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ABSTRACT

With growing concern about the impact of indoor environment quality on office
workers’ well-being and productivity, coupled with the concern over the rising energy
costs for space heating and cooling in office building sector, ventilation principles that
integrate flexible and responsive elements have grown in popularity in office buildings.
Such advanced elements as Underfloor air distribution (UFAD), passive swirl diffusers,
and demand control on ventilation rate pose challenges to system design and operation.

This thesis is concerned with the development and implementation of a practical and
robust optimization scheme, with the goal of aiding the office building designers and
operators to enhance the thermal comfort and indoor air quality (IAQ) without sacrificing
energy costs of ventilation. The path taken is a simulation-based optimization approach
by using computational fluid dynamics (CFD) techniques in conjunction with genetic
algorithm (GA), with the integration of an artificial neural network (ANN) for response
surface approximation (RSA) and for speeding up fitness evaluations inside the GA loop.
It breaks the problem into three sequential steps.

First, the performance of various ventilation systems was predicted and evaluated by
CFD simulations for an assumed set of indoor/outdoor environmental conditions. By
varying the external temperature, the internal heat load, the geometric configuration in
the office, the supply air states, and the placement of air terminals in the CFD model and
examining the consequent effects, the influential parameters significantly affecting the
objectives of interest can be identified and examined. Though CFD is often quoted as a
method of acquiring detail and accuracy, the excessive computational costs retards the
direct conflation of it into the optimization underway. It is then a worthy effort
establishing a low fidelity model for RSA, which can be then used in the place of CFD to
evaluate fitness during optimization search. In the second step, an ANN model was
trained and tested for this purpose by using data obtained from pre-conducted CFD
simulations. When created properly, such a model significantly decreases the computing
time for optimization objectives and constraints calculation without compromising

accuracy. Finally, a GA was applied in the third step to search for the near-optimal



combinations of the controlled variables, using the pre-trained ANN model for fitness
evaluations inside searching loops. The objective function is formulated in a way
attempting to integrate and weight indicators such as predicted mean vote (PMV for
thermal comfort assessment), ventilation effectiveness (&, for IAQ evaluation), and energy
usage by space cooling and a supply fan into one performance index.

The CFD simulations in this study are pre-validated using experimental data from
baseline cases with both UFAD system and ceiling mounted mixing system (MS). Good
agreements between the measured and the predicted air velocity/temperature profiles
provide the justification for the current choice of turbulence model and the present
specification of boundary conditions. It can be observed that the ANN model obtained
and used cuts down the execution time from 17 hours per CFD simulation (thus, per
fitness evaluation in GA originally) to a time scale of a few minutes for the whole GA
search (invoking approximate 5000 fitness evaluations in total). Within a particular office
space with a given indoor pollutant emission rate and internal/external thermal conditions,
the final optimization solution contains a set of near optimal ventilation system
design/operation parameters, including the ventilation system type, diffuser type, number
of diffusers, supply air temperature, amount of supply air, as well as the location of
diffusers and return grilles, which can substantially enhance the thermal comfort level
and IAQ with saving in the energy costs simultaneously. Such optimization results
indicate that the present choices of objective function and optimization approach are able
to result in great improvements in the design and operation of ventilation systems in
office environments.

This thesis also provides a brief discussion regarding the potential advancements of
this work, with the hope to provide a practical tool for aiding decision making during

building system design and operation process.
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CHAPTER 1

INTRODUCTION

1.1 Thermal Comfort, IAQ, and Energy Issues in Office Buildings

Whether one considers the issues related to office workers’ well-being and
productivity, or the issues from an energy and environmental perspective, there is clear
evidence in favor of improving the quality of office built environment.

In North America, approximately two-thirds of employees work in offices and they
typically spend up to 90% of their working hours indoors (EPA, 2001). Fanger (2000)
stated that thermally comfortable micro-environments in office lead to higher employee
productivity, greater satisfaction, and lower operating costs. Compounding this, many
others claim that better indoor air quality (IAQ) in an office could substantially improve
the performance of and lower the risk of sick building syndrome (SBS) among office
workers (e.g., Wargocki et al.,, 2000). More impressively, Fisk (2002) estimated the
benefits from improving the perceived air quality in American offices and reducing
respiratory diseases could potentially result in an annual saving in the range of $6 to $14
billion.

On top of this, statistics demonstrate that the operation of office buildings contributes
substantially to global energy consumption and raises many energy-related environmental
issues. Data from National Resources Canada (2005) show that commercial and
institutional buildings contributed to 13.7% of Canada’s secondary energy use and 13.4%

of the nation’s annual green house gases (GHG) emissions in 2004, and a large portion is



attributed to the office buildings. These numbers reveal that plenty of room remains for
improvement and call for a broader effort to promote energy effective measures during

the design and operating of office buildings.

1.2 The Role of Ventilation System

Ventilation systems satisfy air quality and thermal comfort requirements in office
spaces by delivering conditioned air (return air plus outdoor fresh air). In North America,
most offices are equipped with ceiling supply/return mixing system (MS), although some
may have underfloor air distribution (UFAD) systems. Office space, with its spatial
configurations and airflow/thermal states, is intertwined with ventilation system, resulting
in an integrated indoor climate control system. Under such circumstances, the role that
ventilation systems play in affecting occupants thermal comfort, IAQ, and energy
demand for space conditioning is to be analyzed in detail in the following sections, so as
to place the current work—simulation-based numerical optimization of ventilation
system design and operation—in context.

Thermal comfort and ventilation

Thermal comfort is defined as “the condition of mind that expresses satisfaction with
the thermal environment and it requires subjective evaluation” (ASHRAE Standard 55-
2004). Factors such as unacceptable relative humidity, drastic vertical and horizontal
temperature variation, radiant temperature asymmetry, and excessive draft (unwanted
local cooling caused by excessive air movement at some part of the human body)
(ASHRAE Standard 55-2004), may lead to dissatisfaction. Comfort level is also greatly
affected by the individual’s capability to control the local environment (Bauman et al.,

1995).



As one of the constituent processes (sometimes referred to as the secondary system) of
a heating, ventilation, and air conditioning (HVAC) system, a ventilation system is
primarily responsible for air handling and energy distribution. By maintaining air
temperature, humidity, and air speed at acceptable levels, it guarantees thermal comfort.
Despite the fact that modern ventilation systems strive to offer us the capacity for subtle
indoor climate control, thermal conditions in office spaces are still far from perfect. From
year to year, the international facility management association (IFMA) announces survey
data, identifying the fact that the predominant office occupants’ complaints are “it’s too
hot and too cold, simultaneously” (IFMA, 2003). Thus, plenty room remains to
ventilation system design and operation to enhance thermal comfort in office.

Energy consumption and ventilation

Triggered by the advent of the energy crisis in the early 1970s, energy efficiency of
office buildings has been a major concern. Of the energy bill for office buildings, space
conditioning contributes a major portion. In 2004, approximately 60% of the total energy
consumed by Canadian commercial/institutional buildings was used for space
conditioning (NRCan, 2005).

Generally, two types of building technologies have been adopted by building
designers and operators to reduce energy costs of space conditioning. One is the
minimization of thermal losses by using well insulated and sealed wall assemblies. As a
result, newly constructed and existing buildings are being tightened up. The other
approach is the adoption of high efficiency HVAC systems for cooling/heating
generation and delivery and/or the minimization of ventilation rates. For example, many

building designers and researchers have turned to advanced ventilation systems that



integrate flexible and responsive elements such as UFAD, passive swirl diffusers, and
demand controlled ventilation. Such systems can supply air directly to where it is
required and provide local control, which poses challenges to energy analysis due to the
non-uniform temperature distributions created within the space. Energy simulation
programs generally assume perfectly stirred room air conditions and uniform temperature
distributions, and thus fail to provide the details that are necessary to analyze the energy
performance of these systems. In contrast with this, computational fluid dynamics (CFD)
techniques can effectively capture the temperature variations, which may advance the
approach for energy efficiency evaluation.

Indoor air quality

IAQ in an office is “the physical, chemical, and biological characteristics of indoor air
in non-residential workplaces with no internal industrial processes or operations that can
affect the comfort or health of the occupant” (Nathanson, 1995). According to ASHRAE
Standard 62-2004, a space is deemed to have acceptable IAQ when it has “air in which
there are no known contaminants at harmful concentrations as determined by cognizant
authorities and with which a substantial majority (80% or more) of the people exposed do
not express dissatisfaction”.

Space heating and cooling are relatively straightforward operations, which contrast
with the more complex process involved in ventilation—determining the impacts of
ventilation on IAQ. As previously mentioned, building construction and operation have
shifted towards air-tightness and minimal ventilation rates ever since the energy crisis.
Arguments against large amount of fresh air intake exist due to the additional costs

occurring for filters, heat/cool generation, humidifying/dehumidifying process, and air



distribution. As a result, deterioration in IAQ has raised the problem of SBS, which
reached a peak in the early 1980s in western countries. Some research (Pejtersen et al.,
1999; Wargocki et al., 2000) revealed that the risk of SBS and associated sick—leave rates
were strongly correlated to ventilation rates in office buildings. Milton et al. (2000)
declared that the short-term sick leaves of 3700 employees in 40 office buildings were
critically dependent on supply airflow rate.

In spite of the rising energy usage for ventilation, office worker dissatisfaction with
TAQ is widespread, leading to demands for higher ventilation rates with regard to current
standards (Wargocki et al., 2000). As recommended by ASHRAE Standard 62-2004, the
minimum ventilation rate should be at or above 1.1 L/s/m? to maintain acceptable IAQ in
an office. Some researchers even proposed a minimum fresh air supply flow rate of 17
L/s per person (or 1.7 L/s/m?) to keep the indoor contaminant concentration in the office
within an acceptable level (Rey and Velasco, 2000).

To sum up the above statements, trade-offs always exist between the energy used for
ventilation and the benefits of ventilation to occupants’ comfort and health. Further
investigations of indoor environment in ventilated office spaces should orient to a holistic
evaluation of thermal comfort, IAQ and system energy efficiency. Highly resolved
modeling methods and systematic optimization approach should be developed for
ventilation design and operation by codifying the basic notions and lessons from previous

studies.

1.3 Optimization of Ventilation System Design and Operation in Office

Environment

As previously mentioned, building designers are turning to advanced ventilation
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systems that integrate flexible and responsive elements, which pose challenges to system
design and operation. Although the accomplishments of previous studies on HVAC
system control optimization have been significant, little work has been done to optimize
the design configurations and operational states of ventilation systems in the office
environment by integrating thermal comfort and air quality together with energy
efficiency into the objective function.

The reason is threefold. First of all, in pursuit of improvement in IAQ, thermal
comfort, and ventilation energy efficiency in office spaces, it would be necessary to
acquire detailed information about the indoor airflow, the pollutant dispersion as well as
the temperature variations resulting from various types of ventilated systems. Therefore,
it is necessary to employ a highly resolved approach to the problem domain. Secondly,
the ventilation performance in a particular office is highly dependent on a variety of
geometric and thermal factors, such as ventilation approaches (overhead MS or UFAD),
air supply/return terminal configuration, exterior and interior thermal states, contaminant
source location and emission rate, office equipment and furniture configuration, supply
air conditions, etc. Under this situation, a flexible modeling method has to be used to test
a large design space. In addition, since the objective function of such an optimization
problem is a nonlinear mixed-integer one with multi optimum, care should be taken to
select an optimization algorithm fitting into the context.

In response to these needs, the optimization approach to be developed in the current
study encompasses two essential components. The first one is a high-resolution indoor
airflow and heat transfer investigation so as to capture the distribution of assessment

indices pertaining to thermal comfort, IAQ, and energy usage. The other key component



of current work is the integration of an economical optimization scheme. The simulation-
based optimization approach is to be devised with the ultimate goal of providing practical
aid to conceptual ventilation design and regulation. Also, such a simulation-based method
should offer flexibility in an attempt to predict, evaluate, and compare a wide range of
objectives and constraints.

The subsequent sections set out to address the issues pertinent to these two
components in detail. Based on that, the motivations and scope of current work are

outlined.

1.3.1 Integration of CFD into the present optimization work

Better understanding of indoor air quality, thermal comfort and ventilation system
energy efficiency requires detailed descriptions of airflow, temperature distribution, and
contaminant dispersion in the problem domain. It is evident that the most reliable and
realistic information could be collected through physical experiments. However, some
limitations associated with taking measurements in the office space have impeded the
universal applicability of this approach. The first one is the large amount of labor and
high costs incurred during facility set-up and data recording in either mock-up or real
office spaces. A typical chamber that mimics an office environment usually costs at least
$300,000 US dollars (Yuan et al., 1999). Another drawback lies in the fact that it is
sometimes impractical to retrofit the spatial configurations of office and ventilation
system to represent various scenarios. On top of these, both the operating states of the
ventilation system and the ambient thermal conditions have to be precisely maintained at
a desired constant level to obtain accurate and conclusive results; however, this is not

only expensive but also physically difficult due to the inevitable fluctuations in weather
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and thermal conditions in field studies.

Alternatively, the objective of indoor environment evaluation can be realized by
solving a set of conservation equations in terms of mass, momentum, energy, and
chemical species. Due to expanding computer capabilities, numerical solution of these
conservation equations is possible. This approach is known as the CFD technique. CFD,
by name, is the numerical modeling of physical processes within fluids, including fluid
movement, mass transfer, heat transfer, and chemical propagation.

During the last two decades, CFD methods have been used routinely in research to
predict detailed room airflow patterns, highly resolved temperature distributions, and
pollutant transport indoors, as evidenced by the large number of publications appearing in
journals and conferences. Even in practice and in industry, CFD simulations have gained
momentum in the design stage, as a useful tool aiding building design verification and
comparison. In contrast to physical measurements, the CFD method is relatively
inexpensive, applicable to any existing or conceived scenario, and can provide complete
information. Consequently, the optimization approach was based on the use of CFD
techniques to evaluate various ventilation system design configurations and operation
states, with the hope that the near-optimal solution could be found thereby. The platform
for implementing and demonstrating CFD simulation in this study was the Airpak
package from Fluent Inc. (Airpak, 2002).

Despite the great potential of CFD techniques for indoor environment analysis, some
issues had to be addressed before incorporating CFD into the optimization work. First,
errors and liability concerns associated with CFD predictions are—as with any other

simulation technique—inherent. Modeling and numerical issues such as mathematical



models, boundary/initial conditions, grid topology in computational domain, differencing
scheme (spatial and/or temporal), and solution algorithm will have major influences on
the calculation accuracy. Therefore, for any CFD simulation work, verification and
justification exercises should be conducted through comparisons between the simulated
and the measured data. Second, up to this point, the popular trend in the use of CFD for
building modeling has been airflow prediction and corresponding comfort and air quality
assessment; in contrast, issues regarding heat transfer and energy use have not been
successfully addressed using CFD techniques.

In order to provide a holistic assessment of building performance, energy simulation
tools are on their way towards expanding beyond the original thermal scope and the
single-node room representation and advancing approaches on coupling CFD with
building simulation. By doing so, energy simulation programs have become capable of
capturing the spatial variations of thermal comfort related indices and indoor air
contaminant concentration (Negrdo, 1995; Clarke et al., 1995; Beausoleil-Morrison, 2000;
Bartak et al., 2002; Zhai et al., 2002; Zhai and Chen, 2003, 2005). However, those
coupling methods are still beyond the scope of practical application due to the demanding
requirement on computer resources, the special treatment of the unequal converging time
for different programs, and the special approach for handling the domain interface
discontinuity. In light of this, the conflation of CFD and energy simulation is excluded
from the scope of the current study; instead, a simplified approach is introduced in the
subsequent chapter, which attempts to correlate the energy consumed by ventilation with
the ventilation system operation states and CFD predicted room air conditions.

Once the CFD model has been set up appropriately and the credibility of predicted



objective indices (by CFD simulations) has been justified, optimization algorithms can be
implemented to test possible design configurations and operation states, with the goal of

searching for the best solution.

1.3.2 Optimization algorithms

As pointed out previously, the other important aspect of this simulation-based
optimization work is how to select appropriate optimization algorithms.
Optimization algorithms in general

Optimization is an area of applied mathematics dealing with the analysis and solution
of problems, intended to find the best set of controlled variables X, which can maximize
or minimize the objective function f{X), possibly subject to certain constraints on X.
Constraints might be in the form of equality, inequality, and/or parameter bounds.
Applications of optimization are very diverse, including problems encountered in all
areas of mathematics, applied science, engineering, economics, statistics, and so on.

