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Abstract
Multivariate Statistical Process Control for Fault Detection and Diagnosis

George Stefatos

The great challenge in quality control and process management is to devise computationally
efficient algorithms to detect and diagnose faults. Currently, univariate statistical process control
is an integral part of basic quality management and quality assurance practices used in the in-
dustry. Unfortunately, most data and process variables are inherently multivariate and need to
be modelled accordingly. Major barriers such as higher complexity and harder interpretation have
limited their application by both engineers and operators. Motivated by the lack of techniques
dedicated in monitoring highly correlated data, we introduce in this thesis new multivariate sta-
tistical process control charts using robust statistics, machine learning, and pattern recognition
techniques to propose our algorithms. The core idea behind our proposed techniques is to fully
explore the advantages/limitations under a wide array of environments, and to also take advantage
of the latter to develop a theoretically rigorous and computationally feasible methodology for mul-
tivariate statistical process control. Illustrating experimental results demonstrate a much improved
performance of the proposed approaches in comparison with existing methods currently used in the

analysis and monitoring of multivariate data.
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1
CHAPTER 1

Introduction

With stronger competition and stricter safety and environmental regulations, there has been an
increasing demand for better quality products. To better meet this new reality, many manufacturing
industries have reviewed their processes and raised their specifications and acceptable standards [1].
Modern industrial processes contain a large number of variables that are regularly monitored and
inspected for any type of malfunction [2].

This type of process monitoring is known as statistical process control (SPC). The concept
is based on the assumption that high variation leads to inferior quality. Therefore when several
process parameters are controlled within specific targets, the end product trends to be in control
and within specification. To achieve this, samples are frequently collected for each variable and
displayed with the visual help of a control chart [3].

A control chart is a useful statistical tool that can be used to distinguish and detect between
common causes of variation (random noise) and special causes (signal). The samples are usually
plotted over time between two thresholds defined as control limits. Any on-line data violating
these limits, would indicate a fault (see Fig. 1.1). This is a signal that some process investigation

is needed in order to detect and remove these unusual sources of variation [1].
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Out-of-control {

In-control
nonte Upper Control

Ao S D
A

Lower Control
Limit

Figure 1.1: Control chart illustration.

1.1 Framework and motivation

1.1.1 Process management

In any process, there are five major steps in continuously controlling and improving the product.
The first step is to monitor the performance of the process. This entails selecting and determin-
ing the key variables that need to be monitored, choosing an adequate sampling interval, and
establishing key targets and thresholds for each variable [1].

The second step consists of determining if a fault has occurred. A fault or an outlier is usually
defined as a deviation from the normal operating conditions [25]. An early fault detection can limit
the damage and avoid serious process upsets [1].

The third step is to identify the root cause of the fault. This includes determining the variable
or combination of variables that created this excess variation.

The fourth step consists of diagnosing the faults by determining the type, magnitude and time
of the fault. In the end, the solution needs to overcome and eliminate the fault from reoccurring.

Finally the last step consists of applying the solution and confirming the removal of the fault.



1.1 Framework and motivation 3

Once the process returns back to normal operating conditions, the operator can return to monitoring
the process [1].

This five step problem-solving approach will help eliminate and reduce variability in the process
and result to a higher quality product (see Fig. 1.2) . This framework is also part of the basic concept

of six -sigma [4].

Figure 1.2: Process management framework.

1.1.2 Multivariate statistical process control

Univariate statistical process control is widely used to monitor and diagnose faults and outliers.
For attribute variables, common charts used are the count chart (c chart) and the fraction defective
chart (p chart). For continuous variables, operators and engineers use the the X-bar chart, R chart
and S chart. These tools are very well documented and understood [4].

Unfortunately, in most industrial environment, the variables are highly correlated by nature.
This is particularly true for manufacturing and chemical processes. Currently, most industries
model their processes by monitoring each variable independently of the other. This has a result to
overwhelm the operator and create misleading results [4].

In Fig. 1.3, we can observe the result of modelling two variables who are highly correlated as

independent. The ellipse region defines where the process is operating under normal operating
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conditions. Any sample falling outside the ellipse is considered an outlier. However, if the variables
were modelled as independent, the control region would be defined between the rectangle. As
observed, some out-of-control observations would be misidentified. Therefore the importance of
representing the correlation structure between variables in order to accurately characterize the

behavior of most industrial environments is demonstrated [4].

@ In-control Observations

x2 . Out-of-control Observations

Normal
Range for X2

» X1

L 4

Normal
Range for X1

-~

Figure 1.3: Comparison of univariate and multivariate control charts.

1.2 Background

This thesis addresses the application of multivariate statistical process control for fault detection
and diagnosis. The following background material is presented to provide context for this work.

1.2.1 Multivariate 72 statistic

The most familiar and widely used process-monitoring and control procedure is the Hotelling T2

control chart. Let X = [@1, s, ... ,a:m]T be an m X p data matrix of m vectors x; € RP, that is each
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observation x; is a row vector p variables. Hotelling’s T statistic, also referred to as Mahalanobis

distance, is defined as

T} =(z; —2)SH(x;—2)7 for i=1...m

where
m

:—Z:az1 and S—— Z i — )T (@i — &)

are the sample mean and sample covariance matrix respectlvely.

The T2 statistic is derived from the assumption that the random observations follow a multi-
variate normal distribution. Therefore if the mean and covariance matrix are known, then the 72
statistic follows a x? distribution with p degrees of freedom evaluated at the confidence level 1 — o..

The control limits can be derived as [4]

)
UCL = X%,p
LCL = xi_

When the actual covariance matrix and mean are not known, then the process monitoring can
be separated in two major phases. The first phase consists of preparing an outlier-free reference
sample that will be used as a benchmark for all the new observations [1,4]. In this case, the upper
and lower control limits are defined as

(m—-1)? 57 e pm-p-1
m 1+ 5P pmp

UucL =

m — 1)? [Tp_l] 1-% pm—p-1

(
LCL =
m 1+t —— 11 F1-2 pm—p-1

where Fy ,, 1, is the (1 — a) percentile of the inverse of the F' cumulative distribution with v; and
vy degrees of freedom.

The second phase consists of monitoring new observations based on the reference sample found
in phase one. In this case, the upper and lower control limit will be different. This is due to the
fact that each observation is now dependent of the sample mean and sample covariance extracted

from phase one. The control limits are as follows:
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p(m+1)(m - 1)

UcrL = m(m — p) %.p,m—p
_ pm+1)(m—-1)
LCL - m(m . p) 1_%7177""“17

Note that most interest is generated from an observation exceeding the UCL than the LCL.
Therefore it is a common practice to ignore the LCL and evaluate the UCL at « instead of /2
(3]. In some SPC researchers suggest that an observation that exceeds the LCL should still be
investigated since this out-of-control situation might express a fault in the data recording [4].

One of the main difficulties of multivariate control charts is to diagnose the root cause for
an out-of-control situation. One approach would be to plot each individual variable separately
and then determine the combination of variables that caused this excess variation. However, this
method might not give the correct solution [4]. Another approach that may be useful to diagnose
outliers is to decompose the T? statistic into individual components representing each variable.

The indicator for each variable can be defined as
d(j) =T} - TZ(j) for j=1,...p

where T} statistic is the current outlying value and T?(j) is the value of the statistic for all variables
except the j* one. This would require to diminish the data matrix by one dimension represented
by the j** variable and reduce both mean and sample covariance matrix. The variables associated
with large d(j) indicator can be associated as the root cause for this out-of-control variation [3].
Also, in the presence of large number of variables, direct use of the T2 statistic is not efficient.
This is particularly true for data sets containing redundant information which may lead to ill-
conditioning or collinearity problems. For this reason, data reduction techniques such as principal

component analysis (PCA) are needed to separate and extract key signals from the process [41]

1.2.2 Principal component analysis

Principal component analysis is a dimensionality reduction technique that transforms the original

variables into a set of linear combinations. This is achieved by determining a set of eigenvectors,
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called principal components, that capture most of the variance (i.e eigenvalues) present in the
data [4].
To obtain the eigenvectors and the eigenvalues needed for PCA, we need to perform the singular

value decomposition on the covariance matrix
S = AAAT,

where A is a p X p diagonal matrix of real non-negative eigenvalues sorted in decreasing magnitude
and A is p x p matrix containing the corresponding column eigenvectors.

To minimize the negative impact that random noise has on capturing the true variation of
the data, k largest eigenvalues Ag = (A1,...,Ag) are selected with its corresponding eigenvectors
Ax = (a1,...,ax). Therefore, PCA reduces the dimensionality of the original data matrix X by

projecting it into a new coordinate system where the axes maximize the variability
Y = X A

where Y is referred as the principal component score matrix.
The projection of the score matrix with the reduced eigenvectors will retrieve back the p di-
mensional data matrix

X =YA}

The residual matrix can be obtained by subtracting the retrieved data matrix from the original
data matrix

E=X-X

This residual matrix captures the variance associated with the p — k smallest eigenvalues [1].

1.2.3 Dimension reduction techniques

As mentioned earlier, selecting the correct number of eigenvectors k will separate the key signals
of the process from the random noise. Several techniques exist for determining the value of the
reduction order, but there is no apparent dominant technique {1]. In the sequel we will briefly

present an overview of some of these methods.
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The percent variance test determines the number of k£ components by calculating the number
of eigenvectors needed to represent a certain percentage of the total variance. Given that each
eigenvalue ()\;) represents a certain percentage of the variance, the percent variance test equation

can be given by

P .
i=1 )‘T

Since the minimum percentage (a%) is chosen arbitrary, the number k& components needed for each

k .
Zi:l )‘1 a%

application may be too low or too high [1,3].

The scree method shown in Fig. 1.4, plots linearly the eigenvalues in decreasing order. The
number of components k is chosen at the location where the profile is starting to curve. This is
based on the assumption that random noise should form a linear profile. In Fig. 1.4 we can observe
a typical scree curve for a data matrix containing 10 variables. In this case, we would choose
between 2 and 3 components. The identification of the number of components may be ambiguous

to identify and therefore hard to automate [1].

Scree Test

Eigenvalues

0 1 2 3 4 5 6 7 8 9 10
Number of components

Figure 1.4: Scree plot.

The pareto chart is a combination of the two previous methods discussed. It linearly plots the

accumulative percentage of each eigenvalue and display the individual percent variance contribution
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of each component in decreasing order in a bar graph. We can select the & components by observing
the break of the linear curve. If the break is between two components, we may look at the bar
graph and decide on the total variance each component will additional contribute. By looking at

the pareto chart in Fig. 1.5 we can observe that k = 2 seems to be the appropriate choice.

Pareto chart
W T | 100%
80" ....... ..... ....... ....... ....... ....... ...... 80%
g 60 v ....... ....... ....... ....... ....... ..... ...... 60%
g
> . : : : : : : .
® 0k RTINS e ERTRTT SRR e SRR e 40%
20k - L ,,,,,, ...... vvvvvv ....... ....... ...... 20%

1 2 3 4 5 6 7 8 9 10
Number of components

Figure 1.5: Pareto chart.

