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Abstract

Towards Systematic Software Security Hardening

Marc-André Laverdiere-Papineau

In this thesis, we report our research on systematic security hardening. We see how
the software development industry is currently relying on highly-qualified security ex-
perts in order to manually improve existing software, which is a costly and error-prone
approach. In response to this situation, we propose an approach that enables systematic
security hardening by non-experts. We first study the existing methods used to remedy
software vulnerabilities and use this information to determine a classification and defini-
tion for security hardening. We then see how the state of the art in secure coding, patterns
and aspect-oriented programming (AOP) can be leveraged to enable systematic software
security improvements, independently from the users’ security expertise. We also present
improvements on AOP that are necessary in order for this approach to be realizable. The
first improvement, GAFlow and GDFlow, two new pointcut constructors, allow the injec-
tion of code that precedes or follows any of the points in the input set, facilitating the
development of reusable patterns. The second, ExportParameter and ImportParameter, al-
low us to safely pass parameters between different parts of the program. Afterwards, we
leverage our previous findings in the definition of SHL, the Security Hardening Language.
SHL is designed in order to permit language-independent expression of security hardening
plans and security hardening patterns in an aspect-oriented manner which enables refine-
ment of patterns into concrete solutions. We then demonstrate the viability of this approach
by applying it to add a security feature to the APT package acquisition and management

system.
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Chapter 1

Introduction

Computer security is taking an increasingly predominant role in today’s environment. The
information technology industry is facing challenges in public confidence at the discovery
of vulnerabilities, and customers are expecting security to be delivered out of the box, even
on programs that were not designed with security in mind. Software maintainers must now
face the challenge to improve programs’ security and are often under-equipped to do so. In
some cases, little can be done to improve the situation, especially for Commercial-Off-The-
Shelf (COTS) software products that are no longer supported, or for programs for which
the source code is lost. However, whenever the source code is available, as it is the case
for Free and Open Source Software (FOSS), a wide range of security improvements are
possible.

Computer security professionals have been promoting tools, best practices, and guide-
lines to be used by the software development industry, with little adoption so far. Devel-
opers, often pressed by a dominating time-to-market priority, must deal with a large set

of technical and non-technical issues, in which case security concerns are not thoroughly



addressed. The practical help for developers are typically centered around frameworks,
standards and design guidelines, which can be of limited use for both implementers and
maintainers.

In this thesis, we present research results of an approach designed to facilitate security
hardening by systematically injecting security hardening code at required program loca-

tions, and early results from the TFOSS project.

1.1 The TFOSS Project

The Trusted Free and Open Source Software (TFOSS) project is a research initiative lead
by the Computer Security Laboratory in the Concordia Institute for Information Systems
Engineering, at Concordia University. It is supported by a NSERC-DND grant, in collabo-

ration with the following industrial partners:

e Defence Research and Development Canada, Valcartier Research Centre (DRDC

Valcartier), notably with the help of Robert Charpentier and Frédéric Michaud

e Bell Canada, notably with the help of Alan Bernardi, Claire De Grasse and Glenn

Henderson

The project aims at the creation of bleeding edge tools for vulnerability detection and
security hardening of open source software. The following sub-projects are currently being

researched:

Static Detection of Vulnerabilities: Enhancing the state of the art in static analysis tools,

this team develops new tools to detect low-level security vulnerabilities.



Dynamic Detection of Vulnerabilities: This team greatly innovates by developing tools that

perform code instrumentation that detects and reports vulnerabilities at runtime.

Formal Aspect] Weaving Semantics: This team is formalizing the weaving operation of the

Aspect] tool, which will enable formally proving the effectiveness of security hardening.

Implementation of Security-Related Aspect-Oriented Primitives: This team is implement-
ing security-related pointcuts and other primitives, that were the subject of theoretical pro-
posals only.

Security Hardening and Patterns: This team aims at creating new methods to leverage
and enrich aspect-oriented technologies and patterns in order to enable systematic, and

eventually automatic, security hardening of software at both the code and design levels.

The author is part of the last team, and has contributed to both theoretical and practical

aspects of its research, with a distinct focus on the experimental aspects.

1.2 Problem Statement

Software security improvements are currently performed manually, by security experts,
which has been demonstrated as an error-prone, time-consuming and expensive process.
For instance, a security push organized for the Windows 2003 Server lasted for more than
a month, and still saw major security issues appear at the last minute [31, Ch. 3]. Since
the software industry is demanding high security software, and the current approach is
showing itself to be flawed in both practical and economic grounds, it becomes necessary
to determine how existing software can be improved without such overhead. Furthermore,

since it is known that software is able to deal with complexity in a better way than humans



tend to, it becomes worthwhile to examine an approach that systematically applies security
improvements over software as a first step towards automatic security hardening.

The current practices in the industrial and research communities do not answer well to
this need. The most prominent proposals could be classified into security design patterns,
secure coding and security code injection using aspect-oriented programming (AOP). We
will investigate them carefully in Chapter 2, but briefly introduce them here.

Many Security Design Patterns are available in order to guide software engineers in
securely designing their applications. They offer proven solutions to commonly occurring
design problems [11]. These patterns are however of a lower relevance for security harden-
ing, as our task typically fits in the maintenance part of the software lifecycle. The secure
coding literature, [7,9,30, 62, 73] presents safe programming techniques, typically as list
of programming errors together with their corresponding solutions, and often focus on the
C and C++programming languages. Their intent is to instruct software developers to avoid
these errors. Although this information is highly pertinent, it is foremost a means to ed-
ucate developers into becoming security experts using a manual approach to vulnerability
remedial, thus perpetuating the current state of affairs.

Aspect-Oriented Programming (AOP), is a programming paradigm based on the idea
that computer systems are better programmed by specifying the various concerns separately
from the core program logic, and then relying on an underlying infrastructure to compose
them together. The techniques in this paradigm were precisely introduced to address the
development problems that are inherent to crosscutting concerns, and the usefulness of this
approach for the injection of security code has been demonstrated. However, the available
contributions [12, 20, 32, 63, 66] only propose a simpler approach for security experts to

4



inject the required code, but do not necessarily empower maintainers to do so.
In short, we see that security design patterns, secure programming books and AOP
technologies all offer a piece of the puzzle, but fail to offer a complete solution that enable

non-experts to systematically implement security improvements on software.

1.3 Objectives

This research aims at building the theoretical foundation for systematic security harden-
ing. In order to do so, we must first study software vulnerabilities that are encountered in
software. With this knowledge, we must then compile and organize the solutions existing
to these vulnerabilities into a useful taxonomy. After, we must assess whether or not AOP
technologies are fit to answer our needs. If these technologies are indeed appropriate, we
must determine which improvements to AOP languages would facilitate security harden-
ing activities. The next objective is the elaboration of an approach that adapts AOP to the
field of security patterns in order to allow the specification of security hardening patterns.
The approach must also include security hardening plans that specify what security im-
provements must be implemented where. This strategy will enable the dissociation of the
decision-making stage from the implementation. In order to facilitate this specification, we
must also create a specialized language for the specification of plans and patterns.

The direct consequence of those objectives is the enabling of non-experts to perform
the implementation part, and allowing experts to focus on the task of choosing the best
option available. It will also lower the level of digging necessary to harden an application,

lower the time required in order to make the necessary modifications, and enable reuse.



1.4 Contributions

In this thesis, we contributed to the state of the art in security hardening in the following
ways:

Definitions and classifications: After studying the practices in the industry, notably in free
and open source software, we defined security hardening as well as offered classifications

of their practices.

Applicability of AOP for security hardening: By reviewing the literature and experimenting
with the technology, we established that AOP was appropriate for the purpose of security

hardening, despite shortcomings we identified.

Innovative AOP constructs: We proposed four AOP constructs, GAFlow and GDFlow, as
well as ExportParameter and ImportParameter, in order to enrich current AOP languages

and enable the specification of security hardening patterns.

Creation of an approach for systematic security hardening: We described how users could
use a combination of security hardening plans and security hardening patterns in order to

apply security improvements in a systematic manner.

Elaboration of SHL: We designed SHL, a language dedicated for the specification of hard-

ening plans and patterns.

Experimental Validation: We performed a case study in order to validate the applicability

of our approach.



1.5 Thesis Organization

This thesis is organized as follows. In Chapter 2, we introduce the reader to the foundations
of computer security and aspect-oriented programming, where we also present the state of
the art in research that was foundational to this work. Then, in Chapter 3, we present
a classification of software security hardening practices, and then show how the practices
used in the industry fit within this classification. Chapter 3 also shows code-level hardening
practices in the Linux kernel development team. Afterwards, in Chapter 4, we will see a
novel aspect-oriented approach to the problem of security hardening. This approach uses
SHL to write language-independent security hardening patterns and plans. Chapter 5 is
built as a logical extension of the previous one, where we will see how the experiments
done in early validation of our approach demonstrated shortcoming in AOP technologies,
and what solutions we found to these issues. Experimental results of the application of our
approach on APT, a package acquisition and management system for the Debian platform

are then shown in 6. We finally bring concluding remarks in Chapter 7.



Chapter 2

Software Security

We are interested in the improvement of software security for already existing software
at the implementation and design levels. This choice was motivated by the need to im-
prove the methods available to software maintainers in the industry. Software security is
mostly interested in maintaining the extended Confidentiality-Integrity-Availability (CIA)
properties of applications [69], which are defined in [65] as:

Confidentiality: “The property that information is not made available or disclosed to unau-
thorized individuals, entities, or processes [i.e., to any unauthorized system entity].”
Integrity: “The property that information has not been modified or destroyed in an unau-
thorized manner.”

Availability: “The property of being accessible and usable upon demand by an authorized
entity.”

Accountability: “The property of a system (including all of its system resources) that en-

sures that the actions of a system entity may be traced uniquely to that entity, which can be



held responsible for its actions.”

Assurance: *“ An attribute of an information system that provides grounds for having con-

fidence that the system operates such that the system security policy is enforced.”

In the computer security milieu, a vulnerability is defined in [65], as “A flaw or weak-
ness in a system’s design, implementation, or operation and management that could be
exploited to violate the system’s security policy.” For the sake of simplicity, we will hence-
forth use a simplified division of security vulnerabilities among the lines of implementation
(“low-level”) and design (“high-level™).

The rest of the chapter is divided as follows. In Section 2.1, we will cover the topic
of secure programming. Afterwards, in Section 2.2, we will study the design of secure
systems. In Section 2.3, we see how Aspect-Oriented Programming can be used to secure

applications. Finally, in Section 2.4, we summarize what we covered here.

2.1 Secure Programming

The field of secure programming focuses on avoiding common programming mistakes that
result in security vulnerabilities. As such, this field is highly tied with the technology used,
typically being the programming language and the operating system, while also encom-
passing the proper use of cryptography.

A lot of research has been published on the field of secure programming for C and C++
programs, since a large amount of production-level software has been written in those lan-
guages. The design of those languages also allows the existence of many types of security

vulnerabilities that are not possible in modern languages. These older languages require



manual memory management and and offer low type safety, both being sources of many
programming errors. Furthermore, since these languages are capable of interacting with
the operating system directly, they are able to use system resources in a manner that is not
always safe. It is thus very important to understand the security implications of improper
C and C++ programming and to learn good programming practices to avoid them.

We will now proceed to a non-exhaustive survey of existing platform-independent vul-

nerabilities, before examining the available contributions in the field.

2.1.1 Implementation-Level Vulnerabilities

Implementation-level (also known as low-level) vulnerabilities are associated with pro-
gramming languages as well system/library features. In the example of C programs, many
errors are related to the lack of bound checking in the language itself as well as for manual
memory management. We will now look at buffer overflows, integer vulnerabilities and
memory management issues. Please note that many other categories of security issues are

present in C programs, and that we only present here an introduction to the topic.

Buffer Overflows

Although buffer overflows are typically the results of improper bound checking, flawed
integer logic, and missing input validation, they are nevertheless in a category of their own
due to their widespread nature and severity. Buffers on both the stack and the heap can be
corrupted, results of which can range from denial of service up to remote control of the

computer [30].
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Integer-Related Vulnerabilities

Integer security issues arise on the conversion (either implicit or explicit) of integers from
one type to another, and because of their inherently limited range [62]. C compilers distin-
guish between signed and unsigned integer types and silently perform operations such as
implicit casting, integer promotion, integer truncation, overflows and underflows.

Such silent operations are typically overlooked, which can cause various security vul-
nerabilities. These may be used to write to an unauthorized area of memory, causing cor-
ruption or denial of service. They can also cause other security problems by bypassing
preconditions and expected protocol values that are specific to the program exploited. The

following are the common causes of these vulnerabilities:

Integer Sign Conversion: Because the C language conserves the bit pattern when converting
between signed and unsigned integers of the same size, we can find negative or unexpect-
edly large values when not expected. This is due to the fact that most processors store
signed integers with the first bit as the sign bit, whereas the same bit is used by unsigned

integers in the same way as other bits.

Integer Signedness Errors: Signedness errors occur when the program expects an unsigned
value, but instead finds a signed one. Because of the inappropriate assumption, the program
does not validate if the value is positive, potentially resulting in a security vulnerability.

These errors typically happen in conjunction with conversion errors.

Integer Truncation Errors: A truncation error occurs when an integer is converted to one
of a smaller type. The bit pattern of a subset of the original integer is preserved as is. If the

smaller type is signed, this may result in a negative value.

11



Overflow and Underflow: Integer overflow and underflow happen by the following means:
Adding or multiplying beyond the integer’s maximum value, dividing by -1 (overflow)
or subtracting below its minimal value (underflow). This will result in errors similar to
integer conversion. It is also noteworthy to remember that unsigned integers obey modular
arithmetic rules in case of overflow, resulting in smaller values than expected, but that are

still positive.

Memory Management Vulnerabilities

The C programming language allows programmers to dynamically allocate memory for
objects during program execution. C memory management is an enormous source of safety
and security problems. The programmer is responsible for pointer management, buffer
dimensions, allocation and deallocation of dynamic memory space. Thus, memory man-
agement functions must be used with precaution in order to prevent memory corruption,
unauthorized access to memory space, buffer overflows, etc. The following are the major

errors caused by improper memory management in C.

Using Uninitialized Memory: In C programming, the memory space pointed to by newly
declared pointer is not initialized, and it typically points at a random location. The con-
sequence of dereferencing these pointers include denial of service, information disclosure,
and memory corruption.

Accessing Freed Memory: A pointer on which the free function was called can still be
accessed. It is however possible that the memory range was allocated for another use, and

that this access will result in the reading of invalid data or the corruption of data used in
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another part of the process.

Freeing Unallocated Memory: The free function must be called on a memory location
previously allocated using the alloc family of functions. Otherwise, freeing an unallo-
cated memory location can cause memory corruption and denial of service. This problem
arises because the free call is performed with the pointer uninitialized, either through

programming error or a failed memory allocation.

Memory Leaks: The dynamically allocated memory must be freed after usage and before
the pointer to its location goes out of scope. Failure to do so results in a memory leak.

Memory leaks degrade performance and can cause a denial of service.

2.1.2 Secure Programming Literature for C and C++

Secure programming books often introduce the reader to the world of software vulnera-
bilities in C and C++ and their solutions. This literature will often list various forms of
software vulnerabilities, show code examples that have vulnerabilities, and explain them.
They will also often propose a method that can be used to remediate the vulnerability. As
such, these proposals were a cornerstone for this research. We mention here the most im-
portant references we used in our research, although the field of secure programming is far
from lacking authors and references to mention here.

One of the newest and most useful additions is from Seacord [62], who offers in-depth
explanations on the nature of all known low-level security vulnerabilities in C and C++,
and covers integer-related vulnerabilities in more depth than other sources.

Another common reference is from Howard and LeBlanc [30], and includes all the basic
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security problems and solutions, as well as code fragments of functions allowing to safely
implement certain operations (such as safe memory wiping). The authors also describe
high-level security issues, threat modeling, access control, etc.

Bishop, via slides and a book [7, 9], provides a comprehensive view on information
assurance, as well as security vulnerabilities in C. In addition, these contributions provide
some hints and practices to solve some existing security issues for UNIX setuid pro-
grams.

Wheeler [73] offers the widest-reaching book on system security available on the web.
It covers operating system security, safe temporary files, cryptography, multiple operating
platforms, spam, etc. Furthermore, it includes a very thorough treatment of the problem of
insecure temporary files.

The Secure Programming Cookbook for C and C++ [72] is a hands-on solution for
programmers looking for direct solutions to typically-encountered security problems. The
authors mention recipes for safe initialization, access control, input validation, cryptogra-

phy, networking, etc.

