) Acquire an initial set of face images (the training set), and each image has size of

NZ
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2) Calculate the eigenfaces from the training set, keeping only the M
eifenfacesqM<N?) that correspond to the highest eigenvalues. These M images
define the face space. As a new face is captured, the eigenfaces can be updated or

recalculated.

3) Calculate the corresponding distribution in M-dimensional weight space for each

known individual, by projecting their face images onto the "face space."”
Having initialized the system, the following steps are then used to recognize new face
images:

1) Calculate a set of weights based on the input image and the M’ eigenfaces by

projecting the input image onto each of the eigenfaces.

Input face image I

O=I-¥

O~ () 3)

where W is the average face image \P:_l_ M T and 4 is the eigenvector of the
M =t "

covariance matrix C

1 M 7
C = H z":l CD"(D”
and the weights form a vector
T_
Q = [a)l...a)Mv]
2) Determine if the image is a face at all (whether known or unknown) by checking

to see if the image is sufficiently close to "face space."”
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e =|Q-Q,[ )

where Q, is the vector describing the kth face class

If € <0 (0 is a threshold)
Then T is a face

Else I is “unknown”
2.2.2 3-D Morphable Model

Human face is a surface lying in the 3-D space. Therefore the 3-D model should be able to
represent faces, especially to handle facial variations, such as pose, illumination etc.
Blantz et al [12] [22] proposed a method based on a 3-D morphable face model that
encodes shape and texture in terms of model parameters, and algorithm that recovers these

parameters from a single image of a face.

Starting from an example set of 3D face models, a morphable face model is derived by
transforming the shape and texture of the examples into a vector space representation.
New faces and expressions can be modeled by forming linear combinations of the
prototypes. Shape and texture constraints derived from the statistics of example faces are
used to guide manual modeling or automated matching algorithms. Secondly, an approach
for face recognition with variations in pose, ranging from frontal to profile views, and
across a wide range of illuminations was introduced. In order to account for these
variations, the algorithm [24] simulates the process of image formation in 3D space by

using computer graphics techniques, and it estimates 3D shape and texture of faces from
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single images. The estimate is achieved by fitting a statistical, morphable model of 3D

faces to images. The model is learned from a set of textured 3D scans of heads.
2.2.3 3-D Face Recognition

3-D face recognition [25],[26] is an approach having ability to extract the intrinsic
geometric features of facial surfaces using geometric invariants and to compare surfaces
independent of natural deformations resulting from facial variation such as those resulting
from different expressions and poses of the face. The obtained geometric invariants allow
mapping 2D facial texture images into special images that incorporate the 3D geometry of
the face. These signature images are then decomposed into their principal components. In
the first place, the range image and the texture of the face are acquired. Next, the range
image is preprocessed by removing certain parts such as hair, which can complicate the
recognition process. Finally, a canonical form of the facial surface is computed. Such a
representation is insensitive to head orientations and facial expressions, thus significantly
simplifying the recognition procedure. The recognition itself is performed on the
canonical surfaces. The result is an efficient and accurate face recognition algorithm that is

robust to facial variation.
224 SVM

Support Vector Machines (SVMs) have been recently proposed by Vapnik and his
co-workers [23] as a very effective method for general purpose pattern recognition.
Intuitively, given a set of points belonging to two classes, a SVM finds the hyperplane that
separates the largest possible percentage of points of the same class on the same side,

while maximizing the distance from either class to the hyperplane. According to Vapnik,
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this hyperplane is called Optimal Separating Hyperplane (OSH) which minimizes the risk
of misclassifying not only the examples in the training set but also the unseen examples of
the test set. In the field of face recognition [27],[28][29], discrimination functions learned
by SVMs can give much higher recognition accuracy than the popular conventional
eigenface approach [7] where eigenfaces are used to represent face images. After the
features are extracted, the discrimination functions between each pair are learned by
SVMs. Then, a different test set enters the system for recognition and a binary tree

structure can be built to reinforce recognition on the testing samples.
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3 Databases

There are many databases used in face detection and face recognition, the choice of an
appropriate database to be used should be made based on the given task. It is
recommendable to use a standard test data set for researchers to be able to directly
compare the results. According to the tasks of this thesis, three image databases are needed
in training and testing tasks: database in rough face detection, database in accurate face

detection and database in face recognition.

3.1 Database for Rough Face Detection
3.1.1 Data collection

To train the rough detector, 6 sets of training images, which are face images with poses of
left profile, left 45 degree, frontal, right 45 degree, right profile face and nonface, were
used. The frontal face training set consisted of 4916 hand labeled faces scaled and aligned
to a base resolution of 24 by 24 pixels (these images are originally from Viola and Jones’
work [9]). The other four face sets, namely poses of left 45 degree, right 45 degree, left 90
degree and right 90 degree, each with 1000 images, were extracted from images
downloaded during a random crawl of the World Wide Web. Some typical face examples
are shown in Figures 9-13. The non-face images used to train the detector were manually
inspected and found to not contain any faces from the World Wide Web. Each frontal face

classifier was trained with the 4916 training faces and 4916 non-face images (also of size
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24 by 24 pixels) using the Adaboost training procedure. Other face classifiers were trained
with the 1000 training faces and 1000 non-face sub-windows (size 24 by 24 pixels)
respectively using the same training procedure as frontal face. For the initial one feature
classifier, the non face training examples were collected by selecting random
sub-windows from a set of 4916/1000 images (the number depends on the pose) which did
not contain faces. A maximum of 10000 such non-face sub-windows were collected for

each layer.

As for testing images, all face testing sets include 200 images which are different from the
training sets and each non face testing sets include 200 images which are randomly

selected from 10000 testing non face set during the AdaBoost testing procedure.

It is well known that the most important features playing role in recognizing  human
face from human appearance are eyebrows, eyes, mouth and noses. Based on this rule, all
training and testing face pictures are selected. For front faces, the upper boundary is
generally cropped at forehead and the low boundary is set at chin. The only limitation on
left and right boundaries (from viewer’ view) is to make face as close to horizontal center
as possible. For faces with out-of-plane rotation, the criterion on upper and low boundary
is the same as for frontal faces, left boundary of left faces should be kept some margin
space from left edge of face since profile or half profile faces’ features are located in one
side of face image, vice versa on right face set. However, since there are not many
qualified profile images on internet, some half-qualified images are selected as

supplement. It may explain why the classifiers of profile face not work well as 45 degrees
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classifiers do. The following five figures show the examples of training image sets with

five poses.

Figure 9: The front training face examples
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Figure 11: The left 45 degree training face examples
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Figure 13: The right 90 degree training face examples
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3.1.2 Image Processing

All example of faces and nonfaces sub-windows used for training were normalized to
minimize the effect of different lighting conditions. Normalization is therefore necessary

during detection as well.
The following equations show the image processing procedure before training and testing.
x=(x-mean(x))/std(x-mean(x)) 4)

- 1< X, + X, A + Xy
mean(x) =X =— ) X, =
() =x=12x, ~

std(x) = /%i(xi -x)?

where mean() is the general mean operator, std() is standard deviation operator, x is the

pixel values within the sub-window in a vector form and N is the number of pixels. The

mean of a sub-window can be computed using the integral image.

Notice that the images may not be visible after normalization since the pixels range from

-5.8486 to 8.7431 in general.

3.2 Database for Accurate Face Detection

The IMM face database [30], an annotated dataset of 40 different human face images, is
adopted to train the mean face contour model. Points of correspondence are placed on each
image so the dataset can be readily used for building statistical models of shape. The IMM
face database comprises 240 still images of 40 different human faces, all without glasses.
The gender distribution is 7 females and 33 males. Images were acquired in January 2001

using a 640*480 JPEG format with a Sony DV video camera, DCR-TRV900E PAL. The
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following facial structures were manually annotated using 58 landmarks: eyebrows, eyes,
nose, mouth and jaw. A total of seven point paths were used; three closed and four open.