Finally, the number of components needed to represent the key signals of the process can also
be determined using the residual matrix for cross-validation. This test is known as the PRESS
statistic and is expressed as

PRESS(K) = =X - X},

where k is the number of components chosen and || - || is the Frobenius norm. To implement this
technique, the data matrix X can be subdivided into smaller subgroups where the PRESS statistic
is calculated for a preselected number of & components. This step is repeated for all subgroups
using different k& components each time. We choose the k£ components that average the smaller

PRESS statistic for all the different subgroups [1].
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1.2.4 PCA monitoring statistics

As we mentioned earlier, PCA is a method for transforming the observations in a dataset into new
observations which are uncorrelated with each other and account for decreasing proportions of the
total variance of the original variables.

Standardizing the data is often preferable when the variables are in different units or when the
variance of the different columns of the data is substantial. The standardized data matrix is given
by

Z=(X-1z)D7'?

where 1 = (1,...,1)T is a n x 1 vector of all 1’s, and D = (diag(S))/? is the diagonal standard
deviation matrix. It is worth pointing out the covariance matrix S of the standardized data Z is
exactly the correlation matrix of the original data, and it is given by R = D~1/2§D~1/2, PCA is
then performed by applying eigen-decomposition to the matrix R, that is R = AAAT.

The Mahalanobis distance (72) based on the first k principal components can then be defined
as

T? = y,Apry? for i=1,...,m

where Y = ZAg = [y1,...,ym)” is m x k principal component score data matrix.
The derived control limits are very similar to the conventional T? statistic. The first phase

control limits are defined as

(m —1)? [#]F%,k,m—k—l

UCL = :
m 1+ [ e pm-p-1

k
ron -~ M-V g emok

m 1+ [ P g kmeke1

and for new observations, the second phase control limits are defined as

k(m + 1) (k — 1)

ft FQ‘. —_
UCL = Famh
kim+1)(k—1
rop = M UE-Dp o

m(m — k)
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Moreover, we have an additional statistic based on the deviation of the observation to the PCA
representation. The second metric is referred to as the Q? statistic or as the squared prediction
error (SPE). It is expressed as the the squared difference between the observed values and predicted

values:
Q? = (@ — y,AD) (@i -y, AD)T = |l - y, AT

The distribution for the Q? statistic, which can also be used as a threshold, is defined as

hocary/20 9 _ 1) /e
voL =g | MoV | Goholho — 1)
& 67
where »
26,6 ; .
ho=1-— 3;%3 and 6; = Z Ay for 1=1,2,3

j=k+1

and ¢, is the value of the inverse Gaussian cumulative distribution evaluated at the confidence
level (1 — @). Therefore an out of control observation in the 72 chart would identify a major
variation of the data in which the correlation structure is preserved where as an increase in the Q?
would identify a breakdown of the correlation structure between the principal components and the
subspace [46]. It is important to note that the mean and covariance matrix are extracted under

normal operating conditions (phase 1) once all outliers are identified and deleted [1,3,37,45].

1.2.5 Robust statistics-based approaches

In this section, we will briefly review some robust statistics based methods that are used for de-

tecting multivariate outliers.

Multivariate Trimming (MVT)

Trimming was first successfully applied to univariate control charts to detect outliers and then was
later modified to fit the multivariate settings. The trimming approach consists of calculating the
Mahalanobis distance for the m observations, followed by the deletion of the observation with the
largest Mahalanobis distance. Then, the remaining (m — 1) observations are used to recalculate

the T? statistic and its control limits. These steps are repeated until a fixed percentage of the
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observations have been excluded [33]. However, the trimming technique is shown to be efficient

when only a small amount of outliers are present in the data [7,27].

Sullivan & Woodall First Approach (SW1)

This technique was proposed by Sullivan & Woodall [17] who showed that the T2 chart using
the sample covariance matrix is not effective in detecting shifts in the mean vector, and they
recommended that the covariance matrix should be estimated using the vector difference between
two successive observations v; = x;y1 — @, ¢ = 1,...,m—1. This method is, however, not effective
in detecting large number of outliers, and it excels in detecting a sudden consecutive shift in the

mean [7].

Sullivan & Woodall Second Approach (SW2)

This approach is based on the stalactite plot for outliers detection [15]. The idea is to calculate the
mean and covariance matrix from (p + 1) randomly picked observations. Then, the Mahalanobis
distance using all m observations is calculated. Next, (p + 2) observations that have the smallest
Mahalanobis distance are picked, and the process continues adding one observation at a time until
a fixed amount out of m observations is selected. Again, this technique remains vulnerable to data
that contains a large number of outliers and also depends on the robustness of its initial random

sample [7].

Minimum Volume Ellipsoid (MVE)

The first step of the minimum volume ellipsoid (MVE) method is to find the smallest ellipsoid
containing at least half of the observations. Then, a robust mean and covariance matrix based on
these observations are estimated and the distances based on these estimates are proved to be very
effective in detecting several outliers in multivariate environments [7}.

The MVE algorithm consists of drawing a random sample (W) containing p + 1 observations
to calculate the mean and the sample covariance matrix. Then, the Mahalanobis distance for all

m observations is calculated. Next, we calculate the parameter V,, = det(m%uSW)% where m2, is
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the ht* order statistic of the m Mahalanobis distances and h = |m + p + 0.5]. Then, we store
the parameter V,, and the indices of the observations and we repeat the above steps n times. The
observations associated with the smallest V,, are used to calculate the robust mean and robust

sample covariance matrix given by

15 \? 5, 1o
SuvE = (1+m—_p) (X0.5p) " MawSw

where x%’v is the is the value of the inverse of the chi-square cumulative distribution with v degrees

of freedom, evaluated at the value 8.

Minimum Covariance Determinant (MCD)

Minimum covariance determinant is considered by many as the current best-performing technique
for low dimensional data [27]. It randomly selects a subset of the data containing p+ 1 observations
to calculate the mean and covariance matrix. The Mahalanobis distance is then calculated for all
m observations in order to select > m/2 observations with the smallest distance. The determinant
of the covariance matrix of the selected observation are then calculated. This process is repeated
n times until the smallest determinant is found. The mean and covariance matrix of the > m/2
observations containing the smallest determinant are considered to be robust [7,24,27,33]. A

detailed description of the algorithm can be found in chapter two.

1.3 Contributions

The contributions of this thesis are as follows:

i Multivariate robust quality control chart for outlier detection: We present a
new robust multivariate control chart using principal component analysis and robust statis-
tics. The proposed approach consists of two main steps. In the first step, we calculate a
robust covariance matrix using the minimum covariance determinant algorithm. In the sec-
ond step, we apply eigen-decomposition to the robust correlation matrix in order to extract

the eigenvalues that will be used to define the proposed control chart. Our experimental
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results illustrate the much better performance of the proposed algorithm in comparison with

existing statistical monitoring and controlling charts.

w Statistical process control using kernel PCA: We propose a new multivariate statistical
process control chart using kernel principal component analysis. The core idea behind our
proposed technique is to project our data into higher dimension space in order to extract
the eigenvalues and eigenvectors of the kernel matrix. The proposed control chart is robust
to outliers, and its control limits are derived from the eigen-analysis of the Gaussian kernel
matrix in the Hilbert feature space. Our experimental results demonstrate a much improved

performance in comparison with the current multivariate control charts.

iz Cluster principal component analysis for outlier detection: We introduce a new method
to detect multiple outliers in both low and high dimensional data. We combine the advantages
behind hierarchical clustering and principal component analysis to improve the performance
while keeping the complexity and computation time relatively low. Our main idea consist of
identifying an optimal subset of observations that will be used as a comparison model to iden-
tify all outliers present. The experimental and simulated results clearly show a much improved

performance of the proposed approach in comparison with existing robust algorithms.

w Dynamic fault detection and diagnosis using independent component analysis: We present
a new process monitoring techniques which we refer to as dynamic independent component
analysis (DICA). We extend the advantages behind ICA to detect outliers in a time correlated
environment and introduce an innovative way on how to diagnose faults. Our experimental
results demonstrate that modelling a time dependent process dynamically and applying DICA

on the data outperforms existing monitoring methods that are currently in use.

1.4 Thesis overview

The organization of this thesis is as follows:

O The first Chapter contains a brief review of essential concepts and definitions which we will
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1.5

refer to throughout the thesis, and presents a short summary of material relevant to multi-

variate statistical process control.

In Chapter 2, we introduce a new robust multivariate control chart using robust statistics and
principal component analysis. The effectiveness of our method will be demonstrated through

extensive experimental results.

In Chapter 3, we introduce a different multivariate statistical process control using kernel
principal component analysis. A detailed description of the algorithm and a comparison

study with similar methodologies will be presented.

In Chapter 4, we present a new distance based approach to detect multivariate outliers given
no previous model history. A description behind the foundation of our algorithm will be
explained. Simulations and experimental results will be presented to demonstrate the much

improved performance of the proposed approach.

In Chapter 5, we introduce a new extension of independent component analysis to monitor
time correlated multivariate data. A description of the methodology as well a fault diagnosis
will be explained. Experimental results on the Tennessee Eastman process will demonstrate
the higher sensitivity in detecting outliers in comparison with existing process monitoring

techniques.

In the Conclusions Chapter, we summarize the contributions of this thesis, and we propose
several future research directions that are directly or indirectly related to the work performed

in this thesis.

Publications

Q. Stefatos and A. Ben Hamza, “Multivariate robust quality control chart for outlier detec-

tion,” revised & resubmitted to Quality Engineering Journal, 2007.

G. Stefatos, Yan Luo, and A. Ben Hamza, “Kernel principal component chart for defect detec-

tion,” Proc. IEEE Canadian Conference on Electrical and Computer Engineering, Vancouver,
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Canada, 2007.

# . Stefatos and A. Ben Hamza, “Statistical process control using kernel PCA,” Proc. 15th
IEEE Mediterranean Conference on Control and Automation, Athens, Greece, 2007.

& G. Stefatos and A. Ben Hamza, “Cluster PCA for outliers detection in multivariate data,”

Proc. IEEFE International Conference on Systems, Man, and Cybernetics, Montreal, 2007.

# G. Stefatos and A. Ben Hamza, “Dynamic fault detection and diagnosis using independent

component analysis,” to be submitted, 2007.



CHAPTER 2

Multivariate Robust Quality Control Chart

for Outlier Detection

We present a new multivariate statistical process control chart using robust statistics and principal
component analysis [52]. The proposed approach consists of two main steps. In the first step, a
robust covariance matrix is calculated using the minimum covariance determinant algorithm. In
the second step, an eigen-analysis of the robust correlation matrix is performed. Our experimental
results illustrate the much better performance of the proposed algorithm in comparison with existing

statistical monitoring and controlling charts.

2.1 Introduction

Many manufacturing and service businesses use statistical methods to monitor the performance
of their processes [3]. However, in many cases, there will be more than one measurement process
to monitor [4]. Currently, the industries use independent univariate control charts to study each
variable. This approach not only leads to frequent adjustments of the process but also it does
not account for correlation between the measurement processes [6]. Most processes are, however,
multivariate and highly correlated. [4,6].

In recent years, several techniques have been proposed to analyze and monitor multivariate
data [7,8,17]. With multivariate quality control charts, it is possible to have well-defined control

limits, while taking in consideration the cross correlation between the variables. In addition, these

17
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charts may be used to analyze the process for its stability without the complication of monitoring
several univariate control charts [4].