2.1.3 Evaluation

The field of secure programming offers many highly relevant, although sometimes repeti-
tive, contributions that can drastically help programmers write secure code. They are also
of help for maintainers who need to improve the security of existing systems. Its only limi-
tation is that the approach aims at educating programmers in order to help them make better

human decisions. But since the approach is not systematic, it cannot prevent human errors
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from being made. As such, the secure programming references should be used as a pri-
mary resource for the construction of security hardening patterns dealing with lower-level

security issues.

2.2 Secure Software Design

As important as secure programming is to software security, it remains that no amount of
attention to detail in the implementation phase can compensate for poor system design.
Many access control approaches have emerged in this area, with the UNIX, Bell-LaPadula
and Chinese Wall models being of particular theoretical interest [9]. However, secure ap-
plication design goes further than the design of an access control system, but constitutes
a specific branch in the field of software design. This sub-field integrates the concepts of
security components, communication mechanisms and protocols, operating system depen-
dent design impacts (especially for access rights and privileges), etc.

Bishop describes the following secure software design principles [9]:

Least Privilege: Only the privileges needed to perform a given task should be granted to

the principal performing the task.

Fail-Safe Defaults: The default access rights to an object should be “denied”.
Economy of Mechanism: Security mechanisms should be as simple as possible.
Complete Mediation: All accesses to an object must be validated before being granted.

Open Design: The security of a mechanism should not rely on the secrecy of its design or

implementation.
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Separation of Privilege: Security decisions must rely on multiple conditions to be satisfied.
Least Common Mechanism: Mechanisms to access resources should not be shared.

Psychological Acceptability: The presence of a security mechanism should not make the

resource more complicated to access for authorized principals.

Beyond these principles, some authors have also suggested software design advice.
Bishop, in a set of instructional slides, offers advice on dividing software in processes
that have exactly the right level of privilege to perform their task [8]. In [9], the reader
will also learn secure software design from design principles and case studies. Howard
and LeBlanc [30] suggest the use of threat modeling as a tool for correctly choosing the
right security mechanisms and their proper deployment in systems. It shows how secure
software should not be structured in an arbitrary manner, but that design decisions should be
directly correlated with the requirements and policies. In [31], Howard and Lipner describe
the process used by Microsoft to create secure software, named the Security Development
Lifecycle. They show a methodology used in this approach for design named attack surface
reduction. Attack surface reduction is a strategy that dictates the reduction of entry points,
of the privileges and the amount of executing code. One particular concern it deals with is
the presence of anonymous paths that are of a higher risk. Graff and Wyk [24] have also
written on the principles and practices behind the construction of secure software. Their
book covers all the steps of the software development process, and includes a coverage of
security architecture and design.

All these books are useful, but often lack very direct advice on how to design applica-

tions well. Security patterns have emerged in order to answer this need.
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2.2.1 Security Patterns

The idea of patterns was introduced by Alexander et al. [3] in the field of architecture and
urbanism, and was later reused in the object-oriented world. Patterns are proven solutions
to commonly-occurring problems. A pattern is commonly structured with a summary, a
description of the problem it tries to solve, a description of the solution and a graphical
representation of its structure. Security patterns are similar patterns, but applied for infor-
mation security.

Security design patterns encapsulate expert knowledge in the form of proven solutions
to common security problems [60]. These patterns will fit at different levels of abstrac-
tion and areas of concerns, resulting in many patterns that can be different from the design
patterns the reader may have been used to. There has been an increasing number of pub-
lications in this field, and the following shows the major contributions that were available
when this research was done, in mid-2005, with minor updates.

Yoder and Barcalow, in [75], introduce a 7-pattern catalog that could be combined to-
gether as the design of a secure system. It is interesting to note that these patterns emerged
from experimental results adding security in the Caterpillar/NCSA Financial Model Frame-
work.

Kienzle et al. [36,37] created a 29-pattern security pattern repository for web applica-
tions. These patterns were categorized as either structural or procedural. Structural patterns
are implementable patterns in an application whereas procedural patterns are patterns that

were aimed to improve the development process of security-critical software.
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Romanosky [57] introduces another set of security patterns. The discussion however
has focused on architectural and procedural guidelines more than security patterns.

In [21], Brown and Fernandez describe a single security pattern, the Authenticator, that
describe a general mechanism for providing identification and authentication to a server
from a client. Although authentication is a very important feature of secure systems, the
pattern, as described, was limited to distributed object systems. Fernandez and Warrier,
in [22], propose a generalization of the latter pattern by offering a single entry point that
proxies the authentication interaction with the proper server.

Braga et al. [14] investigate security-related patterns specialized for cryptographic op-
erations. They show how cryptographic transformations over messages could be structured
as a composite of instantiations of the cryptographic meta-pattern. This meta-pattern would
effectively allow designers to apply cryptography in their applications, permitting to trans-
parently change the underlying cryptographic operations.

The Open Group [11] has possibly introduced the most mature design patterns up-to-
date. Their catalog proposes 13 patterns, and these are based on architectural framework
standards. The catalog is supplemented by an example of the patterns’ use for solving a
secure mail problem.

Priebe et al. [56] describe a pattern language for access control that describes how to
design role-based access control, discretionary access control and variants of metadata-
based access control patterns.

The field has also seen the emergence of what may be a core reference similar to the
“Gang of Four” patterns [23] in typical software design. This book, written by Schumacher
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et al. [60] updates many of the patterns presented previously, conforming them to the au-

thors’ template, and presents other patterns that are mostly at the architectural level.

2.2.2 [Evaluation

The design principles and patterns for secure systems are quite sound but are not meant
for maintainers, although they could be useful guides for a system redesign. However,
the basic principle of the pattern is promising and should be leveraged in order to clearly
specify how security hardening is to be done.

Patterns are currently written in a way that requires manual adaptation, and can be
written in a way that make their usefulness limited. This seems more like a limitation of
the expression format, and not of the concept itself. This conclusion brought us to adopt
the idea of security hardening patterns as a way to specify security hardening, while also
considering a new form of pattern expression that we describe in Chapter 4.

They also have other shortcomings that we now discuss. In our research published
in [40], we examined contributions on security design patterns that were introduced by most
of the proposals we discussed. Although not all were described as security design patterns
per se, those references all included patterns that could be used in design activities and were
thus considered as such. We identified recurring issues in the patterns studied. The patterns
were manifesting one or many of the following undesirable characteristics. They were
over-specified, under-specified, lacking generality, lacking consensus or misrepresented.

We now describe these undesirable characteristics.
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Over-Specified Patterns: An over-specified pattern is one for which the specification pro-
vides more details and properties than needed. Patterns with variants are considered to be
over-specified, as each variant would lead to a different pattern. In all cases, the under-

standability of the pattern is impacted, as too many details will inevitably create confusion.

Under-specified Patterns: An under-specified pattern is a pattern that is incomplete, or
that sees its specification not having enough properties. This will cause understanding or

implementation problems, especially if no structure is provided in the specification.

Patterns Lacking Generality: Kienzle et al. [36] classified patterns in four levels of ab-
straction (1) concept, (2) classes of patterns, (3) patterns and (4) examples. A pattern
lacking generality is at a level 4 of abstraction, but it is claiming to be at level 3. This
means that it is not general enough to allow it to be used in multiple circumstances with
multiple targets [36]. Most of the patterns we studied were at level 4, as they were very
practically-oriented, and often proposed with a single context in mind.

Patterns Lacking Consensus: A pattern lacking consensus can be recognized when its
solution and/or intent is not uniform in the literature. Patterns are also lacking consensus
when named using terminology common in the literature, but for which a different concept
is associated. This makes the pattern of little use, as developers and maintainers are likely
not to share a common understanding about the system’s design.

Misrepresented Patterns: A misrepresented pattern is a pattern that does not offer what it

claims to, especially if its naming or intent have little to do with the rest of the pattern.
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2.3 Security via Aspect-Oriented Programming

AOQP offers a new approach for software development allowing the separation of different
concerns into different software units called aspects. Aspects are then combined to software
in a manner such that the resulting software is augmented by the behavior specified in the
aspects. Some researchers in this emerging field of research have shown that this approach
could be used to improve software security in a manner that is more concrete and more
systematic than the other proposals we discussed so far. But, before examining the existing

research in the field of AOP-based security, let us first survey the field of AOP.

2.3.1 Aspect-Oriented Programming Models

Aspect-Oriented Programming is a family of approaches that allow the integration of dif-
ferent concerns into usable software in a manner that is not possible using the classical
object-oriented decomposition. The AOP philosophies are divided between symmetrical
and asymmetrical approaches. The symmetrical approaches allow the integration of differ-
ent models with each other, which consists of the multidimensional separation of concerns
and the composition filters. The asymmetrical approaches are adaptive programming and
the pointcut-advice models. These offer the enhancement of a model by the aspects. We

now briefly see those models.

Multidimensional Separation of Concerns: The multidimensional separation of concerns
(also known as hyperspaces [54]) reshapes software in order to facilitate its own evolution,
integration and reuse. Hyperspaces support the integration of many models, without the

need of a base model as in the asymmetrical approach. Each concern is encapsulated in a
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hyperslice and hyperslices can be composed with others in hypermodules.

Composition Filters: Composition filters [6] aim at providing adaptability and reusability
via orthogonality. This orthogonality is twofold: Filters are specified with their own in-
terfaces in a language-independent manner and that each filter specification is independent
from each other. Filters are able to implement concerns such as inheritance, delegation,
synchronization, real-time constraints, and inter-object protocols. This approach defines
filters that are applied over method invocations. These can be stacked together, but they

are not able to alter the behavior of one another.

Adaptive Programming: Adaptive programming [43,71] is an aspect-oriented approach in-
spired by the Visitor pattern [23], composed of an adaptive visitor and a traversal strategy.
Consequently, the program structure and its behavior are loosely coupled. This approach
does not allow the modification of existing program elements, but only allows the augmen-

tation of existing behavior.

Pointcut-Advice Model: The pointcut-advice model for AOP is the most popular in the
field. Itis so popular, in fact, that it is often a synonym for AOP. Unless specified otherwise,
the term AOP in this thesis will refer to this model. This model aims at augmenting a model

with multiple aspects. In other terms, it aims at enriching a specific code base.

To develop under this paradigm, one must determine what code needs to be injected into
the basic model. Each atomic unit of injection is called an advice. Now that the what
has been specified, it is necessary to formulate the where. This is done by the use of
pointcut expressions, its matching criteria restricts the set of a program’s join points for

which the advice will be injected. The pointcut expressions typically allow one to match
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on function calls, function execution, on the control flow ulterior to a given join point, on

the membership in a class, etc.

Two sub-problems are present in this approach: Matching and weaving. Matching is the
problem of determining if a given pointcut’s criteria are are satisfied for a given join point.
Certain pointcuts can be determined statically, in the matching process, whereas others can
only be determined dynamically, during program execution. Weaving happens upon the
determination that an advice’s pointcut is matched for a join point and constitutes the in-
jection of the advice’s code and possibly of conditional statements for the dynamic match-
ing determination. It is also important to note that some AOP implementations transform
aspects into singleton classes, which has an impact on the design of solutions. Leading
implementations (often named weavers) of this model are, for Java, Aspect] [35], and for

C and C++, AspectC++ [68].

2.3.2 Aspect-Oriented Approaches for Improving Security

AQP appears to be a promising paradigm for software security, since aspects allow us to
precisely and selectively define and integrate security objects, methods and events within
applications. A few contributions were published on using AOP to inject security code.
Cigital Labs proposed an AOP language called CSAW [63,64], a small aspect-oriented
superset of the C programming language. Their work is mostly dedicated to improve the
security of C programs. These aspects were divided in both low-level and high-level cat-

egories. The low-level aspects target problems such as the exploitation of environmental
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variables and format string vulnerabilities. Low-level security aspects also deal with vari-
able verification issues behind buffer overflow attacks, confidentiality issues and communi-
cation encryption. Their high-level aspects address the problems of event ordering, signal
race condition and type safety.

De Win, in [20], explored the usefulness of two approaches in integrating security
aspects within distributed applications. These approaches are interception and Aspect-
Oriented Software Development (AOSD). The interception used a coarse-grained mecha-
nism consisting of putting an interceptor at the border of the application, where interactions
are checked and approved. This proposition is achieved by changing the software that is
responsible of the external communication for the applications. The weaving-based AOSD
used AOP to specify the behavior code to be merged in the application and the location
where this code should be injected. De Win validated this latter approach by develop-
ing some aspects using Aspect] to enforce access control and modularize the addition and
access control features of an FTP server.

In [12], Bodkin surveyed the security requirements for enterprise applications and de-
scribed examples of security crosscutting concerns. This contribution focused on authenti-
cation and authorization, while also discussing their related use cases and scenarios. Bod-
kin explored how such security rules could be implemented using Aspect], outlining several
of the problems and opportunities that arose in applying aspects to secure Java-based web
applications. Shlowikowski and Ziekinski discussed in [66] some Aspect]-based security
solutions based for J2EE. They explored how the code of security technologies could be
injected and weaved in the original application. Those contributions demonstrated the us-
ability of AOP for improving security in large-scale software.
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Another contribution in AOP security is the Java Security Aspect Library, in which
Huang et al. [32} introduced and implemented a reusable and generic Aspect] library that
provides security functions. In order to create a generically usable solution, they used
abstract pointcuts, leaving to the programmer the responsibility of defining it in a concrete
aspect. Their solution falls short of offering a systematic solution for the improvement of

security, as it remains that the programmer must know where the code should be injected.

2.3.3 Security-Related Pointcuts

In the asymmetric AOP approach, the pointcut is a central construct that allows us to deter-
mine where advices should be injected. As such, if we need to improve the conditions on
which we can inject security code, we need to propose pointcuts that appropriately do so.
Many authors have made such contributions, which we will list now.

A dataflow pointcut that is used to identify join points based on the origin of values
is defined and formulated by Masuhara and Kawauchi [45] for security purposes. This
pointcut permits us to detect if the data sent over the network depends on information from
a confidential file.

In [29], Harbulot and Gurd proposed a model of a loop pointcut that shows the need to a
loop join point that predicts the occurence of infinite loops, which can be used by attackers
to perform denial of service of attacks.

Another approach, that discusses local variables set and get pointcuts, has been pro-

posed by Myers [52]. They would be necessary in order to increase the efficiency of AOP
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in security, since they allow the tracking of local variable values inside a method. For in-
stance, confidential data can be protected using such pointcuts by writing advices before
and after the use of these variables.

In [13], Bonér discussed a pointcut that is needed to detect the beginning of a syn-
chronized block and add some security code that limits the CPU usage or the number of
instructions executed. This usefulness applies also in the security context and can help in
preventing many denial of service attacks.

A predicted control flow (pcflow) pointcut was introduced by Kiczales in a keynote
address [34] without a precise definition. Such pointcut may allow to select points within
the control flow of a join point starting from the root of the execution to the parameter join
point. The same presentation also introduced an operator allowing to obtain the minimum
of two pcflow pointcuts, but never clearly defined what this min can be or how it can
be obtained. These proposals could be used for software security, in the enforcement of
policies that prohibit the execution of a given function in the context of the execution of

another one.

2.3.4 Evaluation

We evaluated our needs and saw that we need to use a technology that enables radical
transformation over the original source code, as security improvements can require chang-
ing what is available, augmenting it, or even removing it. Colleagues in the Computer
Security Laboratory showed that the pointcut-advice model was the most appropriate for

security hardening [2] by analyzing different AOP models as well as their implementations.
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The symmetrical approaches were of limited use because of the natural asymmetry inherent
to software security enhancements. Furthermore, Hyper/J is limited to method-level gran-
ularity. Composition filters are also too limiting for our needs, as security improvements
require behavior changes beyond that filters can offer. Adaptive programming was the least
useful approach for our needs, since we need more flexibility than adding capabilities to the
software. In the case of the pointcut-advice model, we saw that this approach is well-suited
for our needs in both its model and in the tools implementing it.

We also see that many features useful for security using AOP have been found missing
by authors in the field, resulting in many proposals. Still, the corpus of research in AOP-

based security still falls short of an entirely systematic solution usable by non-experts.

2.4 Summary

We saw in this chapter that three major approaches exist for software security: Secure
programming practices, secure system design (possibly using patterns) and AOP. We have
seen that secure programming practices are too reliant on one’s sagacity to be used for
systematic security improvements. We also observed that security design patterns tend to
be either too abstract or too concrete in order to be really useful for non-experts. In the
case of AOP, we saw that this approach offers strong potential for automatically injecting
security code, but that it is not yet offering the ability to systematically specify security

improvements.
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Chapter 3

Security Hardening Practices

The size and complexity (and sometimes lack of documentation) of the code base of a
legacy system typically justify a “minimal effort” approach to software maintenance, and
results in difficult and expensive changes when serious transformations must be put in
place. As such, it is difficult to gather the resources necessary to proactively improve the
security level of a legacy application. This is why it is attractive to determine how to
systematically perform the desired improvements, so that tools can support (and possibly
automate) the process.