An optimization algorithm is a numerical method for finding the values of the
optimum solutions. The tremendous progress in computer resources has resulted in the
development of a wide variety of optimization techniques. The determination of an
efficient and accurate algorithm for a particular problem depends not only on the problem
complexity in terms of the number of design parameters and constraints but also on the
nature of the objective function and constraints. For example, a linear problem, in which
both the objective function and the constraints are linear functions, is commonly solved
using the Simplex algorithm; an unconstrained nonlinear problem can be handled by the
steepest descent method or the Newton s method; in the case of a nonlinear problem in

which both the objective function and the constraints are nonlinear functions, it would be
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necessary to employ an iterative solution procedure, and the sequential quadratic
programming (SQP) method fits well into this type of problem; when many minima (or
maxima) are likely in the searching space, global optimization methods such as simulated
annealing (SA) and genetic algorithm (GA) appear to perform better in terms of finding
the true global optimum.

Generally, optimization algorithms can be sorted into two main categories:
conventional gradient-based methods and gradient-free direct search methods.

With the former category of method the objective function is often approximated by
terminated first order or second order Taylor series expansion around an initial guessed
value and then the local gradient information is used to establish a direction of search at
each iteration until the optimum is achieved. A gradient based optimizer is efficient and
accurate in searching for the optimum, but is in general prone to find a local optimum.
Depending on the starting value, it would most likely get trapped at the nearest local
optimal value.

To overcome this shortcoming, many global optimization strategies have been
developed. Essentially, a global optimizer relies on a heuristic method rather than using
derivatives to determine the search direction and step width; therefore, this school of
methods are referred to as gradient-free direct search. When appropriately applied, such
global optimization approaches as SA and GA can explore the search space better than
gradient-based grid search and can avoid local traps; however, these approaches involve
stochastic elements and thus may fail to find the absolute extreme and converge to a near
optimal value instead. GA has been successfully applied to optimization problems where

other classical methods fail, as stated by Goldberg (1989). One major negative attribute
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of global optimization strategies is the relatively large amount of function evaluations
that may slow down the convergence.
Optimization applications in previous building research

A wide variety of optimization approaches have been applied to the building related
research. For example, SQP method has been employed to optimize the energy costs of a
two-zone VAV heating system (House and Smith, 1995) and to optimize the control
scheme for a cooling plant (Sun and Reddy, 2005); some other research employed a
conjugate gradient method to develop optimal HVAC control strategies (Nizet et al.,
1984). These are examples of the applications of gradient-based optimization algorithms;
however, some issues related to such methods have discouraged the adoption of the
gradient-based optimization method in building studies. For one thing, building
phenomena are very often nonlinear mixed-integer ones (that is, with both continuous
and discrete variables), which may lead to discontinuous outputs and thus cause problems
for gradient-based methods (Wetter and Wright, 2003; Lu et al., 2005). Also, gradient-
based methods are prone to find a local optimal, and the convergence speed and the value
of final results are strongly dependent on the initial guess values in most cases (Wang and
Jin, 2000). Due to these drawbacks, gradient-based methods turned out not to be well
suited for building applications.

In contrast, gradient-free methods serve as better candidates for building optimization.
For example, the GenOpt program—a generic optimization engine that can be used in
conjunction with any text file type building energy simulation program—enables a wide
selection of optimization methods, with the most predominant one being the Hooke-

Jeeves generalized pattern search (Wetter, 2004). In addition to this, GA is characterized
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as a gradient-free stochastic global optimization approach and has been successfully
applied to the optimization of building thermal system design (Wright et al., 2002), to
optimize HVAC control (Huang and Lam, 1997; Lu et al., 2005), to minimize chiller
energy costs (Chow et al., 2002), and to improve green building design (Wang et al.,
2005). The following advantages of GA have been described in previous studies: firstly,
GA is capable of dealing with discontinuous variables and multi-modal problems, and is
also able to tolerate noisy objective functions (Wright et al., 2002; Huang and Lam, 1997);
secondly, it can find a sufficiently acceptable solution (near optimal solution) using less
computing time, in comparison to other algorithms such as mixed integer programming
method (Sakamoto et al., 1999), it can thus be incorporated into on-line optimal control;
in addition, since no derivative information is needed during the search process, GA was
also proven to perform well in conjunction with response surface approximation (RSA)
methods (Chow et al.,, 2002; Lu et al., 2005); most importantly, GA is essentially
stochastic, it can thus have better chance to explore the entire design space and reach the
global optimum.

Optimization algorithm in current study

In the current case, the gradient-based approaches turn out not to be qualified
candidates for building the optimizer. For one thing, it is critical to simplify the physical
model before implementing gradient-based methods, so that the correlation between
inputs and outputs can be explicitly formulated as differentiable equation(s). It is then
possible to derive the approximation of the equation (using Taylor series expansion) and
calculate the derivatives. This, however, is obviously not feasible here due to the complex
nature of the current problem. On top of this, discrete variables (such as type of

13



ventilation system and type of diffuser) are imposed upon the CFD model and thus turn
the problem in discussion to a mixed-integer one (which is also multi-modal the most
likely). In light of this, it was reasonable to go with the direct search optimization
strategies rather than with gradient-based methods; otherwise, the optimizer would either
fail to work or easily get trapped by the local optimal value in the neighborhood of the

initial guess point. Accordingly, GA was chosen as the optimization engine hereafter.

1.3.3 Response surface approximation

As a global optimization method, GA is relatively computationally expensive due to
the substantial amount of fitness evaluations involved throughout the search process. In
the current study, the value of the objective function was calculated based upon CFD
estimates. The CFD simulations performed for the indoor domain usually converged in
hours or even days, depending on factors such as the domain size, the nature of the flow
regime, the air terminal geometrical complexity, and the computer capacity. When it
comes to practice (e.g., in-situ design/operation decision making), such a large
computational effort is obviously unattractive. Consequently, CFD is too computationally
expensive to be directly applied into the current optimization search.

Driven by the need to extend the current approach to practical use (that is, providing
prompt suggestions on ventilation design and operation), it was necessary to incorporate
an approximation method into the GA optimization search, which could provide accurate
prediction of system response (in response to the variations in the input variables) at
affordable computing expense. This resulted in a low fidelity model for response surface
approximation (RSA). Such a surrogate model, once built and validated using the inputs

and outputs obtained from the high fidelity model (CFD simulation here), can be then
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used in the place of CFD simulation inside the GA loop to represent the objective
function and thus reduce the computational cost.

Though other RSA strategies (e.g. statistical regression and simple curve-fit) exist,
the artificial neural network (ANN) technique has gained the greatest popularity in
building related studies as a global RSA method. The word ‘global’ denotes that such an
approach can represent the response of the system over the entire design space.

There have been a wide variety of applications of ANN techniques in building related
studies. ANN techniques have been used to approximate and estimate the heating energy
demand in commercial and residential buildings (Kreider and Wang, 1991; Waldemark et
al., 1992; Olofsson et al., 1998; Mihalakakou et al., 2002), the energy cost of a
cooling/heating plant (Curtiss et al., 1993; So et al., 1995; Massie et al., 2004), the overall
building heat loss coefficient (Kreider et al., 1995; Olofsson and Andersson, 2002), the Z-
transfer function coefficients (Chen and Chen, 2000) and thermal capacitance (Bloem,
1998) associated with the building envelope, and the characteristics of a non-linear VAV
fan (Mei and Levermore, 2002). In particular, Chow et al. (2002) implemented an ANN
in conjunction with GA to minimize the fuel consumption of a LiBr absorption chiller
system, by controlling the inlet/exit temperatures in the chilled water and condensing
water loops. It is worth mentioning that the optimization scheme that conflates CFD,
ANN, and GA has also captured the attention of researchers in the area of aerodynamic
studies of turbomachinery blade design and optimization (Mengistu, 2005).

It can be observed that relatively little research has integrated ANN techniques into
the investigation of ventilation systems and indoor environment. One research reported

using feed-forward neural network (FNN) to determine the optimal thermal comfort level
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based on ventilation rate, occupant’s behavior, and indoor air temperature, humidity, and
velocity (Atthajariyakul and Leephakpreeda, 2004).

In the present work, an ANN model was established using the input-output data pairs
generated by pre-conducted CFD simulations, and replacing CFD inside the GA loop to
determine the value of objective indices. As a result, the overall computing time was

significantly decreased and more affordable.

1.4 Research Objectives and Thesis Outline

The present research was targeted at the development of a robust and efficient
simulation-based optimization method that could aid ventilation system design and
operation for office space. Given the spatial configurations and thermal conditions in a
particular office, the method searches for near optimal options and values of such
controlled parameters as type of ventilation principle, diffuser type, number of diffusers
per office, supply air temperature, amount of supply air, and placement of diffusers and
return grilles, so as to achieve satisfactory thermal comfort and IAQ with minimum
energy cost. The path taken to realize this objective can be broken down to the following
key points:

e From the design and operation parameters of the ventilation system, extract
those influential ones that have great impacts on the office environment. Such
influential parameters are to be treated as the independent variables. Also, select
appropriate indicators to evaluate comfort, IAQ, and ventilation energy costs in
the context of office space, and specify the objective function for optimization
accordingly.

¢ Build a reliable CFD model and perform extensive simulations based on the
16



validated baseline cases, in an attempt to accurately capture the impacts of all
influential parameters on the built environment in a particular ventilated office
space.

e Develop and test an ANN model to mimic the CFD module, and then
incorporate it into the optimization search to provide fast and low order
approximations of the objective metrics.

¢ Implement a GA to search for the best combination of controlled variables for
an office space with specific outdoor temperature, interior heat load, and indoor
contaminant emission rate, so as to provide satisfactory thermal comfort level
and IAQ without sacrificing energy efficiency.

The framework of the numerical optimization scheme to be developed is briefly
outlined in Chapter 1. Chapter 2 provides the technical basis for understanding the
numerical details involved in implementing-—the ANN technique for RSA and GA as the
optimization engine. It is clear that an understanding regarding the mechanism of
ventilation systems and the method used to quantitatively evaluate ventilation
performance is necessary before implementing CFD simulation; therefore, Chapter 3
provides an overall introduction to the alternate ventilation principles commonly found in
office buildings and also extracts the commonly treated influential parameters and
objective indices from the literature. The objectives of the current study could only be
realized by reliable CFD modeling of thermal and airflow phenomena, while the
simulation results could only be justified by validating CFD predictions against data
derived from experiments with baseline cases. Verification exercises were conducted and

Chapter 4 presents CFD simulation results in comparison with data collected in mock-up
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offices located in controlled environment chambers.

The training and testing of an ANN model for system response estimation are then
demonstrated in Chapter 5. These are achievable when given the input-output data pairs
from CFD simulations. Those influential parameters selected in Chapter 3 are treated as
the input variables, whereas those commonly used objective indices related to occupant
comfort, IAQ, and energy costs are specified as the model outputs. Due to the large
number of influential variables (which meant a large number of CFD cases had to be
explored), the issue regarding employing Latin Hypercube sampling (LHS) method to
define design space is also addressed in Chapter 5. Furthermore, Chapter 5 presents the
optimization results from GA, which incorporated the CFD-based ANN for fitness
evaluation. Emphasis was placed on how to prescribe the objective function—by
weighting and aggregating the different indicators into one performance index—and how
to adapt the ventilation system design and operation parameters in response to variances
in office conditions in an attempt to minimize the objective function. Finally, conclusions
and recommendations for future work are summarized in Chapter 6.

In addition, CFD’s essential concepts pertinent to modeling indoor airflow and heat
transfer are described in Appendix A, with emphasis being placed upon the approaches
adopted in the current CFD simulations. It is also worth mentioning that the validity and
effectiveness of this ANN-based GA optimization method is demonstrated in Appendix B,
through an example searching for the global minimum of a classic multi-modal

optimization problem—the Rosenbrock function.
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CHAPTER 2

NUMERICAL OPTIMIZATION

2.1 Introduction

As can be seen from Chapter 1, the two key elements of this study were indoor
environmental modeling with CFD and numerical optimization. Essential issues pertinent
to the former are to be treated later, while with respect to the latter, the numerical
methods implemented in this study for computing the objective function and searching
the optimum solution are introduced in this chapter, for the purpose of building the
overall framework of this research.

Chapter 1 described GA as a suitable optimization approach in the context of building
related studies, which can often be characterized as multi-modal problems with mixed-
integer variables. Section 2.2 substantiates the suitability of GA for solving this type of
problem by presenting the pertinent aspects of the conceptual basis of GA. Following this,
Section 2.3 briefly covers the modeling and numerical elements involved in CFD
simulation for indoor environment analysis.

Chapter 1 also raised the problem of the excessive computational expense of GA
caused by a large number of fitness evaluations during the optimization search process.
This is also partially due to the high computational costs associated with CFD simulation
(which may take hours to reach convergence). It would be critical to integrate a new
element into the context of current optimization method, so as to address this deficiency
and move the optimization method forward. In response to this, ANN is introduced in

Chapter 1 as a method for response surface approximation (RSA), with the intention of
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reducing the computing time for objective function calculation without compromising
accuracy. In the subsequent work, an ANN model was established with data generated by
CFD simulations, so it could be used in place of CFD for fitness evaluation inside the GA
loops. To do this, an understanding of ANN’s theoretical basis was necessary. Section 2.4
describes the pertinent elements of ANN, including network topology, network training
and calibration, improving the network’s generalization, and training data preparation.
Accordingly, the numerical optimization scheme is outlined in Section 2.5. Finally, a

brief summary is provided in Section 2.6.

2.2 Genetic Algorithm (GA)

2.2.1 General introduction to GA

The Genetic Algorithm (GA) belongs to a class of probabilistic search algorithms,
which combines elements of both direct and stochastic searches. The essence of this
method is to strike a balance between exploration and exploitation.

GA maintains and operates on a set of potential solutions, called a population of
individuals. By applying Darwinian principles of natural selection and implementing
genetic operations, such as reproduction, crossover, and mutation, GA transforms a
random initial population that is represented by a group of mathematical objects (each
object has a corresponding fitness value) into a new population of offspring (Holland,
1975; Goldberg, 1989). Fitness evaluations and comparisons are then performed in the
pool of offspring, based on which GA randomly selects individuals from the up-to-date
population (parents plus offspring) to put in the mating pool as new parents. Then, GA re-
applies the genetic operators to reproduce the next generation of children. By doing so
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successively, GA modifies and updates a population of individuals and meanwhile keeps
the size of the population unchanged. Such reproduction and fitness evaluation will
continue until the termination criteria are satisfied (e.g., the maximum number of
generations is reached or the best individual is found). During this searching process, the
population "evolves" towards a near-optimal solution, as described by the natural
selection rule “survival of the fittest”. The individual achieving in the minimum (or
maximum) value of objective function (corresponding to the highest fitness) is
determined to be the final near optimal solution.

GA is suitable for general purpose optimization and has been successfully applied to a
broad range of problems, especially to those problems where the objective function is

discontinuous, non-differentiable, or highly nonlinear.

2.2.2 Key terminologies in GA

Before turning our attention to the implementation of GA, key issues pertinent to this
numerical optimization algorithm are to be addressed, which include the population size,
the variable representation, the variation operators, as well as the selection and
replacement mechanism.

Population size

The population is an array of candidate solutions in one generation; equally, the
number of candidates composing the population is the population size. Though large
population size would necessarily result in excessive fitness evaluation and lead to high
computation costs, it is still important to maintain sufficient candidates to ensure
population diversity. When the population size is too small, it will increase the likelihood

of the gene pool being dominated by some better performers, which would inevitably
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narrow down the search space. When facing such a trade-off, the population size was set
to 50 in this study, which worked reasonably well.
Representation

A candidate solution to a particular problem contains a group of controlled variables;
a pool of candidate solutions composes the search space for GA. Generally, the
representation of candidate solution inside a GA program can be binary code (as shown
in Figure 2.1a), integer code, or real-valued (floating point) type (as shown in Figure
2.1b). In the current study, the majority of control variables complying with continuous
distributions (as can be seen from Chapter 3) and the candidate solutions are encoded
simply with a string of real numbers. This real-valued representation could also be
considered as a cluster of genes. The fitness value of an individual is the value of the

objective fun~tion resulting from this individual.

b|x1|x2lx3|x4J

Figure 2.1: Binary (a) and real-valued (b) representation

Genetic operators

GA employs a suite of genetic operators to maintain a balance between exploration
and exploitation. The evolutionary search process starts from an initial random
population, which is then subjected to genetic operators including: reproduction,
crossover, and mutation based on fitness evaluation. Accordingly, a new generation is
produced. Brief descriptions of the basic genetic operators follow.
1. Reproduction (Elitism)

Candidates are selected for reproduction according to their fitness. The best
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performers in the old generation make a few copies to ensure the survival of the fittest.
By doing so, the best solution found so far would remain in the next generation. In this
study, two individuals with the highest fitness values in the present generation were
guaranteed to survive to the next generation; in other words, the elite count is set to 2.
2. Crossover

The crossover operator, sometimes referred to as recombination, combines two
parents to form children for the next generation. This process combined with mutation,
which is to be introduced next, plays a very important role in creating population
diversity and thus is essential to the exploratory nature of GA. As controlled by crossover
rate P,, crossover operators are usually applied probabilistically to two individuals that
are randomly taken from the mating pool formed by parents. The purpose of doing so lies
in the fact that, if the offspring take the best characteristics of both the parents they will
be more likely to thrive. A scattered crossover function was adopted in this work, which
breaks the representation of each parent into two or more segments of contiguous genes,
and the function randomly picks alternative segments from the two parents to create the
children (as shown in Figure 2.2). As a result, two new individuals are produced, who
might inherit the desired characteristics from the parents and become superior children

(though that can not be guaranteed). The crossover rate was set to 0.8.