In this chapter, we present a new robust multivariate control chart using principal component
analysis [30] and robust statistics [11-13]. The proposed approach consists of two main steps. In
the first step, we calculate a robust covariance matrix using the minimum covariance determinant
algorithm. In the second step, we apply eigen-decomposition to the robust correlation matrix in
order to extract the eigenvalues that will be used to define the proposed control chart.

The remainder of the paper is organized as follows. In the next section, we describe the problem
formulation. In Section 2.3 we introduce the proposed robust multivariate control chart. In Section
2.4, experimental results are presented to demonstrate the performance of the proposed approach

in comparison with existing monitoring techniques. Section 2.5 concludes the chapter.

2.2 Problem formulation

Let X = [x1,®2,...,Zm]T be an m x p data matrix of m vectors x; € RP, where each observation
x; = (2q1,...,Tip) is a row vector with p variables.

Mapping a multivariate situation as a univariate may lead to results where processes might
seem to be in control when in fact they are not or vise versa. There are typically two phases for
multivariate control charts. In Phase I, the collected data is used to establish the control limits.
In phase II, a distinction is made between “historical” data and “future” data. Historical data,
collected in phase I, is used to generate the control limits for the future data, collected in phase II.

A common method used by both engineers and manufactures is the Hotelling’s T? statistic
chart [4] which allows several characteristics of a manufactured component to be monitored simul-
taneously for specified control limits. However, the T2 statistic chart has its limitations: in order
to obtain significant results, both the mean and covariance matrix must be robust to outliers [7].
Moreover, unlike the univariate charts, the T2 statistic does not represent the original variables.
Hence, when out-of-control situations occur, the cause can not be determined, whether it be due to

an excess variation of a particular variable or to a change in the covariance/correlation matrix [4].
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2.3 Proposed method

Principal component analysis (PCA) is a linear transformation of the original data set into smaller
number of components while keeping most of the variance [30]. PCA has two main advantages
over other multivariate statistical process control techniques. First, the principal components are
uncorrelated and second, only a few components are needed in order to capture most of the vari-
ance [4].

On the other hand, robust statistics are very effective for outliers detection and removal [11-13].
Motivated by the outperformance of PCA and robust statistics, we propose a new multivariate
quality control chart algorithm which consists of two main phases as shown in Table 2.1. In Phase
I, we calculate the robust mean and the robust covariance of our data matrix using the minimum
covariance determinant (MCD) method. The MCD technique finds a subset containing half of
the data such that its covariance matrix has the lowest determinant, and based on half of these
observations a robust mean and a robust covariance matrix are calculated [25].

Standardizing the data is often preferable when the variables are in different units or when
the variance of the different columns of the data is substantial. In Phase II of our algorithm, we
perform PCA using a standardized data with the robust mean and robust standard deviation in
order to further separate the outliers from the data set and to also unitize the magnitude of the
variables.

The robust standardized data matrix Z = [21, 22, .. ., 2,7 is given by Z = (X —1&)D~/2, where
1=(1,...,1)T is a n x 1 vector of all 1’s, and D = (diag(Sx))"/? is the diagonal of the robust
standard deviation matrix.

PCA is then performed by applying eigen-decomposition to the robust correlation matrix Ry,
that is Ry = AAAT where A = (a4, ... ,@p) is a p X p matrix of eigenvectors (also called principal
components) and A = diag(Ay,...,Ap) is a diagonal matrix of eigenvalues. These eigenvalues are
arranged in decreasing order where each value expresses a certain percentage of the total variance.
The principal component score matrix is a linear transformation given by Y = ZA. Moreover, the
covariance matrix is

COV(Y) = -TTL—}—-—-—]TYTY = %ATZTZA = A.
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Table 2.1: Algorithmic steps robust PCA.

Algorithm: Robust Principal Component Control Chart

Phase I:

1. Draw a random sample K = [k1,kz,...,kps1]7 from the data X = [x1,23,...,Zm]T containing (p + 1)
observations.

2. Compute the mean Tx and the sample covariance matrix Sgk.

3. Compute the Mahalanobis distance:
Ti2=(wi—.’i!K)SI_<1(ilii-—.’f:K)T, i=1...,m
4. Select b = |m -+ p + 0.5] observations with the smallest Mahalanobis distance T? to obtain a subsample
B =[b1,bs,...,bs]"T.
5. Compute the sample mean Zp and sample covariance matrix Sp of the sample B.
6. Recompute the Mahalanobis distance using Zg and Sg .

7. Reselect h observations with the smallest Mahalanobis distance and repeat step 4) to step 6) until the selected
h observations remain consistent.

8. Store the h observations and determinant of the sample covariance matrix.
9. Return to step 1) and repeat n times.

10. Compute the robust mean Zy, the robust covariance matrix Sy, and the robust correlation matrix Ry from
the h* observations chosen with the smallest determinant:

1 &
Ty = szz
i=1
1 &
Sy = mZ(bz—iH)T(bz—fEH)
i=1
Ry = D Y?syD7'/?

where D = (diag(Sy))*/? is the diagonal of the robust standard deviation matrix.

Phase II:
1. Standardize the data with the robust mean and robust standard deviation.
2. Perform the eigen-analysis of the robust correlation matrix Rg.

3. Compute the principal component scores
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Therefore, each principal component score y;, has a variance equal to var(y) = A\ for k=1,...,p.
Assuming we want +30 confidence intervals, the upper control limit (UCL), the center line

(CL), and the lower control limit (LCL) are given by

UCL = +3v
CL = 0
LCL = =3\

For the purpose of analysis, we may keep r principal component scores out of p depending on the
precision (total variance) that is required. As mentioned earlier, each principal component score is

a linear combination of the standardized data Z and the eigenvector coefficients:

P
Y; =Zakak, j=1,...,r
k=1

2.4 Experimental results

In this section we will compare our proposed method with several robust control charts. Results
for the conventional T2 chart, MVT, SW1, SW2, as well as MVE will be included. Note that for
MVT and SW2, we removed 15% of the observations. The following three sets of experiments were

performed:

2.4.1 Experiment #1: Woodmod dataset

We tested the performance of our proposed technique on a data set X = [z1,Z2,...,Z20] T (called
woodmod data [16]) which contains 20 observations as shown in Table 2.2. Each observation x;
has 5 variables which correspond respectively to:

e number of fibers per square millimeter in Springwood

number of fibers per square millimeter in Summerwood

fraction of Springwood

fraction of light absorption by Springwood

fraction of light absorption by Summerwood
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Table 2.2: Woodmod dataset.

i

l

Zi2

1

T3

T4

zis_ |

0.5730
0.6510
0.6060
0.4370
0.5470
0.4440
0.4890
0.4130
0.5360
0.6850
0.6640
0.7030
0.6530
0.5860
0.5340
0.5230
0.5800
0.4480
0.4170
0.5280

0.1059
0.1356
0.1273
0.1591
0.1135
0.1628
0.1231
0.1673
0.1182
0.1564
0.1588
0.1335
0.1395
0.1114
0.1143
0.1320
0.1249
0.1028
0.1687
0.1057

0.4650
0.5270
0.4940
0.4460
0.5310
0.4290
0.5620
0.4180
0.5920
0.6310
0.5060
0.5190
0.6250
0.5050
0.5210
0.5050
0.5460
0.5220
0.4050
0.4240

0.5380
0.5450
0.5210
0.4230
0.5190
0.4110
0.4550
0.4300
0.4640
0.5640
0.4810
0.4840
0.5190
0.5650
0.5700
0.6120
0.6080
0.5340
0.4150
0.5660

0.8410
0.8870
0.9200
0.9920
0.9150
0.9840
0.8240
0.9780
0.8540
0.9140
0.8670
0.8120
0.8920
0.8890
0.8890
0.9190
0.9540
0.9180
0.9810
0.9090

22

The woodmod data variables are highly correlated as shown in Fig. 2.1, and hence multidimen-

sional quality control charts should be applied.

Woodmod dataset
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Figure 2.1: Scatter plot of the woodmod dataset.
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Figure 2.2: Non-robust 72 control chart. Figure 2.3: MVT T2 control chart.
Woodmod dataset Woodmod dataset
25 T 20 .
19
18} 8 1
20l 12 | 6

1 16

o

1

145 18 1
4
12f A 1
. 4 UCL
10 18
2 A 4 UCL 18 v
X/\/ i
st . 4t
0 15 2

1 0 o 5 10 15 20
Observation number Observation number

SW1 T-squared
=

SW2 T-squared
3

o 5
Figure 2.4: SW1 T2 control chart. Figure 2.5: SW2 T2 control chart.

Fig. 2.2 through Fig. 2.6 show the T2 control charts using the various robust methods discussed
in the introduction. It can be seen that SW2 and MVE are able to detect the observations 4, 6, 8
and 19 as outliers, whereas MV'T and SW1 are unable to detect the correct outliers. Moreover, the
T? control chart is unable to find any outliers. It is worth mentioning that for all the T? charts,

we used a probability of type I error equal to o = 5%.
Fig. 2.7 depicts the principal component charts which clearly indicate the inability of PCA to detect

outliers in any of the principal component scores.
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Figure 2.6: MVE T2 control chart.
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Figure 2.7: (a)-(b) PCA chart with 8.5% variance and 1.8% variance respectively.

The robust principal component charts shown in Fig. 2.8 not only are able to identify all
the outliers detected by SW2 and MVE T? charts, but also robust PCA was able to find some
other smaller outliers such as 7, 11 and 16. This better performance of the proposed multivariate
control chart is consistent with a variety of datasets used for experimentation. The contribution
plot demonstrating the causation for this excess variation is shown in Fig. 2.9. For example, the
excess variation caused on the the 4" principal component is due to the 374 and 4% variable moving

opposite direction with the 5t" variable. Also, variable 1 and 2 have minimal impact in this principal
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component.
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Figure 2.8: {(a)-(b) Robust PCA chart with 4.3% variance and 0.6% variance respectively.
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Figure 2.9: Contribution plot for the 4'* and 5" principal component.

2.4.2 Experiment #2: Stackloss dataset

Our second analysis was performed on a dataset called Stackloss shown in Table 2.3. This dataset
describe the plant oxidation of ammonia to nitric acid, and contains 21 observations, where each

observation has 4 variables: rate, temperature, acid concentration, and stackloss.
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Table 2.3: Stackloss dataset.

I T4l l Ti2 [ T3 ] Tiq I
80.0 | 27.0 | 89.0 | 42.0
80.0 | 27.0 | 88.0 | 37.0
75.0 | 25.0 | 90.0 | 37.0
62.0 | 24.0 | 87.0 | 28.0
62.0 | 22.0 | 87.0 | 18.0
62.0 | 23.0 | 87.0 | 18.0
62.0 | 24.0 | 93.0 | 19.0
62.0 | 24.0 | 93.0 | 20.0
58.0 | 23.0 | 87.0 | 15.0
58.0 | 18.0 | 80.0 | 14.0
58.0 | 18.0 | 89.0 | 14.0
58.0 | 17.0 | 88.0 | 13.0
58.0 | 18.0 | 82.0 | 11.0
58.0 | 19.0 | 93.0 | 12.0
50.0 | 18.0 | 89.0 | 8.0
50.0 | 18.0 | 86.0 | 7.0
50.0 | 19.0 | 72.0 | 8.0
50.0 | 19.0 | 79.0 8.0
50.0 | 20.0 | 80.0 | 9.0
56.0 | 20.0 | 82.0 | 15.0
70.0 | 20.0 | 91.0 | 15.0
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Figure 2.10: Scatter plot of Stackloss dataset.
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Figure 2.14: SW2 T2 control chart.
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The scatter plot shown in Fig. 2.10 confirms the existence of a high correlation between the

variables. The various T? control charts are displayed in Fig. 3.6 through Fig. 2.15. It is apparent

that there is a common trend between all charts. There is a higher variation in the initial obser-

vations (m = 1,2,3,4) and on the final observation (m = 21). Depending of the algorithm chosen

different outliers will be detected.