A precondition for this systemization is to know what precisely constitutes security
hardening and the ways it can be performed. To do so, we chose to examine the litera-
ture on secure programming, security engineering and performed a study on the security

improvements within the Linux kernel. We focused on C secure programming due to the
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language’s popularity in production-level software' and for the large body of research al-
ready performed on this topic. We studied the Linux kernel (versions 2.4 and 2.6) because
it is the most popular open source operating system kernel?.

In Section 3.1, we define security hardening. Then, in Section 3.2, we introduce a high-
level approach to security hardening based on an ontology. In Section 3.3, we elaborate the
methods of hardening against vulnerabilities related to C programs, structured according to
our classification. Afterwards, we study the security hardening practices employed in the

Linux kernel in Section 3.4 before summarizing this chapter in Section 3.5.

3.1 Security Hardening Taxonomy

Security hardening at the application level is a relatively unknown term in the current litera-
ture and, as such, we defined it in [47]. We also proposed a taxonomy of security hardening
methods that refer to the areas to which the solution is applied. We established our taxon-
omy by studying the solutions of software security problems discussed by the literature.
We also investigated the security engineering of applications at different levels, includ-
ing specification and design issues [9, 11,30]. From this information on how to correctly
build new programs, hardening advice existing in the literature, and our general security
background, we were able to draw out a definition and classification of software hardening

methodologies.

'according to SourceForge.net statistics, 26.22% of open source projects at “Production” and “Mature”
levels are written in C [25]

2A recent analysis estimates that Linux-based systems represents 12.7% of server revenues [33]. An older
study estimates that systems running on the Linux operating system kernel represent 24% of servers and 3%
of desktop systems [28]
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We define software security hardening as any process, methodology, product or com-
bination thereof that is used to directly add security functionalities, remove vulnerabilities
and/or prevent their exploitation in existing software. This definition focuses on vulnerabil-
ity correction, not on their detection. In this context, the following constitutes the detailed

classification of security hardening methods:

Code-Level Hardening: Code-Level hardening constitutes changes in the source code in a
way that prevents vulnerabilities without altering the design. It is essentially the removal
of vulnerabilities by retroactively applying proper coding standards that were not enforced
originally.

Software Process Hardening: Software Process hardening is the addition of security fea-
tures via software build process without changes in the original source code. It mainly
revolves around the use of compiler options, but also includes static library linking with

more secure versions of the library.

Design-Level Hardening: Design-Level hardening is the re-engineering of the application
in order to integrate security features that were absent or insufficient. It refers to changes in
the application design and specification. Some security vulnerabilities cannot be resolved
by a simple change in the code or by a better environment, but are due to a fundamentally
flawed design or specification. Changes in the design are thus necessary to solve the vul-
nerability or to ensure that a given security policy is enforceable. Moreover, some security
features need to be added for new versions of existing products. This category of hard-
ening practices targets more high-level security such as access control, authentication and

secure communication. It also includes the use of a more appropriate platform in order to
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support the security features in the case of software that exhibits strong dependencies with
its platform.

Operating Environment Hardening: Operating Environment hardening consists of im-
provements to the security of the execution context that is relied upon by the software.
It impacts the security of the software in a way that is unrelated to the program itself. This
addresses the operating system (typically via configuration), the protection of the network
layer, the use of high-security dynamically-linked libraries, the configuration of middle-
ware, the use of security-related operating system extensions, the normal system patching,

etc.

3.2 Hardening for High-Level Security

This section illustrates our proposition and methods to harden high-level security into appli-
cations. At that level, deploying such type of security is mainly categorized as design-level
hardening. For this reason, some methods of security design and application re-engineering
will be needed to achieve our goal. Our approach for hardening of high-level security uses
a security ontology. Ontologies are the specification of a conceptualization of a knowledge
domain [59]. A security ontology provides definition of security concepts and relations
between them. This is useful due to the existence of different definitions in security liter-
ature, and it clarifies the relationships between the elements, improving the understanding
of the overall security concept. The security ontology used here is part of a complete one

presented in [59]. We chose this ontology because it describes a generic model of security
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applied in all the domains. As such, these definitions can be modified to fit in other spe-
cific application domains. Figure 3.1 illustrates those concepts and shows the relationships

among them.
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Figure 3.1: Security Ontology Architecture

The following is a brief description of this security ontology’s components and their

relationships:

Assets: Assets are information or resources that have value to an organization or person.
Applications, systems and networks are counted as assets. The weak assets are those that
have vulnerabilities.

Vulnerabilities: Vulnerabilities are flaws or weaknesses in an asset. Attackers exploit vul-

nerabilities to break the security of an asset.

Risks: Risks are determined by taking in consideration the likelihood of a successful attack
to an asset and the severity of its impact. Threats increase the risk of a security breach,

while countermeasures reduce it.

Security Objectives: Security objectives are an abstract statement of the desired security
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level to be achieved.

Threats: Threats are exploitable vulnerabilities. Threats cause harm to assets and increase

the risk of security breach.

Countermeasures: Countermeasures are mitigation techniques performed in order to pro-
tect an asset against threats and attacks. Countermeasures reduce the risk of security

breach.

Expressing the security concept in such an ontological way permits us to better identify
and order the steps needed to harden security into applications. This ontology can be
converted into a process, where each entity dependent on another becomes an analysis
step dependent on the results of the previous related step(s). Although security hardening
focuses on finding the best countermeasure to a particular threat, we have no choice to
perform some prerequisite tasks in order to achieve a complete hardening process. In this
context, we present in the following subsections the steps needed to harden security into

applications.

3.2.1 Identifying Threats and Calculating Risks

Identifying threats is an important task in security hardening since we need to determine
which threats require mitigation and how to mitigate them, preferably by applying a struc-
tured and formal mechanism or process. As such, the following is a brief description of the
three main steps needed to identify and evaluate the risk underlying a threat:

Application Decomposition: Application Decomposition is dividing the application into its

key components to identify the trust boundaries between them. This decomposition helps
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to minimize the number of threats that need mitigation by excluding those that are outside

the scope and beyond the control of the application.

Threat Identification: Threat Identification is mainly the categorization of threats with
respect to the STRIDE classification [30,31]: Spoofing identity, tampering with data, re-

pudiation, information disclosure, denial of service and elevation of privilege.

Risk Evaluation: Risk Evaluation consists of the prioritization of threats to be mitigated,

based on the likelihood and impact of exploitation.

3.2.2 Countermeasures

Once the previous steps are done and the threat is well identified and categorized, it is pos-
sible to determine the appropriate technique(s) to mitigate it. In the literature, it is possible
to find a mapping between categories of threats and known counter-measures addressing
them. Choosing the best techniques will be mostly based on the state of the art of weak-
nesses and mitigation methods as well as security patterns. For instance, in [30], the authors
provide a list of mitigation techniques for each category of threats of their classification, an

excerpt of which we show in 3.1.

| Threat Type | Mitigation Techniques l

Spoofing Identity Appropriate authentication, protect secret data
Tampering with Data Appropriate authorization, hashes, message authentication codes, dig-
ital signatures

Repudiation Digital signatures, timestamps, audit trails
Information Disclosure | Authorization, Encryption, protect secrets
Denial of Service Appropriate authentication and authorization, filtering, throttling,

quality of service
Elevation of Privilege | Run with least privilege

Table 3.1: Mapping Between Threats and Mitigation
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3.3 Hardening of Low-Level Security

We summarize in this section the major safety vulnerabilities of C programming that we
described in Section 2.1 and published in [47]. Table 3.2 shows common solutions to buffer
overflows, whereas Tables 3.3 and 3.4 detail solutions for integer and memory management

vulnerabilities, respectively.

| Hardening Level | Product/Method

Code Bound-checking, memory manipulation functions with length param-
eter, null-termination, ensuring proper loop bounds, format string
specification, input validation

Software Process Compile with compiler safeguards such as canary words [19]

Design Input validation, input sanitization

Operating Environment | Disable stack execution, enable stack randomization, use libsafe

(5]
Table 3.2: Hardening for Buffer Overflows

| Hardening Level | Product/Method |
Code Use of functions detecting integer overflow/underflow, migration to
unsigned integers, ensuring integer data size in assignments/casts
Software Process | Compiler option to convert arithmetic operation to error condition-
detecting functions

Table 3.3: Hardening for Integer Vulnerabilities

| Hardening Level | Product/Method |
Code NULL assignment on freeing and initialization, error handling on al-
location, pointer initialization, avoid null dereferencing
Software Process Using aspects to inject error handling and assignments, compiler op-

tion to force detection of multiple-free errors
Operating Environment | Use a hardened memory manager (e.g. dmalloc, phkmalloc)

Table 3.4: Hardening for Memory Management Vulnerabilities
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3.4 Security Hardening in the Linux Kernel

Some studies on the security of the Linux kernel done in the past incorporated useful statis-
tics on the preponderance of certain types of software vulnerabilities [17,61,74]. These
studies, however, provided little information about the security improvements that were
done as a response to these vulnerabilities. As such, we studied the methods used to im-
prove the security in the Linux operating system kernel. We found and analyzed the patches
resolving the vulnerabilities listed in 196 security advisories. Our major contribution is a
classification of the security solutions used for the improvement of the Linux kernel, as
well as statistics on their relative importance. After detailling our methodology (see 3.4.1),

we show our results (see 3.4.2).

3.4.1 Methodology

We chose to use the National Vulnerability Database [53] as our source of vulnerabilities
for its official nature and comprehensive contents. Using its online querying system, we
were able to extract 196 unique vulnerability advisories (numbered with the CVE/CAN —
YYYY — NNNN pattern) for the 2.4 and 2.6 Linux kernel versions.

The second step of our research was to track the precise patch that solved each vulner-
ability. In some cases, the advisory would include a link to the revision control systems
used by the Linux project (GIT and BitKeeper [10]), mailing list archives containing the
patch or a vendor’s advisory or bug-tracking entry that contained the patch. When such
information was unavailable, we resorted to examine unaffected version’s changelogs, ven-

dors’ bug tracking systems, maintainer mailing lists, maintainers’ management systems,
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enthusiasts’ websites and newsgroups. This information often lead us, directly or indi-
rectly, to the patch for the given vulnerability. For instance, a changelog file would include
the CVE/CAN number, or have a comment that allowed us to conclude that a given change
was related to the vulnerability investigated. The commit comment or GIT commit number
was then queried for in the BitKeeper archives, enabling us to retrieve the patch easily.

As we were finding the vulnerability solutions, we also examined them and noted a
summary of the code changes we observed. Broad categories quickly emerged as we were

doing this activity, and we started allocating the solutions to their matching category.

3.4.2 Results

While gathering and observing our data, we grouped it in 13 categories of solutions that
were used by Linux kernel maintainers: Change of data types, precondition validation, en-
suring atomicity, error handling, zeroing memory, freeing resources, input validation, capa-
bility validation, fail-safe default initialization, protection domain enforcement, redesign,
other, and unresolved. In our analysis, we observed that error handling, redesign, and
precondition validation were dominating the solutions (please consult Table 3.5). Please
note that the numbers purposefully do not match the number of advisories evaluated (196
CVEs), as many methods can be used to solve the vulnerabilities in one advisory.

In order to understand these categories, we now define and illustrate each remedial
method via a patch. The results are taken directly from the patches associated to different

CVEs, expressed in the patch file format [44].
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Remedial Types | Count | % |

Error Handling 56 23.24
Redesign 44 18.26
Precondition Validation 37 15.35
Fail-Safe Default Initialization 17 7.05
Other 16 6.64
Change of Data Types 14 5.81
Ensuring Atomicity 12 4.98
Zeroing Memory 11 4.56
Input Validation 10 4.15
Protection Domain Enforcement | 8 3.32
Capability Validation 7 2.90
Freeing Resources 5 2.07
Unresolved 4 1.66
Total 241 100.00

Table 3.5: Vulnerability Solution Distribution

Change of Data Types: A change of data types is the use of more appropriate data types
when necessary. In many cases, the data type used was not appropriate for the data rep-
resentation needed or the concurrency scenario. Typically, the change is from signed to
unsigned types, or from static to non-static. The Listing 3.1 shows how a vulnerability was
remedied by making a variable non-static, which insures that it cannot be shared between

threads.

enum ip_nat_manip_type maniptype,
const struct ip_conntrack xconntrack)
{
- static u_intl6_t port, *portptr;
static u_intl6_t port;
+ u_intl6_t xportptr;
unsigned int range_size, min, i;

Listing 3.1: Example of Change of Data Type by Removing Static Assignment for CVE —
2005 - 3275

Precondition Validation: Precondition validation is the ensuring that an operation’s set
of preconditions are met before proceeding with its execution. This is typically done by
checking for valid variable values and a valid range, then returning an error code if the
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conditions are not met. Additionally, this may include the improvement of an existing
precondition check. Listing 3.2 shows how a vulnerability was remedied by ensuring the

validity of the 1en parameter.

count = depth->n;
+ if( count > 4096 || count <= 0 || count * sizeof(*»x) <= 0 ||
+ count » sizeof(xy) <= 0)
+ return -EMSGSIZE;

x = kmalloc( count * sizeof (xx), 0 );

Listing 3.2: Example of Improved Precondition Validation for CVE - 2004 — 0003

Ensuring Atomicity: Ensuring atomicity is a code modification that guarantees non-con-
current execution of critical sections. As such, a maintainer must ensure proper locking of
critical sections before executing them (or merely obtaining a reference to sensitive data
structures), as well as ensuring the proper management of timers, when applicable. Listing
3.3 shows how a vulnerability can be remedied by ensuring the locking of a data structure

before manipulating it through a pointer.

struct ebt_chainstack xcs;

struct ebt_entries »chaininfo;

char xbase;
- struct ebt_table_info *private = table->private;
+ struct ebt_table_info xprivate;

read_lock_bh (&table->1lock);
+ private = table->private;
cb_base = COUNTER_BASE (private->counters, private->nentries,
cpu_number_map (smp_processor_id{))};
if (private->chainstack)

Listing 3.3: Example of Atomicity Guarantee for CVE — 2005 - 3110

Error Handling: Error handling is the addition or improvement of the verification and
handling of error conditions. In many cases, the error status of some functions is not
checked by the calling, or the handling of the error is not appropriate. Error handling is
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most easily distinguished from precondition validation by the fact that it typically occurs
within the body of the function, whereas precondition validation generally occurs at the
beginning of a function. Listing 3.4 shows how an error condition requires memory freeing

and the communication of an error status to the caller.

@@ -57,6 +57,7 @@ int syscall32_setup_pages (struct linux_binprm *bprm,
int exstack)
int npages = (VSYSCALL32_END - VSYSCALL32_BASE) >> PAGE_SHIFT;
struct vm_area_struct =*vma;
struct mm_struct mm = current->mm;

+ int ret;
vma = kmem_cache_alloc(vm_area_cachep, SLAB_KERNEL);
if (!'vma)

@@ -78,7 +79,11 @@ int syscall32_setup_pages (struct linux_binprm xbprm,
int exstack)
vma->vm_mm = mm;

down_write (&mm->mmap_sem) ;

insert_vm_struct (mm, vma);

if ((ret = insert_vm_struct (mm, vma))) ¢
up_write (&mm->mmap_sem) ;
kmem_cache_free (vin_area_cachep, vma);
return ret;

+ 4+ + 4+ +

}

mm—->total_vm += npages;
up_write (&mm->mmap_sem) ;
return O;

Listing 3.4: Example of Improved Error Handling for CVE — 2005 - 2617

Zeroing Memory: Some sensitive information can be left in memory from previous kernel
operations, allowing the possibility of private data leaks. Zeroing Memory, defined as
the overwriting of selected memory contents by it with filling zero values, is the preferred
solution to this problem. Listing 3.5 shows how a disclosure vulnerability was solved by

using memset.