The following Figure 14 shows an annotated frontal face of IMM.

Figure 14: An example of annotation

Since there are only frontal and left and right 30 degree faces in IMM database, we
randomly select part of PIE faces [31] with poses of left profile, left 67.5, left 45, left 22.5,
right 22.5, right 45, right 67.5 and right profile as training faces on the purpose of making
annotated datasets for our Point Distribution Models (PDM) [34]. Except left profile and
right profile models, which have less annotated points with three point paths and 32
points, other seven face datasets have total of 58 points and seven point paths -- three

closed and four open.
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3.3 Database in Face Recognition

PIE Database of CMU [31], the database of CMU Pose, Illumination, and Expression
(PIE) database includes 41,368 images of 68 people, each person under 13 different poses,

43 different illumination conditions, and with 4 different expressions.

As mentioned before, the practice only focuses on the pose sensitive environment, only
those natural and representative pictures are selected for this purpose. The Figure 15
shows some examples of selected images. The labels below the figure are provided by the

author for distinguishing between different poses.
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C34 C14 C11

C29 cz? C05

C37 Cco2 C22

Figure 15: The image examples from PIE database
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4 Face detection

4.1 Color-based face detector and rough pose estimator

Color information has been proven to be an effective image feature for coarsely locating
potential facial regions. We analyzed a sample set of facial pixels taken from pictures of
people of different race, gender, age and under various lighting conditions. We adopted
the YCbCr space since the chrominance components CbCr in the YCbCr color space form
a condensed cluster and it is perceptually uniform, and widely used. A pixel is classified to
be a skin pixel if its color values satisfy: Cbl<Cb<Cb2, Crl<Cr<Cr2, for example,
77<Cb<127 133<Cr<173. The thresholds are based on skin patches collected from
different skin races from the Internet. As a result, skin-regions in an input image can be
quickly determined by checking a look-up table and a binary image demonstrates this
segmentation. Then, an opening operator is used to remove tiny noise in the segmented

image.

Given an input color image as Figure 16, color-based face detection algorithm is as

follows:
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Figure 16: Original input color image

1) Find skin pixels and nonskin pixels, then get a skin image (binary image).

Rl

Figure 17: Output binary image

2) Remove noise from the skin image by an opening operator.

Figure 18: Binary image after opening operator
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Notice that the color pruning criterion used in this stage is quite relaxed, resulting in a
higher false acceptance rate. However, for an initial detector in the whole detector
cascade, we intend to put more focus on speed than accuracy and the overall detection

performance is reinforced by the next processing.

The input color image should be in RGB or BMP format with color intensity values
ranging from O to 255. Due to restrictions on speed and performance, this project used

images with 484x640 in size.

4.2 AdaBoost-based face detection
4.2.1 Features

AdaBoost-based face detection procedure classifies images based on the value of simple
features. There are many reasons for using features rather than directly using the pixels.
The most common reason is that features can discover ad-hoc domain knowledge that is
difficult to learn using training data. The second critical reason is that the feature-based

system operates much faster than the pixel-based system.

There are three kinds of features used in the detection procedure (see Figure 19):
two-rectangle feature, three-rectangle feature and four-rectangle feature. The value of a
two-rectangle feature is the difference between the sum of the pixels within two
rectangular regions. The regions have the same size and shape and are horizontally or
vertically adjacent. A three-rectangle feature computes the sum within two outside
rectangles subtracted from the sum in a center rectangle. Finally a four-rectangle feature

computes the difference between diagonal pairs of rectangles. Given that the base
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resolution of gray value image is 24%24, the exhaustive set of rectangle features is more

than 180,000.

Figure 19: Rectangle features

4.2.2 Integral Image

Rectangle features can be computed very fast using integral image which is an
intermediate representation for the image. The integral image at location (x, y) is the sum

of the pixels above and to the left of (x, y) inclusive:

2, )= Y, ilx,.y,)
Xs<X,Y <Y (6)

Xs

(xy)

Figure 20: Integral image
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where 12 is the integral image and il is the original image. Using the following equations:

s(x, y)= s(x, y-1)+H1(x, y) (7)

12(x, y)=12(x, -1)+s(x, y) (8)

where s(X, y) is the cumulative row sum, s(x, -1)=0, and i2(-1, y)=0

Figure 21: Computing integral image
The integral image can be computed very quickly from the original image. For example,
the sum of the pixels within rectangle D can be computed with four array references. The
value of the integral image at location 1 is the sum of the pixels in rectangle A. The value
at location 2 is A+B, The value at location 3 is A+C, and location 4 is A+B+C+D. The

integral value within D can be calculated as 4+1-2-3
4.2.3 Learning Classification Functions

The AdaBoost learning algorithm is used to boost the classification performance of a weak
learning algorithm. Freund and Schapire [32] proved that the training error of the strong
classifier approaches zero exponentially in the number of rounds. More important is the
margin of the examples which represents the distance between positive and negative ones,

and AdaBoost achieves large margins rapidly. Recall that there are over 180,000 rectangle
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features associated with each image sub-window, a number far larger than the number of
pixels. Even though each feature can be computed very efficiently, computing the
complete set is prohibitively expensive. According to theory of AdaBoost, there must be a
very small number of these features which can be combined to form an effective classifier.
The problem is how to find these features. To this end, the weak learning algorithm is
designed to find the single feature which separates the positive and negative examples in
best way. For each feature, the weak learner determines the optimal threshold
classification function which only misclassifies the minimum number of examples.
Generally, a weak classifier h;j(x) uses feature f;, a threshold 0; and a parity p; indicating the

direction of the inequality sign and it is determined by following equation:

1 if pfi(x) < p;6;

hi(x) = {O otherwise )

Here x is a 24%24 pixel sub-window of an image. For convenience of explanation, the

algorithm of boosting is cited in Table 2.

B Given example images (X1, y1),...(Xn, Yn) Where y=0,1, for negative and

positive examples respectively.

B Initialize weights w, . = _1__,i for yi=0,1 respectively, where m and n are

2m 2n
the number of negatives and positives respectively.

B Fort=1:T (T is the number of features)

1. Normalize the weights,
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W = Wi

t,i n
Zj:] Wt,j

so that wy is a probability distribution.

2. For each feature, j , train a classifier h; which is restricted to using a single

feature. The error is evaluated with respect to w, &= Z w ’hj(x. - y.)’ .
i i 1 1
3. Choose the classifier, h,, with the lowest error g .

4. Update the weights:

I-¢

Wi WPy

where =0 if example x; is classified correctly, e=1 otherwise, and

B The final strong classifier is:

T I <t
h(X) = 1 Zt:la‘h‘(x) = E t=1 &

0 otherwise

where «, =logl
t

Table 2: Adaboost algorithm

In practice, however, a  single feature cannot perform the classification task very well.

Features selected in early rounds of the boosting process yielded smaller error rates

between 0.1 and 0.3. Features selected in later, as the task becomes more difficult, yield
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higher error rates between 0.4 and 0.5. The following Table 3 shows the error rates for the

first 100 features in front faces training procedure.