The principal component control charts are depicted in Fig. 2.16, where no outliers were de-

tected. Robust PCA, however, was able to detect all the outliers present in the different compo-

nents as shown in Fig. 2.17. The largest outliers are present in the first principal component scores,
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Figure 2.15: MVE 7?2 control chart.

whereas the smallest ones are present in the lower principal component scores. Contribution plot

is shown in Fig. 2.18 demonstrating the influence of the variables for each principal component.

2.4.3 Experiment #3: Phosphorus content dataset

The phosphorus content data shown in Table 2.4 contains 18 observations, where each observations
has 3 variables: inorganic phosphorus, organic phosphorus, and plant phosphorus. This dataset
studies the effect of organic and inorganic phosphorus in the soil in comparison with the phosphorus
content of the corn grown. The scatter plot of the data set is shown in Fig. 2.19.

As observed in Fig. 2.20 through Fig. 2.24, the T2 control charts display a higher variation for
the observations 1, 6, 10, and 17. All the control charts detect observation 17 as an outlier. PCA
was unable to detect any outlier as shown in Fig. 2.25.

On the other hand, robust PCA was able to detect all the outliers in the different component
scores as shown in Fig 2.26. The observation 17 was detected as an outlier in the first principal
component, whereas the observations 6 and 10 were detected in the second principal component
score. Smaller outliers were also detected in the last principal component containing only 1.8% of

the total variance. The contribution plot for all the principal components is shown in Fig. 2.27.
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Figure 2.16: (a) PCA chart with 74.9% variance, (b) PCA chart with 5.38% variance, (c) PCA chart
with 1.33% of variance.

2.5 Conclusions

In this chapter, we introduced a new multivariate quality control chart by combining robust sta-
tistics and principal component analysis. The core idea behind our proposed technique is to use
robust statistics to estimate the correlation matrix that will be used to extract the robust eigenval-
ues and eigenvectors. The eigenvalues can then be used to define the control limits of our proposed

control chart. The experimental results clearly show a much improved performance of the proposed
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approach compared with the existing quality control methods currently used in the analysis and

the monitoring of multivariate data.
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Stackloss dataset — Contribution Plot
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Figure 2.18: Contribution plot for the 1%¢, 3" and 4% principal component.

Table 2.4: Phosphorus content dataset.

e T2 | i3

0.40 | 53.00 | 64.00
0.40 | 23.00 | 60.00
3.10 | 19.00 | 71.00
0.60 | 34.00 | 61.00
4.70 | 24.00 | 54.00
1.70 | 65.00 | 77.00
9.40 | 44.00 | 81.00
10.10 | 31.00 | 93.00
11.60 | 29.00 | 93.00
12.60 | 58.00 §{ 51.00
10.90 { 37.00 | 76.00
23.10 | 46.00 | 96.00
23.10 | 50.00 | 77.00
21.60 | 44.00 | 93.00
23.10 | 56.00 | 95.00
1.90 36.00 54.00
26.80 | 58.00 | 168.00
29.90 | 51.00 | 99.00
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ICHAPTER 3

Statistical Process Control using Kernel

Principal Component Analysis

We present a robust multivariate statistical process control chart using kernel principal component
analysis. The proposed control chart is effective in the detection of outliers, and its control limits
are derived from the eigenanalysis of the Gaussian kernel matrix in the Hilbert feature space [53,54].
Our experimental results show the much improved performance of the proposed control chart in

comparison with existing multivariate monitoring and controlling charts.

3.1 Introduction

Typically process monitoring applies to systems or processes in which only one variable is measured
and tested. One of the disadvantages of a univariate monitoring scheme is that for a single process,
many variables may be monitored and even controlled [3]. Multivariate quality control methods
overcome this disadvantage by monitoring several variables simultaneously [4]. Using multivariate
quality control methods, engineers and manufacturers who monitor complex processes may monitor
the stability of their process.

With multivariate situations, the probability that a process is completely in control is less than
in the univariate case [3]. Similarly, the likelihood that a multivariate process is completely out
of control is less than that of the univariate case. Using multivariate control charts, it is possible

to maintain a specific error rate, while taking advantage of cross correlation between the variables,
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and the process can be analyzed for its stability without the complication of maintaining many
control charts at once. Multivariate quality control provides a way for engineers and manufacturers
to test their products in an environment that provides many advantages over univariate models.
It is inherently more complex than univariate statistical process control, but it may be a more
realistic representation of the data since in the real world processes do not usually have only one
variable that is measured independent of all other variables in a system. Mapping a multivariate
situation as a univariate may lead to results where processes might seem to be in control when in
fact they are not or vise versa.

In this chapter, we present a new multivariate statistical process control chart using kernel
principal component analysis [19]. The proposed control chart is robust to outliers detection, and
its control limits are derived from the eigen-analysis of the Gaussian kernel matrix in the Hilbert
feature space.

The remainder of the chapter is organized as follows. In the next Section, we described the
problem formulation. In section 3.3, we propose a kernel principal component control chart. In
Section 3.4, we perform experimental results to demonstrate that the performance of the proposed
multivariate control chart chart has greatly been improved in comparison with existing monitoring

and controlling charts. Finally, some conclusions are included in Section 3.5.

3.2 Problem formulation

In recent years, a variety of statistical quality control methods have been proposed to monitor
multivariate data including the Hotelling’s T2-statistic chart [3], and the principal component
analysis control chart based on principal component analysis [30]. These control charts are widely
used in the industry particularly in assembly operations and chemical process control [4]. The T
statistic is, however, vulnerable to outliers and in order to obtain significant good results both the
mean and the covariance matrix must be robustly estimated [7,8,16,17]. Also, principal component
analysis is very sensitive to outliers [4,18]. Therefore, to obtain significant results, extra processing

is required using robust statistics.
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3.3 Proposed method

Kernel principal component analysis is a nonlinear generalization of PCA, and consists in mapping
the data to a higher (possibly infinite) dimensional feature space via a nonlinear map, and then
computing the dot products in the feature space. Suppose we have an input data set X = {z; :
i =1,...,m} where each observation x; is an p-dimensional vector and the distribution of the data
is nonlinear. Kernel PCA algorithm consists of two main steps: the first step is to linearize the
distribution of the input data by using a nonlinear mapping ® : R — F from the input space
R? to a higher-dimensional (possibly infinite-dimensional) feature space . The mapping @ is
defined implicitly, by specifying the form of the dot product in the feature space. In other words,
given any pair of mapped data points, the dot product is defined in terms of a kernel function
K(wi, ;) = ®(;) - 2(x;).

The most commonly used kernels are the Gaussian kernel K (x,y) = exp(—|z — y||?/(2¢?%)) with
parameter o. In the second step, PCA in applied to the mapped data set ® = {®; : i =1,...,m}
in the feature space, where ®; = ®(x;). The second step of kernel PCA is to apply PCA in the
feature space by performing an eigendecomposition on the covariance matrix of the mapped data
which is given by

C= ;2_1_——I Z & (x;)T®(x;)
i=1

where &(x;) = ®(a;) — (1/m) 7, ®(x;) is the centered mapped data.

The eigenvectors of C are given by
m
= —C’v = Z@ ;) ( o )Q(wi)Tv) = 0i®(my),
de=1

where o; = (®(;)Tv)/(u(m — 1)). In other words, an eigenvector of C is a linear combination of

{®(x;)}. Taking the dot product of ®(x;) with v yields

m
@(mj v—Zal x;) - D(x;) =Z
i=1

i=1

which implies that u(m — 1)y = Y 1v4 o;Kyj. Hence

Ka = jo,
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Algorithm: Kernel Principal Component Control Chart

1. Choose the appropriate o for the Gaussian kernel matrix
2. Construct the kernel matrix K = (Kj;) of the mapped data: Kjj = K(z;, ;) = ®(x;)- &(z;).

3. Construct the kernel matrix K = HKH of the centered mapped data, where H =1 — J/n
the centering matrix is defined in terms of the identity matrix I and the matrix of all ones J.

4. Find the largest p eigenvectors a, (r = 1,...,p) of K and their corresponding eigenvalues
fir.
5. Given a test point @ with image ®(x), compute the projections onto the eigenvectors v, given

by the equation

v, - &

(z) = \/———:1— Zaz x;)

Table 3.1: Algorithmic steps for Kernel PCA.

where & = (ay, ..., ap) and fi = u(m — 1). That is, « is an eigenvector of K. If the eigenvectors

of C are orthonormal (i.e. vTv = 1) then

m
1=vlv = Zozwch)(a:1 &3 Zala] ij

i,j=1 1,j=1
= o'Ka=pm-1ao"a

and hence |a| = 1/y/pu(m —1).

The main algorithmic step of the proposed kernel principal component chart as shown in Table 3.1.
Assuming we want +3¢ confidence intervals, the upper control limit (UCL), the center line

(CL), and the lower control limit (LCL) of the kernel principal component chart are
UCL = +3\/ur
CL=0

LCL = —3:/ir
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Figure 3.1: Principal component chart with 54.8% of variance.

3.4 Experimental results

We conducted experiments on three different data sets. In all the experiments, the width of the
Gaussian kernel is estimated as follows
2 m
g=— zi — 24|,
m(m_l)gu T J”
where [21,...,2m|T is the standardized data. Also, we compare the results between linear PCA

and kernel PCA using the same experiments used in chapter two.

3.4.1 Experiment #1: Woodmod dataset

The linear principal component control chart is unable to detect outliers as depicted in Fig. 3.1.
We can clearly see that the observations 4, 6, 8 and 19 have higher variations than the rest of the
observations although they still lie within the upper and lower control limits.

The kernel principal component chart is able to detect the observations 4, 6, 8 and 19 as outliers

as shown in Fig. 3.2 containing 44.2% of the variance.
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Figure 3.2: Kernel principal component chart with 44.2% of variance

3.4.2 Experiment #2: Stackloss dataset

The principal component chart, did not detect any outliers as shown in Fig. 3.3. On the other

hand, kernel principal component chart (see Fig. 3.4) was able to identify the first 3 observations

as outliers.
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Figure 3.3: Principal component chart with 74.94% of variance.
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Figure 3.4: Kernel principal component chart with 49.76% of variance.

3.4.3 Experiment #3: Phosphorus content dataset

For the phosphorus content data, the linear principal component chart did not identify any outliers
as illustrated in Fig. 3.5. Kernel principal component chart was, however, able to detect the
observation 17 as an outlier as shown in Fig. 3.6.
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Figure 3.5: Principal component chart with 9.81% of variance.
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Figure 3.6: Kernel principal component chart with 16.18% of variance.