I
s
&
B
I

Figure 2.2: Scattered crossover (n-point crossover)
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3. Mutation

The mutation operator introduces random changes to individual parents to form
children. The mutation operator alters one or more genes in a chromosome of an
individual. The mutation operator is targeted at producing new gene values and
maintaining the diversity of the gene pool; as a result, the optimization search would
possibly converge towards individuals with higher fitness than those presently exist.
Because a real-valued representation was used, the mutation operation changed the value
of each gene (as seen in Figure 2.3) guided by a mutation rate—~P,,. The new value of the
gene was uniformly and randomly drawn between the lower and upper bound of the
corresponding variable, known as a mutation-adapt-feasible function (MATLAB, 2006).
The mutation operation was performed to comply with a predefined probability P,, the

value of which was set to 0.2 in the present study.

— X
X1 X2 X3 X4 - X1 X2 X3 4

where x; and x'; € [LowerBound;, UpperBound;]

Figure 2.3: Uniform adapt-feasible mutation

Parent selection

In this work, parents for creating the next generation were chosen from individuals in
the current generation based on their scaled fitness values. It can be considered a fitness-
proportional selection, which means that the number of individuals copied into the
mating poor for crossover and mutation was proportional to the individuals’ fitness. The
selection method is named stochastic uniform. Specifically, this method lays out a line,

and each individual from the generation corresponds to a portion of the line (Matlab,
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2006); the length of the portion (corresponding to an individual) is proportional to the
individual’s fitness value. When performing the selection, the algorithm moves along the
line at an even pace; at each step, it selects a candidate for crossover or mutation from the
line section it lands on.
Survivor selection

It would be necessary to invoke a survivor selection process when the population size
has to be maintained at constant level. For instance, the population size is fixed at 50 in
this study; therefore, after reproduction, crossover, and mutation, survivor selection is
performed to pick 50 high rank individuals from the up-to-date parents and offspring to
enter the next generation. In other words, the fitness-based replacement selection
mechanism is used for survivor selection.
Stopping criteria

Several criteria are set to determine when to terminate the optimization search,
provided the optimizer is not stopped manually. When either of the following two
conditions occurred, the algorithm stopped searching: 100 generations were reached or

successive stall generations (generations with no improvement in the best fitness)

exceeded 50.

2.2.3 Implementation of GA in the present study

To sum up the above statements, the following points outline the procedure involved
in implementing GA in the present study, and the platform for implementing GA was
MATLAB 7.1.

1. The algorithm began with random initialization of the population (50 individuals).

2. The algorithm then successively created new populations. At each step, the algorithm
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used the candidates from the current generation to produce the next generation. In order
to do this, the algorithm performed the following steps:

2.1 Scored the individuals in the current generation by evaluating their fitness (based
on the calculated values of objective function), and scaled these fitness scores based
on respective ranks to convert them into a consistent range;

2.2 Automatically, the two best performers in the current population that had the
highest fitness were passed to the next generation as elites;

2.3 Selected parents based on their fitness, and produced children from the parents.

Children were generated either by making random changes to a single parent—
mutation, or by combining the gene segments of two parents—crossover.

2.4 Replaced the current generation of population with the parents and offspring
possessing higher fitness, so as to form the next generation (with 50 individuals).

3. If no stopping criterion was satisfied, repeat Step 2 until—

4. The algorithm terminated when either of the stopping criteria was satisfied.

2.3 Office Indoor Environment Analysis Using CFD

CFD was not proposed exclusively for modeling indoor airflow, but as a universal
numerical simulation technique instead. It has gained popularity in a wide variety of
engineering areas, such as aerodynamics, hydrodynamics, design of gas turbine and
combustion equipment, and environmental engineering, etc. Nielsen (1974) implemented
a two-dimensional modeling of room airflow driven by a diffuser, which was marked the
first application of the CFD technique to the indoor domain. Essentially, CFD employs
particular numerical techniques to solve a set of nonlinear partial differential equations—

conservation of mass, momentum, energy, and chemical species. By doing so, it enables
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the description of fluid flow and related physical phenomena.

As previously mentioned modeling and numerical errors are inherent with CFD
studies. Accuracy improvement and quality control of CFD simulations in indoor
environment investigations requires an understanding of the primary sources of error.
Factors that may significantly affect the precision of CFD calculations include the
turbulence modeling method employed, the thermal and airflow boundary conditions
prescribed, the differencing scheme used to treat the terms in the governing equations, the
mesh quality (size and topology of computational grid), and the reliability of the solution
algorithm.

The simulation results presented in subsequent chapters presume general familiarity
with these modeling and numerical details; therefore, details of CFD are described in

Appendix A.

2.4 Artificial Neural Networks (ANN)

2.4.1 ANN for RSA in the current study

It is straightforward that the reliability of the optimization result is critically dependent
on two key elements: the robustness of the method used for optimization and the
accuracy and efficiency of the model devised to predict objective indices. As previously
discussed, the GA optimization approach was well suited for the problem under
consideration, while validated CFD simulations built the foundation for optimization by
providing credible predictions for indoor airflow and heat transfer (this is also discussed
in detail in subsequent chapters).

However, Chapter 1 raised one problem associated with the direct integration of CFD
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simulation into the context of GA. The obstruction was the computing time. It typically
takes 17 to 20 hours of CPU time on a Pentium IV desktop computer (dual-processor)
before the full-scale office CFD simulation reached convergence. Meanwhile, with the
GA set up used, the population size was 50 and the number of generation limit was 100;
accordingly, 5000 runs of the CFD program could have been required for a GA search. It
was thus impractical to directly invoke CFD simulation inside the optimization loop for
fitness evaluation.

One possible remedy to this problem was to establish a relatively inexpensive
intermediate model for RSA. ANN techniques were employed in current study to provide
low fidelity RSAs of the objective indices. In order to facilitate further optimization,
input-output data sets extracted from CFD simulations were used to pre-train and test the
ANN model. The platform for implementing and demonstrating the ANN model was
MATLAB 7.1. Once the ANN model was validated against the results obtained from the
high fidelity model (CFD in this case), it can be used in place of CFD inside GA loops to
provide approximation of the objective indices and perform the fitness evaluation. As a
result, the number of objective function evaluations and computing time was no longer

the bottleneck in the optimization scheme.

2.4.2 Conceptual basis of ANN techniques

ANN technique is a RSA method that is based on some organizational principles
resembling those of the human brain. Just as human brains learn from experience, ANN
learns from data sets fed into it. An ANN model for response prediction can be
established by training it with representative collections of data, which include both input

and output variables for a specific system. Once validated with additional data from the
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design space, the model may be considered a reliable information processing tool, which
can accurately map the input information to the output information. The word “map”
denotes the ability of ANN to learn, recall, and generalize from the training data sets.
ANN techniques, with their remarkable ability to derive meaning from complicated and
imprecise data, can be used to extract patterns and detect trends that are too complex to
be recognized by either hand calculation or other computer techniques (Haykin, 1994).

Generally, ANN is composed of multiple layers of processing elements, known as
neurons or perceptrons, which mimic the biological neurons of a human brain but work in
a much simpler way. Each neuron is connected to its neighbors by different weights, and
the magnitude of individual weight represents the strength of this connection. The
weights are adjusted adaptively during the ANN training process, until finally the overall
network can generate desired outputs when given the input information. Until then, the
training of network is accomplished. The learning and generalizing ability of the network
obtained is critically dependent upon its architecture, the quality of training data, and the
training methods as well. These issues are briefly outlined next.
Network architectures

The architecture of ANN is one of the key factors ensuring the success of such a
predictor. The term “architecture” includes the number of the layers, the number of
neurons in each layer, the topology of the network, and the form of the transform
functions (King, 1999).

As the basic functional elements in the human brain, biological neurons enable us to
learn, recall, apply, and generalize our knowledge based on our previous experience. A

typical neuron in our brain may be linked to 2x10° other neurons. The capacity of our
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brain highly depends on the number of these elements and the complicacy of the linkage
between them (Hassoun, 1995). Such biological neurons add the signals from other
sources, perform certain nonlinear manipulation, and then pass the output as feedback to

other functional cells. A Simplified sketch of a typical biological neuron is shown in

Figure 2.4.
Call body
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Figure 2.4: A typical biological neuron
Available:

http://www.doc.ic.ac.uk/~nd/surprise_96/journal/vold/cs11/report.html#Introduction%20t0%20neural%20n
etworks

Functionally, the basic component of an ANN is a simplified version of a biological

neuron. The conceptual operations performed in an artificial neuron are depicted in

Figure 2.5.
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f—transfer function, y—output.

Figure 2.5: A typical processing artificial neuron
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Inputs to each neuron from various sources are multiplied by a connection weight and
these products are summed. The summation is then sent to a transfer function to calculate

outputs from this neuron.

I =Z(Wi'xi) (2-1)

where i denotes the number of neurons in the previous layer that are connected to the
current neuron, / is the summation of weighted input information.
The output from a neuron is then calculated using the transfer function,
y=r(0) (2-2)
Obviously, the behavior of an ANN would be significantly affected by the input-
output transfer function that is assigned to each unit. Though other non-linear transfer
functions are available (e.g. log-sigmoid function and radial basis function), a hyperbolic
tangent sigmoid function was selected in this study as the transfer function for the
intermediate layer(s) (MATLAB, 2006),

FN)=—25-1 (2-3)

1+

while a linear transfer function was assigned to all the neurons in the output layer,
f()=al (2-4)
where a is the coefficient in the linear transfer function.

Individual neurons are then assembled into layers; these layers are connected by
weights and can thus be integrated into a network. It has been confirmed by previous
applications of ANN that feed-forward neural networks with at least one hidden layer and
sufficient hidden neurons can successfully approximate nonlinear functions of practical

interest. In feed-forward ANNs, function signals travel from input to output (one way
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only), and there are no feedback loops for function signals.

A multilayer feed-forward ANN was used in this study (see Figure 2.6 for the
network structure). The current network consists of three or more layers of units: 1) a
layer of “input” units, the activity of which represents the raw information fed into the
network; 2) one or more than one layers of “hidden” units, and the activity of each hidden
unit can be determined by the outputs from all the units in the previous layer, the weights
corresponding to the connections between the previous layer and the current layer units,
and the transfer function employed; 3) a layer of “output” units, and each unit
corresponds to one of the system responses.

Trade-off always exists between the network accuracy and structural complexity (and
thus the computing/training time). The most appropriate numbers of the hidden layers
and the nodes in a hidden layer is case specific and can only be determined by
exploratory calculations. The selection of input and output variables from the literature
will be put forward in Chapter 3; the specification of these variables is left open

temporally.

Tinner-gnrfhcc
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Emission rate “cooling
Input layer Hidden layer (s)  Output layer

Figure 2.6: Topology of the feed-forward ANN in this study
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ANN training

Analogous to the learning process of the human brain, an ANN learns from data
received. This learning process is also referred to as “training”. A trained ANN model can
be thought of as an "expert" at analyzing the information that has been given to it. This
expert can then be used to provide predictions when provided new input data of interest.
During the training process, the connection weights inside the ANN are adapted under the
guidance of certain algorithms, with the intention of enabling the network to map the
target outputs to the inputs. The purpose of training is to determine the optimal weights
which can minimize the error between the network’s outputs and desired outputs.
Generally, there are two categories of training methods: unsupervised training and
supervised training (Haykin, 1994).

With unsupervised training, the network only learns from available input data without
knowing the outputs. Unsupervised networks can be used, for example, to identify
regularities and correlations in a cluster of input data (Haykin, 1994). This contrasts with
the case of supervised training, where both the input and output data pairs are fed into the
network; obviously, the supervised training fits the data pattern of this study and
unsupervised training is excluded from the discussion hereafter.

Based on the available data, supervised training can be performed by certain
algorithms, such as “perception” (Rosenblatt, 1961) and “back propagation” (Rumelhart
et al., 1986). The back propagation algorithm has proven to be an efficient training
algorithm for multilayer feed-forward ANN subjected to the supervised learning principle.
The back propagation algorithm has also been extensively applied because it is well

documented and thus convenient for implementation. Figure 2.7 depicts a portion of a
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multilayer feed-forward ANN trained with a back propagation algorithm.

— ™ Function signal

iy Error signal

Figure 2.7: Two basic signal flows: forward propagation of function signals and

back propagation of error signals

With this training scheme, the sum of squared error between the ANN outputs and
target outputs is computed, and then the errors (as denoted by dashed arrows) are
propagated backward to neurons in previous layers until they reach the input layer.
Suppose the inputs to neuron j in the output layer at iteration n (corresponding to the nth

training data set) are given by

x,(n) =3, (n)y,()) (2-5)

where i denotes the neurons from the previous layer, y; is the output from a neuron in the
previous layer, ¥ is the weight connecting that neuron (neuron i) with neuron j in the

output layer. Then, the values of outputs can be determined using the transfer function,

v, ()= 1(x, ()= s [Z(W,-,-(n)y,-(n))) 2-6)

The error signal associated with output neuron ;j can be calculated,
e;(n)=y,(n)-y,(n) 2-7)
where y;p is the desired output value for neuron j, which is supplied by the user. The sum

of squared errors (SSE) is obtained by adding the squared errors over all neurons in the

output layer,

34



SSE(n)="e%(n) (2-8)

j
Based on this, the derivatives of SSE with respect to weights can be calculated and
used to adjust each weight. The correction term 4W(n), which is defined by the delta
rule (Haykin, 1994), is used to adapt W;(n),

OSSE(n)
oW, (n)

Yy

AW, (n) =~ (2-9)

where 7 is the learning rate used to moderate the training pace, and # can be set to a value
between 0 and 1, depending on the gradient of the error surface.

An algorithm with a too small learning rate will take a long time to converge; whereas
a learning rate that is too large may result in a training process bouncing around the
solution surface and thus ending up with divergence. A small learning rate is desirable in
the case of steep error surface, and vice versa. When no detailed information is available
on the shape of the error surface, it is reasonable to employ a large learning rate to speed
up the training convergence, provided no oscillation results. An effective way to adjust
the learning rate to prevent divergence is: determining the change in weights by adding a
momentum term that corresponds to the weight change in the last epoch (corresponding
to the (n-1)th training data set).

dSSE(n)
ow,,(n)

y

AW, (n)=-n

y

+ AW, (n—1) (2-10)

where a is a constant representing the influence caused by the weight correction in the
previous epoch.
Finally, the weights connecting the output layer neurons and neurons in the second

last layer can be updated by
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Wzy,new (n) = pVij,old (”) + AWij (") (2-11)

The back propagation of the errors is performed throughout the ANN until the
weights connecting the input layer neurons have been updated, and then one epoch is
finished. This process is repeated until the error signal is driven to approaching a
sufficiently small number.
Generalization capability of ANN

Essentially, back propagation training is a process of encoding the system input-
output correlation. A well trained network has memorized the data sets fed into it, but its
generalization capability remains to be justified. That is, the network should also be able
to foresee and extend to new situations. When this fails, the problem of over-fitting
occurs. Two methods are generally used in order to overcome this problem, one is early
stopping and the other one is regularization (MATLAB, 2006), and both of them were
adopted and implemented in the current study.
1. Early stopping

With the early stopping method, the available data sets are usually randomly
partitioned into three groups. The primary subset is the training set, which is used for
computing the gradient so as to update the network weights. The second subset is the
validation set (typically about 20 percent of the available data). The errors associated
with the validation set are monitored during the training process, and a rise in the
validation set error indicates the occurrence of over-fitting. When the validation error
increases continuously for a certain number of iterations, the training is stopped early.
The third subset is used for network test (also about 20 percent of the data available). The

errors calculated from the test data are compared to the validation error during the
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training. The errors associated with the test data are usually used as a further check on the
network’s generalization capability, but do not have any impact on the training process.
The early stopping training algorithm is implemented here in conjunction with a
Levenberg-Marquardt back-propagation training function.

The flow chart of the ANN training, validation, and testing process with early

stopping, which was devised and implemented in this study, is presented in Figure 2.8.
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Figure 2.8: Flow chart for early stopping ANN training

2. Regularization
The regularization method involves adapting the error calculation function in

response to the evolving error signals. The error calculation function is normally

38



prescribed as the sum of error squares over the training data set.