Freeing Resources: Some security vulnerabilities can occur due to memory leaks or un-

released resources such as timers and dynamic memory segments. Freeing resources is
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+ memset (&info, 0, sizeof (info));
strncpy (info.id, "USB_AUDIO", sizeof(info.id));
strncpy (info.name, "USB Audio Class Driver", sizeof (info.name));
if (copy_to_user ((void x)arg, &info, sizeof(info)))

Listing 3.5: Example of Zeroing Memory to Solve Data Leaks in CVE - 2004 — 0685

ensuring that all resources are freed after usage. Listing 3.6 shows how a denial of service

condition was remedied by removing memory leaks.

kenter ("{%d}", key->serial);

key_put (rka->target_key);
+ kfree(rka);

} /+ end request_key_auth_destroy() =/

Listing 3.6: Example of Remediation of Memory Leaks for CVE — 2005 - 3119

Input Validation: Input validation is the practice of validating or modifying input data in
order to ensure it complies with a safety policy. This is done normally by truncation or
filtering and is highly important when user-supplied data traverses a security boundary.
Listing 3.7 shows how input validation capabilities were not fully used for bridge forward-
ing functions, which created a vulnerability, and how said vulnerability was eliminated by

ensuring that a specific subset of traffic was filtered.

struct net_bridge xbr = p->br;
unsigned char xbuf;

+ /xinsert into forwarding database after filtering to avoid spoofingx/
+ br_fdb_update (p—>br, p, eth_hdr(skb)->h_source);
+
/* need at least the 802 and STP headers x/
if (!pskb_may_pull (skb, sizeof (header)+1) ||
memcmp (skb->data, header, sizeof (header)))

Listing 3.7: Example of Improved Input Validation Remediating CVE — 2005 — 3272
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Capability Validation: Capability validation is the verification that execution rights are
granted before performing an operation. This is a special case of precondition validation,
which we considered worthy to mention separately. Listing 3.8 shows how a simple check

remedies a security vulnerability.

do_kdgkb_ioctl (int cmd, struct kbsentry
int i, j, k;
int ret;

+ if (!capable(CAP_SYS_TTY_CONFIG))
+ return -EPERM;
+
kbs = kmalloc (sizeof (xkbs), GFP_KERNEL);
if (!kbs) {
ret = -ENOMEM;

Listing 3.8: Example of Capability Validation Solving CVE - 2005 - 3257

Fail-Safe Default Initialization: Fail-safe default initialization is the setting of a guar-
anteed safe value for variables before an operation requiring its use is performed. This
includes the assignment of a default value at declaration time and ensuring null-termination

of strings. Listing 3.9 shows how setting a pointer to NULL remedied a denial of service

vulnerability.

size_t array_size;

/% set an arbitrary limit to prevent arithmetic overflow */
~ if (size > MAX_DIRECTIO_SIZE)
+ if (size > MAX_DIRECTIO_SIZE) {
+ *pages = NULL;
return -EFBIG;

+}
page_count = (user_addr + size + PAGE_SIZE - 1) >> PAGE_SHIFT;
page_count -= user_addr >> PAGE_SHIFT;

Listing 3.9: Example of Fail-Safe Default Initialization Remediating CVE — 2005 — 0207
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Protection Domain Enforcement: Protection Domain Enforcement is guaranteeing that the
data operated on, or the execution flow, is in the appropriate security domain. In the case
of the Linux kernel, the data can be in either user space or in kernel space. The kernel
implements this differentiation by copying data between kernel and user space as needed,
hereby ensuring that the information is not altered during an operation. Listing 3.10 shows
an example of this, where the call copy_to_user was added with error handling in order

to enforce the protection domain.

case VIDIOCSWIN:
{

- struct video_window *vw = (struct video_window *) arg;
- DBG("VIDIOCSWIN %d x %d\n", vw->width, vw->height);
+ struct video_window vw;

if ( vw->width != 320 || vw->height != 240 )
+ if (copy_from_user(&vw, arg, sizeof (vw)))

{

+

retval = -EFAULT;

+ break;
+ }
+
+ DBG("VIDIOCSWIN %d x %d\n", vw->width, vw->height);
+ if ( vw.width != 320 || vw.height != 240 )
+ retval = —-EFAULT;

break;

}

Listing 3.10: Example of Protection Domain Enforcement Remediating CVE — 2004 —
0075

Redesign: We define redesign in terms of significant code changes, from refactoring to
the change of a provider package, including the introduction of new or modification of the
existing APIs. It is a family of major changes more than a specific solution type. Listing

3.11 shows how a dangerous option needed to be removed from the code.

Other: Other methods were not encountered in a frequency allowing us to classify them
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- sctp_lock_sock (sk);

- switch (optname) {
- case SCTP_SOCKOPT_DEBUG_NAME:

- /+ BUG! we don’t ever seem to free this memory. —-jgrimm =*/
- if (NULL == (tmp = kmalloc(optlen + 1, GFP_KERNEL))) {
- retval = -ENOMEM;

- goto out_unlock;

- if (copy_from_user (tmp, optval, optlen)) {
- retval = -EFAULT;

- goto out_unlock;

-~}

~ tmp[optlen] = "\000’;
- sctp_sk (sk)->ep->debug_name = tmp;
- break;

+ sctp_lock_sock (sk);

+ switch (optname) {
case SCTP_SOCKOPT_BINDX_ADD:

Listing 3.11: Example of Redesign by Removal of Option for CVE - 2004 — 2013

into category for themselves. We chose a threshold at three instances, since we considered
that solutions encountered less than 1% of the time are unlikely to be common practices.
As such, we chose to group these cases in this category. Listing 3.12 shows a vulnerability

solved by changing default file permissions.

MODULE_PARM_DESC (debug, "Enable debug output");

module_param_named(cards_limit, drm_cards_limit, int, 0444);
-module_param_named (debug, drm_debug, int, 0666);
+module_param_named (debug, drm_debug, int, 0600);

drm_head_t xxdrm_heads;
struct drm_sysfs_class xdrm_class;

Listing 3.12: Example of Other Solution: Changing Default File Permissions for CVE —
2005 - 3179

Unresolved: Unresolved flaws are flaws for which a solution was not available when the

research is performed.
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3.5 Summary

In this chapter, we defined security hardening, and showed how it was practically per-
formed. We also saw security hardening classification that emerged from the state of the
art in the field. At a higher level, we saw how an ontology of vulnerabilities could also
serve as process in order to identify the countermeasures to implement. At a lower level,
we saw different hardening approaches for solving buffer overflows, integer and memory
management vulnerabilities. Then, we showed the results of our study on the security im-
provements in the open source Linux kernel, which allowed us to establish a classification
of these practices. Overall, we were able to increase our understanding of the methods used

in the industry in order to increase the security level.
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Chapter 4

An Aspect-Oriented Approach to

Security Hardening

Now that we have studied the nature of security hardening and the practices employed to
perform it, we now inquire into how security hardening, at the code and design levels, can
be performed in a systematic manner.

This chapter presents our proposed approach for systematic security hardening, which
we introduced in {50, 51]. Each component participates by playing a role and/or providing
functionalities in order to have a complete security hardening process. The primary ob-
Jective of this approach is to allow the developers to perform security hardening of FOSS
by applying proven solutions without the need to have expertise in the security solution
domain. This is done by providing an abstraction over the actions required to improve the
security of the program and adopting AOP to build and develop our solutions. The devel-
opers are able to specify the hardening plans that use and instantiate the security hardening
patterns using SHL.
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Our approach (illustrated in Figure 4.1, with the parts grayed being completed in the
scope of this thesis) is structured around security hardening plans and security hardening
patterns, which can be combined and refined into aspects used to harden a program. The
combination of hardening plans and patterns constitutes the concrete security hardening
solutions. It constitutes a bridge that allows security experts to provide the best solutions
to particular security problems with all the details on how and where to apply them, and
allows the software engineers to use these solutions to harden FOSS by simply specifying
and developing high-level security hardening plans that are abstract enough to alleviate

their need to master several security technologies.
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Figure 4.1: Schema of Our Approach
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The approach requires that security experts write a variety of security hardening pat-
terns. Those patterns are built upon security APIs and are described in more detail in
Section 4.1. The developer only needs to specify hardening plans in accordance with the se-
curity requirements. These hardening plans are parametrized patterns specifying the point
of application of the pattern and are described in Section 4.2. We then describe the SHL
language in Section 4.3. We describe quickly the refining step in Section 4.4, which con-
stitutes the translation from SHL of a pattern instance into the target language. We exper-
imentally validated our approach early on, and we show our results in Section 4.5. These
experiments consist of adding secure connections, authorization and memory encryption to

demonstration programs. We finally summarize our findings in Section 4.6.

4.1 Security Hardening Plans

A security assessment brings any decision-maker to perform a risk analysis, which will
finally determine the security requirements. A given set of security requirements may be
implemented through different combinations of mechanisms and software improvements.
As such, a software developer must select the combination of solutions deemed optimal
for the specific program to harden (c.f. Section 2.2). This decision is written in a security
hardening plan, effectively translating such requirements into a specification of software
modifications.

The plans are written as a list of parametrized patterns with a Where clause, which
indicates where in the software the pattern is to be applied. Each pattern is responsible to

document the parameters it requires and supports.
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The developer is able to write the different hardening plans that are required for each
part of the software (e.g. a server program written in C for the UNIX environment vs. a

Java client) and submit them to be refined.

4.2 Security Hardening Patterns

We define security hardening patterns as proven solutions to known security problems,
together with detailed information on how and where to inject each component of the solu-
tion into the application. Security hardening patterns specify the steps and actions needed
to harden systematically security into the code. In this context, security hardening patterns
are defined as proven solutions to known security problems, together with detailed infor-
mation on how and where to inject each component of the solution into the application.

In order to deal with the abstraction level problem that we saw in Chapter 2, we define
the patterns in a twofold manner. First, we document the pattern in an abstract manner
similar to the current approach to pattern documentation called abstract pattern specifica-
tion. This allows the non-experts to understand the solution provided by the pattern and
its applicability. Then, we also define the pattern in a language, platform and technology-
dependent manner using SHL, named the practical pattern specification. We can offer
multiple such definitions under the same abstract pattern specification, allowing developers
to choose which option better fits their needs. The patterns, as well as the hardened soft-
ware resulting from our approach, can be verified via static and dynamic methods against

security vulnerabilities.
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4.3 The SHL Language

The main components of our approach are the security hardening plans and patterns that
provide an abstraction over the actions required to improve the security of a program. They
should be specified and developed using an abstract, programming language-independent
and aspect-oriented language. The current aspect-oriented languages, however, are typi-
cally programming language-dependent, from which the need to elaborate a language pro-
viding the missing features.

Our proposed language, SHL [48], allows for the description and specification of secu-
rity hardening patterns and plans. It is a compact language built on top of the current AOP
technologies that are based on the pointcut-advice model. We chose to use this approach
in order to facilitate the refining of the patterns specified in SHL into aspects of target AOP
language. We further developed part of SHL with notations and expressions close to those
of the current AOP languages, but with the addition of the features we developed in the
scope of this research. We implemented this language specification using the ANTLR-
Works 1.0b11 development environment [55] and were also able to validate the syntax of

different plan and pattern examples within this tool.

4.3.1 Grammar and Structure

In this section, we present the syntactic constructs and their semantics in SHL. Figure 4.2
shows the BNF grammar of SHL. It can be used for both plans and patterns specification,

with a specific template structure for each of them.
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Start = SH_Plan

| SH_Pattern

SH_Plan = Plan Plan_Name
SH_Plan_Code

Plan_Name = lIdentifier

SH_Plan_Code = BeginPlan
Pattern_Instantiation*
EndPlan

Pattern_Instantiation ;= PatternName Pattern_Name

(Parameters Pattern_Parameter®)?
Where Module_Identification+
Pattern_Name = Identifier
Partern_Parameter Parameter_Name = Parameter_Value
Parameter_Name Identifier
Parameter_Value Identifier | Integer | Collection

Collection :=  { (Identifier | Integer) (, Identifier | Integer) x}
Module_Identification = Identifier | File
File = Identifier . Identifier
SH_Pattern = Pattern Pattern_Name
Matching_Criteria?
SH_Pattern_Code
Matching_Criteria = Parameters Pattern_Parameter+
SH_Pattern_Code = BeginPattern
Location_Behavior*
EndPattern
Location_Behavior ::=  Behavior_Insertion_Point+ Location_Identifier+
Primitive*?
Behavior_Code
Behavior_Insertion_Point ::= Before
| After
| Replace
Location_Identifier = FunctionCall <Signature> (Arguments)?
| FunctionExecution <Signature> (Arguments)?
| WithinFunction <Signature> (Arguments)?
| CFlow <Location_Identifier>
[ GAFlow <Location_Identifier>
| GDFlow <Location_Identifier>
Signature = Identifier
Primitive = ExportParameter <Identifier>
| ImportParameter <Identifier>
Arguments u=  ( Star_Or_ldentifier (, Star_Or_ldentifier)* )
Star_Or_ldentifier n= x| Identifier
Behavior_Code = BeginBehavior
Code_Statement
EndBehavior

Figure 4.2: SHL Grammar
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Hardening Plan Structure A hardening plan starts always with the keyword P 1an, fol-
lowed by its name. The plan is itself contained between a pair of BeginPlan and End-
Plan keywords. Between those, there are one or many pattern instantiations that allow
the specification of the name of the pattern and its parameters, in addition to the location
where it should be applied. Each pattern instantiation starts with the keyword Pattern-
Name followed by the name of the pattern, then the keyword Parameters followed by a
list of parameters and finally by the keyword Whe re followed by the module name where

the pattern should be applied (e.g. file name). An example is shown in Listing 6.2.

Hardening Pattern Structure A hardening pattern starts with the keyword Pattern,
followed by the pattern’s name, then the keyword Parameters followed by the matching
criteria and finally the pattern’s code that starts and ends respectively by the keywords
BeginPattern and EndPattern. The matching criteria are composed of one or many
parameters that could help in distinguishing between practical pattern specifications with
the same name and allow the pattern instantiation. The pattern code is based on AOP
and composed of one or many Location_Behavior constructs. Each one of them
constitutes the location identifier and the insertion point where the behavior code should
be injected, the optional primitives that may be needed in applying the solution and the
behavior code itself. A detailed explanation of the components of the pattern’s code will

be illustrated in Section 4.3.2.
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4.3.2 Informal Semantics

In this Section, we present the informal semantics of the important syntactic constructs in

the SHL language.

Pattern_Instantiation Specifies the name of the pattern that should be used in the plan
and all the parameters needed for the pattern. The name and parameters are used as match-
ing criteria to identify the selected pattern. The module where the pattern should be applied
is also specified in the Pattern_Instantiation. This module can be the whole ap-

plication, file name, function name, etc.

Matching_Criteria This section is used for patterns only, and will define the parameters
for which this practical pattern specification is applicable. During the refinement stage, the

proper practical pattern specification will be chosen based on these matching criteria.

Location_Behavior Is based on the advice-pointcut model of AOP. It is the abstract rep-
resentation of an aspect in the solution part of a pattern. A pattern may include one or
many Location_Behavior. Each Location_Behavior is composed of the Be—
havior_Insertion_Point, Location_Identifier, oneor many Primitive

and Behavior_Code.

Behavior_Insertion_Point Specifies where the code injection should take place. The
Behavior_Insertion_Point can have the following three values: Before, Af-
ter or Replace. The use of Before or After keeps the old code at the identified

location and inserts the new code before or after it, respectively. The Replace construct
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is similar to the around found in many AOP languages. It replaces the code identified
in the pointcut, unless the advice includes proceed, in which case it acts as a wrapper.
We do not specify a proceed primitive, however, because it would be included in the

Behavior_Code segment in the language of the underlying AOP technology.

Location_Identifier Identifies the join point or series of join points in the program where
the changes specified in the Behavior_Code should be applied. It is equivalent to a
pointcut in the popular AOP languages. They can be logically combined using boolean
connectives as in the existing languages. These constructs should have their equivalent
in the current AOP technologies or should be implemented into the weaver used, or the
refining process should adequately map them into semantically equivalent constructs in the
target AOP language. We now describe the semantics of important labels that are used for

identifying locations:

e FunctionCall <Signature> (Arguments) Provides all the join points where
a function matching the signature specified is called. The optional parameter section
specifies parameters matched (either ignored with a * or assigned a name) that can

be used within the Behavior_Code.

¢ FunctionExecution <Signature> (Arguments) Provides all the join points
referring to the implementation of a function matching the signature specified. The
optional parameter section specifies parameters matched (either ignored with a » or

assigned a name) that can be used within the Behavior_ Code.
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e WithinFunction <Signature> (Arguments) Filters all the join points that
are within the functions matching the signature specified. The optional parameter
section specifies parameters matched (either ignored with a * or assigned a name)

that can be used within the Behavior_Code.

e CFlow <Location_Identifier> Captures the join points occurring in the dy-
namic execution context of the join points specified in the input Location_Iden-
tifier. Asin the Aspect] and AspectC++ cflow, this pointcut refers to the join

point that are in the execution path after c £ Low’s input join points.

e GAFlow <Location_Identifier> Returns the closest guaranteed ancestor to

the join points, as specified in Section 5.3.

e GDFlow <Location_Identifier> Returns the closest guaranteed descendant

to the join points, as specified in Section 5.3 5.