0.217416882074048 0.249372145854198 0.337982605897554 0.335136159451548
0.311099728692453 0.352419805241122 0.314315317309299 0.360794914558039
0.377706534309039 0.337470647225941 0.372157748066781 0.338082946005033
0.390601597294953 0.395667459059407 0.403338207508573 0.364886861309005
0.398205601759972 0.402026623539409 0.371678112518419 0.387935884339697
0.394488827399747 0.389931587514685 0.403066501757382 0.402756041230427
0.373232278127317 0.40731343817633 0.399077277693885 0.394693578182786
0.388592864555788 0.413679554806191 0.39740433770493 0.380917122373186
0.415476737449021 0.384875615516151 0.424350995927251 0.416905478447953
0.405676265382858 0.391638592041118 0.407617272770534 0.416905425336689
0.419408303210348 0.423997843332274 0.419190313894789 0.391904239676132
0.412715585599672 0.423867001337388 0.407991417257902 0.424721898058991
0.421255645284539 0.423016316166857 0.429913471098981 0.426723507617801

38



0.407853436159744 0.416504078841078 0.413962781625027 0.420465043242339
0.429549521273117 0.429308051916065 0.428884023989761 0.428232348119165
0.431974072098753 0.410244389647722 0.421501663534312 0.425365767094102
0.419758012166191 0.431132181739371 0.427432957098281 0.411360319911128
0.417240418347826 0.432116714967818 0.426514218915175 0.437897083766761
0.43343345894173 0.412369034096297 0.422747620674204 0.432383666369697
0.421006708423026 0.424085233118108 0.42557829627753 0.436105478163636
0.410672495142484 0.426373784338713 0.431783344065312 0.430847477685185
0.425049740773109 0.434238101035977 0.434841429073589 0.434162868403974
0.436945304440289 0.432259081381678 0.428838984415802 0.431084268766217
0.424265989747516 0.414042959418853 0.421489385022201 0.435620756977353
0.428234464759664 0.436747802771526 0.433409253903986 0.431439381902035

Table 3: Error rates of first 100 features in front faces training procedure

4.2.4 Adaboost Training Results

To train all 5 poses’ strong classifiers is very time consuming job for a general home

computer and even for TACITUS server in CS department. The trained first six layers of
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each strong classifier and the number of features for each layer are as Table 4 . Please note
that the subsequent layers (if the process is continued or the number of layers is bigger
than 6) for each classifier may have increasingly more features. The average training time
for each frontal face feature is 502 seconds, while the average training time for a face

feature of other poses is 93 seconds (speed tested at different time on server TACITUS).

Number of | Number | Nyymber of trained features in each layer
training of
face 1 2 3 4 5 6
non face
images .
nmnages
Left profile 1000 1000 |6 13 46 336 563 2463
Left 45 1000 1000 3 13 105 96 130 485
Frontal 4916 4916 2 33 49 76 302 122
Right 45 1000 1000 3 11 47 132 93 807
Right profile | 1000 1000 6 11 45 56 104 975

Table 4: Training results of first six layers of five strong classifiers

To train a detector, a set of face and nonface training images were used with same quantity
(same number of face and nonface got better result). The training set of frontal face
consists of 4916 hand labeled faces scaled and aligned to a resolution of 24 by 24 pixels.

Other training sets consist of 1000 labeled faces with same resolution as the frontal data
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set, the faces were extracted from images downloaded from the world wide web such as

Google image, Yahoo image.
4.2.5 Multi-pose classifiers

Based on the previous training procedure and result, it is unrealistic to train all 38 layer
cascaded classifiers for all five poses as Viola and Jones did in their work because more
than hundred thousands features would be needed to feed multiple face detector and the
whole procedure would take several months! It is necessary to adopt another approach on
the purpose of efficient training process. A new approach based on AdaBoost is

introduced as follows:

First, a value called summation of detector is introduced for the purpose of multi-pose

classification, and it can be calculated by following equation:

sum_det=Y a;h,(x) (10)

where a4, 0;,pr and h(x) are achieved from pose related training procedures and h(x) can

be computed from equation (9).

The sum_det abbreviation for summation of detectors refers to first 500 features within

200 test faces of different poses were calculated as Table 5.

Notice that each row of table represents the sum_det values calculated under different
poses. For example, in the row number 2, the first cell shows that the real face pose is left
90 and the values from column 2 to column 6 were calculated using features under poses

varying from left 90, left 45, front, right 45, right 90. Only column 2(shaded cell),
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however, is in correspondence with the correct pose, while other values are computed by

the features of wrong poses.

According to the data of following table, an outstanding characteristic is that the biggest
value (with shading in table) in each column is the one with matching pose and other

values (without shading) in same column are smaller than it.

Left 90 Left 45 Front Right 45 Right 90
Left 90 m
Left 45
Front
Right 45
Right 90 106.26 109.03 84.228 124.9

Table 5: The first 500 features’ results of sum_det for 5 poses

In order to clearly show the distribution of data in comprehensible way, the values in each

row are shown as following Figure 22.

The values in X axis are 1, 2, 3, 4 and 5 corresponding to the poses of left 90, left 45, front,
right 45 and right 90. The values in Y axis ranging between 80 and 140 correspond to the

values of sum_det.
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Figure 22: The distribution of sum_det in 5 poses
However, only these data are not enough to differentiate a pose from 5 possibilities. Thus

another sum_det related value is taken into account for pose classification.

Recall AdaBoost algorithm, the strong classifier is defined as follows in Table 2:

T l «—1
hpy={!  2a@h02-3 a
0 otherwise

1l o1

— a
where 2“7 " is a threshold which we call it alpha threshold.
The following alpha threshold values were calculated from first 500 features within 200

test faces of five poses. Notice that %ts were achieved from different pose-related training

procedures, and all values were calculated with its own matching pose in this time.
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Left 90

Left 45

Front

Right 45

Right 90

Alpha threshold

110.29

114.72

74.98

116.2

111.66

Table 6: The first 500 features’ results of alpha thresholds with matching poses

Having sum_dets and alpha thresholds, the differences between them calculated with the

same manner are as following:

Left 45

Front

Right 45

Right 90

Letft 90 -3.7483 -3.1617
Left 45 -2.023
Front 2.4699
Right 45 -0.54513

Right 90 -4.0333 -5.6974 9.2461

Table 7: The 500 features’ differences between sum_dets and alpha thresholds

We still show the distribution of these data by another way, the values of differences in

each row of previous table are shown as Figure 23.
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Figure 23: The differences between sum_dets and alpha thresholds

There are three observations from above figures:

1y

2)

3)

The figures are roughly symmetrical around front pose, such as left 45 and right 45,

left 90 and right 90.

The shapes for left 90 and right 90 are prominently different from other, the shapes of

right 45 and left 45 are not very different from frontal one.

The differences between summation of detectors and alpha thresholds are more

prominent then summation of detectors.

Thus the algorithm of rough pose detector can be described as follow:

B For each candidate face sub-window, calculate the summation of detectors

45



and alpha thresholds according to the AdaBoost algorithm, and then get the

differences between them

difference(i)=sum_det(i)-threshold(i)

where i=1,2,3,4 and 5, difference(i) represents the result of poses in left

90, left 45, frontal, right 45 and right 90 respectively.

B Comparing the differences:

index=max(difference)

Switch index

case 1

the pose is left 90

case 5

the pose is right 90

others

* The pose may be front, left 45 or right 45. And the accurate estimation of pose
will be done in next round processing—accurate face detector and pose

estimator.