Error = SSE(n) = Z e’ (n) (2-12)

It is possible to improve the generalization of the network if such a function is
modified by adding a term that consists of the mean value of summed squares of the up-

to-date network weights.
Error' = BSSE(n)+(1- BMSW = eX(n)+ (1~ B)>_W,*(n) (2-13)

B is the performance ratio, the value of which is left open to be determined by the user.

It is desirable to specify the optimal regularization parameters in an automated way.
One approach to address this is Bayesian regularization (MacKay, 1992), in which the
weights and biases of the network are assumed to be random variables complying with
certain distributions. These parameters can be estimated using statistical techniques. It is
stated in MATLAB (2006) that Bayesian regularization generally provides better
generalization performance than early stopping. The reason is that Bayesian
regularization uses all of the data rather than separating data into subsets for training,
validation, and test. This becomes especially attractive when the size of the data set is not

very large.

2.5 Framework of Numerical Optimization in This Study

The simulation-based optimization approach developed here breaks the problem
under consideration into three sequential steps:
1. By varying the influential variables in the pre-validated template CFD model, perform

sufficient CFD simulations to predict the system performance assessment indices in
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response to the variations in the input data. This part of work can be considered as ANN
training/test data preparation.

2. By exploiting the input/output data pairs obtained in the previous step, train and test an
ANN model for quick response approximation. Such a model can be used in the place of
CFD simulation inside the GA search loops for the purpose of computing the value of the
objective function with less computational cost and comparable accuracy.

3. Apply GA to the established ANN model to search for the near-optimal set of
controlled variables (parameters representing ventilation system design configurations
and operational states) in an office space with particular geometrical configuration and
thermal conditions, with the goal of achieving satisfactory comfort and IAQ without
sacrificing the energy efficiency of the ventilation systems.

Of these three components, the first step can be carried out independently beforehand;
while the ANN and GA are integrated into one numerical scheme to facilitate automated
optimization search. Afterwards, the near-optimal combination of controlled variables
obtained in step 3 is to be supplied to the CFD program to perform a verification case
study; the simulation results can be used to illustrate the optimization result’s
preponderance and the accuracy of the low fidelity ANN model and thus can justify the
validity of the optimization approach.

Figure 2.9 briefly outlines the implementation plan of the above numerical
optimization methodology. One may notice from this flow chart that the topic of Latin
hypercube sampling (LHS) is left open temporally, which will be addressed in Chapter 5

together with ANN training results.
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It is worth noting that such a simulation-based optimization scheme was not devised
from scratch in the present work. Mengistu (2005) adopted a CFD simulation-based GA
optimization approach to improve the turbomachinery blade shape, with the goal of
maximizing the adiabatic efficiency and pressure ratio of the turbine. He also employed
ANN techniques for RSA to cut down the computational expenses required by fitness
evaluation. In addition to this, Chow et al. (2002) implemented an ANN-based GA
approach to find the optimal set of parameters (regarding the mass flow rate and
temperature in the chilled water and condensed water loops), to minimize the fuel and
electricity consumed by an absorption chiller system. These studies have confirmed that
numerical optimization combining ANN and GA could be an effective approach without
explicitly formulating the objective function as ordinary mathematic equations and

calculating the derivatives to guide the optimization engine.
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2.6 Closing Remarks

Chapter 1 proposed the CFD-ANN-GA optimization approach for aiding the design
and operation of office ventilation systems, while this chapter substantiated the
applicability of GA and ANN as an optimization engine and for RSA by providing their
respective conceptual basis.

Embedded key elements in GA including the population size, the mathematical
representation of candidate solutions, the genetic operators, the method used for parents
and survival selection, and the stopping criteria were described in Section 2.2. Also, the
following topics regarding ANN techniques were addressed in detail in Section 2.4: how
an artificial neuron handles the information given to it; what is the commonest ANN
architecture in practical applications; how to train a network with an error back
propagation mechanism; how to improve the generalization ability of an ANN model by
integrating early stopping or regularization techniques.

After the numerical issues pertinent to GA and ANN were addressed, Section 2.5
presented the framework of the numerical optimization scheme that was used. As can be
seen, the element of CFD, though a determinant factor affecting the efficiency, the
accuracy, and the stability of the overall optimizer, has yet to be described. The

conceptual basis of CFD is introduced in the Appendix A.
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CHAPTER 3

EVALUATION OF THE OFFICE BUILT ENVIRONMENT

3.1 Introduction

Increasing awareness of the impacts of thermal comfort and IAQ on office workers’
health and productivity has stimulated the evolution of ventilation systems in office
buildings. Extensive studies, both experimental and numerical, have been—and continue
to be—conducted in office-type spaces to examine and advance the performance of
ventilation systems.

Chapter 1 claimed that CFD simulations of ventilated offices would provide a holistic
evaluation of thermal comfort, IAQ and system energy efficiency. Accurate quantitative
evaluation of the indoor environment can be only realized by considering reasonable
independent variables and by selecting appropriate criteria to assess the objectives of
interest. In response to this, the current chapter sets out to address such topics as: how the
commonly employed ventilation systems affect the office environment; what criteria are
suitable for the evaluation of comfort, air quality, and ventilation energy costs; and what
the influential parameters are, in terms of representing the office environmental
conditions and ventilation system design configurations and operating states.

Section 3.2 provides conceptual descriptions of alternate ventilation principles that
are commonly used in office buildings. Section 3.3 then extracts the commonly employed
evaluation indices with respect to the office comfort and air quality level from the
literature. These indices are introduced in detail and their calculation methods are also

described. Previously, it has been uncommon to predict ventilation energy cost using
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CFD predicted data exclusively; however, the energy usage of a ventilation system is one
of the major concerns herein. Therefore, the solutions to address this need are also put
forward in Section 3.3, which describes how the fan power input and the space cooling
energy consumption can be derived based on the data available from CFD calculations.
After this, Section 3.4 surveys the literature for previously studied parameters that have
proven to significantly affect the office indoor environment and ventilation energy
consumption, and the commonly studied parameters are selected as the controlled states
and input parameters in CFD modeling and in further optimization work. Finally, a brief

summary regarding the above issues is provided in Section 3.5.

3.2 Alternate Ventilation Systems in Office Buildings

As previously mentioned, the most common ventilation systems in North American
office buildings are MS with both supply and return air terminals located at ceiling level
and UFAD systems with floor-mounted inlets and ceiling return vents. Overhead MS is
the traditional ventilation principle, while UFAD has gained popularity in the building

market over the recent decade.

3.2.1 Mixing System

With the concept of MS, conditioned air is delivered through ceiling level diffusers
and is intended to be uniformly mixed with the room air before exhausting from ceiling
return grilles, with the purpose of removing the surplus heat and gaseous contaminants.
Previous studies have diagnosed some inherent problems associated with MS: first, it is
difficult to achieve perfect mixing, which may result in stagnant regions within the flow

field where high contaminant concentration occurs (Lin et al., 2005 (Part II)); second,
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even when full mixing occurs, it could produce entrainment and recirculation inside the
office and thus induce cross contamination between individual sources (office workers,
equipments, furnishings, etc.); also, well-stirred indoor air resulting from MS might raise
the issue of individual preference variations for micro-environment; furthermore, MS
may increase the likelihood of air short circuit, that is, the supply air might flow to the
return grilles (which are also located at ceiling level) without penetrating into and
spreading through the lower occupied sub-zone and thus contribute little to contaminant
and heat removal (Lehrer and Bauman, 2003).

In response to the growing demands for better indoor climate, MS is experiencing
some advancement such as the incorporation of variable air volume boxes equipped with
thermostats for flow rate control and the utilization of individually controlled jet nozzle
diffusers (Zhou et al., 2005). Some of these newly integrated elements have dropped the

fully-mixed assumption and resulted in a thermally non-uniform environment.

3.2.2 Underfloor Air Distribution System

Computer, network, and other types of information system devices are popular and
even requisite in modern office buildings; therefore, there has been a growing tendency to
use raised floors in office buildings with the goal of providing convenience and flexibility
for cable accommodation and management. Such a tendency has promoted the broad
adoption of UFAD systems in office buildings. It was estimated that, by 2004,
approximately 35% of newly constructed office buildings would be built with raised
floors and half of those would use UFAD (Bauman and Webster, 2001).

UFAD is also very often cited as an effective approach to overcome the

aforementioned problems associated with MS and provide additional benefits. When
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using this technology, air is directly delivered to the vicinity of the occupant at floor or
desk level, through floor or partition/desk mounted swirl diffusers or perforated panels.
Air is returned from grilles located at ceiling level, the same as with MS. This type of
arrangement results in, to some extent, the mixing of the supply air into the lower part of
the room. With a properly designed UFAD system, this mixing zone would be confined to
the elevation of air throw, and air does not remix into this region after entering the upper
uninhabited zone. As a result, this piston like upward airflow can expel the indoor air
contaminants through ceiling exhausts and increase the ventilation efficiency. In addition,
with the easily accessible air terminals, UFAD systems provide the occupants with the
capability of personal environmental control (PEC) on supply air conditions such as air
discharge orientation and air flow rate.

Aside from the above two categories of ventilation systems, displacement ventilation
(DV) is also a popular technology that has been commonly used in industrial workshops
in Scandinavia during the past 20 years (Yuan et al., 1999). With this principle, 100%
outdoor air is usually delivered horizontally from low side wall diffusers at extremely
low discharge speed and is exhausted at ceiling level. The low velocity allows the plume
of warm air rising from heat sources to drive the piston-like upward flow and extract the
indoor contaminants from ceiling exhaust grilles. However, using fresh air exclusively
may be inadequate to satisfy the internal cooling load. Under certain conditions, air
discharge of a DV system was proven to create recirculation and cross contamination in
the occupied zones of a large office (Zhao et al., 2004). To overcome these shortcomings,
recent research related to DV system in office environment has shifted towards

discharging air with higher momentum (Lau, 2005; Lin et al., 2005), which demonstrated
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a convergence of DV and UFAD. In light of this, discussions hereafter will mainly focus
on overhead MS and UFAD systems. In comparison to MS, UFAD systems have the
following attractive features, as summarized in the UFAD design guide (Bauman, 2003)
and other literature.
Reducing energy use

UFAD, with its system arrangement, creates an upward airflow pattern and distinct
temperature stratification. This airflow pattern and temperature distribution may produce
energy savings, since heat generated from the internal heat sources will be captured by
the upward plume and not mix with ambient room air. Further energy saving is possible
with UFAD systems due to the high supply temperature (typically at or above 17 °C, in
contrast to 13~15 °C with MS). Such a high supply temperature, on one hand, allows a
high percentage of outdoor air usage and may extend the operation of economizer mode
(an economizer mode uses 100% outside air for cooling purposes instead of mechanical
cooling, provided that the temperature of outdoor air is low enough to satisfy the cooling
requirements); on the other hand, it may decrease the chiller usage and improve the
coefficient of performance (COP) of the chiller (the gain in chiller’s COP was estimated
by Ke and Mumma (1997) to be 1% for every 1.1 °C rise in supply air temperature).

Apart from the high supply air temperature, the low supply pressure required by
UFAD (relative to that with MS) can offer further energy savings. UFAD systems often
distribute the conditioned air through an underfloor plenum and use much less duct work
compared to a typical MS; therefore, much lower supply pressure is required and the fan
power input can be reduced (Webster et al., 2000).

Improving thermal comfort
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Substantial experimental and numerical studies have demonstrated that, when
properly designed, a UFAD system can maintain the indoor air motion, temperature
stratification, and the horizontal temperature variations at comfortable levels (Loudermilk,
1999; Lau, 2005; Lin et al.,, 2005 (Part I)). Subjective survey results collected in a
broadband center also revealed that UFAD could lead to higher degree of satisfaction, as
88% of panelists expressed preference for the thermal environment with the studied
UFAD system over that with an overhead MS and 50% of them reported floor air supply
enhanced their ability to perform their work (Webster et al., 2002). Additionally, as
previously mentioned, UFAD provides the occupant with capability of personal
environmental control (PEC). A field study on this topic (Bauman et al., 1995) concluded
that the occupants who were given the ability to control local environment were almost
twice as tolerant of temperature differences and thus expressed fewer thermal complaints.
Enhancing TIAQ

In comparison with overhead MS, UFAD may result in lower contaminant
concentration indoors (Sodec and Craig, 1990), higher air change efficiencies
(Matsunawa et al., 1995), greater room average air change effectiveness (145% with
UFAD vs. 100% with MS) (Olesen et al., 1994), a younger age of air at breathing level
(Faulkner et al., 1995; Akimoto et al., 1999; Xing et al., 2001), and higher contaminant
removal efficiencies (Lau, 2005). These improvements can be considered indicators of
enhanced IAQ and ventilation efficiency. In addition, a subjective survey carried out in an
office building with UFAD also reported a 50% cut in dissatisfaction with perceived air
quality, relative to IAQ rating with MS (Shirai et al., 2003).

The reasons commonly cited for better IAQ resulting from UFAD are as follows
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(Cermak and Melikov, 2005): on one hand, the high percentage usage of outdoor air can
lead to a higher outdoor air change rate. Air change rate is the fresh air supply rate (per
hour) divided by the indoor air volume. On the other hand, the plumes of warm air rising
from heat sources and the upward airflow pattern can carry the chemical species or
particles to the upper warmer zone and keep the more polluted air outside the breathing
level.

It is worth mentioning that other potential benefits are ascribed to UFAD systems,
including greater flexibility (with respect to MS) provided to building services and
reduced life-cycle cost (Shute, 1995; Bauman and Webster, 2001; Bauman, 2003). But
those issues are beyond the scope of the present study and thus no attempt is made to
elaborate them here.

Notwithstanding, the realization of all these benefits with UFAD are highly dependent
on many factors such as the quality of system design, installation, and commissioning,
the post-occupancy building maintenance and operation, the occupants’ awareness and
education (regarding the features of the system), and the climate conditions. Some
research reported that, using floor supply would increase the likelihood of local draft and
excessive temperature stratification as well, due to the direct supply of cool air in the
vicinity of occupants (Wyon and Sandberg, 1990); while another study even concluded
that, in tropical regions, UFAD system is neither energy efficient nor cost attractive, due
to the high cooling energy demand (resulting from both internal and external loads) and
high ventilation rate requirement (Lin et al., 2005 (Part II)).

In light of this, it would be necessary to expand the current discussion to an overview

of previous investigations of UFAD and MS in office environment, with the emphasis
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being put on the commonly adopted criteria for comfort, air quality, and energy efficiency,

as well as on the commonly studied influential parameters (in terms of system

performance).

3.3 Criteria for Office Built Environment Evaluation

3.3.1 Thermal comfort and IAQ evaluation indices from literature

The literature was surveyed for indices appropriate for thermal comfort and IAQ

evaluation in office environments. A wide variety of indicators can be seen in previous

experimental studies and simulation-based analyses conducted in office-type spaces, from

which the most frequently used ones are extracted and summarized in Table 3.1.

Temperature (Tpy)

Performance Index Definition
evaluated
e The percentage of points in the occupied zone
Thermal Air Diffusion that have air speed below 0.35 m/s and
Performance Index . o
comfort (ADPI) effective draft temperature between -1.7 °C
and +1.1 °C (ASHRAE, 1990)
. Temperature with the same effect as an
Effective L . . .
temperature imaginary sealed environment with relative
P humidity at 50%
Temperature of an imaginary enclosure with
Equivalent the mean rgdlapt temperature (T},:,n) equal to
Temperature (ET) the actual still air temperature, where a person
has the same heat exchange with the
surrounding (Wyon, 1989)
The uniform temperature of an imaginary
enclosure in which the radiant heat transfer
Mean Radiant from the human body equals the radiant heat

transfer in the actual non-uniform enclosure
(calculated as the average temperature of the
objects and its surrounding surfaces)

Percentage of

PD is a function of turbulence intensity,

people dissatisfied ) :
due to draft (PD) temperature, air velocity (Fanger et al., 1989)
Operative
temperature The average of dry bulb temperature and Ty
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Predicted Mean
Vote (PMV)

PMYV of a large group of people (Fanger,
1970; ISO7730, 1994) is a function of human
activity, clothing, and thermal environmental

parameters

Predicted
Percentage of

people Dissatisfied
(PPD)

PPD with the thermal surrounding (Fanger,
1970; ISO 7730, 1994) is a function of human
activity, clothing, and thermal environmental

parameters

1AQ

Air Change
Effectiveness
(ACE)

ACE= trepm/tpr, Where tien,m is mean age of
return air, #; is mean age of air at breathing
level (Faulkner et al., 1999)

Air Change Rate
(ACH)

ACH is defined as fresh air supply rate (per
hour) divided by indoor air volume

Age of air

The average time required for air to reach a
given point after it enters the room (Etheridge
and Sandberg, 1996)

Air change
efficiency

Ratio of nominal time (volume of indoor
domain divided by fresh air supply rate) to
room mean age of air (Sutcliffe, 1990)

Contaminant
Removal
Efficiency (E.)