The Location_Identifier construct can be composed with boolean operators as

follows:

e Location_Identifier && Location_Identifier Returns the intersec-

tion of the join points specified in the two constructs.

e Location_TIdentifier || Location_Identifier Returns the union of

the join points specified in the two constructs.

e | TLocation_Identifier Is anegation. It excludes the join points specified

in the construct.
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Primitive Is an optional functionality that allows us to specify the variables that should
be passed between two Location_Identifier constructs. The following are the con-

structs responsible of passing the parameters:

e ExportParameter <Identifier> Defined atthe origin Location_Iden-
tifier. Itallows us to specify a set of variables defined at the origin Location_-

Identifier and make them available to be exported. It is defined in Section 5.4.

e Importparameter <Identifier> It allows us to specify a set of variables
and import them from the origin Location_Identifier where the Export-

Parameter has been defined. It is defined in Section 5.4,

Behavior_Code May contain code written in any programming language, or even writ-
ten in English as instructions to follow, depending on the abstraction level of the pattern.
The choice of the language and syntax is left to the security hardening pattern developer.
However, the code provided should be abstract and at the same time clear enough to allow a

developer or tool to refine it into low level code without the need of high security expertise.

4.4 Pattern and Plan Refinement

The refiner is responsible for using the information in the security hardening plan in or-
der to correctly choose the desired practical pattern specification. Once this is done, the
specification is instantiated using the plans’ parameters. The first step is to insert the pa-

rameters’ values where specified in the pattern, similar to macros in C programming (a
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feature not available in the current version of SHL). Afterwards, the refiner must trans-
late the pattern from its initial technology-independent form into an aspect written in a
technology-dependant aspect-oriented language.

It is possible to have maintainers who, without having any security expertise, directly
use our plans and patterns in order to manually harden source code. However, this ap-
proach would not allow any form of automation that the full realization of our approach
promises. The refinement of the solutions into aspects can be performed using a dedicated
tool or by programmers. Then, an existing AOP weaver (e.g. Aspect], AspectC++) can be
executed to harden the aspects into the original source code, which can now be inspected

for correctness.

4.5 Early Experimental Validation of the Approach

We demonstrated the feasibility of our approach by developing examples that deal with
security requirements such as securing a connection, authorization and encrypting infor-
mation in the memory. This phase was crucial to determine the viability of the “Refining”

and subsequent parts of our approach. We performed the following steps:

1. We implemented applications that need to be hardened. These applications are briefly

described in sections 4.5.1, 4.5.2 and 4.5.3.
2. We wrote hardening plans for the desired security requirements.
3. We added code that enforce the plans with the least changes in the existing code.

4. We extracted this code into security APIs.
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5. We developed patterns describing those source code changes.

6. We wrote aspects implementing those patterns.

7. We applied the aspects on the original programs by using available weavers (Aspect]

1.5.2 and AspectC++ 1.0pre3).

8. We tested the resulting programs for functional and security correctness by compar-

ing them to the manually hardened ones.

9. We measured the execution time of programs hardened by both approaches.

We now examine our results from securing a connection, adding access control and

encrypting memory locations.

4.5.1 Secure Connection

A first issue is the securing of channels between two communicating parties to avoid eaves-
dropping, tampering with the transmission or session hijacking. The Transport Layer Secu-
rity (TLS) protocol is widely used for this task. We thus decided to implement the “Secure
Connection” security hardening on a minimalistic HTTP client application, programmed
in C, using the GnuTLS TLS library [46] and AspectC++.

Our solution took into consideration programming practices found in the industry. The
first consideration is that many programs use sockets for both local and remote communica-
tion. The second consideration is that different components (i.e. different classes, modules,
functions, etc.) may host the connection management (i.e. connect/close) and trans-

mission (i.e. send/receive) functions. We thus decided to store a data structure in a
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hash table when a call to connect was meant to be secured. Then, we wrapped around all
the other socket-related functions and used a runtime check to determine whether or not the
call needed to be replaced or complemented by the ones provided by the SSL/TLS library.
If not, the function calls are executed as normal. This required additional effort to develop
additional components that distinguish between the functions that operate on secure and
insecure channels and export parameters between different places in the application.

The passing of parameters between the different functions needing them was a diffi-
culty, since the GnuTLS data structures are not type compatible with the handle to the
socket (an integer). In order to avoid using shared memory directly, we opted for a hash ta-
ble that uses the socket number as a key to store and retrieve all the needed information. As
such, on connect, the GnuTLS data structures were saved in the hash table, making the
socket marked as being secured. All calls to send (), recv () and close () are modi-
fied for a runtime check so that the GnuTLS functions required to perform the transmission
and sesssion termination were used only if the socket was secured.

In order to test the performance impact of the hardening, we iterated over many con-
nections where a connection to a remote web server is established, and a few index page’s
bytes are retrieved. The validity of the hardening was confirmed using the Wireshark packet
capture package [39]. In Table 4.1, the ‘Unsecured’ column shows the execution time for
unsecured sockets using the standard socket API. The ‘GnuTLS’ columns show three ap-
proaches: One passing the GnuTLS variables by a hash table (‘Hash Table’) , another via
the procedure’s parameters (‘Direct’) and the last one shows the performance to using As-

pectC++ to inject code that is functionally equivalent to "Hash Table’ (‘via AOP’).
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i GnuTLS
Connections | Unsecured | [Direct | via AOP
100 0234 s 15937s | 1589s | 15953 s
500 1.406 s 7939 s 80.484s | 79.828 s
1000 3.062 s 159.984s | 157.796s | 161.25 5

Table 4.1: Execution Time for Different Hardening Approaches Securing a Connection

We see from the results that there is a significant cost to securing the channel, but
that the different approaches have similar overhead. In the context of our experiment, we
did not measure the network and server load fluctuations that could have impacted these
measurements, since we presumed these to be too minimal to warrant such measurement.
In the case of a thousand iterations, we see that the approach using AOP (and the hash
table) has an overhead of about 2.2%, compared to ’direct’. This impact on performance is
likely due to the overhead of using the hash table and of the multiple function calls added
by AspectC++. Although it is likely that improvements in AspectC++ would narrow this
gap, we consider those results as supporting our proposition that AOP is an acceptable

mechanism for the injection of security hardening code.

4.5.2 Authorization

Access control is a problem of authorizing or denying access to a resource or operation. It
requires the knowledge of which principal is interacting with the application, and what are
its associated rights.

We have implemented an example of access control by injecting a capability check
relying on the Java Authorization and Authentication Service. The rights are specified in a
separate policy file. We assume a local login, in this case, and we obtain the user name from
the virtual machine. The permissions are specified in the package.class. function

60



format. The injection of the same code was done manually and with an Aspect] aspect.
We also verified the functional and security correctness of the hardened application by
removing the right in the policy file and observing an exception thrown instead of the
execution of the method. Our runtime experiments show the difference in execution time
for multiple runs of a security check between a case hardened manually and one hardened

using Aspect], presented in Table 4.2.

| Calls | Unsecured | Secured Manually | Secured with Aspect] |

1 <1 ms 48.93 ms 97.8 ms
100 <1l ms 357.77 ms 497.3 ms
500 <1l ms 1019.73 ms 1480.77 ms

Table 4.2: Average Execution Time for Different Approaches to Add Authorization

Similarly to our previous results, we see a significant overhead when the security hard-
ening is applied, no matter which method is used to do so. Contrary to our previous ob-
servations, however, we see that the use of Aspect] to perform the hardening causes an
overhead of about 45% compared to the manual hardening, when we observe the results
over 500 iterations. The operation execution time passed from 2.04 ms per iteration to 2.94
ms per iteration, which is too short for the user to notice. We see that improvements to
the technology used (whether it is in the Aspect] compiler itself, or in the Aspect] frame-
work used at runtime) are desirable in order to close the gap with the manual hardening
approach. Nevertheless, the impact of using Aspect] remains small enough to consider it

as an acceptable tool for security hardening.
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4.5.3 Encryption of Memory

Although processes should encapsulate all of their internal information in a manner that is
opaque to other processes, modern operating systems allow the reading of the entire mem-
ory space, making the information stored in memory vulnerable to local memory reading
attacks. Furthermore, the UNIX core dump of a crashed process may contain sensitive in-
formation. Cryptography offers tools that are useful to protect confidentiality and to detect
integrity violations of data.

We faced the problem of communicating the cryptographic information needed between
the program locations where encryption and the decryption was performed. Since we had
a similar issue for the experiment in Subsection 4.5.1, we also used a hash table to pass the
information from one part of memory to another. In order to keep type compatibility, we
generate a counter that is different for short, char and int (normally used to represent
pointers as well). The encrypted value as well as cryptographic information is stored in a
hash table that uses the aforementioned counter as a key. One limitation of this strategy
is the limited range of values that can be kept this way, especially for char and short
variables.

We were able to manually harden the application but, contrary to other examples, we
were not able to implement an aspect in order to encrypt only one of the buffers in our
reference program due a limitation in the current AOP languages for C. This limitation is
that it is not currently possible to specify a join point over a variable name, as illustrated in

Listing 4.1.
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/*get username*/
fgets (username, FIELD_LEN, stdin);

/+get password*/
fgets (password, FIELD_LEN, stdin);

Listing 4.1: Example Code that cannot be Hardened Using Aspects

4.5.4 Discussion

The latter measurements between the performance cost of hardening manually or using
aspect-oriented technologies show little overhead in the case of the AOP-generated code.
This information, combined with the identical security correctness as for manually hard-
ened program, demonstrates that the refinements of patterns and plans to AOP is a viable
method for hardening applications. However, we also found technological limitations that
forced us to resort to complicated tricks in order to obtain our functional objective, if at all
possible. We noticed that improvements to AspectC++ and Aspect] would have facilitated

this task and kept the aspects much lighter and concise.

4.6 Summary

In this chapter, we presented an overview of the aspect-oriented security hardening ap-
proach central to this thesis. This approach is built upon security APIs and security harden-
ing patterns supplied by security experts, and user-generated security hardening plans using
the patterns. Our approach allows for these plans and patterns to be refined into aspects,
which can then be used on the software to harden. This approach allows for the systematic

hardening of software, and the development of an automated refiner that could allow our
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approach to be automatic.
Our experiments showed that the approach was feasible, but they also showed that

existing AOP technologies are lacking features in order to fully perform security hardening.
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Chapter 5

Shortcomings of Current AOP

Approaches and New Primitives

As we have seen in the previous chapter, the currently available AOP technologies provide
a good foundation for our security hardening approach, but are lacking some features. This
conclusion was reached by other researchers in the AOP field [13,29,34,45], who proposed
complementary constructs to enrich AOP languages for security hardening.

Those lacking features caused different problems. In a given case, we were not able to
perform some security hardening activities. Such limitations are forcing us, when apply-
ing security hardening practices, to perform various programming gymnastics, resulting in
additional modules that must be integrated within the application, at an elevated runtime,
memory and development cost. Moreover, the result of applying this coding strategy is of
a higher level of complexity from the standpoint of auditing and evaluation.

In the scope of this chapter, we propose improvements to current AOP technologies, by
elaborating new pointcuts and primitives needed for security hardening concerns. In this
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context, we propose two new control flow based pointcuts to AOP languages that allow the
identification of particular join points in a program’s control flow graph (CFG). The first
proposed pointcut is the GAFlow, the closest guaranteed ancestor, which returns the closest
ancestor join point to the pointcuts of interest that is on all their runtime paths. The second
one is the GDFlow, the closest guaranteed descendant, which returns the closest child join
point that can be reached by all paths starting from the pointcuts of interest.

Moreover, we propose two new primitives to AOP languages that are also needed for
security hardening concerns. These primitives, called ExportParameter and ImportParam-
eter, are used to pass parameters between two pointcuts. They allow one to analyze a pro-
gram’s call graph in order to determine how to change function signatures for the passing
of parameters associated with a given security hardening.

We first cast a glance at the shortcomings that were found during our previous experi-
ments in Section 5.1. We introduce, in Section 5.2, some theoretical foundations allowing
structural representation of programs. Afterwards, we dedicate Sections 5.3 and 5.4 to the
matching pairs that are GAFlow/GDFlow and ExportParameter/ImportParameter in order
to examine their usefulness and algorithms implementing them. We finally summarize our

findings in Section 5.5.

5.1 Identified Shortcomings

As we have seen previously, some hardening activities cannot be implemented at all, or can
only be implemented by increasing the software complexity. From those experiments we

identified the following missing features in AOP languages:
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Parameter Passing: It should be possible to pass parameter between advices in a manner

that is simple, safe, and does not increase code complexity

Just in time library initialization: It should be possible to have the libraries used by the

patterns initialized only when they are needed

Parameter name pointcut complement: It should be possible to complement pointcuts over

function calls or execution with a selector based on the names of the variables passed.

The first two shortcomings are well illustrated by the Aspect excerpt in Listing 5.1,
where we see the code injected around the main function and the use of a hash table
to pass parameters. The functions of interest are underlined. During our research, we

proposed solutions to two of the problems identified.

5.2 Program Representation

In order to propose the needed improvements to AOP languages, we must first obtain a
familiarity with some concepts of program analysis, which emerged from the field of com-
pilers and programming languages. Three instrumental concepts are lattices, control flow

graphs, and call graphs.

5.2.1 Lattices

A lattice is a partially ordered set over which an ordering relation was applied [9] and it is
typically represented as a directed acyclic graph, as illustrated in Figure 5.1. This ordering
relation is reflexive, antisymmetric and transitive. A lattice is engineered in such a way that
a greatest lower bound and least upper bound exist for each element of the set. The greatest
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aspect SecureConnection {

advice execution ("% main(...)") : around () {
hardening socketInfoStoragelInit{();
hardening initGnuTLSSubsystem (NONE) ;

tjp —>proceed () ;

hardening _deinitGnuTLSSubsystem();
hardening socketInfoStorageDeinit ();

advice call ("% connect(...)") : around () {
hardening sockinfo t socketInfo;
const int cert_type_priority[3] = { GNUTLS_CRT_X509,

GNUTLS_CRT_OPENPGP, 0};

//initialize TLS session info

gnutls_init (&socketInfo.session, GNUTLS_CLIENT);

gnutls_set_default_priority (socketInfo.session);

gnutls_certificate_type_set_priority (socketInfo.session,
cert_type_priority);

gnutls_certificate_allocate_credentials (&socketInfo.xcred);

gnutls_credentials_set (socketInfo.session, GNUTLS_CRD_CERTIFICATE,
socketInfo.xcred);

//Connect
tjp —>proceed () ;
if («tjp->result ()<0) {perror("cannot connect "); exit (1);}

//TLS handshake

socketInfo.isSecure = true;

socketInfo.socketDescriptor = x(int «)tjp->arg(0);

hardening storeSocketInfo(*(int «)tjp->arg(0), socketInfo);

gnutls_transport_set_ptr (socketInfo.session, (gnutls_transport_ptr)
(x (int *)tjp->arg(0)));

*tjp->result () = gnutls_handshake (socketInfo.session);

//replacing send() by gnutls record_send() on a secured socket
advice call ("% send(...)") : around () {

hardening sockinfo t socketInfo;

socketInfo = hardening getSocketInfo (* (int *)tjp->arg(0));

if (socketInfo.isSecure)
*(tjp->result ()) = gnutls_record_send(socketInfo.session,
* (char«x) tjp->arg(l), *(int *)tjp->arg(2));
else
tjp ->proceed () ;
}
Vi

Listing 5.1: Excerpt of an AspectC++ Aspect Hardening Connections Using GnuTLS
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lower bound (or infimum) is the closest element that is smaller or equal to given elements
in the set. The least upper bound (or supremum) is the closest element that is greater or
equal to given elements in the set. A description of high-performance implementation of
lattice operation is described in [4].

Lattices have been shown to be acceptable representation of programs for the purpose
of programs’ static analysis [18, 38], despite their limitations forbidding the representation

of loops.

-
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Figure 5.1: Lattice of Partitions of an Order 4 Set [67]

5.2.2 Control Flow Graphs

A control flow graph (CFG) is a potentially cyclic directed graph that is used to represent
the program’s possible flow of execution. Cycles are introduced in the graph by the use of
loops. It is a form of program representation more appropriate than lattices thanks to its
support for loops.

The graph is divided in basic blocks, which represents one or more code statements
without branching. The edges of the graph are possible transitions from one basic block

to another, typically due to a conditional branching (e.g. if) or a function call. It is
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not possible to determine which path will be executed without the use of more powerful
techniques such as data flow analysis.

Control flow graphs are used in optimizing compilers [1] as well as for certain static
analysis methods, such as MOPS [61].

In Figure 5.2, we see the intraprocedural control flow graph of Java’s String.hash-

Code () method, as generated by Wiirthinger’s Hotspot Client Compiler Visualizer.

Figure 5.2: CFG of Java.Lang.String::hashCode

5.2.3 Call Graphs

A call graph (as illustrated in Figure 5.3) is a potentially cyclic directed graph that is used
to represent the programs’ calling structure. Cycles are introduced in the graph with the
use of recursion.