The experiment result with respect to this algorithm is as follow:
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tolerance

Left 90 Left 45 Front Right 45 Right 90
Accuracy rate 78.4% 92.1% 84%
Accuracy rate with +45 degree 88.39%, 94%

Table 8 Accuracy rate of rough face estimator

Some faces detected by previous algorithm are shown as following Figure 24.
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Figure 24: Detected face examples

4.3 Active Shape Models and Gray Level Variations

After roughly locating the face image and determining the pose of the face, it’s time to
find the accurate location of face features. The ASM (Active Shape Models)[17] is

adopted for this purpose with modifications.
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In order to build a model that is flexible enough to cover the most typical variations of

faces, nine sets of face images were involved as mentioned in chapter 3.
4.3.1 Point Distribution Model

An object shape can be represented by a set of labeled points or landmarks. The model
used to describe a shape and its typical appearances is based on the variations of the spatial
position of each landmark point within the training set. Each point will thus have a certain
distribution in the image space and therefore the shape model is being referred to as a
Point Distribution Model (PDM). In order to obtain the PDM, we first need to label the
landmarks, to align the shapes, and finally, to summarize the landmark variations in a
compact form. The number of landmarks should be large enough to show the overall shape

of face object. In what follows, detailed steps will be described.
4.3.2 Labeling the Training Set

Before labeling the shapes of the training face image set, we need to determine the number
of landmark points that can adequately represent the shape. In this study we apply 32 on
profile faces and 58 on others since part of face features can not be seen for profile faces.
For each image of the training set, we manually locate the shape, and then identify
significant landmarks on that shape. It is important that the landmarks are accurately
located and that there is an exact correspondence between labels in different instances of

training shapes. There are at least three basic types of landmarks that can be used [33] :
1) Application-dependent landmarks.

2) Application-independent landmarks.
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3) Landmarks interpolated from the two above.

Example of application-dependent landmarks in face images are the centers of the eyes.
Application independent landmarks may be the highest or lowest point of an object with a
certain orientation. Interpolated landmarks can be points which are separated by equal
distances or criterion with evident characteristic and located along a certain path between
two landmarks of type 1 or 2. Typically, type 3 will dominate and describe most of the

boundary of the shape.

Assume that the labeled training set is denoted by S. It contains N shapes, each of which
has n landmarks (58 for frontal faces and 45 degree faces, and 32 for profile faces). In
other words, there are N coordinate points for each landmark of the certain shape. The jth
landmark coordinate point of the ith shape of the training is set by (x;, y;), and the vector
describing the ith shape in the training set by: Xi=[(xi1,vi1).Xi2,Vi2)-..-(Xin,Vin)], Where
1<i1<N and n=58 or 32. For poses of left 67.5, left 45, left 22.5, front, right 22.5, right
45 and right 67.5, the following facial structures were manually annotated using 58
landmarks: eyebrows, eyes, nose, mouth and jaw. A total of seven point paths were used.

The following Figure 25 shows three manually annotated face examples.
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Figure 25: Manually annotated face examples for poses of left 67.5, left 45, left 22.5,
front, right 22.5, right 45 and right 67.5

For poses of left 90 and right 90, the following facial structures were manually annotated
using 32 landmarks: left eyebrow, left eye, nose, mouth and jaw (for pose of right 90, it

would be right eyebrow and right eye). A total of three point paths were used.
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Figure 26: Manually annotated face examples for poses of left 90 and right 90

4.3.3 Aligning Shape

1. Aligning Two Shapes

In order to get the variations of each landmark throughout the specific training set, all
shapes, each of which is represented by its corresponding landmark vector x , must be
aligned to each other. This is done by changing the pose (scale, rotation, and translation)
of consecutive shapes until the complete set is properly aligned. We take two shapes as an
example first, given two vectors x; and X; , the scaling value s , the rotation angle ¢ and the
value of translation (%, #,) can be found by aligning the vector x; to x; in a weighted
least-squares sense[34]. Then we can achieve significance of the more stable landmark

points by weighting. The stability of a point is measured by the amount of variation in the

distance between that point and the other points.

2. Aligning All Shapes
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Then the set of N shapes can be aligned with each other. The pose of a shape is described
by its scaling, rotation and translation, with respect to a known reference. If aligning all

shapes, normalization must be made first. Normalization of the pose includes:

1) Scaling the distance between two points becomes a certain constant
2) Rotation the line joining two pre-specified landmarks is directed in a certain
direction

3) Translation the shape becomes centered at a certain coordinate.

The purpose of normalization is to force the process to converge, otherwise the mean
shape may rotate, translate or expand (or shrink) indefinitely. Convergence is achieved if

the shape changing is not more than a pre-defined threshold.
4.3.4 Statistics

Assume that the ith aligned shape of the training set of face images is represented by
vector Xx;, where x; contains the new coordinates resulting from alignment. This vector is of
dimension 2n (including » Xs and n Y's coordinates), so it can be represented by a point in
a 2n-dimensional space. The N vectors representing the N aligned shapes will then map to
a ‘cloud’ of N points in the same 2n-D space [17]. Assume that these N points are
contained within a region of this 2n-D space referred to as the ‘Allowable Shape Domain’
(ASD). We know that the shorter the Euclidean distance between two points (that
represent two shapes in same pose) the more similar to the two shapes. The weighted
Euclidean distance d between the two points representing the two shapes x; and xi is given

by:
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dikz\/(xi_xk)TW(xi_Xk) (11)

where

Xi=[(Xi1,¥i1)(Xi2,Yi2)- - - (Xin, Yin)]
W =diag(wi,w; ,W2,W2,..., Wy, Wp)

The weighting matrix W is used to give more importance to those landmark points that
vary less in the training set. Now, we want to find those dominating the behavior of the
variations of the N points in the 2n-D space defined by the 2n variables of x. We can
generate a new set of variables called the principal components after applying Principal
Component Analysis (PCA). Each principal component is a linear combination of the
original variables [36]. All the principal components are orthogonal to each other so there
is no redundant information. All principal components form an orthogonal basis for the
space of data. Generally speaking, it can be assumed that the first few principal
components describe a high percentage of the total variance of the original data. Hence,
the dimension of the model can be reduced and the variations can be described by a less
number of variables (much less than 2n). Now, each landmark vector can be represented
as a linear combination of the principal components. Moreover, we can express the
difference between each vector and the mean of all vectors as a linear combination of the
principal components, because this difference vector will also lie in the 2n-D space
spanned by the principal components. Denoting the mean vector by X, and the difference

vector between the vector x; and X by dy , we have

d=x;-x (12)

X1
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— 1 n
where x = — )
=13

i=1
The covariance matrix for the landmarks is given by
C, = li(x. —x)(x; —x)"
TONG ' (13)
As mentioned in [34], we can represent the difference dxi as a linear combination of the

principal components,

dx, =b,p, +b,p, +...+ b, Py (14)
where p; is the /th principle component axis or vector and b; is a scalar that weighs p;. And
also the principal components are mutually orthogonal, so they are orthonormal. Thus we
have

X, = X + dx,
where dx; =Pb,
This yields x, =x+Pb, and b, =P™'(x,—x)

Since P is an orthogonal matrix, we have P~ =P" and

b,=P"(x;x)) (15)
where 1<1<N

In order to reduce the dimension of the data and describe the variations with a fewer
number of variables, we now express the N landmark vectors as the sum of their mean x
and a weighted sum of some of the principal components. Assume that the first d (out of

2n) principal components explain a sufficiently high percentage of the total variance of the
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original data such as 90 percent. If only d principle components, the basic equation

becomes
x =x+Pb (16)
where

b :[b] ,bz,. . .,bd] and

P=1[p1,p2,.--,pa]
4.1.1 Modeling the Gray Level Appearance

The main idea of modeling the gray level information is to examine the gray levels in a
region around each landmark throughout the training set. In general, any region around a
landmark can be studied, but we only focus on the gray levels along a line passing through
the landmark. For every landmark point j in the image i of the training set, we extract a
gray level profile g; with length of p pixels centered at the landmark point. Instead of
using the actual gray level profile, its normalized derivative is adopted. This gives

invariance to the offsets and uniform scaling of the gray levels [37].

The gray level profile of the landmark j in the image i is a vector of p values, gii-[gi1 gij2...
giip] and the derivative profile of length p - 1 becomes dgi=[gi>-gij1 Lij3-Li2 - Lijp-Liip-1)-
The normalized derivative profile is given by

dgij

SR
> |dgijm|

m=1 (1 7)

Y =
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Now, we calculate the mean of the normalized derivative profiles of each landmark

throughout the training set for landmark j

_ 1 N
y; == dg;
The covariance matrix of the normalized derivative is given by
Cyj _ﬁg(Yij-Yj)(yij-Yj) (19)

Thus we get a model for the gray levels around any landmark j represented by Yi and

C

yio.