E.=(Creturn- supply)/ (Cp'csupply) , where Crepm is
the contaminant concentration in the return
air, Cy,ppyy 1s the contaminant concentration in
the supply air, C, is the contaminant
concentration at the measurement point

Personal Exposure
Effectiveness (Ep)

Ep=(C0-Cp/(C10-Cpy), where C; o is the
contaminant concentration in the inhaled air
without personal ventilation, Cj is the
contaminant concentration in the inhaled air,
Cpy is the contaminant concentration in
personalized air (Melikov et al., 2002)

Ventilation
Effectiveness (E.)

Ev=(Cretum' supply)/ (Cws'Csupply) s where Cws is
the average contaminant concentration in a
workstation (Awbi, 2003)

Re-inhaled
Exposure Index

(Erp)

Eri= Cy/ Cg, where Cg is the contaminant
concentration in the exhaled air (Melikov et
al., 2000) and C; is the contaminant
concentration in indoor air

Table 3.1: Office thermal comfort and IAQ assessment criteria

It is worth noting that some of these indices, as reported in literature, do not fit the

performance analysis of particular ventilation principles. For example, MS was found to

outperform UFAD by far in terms of ADPI; however, a study pronounced that ADPI
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would be an inappropriate index for those systems delivering conditioned air in the
vicinity of occupants (Arens et al., 1991).

The selection of indices to quantify ventilation performance and to evaluate the office
environment mainly depended upon two factors: applicability and availability.
Applicability indicates whether or not the indices are appropriate for evaluating the
performance of the ventilation systems under consideration and whether or not they
(collectively) can provide a holistic evaluation to cover all the issues of interest; whereas
availability means whether or not these indices can be derived from CFD simulations.
The baseline CFD simulations presented in subsequent chapters were validated against
experimental measurements, thus the availability of a particular independent variable in
CFD results was exclusively determined by the experimental design, the facilities, and
the objective measurements.

From the assessment criteria listed in Table 3.1, the following indicators were selected
for thermal comfort and IAQ evaluation in ventilated office environments. These were
calculated based on output quantities from CFD simulation and were integrated into the

objective function for optimization.

3.3.2 Indices for thermal comfort evaluation in the current study

The PMV-PPD model

Maintaining the indoor thermal conditions at comfortable levels is the primary design
objective of a ventilation system. The prediction of comfort level has been standardized
over the last four decades. The PMV-PPD model (Fanger, 1970) is the most frequently
used and best-understood model for quantitative thermal comfort analysis.

PMV reflects the mean vote of a large group of occupants who are exposed to a given
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combination of thermal parameters. PMV index evaluates thermal environment in an
indoor space by using a thermal sensation range scale: -3 (cold), -2 (cool), -1(slightly
cool), 0 (neutral), +1 (slightly warm), +2 (warm), +3 (hot). PMV is defined as a function
of six thermal variables related to the indoor air conditions and human activitues,
including air temperature, air humidity, air velocity, mean radiant temperature (Tu),
clothing insulation level, and human activity. The value of PMV can be determined from

the following equation (ISO 7730, 1994)
PMV =(0.303exp(~ 0.036M )+0.028)L (3-1)
where L is the thermal load on the human body (W/m?) and

L=M-W-3.05x107[5733-6.99(M —W)- P,]-0.42(M - W - 58.15)
- »f;lhc (TCI - 7:'”(1'00?‘ )— 1'7 x 10_5 M(5867 _Pv )_ 0'0014M(34 - I:'ndoor) (3-2)
~396x10° £, (1, +273) ~(T,,, +273)']

mrt
where M is the metabolic rate per unit body surface area (W/m?), W is the external work
(W/m?) (equals to zero in most cases), P, is the local partial water vapor pressure in air
(Pa), f; is the ratio of the area of clothed body to the surface area of the nude body, 4. is
the convective heat transfer coefficient between the outer surface of clothing and the
ambient air (W/m2 °C), T is the outer surface temperature of clothing (°C), Tingoor is the
local indoor air temperature (°C), and Tpy is the radiant temperature (°C) The partial

water vapor pressure is obtained from

]—7‘) - PS x RH (3_3)
100

with P; being the saturated water vapor pressure at local temperature (Pa) and RH is the
relative humidity in local air. Furthermore, 7, /., and the f;; can be determined using the
following conditional equations:
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T, =35.7-0.028(M - W)-1,8.96x10° £, (T +273) = (T,,, +273)* |+ (T, - T, )}

mrt

(3-4)
h, =2.38x(T, —T, )" for 2.38x(T, - T, )"* >12.1xV
{hc =121xV  for 238x(T, - T, )™ <12.1xV (3-5)
£, =1.00+1.2901, for I, <0.078
{fc, =1.05+0.645/, for I, >0.078 (3-6)

where V is the local air velocity (m/s) and I is the thermal resistance of the clothing
(m?°C/W).

It should be noted that PMV can not precisely indicate what percentage of the
occupants are expected to be dissatisfied; notwithstanding, even when the PMV index is
neutral (which is supposed to represent the ideal thermal conditions), there still remains
some people dissatisfied with the thermal environment due to the variations in individual
preference. To account for this type of subjective difference, Fanger (1970) proposed

another index—PPD, which can be determined from PMYV value.
PPD =100-95exp(~0.03352PMV* —0.2179PMV*}(%) (3-7)

PPD represents the percentage of people who express thermal sensation more than
slightly warm or cool. Correlation between PPD and PMV indicated that even when
PMV is equal to zero, PPD is 5%, allowing for the fact that there always exist some
people who are dissatisfied. According to the recommendation of the comfort standard
ISO 7730 (1994) and ASHRAE Standard 55-2004, a PMV value between —0.5 and +0.5
corresponds to the situation that about 90% of people feel comfortable (PPD < 10%).
Equivalent temperature

Despite the provision of acceptable whole-body comfort, UFAD systems are
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sometimes found to cause asymmetric thermal sensations, if not designed properly. That
is, even if an individual expresses global comfort, he/she may still experience discomfort
at a particular part of his body. An indicator named equivalent temperature (ET) was
proposed to appraise thermally non-uniform environments.

ET was originally introduced to study the highly non-uniform micro-climates
encountered in automobiles (Wyon, 1989). ET integrates the independent effects of air
temperature, air velocity, mean radiation, and solar load on heat loss/gain from the
occupant body into a single physical quantity. It is defined as the temperature of a
uniform enclosure in which a human body would experience the same rate of heat loss as
in the actual thermally non-uniform environment. It was claimed that if the variations of
ET over the entire body are controlled in the range of -2 °C to 2 °C, there is no excessive
thermal non-uniformity over the entire body.

The applications of ET have not been restricted to vehicle conditions. Previous
research also used ET to account for the spatial variations of comfort sensation in office-
type spaces (Fukao et al., 2002; Nilsson and Holmér, 2003). Both studies calculated the
value of ET based on the heat loss rate at each body segment of a thermal manikin in
office environments equipped with UFAD and MS. Nilsson and Holmér (2003) also
conducted a subjective survey and introduced an index named mean thermal vote (MTV)
based on the thermal sensation rated by the panelists. The regression of MTV on ET
demonstrated a good agreement between the survey results and the data measured from
the manikin.

For each part of the human body, ET can be calculated using the following equations

(Bauman et al., 2000),
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ET=T -1,%xQ, (3-8)
where T is the skin temperature (°C), and Q is the local heat loss rate from skin surface
(W/mP).

ET was included in the objective function to quantify asymmetric sense of thermal
sensation, a risk frequently associated with UFAD system.

Head to ankle temperature difference and local air velocity

UFAD strategies supply cooler air to the lower region of the office and produce
distinct temperature stratification; however, excessive temperature gradient along vertical
direction may result in complaints. According to ASHRAE Standard 55-2004 and ISO
7730 (1994), the temperature difference between the head and the ankle level should not
exceed 3 °C, which corresponds to 5% dissatisfaction. It is necessary to maintain this
vertical temperature difference at or below the recommended value to avoid “cold feet
and warm head” complaints.

In addition to the above-mentioned indices for comfort evaluation, it was suggested by
ASHRAE standard 55-2004 that the local air speed near an office worker should be
controlled at or below 0.25 m/s to avoid annoyance and distraction.

The ET difference between the two sides of an individual occupant, the head to ankle
temperature difference (ATHeadToAnkle), and the local air velocity near the occupant were
integrated into the penalty terms in the objective function for optimization. When these
three indices exceeded the recommended values, the penalty term was set to a relatively

large positive number (since GA intends to minimize the objective function here).
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3.3.3 Indices for IAQ evaluation in the current study

Concentration of Carbon Dioxide (CO;)

Concentration of CO, has been the most important indicator for IAQ monitoring and
studies (Stonier, 1995; Persily, 1997). Previously, CO, concentration measurements were
conducted in office buildings to estimate ventilation adequacy (Cheong, 1996). Though
CO; concentration does not provide a holistic evaluation of air quality, high CO,
concentrations in offices could be an indirect indication of inadequate ventilation. The
basic premise is that if the surplus CO, can’t be adequately removed by ventilation, then
other indoor contaminants may accumulate proportionately.

The CO; generation rate from a person who is performing moderate office work is at
0.31 L/min (ASHRAE, 2001). CO, concentrations in office buildings typically range
from 350 to 2500 ppm (Seppénen et al., 1999) while, CO, concentration in outdoor air is
approximately 350 ppm. The minimum ventilation rate specified in the Standard
ASHRAE 62-2001 is 8 L/s per person (ASHRAE, 2001). As indicated by these numbers,
the allowable indoor CO, level in office spaces would be at or below 1000 ppm
(approximately).

Seppénen et al. (1999) indicated that the risk of respiratory organic irritations would
possibly increase by a factor of six when indoor CO, concentrations in office were
increased by 420 ppm above the outdoor level, or even if the maximum indoor CO,
concentration requirement (< 1000 ppm) was satisfied. Also, they indicated that reducing
the CO;, concentration to 800 ppm or less can substantially improve occupant’s
satisfaction with IAQ and lower the related health risks. Similar conclusions were
obtained by another study (Charles, et al., 2005), which found that the evaluation of IAQ
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was improved as CO, concentration decreased (data cited was from 1100 ppm to 470
ppm); furthermore, when the CO, concentration went below 650 ppm, the majority of

people would express satisfaction.
CO;-based Ventilation Effectiveness (&)

The calculated CO, concentration distribution can be further integrated into a
dimensionless index—Ventilation Effectiveness (g,). ¢, is calculated from the equation
below, which is slightly different from the original definition (Awbi, 2003). The CO,
concentration at breathing level is used here instead of the average concentration
throughout the workstation.

g, = reum ~ Cowply (3-9)
Cor ~ Coup piy

where Censn is the CO, concentration in the return air (ppm), Cuppp is the CO;

concentration in the supply air (ppm), and c¢;, is the CO; concentration at breathing level

near the occupant (ppm).

In the current study, two boxes were placed in the office studied, releasing CO, and
heat to the ambient air at adjustable rates (see Chapter 5 for details). These boxes
mimicked the behavior of office equipment (such as photocopier, printer, fax machine,
etc.). The transport of CO; in room air was modeled by the CFD program. The optimizer

searched for better system design and operation parameters that decreased the CO,

concentration at breathing level and enhanced &, as much as possible.

3.3.4 Accounting for ventilation energy usage in the current study

A popular trend in CFD simulation of office environments is the prediction of airflow;

in contrast, issues with regards to heat transfer and energy usage have not been
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successfully addressed using CFD techniques. A common approach to account for
cooling energy consumption is by making use of the operational parameter of the chiller.
For example, Sekhar et al. (2003) applied an integrated IAQ-energy audit method to
office buildings in Singapore, in which the product of chilled water flow rate and change
in chilled water enthalpy was used as the energy performance index.

Based on the survey of previous experimental and numerical work on quantifying
energy efficiency of ventilation systems, this section sets out to describe the indices used
in the current study to determine energy required by ventilation. Those indices can be
derived from the outputs estimated by CFD calculation. The energy usage of the
ventilation system can be divided into two main parts, fan power input and cooling
energy consumption.

Fan energy consumption

In modem office buildings, most ventilation systems employ an all-air mode for
cooling/heating distribution; therefore, the power input into supply (exhaust) fans may be
a significant portion of the total energy required by the mechanical system. For example,
in the case of typical overhead MS, supply fans may consume up to 40% of the overall
energy usage by ventilation. Therefore, it is important to look for ways to reduce this
portion as much as possible. It was often claimed that the distribution ductwork could be
reduced with UFAD systems, which could shrink the electricity consumption by fans.
The discussions herein (related to fan energy uses) mainly focus on UFAD and MS
systems equipped with pressurized (passive) variable air volume (VAV) air terminals.

The word “pressurized” stands for the fact that conditioned air is distributed by central
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fans and then discharged through passive diffusers. Thus, fan energy consumption in a
ventilation system can be translated into central supply fan(s) energy inputs.
Principally, we know that fan power input (W) can be determined using the following

expression

_ APX Vair,total

= 3-10
o 1000n ,, G-10

where AP is the pressure rise through the supply fan (Pa), Vai,’ma, is the overall

volumetric flow rate of supply air (L/s), and 7, is the fan efficiency.

It is straightforward and understandable that, in the present study, the value of V.

air total
can be directly extracted from the CFD model (actually, the volumetric flow rate through
the central fan is the summation of flow rate through each of the diffusers); whereas the
pressure rise and fan efficiency remain to be determined, and how to prescribe the values
of AP and 7., deserves further specification.

In the case of an overhead MS, a typical central fan is designed to provide a pressure
of 750 Pa to deliver air, of which about 125~250 Pa might be required to move air
through the VAV box, reheat coil, and ductwork. This is in contrast with the situation in a
UFAD system with equivalent capacity—no ductwork is involved (only a trunk duct is
necessary) and the conditioned air is supplied through a pressurized plenum. With this
type of system configuration, a large portion of pressure loss could be avoided with
UFAD. As indicated in a previous study (Webster et al., 2000), it would be reasonable to
assume that the central fan static pressure requirements in an UFAD system could be cut

down by 25% relative to that in a MS. In this study, the static pressure rise via the central
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fan in the MS is assumed to be at 750 Pa while, with the UFAD system, 562.5 Pa is the
static pressure rise assigned to the central fans (25% reduction).

The magnitude of fan efficiency is often treated as a function of pressure rise and
amount of air passing through the fan. The UFAD design guide (Bauman, 2003) cited the
following examples to provide a demonstration of the supply fan performance: when a
central airfoil fan with a diameter of 0.76 m is operating at 750 Pa and supplying air at
9700 L/s, it would result in a combined efficiency (efficiency of the fan plus that of the
motor) of 76%. When the same central airfoil fan is operating at 623 Pa for the same air
flow rate (9700 L/s), it would work under an overall efficiency (motor plus fan) of 67%.
In the case of a forward curved fan with small size (with a diameter of 0.46 m), it
supplies air at 1460 L/s and provides a 62 Pa pressure rise with a combined fan and motor
efficiency of 38%. These numbers indicate that, when the flow rate through a fan holds
constant, the overall efficiency of a fan decreases as the pressure rise drops. Also, the
overall efficiency value of a small size supply fan is lower than that of a large fan
working at higher static pressure and higher supply flow rate.

Given the above numbers, the efficiency of the central supply fan in the current study
was characterized by relating the efficiency to overall supply flow rate. Since the pressure
rise via the supply fan in this study was assumed to be at a constant level, its effect on fan
efficiency is dropped here. Accordingly, the overall efficiency of the supply fan within

the allowable flow rate range (80~160 L/s) was calculated using the following correlation:

V. ir total
=21 0.25 3-11
nfan 400 ( )

This correlation was established based on the assumption that when the total supply

air flow rate is 160 L/s, the resulting combined fan energy efficiency isat 65% while,
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when supply air flow rate is reduced to 80 L/s, the combined fan energy efficiency is
45%. The intermediate values can be approximated using a linear interpolation between
the two extremes.