Call graphs can be either context-insensitive or context sensitive. Context-insensitive
call graph construction algorithms, such as proposed by Ryder [58], do not take in consid-
eration the values of the variables used to call the functions. It is appropriate for procedural

languages and yields a simple graph for which a function is represented only once in the
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graph. Context sensitivity was proposed to deal with limitations to this approach found in
more elaborate programming languages. Callahan et al. [15] proposed an algorithm dealing
with procedural overloading based on the parameter types, and Grove et al. [27] also used
the context-sensitive approach for call graph construction in object-oriented languages.
The reader interested in a sound overview on call graphs is referred to an elaborated

study of different algorithms by Grove and Chambers [26].

hardening_initGnuTLSSubsystem l

hardening_storeSocketinfo I

hardening _getSocketInfo—l

I‘jardening_socketlnfoStorageInit |

Figure 5.3: Call Graph From A Simple Program Generated by Doxygen [70]

5.2.4 Summary

In this short subsection, we quickly learnt about lattices, control flow graphs and call
graphs. We saw that control flow graphs represent programs more closely than lattices,
and that call graphs can be sensitive or insensitive to the context. These concepts will be

useful for understanding the solutions we propose in this chapter.
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5.3 GAFlow and GDFlow

The GAFlow and GDFlow pointcut designators [41,42] have been developed in order to
answer to the need of just-in-time library initialization. Their use allows aspect program-
mers to specify certain pointcuts as being relative to other pointcuts, thus avoiding having
to specify them directly. This is very useful for the writing of security hardening patterns.
For example, when some code injection simply needs to happen before or after another
code injection, but where it is precisely injected does not matter. However, GAFlow and
GDFlow are not only useful in the context of our approach, but also provide an enrichment
to AOP that is worthwhile to examine by itself. In this section, we will thus define and ex-
amine these proposals in this manner, by examining the pointcut definition, their usefulness

for security hardening purposes, and the algorithms that can be used to implement them.

5.3.1 Pointcut Definition

We provide in Figure 5.4 the syntax that defines a pointcut p that includes our proposal.

p ::= call(s) | execution(s) | gaflow(p) | gdflow(p)
|l p 1l P I P& p

Figure 5.4: GAFlow and GDFlow Extending AspectC++

In this representation, s is a function signature. As in AspectC++, pointcuts can be
combined with the and (& &) and or (| |) boolean operators. The GAFlow and the GDFlow
are the new control flow based pointcut primitives. Their parameter is also a pointcut p. In

the following, we present the definitions of each of pointcut.
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These pointcut primitives operate on the CFG of a program. The input is a set of join
points defined as a pointcut and the output is a single join point. In other words, if we are
considering the CFG notations, the input is a set of nodes and the output is one node. The
GAFlow output is (1) the closet common parent node of all the nodes specified in the input
set (2) and through which all the possible paths that reach them pass. In the worst case,
the closest common ancestor will be the entry block. The GDFlow output (1) is a common
descendant of the selected nodes and (2) constitutes the first common node reached by all
the possible paths emanating from the selected nodes. In the worst case, the first common

descendant will be the exit block.

3.3.2 Usefulness of GAFlow and GDFlow for Security Hardening

Security hardening practices may require the injection of code around a set of join points
or possible execution paths [7,30,62,73]. Examples of such cases would be the injection of
security library initialization/deinitialization, privilege level changes, atomicity guarantee,
logging, etc. The current AOP models only allow us to identify a set join points in the
program, and therefore inject code before, after and/or around each one of them. However,
to the best of our knowledge, none of the current pointcuts enable the identification of a
join point common to a set of other join points where we can efficiently inject the code
once for all of them. In the sequel, we present briefly examples of the usefulness of our

proposed pointcuts for some security hardening activities.

Principle of Least Privilege: For processes implementing the principle of least privilege,

it is necessary to increase the active rights before the execution of a sensitive operation,
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and to relinquish such rights immediately after its completion. Our primitives can be used
to deal with a group of operations requiring the same privilege by injecting the privilege
adjustment code at the GAFlow and GDFlow join points. This is applicable only in the
case where no unprivileged operations are in the execution path between the initialization

and the deinitialization points.

Atomicity: In the case where a critical section may span across multiple program elements
(such as function calls), there is a need to enforce mutual exclusion using tools such as
semaphores around the critical section. The beginning and end of the critical section can

be targeted using the GAFlow and GDFlow join points.

Logging: It is possible that a set of operations are of interest for logging purposes, but that
their individual log entry would be redundant or of little use. This is why it is desirable
to use GAFlow and/or GDFlow in order to insert log statements before or after a set of

interesting transactions.

Security Library Initialization/Deinitialization: In the case of security library initialization
(e.g. access control, authorization, cryptography), our primitives allow us to initialize and
deinitialize the needed library only for the branches of code where they are needed by iden-
tifying their GAFlow/GDFlow. Having both primitives would also avoid the need to keep
global state variables about the current state of library initialization. Let us consider the
case of securing a connection. With the current AOP pointcuts, as shown in Listing 5.1 the
aspect targets the main as the location for the TLS library initialization and deinitializa-
tion. Another possible solution could be the loading and unloading of the library before and

after its use, which may cause runtime problems since API-specific data structures could

74



be needed for other functions. However, in the case of large or embedded applications
the two solutions create an accumulation of code injection statements that would create a
significant, and possibly useless, waste of system resources. In Listing 5.2, we provide an
aspect implemented using the proposed pointcut, instead of an advice that is executed
around the function main. The resulting code will be more efficient and applicable on a

wider range of application.

5.3.3 General Advantages of GAFlow and GDFlow

It is clear that our proposed primitives support the principle of separation of concerns by
allowing the implementation of program modifications on sets of join points based on a
specific concern (as previously exemplified). We further upon this benefit by presenting

some general advantages of our proposed pointcuts:

Ease of Use and Higher Abstraction: Programmers can target places in the application’s
control flow graph where to inject code before or after a set of join points without needing

to manually determine the precise point where to do so.

Ease of Maintenance: Programmers can change the program structure without needing
to rewrite the associated aspects that were relying on explicit knowledge of the structure
in order to pinpoint where the advice code would be injected. For example, if we need
to change the execution path to a particular function (e.g. when performing refactoring),
we also need to manually find the new common ancestor and/or descendant, whereas this

would be done automatically using our proposed pointcuts.
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Optimization: Programmers can inject certain pre-operations and post-operations only
where needed in the program, without having to resort to injection in the catch-all main.

This is replaced by executing them only once around the GAFlow and GDFlow.

3.3.4 Algorithms and Implementation

In this section, we present the elaborated algorithms for graph labeling, GAFlow and
GDFlow. We chose to use the programs’ CFG in order to implement GAFlow and GDFlow
because of shortcomings with lattice theory. Lattice theory defines the infimum and supre-
mum operations that are somewhat similar to GAFlow and GDFlow. However, their results
do not guarantee that all paths will be traversed by the results of these operations, which
is a central requirement for GAFlow and GDFlow. Moreover, the lattices do not correctly
represent all kinds of programs, due to their inability to support loops.

Algorithms that operate on graphs have been developed for decades now, and many
graph operations (such as finding ancestors, finding descendants, finding paths and so on)
are considered to be common knowledge in computer science. Despite this theoretical
richness, we are not aware of existing methods allowing us to efficiently determine the
GAFlow and GDFlow for a particular set of join points in a CFG by considering all the
possible paths.

We assume that our CFG is shaped in the traditional form, with a single start node
(entry block) and a single end node (exit block). In the case of program with multiple
starting points, we consider each starting point as a different program in our analysis. In

the case of multiple ending points, we consider them connected to a single end point. With
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these assumptions in place, we ensure that our algorithms will return a result (in the worst
case, the entry or exit block) and that this result will be a single and unique node for all
inputs. We implemented these algorithms to operate on arbitrary graphs and experimentally

explored their correctness.

Graph Labeling: In order to determine the GAFlow and GDFlow, we choose to use a
graph labeling algorithm adapted from an algorithm developed by our colleagues Soeanu
and Jarraya [16] in the Computer Security Laboratory. Algorithm 5.1 describes our graph
labeling method. Since our graph may contain loops, we modified the algorithm in a way
that a node will not be labeled twice if the parent is one of its descendants. In such a
situation, the recursion is stopped thus guaranteeing termination of the algorithm. This
approach facilitates processing, since the hierarchy is encoded in the label set associated
to each node. As we will see later, GAFlow and GDFlow algorithms are dependent on this

labeling to facilitate processing.

Each node down the hierarchy is labeled in the same manner as the table of contents of
a book (e.g. 1., 1.1, 1.2, 1.2.1,, ...), as depicted by Algorithm 5.1, where the operator
+. denotes string concatenation (with implicit operand type conversion). To that effect,
the labeling is done by executing algorithm 5.1 on the entry node with label "0.", thus

recursively labeling all nodes. An example is shown in Figure 5.5.

GAFlow: In order to compute the GAFlow, we developed a mechanism that operates on
the labeled graph. We compare all the hierarchical labels of the selected nodes in the
input set and find the largest common prefix they share. The node labeled with this largest

common prefix is the closest guaranteed ancestor. We insured that the GAFlow result is
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Al

gorithm 5.1 Hierarchical Graph Labeling Algorithm

1
2
3
4
5:
6
7
8
9

: function 1abelNode(Node s, Label [):
. s.labels «— s.labels U {l}
: NodeSequence children = s.children()
: for k = 0 to |children| — 1 do
child « children[k]
if ~hasProperPrefiz(child, s.labels) then
label Node(child,l +. k +.".”);
end if
. end for

10:

11:
12:
13:
14:
15:
16:
17:
18:
19:

function hasProperPrefix(Node s, LabelSet parent Labels):
if s.label = ¢ then
return false
end if
if 3s € Prefizes(s.label) : s € parentLabels then
return true
else
return false
end if

20:

21:
22:
23:
24:
25:
26:
27:
28:
29:

function Prefixes(Label {):

LabelSet labels «+ ()

Label current «*”

for i — Oto l.length() do
current.append(l.char At(4))

if Labell.char At(i) = ‘" then
labels.add(current.clone())
end if
end for
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entry[0.]

[N1[0.0.]

N2{0.0.0.] I N3[0.0.1.] l N4[0.0.2.] I
lﬁ[o.o.o.o.] ! t«s[o.o.o.t] I u7[o.o.1.o., 0.0.2.0] I

l N8[0.0.0.1.0., o.o.1.o.0-.y

lﬁ[0.0.0.0.0., 0.0.0.1.0.0., 0.0.1.0.0.0., 0.0.2.0.0.0.]

'

I N10[0.0.0.0.0.1., 0.0.0.1.0.0.1., 0.0.1.0.0.0.1., 0.0.2.0.0.0.1ﬂ

'

l exit[0.0.0.0.0.1.0., 0.0.0.1.0.0.1.0., 0.0.1.0.0.0.1.0., 0.0.2.0.0.0.1.0.] I

Figure 5.5: Sample Labeled Graph

a node through which all the paths that reach the selected nodes pass by considering all

the labels of each node. This is elaborated in Algorithm 5.2. Figure 5.6 shows a graphical

representation of GAFlow.

GDFlow: The closest guaranteed descendant is determined by elaborating a mechanism
that operates on a labeled CFG of a program. By using Algorithm 5.3, we obtain the sorted
list of all the common descendants of the selected nodes in the input list of the pointcut.
The principle of this algorithm is to calculate the set of descendants of each of the input
nodes and then perform the intersection operation on them. The resulting set contains the

common descendants of all the input nodes. Then, we sorted them based on their path
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Algorithm 5.2 Algorithm to determine GAFlow

Require: SelectedNodes is initialized with the contents of the pointcut match
Require: Graph has all its nodes labeled
1: function gaflow(NodeSet SelectedNodes):
LabelSequence Labels «—
for all node € SelectedNodes do
Labels « Labels U node.labels()
end for
return GetNodeByLabel(FindCommonPrefiz(Labels))

function FindCommonPrefix (LabelSequence Labels):
if | Labels| = 0 then
return error
. else if | Labels| = 1 then
return Labels.removeHead()
. else
Label Labell «— Labels.removeHead()
Label Label2 «— Labels.removeHead()
16:  if |Labels| = 2 then
17: for i «— 0 to min(Label.length(), Label2.length() do

R A A

— et et e
AW N = O

18: if Labell.charAt(i) # Label2.char At(i) then
19: return Labell.substring(0,i — 1)

20: end if

21 end for

22: return Labell.substring(0, min(Label.length(), Label2.length())
23:  else

24: Label PartialSolution «— FindCommonPrefiz(Labell, Label2)
25: Labels.append(Partial Solution)

26: return FindCommonPrefixz(Labels)

27:  endif

28: end if

Algorithm 5.3 Algorithm to Determine the Common Descendants

Require: SelectedNodes is initialized with the contents of the pointcut match
Require: Graph has all its nodes labeled
1: function findCommonDescendant s(NodeSet SelectedNodes):
2: NodeSet PossibleSolutions — Graph.allNodes()
3: for all node € SelectedNodes do
4:  PossibleSolutions « PossibleSolutions N node.All Descendants()
5: end for
6: Create OrderedSolutions by sorting PossibleSolutions by increasing path length
between the solution and the nodes in SelectedNodes
7: return OrderedSolutions

80



! entry[0.]

y

N1[0.0.]
' \
N2[0 0.0. ] N3[0 0.1 ﬂ N4[0.0.2.] l
| N5[0.0. o 0. 1 N6[0 0.0.1] | | N7[0.0.1.0.,0.0.2.0]

N

Ls[o.o.o.1.o., 0.0.1.0.0., 0.0.2.0.0.] | -

Figure 5.6: GAFlow for N2 and N7

Algorithm 5.4 determines the closest guaranteed descendant. It takes first the result of
Algorithm 5.3, which is considered as its list of possible solutions. Then, it iterates through
the ordered list and examines the current node against the previously retained solution,
which we call the candidate. For each selected node, we count the number of labels of
the candidate that have proper prefixes identical to the labels of the considered selected
node. The resulting candidate of the first iteration is the first encountered node with the
largest label count. This candidate is the starting one of the next iteration and so on until
all the selected nodes are examined. The final candidate of the last iteration is returned by
the algorithm as the closest guaranteed descendant. This approach is much more complex
than what we used for GAFlow. It was however justified by the need to handle the case of
loops, which the GAFlow does not need to consider in its treatment. The Figure 5.7 shows

a graphical representation of GDFlow.
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Algorithm 5.4 Algorithm to Determine GDFlow

Require: SelectedNodes is initialized with the contents of the pointcut match
Require: Graph has all its nodes labeled

10:
11:
12:
13:
14:

15:
16:
17
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:

AR AN A > o

: function gdf1low(NodeSet SelectedNodes):
NodeSequence PossibleSolutions — findCommonDescendants(SelectedNodes)
IntCandidateIndex «— 0
for all node € SelectedNodes do

CandidateIndex «— findBestCandidate(PossibleSolutions, CandidateIndez, node)
end for
return PossibleSolutions[Candidate]

function findBestCandidate(NodeSequence possibleSolutions, int Candidatelndez,
Node selected N ode)
PreviousFoundPrefizes «— 0
for i — CandidateIndex to [possibleSolutions| — 1 do
Int sol — possibleSolutions|i]
Int foundPrefizes « countProperPre fizes(sol,node)
if (PreviousFoundPrefizes < foundPrefizes) V 3child € sol.children()
hasProper Prefixz(sol, child.labels()) then
Candidatelndex « i
end if
end for
return Candidatelndex

function countProperPrefixes(Node candidate, Node selected N ode):
Int count — 0

for all candidateLabel € candidate.labels() do
for all selectedNodeLabel € selected N ode.labels() do
if dp € Prefizes(candidateLabel) : p = selected N ode Label then
count + +
end if
end for
end for

return count
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Figure 5.7: GDFlow for N2 and N7

5.4 Parameter Passing

In this section, we present the ExportParameter and ImportParameter primitives required
for parameter passing [49]. Those primitives allow the transfer of parameters between
two advices via the intermediary procedures’ parameter list. Moreover, we illustrate their
usefulness for security hardening and their algorithms. We define their syntax, derived
from AspectC++, as an optional program transformation section in an advice declaration
as illustrated in Figure 5.8, where e and i are respectively the new ExportParameter and
ImportParameter. The arguments of ExportParameter are the parameters to pass, while the
arguments of ImportParameter are the parameters to receive. The two primitives are meant
to be used together in order to provide the information needed for parameter passing from
one join point to another.