3.5 Conclusions

In this chapter, we introduced a new multivariate control chart by using the concept of kernel
principal component analysis. The core idea behind our proposed technique is to project the data
into a higher dimension Hilbert space in order to extract the eigenvalues and eigenvectors of a
Gaussian kernel matrix. The experimental results clearly show a much improved performance of

the proposed approach in comparison with the current multivariate control charts.



ICHAPTER 4

Cluster Principal Component Analysis for

Outlier Detection

We introduce a new method to detect multiple outliers in high-dimensional datasets using the
concepts of hierarchical clustering and principal component analysis. The proposed cluster PCA
algorithm is computationally fast and robust to outliers detection [55]. A comparative study with
existing techniques is performed on both synthetic and real-world datasets. Our experimental
results demonstrate an improved performance of our algorithm in comparison with existing multi-

variate outlier detection schemes.

4.1 Introduction

With fast automated data collection tools and larger databases, there is a tremendous amount
of information that is stored for future analysis [22]. Consequently, the need to develop tools and
techniques to extract relevant information has made research areas such as data mining increasingly
important [23]. Outlier detection is among these research areas that has attracted considerable
attention in recent years [24]. Outliers are defined as abnormal data points which deviate from the
normal variability found in a dataset. These outliers are often of primary interest in both chemical
and engineering related processes [25]. For example, in geochemical exploration, outliers can often
identify important mineral deposits [26].

In recent years, various techniques have been proposed for outlier detection in both univariate
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and multivariate settings [7,26,27]. These methods typically fall under two categories: supervised
and unsupervised approaches. The supervised approaches compare new observations under an
existing well defined model, whereas the unsupervised approaches classify each observation under
normal and extreme variation based on a certain distance [28].

In this chapter, we present a new distance-based approach which we refer to as cluster principal
component analysis (cluster PCA). The goal of the proposed method is to identify outliers in both
low and high dimensional datasets by combining the concepts of hierarchical clustering [29] and
PCA [30] in order to improve the performance while keeping the complexity and computation time
relatively low.

The layout of this chapter is as follows. In the next section, we describe the problem formulation.
In section 4.3 introduces the proposed robust multivariate algorithm. In Section 4.4, and section 4.4
experimental and simulated results are presented to demonstrate the performance of the proposed

approach in comparison with existing robust techniques. Section 4.6 concludes the chapter.

4.2 Problem formulation

Mining information from a dataset containing multiple dimensions is becoming very common [31].
Many industries use univariate techniques to study each dimension. The univariate approaches
may lead faulty results since it takes little or no account of the covariance that exist between the
observations [3]. To overcome this problem, multivariate control charts are used. This is not trivial
when a dataset contains multiple outliers. Even a small percentage of outliers can distort the results
and render the outcome misleading or useless. To overcome this problem, statisticians have recently
proposed robust methods to estimate key parameters such as the mean and covariance/correlation
matrix without the negative effect of outliers [32]. Techniques such as the minimum volume ellipsoid
(MVE) and minimum covariance determinant (MCD) have proven their robustness but are limited
to small moderate dimensions [25,27].

For multivariate data, the process of finding meaningful outliers becomes inherently more com-
plex [31]. For example, in the field of chemometrics, datasets containing thousands of dimensions

are not uncommon. For these types of applications, projection pursuit (PP) and PCA may be used
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to process and analyze such large information [25].

4.3 Proposed method

Most statistical-based techniques use the covariance matrix as the basis for detecting outliers in
datasets [27]. For example, the MCD and MVE methods use the volume (determinant) of the
covariance matrix to identify the subset of observations that are considered robust to calculate both
the mean and the covariance matrix. This process might result very lengthy because the optimum
subset might require n = m!/(m — h)! permutations, where h is cardinality of the optimum subset
of observations. Also, the determinant of the covariance matrix can only be computed if p < h,
otherwise the determinant will be equal to zero. This is the main reason why some of the more
robust algorithms are limited to only a small value of p (i.e. small number of dimensions) [25].

Our proposed algorithm, however, does not depend on a the number of permutations and can
be applied to both high (large p) and low dimensional (small p) datasets. Our approach is based
on hierarchical clustering in combination with PCA to obtain a robust subset of observations that
are used to identify outliers. PCA is a method for transforming the observations in a dataset into
new observations which are uncorrelated with each other and account for decreasing proportions
of the total variance of the original variables. Each new observation is a linear combination of the
original observations. Standardizing the data is often preferable when the variables are in different
units or when the variance of the different columns of the data is substantial. The standardized
data matrix is given by

Z=(X-12)D"Y? =[21,2s,...,2m)T,

where 1 = (1,...,1)T is a m x 1 vector of all I’s, and D = (diag(S))'/? is the diagonal standard
deviation matrix.

The Euclidean distance matrix between all the standardized observations is given by
dij = ||zi — z5]l, 1<4,j<m.

Initially, each observation can be considered a cluster of its own until all the h observations are

eventually integrated in one big cluster. If m > p, the optimal subset contains h = |(m +p+1)/2]
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observations, and if m < p then the optimal subset contains h = |am|, where o € (1/2,1) is a
parameter and |z| denotes the floor function that returns the largest integer less than or equal to
2. A smaller value of o tends to increases the robustness of the algorithm whereas a higher value
of a tends to give better estimates of the uncontaminated data [25,33].

Given a set of h observations to be clustered and an h x h distance matrix D = (di;)1<i j<n,

the hierarchical clustering is performed as follows [29]:

1. Assign each observation to a cluster so that we have h clusters, each containing one cluster.
Let the distances between the clusters be the same as the distances between the observations

they contain.

2. Find the closest pair of clusters and merge them into a single cluster, so that we have one

cluster less.

3. Compute distance between the new cluster and each of the old clusters. The distance between
one cluster and another cluster is equal to the shortest distance from any member of one cluster

to any member of the other cluster.
4. Repeat steps 3) and 4) until all observations are clustered into a single cluster of size h.

Once the sample H = [21,22,...,25)7 of the h observations are selected, we compute its robust
sample mean Z g and its robust sample covariance matrix Sg. Then, we apply the eigendecompo-
sition on Sy, that is Sy = AAAT, where A is a matrix of eigenvectors (principal components) and
A is a diagonal matrix of eigenvalues. We may select the most significant k principal components

according to the following criteria
?:1 >‘J'

PN
j=1"
which can be used as reasonable cut-off value. The robust distance in the PCA subspace is then

defined as

> 90%

T? = (2; — Zu) AcAp AL (2 — Z1)T

where Ay = (ay,...,ax) and Ag = diag(A1,. .., \g).
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4.4 Experimental results

In this section, we test the performance of the proposed cluster PCA method with simulated and
real-world data sets. We also compare the results with the previous methods discussed in the robust

statistics section as well as the conventional 72 and projection pursuit(72 PCA).

4.4.1 Hawkins-Bradu-Kass (HBK) dataset

We tested the performance of our proposed technique on the HBK data set [33]. This data set
X = [x1,@9,... ,w75]T contains 75 observations where each observation x; is 4-dimensional (i.e.
has 4 variables). It is known that the first 14 observations are outliers [33].

To determine which observations are outliers, we used a cut-off line as the value of X(2),975,p
where X%,v denotes the value of the inverse chi-square cumulative distribution with v degrees of
freedom evaluated at the value 3. In the case for Cluster PCA and 72 PCA we used X(2).975,k where
k represents the number of principal components selected [25].

The conventional Mahalanobis distance is shown in Fig. 4.1, where is can be clearely seen
that the masking effect has limited its performance to only identifying the 4 largest outliers. The
projection pursuit using PCA was also unable to identify the first 10 outliers as shown in Fig. 4.2.
The more robust algorithm (Fig. 4.3 - Fig. 4.7) were all able to detect the correct outliers. It is
also important to notice that the SW1 and the MCD techniques have also identified some smaller

outliers. For the HBK data set, all observations other than 1 to 14 that are found outside the

cut-off limit should be considered as a false alarms.

4.5 Simulation results

In this section, we test the performance of the proposed cluster PCA method on two datasets with
different dimensions, and we also compare the results with the previous methods discussed in the
Introduction.

The datasets are generated using the following Gaussian mixture model

(1 _6)Np(07 2) +€Np(ﬁ) E)a (1)
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Figure 4.2: PCA T? chart with 90% of total variance.

where ¢ is the percentage of outliers, N, denotes a p-variate Gaussian distribution, and i denotes

the mean shift [25,34]. Therefore each observation is normally distributed at a certain mean and

varied randomly at certain standard deviation. Moreover, the simulated data is restricted between

420 in order to have better control of the uncontaminated data and to also avoid any extreme case

scenario.

We varied the values of m,p, ¢, i for different settings and repeated the experiment 50 times in

order to achieve the best estimates. A detailed description of the experiment can be summarized
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Figure 4.3: Multivariate trimming chart (removing 15% of observations.)
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Figure 4.4: Sullivan and Woodall first approach chart.

as follows:

e Two datasets Xmxp with (m,p) = (100,4) and (m,p) = (50,100) are generated using
the Gaussian mixture model defined in Eq. (1).

e The percentage of outliers £ was set to 0%, 10%, 20%, 30%, and 40%.

e The mean shift & was set to 0.1, 0.15, 0.2, 0.25, and 0.30. The standard deviation was
consistently set to ¢ = 0.1 in order to get different signal to noise ratios.

e We tested the performance of the algorithms under two criteria: (i) the percentage of



4.5 Simulation results 52

HBK data set

900+
800
700F
600+
500F

MVE T-squared

UCL

0 10 20 30 40 50 60 70
Observation number

Figure 4.5: Minimum volume ellipsoid chart.
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Figure 4.6: Minimum covariance determinant char.t

correct outliers detection (# of correct outliers found / total # of outliers) and (ii) the
false alarm ratio (# of observations found as outliers but are not / total # of good
observations). We also tested the performance for both consecutive mean shift and
scattered mean shift across the observations.

e The cardinality h of the optimum subset of observations was set to |h = [(m+p+1)/2]

when m > p, and to h = |m/2] when m < p.
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Figure 4.7: Cluster PCA chart using 90% of total variance.

4.5.1 First dataset

In this subsection, we perform a simulation study on the first Gaussian-mixture generated dataset
Xmxp Wwith (m,p) = (100,4), and we compare the performance of the proposed approach with

several robust methods discussed in the Introduction.

Performance of conventional 72 algorithm

As observed in Fig. 4.8-(a), the conventional Mahalanobis distance is limited to very low percentage
of outliers. In this case, a consecutive mean shift or a scattered mean shift has no effect on the

results. Also, the false alarm performance (Fig. 5.5-(b)) is rated at less than 1%.