4.4 Image Search Using Active Shape Modeling

The combined technique of PDM and iterative model deforming, updating and matching
is called Active Shape Modeling (ASM).

4.4.1 The Initial Shape Estimate

According to equation(16), a shape of an object x; can be described as the sum of the mean
shape obtained from the training set and a weighted sum of the principle components, with
the possibility of this sum being translated, rotated, and scaled. That is, we can express the
initial estimate x; of a shape as a scaled, rotated and translated version of reference shape

X):
X; = M(s;,8)[x1]+t, (20)

where
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M(s.6) :S|:cos( 0) -sin(@) }

sin( ) cos(8)

and
t=[te i te by ta ty]

The matrix M(s, 0) scales the shape by s, rotates it by 0 ,and the vector t; translates the

shape in the x and y directions respectly.

The shape x; can be expressed as x;= ;-J»dxl, where dx=Pb,. Then, the initial estimate can
be written as x;=M(s;,0;)[ X +dxi ]+t

4.4.2 Updating the Shape

After examining the image region around each landmark point of x;, a new desired
location x;+dx; is obtained by following steps. First, an adjustment should be made to the
pose (scaling, rotation and translation) parameters, as well as the shape parameters (the
weights of the principal components) in order to move current estimate x; as close as
possible to x;+dx;, while still satisfying the shape constraints imposed to produce an
allowable shape[35]. To do that, we first find the additional scaling /+dss , rotation df} and
translation(dt,,dt,), required to move Xx; as close as possible to x;+dx; . Secondly, we need

to solve the following equation for dx:
M(s,(1+ds),6, +dO)[x, +dx]+t, +dt = x, +dx,
Since x; =M(s;, 0)[x, ]+

then
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dx =M((s,(1+ds))",—(6, + dO)[M(s,, 6)[x, ]+ dx, —dt]—x, (21)

In general, the resulting vector dx is in 2n-D space, but since there are only d (less than 2n)
modes of variation described in our model, we can only move the shape in d dimensions
described by the first d principal axes. So we seek the vector that is most similar to dx but
lies in the d-D space. If we adopt the least-squares approach, then the solution dx' is the
projection of dx onto the d-D space (the space spanned by the vectors of principal

components, or the d columns of P). We have:
dx'=Adx
where A=P(P’P)'P7.

Since the columns of P are orthonormal and P is no longer square, we have P’P =I and thus

dx'=PP’dx.

So, x; will actually move to x; +dx'. Since dx'=Pdb! and multiplying by P" from the left, we

get db'=P"dx'

We are now ready to update the shape and pose parameters of our initial estimate. We

obtain a new estimate xi“) where

X, = M(s;(1+ds), 6, +dO)[x, + Pdb]+ ; +dt 22

H (

We then repeat the same step on x; ’ as we started with x; and produce x; 2 , and so on,

until no significant change in the shape is noticeable.

Notice that the resulting (updated) shape is within the allowable shape domain which is

done by limiting the values of b.
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4.4.3 Finding the Desired Movements

Here we will describe how the modeling of gray level statistics around each landmark can
be used to determine the adjustment of each landmark (dx;). To find such adjustments, we
search along a line passing through the landmark and perpendicular to the boundary
formed by the landmark and its neighbors. In this way, we obtain a search profile. Within
this search profile, we look for a sub-profile with characteristics that match the ones
obtained from training. In order to do so, we collect the gray level values along the search
profile, compute the derivative and normalize it. We then search within the normalized
derivative search profile (having length ns) for a sub-profile that matches the mean

normalized derivative profile (of length p) obtained from the training set.
The search profile along the landmark 1 is given by
si = [si1, Si2.--Sins]
The derivative search profile of landmark 1 will be of length ns -1 as follows:
dsi=[si2- si1, Si3 Si2- -+ Sins=Si(ns-1)]

The normalized derivative search profile is

ds.

— i
Yo = ns—1

Z=]|dsim|

(23)
Then we analyze yj; for sub-profiles that match y; which is the mean normalized derivative
profile obtained from the training process. Denoting the sub-interval of y; centred at the

dth pixel of y; by h(d), then we try to find the value of d that makes the sub-interval h(d)
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most similar to y; . This can be done by defining the following square error function

(which decreases as the fit becomes better) and minimizing it.

f(d) = (h(d)-y,)" C, " (h(d)-y,) (24)

where Cyf’ is the inverse of the covariance matrix of y; .

In this way, we determine the location of the point to which the landmark i should move.
Also, the same procedure is carried out for all the landmark points to obtain the adjustment

vector dx;.

4.5 Multi-Resolution Image Search

How to choose the length of the search profile ns still is a critical problem that will affect
the image search considerably since we need to consider two contradictories in the same
time. First, the search profile should be long enough to contain the target point to which
the original landmark is supposed to move. On the other hand, we want the search process
along searching profile to be as short as possible in order to reduce the computation. Also,
if the searching profile is long and the target point is close to the current position of the
landmark then it may move too far and miss the target. This problem can be solved by a
multi-resolution approach. First, the search is carried out in large extent to include far
points. Then, when the search progresses closer to a target structure, the search is limited
to near points. In order to achieve such multi-resolution search, a pyramid of images with
different resolutions is generated. At the base of the pyramid (Level 0) we have the
original image and on higher levels (Level 1 to L-1) we decrease the resolution by a factor

of two (see Figure 27).
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Figure 27: The progress of multi resolution image search

In order to obtain the pyramid, we subsample the image at the lower level in every second

pixel to get the image at the higher level [38]. Level 0 is the original image. Level 1 is an
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image with half the number of pixels along axes, and so on. We start searching at the top
level of the pyramid and then continue at a lower level using the search output of the
previous level (Figure 28). In level 1 and 2, ASM just searches for an approximate
position. So the detail losing phenomena seems not to be an important factor for accuracy
of the algorithm. The procedure is repeated until the lowest level (the original image) is
reached. In order to carry out this multi-resolution search, we must use the information
about the gray level profiles at each of these levels. This means that during the training

stage, we need to obtain the mean normalized derivative profile for each landmark in all

the pyramidal levels.
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Figure 28: The process of pyramidal image

We denote the mean normalized derivative profile for the landmark i at the pyramidal

level / by Yi where 0<i<n-1 and 0</<L-1. The mean is obtained by calculating the

average of the normalized profile for a certain landmark along the N images of the training
set. Before searching process, we build a criterion for determining when to change the
level of search within the pyramid. One possibility is to move to a lower level (detailed
image) when a certain percentage of the land marks do not change considerably, for

example when 95% of the landmarks move only within the central 50% of the search

63



profile[38]. A maximum number of iterations such as 20,30,40 or 50 can also be used to

avoid getting stuck at a higher level.

4.6 Facial Feature Extraction and Accurate Pose Estimator
4.6.1 Face Edge Detection

Since most of detected face sub-windows have nonface margin on one side which is
inherited from the characteristic of corresponding training faces, normally the left faces
(like poses of left 22.5, left 45 ...) have left margin, and the right faces (like poses of right
22.5, right 45 ...) have right margin. In order to speed up the processing and improve the

accuracy, it is necessary to carry out face edge detection.

The following is the algorithm in face edge detection.

® Finding the edge contour of detected face sub-window by using sobel

operation which we mentioned in section 2.1.3

® (Calculate the sum of sobel matrix in vertical direction and result a vector
sum_sobel. The distribution of sum_sobel is as bottom line of following

figure

® The coordinate of biggest value in the first (toward to the opposition of face

direction) half of sum_sobel is the edge.