Cooling energy consumption

The flow chart of chiller, cooling coil, and supply fan is shown schematically in

Figure 3.1.
Mixed air ) Conditioned air
Return air 1 Cocool;In & Supply fan
Outdoor air " u
Chiller

Figure 3.1: Sketch of chiller, cooling coil, and supply fan

Cooling coils remove the sensible heat load produced within the conditioned space
and offsets the humidity and temperature in the outdoor fresh air. In light of the previous
methods used for energy usage prediction with alternate ventilation systems (Bauman,
2003; Xu and Niu, 2006), it is clear that the cooling energy requirement can be

subdivided into two portions,
Qcoaling = space + Qvent = mair,totalcp (]—'return - Tsup ply )+ mfresh (hout - hretum) (3_12)

where Qcooling is the total cooling load (W), Ospuc. is the cooling energy portion used to

remove sensible heat load in the indoor space (W), Qyen is the cooling energy portion

used to condition the outdoor fresh air to return air states (W), m,, ,,,, is the total mass

flow rate of supply air (outdoor fresh air plus the re-circulated portion of return air) (kg/s),

¢, is the specific heat of air (J/kg°C), Trens is the temperature of return air (°C), Tsuppyy 15
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the temperature of supply air (°C), 1, is the mass flow rate of outdoor fresh air (kg/s),

houwr and hyepm are the specific enthalpy of the outdoor air and return air (J/kg),
respectively. The value of enthalpy (J/kg) is given by,

h =1.01T +0.001d(2500 +1.84T) (3-13)
where d is the humidity ratio (moisture content) of the air (kg water vapor/kg dry air),

based on this, the equation of Q,.,, can be translated to,

Qvent =
it 4ogs[1.017,,, +0.001d,, (2500 +1.84T,, ) ~1.01T,,,, —0.001d

out return return

(2500+1.84T,, )]

(3-14)
where Toy is the temperature of the outdoor air (°C), dpy is the humidity ratio in the
outdoor air(kg/kg), Trenm is the temperature of the return air (°C), dyenrn is the humidity
ratio in the return air (kg/kg).

Accordingly, the total energy consumed by cooling can be determined provided that
the operating states of the ventilation system, the return air conditions, and the outdoor air
states are specified. Thermo-physical quantities such as the supply air temperature, the
flow rate of supply air, the mean humidity ratio indoors, the return air temperature, the
outdoor air moisture content, and the temperature would be treated as the independent
variables in this analysis.

One thing requiring explanation is, due to the absence of measured data regarding the
room air humidity (for the verification of the CFD simulation results), the transport of
water vapor was excluded from the current CFD study; instead, the relative humidity
throughout the room is assumed to be maintained at a constant level around 40%. That

said, the relative humidity existing in the supply air is presumed to be equal to that in the
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return air, and there is no latent heat load generated within the indoor space. The outdoor
relative humidity is assumed to be at 70%. Based on the values of relative humidity and
corresponding temperature, the moisture content in return air and outdoor air can be
determined.

It is the chiller that manages the cooling generation in an HVAC system. Ecooting (W),
the cooling energy requirement (which equals the power input into the chiller), is given
by,

Qcoo in,
Ecooling = I)chiller = COng (3 - 1 5)

where Ppiyer is the power input into the chiller (W), COP is the chiller’s coefficient of
performance.

It is straightforward that when ventilation system is operating with a higher supply air
temperature, the chiller energy consumption will be cut down; however, higher supply air
temperature may further decrease the chiller energy usage due to the associated positive
influence on COP. The COP of a chiller is defined as the ratio of the cooling load to the
electricity power (or fuel) consumption. For a particular chiller, the value of COP may
depend upon such thermo-physical parameters as the chilled water temperature, the
outdoor air temperature, the outdoor air humidity, the cooling load, the supply air
temperature in ventilation system, etc., though the quantitative correlation between COP
and these variables is case specific and can not be readily prescribed. Within the scope of
present research, only the effect of supply air temperature on chiller COP was taken into
consideration.

Based on a previous study (Ke and Mumma, 1997), it would be reasonable to assume

the improvement in COP to be 1% for every 1.1°C increase in the supply air temperature.
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In this study, a reference COP value of 3.0 was associated with a baseline supply air

temperature of 13 °C; any increase of supply air temperature increased COP as follows,

y T & T . —13
COP = COP,, +(i"’Llyl——”’f-)xo.o1=3.o+(“‘°%—)xo.01 (3-16)

As a supplement to the above statement, the following assumptions were imposed on
the energy analysis for the ventilation system:

e The energy used by condenser water pump, chilled water pump, and fans in cooling
tower were excluded.

e The cooling coil and chilled water heat exchanger were presumed to work under
perfect condition, that is, the heat transfer efficiency in each component was assumed
to be 1.

e The ducts were assumed to be perfectly tight and airflow through the ductwork was
adiabatic; there was no temperature gradient along the duct when there was no other
energy generation equipment; the return air temperature was equal to the local air
temperature in the vicinity of the return grille.

o The effect of fan power on the supply air temperature was neglected.

e Air density and specific heat were set to constant values, at 1.205 kg/m® and 1005
J/kg°C, respectively, as 20 °C is taken as the reference temperature (Available:

http://www.engineeringtoolbox.com/air-properties-d_156.html).

3.4 Influential Parameters

In CFD simulation-based optimization work, it is necessary to abstract the
complexities of the real flow field and the thermal boundary in a ventilated office space

to a manageable degree; therefore, selecting which parameters to include and exclude as
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input variables in CFD simulations and as controlled variables in GA optimization is a
common decision faced by the program developer or user. Prior to implementing
extensive CFD simulations in the current study, a literature survey of influential
parameters (regarding the geometric features, the thermal/airflow conditions, and the
system configurations, etc.) commonly studied in a ventilated office environment was

conducted.

3.4.1 Influential parameters in the literature

As identified in the literature, a broad range of factors affect the airflow pattern,
thermal conditions, and contaminant dispersion in a ventilated office space. Whether or
not a physical parameter influences the indoor thermal environment and the extent to
which it can affect the indoor environment depends upon the air distribution method, the
experimental conditions, the goal of the simulation exercise (or, the objective indices
being specified), and/or the design of the numerical model. Results from different sources
report conflicting observations regarding the influence of a particular parameter on
indoor environment.

For example, Huo (1997) found the airflow pattern and mean age of air in an office-
type test chamber, which was served by ceiling mounted linear and square diffusers, were
not sensitive to the workstation partition height and the partition bottom gap under the
test conditions; while Lee and Awbi (2004) reported that the air change efficiency and
ventilation effectiveness in an environment chamber equipped with a MS were sensitive
to partition height and partition gap underneath.

In some research, it was concluded that the air distribution pattern and air change

efficiency with MS was not sensitive to the studied supply diffuser type (linear/square
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grille), the partition height/bottom gap, and the location of supply/return grilles under the
test conditions (Haghighat et al., 1996), in contrast, some other studies (Shaw et al., 1993
(Part 1&II); Lee and Awbi, 2004) reached different conclusions that the airflow pattern
and air change efficiency with the studied MS was significantly influenced by the
following parameters: the diffuser type, the internal heat source, the furniture presence,
and the partition height/gap underneath.

Despite the above disagreements, the majority of previous studies agreed that the
contaminant transportation pattern highly depends on the airflow pattern in the flow field
(Huo, 1997; Cheong et al., 2003; Lee and Awbi, 2004; Lau, 2005). In addition, Cheong et
al. (2003) found that the location of the emission source, the furniture layout, and the
partition presence would significantly influence the distribution of contaminant in an
office with MS. Any confined space produced by partitions and furniture would lead to
build-up of contaminants. The exhaust vents situated at ceiling level were found to have
minimal effects on comfort and IAQ, except for those cases when air was exhausted from
the return grilles at high speed. The supply air terminal location and the number of supply
diffusers were found to have impact on the overall comfort levels (Lau, 2005).

By taking thermal comfort and IAQ as objectives, Lau (2005) carried out a non-heat-
load parametric study with UFAD in an office-type chamber and found that the air
change rate, the supply air velocity, the supply air temperature, and the number of
diffusers per office were the parameters of the most importance; the location of partition
and return grilles were found to have moderate impact; and the changes in the diffuser
location and the furnishings placement hardly affect the indoor environment.

It should be mentioned that some research even integrated physical quantities into
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non-dimensional groups to study the influence of such parameters on indoor airflow and
thermal conditions. Examples include Archimedes number (Di Tommaso et al., 1999),
thermal length scale (Wan and Chao, 2005), etc. In this study, discussion will not focus
on indices like these, due to the data available in the experimental results.

The above studies are just a few examples extracted from the extensive research on
indoor environment analysis in ventilated offices. By summarizing the literature on
influential parameters pertaining to office thermal comfort and IAQ, the subsequent

subsection puts forward the parameters examined in this study.

3.4.2 Parameters to be examined in the current study

Based on the review of related work, the parameters listed in Table 3.2 were selected
for this study. The upper and lower bounds of each parameter were also defined based on

the geometric and thermal conditions commonly found in a typical office.
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Category

Ventilation system
related

Parameter Design range

Qutdoor air temperature 25 °C~40 °C

Inner surface temperature 20 °C~35 °C
Office related Internal heat load density 25 W/m*~45 W/m*
Contaminant (CO,)emission rate 0.3 L/min~1.5 L/min

System type UFAD and MS
Passive swirl diffuser/
Diffuser type perforated grille type

diffuser

Number of diffusers with UFAD

2 diffusers per room

4 diffusers per room

Number of diffusers with MS

1 diffuser per room

2 diffusers per room

Distance from diffuser to

0.5m~2.0m

occupant
Distance frorp return grilles to 0.5 m~2.5 m

contaminant source
Maintaining the CO,
Outdoor air supply flow rate concentration in supply
air at 400 ppm

Overall supply air flow rate

80 L/s~160 L/s

Supply air temperature

UFAD: 15 °C~22 °C

MS: 13 °C~18 °C

Table 3.2: Design space of input parameters for CFD simulation

3.6 Limitations of the Scope of the Current Work

Although this study attempted to span a wide range of input parameters, it was not

possible to address all the influential parameters within the scope of the current work.

The bottleneck appeared to be twofold: the availability of computer resources and

experimental data. Specifically, one should be aware of the following limitations of the

current study:
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The office scenarios considered in this work have excluded the impact of solar
radiation passing through exterior window (there was no exterior window in the
test chambers) to the indoor domain. The reasons are twofold. Firstly, the majority
of existing CFD programs can not efficiently capture the behavior of the solar
radiation (though some methods are claimed to be available with Airpak, as stated
in Appendix A). Secondly, the current office-type test chambers are usually
unglazed; therefore, it is often infeasible to obtain reliable data to validate those
cases with solar radiation imposed upon the room air.

The CFD simulations were performed under steady state conditions in the current
study, and the computational domain has been confined to a single office with two
occupants. Should adequate computer resources become available, it would be
necessary to include transient condition into consideration and to expand the
problem domain to a larger area of open-plan offices (with cubicles) or even to a
whole office building.

The current study has focused on the peak load of cooling season (which is the
common case in the core zone of an office building), though the heating energy
requirement of an office building is much higher than the cooling energy
requirements in Canada due to the long heating season. During the heating season,
it would be common to integrate a hydronic system along the perimeter of an
office to offset the heating load through building envelope, but in the controlled
environment chamber where the measurement was taken (for the verification of
CFD simulation results), this type of system was not installed; therefore, heating

season was excluded from the scope of the current work.
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o The internal lighting load was set to about 20 W/m” with the intention to mimic the
conditions in the environment chamber, which was much higher than the value in
an actual office scenario (11 W/m? as specified in ANS/ASHRAE-IESNA 90.1-
2004); also, the power of the heat sources added into the office space may differ
from a typical office equipment.

e CO; released from two boxes at fixed locations was taken as the only indoor
contaminant; however, other types of gas phase pollutants and other possible
placement of contaminant source (e.g., area-type sources as carpet or painted
wall/surfaces) are commonly encountered in office spaces.

¢ In addition, the impact of internal partitioning (e.g., partition height and location as
well as air gap underneath, etc.) has been excluded here due to the absence of data
for validation. In the literature, partitions were identified as a key factor affecting
the room air distribution; therefore, this topic would be worthy of addressing in
further CFD investigations and optimization work concerning office indoor

environment.

3.7 Closing Remarks

Chapter 1 claimed that this study sought a holistic evaluation of thermal comfort, IAQ,
and ventilation system energy efficiency. To set the stage for CFD and experimental work
in the subsequent chapters, it was necessary to understand the ventilation approaches
commonly used in office buildings and how to characterize their influences on office
environment.

This chapter started with a comparative introduction of two common ventilation

approaches in office buildings: UFAD and MS, which underlined the contributions of
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UFAD systems to improve office comfort level, IAQ, and energy efficiency.

In order to evaluate thermal comfort and IAQ in a quantitative way, PMV-PPD,
equivalent temperature (ET), head-to-ankle temperature difference (ATpeadtoAnkle), @ir
velocity in the vicinity of the occupant, CO, concentration distribution, and CO,-based
ventilation effectiveness were selected as the criteria for performance assessment. The
selection of these indices is, on the one hand, based on discussion in the literature, on the
other hand, according to the information available from the CFD simulation. The
theoretical basis of these indices and calculation methods were also described.

There have been a significant number of numerical and experimental investigations of
office thermal comfort and IAQ with different ventilation technologies, but energy use of
ventilation systems has not been adequately treated in previous CFD studies. How to
quantify the energy consumption of a ventilation system in response to the operating
states deserves further investigation. This chapter also described how to account for the
energy use by taking both the fan power input and cooling energy requirement into
consideration. These indices can be determined from the CFD solution—the supply air
conditions and the outdoor air conditions are input information into the CFD program,
whereas the return air states are predicted by CFD.

Prior to commencing the CFD simulations, it was also necessary to identify those
parameters that would significantly affect the office environment. Previous studies
(though sometimes provided conflicting opinions) suggested that outdoor temperature,
inner surface temperature, internal heat load density, contaminant emission rate (CO,
here), system type (UFAD vs. MS), diffuser type, number of diffusers, distance from

diffusers to occupant, distance from return grilles to contaminant source, outdoor air
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supply flow rate (ventilation rate), supply air flow rate, and supply air temperature would
reasonably cover the design variables of practical problems. Consequently, these were
chosen as the input variables for the CFD simulations.

Since not all influential variables could be addressed in the current study due to the
limitations on computer resources or the absence of experimental data, the limitations of

the scope of the current study were also put forward in this chapter.
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CHAPTER 4

VERIFICATION OF CFD SIMULATIONS OF OFFICE
ENVIRONMENT

4.1 Introduction

Appendix A substantiates Chapter 1’s claim that CFD is well suited for indoor airflow
and heat transfer modeling by providing the technical basis of CFD; Chapter 3 described
how to quantify the comfort level, IAQ, and ventilation energy costs in a office space by
making use of data derived from CFD calculations. The stage has been set for CFD
simulation; however, questions regarding the credibility of CFD predictions have yet to
be fully addressed. Appendix A also suggests that care should be taken when selecting the
turbulence modeling method and numerical approach for CFD simulations, so as to
increase the accuracies of CFD predictions. A guest editorial in /ndoor Air suggested that,
whenever possible, CFD simulation results should be validated against corresponding
measurements or standard test cases with similar features, for the purpose of quality
control (Serensen and Nielsen, 2003).

In response to this, this chapter sets out to demonstrate the validity of CFD
simulations conducted in this research, by comparing the CFD estimates with
experimental data obtained from mock-up offices. Two full-scale office-type test
chambers, one located in south China and the other located in Denmark, were the subjects
of the comparison. The experimental facilities enabled the comparative investigations of
the performance of UFAD and MS, and results from representative cases are presented.
The validated cases then served as the baseline cases for further CFD exercises (ANN
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training/testing data preparation).

Later on, Section 4.2 describes the experimental facilities and measurement design in
the two environment chambers. Prototype CFD models created in Airpak are briefly
introduced in Section 4.3, with emphases being placed on the mimicking of diffuser
boundary conditions. Verification is then treated in Section 4.4. The case studies allowed
performance comparison between alternate ventilation principles and alternate air
terminals. Also, investigative simulations were conducted by implementing two separate
turbulence models, in an attempt to appraise the applicability and efficiency of these two
models within the context of the verification cases. Finally, closing remarks are provided

in Section 4.5.