Performance of the MVT algorithm

For the multivariate trimming algorithm, we tested its performance by removing 15% and 25%
of the observations. As shown in Fig. 4.9 and Fig. 4.10, this method is limited to relatively low
percentage of outliers (10% to 20%). Also, the more the observations we remove the better outlier
detection performance we achieve to the cost of a higher (increased by a factor of two) false alarm
ratio. It is also important to note that there is no performance difference between a consecutive

mean shift and a scatter mean shift as can be observed in Fig. 5.8.
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Figure 4.8: (a) Conventional T? outlier detection performance in a consecutive mean environment, (b)
Conventional T? false alarm performance in a consecutive mean environment.
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Figure 4.9: (a) MVT outlier detection performance when removing 15% of the observations in a consecutive
mean environment, (b) MVT false alarm performance when removing 15% of the observations in a consecutive

mean environment.
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Figure 4.10: (a) MVT outlier detection performance when removing 25% of the observations in a consec-
utive mean environment, (b} MVT outlier detection performance when removing 25% of the observations in

a scattered mean environment.
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Figure 4.11: (a) MVT outlier detection performance when removing 25% of the observations in a scattered
mean environment, (b) MVT false alarm performance when removing 25% of the observations in a scattered

mean environment.
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Performance of the SW1 algorithm

The performance of Sullivan and Woodall approach is depicted in Fig. 4.12. As observed, this
method works relatively well only in the presence of a consecutive mean shift. If the environment
was a scattered mean shift this methods would fail to detect the correct outliers as depicted in
Fig. 5.10. Also, we can observe that the false alarm performance increases exponentially as the

percentage of errors and mean shift increases.

0.3

% Correct Detection
% False Alarm

o1 mean shift o1 mean shift

Figure 4.12: (a) SW1 outlier detection performance in a consecutive mean environment, (b) SW1 false
alarm performance in a consecutive mean environment.

Performance of the MVE algorithm

The minimum volume ellipsoid performance is shown in Fig. 4.14 and Fig. 4.15. It can be noted
that this procedure works well under large mean shifts and small percentage of outliers. Also, it
slightly performs better in the scattered mean environment particularly when zi = 0.1. Finally, the

false alarm ratio is contained under 10% in both environments.
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Figure 4.13: (a) SW1 outlier detection performance in a scattered mean environment, (b) SW1 false

alarm performance in a scattered mean environment.
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Figure 4.14: (a) MVE outlier detection performance in a consecutive mean environmen, (b) MVE false

alarm performance in a consecutive mean environment.
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Figure 4.15: (a) MVE outlier detection performance in a scattered mean environment, (b) MVE false
alarm performance in a scattered mean environment.

Performance of the MCD algorithm

The minimum covariance determinant is the most robust algorithm for low dimensional data as
shown in Fig. 4.16 and Fig. 5.13. It works very well across all percentage of errors and mean shifts.
We also obtain similar results for both scattered and consecutive mean environments. Where it
lacks the most is the false alarm ratio. As observed, we obtain a performance of anywhere between

8% to 37%.

Performance of the 72 PCA

For the projection pursuit method, we have the number of components selected as an extra pa-
rameter. In this case we varied k in such a way that 80% and 100% of the total variance would
be selected. First, let us analyze the performance of a consecutive mean shift environment. As
observed in Fig. 5.14 and Fig. 4.19 the higher the total variance is represented in projection pursuit,
the better the outlier detection performance. In the case of a scattered mean shift environment
there is no difference in the outlier detection performance as shown in Fig. 4.20 and Fig. 5.15. Also

the false alarm ratio is below 1% in all case scenarios and environments as depicted in all Figures.
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Figure 4.16: (a) MCD outlier detection performance in a consecutive mean environment, (b) MCD false

alarm performance in a consecutive mean environment.
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Figure 4.17: (a) MCD outlier detection performance in a scattered mean environment, (b) MCD false

alarm performance in a scattered mean environment.
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We can conclude that this method is restricted for small percentages of errors as the conventional 72.
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Figure 4.18: (a) PCA T? outlier detection performance in a consecutive mean environment (80% of
variance used), (b) PCA T? false alarm performance in a scattered mean environment (80% of variance

used).
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Figure 4.19: (a) PCA T? outlier detection performance in a consecutive mean environment (100% of
variance used), (b) PCA T? false alarm performance in a consecutive mean environment (100% of variance

used).
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Figure 4.20: (a) PCA T2 outlier detection performance in a scattered mean environment (80% of variance
used), (b) PCA T? false alarm performance in a scattered mean environment (80% of variance used).
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Figure 4.21: (a) PCA T2 outlier detection performance in a scattered mean environment (100% of variance
used), (b) PCA T2 false alarm performance in a scattered mean environment (100% of variance used).
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Performance of the cluster PCA algorithm

Cluster PCA also has the number of components selected as a parameter. In this case, we also
varied k in such a way that 80% and 100% of the total variance would be selected. Qur results
are similar to those of MCD in terms of outlier detection performance (as depicted in Fig. 4.22
to Fig. 4.24) in both consecutive and scattered mean shift environments. Where our algorithm
outperforms MCD is in the false alarm category. The false alarm ratio lies at worst a the 20%
range depending on parameters selected. Also, it is important to note that the more & components
are selected the better the outlier detection performance is at the cost of higher false alarm ratio.

This is due that as more information (variance) is added, there is also more noise added.
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Figure 4.22: (a) Cluster PCA outlier detection performance in a consecutive mean environment (80%
of variance used), (b) Cluster PCA false alarm performance in a consecutive mean environment (80% of
variance used).

4.5.2 Second dataset

The main limitation of the MVE and MCD algorithms is their inapplicability to datasets having
more variables than observations, that is when p > m. Other techniques such SW1 and multivariate

trimming can be modified using the concepts behind principal component analysis and projection
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Figure 4.23: (a) Cluster PCA outlier detection performance in a consecutive mean environment (100% of
variance used), (b) Cluster PCA false alarm performance performance in a consecutive mean environment

(100% of variance used).
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Figure 4.24: (a) Cluster PCA outlier detection performance in a scattered mean environment (100% of
variance used), (b) Cluster PCA false alarm performance performance in a scattered mean environment

(100% of variance used).
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pursuit to fit the model of higher-dimension. But, given their poor performance for low dimensional
data, their results are expected to degrade even more. Our proposed cluster PCA is, however,
applicable to such datasets as will be shown in the sequel. To this end, we generated a Gaussian-

mixture dataset Xp,x, with (m,p) = (50, 100).

Performance of the 72 PCA algorithm

Projection pursuit is observed in Fig. 4.25 and Fig. 4.26 in both consecutive and scattered mean
shift environments. As shown, it is unable to detect the outliers present. Also, as we increase
the number of component selected &, the performance for detecting outliers deteriorates as seen in

Fig. 4.27. The False alarm ratio is less than 0.8% across all parameters.
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Figure 4.25: (a) PCA T? outlier detection performance in a consecutive mean environment (80% of
variance used), (b) PCA T? false alarm performance in a consecutive mean environment (80% of variance

used).

Performance of the cluster PCA algorithm

The performance for cluster PCA comprising different percentage of variance can be observed in
Fig. 4.28 and Fig. 4.29. As it can be observed, in high dimensional data the more components k

are selected the more accurate the outlier detection will perform. Also, the performance is similar
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Figure 4.26: (a) PCA T? outlier detection performance in a scattered mean environment (80% of variance
used), (b) PCA T? false alarm performance in a scattered mean environment (80% of variance used).
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Figure 4.27: (a) PCA T? outlier detection performance in a consecutive mean environment (99% of
variance used), (b) PCA T? false alarm performance in a scattered mean environment (99% of variance

used).
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in both consecutive and scattered mean shift as seen in Fig. 4.30. Finally, the false alarm ratio is

virtually zero across all parameters and environments.
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Figure 4.28: (a) Cluster PCA outlier detection performance in a consecutive mean environment (80%
of variance used), (b) Cluster PCA false alarm performance in a consecutive mean environment (80% of

variance used).
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Figure 4.29: (a) Cluster PCA outlier detection performance in a consecutive mean environment (99%
of variance used), (b) Cluster PCA false alarm performance in a consecutive mean environment (99% of

variance used).
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Figure 4.30: (a) Cluster PCA outlier detection performance in a scattered mean environment (99% of
variance used), (b) Cluster PCA false alarm performance in a scattered mean environment (99% of variance

used).

4.6 Conclusions

In this chapter, we introduced a new multivariate robust algorithm by combining hierarchical
clustering and principal component analysis. The core idea behind our proposed technique is to
use clustering analysis to determine the optimal subset of observations that will be used to calculate
key parameters needed for our analysis. We then used PCA on the original data set in order to
determine the outliers present. The experimental and simulation results clearly showed a much

improved performance of the proposed approach in comparison with existing methods.
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Dynamic Fault Detection and Diagnosis using

Independent Component Analysis

We introduce a new extension of the conventional independent component analysis to deal with
multivariate dynamic data [56]. The proposed technique is more robust to outliers in comparison
with existing multivariate outlier detection schemes. We also suggest an innovative way to detect
and diagnose faults. A comparative study on the Tennessee Eastman process will illustrate the
improved performance of our proposed algorithm in comparison with existing statistical monitoring

and controlling charts.

5.1 Introduction

With recent advances in computer and instrumentation technology, we have seen an uprise of data
collection. This has helped operation of processes greatly in detecting defects, equipment malfunc-
tions or any type of signal that might deviate the process from its normal operating conditions [35].
Conventional Shewhart charts and CUSUM charts have been widely used in the industry to mon-
itor univariate processes, but are inefficient for multivariate processes where variables are highly
correlated [3]. This is particularly true for chemical and engineering related environments [4, 6].
Therefore multivariate statistical process control (MSPC) has been developed and used to mon-

itor complex models. Data reduction techniques such as principal component analysis (PCA) and

68
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partial least square (PLS) are widely used for signal to noise extraction and process monitor-
ing. [1,4,6).

Recently, a new MSPC method based on independent component analysis (ICA) was suggested.
It was shown that ICA reveals more useful information from observed data than PCA, and therefore
more robust to outliers [36,37,39,40].

The above mentioned techniques are all based on the assumption that the variables monitored
are independent in time. For conventional industrial processes, the statement is only true for long
sampling intervals (2 to 12 hours). Therefore, for process monitoring with fast sampling intervals,
serial correlation needs to be considered [1,41]. To accommodate dynamic multivariate settings,
Dynamic PCA (DPCA) was introduced using the same concepts behind static PCA [41]. In this
paper, we present a new process monitoring techniques which we refer to as dynamic independent
component analysis (DICA). We extend the advantages behind ICA to detect outliers in a time
correlated environment and introduce an innovative way on how to diagnose faults.

The layout of this chapter is as follows. In the next section, we briefly review some related work.
Section 5.3 introduces the proposed robust multivariate algorithm. In section 5.4, experimental
results are presented to demonstrate the performance of the proposed approach using the Tennessee

Eastman Process (TEP). Section 5.5 concludes the chapter.

5.2 Related work

In this section, we briefly review some multivariate control charts that will be used for comparison

with our proposed approach.

5.2.1 Dynamic principal component analysis

Dynamic PCA is a method used to take into account the serial correlation that exist between
variables. This process is similar to static PCA to the exception that the data matrix X needs
to transformed to an augmented data matrix by the previous 8 observations (also described as a
Hankel matrix). When PCA is applied on the augmented data matrix, we obtain a multivaiate

autoregressive model ARX(0) [1,41-44].
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The same statistics (T2 and @Q?) described for PCA can also be applied for DPCA. Also,
including lags in the data matrix can result to a better model representation and higher correlation

of information. It has been proven for serially correlated data, DPCA is expected to outperform

PCA [1,41].

5.2.2 Independent component analysis

Independent component analysis is a method used to find new combination of factors from multivari-
ate statistical data by distinguishing components that are both independent and nongaussian [38].
Given any standardized data matrix M of size s; X s where the mean is subtracted, variance is
unitized and the data is whitened, the relationship between the independent component and the
measured variables may be given as

M=S5A

where S is a s; x sp matrix of independent component vectors and A is a s3 X s unknown mixing
matrix. Out of s dimensions we may keep k < s; independent components to reconstruct the data
matrix.