Table 9: The algorithm in face edge detection

The following is the figures expressing the process of face edge detection.
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Figure 29: The process of face edge detection.
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4.6.2 Accurate Pose Estimator and Face Detection

As mentioned in section 4.2, the rough pose estimators may not work very well on poses
of left 45, front and right 45 faces. Thus an ASM-based technique is proposed to reinforce

the pose estimation and features extraction.

Recall the equation in chapter 4,

X" = M(s,(1+ds),6, + dO)[x1 + Pdb'] + t, +dt

and

f(d) = (h(d)-y,)" C,; " (h(d)-y;)

Assume that the original shape of object x, is set by mean shape of PDM. Thus we can get
x,-“) x,»(z)"'xi(K) in the same manner as above approach. Here K can be interpreted as the
number of search loops varying from 20 to 50 according to need. Please note that the
iterations of searching procedure must be carried out in each pyramidal level. After

minimizing the square error function f(d), the dx; and Pdb' can be estimated in each

iterative step.

Assume that the vector Xend describes the shape of x; after pyramidal searching process
with K times’ iteration in each level and Xbegin is the original x;, the difference between
them is diffX, so we have

diffX= Xend- Xbegin 25

It is obvious that the value of diffX express the variation of x;. In other words, if the
components of diffX have large absolute value, it means that the original shape changed

dramatically during searching procedure. On the other hand, if the components of diffX
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have small absolute values, it shows that the original shape just changed a bit during
searching procedure and this happened only when the face shape are very similar to the
trained mean shape with certain pose. If several trained mean shapes with adjacent poses
are carried out on candidate sub-windows for the purpose of detecting the matching pose
among these shape models, for instance, to carry out the trained mean shapes Left 67.5,
Left 45 and Left 22.5 on the roughly detected Left 45 pose, the one with smallest variation
of diffX would be the most likely one, and experiment data in Table 10 proved this
observation in detail. Furthermore, considering the side effect of sign of diffX, we use

standard deviation of diffX instead of diffX,
StddiffX=std(diffX) (26)
Where std() stand for standard deviation operation.

According to the experiment, there are two observations of StddiffXs.

1) Points of a shape moved as a whole in same direction are intended to lead small

StddiffX value. This can be found in “matching pose” section of Figure 27.

2) When the shape model mismatches the face contour, it will result random
adjustment of points which explains why bigger StddiffX values are generated in
this situation. This can be illuminated by the “Non matching pose” part of Figure

27.

Since the whole data sheet is too big to be shown here, only part of accurate detection data

are represented as following Table 10:
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of Trained mean shape
faces
left 67.5 left 45 left 22.5 left 67.5 left 45 left 22.5 feft 67.5 left 45 left 22.5
1 2.623 7.699 7.839 | 3.405 4.673 1 10.307 5.422 4.554 3.713
2| 2222 6.805 5.553 | 10.352 4.191 8.004 | 9.561 | 11.704 3.350
3 5.404 5.816 | 10444} 9.027 1.829 | 2.807 7.116 6.133 2.977
41 4.739 7.529 | 11.506 | 11.254 6.859 6.158 | 16.629 7.153 7.505
5 2.390 | 20.867 | 19.233 3.539 5.734 | 15.341 5.452 1.967 1.941
6 4.049 7.960 | 14.787 | 14.710 7.861 | 10.161 | 10.538 5.071 5.426
71 2670 6243 | 17.784 | 7.571 7.293 6.142 | 11.445 | 2.810| 6.526
8 3.235 9.316 | 10.128 | 14.870 3.833 4.013 | 10.621 2.608 4.426
9| 5.378 6.615 9.497 | 10.155 9.926 3.065 | 11.827 5.191 5.942
10 1.910| 17.091 | 10.656 8.733 | 14.172 | 13.447 9.806 4.765 | 11.946
11 4239 | 14.898 | 18.072 7.004 5.547 3.173 | 13.468 5.919 5.277
12| 4873 | 5.176| 11.052| 8.483 5.903 | 4.801 8.548 | 7.060 | 7.601
13 2.883 5394 | 6.669 | 13.031 2.444 6.112 | 23900 | 5.445 6.868
14| 2.168 8.616 9.552 8.109 | 2.626 | 4.625 8.724 | 2.338 3.863
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15| 11.988 | 13.348 | 13.889 | 15.876 | 6.234| 8817 6.675] 16912 | 19.436
16| 6.151 | 9.743 | 9.143 | 8257 | 5.534| 10.194 | 12.899 | 14.898 | 10.654
171 3.942| 19.219 | 14.055| 7.907 | 2260 | 0.931 | 13.629| 7.886| 2.661
18 | 28.460 | 34.101 | 25.871 | 4.789| 5582 | 4.782| 16.736 | 6.237| 3.083
191 3.785| 11.991 | 13.170| 2.893 | 5.072| 9.679| 12481 | 4928 | 4211
20 7.4354{ 9.791 | 10.673 | 3.421 | 10.152 | 7.745| 15.010| 16.977 | 9.223
21| 5.033| 4.139| 6.182} 11.885| 4308 | 3.927| 7.869| 16.182| 7.113
22| 3928 9212 21.716 | 16.761 | 3.235| 4.720 | 12.598 | 4306 | 1.957
23| 7.204} 11.893 | 13.121 | 18.741 | 5.653 | 15.622 | 12.837 | 4952 | 6.779
241 2924 8168 ] 9.955| 3968 5.839| 5.671 9.315| 4954 3.155
25| 2.011}| 6.962 ) 15.634| 6.663 1.917] 4.653| 6.796| 5.830| 2977
26| 3.289| 9.130 | 20.524 | 15.148 | 9.718 | 3.447 | 11.299 | 3.888 | 3.579
27| 1.667 | 18.000 | 18.788 | 4.235| 7.663 | 21.073 | 4.954 | 4.041{ 4.612
28 | 10907 | 9213 7475| 9503 | 19.012| 6.135| 9.694 | 21.915| 5.618
29| 2566 12389 | 13441 | 7.456| 2.611 | 7.255| 12.525| 4762 7.213
30 2923 | 9307 8282| 8400 5876 3.590| 9.068 | 11.325| 5.699
31| 7.980| 7.030| 24369 8.103 | 3.625| 3.402| 11.745| 3.664 | 5.718
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32| 6416 11.660 | 15.722 1 9.078 | 6.660| 6.717] 11.169| 9.118 | 5.837

Table 10: part of pose accurate detection results with respect to left 67.5, left 45 and
left 22.5 poses

According to above data, 60 out of 96 StddiffX values (62.5%) with matching pose are the
smallest values among three adjacent candidate models, and 93 values out of 96 (96.9%)

within a range of £22.5 are smallest ones among three adjacent candidate models.

There are two reasons to explain why some of the smallest data not appear on the right

places:

1) Not every face ‘looks like’ corresponding mean face model, some of them may ‘look

like” mean face model with other adjacent poses.

2) Some smallest values can not represent the results since the values are far bigger than
the allowable extent of value such as 10.00, it results failure of accurate location of
facial feature. Taking the No. 18 of column “Real pose left 67.5” for example, all three
values are 28.460, 34.101 and 25.871 which are too big to be accepted and may be

resulted by the failure of previous rough face detector.

Notice that even the result may not appear on ‘right’ place, most the smallest data within
allowable extent still can accurately locate the facial feature, such as eyes, eyebrows,
noses and jaw. Actually this is an outstanding merit of the ASM technique, after iterative
seeking in three pyramidical levels, the selected mean shape model is the one having
smallest StddiffX value which also means the smallest variation, and it does n’ t matter

which one of candidates is ‘right’ at all.
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Then the similar approach is used for all pose estimators. Based on the rough face
detectors and rough pose estimator, the location of candidate face can be determined by

following algorithm:

® If pose is estimated as left 90 by previous rough pose estimator

Then calculate three stds of corresponding trained mean shapes:

stdL90, stdL.67.5 and std45

[minval index ]=min(stdL90, stdL.67.5, std.45)

where min() is minimum function which return the minimum and the index

of the minimum.