Our proposed approach for parameter passing operates on the context-insensitive call
graph of a program [26], with each node representing a function and each arrow represent-

ing a call site. It exports the parameter over all the possible paths going from the origin to
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parameter ::= <type> <identifier>

paramList ::= parameter [,paramList]

e ::= exportParameter (<paramList>)

i::= importParameter (<paramList>)

advice <target-pointcut> : (before|after|around) (<arguments>)
[: e | 1| e/i] {<advice-body>}

Figure 5.8: Syntax for Parameter Passing Primitives Extending Aspect C++

the destination nodes. This is achieved by performing the following three steps: (1) Cal-
culating the closest guaranteed ancestor (CGA, using the GAFlow algorithm) of the origin
and destination join points, (2) passing the parameter from the origin to the aforementioned
node and then (3) from this node to the destination. Figure 5.9 illustrates our approach. For
instance, to pass the parameter from A to g, their GAFlow, which is & in the this case, is first
identified. Afterwards, the parameter is passed over all the paths from 4 to b, then from b
to g again over all the paths.

By passing the parameter from the origin to GAFlow and then to the destination, we en-
sure that the parameter will be effectively passed through all the possible execution paths
between the two join points. Otherwise, the parameter could not be passed or passed with-
out initialization, which would create software errors and affect the correctness of the so-
lution.

The parameter passing capability that we propose changes the function signatures and
the relevant call sites in order to propagate useful security hardening variables via inout
function parameters. It changes the signatures of all the functions involved in the call graph
between the exporting and importing join points. All calls to these functions are modified
to pass the parameter as is, in the case of the functions involved in this transmission path

(e.g. nodes b, ¢, d, e, and f).
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Figure 5.9: Parameter Passing in a Call Graph
5.4.1 Usefulness of ImportParameter and ExportParameter for Secu-
rity Hardening

It is often necessary to pass state information from one part of the program to another in
order to perform security hardening. For instance, in the example provided in Listing 5.1,
we need to pass the gnutls_session_t data structure from the advice around con-—
nect to the advice around send, receive and/or close in order to properly harden the
connection. The current AOP models do not allow us to perform such operations without
the need for relatively complex data structures and algorithms.

In Listing 5.2, we use our proposed approach for parameter passing. All data struc-
tures and algorithms (underlined in Listing 5.1) are removed and replaced by the primitives
for exporting and importing. An exportParameter for the parameters session and

xcred is added on the declaration of the advice of the pointcut that identifies the function
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connect. Moreover, an importParameter for the parameter session is added on

the declaration of the advice of the pointcut that identifies the function send.

5.4.2 Algorithms and Implementation

The elaborated algorithms for the implementation of parameter passing operate on a pro-
gram’s call graph. The origin node is the pointcut where the ExportParameter is called,
while the destination node is the pointcut where ImportParameter is called.

After calculating the closest guaranteed ancestor of the two pointcuts specified by the
two primitives, Algorithm 5.6 is performed first to pass the parameter from the origin to
the closest guaranteed ancestor, then executed another time to pass the parameter from the
closest guaranteed ancestor to the destination. This procedure is described in Algorithm

5.5 and operates on a per-parameter basis.

Algorithm 5.5 Algorithm to Pass the Parameter between two pointcuts

function passParameter(Node origin, Node end,Parameter param):
if origin = destination then
return success
end if
start — ClosestGuaranteed Ancestor (origin, end)
passParamOnBranch(start, origin, param)
node.addLocalV ariable(param,)
passParamOnBranch(start, end, param)

A o

Algorithm 5.6 is a building block that allows the modification of function signatures and
calls in a way that would keep the program’s syntactical correctness and intent, meaning
that it would still compile and behave the same. It finds all the paths between an origin node
and a destination node in a call graph. For each path, it propagates the parameter from the

called function to the callee, starting from the end of the path. In order to be optimal, it
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aspect SecureConnection {

advice gaflow(call ("% connect(...}") || call ("% send(...)") || call ("%
recv(...)")): before (){

gnutls_global_init ();

advice gdflow(call ("% connect(...)"™) || call ("% send(...)") || call ("%
recv(...)") || call ("% close(...)")): after (){

gnutls_global_deinit (});
}

advice call ("% connect(...)") : around () : exportParameter (
gnutls_session session, gnutls_certificate_credentials xcred) {
//variables declared
static const int cert_type_priority[3] = { GNUTLS_CRT_X509,
GNUTLS_CRT_OPENPGP, 0};

//initialize TLS session info

gnutls_init (&session, GNUTLS_CLIENT); gnutls_set_default_priority (
session);

gnutls_certificate_type_set_priority (session, cert_type_priority);
gnutls_certificate_allocate_credentials (&xcred);

gnutls_credentials_set (session, GNUTLS_CRD_CERTIFICATE, xcred);

//Connect
tjp —>proceed () ;
if(xtjp->result ()<0) {perror("cannot connect "); exit (1);}

//TLS handshake
gnutls_transport_set_ptr (session, (gnutls_transport_ptr) (x(int x)
tjip->arg (0)));

*»tjp->result () = gnutls_handshake (session);
}
advice call ("% send(...)") : around () : importParameter (
gnutls_session session) {
if (session != NULL) //if the channel is secured, replace the send
by gnutls_send
*(tjp->result ()) = gnutls_record_send(xsession, * (charxx) tip —>

arg (1), =(int «)tjp->arg(2));
else
tjp ->proceed () ;
}
}i

Listing 5.2: Hardening Aspect for Securing Connections using ImportParameter,
ExportParameter, GAFlow and GDFlow
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modifies all the callers only one time and keeps track of the modified nodes. When a caller

is not involved in the transmission path, only the call is modified, and a null value is passed

to the called function.

Algorithm 5.6 Algorithm to Pass a Parameter Between Two Nodes of a Call Graph

f—
—
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function passParamOnBranch(Node origin, Node destination, Parameter param):
if origin = destination then
return success
end if
PathSequence paths «— findPathsBetween(origin, destination)
for all path € paths do
path.remove(origin)
while —path.is Empty() do
currnode — path.tail()
path.remove(currnode)
if -node.signature.isModified() A
—dparameter € currnode.signature() : parameter = param then
node.signature.add Parameter(param)
node.signature.markM odi fied()
modi fyFunctionsCallsTo
(currNode, param)
end if
end while
end for
return success

function modifyFunctionsCallsTo(Node currnode, Parameter param):
for all callier € currnode.getCallers() do
for all call € caller.getCallsTo(node) : —call.modified do
call.parameters.add(param)
call.modi fied = true
end for
end for
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5.5 Summary

We presented in this chapter the shortcomings of AOP for many security hardening con-
cerns and proposed improvements to the current AOP technologies by proposing new point-
cuts and primitives. The two proposed pointcuts, GAFlow and GDFlow, allow one to iden-
tify particular join points in a program’s CFG. They allow us to locate, in a maintenance-
friendly manner, where to inject code for different security hardening activities, such as se-
curity library initialization and deinitialization. The two proposed primitives to AOP weav-
ing capabilities, ExportParameter and ImportParameter, allow parameter passing from
one advice to the another through a program’s context-insensitive call graph and offer a
lightweight solution to the problem of inter-advice parameter passing. We have shown
algorithms that operate on procedural programs’ CFG and call graph to demonstrate the

implementability of the proposals.
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Chapter 6

Case Study: Adding TLS Support to

APT

A first issue is the securing of channels between two communicating parties to avoid eaves-
dropping, tampering with the transmission or session hijacking. In this section, we illustrate
our elaborated solutions for securing the connections of client applications by following the
approach’s methodology and using the proposed SHL language. We added HTTPS support
to APT, an automated package downloader and manager for the Debian Linux distribution.
It is written in C++ and is composed of more than 23,000 source lines of code (statistics
generated using David A. Wheeler’s *'SLOCCount’ and APT version 0.5.28). It obtains
packages via local file storage, FTP, HTTP, etc.

In the sequel, we will briefly present the architecture of APT in Section 6.1. Then, we
will see the hardening plan we specified in Section 6.2 before examining the hardening
pattern used in Section 6.3. Afterwards, in Section 6.4, we see an AspectC++ aspect that
corresponds to the refining step of our approach. We also see non-aspectual refining results
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done manually on the application in Section 6.5. We then see the results of our case study

in Section 6.6. Finally, in Section 6.7, we summarize the findings of this chapter.

6.1 Architecture of APT

APT is organized in a few simple components that allow extensibility. All package acqui-
sition methods are separated from the package management logic and are grouped indi-
vidually as programs. The library (1ibapt) creates the process of the method and com-
municates with it using the created process’ standard input and output. The library sends
acquisition requests to the method, which will parse and process it. The acquisition method
is responsible for writing the downloaded file to disk. The functions of the library can be
used by different software packages, but the source code includes many command-line
tools. In our case, we used the apt —get command-line tool and we created an HTTPS
method based on the existing HTTP method. These explanations are visually summarized

in Figure 6.1.

6.2 Hardening Plan

In Listing 6.1, we include an example of an effective security hardening plan for securing
the connection of the HTTP method. It specifies to add hardening on two files: http.cc
and connect . cc. The language to use is C (since APT is written in C++), and the library
used will be GnuTLS, using SSL in client mode, with default settings. The plan, written in

SHL, is very expressive and yet simple to read.
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Figure 6.1: High-Level Architecture of APT

6.3 Hardening Pattern

Listings 6.2 and 6.3 show the practical pattern specification for securing the connection

of the aforementioned application using GnuTLS. We implemented it without certificate

verification for the sake of simplicity, and forced the socket to be non-blocking for the

connection and handshake in order to avoid connection issues.
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Plan APT_Secure_Connection_Plan
BeginPlan '
PatternName Secure_Connection_Pattern
Parameters
Language=C
API=GNUTLS
Peer=Client
Where http.cc connect.cc
EndPlan

Listing 6.1: Hardening Plan for Adding HTTPS to APT

6.4 Manual Refinement Generating an Aspect

We refined, using AspectC++, the aspect corresponding to the pattern presented in Listing
6.2, an excerpt of which is shown in Listings 6.4 and 6.5. In the Listing, we underlined the
usage of our security hardening APIs, written for this pattern. We re-used the hash table

approach that we described in Chapter 4 in order to perform parameter passing.

6.5 Manual Refinement Modifying the Source Code

We also used a manual approach to refinement, where the source code is modified in com-
pliance with the pattern in Listing 6.2. The results, showed in unified diff format [44], are

in Listing 6.6, Listing 6.7 and Listing 6.8. The files were edited for conciseness.

6.6 Experimental Results

In order to verify the hardened application, we used the Debian apache-ssl package, an
HTTP server that accepts only Secure Socket Layer (SSL) and TLS connections. We popu-

lated the server with a software repository compliant with APT’s requirements, so that APT
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Pattern Secure_Connection_Pattern
Parameters

Language=C

API=GNUTLS

Peer=Client

BeginPattern

Before

GAFlow<FunctionCall <send> || FunctionCall <recv >|I FunctionCall <
connect> |l FunctionCall <close> >

BeginBehavior
gnutls_global_init();

EndBehavior

Before
FunctionCall <connect> (socket,*,x*)
ExportParameter <xcred>
ExportParameter <session>
ExportParameter <socketflags>
BeginBehavior
const int cert_type_priority [3] = { GNUTLS_CRT_X509,
GNUTLS_CRT_OPENPGP, 0};
gnutls_init (session, GNUTLS_CLIENT) ;
gnutls_set_default_priority (session);
gnutls_certificate_type_set_priority (session, cert_type_priority);
gnutls_certificate_allocate_credentials (xcred);:
gnutls_credentials_set (session, GNUTLS_CRD_CERTIFICATE, xcred);
int socketflags = fcntl(socket ,F_ GETFL);
if ((socketflags & O NONBLOCK) != 0) fcntl(socket ,F_SETFL, socketflags
A O_NONBLOCK) ;
EndBehavior

After
FunctionCall <connect> (socket ,*,%)
ImportParameter <session>
ImportParameter <socketflags >
BeginBehavior
gnutls_transport_set_ptr(session, socket);
gnutls_handshake (session);
if ((socketflags & O NONBLOCK) != 0){
fentl (socket ,F_SETFL, socketflags); //restore non—blocking state if
it was like that
gnutls_transport_set_lowat(session ,0); //now make gnutls aware that
we are dealing with non—blocking sockets

}
EndBehavior

Listing 6.2: Hardening Pattern for Securing Connection (part 1)
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Replace
FunctionCall <send> (%,data,datalen)
ImportParameter <session>
BeginBehavior

gnutls_record_send (session, data, datalen);
EndBehavior

Replace
FunctionCall <recv> (*,data,datalen)
ImportParameter <session>
BeginBehavior

gnutls_record_recv (session, data, datalen);
EndBehavior

Before

FunctionCall <close >

ImportParameter <xcred>

ImportParameter <session>

BeginBehavior
gnutls_bye(session , GNUTLS_SHUT RDWR) ;
gnutls_deinit(session);
gnutls_certificate_free_credentials (xcred);

EndBehavior

After

GDFlow<FunctionCall <send> || FunctionCall <recv >I/1 FunctionCall <
connect> || FunctionCall <close> >

BeginBehavior
gnutls_global_deinit () ;

EndBehavior

EndPattern

Listing 6.3: Hardening Pattern for Securing Connection (part 2)
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can connect automatically to the server and download the needed metadata in the reposi-
tory. The resulting hardened software was capable of performing both HTTP and HTTPS
package acquisition, based on the parameters in the configuration file. After deploying our
modified package, we tested successfully its functionality by refreshing APT’s package
database, which forced the software to connect to both our local web server (Apache-ssl)
using HTTPS and remote servers using HTTP to update its list of packages. The experi-
mental results in Figures 6.2 and 6.3 and Listing 6.4 show that the new secured application
is able to connect using both HTTP and HTTPS connections.

We now provide brief explanations of our results. Figure 6.2 shows the packet cap-
ture, obtained using WireShark [39], of the unencrypted HTTP traffic between our version
of APT and its remote package repositories, configured to use a non-secure connection.
The highlighted line shows an HTTP connection to the www . get automatix.com APT
package repository. On the other hand, in Figure 6.3, we see that the connections between
our version of APT and the local web server are using HTTPS. Specifically, the highlighted
line shows TLSv1 application data exchanged in encrypted form. Moreover, we see clearly
that all the information exchanged was encrypted and passed via TLS/SSL. Moreover, Fig-
ure 6.4 shows an extract of Apache’s access log, edited here for conciseness, where the
package metadata was successfully obtained from our local server by the applications.

We must also mention the ease of use for the AOP-based approach. It required us only
a few work days to examine the code, find the injection points, and adjust the pattern to
fit our needs. The solution was modular, clean and effective, and would have been much
shorter had we been more experienced using the Debian build system. On the other hand,

it took us a few more days to add the HTTPS functionality. That solution was, from a
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] Time l Source Destination ! Protocol j Info

25 0.057553 192.168.13: 82.211.81. TCP 3803 > http [SYN] Seq=0 Len=0 MS5=1460 -
0.063259 192.168.13. 216.120.25 TCP 2501 > http [SYN] Seq=0 Len=0 MS55=1460 -
38 0.146826 216.120.25 192.168.13 TCP http > 2501 [SYN, ACK] Seq=0 Ack=1l win=
0.148487 152.168.13: 216. 120 25 TCpP 2501 > http [ACK] seg=1l Ack=1 win=5840 |
. 32, - i . . GET hTTp: /e, geTautomatix. com/ apr/ais
0.171068 216.120.25 192 168 13 TCP http > 2501 [ACK] seq=1 Ack=357 win=370
0.178142 82.211.81.: 192.168.13 TCP http > 3803 [SYN, ACK] seq=0 ack=l win=
43 0,178324 192.168.13; 82.211.81. TCP 3803 > http [ACK] Seq=1 Ack=l win=5840
0
0
0

.183091 192.168.13: 82.211.81. HTTP  GET http://archive. canonical. com/ubuntuy,
.183659 82.211.81.: 192.168.13 TCP http » 3803 [ACK] seg=1l Ack=483 win=361:
.195954 192.168.13; 91.189.88. TCP 3809 > http [SYN] Seq=0 Len=0 M55=1460 -

Figure 6.2: Packet Capture of Unencrypted APT Traffic

I Time I Source i Destination l Protocol l Info

.649554 127.0.

ame 17 (412 bytes on wire, 412 bytes captured)
nernet II, Src: 00:00:00_00:00:00 (00:00:00:00:00:00), Dst: 00:00:00_00
ternet Protocol, srci 127.0.0.1 (127.0.0.1), Dst: 127.0.0.1 (127.0.0.1)
knsmission Control Protocol, Src Port: https (443), Dst Pori: 1878 (187
cure Socket Layer
TLsvl Record Layer: application Data Protoccl: http
TLsvl Record Layer: Application Data Protocol: http

content Type: Application Data (23)

version: TLS 1.0 (0x0301)

Length: 304

eEncrypted Application Data: 5B6300a45C271658F344003A8A900014CES534B55:

01 bb 07 56 40 a6 e0 a3 40 78 92 0b 80 12JENN. .. NN S
<0 00 Ff 82 00 00 01 01 08 0a 00 23 59 5c 00 23 ....... ... . #
17 03 01 00 20 78 a2 a3 b 0 - X

Figure 6.3: Packet Capture of SSL-protected APT Traffic

127.0.0.1 ~ - [04/Apr/2007:11:52:02 -0400] "GET https2://localhost:443/
apt/dists/dapper/main/binary-i386/Release HTTP/1.1" 304 — m"—n
Debian APT-HTTP/1.3" "-"

127.0.0.1 - - [04/Apr/2007:13:53:17 -0400] "GET https2://localhost:443/
apt/dists/dapper/main/binary-i386/Packages.gz HTTP/1.1" 304 — "-w n
Debian APT-HTTP/1.3" "-r

127.0.0.1 - - [04/Apr/2007:13:53:17 -0400] "GET https2://localhost:443/
apt/dists/dapper/main/binary-i386/Release HTTP/1.1" 304 - "_v w
Debian APT-HTTP/1.3" "-v

Figure 6.4: Excerpt of Apache Access Log
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software quality point of view, very poor, and it would have needed further digging into
the code and heavy refactoring in order to offer a clean solution. This experiment suggests
the AOP-based solution is faster, in terms of hours of work, by approximately an order
of magnitude, although more strict experimentation is needed in order to bring conclusive

results on this matter.