The primary objective of ICA is to determine the demixing matrix W used to retrieve the

independent component scores. It can be expressed as
S=MA" = MW

The independent component scores can then be used to extract the proper monitoring statistics

and their associated control limits [39,40].

5.3 Proposed method

Our method is presented in four main phases. The first phase describes how to set-up the process
using DICA. The second phase will demonstrate how to derive the control limits. The third phase
will explain how to monitor new observations. Finally, the last phase will explain how to isolate

and diagnose faults.
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5.3.1 Process set-up

1)

2)

5)

Acquire a time series data where a process is operated under normal conditions, that is the

data is outlier free.

Compute the mean Z and covariance matrix R in order to subtract and unitize the variance
of our data matrix

Z=(X-1&)D'/?

where 1 = (1,...,1)T isamx1 vector of all 1’s and D = (diag(R))'/? is the diagonal standard

deviation.

Stack the data by augmenting each observation with the previous 8 observations to obtain a
new data set

H=lhy,...,hs )" = [Z2(t), Z(t - 1),...Z(t - B)]

This will result to an m x Bp matrix. Experience indicates that Be{1,2,3} lags is sufficient

for process monitoring [1]. For more details on how to automatically select 3 refer to [41].

Apply the eigendecomposition to the covariance matrix Ry = VAVT of the augmented data
matrix where V represent the column of eigenvectors and A represents a diagonal matrix of

the eigenvalues ordered by magnitude.

Eliminate the cross-correlation between random variables by whitening the data matrix H

H=HB where B=VA™2

Apply ICA to the whitened data H and determine the independent component S and demixing
matrix W
H=SA=SAB
where
S=HVA™Y2A"' = HW
and

W =VvA~2A



5.3 Proposed method 72
7) Sort the columns of the demixing matrix W = (@1, . ..10g,) in decreasing order based on the
Euclidean norm of each #; (and in consequence the rows of the mixing matrix A4) [39,47].

8) Select d dominant columns from the demixing matrix W. The SCREE test obtained from the
Eulcidean norm can be used to facilitate the selection criteria [47]. We will obtain two reduced
matrix denoted as Wd for dominant demixing matrix and We for the excluded columns of the
demixing matrix. Split the rows the mixing matrix A in two district matrices (A4 and A,) in

the same fashion as W.

9) Calculate the dominant I3 statistic, the excluded I2 statistic and the squared prediction error

Q? statistic for ¢ = 1,..., m observations
I3 (i) = llhiWal/®
2(0) = [lhiWe|?
Q%)) = [lhs — haWaAZ|?
5.3.2 Process control limits

The control limits may be established for each ICA statistic (I3, I? and Q?) using the univariate

1 iKCC—%)
mn i=1

where K(u) = #e“%uz is the Gaussian kernel, n = an'P/%a is the bandwidth (also called the

kernel estimator

smoothing parameter), m is the number of observations and o is the standard deviation for the
statistic under study [48]. We can then select the control limit as the point § occupying 99% of the

area, of the density function s
/ flz)dz =0.99

Given the fact that the ICA statistics do not follow a Gaussian distribution or any other
particular distribution, the kernel density estimator is good alternative. It also has the advantage

of following the data distribution more closely than the Hotelling’s 72 statistic [39].
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5.3.3 Process monitoring for new observations

For any new data matrix X"®”, we need to standardize the data using the mean and variance found

from the normal operating conditions
gnew _ (Xnew _ 153)D—1/2

where Z and D are the same parameters retrived from step 2) of the process set-up.

Next, the data Z™% needs to get stacked as described in step 3) of the process set-up (H™Y).
Then, we can determine the three ICA statistic and plot them against the threshold determined
for each statistic.

I3(i) = [Ihpe Wa)®
IZ(5) = |RFWe|?

Qi) = Ih1e — e Wa Az 2

5.3.4 Process fault diagnosis

We propose a new contribution plot for DICA to diagnose faults by taking into account the spa-
cial correlation between variables and the serial correlation between observations (time). We also
assume that all observations that are found outlying are due to the same fault. In the case that
each outlying observation is a fault of its own, the diagnosis need to be done with respect to these

observations. The process is explained as follows:

1) Assuming we determined r < m observations exceeding the threshold determined for the I(%
statistic, calculate the contribution for each variable to the out of control observation based
on the number of d selected IC’s

r
contk,j = Zﬁ)j,mg:khi,j
i=1
where

¢ = (¢17""¢ﬂp) :HWdAd

and W; is the (J, k)" element of the demixing matrix W,.
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2) If conty, ; is negative, we can set it to zero.

3) Calculate the contribution for each j process variable

d

Contj = Zcontk’j for j=1,...,8p
k=1

4) Unfold CONT = (Conti,...,Contg,) from 1 x fp vector to a 1 X p vector by adding the

lagged variables with the original p variables.

5) Plot the contribution for all p variables on a single graph. The variables that have an excess

contribution are the root causes for the fault.

The same steps described can also be applied for the I? statistic except that ® is now defined
as

® = HW.,A,

We can also define a contribution plot for squared prediction error (Q?). Assuming there are r
observations that exceed the control limit, the contribution can then be defined as
T
CONT =>_ |h; — hiW,A,|
i=1
We need to unfold the CONT vector as described in step 4) and then plot all p variables on a
single graph.

In some instances, the contribution for each variable using the I(% statistic and the I? will not
perform as expected. This is due to the fact that the multiplication WA allows certain variables
to dominate without any specific contribution and therefore falsifying the results [1]. This can be
demonstrated by plotting the contribution plot of the normal operating data.

In order to overcome this problem, we suggest the following approach:
1) Find the contribution of each variable when the process is operating under normal conditions.

2) Find the percentage of the total contribution of each variable

Cont;

%Cont, = el _
oot 71 Cont;

for j=1,...,p
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3) Find the median value from the p percent contributions. This value will be denoted as M.

4) Determine the scalable coefficients that will distribute the variables to have equal probability

M,

5Cs = %Cont;

for 5=1,...,p
5) Multiply the contribution of each variable with its scaled conjugate

Cont§"ew) =Cont;-SC; for j=1,...,p
This process fault diagnosis can be applied to any process monitoring technique including PCA,

DPCA and ICA.

5.4 Simulation and results

In this section, we will compare the performance our proposed technique with conventional methods

using the Tennessee Eastman process (TEP).

5.4.1 Tennessee Eastman process

The Tennessee Eastman process is considered as a benchmark simulation for various process mon-
itoring techniques [36]. The process consists of five major transformation units: a reactor, a
condensor, a compressor a separator, and a striper [49]. The structure is shown in Fig 5.1. There
is a total of 41 variables measured and 12 manipulated variables [1]. For this experiment, we have
selected 22 continuous process measurements and 11 manipulated variables. The agitation speed
has been excluded due to the lack of control and 19 composite measurement were left out due to the
difficulty of measurement [36]. The 33 variables chosen are described in Table 5.1. We have created
22 data sets consisting of 960 observations. The first data set was created under normal operating
conditions and the rest were simulated based on a fault introduced at sample 160. A detailed
description of each fault can be found in Table 5.2. The sampling interval for each observation is

3 minutes and therefore dynamic monitoring is suited for this experiment [1, 36}.



5.4 Simulation and results

76

:
£

&

:

T
H
i

OOOOE

£
2
%

Figure 5.1: Control System of the Tennessee Eastamn Process [35].

Table 5.1: Monitoring variables in the TEP.

No. Measured Variables No. Measured Variables No. Manipulated Variables

1 A feed 12 Product separator level 23 D feed flow valve

2 D feed 13 Product separator pressure 24 E feed flow valve

3 E feed 14 Product separator underflow 25 A feed flow valve

4 Total feed 15 Stripper level 26 Total feed flow valve

5 Recycle Flow 16 Stripper pressure 27 Compressor recycle valve

6 Reactor feed rate 17 Stripper underflow 28 Purge valve

7 Reactor pressure 18 Stripper temperature 29 | Separator pot liquid flow valve
8 Reactor level 19 Stripper steam flow 30 Stripper pot liquid flow valve
9 Reactor temperature 20 Compressor work 31 Stripper steam valve

10 Purge rate 21 Reactor cooling water outlet temperature 32 Reactor cooling water flow
11 | Product separator temperature | 22 | Separator cooling water outlet temperature | 33 | Condensor cooling water flow
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Table 5.2: Process faults.

Fault No. Description Type
1 A/C feed ratio, B composition constant (stream 4) Step
2 B composition, A/C ratio constant (stream 4) Step
3 D feed temperature (stream 2) Step
4 Reactor cooling water inlet temperature Step
5 Condenser cooling water inlet temperature Step
6 A feed loss (stream 1) Step
7 C header pressure loss - reduced availability (stream 4) Step
8 A B,C feed composition (stream 4) Random variation
9 D feed temperature (stream 2) Random variation
10 C feed temperature (stream 4) Random variation
11 Reactor cooling water inlet temperature Random variation
12 Condenser cooling water inlet temperature Random variation
13 Reactor kinetics Slow Drift
14 Reactor cooling water Sticking
15 Condenser cooling water Sticking
16 Unknown Unknown
17 Unknown Unknown
18 Unknown Unknown
19 Unknown Unknown
20 Unknown Unknown
21 Valve position constant (stream 4) Constant position

5.4.2 Fault detection and diagnosis

We have ran simulations on all 21 faults based on the four techniques (PCA, DPCA, ICA, DICA)
discussed in the previous sections. We selected 10 dominant IC’s for both DICA and ICA. For PCA
and DPCA, the number of component chosen were based on the total variation contained in the
principal components. In this case we selected k components containing 90% of the total variance.

k
Zj:l Aj

D .
i=1 N

> 90%

Finally, the number of lags used for this dynamic process was set to h = 3. For each statistic,
the detection rate and false alarm rate were tabulated for all 21 process fault. The results can be
observed in Table 3 and Table 4. To facilitate the comparison between the various techniques, we
have selected the statistic with the highest detection rate for each method along with its associated

false alarm rate. The results are shown in Fig 5.2.
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Table 5.3: Detection rate on the TEP.