® If pose is estimated as right 90 by previous rough pose estimator

Then calculate three stds of corresponding trained mean shapes:

stdR90, stdR67.5 and stdR45

[minval index]=min(stdR90, stdR67.5, stdR45)

where min() is minimum function which return the minimum and the index

of the minimum.

® [f pose is estimated among right 45, right 45 or front poses by previous rough

pose estimator

Then calculate three stds of corresponding trained mean shapes:
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stdL45, stdFront and stdR45

[minval index 1]=min(stdL45, stdFront, stdR45)

Switch index1

Case 1

Then calculate two stds of corresponding trained mean

shapes:stdL.67.5 and stdL.22.5

[minval index2]=min(stdL67.5, stdL45, stdL22.5)

Switch index2

Case 1

The pose is left 67.5

Case 2

The pose is left 45

Case 3

The pose is left 22.5

end

Case 2

Then calculate two stds of corresponding trained mean

shapes:std.22.5 and stdR22.5
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[minval index2]=min(stdL22.5, stdFront, stdR22.5)

Switch index2

Case 1

The pose is left 22.5

Case 2

The pose is front

Case 3

The pose is right 22.5

end

Case 3

Then calculate two stds of corresponding trained mean shapes:

stdR22.5 and stdR67.5

[minval index2]=min(stdR22.5, stdR45, stdR67.5)

Switch index2

Case 1

The pose is right 22.5

Case 2

The pose is right 45
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Case 3

The pose is right 67.5

end

end

Table 11: Algorithm of pose detection

4.6.3 Facial Feature Extraction

After accurate localization and edge detection of candidate faces, it is time to extract the
facial features from detected face image. The Figure 30 shows 58 key points in a detected
frontal facial shape. The others 6 shape models, such as left 67.5, left 45, left 22.5, right
22.5, right 45 and right 67.5, have the same numbers and annotated sequences as frontal

one.

{4). From
{5}, From left 1o right
right to left 30-34
35-39
(2. 14-21
{3).22-29
(7). From
Teft 1o right
48-58
(1). From
left o nght
1-13 (6}, 40-47

Figure 30: Facial features localization

74



In above figure, each text box has a parenthesized number describing the number of path it
belongs to; for example, in textbox No.3, “22-29” represents the left eye path with 8 points

aligning from number 22 to number 29.

Experiment results show that the most prominent features on the face are eyes, noses and
mouth, this is also accordant with the observation of human vision, that is to say that the
paths 2, 3 and 6 are most important on face recognition task. Furthermore, these three
paths have bigger gradient variation than other paths of face such as jaw and nose, thus the
points of shape model around eyes and mouth are unlikely to have big update during
iterative searching procedure. The following Table 12 is the extracting and cropping

algorithm.

® Calculate the mean coordinates of two eyes (16 points) in the vertical

directions Ye and Xe.

® Calculate the mean coordinates of mouth (8 points) in the vertical and

horizontal directions Ym and Xm .

® Distance between Ye and Ym

DisY=Ym-Ye

® Mean of Xe and Xm

meanX= (Xe+Xm)/2
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® Sct boundaries for cropping
® [ cft boundary Bl=meanX-DisY
® Right boundary Br=meanX+DisY,
® Up boundary Bu= Ye-DisY
® Bottom boundary Bb=Ym+rate xDisY

* rate is generally set to 0.6-0.8 If rate is too big, some irrelevant part like neck may

be cropped into target image.

Table 12: Extracting and Cropping Algorithm in Testing Stage

(Xe. Ye)

{meanX, meanY) .

{Xm, Ym)
Figure 31: The measurement of extraction and the key points of cropping
Please note that the previous algorithm is dedicated to the feature extraction of frontal face

during testing stage; since we can utilize the edge detection on faces with out-of plane
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rotation, the feature extraction routine of other poses may implement in the similar

manner, even the profile ones.

Another concern must be addressed, however, the shape models with poses of left 90 and
right 90 have some differences since one side of face features such as eye and eyebrow can

not be seen (Figure 32).

(2). From lefi to
right 20-24

(3). 2532

{1). From top o
bottom 1-19

Figure 32: Facial features localization in profile
In above figure, shape model in pose left 90 just has 3 paths pointed by textboxes which

describe the point in each path.

In order to compare the face data set of pose left 90 and right 90 with other poses, a
common standard must be built to carry out meaningful comparison among faces with
different pose, we found that sub-window faces with the poses of left 90 and right 90 have

same characteristics as other poses have.

There are two of them:
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1)

2)

The paths of eyes and mouth in any pose have greater gradient variation than
other part of face. In other words, we can find points of eye and mouth paths by
ASMs no matter which pose the face is, thus we can take advantage of this

characteristic in face cropping and comparison.

Most prominent and comparable parts in face are eyes, eyebrows, noses, mouth
and the areas around these features. Other parts such as hair, ears and even jaw

have very limited contributions to face recognition.
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S Multi-pose face recognition

5.1 Reference Image Sets Collection

In order to carry out mug shot face recognition in multi-pose environment, the reference
image data for comparison, namely the datasets of poses of left 90, right 90 and front,
should be created first. The main procedure to produce these three face data sets are
similar with the one mentioned previously; however, instead of using automatic approach
to locate the face feature, manual approach is introduced to collect these data sets for

accurate purpose(see Figure 33).

Labeling Image: 31, - LM: 3(+1)

50
100
1580
200
250
300
350
400

450

100 200 300 400 500 500
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Figure 33: Manually select the three key points in profile image
We choose three points in each picture of three image data sets as “+” point in above

figure. The algorithm to extract and crop in training step is as follows:

® Select the eye centre(Xe, Ye), Tip of nose(Xn, Yn) and mouth(Xm, Ym)

® Distance between Ye and Ym

® DisY=Ym-Ye

® Set boundaries for cropping

® [eft boundary BlI=Xn

@® Right boundary Br=B1+2*DisY

® Up boundary Bu= Ye- DisY

® Bottom boundary Bb= Ym+rate*DisY

* rate generally is set as 0.6-0.8. If rate is too big, some irrelevant part like neck may

be cropped into target image. This rate should be identical with the one in Table 12

Table 13: Extracting and Cropping Algorithm in Training Stage

The following figure shows the selected coordinators and the variables use in above

algorithm.
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(Xe, Ye}

{Xn, Yn)

(Xm, Ym)}

Figure 34: The measurement of extraction and the key points of cropping for profile
image

Some cropped results are as follow:
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Figure 35: Cropped results of profile images

5.2 Geometrical mapping

It is always failure to compare two face images of the same subject captured at two

different view angles pixel-by-pixel because these two images are not registered/aligned
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with respect to each other and the pixel-by-pixel difference is relatively big. Many
traditional approaches do not work well under the circumstance of pose variation. To solve

this problem, we can take advantage of image registration to fix this problem.

It is well known that a human head has the non-planar geometry, one way to register face
images is to project images back to the surface of a 3D ellipsoid based on their specific
poses. The procedure of back projection is called geometrical mapping, which is a key
component in our face recognition algorithm. In this section, we will introduce how to
generate a texture map s from a face image f with a known mapping parameter x. Two
assumptions are made. First, assume that a human head is an approximate 3D ellipsoid
with radiuses rx, ry and rz. Second, a face image is captured with the weak-perspective
camera model [43] and the camera’s focal length equals to one. Thus mapping parameter x

describing the relation between a face image and its texture map is as follows:
x=[evchdRa RS Ry]"

Where c¢v and ch are the center of the face area in the image, d indicates the average
distance between the face and the camera, and Ra, RS and Ry indicate the rotation of the

human head in three dimensions respectively.