6.7 Summary

In this chapter, we saw the architecture of APT, an automated package downloader and
manager for Debian. We wrote an hardening plan to add HTTPS functionality to the pro-
gram, and we used a pattern that supplied this functionality. The experimental results
presented together with the security hardening plans and patterns, which are elaborated us-
ing SHL, explore the efficiency and relevance of our proposition. We see that the manual
refinement can result in both an aspect or directly modified code that share the same func-
tional result. More interesting results should come when AOP tools will support the full
range of primitives integrated in SHL, in which case lightweight aspects will be generated
and that no manual transformation step will be required. Our approach was shown to be
very interesting, as it lowered the level of digging necessary in order to perform the harden-
ing, lowered the time needed to do so, and that the solution was easily expandable to other

hardenings if desired.
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aspect https{

advice execution( "% HttpMethod::Loop()" ) : around () {
//init gnutls 1ib
hardening_initGnuTLSSubsystem (NONE); hardening socketInfoStorageInit ();
tjp —>proceed () ;
//deinit libs
hardening socketInfoStorageDeinit (); hardening deinitGnuTLSSubsystem();
}
advice call ("% connect(...)") : around () {
//variables declared
hardening_sockinfo t socketInfo;
const int cert_type_priority([3] = { GNUTLS_CRT_X509,
GNUTLS_CRT_OPENPGP, 0};
//initialize TLS session info
gnutls_init (&socketInfo.session, GNUTLS_CLIENT);
gnutls_set_default_priority (socketInfo.session);
gnutls_certificate_type_set_priority (socketInfo.session,
cert_type_priority); gnutls_certificate_allocate_credentials (&
socketInfo.xcred);
gnutls_credentials_set (socketInfo.session, GNUTLS_CRD_CERTIFICATE,
socketInfo.xcred);

//check if non-blocking. If so, make blocking until we are done with
the handshake

int socketflags = fcntl(*(int «)tjp->arg(0),F_GETFL);

if ((socketflags & O_NONBLOCK) !'= 0) fcntl (*(int *) tjp ->arg (0),

F_SETFL, socketflags ~ O_NONBLOCK) ;

//Connect + Handshake

tip —>proceed () ;

if («tjp->result() < 0) {

if ((socketflags & O_NONBLOCK) != 0) fecntl(x(int =*)tjp->arg
(0) ,F_SETFL, socketflags);
return;

}

gnutls_transport_set_ptr (socketInfo.session, (gnutls_transport_ptr)
(x»(int *)tjp->arg(0)));

int result = gnutls_handshake (socketInfo.session);
if ((socketflags & O_NONBLOCK) != 0) {

fentl (x (int «) tjp->arg (0) ,F_SETFL, socketflags); //restore non-
blocking state if it was like that
gnutls_transport_set_lowat (socketInfo.session,0); //now make
gnutls aware that we are dealing with non-blocking sockets
}
//Save Information in hash table
socketInfo.isSecure = true; socketInfo.socketDescriptor = x (int =)
tjp —>arg (0);
hardening_storeSocketInfo (* (int =) tjp->arg(0), socketInfo);
»tjp-—>result () = result;

Listing 6.4: Aspect for Adding HTTPS Functionality (Part 1)
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//replacing write() by gnutls record_send() on a secured socket

around () {

advice call ("% write(...)")
= hardening_getSocketInfo (* (int x)

hardening sockinfo t socketInfo
tjp—>arg (0));

if (socketInfo.isSecure)
*(tjp->result ()) = gnutls_record_send(socketInfo.session,

*x) tjp->arg(l), =(int «)tjp->arg(2));

* (char

else
tjp —>proceed () ;

}

//replacing read() by gnutls_record_recv() on a secured socket

advice call ("% read(...)") : around () {
hardening sockinfo_t socketInfo = hardening getSocketInfo (x (int *)

tjip —>arg (0));

if (socketInfo.isSecure)
*(tjp->result ()) = gnutls_record_recv(socketInfo.session,

*x) tjp->arg(l), = (int »)tjp->arg(2));

* (char

else
tjp ->proceed () ;

}

advice call ("% close(...)") : around () {
hardening sockinfo t socketInfo = hardening getSocketInfo (* (int «)

tjip->arg(0)); /+ socket matched by sd+/

if (socketInfo.isSecure ) {
gnutls_bye (socketInfo.session,

GNUTLS_SHUT_RDWR) ;

tjp —>proceed () ;
if (socketInfo.isSecure ) {
gnutls_deinit (socketInfo.session);
gnutls_certificate_ free_credentials (socketInfo.xcred);

hardening_removeSocketInfo (x (int ) tjp->arg(0));
socketInfo.socketDescriptor = 0;

socketInfo.isSecure = false;

Listing 6.5: Aspect for Adding HTTPS Functionality (Part 2)
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--- C:/Documents and Settings/marc-andre/Desktop/apt-0.5.28.6-hardened/methods/http.cc
Thu Apr 19 22:31:00 2007

+++ C:/Documents and Settings/marc-andre/Desktop/apt-0.5.28.6-hardened/methods/
https2_orig_rework.cc Thu Apr 19 22:39:01 2007

@@ -27,21 +26,23 @@

-bool CircleBuf::Read(int Fd)

+bool CircleBuf::Read(int Fd, gnutls_session_t session)

{
// Write the buffer segment

int Res;
+ if (session == NULL) //added to deal with SSL
Res = read(Fd,Buf + (InP%Size),LeftRead());
+ else
+ Res = gnutls_record_recv(session, Buf + (InP%Size),LeftRead());

@@ -98,11 +99,11 @@
~bool CircleBuf::Write(int Fd)
t+bool CircleBuf::Write(int Fd, gnutls_session_t session)
{
@@ -110,14 +111,16 @@
// Write the buffer segment

int Res;
+ if (session == NULL)
Res = write(Fd,Buf + (OutP%Size),LeftWrite());
+ else //for SSL support
+ Res = gnutls_record_send(session,Buf + (OutP%Size),LeftWrite());

@@ -255,23 +259,45 @@
// Connect to the remote server
- if (Connect (Host,Port, "http", 80, ServerFd, TimeOut, Owner) == false)
+ if (Connect (Host, Port, "http", 443, ServerFd, TimeOut, Owner, session, xcred) == false)
return false;
return true;
}
bool ServerState::Close ()
{

+ //make sure that the socket is in blocking mode before closing it

+ int socketflags = fcntl (ServerFd,F_GETFL);

+ if ((socketflags & O_NONBLOCK) != 0){

+ socketflags "= O_NONBLOCK;

+ fentl (ServerFd, F_SETFL, socketflags);

+ }

+ if (session != NULL)

+ gnutls_bye (session, GNUTLS_SHUT_RDWR); //gnutls close sesion
close(ServerFd); //close socket descriptor

+ 1if (session != NULL) {

+ gnutls_deinit (session);

+ gnutls_certificate_free_credentials (xcred);

+ session = NULL;

+ xcred = NULL;

+

ServerFd = -1;
return true;

Listing 6.6: Patch for Adding HTTPS Functionality from http. cc (part 1)
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// ServerState::RunHeaders - Get the headers before the data Jaf{{*/
@@ -685,26 +711,26 @@
// Handle server IO

if (Srv->ServerFd != -1 && FD_ISSET(Srv->ServerFd, &rfds))
{
errno = 0;
- if (Srv->In.Read(Srv->ServerFd) == false)
+ if (Srv->In.Read(Srv->ServerFd, Srv->session) == false)

return ServerDie(Srv);

if (Srv->ServerFd != -1 && FD_ISSET(Srv->ServerFd, &wfds))
{
errno = 0;
- if (Srv->Out.Write(Srv->ServerFd) == false)
+ if (Srv->Out.Write(Srv->ServerFd, Srv->session) == false)

return ServerDie (Srv);

// Send data to the file
if (FileFD != -1 && FD_ISSET(FileFD, &wfds))
- if (Srv->In.Write(FileFD) == false)
+ if (Srv->In.Write(FileFD,NULL) == false)
return _error->Errno("write", _("Error writing to output file"));
}
// Handle commands from APT
if (FD_ISSET(STDIN_FILENO, &érfds)
Q@ -727,12 +755,12 @@

while (Srv->In.WriteSpace{) == true)
{
- if (Srv->In.Write(File->Fd()) == false)
+ if (Srv->In.Write(File->Fd(),NULL) == false)
return _error->Errno("write", ("Error writing to file"));
if (Srv->In.IsLimit () == true)

return true;
}
@@ -752,12 +780,12 @@
// Dump the buffer to the file
if (Srv->State == ServerState::Data)
{
SetNonBlock (File->Fd (), false);

while (Srv->In.WriteSpace() == true)
{
- if (Srv->In.Write(File->Fd()) == false)
+ if (Srv->In.Write(File->Fd(),NULL) == false)
return _error->Errno("write",_ ("Error writing to the file"));
// Done
if (Srv->In.IsLimit() == true)

return true;

@@ -940,10 +968,12 @@
int HttpMethod: :Loop ()
{

signal (SIGTERM, SigTerm); signal (SIGINT,SigTerm);
+ gnutls_global_init();
@@ -1115,20 +1146,24 @@
+ gnutls_global_deinit (};

return 0;

Listing 6.7: Patch for Adding HTTPS Functionality from http. cc (part 2)
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--- C:/Documents and Settings/marc-andre/Desktop/apt-0.5.28.6-hardened/methods/connect.cc
Wed Mar 14 15:59:02 2007

+++ C:/Documents and Settings/marc-andre/Desktop/apt-0.5.28.6-hardened/methods/connectssl?2
.cc Thu Apr 19 10:00:10 2007

@@ -52,3 +62,4 @@

static bool DoConnect (struct addrinfo xAddr, string Host,

- unsigned long TimeOut,int &Fd, pkgAcgMethod *Owner)

+ unsigned long TimeOut, int &Fd,pkgAcgMethod *Owner, gnutls_session_t
&session,

+ gnutls_certificate_credentials &xcred)

{

@@ -83,6 +94,56 @@

SetNonBlock (Fd, true);

+ static const int cert_type_priority[3] = { GNUTLS_CRT_X509, GNUTLS_CRT_OPENPGP,
0}

+ //initialize TLS session info

+ gnutls_init (&session, GNUTLS_CLIENT);

+ gnutls_set_default_priority (session);

+ gnutls_certificate_type_set_priority (session, cert_type_priority);

+ gnutls_certificate_allocate_credentials (&xcred);

+ gnutls_credentials_set (session, GNUTLS_CRD_CERTIFICATE, xcred);

+ int socketflags = fecntl (Fd,F_GETFL);

+ if ((socketflags & O_NONBLOCK) != 0){

+ fentl (Fd, F_SETFL, socketflags ~ O_NONBLOCK);

+ }

if (connect (Fd,Addr->ai_addr,Addr->ai_addrlen) < 0 &&
- errno != EINPROGRESS)

- return _error->Errno("connect™, _("Cannot initiate the connection "

- "to %s:%s (%s)."),Host.c_str(),Service, Name);

+ errno != EINPROGRESS) {

+ if ((socketflags & O_NONBLOCK) != 0){

+ fentl (Fd, F_SETFL, socketflags);

+ }

+ return _error->Errno("connect",_("Cannot initiate the connection to $s:%s (%s).
") ,Host.c_str (), Service,Name);

+ }

+ gnutls_transport_set_ptr (session, (gnutls_transport_ptr) Fd);

+ int result = gnutls_handshake (session);

+ if ((socketflags & O_NONBLOCK) != 0){

+ fentl (Fd, F_SETFL, socketflags);

+ gnutls_transport_set_lowat (session,0); //now make gnutls aware that we are

dealing with non-blocking sockets
+ }
+ if (result < 0) return false;

@@ ~114,3 +175,4 @@
bool Connect (string Host,int Port,const char xService, int DefPort, int &Fd,
- unsigned long TimeOut, pkgAcgMethod *Owner)
+ unsigned long TimeOut, pkgAcgMethod »Owner, gnutls_session_t &session,
+ gnutls_certificate_credentials &xcred)
{
@@ -185,3 +247,3 @@
{

- if (DoConnect (CurHost, Host, TimeOQut, Fd, Owner) == true)
+ if (DoConnect (CurHost, Host, TimeOut,Fd, Owner, session, xcred) == true)

{

Listing 6.8: Patch for Adding HTTPS Functionality from connect .cc
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Chapter 7

Conclusion

This thesis summarizes two years of intense and stimulating learning and reflection on
the ideal manner to achieve this nearly Utopian dream of automatic security hardening.
Many hours of programming were spent trying to find the ideal, minimally-intrusive, way
to harden even simple programs, and to reflect upon many scenarios that could make things
go wrong. Those hours of challenging programming provoked an increased respect for
security professionals and a confirmation that this research is a necessary evolution in the
field. The many hours went into building good algorithms that would facilitate the practical
implementation of our contributions proved to be a challenge in learning, understanding,
expression and conciseness.

Throughout this thesis, we saw that manual security hardening practices performed
by experts suffered from pragmatic limitations that justify the creation of a new approach
which will allow non-expert maintainers improve the security of existing software by mod-
ifying the source. We learnt about the nature of software security and hardening practices,

and saw that AOP could be integrated in a synergic manner with patterns, resulting in
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security hardening patterns. We offered many new contributions to the field of software
security: a classification of hardening practices, an evaluation of security design patterns
and a study of Linux kernel hardening practices.

Building on this first layer of knowledge, we established an approach that would enable
laypersons to perform security hardening by combining security hardening plans, secu-
rity hardening patterns, SHL, and security hardening aspect refinement. This approach
showed a separation of concerns, where security experts would create patterns and devel-
opers would specify hardening plans and refine them into security solutions ready to be
automatically injected in their source code. We also contributed to the theoretical richness
of AOP languages by designing four primitives that enabled parameter passing and relative
pointcut determination.

Once this other layer was established, we were now able to create an AOP-based lan-
guage, SHL, designed to allow the simple and effective specification of hardening patterns
and plans in a language-independent manner. We then used this language to write a harden-
ing plan and a pattern in order to add HTTPS support to APT, the Debian package manager
and downloader. This case study confirmed our intuition that our approach would lower
the level of digging necessary to harden an application, would lower the time required in
order to make the necessary modifications, would enable reuse and would require very little
expertise to accomplish.

We thus demonstrated by both theory and practice that it is possible to leverage AOP-
based patterns in order to systematically apply security hardening solutions without the
need to know the security domain nor the specific APIs used. This approach solves many

problems observed in the world of patterns and security design patterns and paves the way
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for automatic security hardening in the future.

Future work is likely to center around the development of automated refining as a trans-
lation between SHL the target AOP language and a target build system. Research will be
required in order to enrich SHL with the ability to have behavior code be determined ac-
cording to plan parameters. This will mean new primitives such as IF, SWITCH, GET-
PLANPARAMETER, etc. It is also possible that more patterns and APIs will be developed,
which is likely to enrich the world of AOP and the vocabulary in SHL. My colleagues in
the Computer Security Laboratory will also need to consider how to correctly and automat-
ically map between different types of error codes, so that error handling happens smoothly
in situation that would otherwise see incompatibility. As a software security specialist, it
is my hope to see this approach becoming an available system in the future, and that this
system will be used all over the world to drastically transform the state of software security

for the better,
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