4.2 Test Chambers for Data Collection

Experimental data for CFD verification must contain detailed information about the
flow field, the thermal conditions, the air jet boundary conditions, and the geometric
configurations of the space as well. Two sets of experimental data are used here for CFD
verification. One set of data was derived by conducting measurements in a full-size
mock-up office served by UFAD and MS with grille-type diffusers (Zhou et al., 2006)
while; in the case of UFAD and MS with passive swirl diffusers, the current study draws
upon data collected by Cermak and Melikov (2005) to demonstrate the accuracy of CFD
predictions. Clearly, these experimental facilities enabled the analysis of alternate
ventilation systems (UFAD and MS) and different diffuser types (grille-type and swirl
diffusers). A description of the experimental facilities and measurement setup is provided

first.
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4.2.1 Experimental facilities with grille-type diffusers

Controlled environmental chamber

The experimental work presented here was carried out in the Advanced Underfloor
Ventilation Research and Development Center at the Hong Kong University of Science
and Technology—a real-size office type experimental chamber (see Figure 4.1). The
chamber was 6.0 m in length and 4.8 m in width, with a clear space of 2.4 m measured
from the raised floor to the false ceiling. The 100 mm thick side walls of the chamber
were constructed of two layers of gypsum board on both sides of a 64 mm thick
fiberglass insulation layer; in an attempt to segregate the indoor environment from the
impact of surrounding temperature fluctuations. The gypsum boards were coated with
white emulsion paint. For both floor and ceiling, a 25 mm thick polyurethane insulation
layer was adhered to the inner surface of the concrete slabs, as shown in Figure 4.2.
Gypsum boards coated with white paint were also adhered to the ceiling. The access floor
panel was constructed with 25 mm thick marble tiles above an underfloor plenum 300

mm deep. Each marble tile was of standard size of 0.60 mx0.60 m.
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Figure 4.1: Test Chamber in the Advanced Underfloor Ventilation Research and

Development Center at the Hong Kong University of Science and Technology

Figure 4.2: Underfloor plenum and insulation layer on the slab

During the experiment, the room was furnished with a background light and a desk
with a personal computer. The power level and placement of internal heat sources

resembled those in a typical office. Table 4.1 presents the sensible heat gains from these
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sources. The nominal power consumptions of this equipment was recorded and assumed

to be the heat released to the ambient air (radiation plus convection).

Internal source Sensible heat gain (W)
Occupant 1x75
Computer monitor 1x75
Computer tower 1x75
Ceiling light fixtures 18%36
Total 873 (30.3 W/m?)
Hot plate (optional) 2x500
Total (with two hot plates switched on) 1873 (65 W/mz)

Table 4.1: Summary of internal heat sources in the test chamber

Two rectangular hot plates, with the dimension of 0.20 mx0.05 m, were added to the

room as extra heat sources. As shown in Figure 4.3, the hot plate consisted of variable

power electric resistance coated with a ceramic glaze, and it was supported by asbestos

bricks (0.1 m above the floor). The power to each hot plate was varied up to 500 W, and

the power input was controlled and monitored by a power analyzer (Fluke 41B, Everett,

WA, USA). When switched on at full load, they would increase the internal heat load

density in the room from 30.3 W/m? to 65 W/m?.
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Figure 4.3: Extra heat source

Ventilation systems

The test room contained both a ceiling supply/return MS and a floor supply/ceiling
return UFAD system. Near the center of the room, a pair of rectangular openings with the
dimensions of 0.59 mx0.21 m was installed at the ceiling level as the MS air inlets. Air
exited the room through 4 return grilles at ceiling level. These 4 grille-type return vents
with the dimension of 0.59 mx0.21 m were used for both the MS and the UFAD system.
The air outlets were covered with panels made of slim aluminum bars, resulting in an
effective aperture ratio of 0.7.

The UFAD system supplied air through two floor mounted grille-type diffusers,
which were also located near the center of the room, as can be seen in Figure 4.1. The
floor air terminals were covered by 0.59 mx0.21 m perforated panels, with an effective
area ratio of 0.55 (shown in Figure 4.4). With UFAD, the conditioned air passed through

the pressurized underfloor plenum prior to being discharged from the diffuser. This
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contrasted with the case of MS, for which the air terminals were connected to the air

handling unit (AHU) by ducts.

The total supply air flow rate from ceiling and floor diffusers could be set up to 420
L/s. Throughout the experiment, the amount of air coming out from the each diffuser was
fixed at 140 L/s by the AHU, while the supply air temperature was manually controlled
by adjusting the temperature set-point in the AHU. In response to the signal sent by the
temperature sensor located in the supply air duct, the microcontroller regulated the flow

rate of chilled water through the cooling coil inside the AHU.

Figure 4.4: Floor air diffuser

Measuring instruments

The test room was instrumented with thermocouples and thermal comfort transducers,

which enabled the following readings to be recorded:

o As shown in Figure 4.5, the inner surface temperature at the walls, ceiling and floor
were measured using T-type thermal couples (OMEGA, Stamford, CT, USA). The
thermocouples were pre-calibrated against an air temperature transducer (Innova

MMO0034, Ballerup, Denmark); the latter has an accuracy of 0.2 °C within the

80



measurement range from 5 °C to 40 °C. The thermocouples were covered with
aluminum foil tape (with a low emissivity in the long-wave spectrum) to minimize the

radiant exchange with the surroundings.

o At four measurement positions along the centre axis of the test room (shown in Figure
4.8 below), air temperatures and air velocities at six vertical levels (0.1 m, 0.6 m, 1.1 m,
1.7 m, 2 m, 2.2 m) were recorded using thermal couples and a heated-sphere omni-
directional anemometer (Innova MMO0038, Ballerup, Denmark), respectively. The
measurement accuracy of the anemometer is 0.05V + 0.05 m/s when the local air

velocity reading V is lower than 1 m/s.

e For the air throw from the diffusers, the instant air velocity and mean air velocity
variations with height were measured, which allowed the determination of discharge
velocity, local turbulence intensity, terminal velocity, and decay constant, so as to fully

characterize the discharge airflow from the diffusers.

e In order to determine the comfort level, ambient relative humidity in the test room was
monitored by a humidity transducer (Innova MMO0037, Ballerup, Denmark) with an
accuracy of 0.5 °C (dew point temperature Tgew) When (Tair-Taew) < 25 °C. Also, the
ambient temperature was recorded using the air temperature transducer (Innova

MMO0034, Ballerup, Denmark).

Table 4.2 shows more detailed information regarding the measuring ranges and

accuracies of the instruments; and the transducers are shown in Figure 4.6.
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Measurement Measurement] Response
o e Instrument Accuracy .
objective range time
T Temperature transducer 20~50 °C +0.2 °C 20 s to 50% of
ambient MMO0034 ” (from 5 °C~40 °C) | step change
Humidity transducer (Tair-Tew)
air ew, :t . ] T ew N
RH MM0038 <9590 0.5 °C (Tgew) /A
v Omni-directional 0~10 m/s +(0.05V + 0.05) m/s} < 0.2 s to 90%
anemometer MMO0037 when V<1m/s |[ofstep change
Calibrated against
Tair/ Tsurt T-type thermal couple N/A llvrg\;oog%‘ams 5s

Table 4.2: Summary of instruments specifications

Figure 4.5: Instruments set up in the mock-up office
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(a) Temperature transducer MM0034 (b) Humidity transducer MMO0037

——

(c) Air velocity transducer MM0038

Figure 4.6: Transducers (Innova, Ballerup, Denmark)

Temperature, air velocity, and humidity transducers were connected to a thermal
comfort data logger (Innova 1221), and the outputs were recorded every 1 s. Also, a PC-
based data logger system (SCXI series, National Instruments, Austin, USA) recorded the
outputs of the thermocouples every 5 s. Once steady conditions within the room were
achieved, the final readings of the objective parameters were the time-mean quantities by
taking averages over a time period of 180 s. The experimental instrument set-up in the

mock-up office is presented in Figure 4.5.
Procedure

The room was monitored over a three-day period. During that period, the supply air

flow rate was maintained at a constant level while, the test room thermal conditions and
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supply air temperature were varied during the measurement period and experiments
repeated to capture the impacts of inner surface temperature, internal heat load, supply air

temperature, and the ventilation systems on the indoor flow field.

The experiments were divided into two stages according to the ventilation system in
service. In the first stage, when air was supplied through UFAD, the three experiments
spanned realistic ranges of supply air temperature, inner surface temperature, and internal
heat load density. The second stage of experiment (one case study) was targeted at
comparing the resulting flow field from overhead MS with that produced by UFAD
(obtained in the first stage). Other than as explicitly specified, the setups and conditions
were almost identical for all four cases. The experimental conditions and operational

states of ventilation systems for the 4 cases are briefly summarized in Table 4.3.

The CFD simulations in this study were performed under steady state conditions;
therefore, it was preferable to take measurements under steady state conditions (regarding

the airflow field and the room fabric surface temperature).

For each case, the first step was to start the ventilation system to condition the test
room; the data acquisition system was also switched on to trace the temporal variation of
room air temperature. In order to achieve steady room air conditions, data collection took
place 5~10 hours later, depending on the supply air conditions, outdoor air temperature,
and the internal heat load density level. At all the measurement points, a temperature
variance less than 0.1 °C within a half hour duration was considered as the indication of

reaching steady state.
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Supply air T Inner surface Extra Heat
Case No. System type (Scl:tpPZint) F temperature source Presence
1 UFAD 21°C 242 °C No
2 UFAD 19 °C 23.5°C No
3 UFAD 21 °C 25.5°C Yes
4 MS 20°C 248 °C No

¥ The air temperatures at the supply diffusers deviated from the set-point temperature in the AHU,
due to the heat exchange between the supply air and the plenum envelop.

Table 4.3: Experimental conditions for the designed cases

4.2.2 Experimental facilities with passive swirl diffusers

Grille-type diffusers are the commonest type of air supply terminals in practice, and
the modeling of them has been substantially treated in previous CFD studies in the indoor
domain. Passive swirl diffuseré have gained momentum in office building applications
recently, and two advantages are frequently associated with such diffusers. Firstly, the
occupant can have direct control over the amount of air supply by rotating the face of a
swirl diffuser. Secondly, the strong entrainment effect produced by swirling air discharge
is often claimed to be a remedy to local draft, especially in the case of UFAD systems.

Unlike grille-type diffuser, the modeling of swirl diffusers in CFD simulation is
usually considered a challenge. Therefore, this topic is addressed in the current study.
This objective was realized with the help of measured data provided by Cermak and
Melikov (2005) for a mock-up office served by passive swirl diffusers (both ceiling and
floor mounted).

In this case, a 4.80 mx5.40 m mock-up office was located within a larger enclosure
maintained at a similar temperature, to minimize the temperature gradient (heat transfer)
across the office wall assemblies. The mock-up office consisted of two fully-furnished

workstations, and each of them accommodated a breathing thermal manikin in business
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attire. Figure 4.7 shows the configuration of the mock-up office. 4 passive swirl diffusers
with diameters of 200 mm (TROX, type FBM-3-EU-K/200-SM) were installed in the
raised floor. Alternatively, conditioned air could be also introduced to the test room
through a ceiling mounted swirl diffuser (TROX, type RFD-R-D-US/250), which had a
face diameter of 350 mm. With either UFAD or MS, air was extracted from 4 circular
return vents at ceiling level.

During this experiment, in addition to velocity and temperature measurements, tracer
gas was injected into the test room in order to compare the ventilation efficiency of the
two ventilation systems. Rectangular grid tubing, as the dosing apparatus, was designed
to release CO, tracer gas uniformly over the floor area. This was in an attempt to mimic
the emissions from the floor covering material. In this test room, the fabric assemblies,
insulation levels, internals heat gains, and contaminant emission rate are typical for

offices. The experimental conditions inside the chamber are briefly summarized in Table

4.4.

Figure 4.7: Configuration of workstations and manikins (Cermak, 2004)
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Condition Description
Room dimension (m) (LxWxH) 4.8x5.4%2.6
Ventilation system UFAD/MS
Wall temperature ("C) 25
Supply air temperature (°C) 18
CO; concentration in supply air 400
(ppm)
Overall supply air flow rate (L/s) 80
Dose of tracer gas CO, (mL/s) 24
Breathing thermal manikin 2x75
Computer tower 2x74
Heat gain from heat sources (W) Computer monitor (CRT, 17) 2x70
Desk lamp 2x55

Ceiling light fixture 6x6

Table 4.4: Conditions in the environment chamber with swirl diffusers

4.3 CFD Models

4.3.1 CFD models of test rooms

Two prototype CFD models of the above test rooms (with both MS and UFAD system)

were created in Airpak (see Figure 4.8 and Figure 4.9). The models include the air

terminals, the furniture, the heat sources, the occupants (or thermal manikins), and the

contaminant sources (in the case with swirl diffusers).
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\Ceiling diffusers

Figure 4.8: Prototype CFD model of the mock-up office with grille-type diffusers

Figure 4.9: Prototype CFD model of the mock-up office with swirl diffusers

The following assumptions were made when creating the models:

o The domain boundary was placed at the internal surfaces of the test room envelop
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assemblies, thus the solid masses of fabrics were excluded from the computational
domain; the influence of surrounding thermal conditions was represented by the
inner surface temperatures at exterior walls.

o Zero infiltration/exfiltration rates were assumed, as the test rooms were tightly
sealed.

o No humidity data was provided in the mockup-office with swirl diffusers, so 40%
was assumed to be the relative humidity in the office when calculating the thermal

comfort.

4.3.2 Modeling the diffusers

Since the room airflow in an office space is primarily driven by air inlet diffusers, it is
important for CFD simulations to accurately characterize the air throw from the diffuser
as well as the penetration and spread of the air jet to other parts of the room. Due to the
large scale differences between the room dimension and the diffuser size, it is often
infeasible to copy the detailed geometric feature of a diffuser into a CFD model. In
essence, the art of diffuser simulation is to abstract the complexities of diffuser geometry
and air throw to a model of reasonable representation, with the goal of generating the
desired airflow pattern (see Appendix A for a literature survey of the issue of diffuser
modeling).

Modeling grille-type diffuser

Since the modeling of grille-type diffusers has been substantially addressed in
previous CFD studies of the indoor domain, no attempt was made in this study to advance
the treatment. A common approach for modeling grille-type diffusers is mimicking the

diffuser using rectangular openings with appropriate effective areas, which was also
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employed in the current study.

Originally, in some investigative simulations, each grille-type diffuser was modeled as
a single perforated panel. When defining the boundary conditions at such diffusers, the
CFD calculations resulted in much lower velocities at the measurement points in
comparison with the measured data. The measurement points were located at the center
of the room (away from the diffusers); therefore, the relatively low velocities estimated
by CFD indicated that this diffuser modeling method underestimated the airflow induced
by the supply air jet. Therefore, the following improvement is required to address this
problem: the face area of a diffuser was resolved into 5 rectangular slots along the short
edge (as shown in Figure 4.10), and various air throw orientations are assigned to each of

the slots. As a result, the entrainment effect was better captured.

!

Figure 4.10: Modeling grille type floor diffusers

Modeling swirl diffuser

CFD simulations were also conducted in this study to address the modeling of room
air driven by swirl diffusers. Some previous studies have been conducted to tackle this
problem. A common approach was to approximate the round supply device by a group of

rectangular segments and a different air throw orientation was assigned to each segment
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(Srebric and Chen, 2002; Lau, 2005).

In the current study, a circular opening was devised to mimic the swirl diffuser face
area. A prototype model of the floor swirl diffuser is shown in Figure 4.11. It should be
mentioned that the ceiling swirl diffuser was simulated using a similar approach. In order
to simulate the vortex-type airflow, the face of the diffuser was divided into six equal-
sized sectors. Each sector shared 1/6 of the total amount of supply air, while the tilt angle
of the air jet varied from one sector to another. In both horizontal and vertical directions,
the azimuths of airflow from each of the sectors were determined based on the discharge

airflow pattern obtained from the smoke visualization (shown in Figure 4.19 below).

Figure 4.11: Modeling floor swirl diffusers

As mentioned in Appendix A, the mesh was locally refined at the supply diffusers by
increasing the grid count number according to the geometric feature and airflow/thermal
states of the objects. For example, for a floor mounted swirl diffuser (diameter = 0.20 m)
supplying air at a flow rate of 80 L/s, the grid count number along the radius was set to

equal to 6, and the total number of cells generated on the surface was 98 cells.

91



4.4 Verification of CFD Simulation: Results and Discussions

The CFD simulation program was assessed for its capacity to predict the temperature,
velocity, and tracer gas concentration (where applicable) profiles in the flow field where
the measurements were taken. The comparisons of the simulated and monitored flow
field provided some interesting observations, which are presented in the subsequent

sections.

4.4.1 MS and UFAD with grille-type diffusers

Simulations covering the four cases listed in Table 4.3 were performed with the
aforementioned base model. In addition, a decision regarding the turbulence model
selection was required: should the renormalization group (RNG) k-¢ model (Yakhot and
Orszag, 1986) be employed to capture the flow field features or was the indoor zero-
equation model (Chen and Xu, 1998) adequately accurate? Such a decision also
considerably affected the computational effort; therefore, a number of exploratory
simulations were performed to examine the applicability, accuracy, and efficiency of
these two turbulence models.

RNG k-¢ model vs. indoor zero-equation model

Both the RNG k-g model and the indoor zero-equation model were implemented for
all the four cases listed in Table 4.3. The computation platform for the CFD simulation
was a dual-processor Pentium IV workstation (Dell Precision 670) at 3.4 GHz speed.
When using the RNG k-g model, the CPU time required for a steady-state simulation to
reach convergence was about 17 hours; in the case of the indoor zero-equation model, the
computational time was reduced to approximately 5 hours. This is understandable as the
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indoor zero-equation model does not require the solution of transport equations for the
turbulent kinetic energy (k) and the dissipation rate of turbulent kinetic energy (€).