In order to generate a texture map s from f, for each pixel in s(a, f8), we need to find its
corresponding coordinate f(v, u) with the mapping parameter x. The parameters v and u
are the axes of the original image; a and £ are the axes of the texture map. There are four

steps for the mapping from s(a, ) to f (v, u) as shown in Figure 36.
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1) A pixel s(a, f) in the texture map corresponds to one coordinate (P, ,Jp_P,) on
the surface of a sphere, whose radius is one:
P = sin(a)sin(f)
, = cos(a)
P, = sin(a)cos(f)
As shown in the left part of Figure 36, the sphere is then converted into an ellipsoid by

stretching each radius according to rx, ry, and rz:

P =1xP,
Py - ryPy
P, =rzP,

2) Rotate the head ellipsoid by Ra, Rf and Ry with respect to the XYZ axes. Since
all test face image only rotate around Y axis, the rotation is simplified. As shown
in Figure 36, (P,,P,,p,) moves to a new coordinate (P; ,P; ,PZ') by the following

equation (Ra and Ry are acro):

P, cos(R;) 0 sin(R,) | P,
P |= 0 1 0 P

y y

N Pz -sin(Rﬂ) 0 COS(Rﬂ) Pz (27)
3) Project the coordinate (P >P;’P;) to the image plane by wusing the
weak-perspective camera model and translating the resulting coordinate by cv

and ch in both vertical and horizontal directions:

{VIPY /d+c, (28)

u=P. /d+c,
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We get the new coordinate (v, u) in the image plane. Because not all pixels on the texture
map can be visible from the camera, we need to determine the visibility of each coordinate
(P,'( ’P;°P;) by the following. That is, we rotate the normal of the point at (P, PP, )by Ra,
Rp and Ry, as done in (27)(here Ra and Ry are aero). If the angle between the resulting
normal and the positive Z axis is smaller than 90, i.e., the normal points to the positive Z

axis, (v, u) is a valid coordinate.
Please note that there are three explanations about mapping process:

1) Since the first step does not influence the process result too much, it can be

neglected in algorithm.

2) The previous four steps describe the procedure from s(a, f) to f (v, u), however,

we should implement algorithm inversely to get texture map s from face image f.

3) Reference face image of front pose has more comparable area than other poses

have when generating its corresponding texture map.

85



Rotation(Rg)
v

Figure 36: Geometric mapping: one point on the surface of the ellipsoid maps to a
pixel on the image plane.

The Figure 37 shows some geometrical mapping results:
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Figure 37: Geometrical mapping results
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5.3 Geometry assisted face recognition

In many face recognition systems, there is only one face image, normally the frontal view
face image, during the training stage. However, in the test stage, there might be test
images that correspond to different poses of human faces. This is a hard problem because
the same face might appear very differently under various poses. In this section, we
present our geometry assisted approach to deal with this case. Given a face database with
L subjects, there are frontal and profile face images, f;,(/=1, 2, . . ., L and p represent one
of three training poses ), for each subject that are available for training. During the training
stage, the optimal mapping parameter X, is estimated for each training image f;, based on
a universal mosaic model, which is generated by combining texture maps from multiple
subjects. Essentially this estimation process is trying to minimize the difference between
the universal mosaic model and the texturé¢ map controlled by the mapping parameter,
which provides information about the position, the distance, and the pose of the face.
Notice that some of the parameters might be known from external sources. For example, if
we know all training images have frontal view faces, their pose parameters, Ra, Rf and Ry,
are all known as zero. Once the estimation is done, the corresponding texture map sy, is
generated from each training image fj,. It is obvious that in the texture map s;,, only part of
the pixels are valid information of the facial appearance, while the rest are missing pixels
since each face image only corresponds to one portion of a 3D head ellipsoid’s surface. To
describe this missing pixel information, we also generate a mask map, a;,, which has the
same dimension as the texture map s;,. For all missing pixels in s, the corresponding

pixels in ay, are zero and the others are one. During the test stage, given one test image f,,
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first we estimate the optimal mapping parameter based on the universal mosaic model.
Second, the resulting texture map s,, and the mask map a,, are compared with each of the

training texture maps as the following;:

dl=— 'H(s,p -s,,)0a,, 0a, | (29)

where ° refers to the element-wise multiplication. Basically d/ is the normalized
mean-square-error (MSE) between the overlap area of the test texture map s, and the
training texture map s;, and ”at oa,|| indicates the size of the overlap area between two
texture maps. There is a degeneration case when the two texture maps have a very small
overlap area, which leads to a small d/. Because in our estimation algorithm, the mapping
parameter changes slowly, there is a very low chance that we will fall into this
degeneration case. Eventually, the test image is recognized as the subject with the minimal
dl. The following Figure 38 shows the processing of geometry assisted face recognition in

the poses nearby front, and Figure 39 shows the poses nearby profile.
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Y

Figure 38: Geometry assisted face recognition in the poses nearby front
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Figure 39: Geometry assisted face recognition in the poses nearby profile
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54 [Experimental Results

To evaluate the performance of Multi-Pose Mug Shot Recognition system, we have tested
PIE database in indoor environments under neutral illumination condition. The above
Figure 38 and Figure 39 show some intermediate face processing results under different
poses prior to the final identification. The processing gives good performance with respect
to complex backgrounds. For the identification, we set up a face database composed of
half number of PIE database subject (34 subjects) for the purpose of comparison with [5].

The Table 14 shows the testing results of our system under varying pose environment.

Left675 | Left

@ e

Matching rate

Table 14: The results of face recognition in varying poses

In our experiment, the frontal and profile view images were used for reference, the other
six poses’ images are used for testing. As shown in Figure 40:, the horizontal axis
represents the labels of 6 test poses, c14, c11, ¢29, c05, ¢37, c02, from the right 67.5 to the
left 67.5. The vertical axis shows the recognition rate of two algorithms for each specific

pose.

Comparing with our automatic method, the human face for both the training and test

images are manually cropped and normalized in Liu’s approach [5].
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Figure 40: Recognition performances of two algorithms on the PIE database

Two conclusions can be drawn from these results.

1) When the pose of the test image is changed toward the profile view, the

recognition rate decreases. This is consistent with observation of human vision.

2) Our algorithm performence is not better than the baseline algorithm. However,

the advantages of our algorithms are efficiency and user-friendly interfaces.
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6 Conclusion and Future Work

6.1 Conclusion

In this thesis, we have presented a Multi-Pose Mug Shot Recognition system. In contrast
with face recognition under constraint environments, our proposal concentrates on
recognition under unconstrained environments. To meet these requirements, we developed
a pipeline of face processing algorithms, namely, face detection, facial feature extraction
for face normalization, and face identification. During each processing stage, we use
step-wise refinements for improved robustness and accuracy. The system has achieved
satisfactory recognition rate. The current system is able to handle all view faces with

out-of-plane rotation within £90 degrees.

6.2 Future Work

Multi-pose face recognition is a challenging problem. To realize a high performance

system for commercial use, future work can proceed in the following directions:

® Since the biggest contribution to error rate lies in the failure of previous detection
steps, the highest priority of future works should be focused on the

improvement of face detection.

® The faces recognition near profile performs not as good as poses nearby frontal

do, the partial reason is that the profile training dataset is short of enough
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qualified images. Thus to enlarge the training image databases in profile

datasets is necessary to achieve better performance.

® Optimization is a way to accelerate the process. Optimization includes the

optimization of algorithms and using more efficient coding skill even coding
language.

® In face recognition step, computer graphics technique can be adopted in the

works of modeling head and estimating pose.
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