Faults DICA ICA DPCA PCA
L A S O A A S B+ RS G B
1 99.75 99.88 99.25 99.50 99.88 99.50 99.75 99.88 99.25 | 100.00
2 96.38 99.13 98.00 97.25 98.38 98.00 98.63 98.00 98.63 96.75
3 0.00 5.63 | 0.38 0.38 2.63 0.75 5.38 11.63 7.50 8.88
4 90.88 | 100.00 | 95.38 94.88 99.88 77.25 26.88 { 100.00 | 75.75 | 100.00
9 100.00 | 100.00 | 100.00 | 99.88 | 100.00 | 100.00 | 29.50 69.13 30.25 40.13
6 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 99.00 | 100.00 | 99.38 | 100.00
7 98.25 | 100.00 | 100.00 | 99.88 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00
8 97.50 93.88 97.75 96.38 92.50 97.88 97.38 82.13 98.38 97.63
9 0.38 5.25 0.50 0.38 1.88 0.63 4.88 9.88 6.88 8.75
10 80.50 93.88 73.13 72.75 88.13 67.13 40.38 59.50 40.88 52.38
11 68.13 93.88 65.88 56.25 75.25 59.38 47.88 96.38 64.13 71.38
12 99.25 99.88 99.88 99.25 99.88 99.75 99.13 96.75 98.75 94.00
13 95.25 96.38 94.50 94.38 95.38 94.38 95.00 95.63 94.13 95.63
14 99.88 | 100.00 | 99.88 | 100.00 | 99.88 99.88 99.88 | 100.00 | 100.00 | 99.63
15 1.88 34.38 2.88 0.38 4.75 1.50 5.00 9.50 6.88 10.88
16 67.88 97.00 50.00 77.50 90.50 67.25 23.88 58.63 25.12 53.00
17 96.88 97.88 94.75 85.13 96.75 88.38 85.38 98.00 84.13 97.25
18 90.25 90.88 89.88 89.88 90.00 89.63 89.50 91.75 90.00 91.13
19 72.88 99.75 7.25 74.13 88.88 44.75 49.25 75.50 29.00 38.38
20 62.50 91.63 54.13 80.75 90.13 67.88 57.38 65.63 43.50 64.13
21 15.13 56.38 37.75 33.75 53.37 36.88 54.25 45.63 47.25 59.25
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As it can be observed, DICA outperforms ICA, DPCA and PCA for almost all faults. It is

particularly successful with smaller outlying conditions that regular PCA is unable to detect (Fault

5, 10, 16, 19, and 20). We can also conclude that dynamic processing is a more suitable model

for time correlated data. Finally, the kernel density estimator has provided us with a smaller false

alarm ratio than PCA or DPCA. This is due to the fact that the control limits follow more closely

the data and are less likely to incorporate unknown operating regions [39].

Finally, some faults are easier to identify than others. Faults such as 1, 2, 4, 6, and 14 are easier

to detect since they largely deviate from the normal operating conditions. Other faults such as 3,

9, and 15 have a smaller influence on the process and are not easy to identify.

In the following sections, we will focus on giving a complete analysis on Faults 5 and 11:
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Figure 5.2: Performance study: detection rate and false alarm rate.
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Table 5.4: False Alarm Rate on the TEP.

| o [ L @[5 | |@ [T [ & | T8 | & |
1063|375 (000|063 ]063|000]| 313 ] 938 | 063 | 563
2 {000} 313|0.00|0.00}0.00|000]| 250 | 813 | 2.50 | 4.38
3 1000813 (0000003750001} 1.25 [ 10.63 | 1.88 | 6.88
4 1000]188(0.00|000]|125|063] 1.25 | 14.37| 2.50 | 7.50
5 1000|188 |0.00]|000(125]|063]| 1.25 | 1437 | 2.50 | 7.50
6 | 0.00 250 |0.00000]|0.00f0.00]| 1.25 | 563 | 2.50 | 438
7 1000|250} 0.00|000}f063]|000]| 125 | 875 | 1.88 | 5.63
8 [ 0.00]5.63]0.00(000)000]|000]| 125 | 563 | 1.88 | 6.88
9 1000|563 (000125188 (438} 6.25 | 875 | 9.38 | 9.38
10 | 0.00 | 2.50 | 0.00 | 0.00 { 0.00 | 0.00 | 250 | 7.50 | 2.50 | 3.13
11 | 0.00 | 3.13 [ 0.00 | 0.00 | 0.00 | 0.63 | 3.75 | 11.88 | 3.75 | 6.25
12 | 0.00 | 4.38 | 0.00 | 0.00 | 0.63 | 0.00 | 1.88 | 8.75 | 4.38 | 10.00
131000 | 1.25 } 0.00 | 0.00 | 0.00 | 0.00 | 1.88 | 6.88 | 1.25 | 4.38
14 1 0.00 | 3.13 | 0.00 | 0.63 [ 0.00 | 0.00 | 063 | 875 | 1.88 | 6.25
151 0.00 | 7.50 | 0.00 | 0.63 | 1.88 | 0.63 | 3.75 | 11.88 | 1.88 | 5.63
16 | 0.00 | 563 [ 3.13 | 063 { 3.13 | 3.75 | 11.25 | 813 | 11.88 | &.13
17 | 0.00 { 2.50 | 0.00 | 0.63 | 0.63 | 0.00 | 1.88 | 10.00 | 2.50 | 9.38
18 | 0.00 | 1.88 [ 0.00 | 063 | 1.25 | 0.00 { 3.13 | 875 | 5.00 | 8.75
19 | 0.00 | 2.50 | 0.00 | 0.63 | 0.63 | 0.00 | 1.25 | 4.38 | 1.88 | 5.63
20 | 0.00 | 4.38 1 0.00 | 0.00 | 0.00 | 0.00 | 0.63 | 13.13 | 1.25 | 10.00
21 ]10.00 | 6.88 | 0.00 | 0.00 | 2.50 | 0.00 | 7.50 | 10.00 | 2.50 | 18.13

Fault 5

Fault 5 is due to a step change in the condenser cooling water inlet temperature which causes a
mean shift on the condenser cooling flow (variable 33). This step change creates a chain reaction
on most of the variables which causes them to initially go out of control. The control loop detects
this excess variation and is able to compensate for the change. 200 samples later, the variables
return within their normal operating conditions except for the original variable who caused this
fault. As observed from our results, DICA and ICA (Fig 5.3 and Fig 5.5) outperform DPCA and
PCA (Fig 5.4 and Fig 5.6). If an operator would be using (D)PCA model to monitor the process,
she/he would assume that the process has returned back in control where in reality the process is
still behaving abnormally.

Using our method to diagnose the faults, we will first demonstrate the negative influence that

some variable naturally exert. In Fig 5.7, we can observe the contribution plot for the variables
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Figure 5.3: (a) I3, (b) IZ and (c) Q? DICA multivariate statistic for Fault 5.

under normal operating conditions. As observed, variables 12, 15, 17, 29, 30, and 33 have a stronger
influence and therefore scaling is necessary. Without it, the diagnostic would be useless. In Fig 5.8,
we can observe the contribution of the three DICA statistics. As we can see, variables 19, 31, and
33 have a stronger influence for this particular fault. Also, in this case, the Q? statistic was unable
to detect the root cause for this fault. In Fig 5.9 we can observe the contribution of each targeted

variable. It confirms our theory that variable 33 is the root cause for this fault. It also confirms
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Figure 5.4: (a) 72 and (b) Q% DPCA multivariate statistic for Fault 5.

(by observing variable 19 and 31) that there was an initial excess variation which later returned

under normal operating conditions.

Fault 11

Fault 11 is a random variation of the reactor cooling inlet temperature. This fault induces an
oscillation in the reactor cooling water flow (variable 32) which results in a rise of temperature
in the reactor (variable 9). The results obtained using the methods described can be observed
in Fig 5.10 through Fig 5.13. For this fault, dynamic processing is more efficient in continuously
detecting the variation. The I2-DICA multivariate statistic (Fig 5.10-(b)) and @*>-DPCA (Fig 5.11-
(c)) multivariate statistic are the two indicators that observe the best performance. Finally the
contribution plots (Fig 5.14) and the individual variable contribution (Fig 5.15) clearly demonstrate

that variable 32 and variable 9 are the root causes for this excess variation.

5.5 Conclusions

In this chapter, we introduced a dynamic fault detection and diagnosis using ICA to monitor serial

correlated data. We also introduced a novel strategy to detect and diagnose faults. The proposed
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Figure 5.5: (a) I3, (b) I? and (c) Q@? ICA multivariate statistic for Fault 5.

method was evaluated on the Tennessee Eastman process on 21 different faults. As demonstrated,
modelling the process dynamically and applying DICA on the data outperforms existing detection
methods that are currently in use. Also, our diagnostic algorithm was able to accurately detect

and isolate the root causes for each individual fault.
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Conclusions and Future Work

This thesis has presented computationally efficient SPC algorithms to detect and diagnose faults
in multivariate data. Our algorithms are built on the foundations of robust statistics and data
reduction techniques. We have demonstrated the effectiveness of the proposed methods through
extensive experiments with synthetic and real data.

In the next Section, the contributions made in each of the previous chapters and the concluding
results drawn from the associated research work are presented. Suggestions for future research

directions related to this thesis are provided in Section 6.2.

6.1 Contributions of the thesis

6.1.1 Multivariate robust quality control chart for outlier detection

We presented a new robust multivariate control chart using principal component analysis and robust
statistics. The proposed approach consists of two main steps. In the first step, we calculate a robust
covariance matrix using the minimum covariance determinant algorithm. In the second step, we
apply eigen-decomposition to the robust correlation matrix in order to extract the eigenvalues that
will be used to define the proposed control chart. Our experimental results illustrate the much
better performance of the proposed algorithm in comparison with existing statistical monitoring

and controlling charts.
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6.1.2 Statistical process control using kernel PCA

We proposed a new multivariate statistical process control chart using kernel principal component
analysis. The core idea behind our proposed technique is to project our data into higher dimension
space in order to extract the eigenvalues and eigenvectors of the kernel matrix. The proposed
control chart is robust to outliers, and its control limits are derived from the eigen-analysis of the
Gaussian kernel matrix in the Hilbert feature space. Our experimental results demonstrate a much

improved performance in comparison with the current multivariate control charts.

6.1.3 Cluster principal component analysis for outlier detection

We introduced a new method to detect multiple outliers in both low and high dimensional data.
We combined the advantages of hierarchical clustering and principal component analysis to improve
the performance while keeping the complexity and computation time relatively low. Our main idea
consists of identifying an optimal subset of observations that is used as a comparison model to
identify all outliers present in the data. The results clearly show a much improved performance of

the proposed approach in comparison with existing robust algorithms.

6.1.4 Dynamic fault detection and diagnosis using independent component analy-
sis

We presented a new process monitoring technique called dynamic independent component analysis

(DICA). We extended the advantages behind ICA to detect outliers in a time correlated environment

and introduced an innovative way on how to diagnose faults. Our experimental results demonstrated

that modelling a time dependent process dynamically and applying DICA on the data outperforms

existing monitoring methods that are currently in use.

6.2 Future research directions

Several interesting research directions motivated by this thesis are discussed next. In addition

to designing new methodologies for detecting and diagnosing faults, we intend to accomplish the
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following projects in the near future:

6.2.1 Locally linearly embedding

Recently we have been working on the construction of a new multivariate control chart using the
LLE algorithm. It builds a data-dependent kernel that preserves the geometry of the k closest neigh-
bors of each data point. It is similar to kernel PCA with a different kernel matrix. Eigen-analysis
can then be performed on the kernel matrix to extract the relevant eigenvalues and eigenvectors.
Future work is needed to determine the number of k neighbors and to extract the relevant d eigen-

vectors and eigenvalues needed to construct the necessary LLE control chart.

6.2.2 Artificial neural networks

Artificial neural networks (ANN) were originally motivated from the study of neural interconnection
in order to mimic the computation structure of the human brain. This technique maps input
and output non-linearly in separate layers. Therefore these layers are connected in such a way
to form a very complex network where each signal will propagate according to the input. Many
studies have shown the potential of combining pattern recognition with ANN to detect and diagnose
faults. Future studies might include process mapping of non-linear processes and adding elements

of robustness in the algorithm.
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