Figure 4.12 plots the predicted (by both turbulence models) airflow patterns in the
transverse plane in the middle of the chamber (x = 3) for case 1. The vertical profile of
the axial jet velocity is plotted in Figure 4.13, which demonstrates the decay tendency of

the supply air jet above the floor supply diffuser.

The airflow patterns (Figure 4.12) clearly demonstrate that the CFD predictions are
sensitive to the turbulence modeling method being used. With the indoor zero-equation
model, the discharged air jet decays faster when approaching the ceiling level: the
centerline jet velocity at the height of 2.3 m is 0.23 m/s (see Figure 4.13) while, the
predicted velocity at this point was found to be at 0.6 m/s in the simulation results of the
RNG k-¢ model. The latter is very close to the actual measured value of 0.62 m/s (see
Figure 4.13). Such a high terminal velocity (0.62 m/s) indicates a diffuser throw greater
than the height of the room, and this also explains the high velocity occurring in the

upper region of the room, which is to be discussed later on.
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Figure 4.12: Predicted airflow pattern (casel): a. with the RNG k-¢ model; b. with

the Indoor zero-equation model

94



Velocity variation with height above diffuser

25
21 \¢
E 15 4+ ¢ mea
_-S * —&— pred by Zero
2 17 ~A—pred by RNG
05 +
0 t + f ; }

0 0.5 1 1.5 2 25 3
Velocity (m/s)

Figure 4.13: Vertical profile of axial jet velocity (case 1)

In addition, Figure 4.14 and Figure 4.15 present the predicted velocity and
temperature results (by both the RNG k- model and the indoor zero-equation model) at
the four measurement locations for case 1, and the measured data are also presented for
comparison purpose. As can be seen from these figures, at all the measurement positions,
RNG k-¢ model produced relatively low air temperatures (about 0.6 °C lower than the
experimental data), while the indoor zero-equation model overestimated the air velocities.

Two reasons may attribute to the above phenomena.

1. Prescription of x,

Strictly speaking, the RNG k-¢ model is only valid for fully turbulent flow; however,

weakly turbulent or even re-laminarized regions are often encountered in room air

domain (especially in those regions remote from the supply diffusers). With RNG k-¢
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model, the turbulent viscosity x, (Pa‘s) was calculated by

£

H, (4' 1)

where C, = 0.085 is an empirical constant, p is the density of air (kg/m®), k is the

turbulent kinetic energy (m%/s?), and ¢ is the dissipation rate of turbulent kinetic energy

(m?/s?).
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Figure 4.14: Velocity results (casel): measurements vs. predictions
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Figure 4.15: Temperature results (casel): measurements vs. predictions

From this equation, it can be seen that the low kinetic energy dissipation rate in the
weakly turbulent regions may lead to over-prediction of the turbulent viscosity and thus
result in low velocities. Therefore, the RNG k-¢ model failed to predict the recirculation
in some remote areas (Figure 4.12a). This contrasts with the situation with the indoor

zero-equation model—local small recirculation was predicted in the upper right corner of
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the room and near the right wall (as shown in Figure 4.12b). With the indoor zero-
equation model, the turbulent viscosity is derived from,

K, =0.03974pV1 (4-2)
where the local turbulent viscosity is related to the local mean air velocity ¥ (m/s) and a
length scale / (m). The length scale here was chosen as the distance from the nearest wall.

Here, the turbulent viscosity and thus the turbulent diffusion of momentum, is
proportional to the local time mean velocity. It can thus deal with the weakly-turbulent
regions better—the relatively low velocities would help to avoid the over estimations of
4. This also provides explanation of the observation that the indoor zero-equation model
produced a faster decay of the air jet from the diffuser (shown in Figure 4.13), since the
high local velocity in this region would result in large values of turbulent viscosity and
amplify the decay tendency.

Regarding this, the u/u ratios (¢ is the molecular viscosity) near the four side walls
(where flow can be characterized as weakly turbulent or relaminarized) predicted by
these two models were extracted from the simulation results, which are quite revealing:
the RNG k-¢ model estimated an average u/u ratio of 192, whereas a much lower
number—about 57.5—was predicted by the indoor zero-equation model.

2. Log-law wall function with the RNG k-g& model

Another source of the potential modeling errors exists in the near wall treatment. It is
worth mentioning that the log-law wall function was introduced to bridge the gap
between the wall surface and the near-wall grids when implementing the RNG k-& model
(Launder and Spalding, 1974). Such a near wall treatment is based on the logarithmic

profile approximation of the zero-pressure-gradient flow in the fully developed boundary
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layer (see Appendix A for details).

However, Chen et al. (1990) claimed that the boundary layer in a room airflow field
(driven by diffusers) might deviate from that of a zero-pressure-gradient flow and thus
can not be perfectly characterized by the same profile approximation. Previous studies
indicated that the log-law wall function might introduce significant errors in the estimates
of convective heat transfer between room air and solid surfaces (Chen and Jiang, 1992;
Niu and vander Kooi, 1992; Chen, 1995; Beausoleil-Morrison, 2000). Furthermore, the
erroneous surface convection prediction would influence the airflow calculation due to
the presence of the temperature term in the momentum equations. Previous studies also
stated that the surface convection predictions from wall function were highly sensitive to
the nature of room airflow (natural convection or forced convection) and the placement
of the next-to-wall grids. Therefore, the log-law wall function may have caused errors in
the predicted temperature and velocity in the current case, as seen in Figures 4.14 and
4.15.

In contrast with this, the indoor zero-equation model was applied to the near-wall
regions directly, and the local convection coefficient /. (adjacent to the wall) was

calculated from the turbulent viscosity x;,

h, = Hog Cp _HTH Cp (4-3)
Pr Pr

off Y next—to-wall-node off Y next-to-wall-node
where pop is the effective viscosity (Pa-s), Preyis the effective Prandtl number (Pr 7= 0.9),
cp is the specific heat of air (J/KgK), Ynext-to-wall-node 1S the actual distance from the nearest
wall/surface to the next-to-wall grid (m), and u is the molecular viscosity (Pa-s).

It can be seen that 4, is proportional to viscosity (and thus proportional to local time

mean air velocity). Previous research demonstrated that this approach was deficient at
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representing the thermal boundary feature in the room air domain (Beausoleil-Morrison,
2000). This might be one of the reasons that the indoor zero-equation model could not
predict the indoor thermal and airflow behavior here (as illustrated in Figures 4.14 and
4.15) with adequate accuracy.

Additional evidence was found in case 3 (shown in the subsequent section). Two
extra heat sources (500 W each) were switched on in case 3, which increased the internal
heat load density in the chamber from 30.3 W/m? (in casel) to 65 W/m® When
comparing the predicted air velocity and temperature with measured data, the RNG k-¢
model was found to have underestimated both the air velocity and temperature
throughout the computation domain under the test conditions; while the indoor zero-
equation model performed better than the RNG k-¢ model, producing slightly higher air
velocity and temperature than the measured values (that is, it overestimated the heat
transfer and air movement when the heat load density was high).

Given the discrepancies associated with the RNG k-g¢ model (in conjunction with log-
law wall function) and the indoor zero-equation model in this study, it is clear that further
improvement regarding the turbulence modeling of room air is necessary. Though
numerous alternative modeling approaches are available (e.g., low Reynolds number k-¢
model), they have not proven to be universal replacements for the two models discussed
above, due to stability issues and excessive computational requirements.

Consequently, the performance of the RNG k-¢ and the indoor zero-equation models
was found to be case specific (that is, sensitive to the nature of the flow and the heat load
density in the domain), it can’t be concluded that one model would always perform better

than the other. When taking the CPU time consumed by these two models into
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consideration, if the indoor zero-equation model generated reasonably good predictions,
it would provide considerable benefits to the simulation-based optimization method under
consideration. Accordingly, for the following cases with perforated grille type diffuser,
the predicted results presented here were obtained from the indoor zero-equation model.
Results from cases 3 and 4

In Table 4.3, when taking case 1 as the reference case, it could be observed that:
1). All the other conditions in case 2 were almost identical to those in case 1, except that
the supply air temperature in case 2 was 2 °C lower than that in case 1; therefore,
comparison of the results obtained from cases 1 and 2 demonstrated the influence of
supply air temperature on the room air.
2). Two hot plates (500 W each) were switched on in case 3, which increased the internal
heat load density from 30.3 W/m? (in casesl, 2, and 4) to 65 W/m®. The other operating
conditions in case 3 were maintained close to those in case 1.
3). The operating states of case 4 and case 1 (e.g., wall surface temperatures, air delivery
flow rate, and internal heat strength) were almost identical, except that in case 1 the
conditioned air was supplied vertically up at 21 °C through floor grilles, while in case 4
air was delivered at 20 °C from the ceiling inlets (free openings) at an inclined angle of
30° to the side where the occupant was sitting,.

The results obtained from cases 3 and 4 are presented next. The results for case 2 are
not presented here due to the similarity of airflow pattern and temperature distribution
observed from case 1 and case 2. Figures 4.16 and 4.17 present the measured and
predicted velocity and temperature profiles at the four pole locations in cases 3 and 4,

respectively.
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Figure 4.16: Velocity results (for case 3 with high heat load)

Solid line: measurements, dotted line: predictions
From Figure 4.16, it can be seen that for case 3 (with UFAD and high heat load),
relatively low air velocities can be observed at elevations above 1.1 m near measurement
points 3 and 4 (corresponding to areas close to the extra heat sources). The influence of
extra heat sources on air velocities near points 1 and 2 was trivial. In case 3, the increased

temperatures at all 4 measuring points (relative to the thermal states in case 1) proved that
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the air was warmed up throughout the room by adding the heat sources.
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Figure 4.17: Temperature results (for case 3 with high heat load)

Solid line: measurements, dotted line: predictions
It also can be seen that numerical results do not perfectly agree well with the expected
velocities and temperatures near the 3rd and 4th pole locations in case 3. Though the
anemometers and thermal couples were not free from measurement errors (particularly at

low velocity), the over-predictions of airflow and temperatures indicate that the CFD
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calculations in this case may have amplified and overestimated the impact resulting from

the hot plates (especially at point 4, which was the closest to the hot plates).
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Figure 4.18: Normalized velocity results (for case 4 with MS)

Solid line: measurements, dotted line: predictions
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Figure 4.19: Normalized temperature results (for case 4 with MS)

Solid line: measurements, dotted line: predictions
Generally speaking, the simulated results agreed reasonably well with the
experimental data for case 4 (with MS system), where the room air was well mixed. For
all four measurements locations, the magnitudes of temperature and velocity readings
were found to be close to each other (indicated by Figure 4.17).

It is worth noting that the air throw from the ceiling terminals is heading toward the
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right side of the room, and the measurement points are located on the other side of the
room, thus relatively high air temperatures and low air velocities were recorded at the
four measurement points in case 4. It is very interesting that temperature stratification can
be observed in case 4 with ceiling mounted MS. This might be due to the near-stagnant
flow regime near the measurement points (demonstrated by the low velocities near all the

four measurement points).

4.4.2 MS and UFAD with passive swirl diffusers

CFD simulations were also performed to examine the performance of passive swirl
diffusers, with both MS and UFAD system. Elaborate measurements with regard to the
airflow pattern near the diffusers and the vertical profile of temperature, air velocity, and
tracer gas (CO,) concentration in the space were provided by Cermak (2004), satisfying
the desire for verification.

As illustrated in Figure 4.18, the mock-up office where the measurements were taken
was equipped with a floor swirl diffuser at each of the four corners of the room, or
alternatively, conditioned air could be delivered through one overhead round diffuser

located at the center of the room.
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Figure 4.20: Measurement points and air terminals

In the case of UFAD system, data were collected at the 5 pole locations labeled as A,
B, C, D and E throughout the room (as shown in Figure 4.18); whereas the measuring
points were limited to A and B in the cases with MS. The measurements of temperature,
velocity, and CO2 concentration were taken using sensors installed along each pole at
various heights. The experimental facilities and measurement design were thoroughly
documented by Cermak (2004). As introduced earlier, prototype CFD models were built
to mimic the actual geometry, the thermal/airflow boundary inputs, and the CO, dosing
system as well.

Before exploring the temperature, velocity, and tracer gas concentration results, let us
first take a look at the flow pattern of the discharged air jet in the vicinity of diffusers.
Airflow pattern created by swirl diffuser

As previously mentioned, special treatment and refinement were integrated into the

modeling of the swirl diffuser. This modeling method could be credited with reliability
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only when it can capture the feature of airflow pattern.

Figure 4.21: Air discharge from floor swirl diffusers: smoke visualization vs.

predicted particle traces

P

Horizontal coordinate (m)

Figure 4.22: Air velocity contours: measurement (left) vs. prediction (right)

Figure 4.19 provides a comparison between the smoke visualization and predicted
airflow pattern (described by particle traces), demonstrating close agreement between the
numerical results and the expectations. In Figure 4.20, the distribution of air velocity
(both predicted and measured) is plotted. In this circumstance, the diffuser delivered 20

L/s of conditioned air (Tgyppry = 20 °C) into the room. As can be seen from Figure 4.20, an
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air throw height of ~1.0 m and a clear zone with diameter of ~0.4 m was produced. Air
throw height and clear zone are defined as the vertical distance and the horizontal
distance from the centre of the diffuser where the supply air terminal velocity degrades to
0.25 m/s, where the disturbance due to excessive airflow is considered to be negligible.

The discharge airflow pattern and velocity field demonstrated in Figures 4.19 and
4.20 are both predicted by the RNG k-¢ model. Simulations with the indoor zero-equation
model were also performed; however, it was found that the indoor zero-equation model
was deficient at capturing the swirling behavior and the entrainment effect. Thereafter,
the RNG k-¢ was employed in the simulation cases with floor-mounted swirl diffusers.
Profiles of velocity, temperature, and CO; concentration (with UFAD)

When the UFAD system was in service, data were collected at poles from A to E. The
predicted velocity and temperature profiles, obtained from the RNG k-¢ model, are
presented comparatively with those in-situ readings. Data was collected by a

measurement station consisting of 16 omni-directional thermal anemometers. The low

velocity anemometers had an accuracy of +0.02 m/s within the measurement range of

0.05 m/s to 1 m/s; while the temperature measurement accuracy was 0.3 °C.

The velocity, temperature, and normalized CO, concentration results are plotted in
Figures 4.21, 4.22, and 4.23, respectively. The graphs also present experimental results

for comparison purpose to demonstrate the accuracy of numerical predictions.
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Figure 4.23: Velocity profiles (UFAD with swirl diffusers)

Solid line: measurements, dotted line: predictions
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Figure 4.24: Temperature profiles (UFAD with swirl diffusers)

Solid line: measurements, dotted line: predictions
It is worth mentioning that the CO, concentration results was presented here in a non-
dimensional form (the reciprocal of contaminant removal efficiency E.), written as

co(-)= 1 (c ~ Couwply ) (4-4)
E c c
sup ply

c return -
where c is the CO, concentration at points of interest, c,,p; is the CO, concentration in
the supply air, which was set to at 400 ppm during the measurement, c,en,n is the CO;

concentration in the return air, which was to be determined from CFD calculation.
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Figure 4.25: Normalized CO; concentrations (UFAD with swirl diffusers)

Solid line: measurements, dotted line: predictions
Generally speaking, the simulation matches the measurements reasonably well.
Relatively large discrepancies can be found in the velocity results, which are still
tolerable. It should be noted that, when the measured velocity goes below 0.05 m/s,
inherent measurement uncertainties associated with the instrument could not easily be
identified and thus no attempt is made here to explain these discrepancies.

Relative to the experimental data, CFD simulation predicted relatively high velocities
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and lower temperatures and CO, concentrations at some spots in the lower part of the
room (especially at measurement points C and E). However, the simulation results
seemed to be logical, since it is understandable that high velocity, low temperature, and
low CO, concentrations would occur in the vicinity of the floor diffusers. Taking
measuring point D as an example, a high CO, concentration was predicted by CFD. The
location of sampling point D may explain these numerical results: point D was located
very close to a CO; injection spot and remote from the supply diffusers (the diffusers
were located at the four corners of the room, whereas point D was placed in the center
front); therefore, high CO, concentration at this point was inevitable but this could not be
seen from experimental data for unknown reasons.

Under the test conditions, the characteristics of the airflow produced by the UFAD
system with passive swirl diffusers can be summarized as: at the lower levels in the room
(below the elevation of 1.4 m), relatively low temperatures and high air velocities were
produced; while in the upper region of the room (above 1.4 m), trivial variations of air
velocity and temperature with height indicated the existence of an upper uniformly-mixed
zone. Temperature stratification with the magnitude of 1.5~2.0 °C can be observed within
the space.

Profiles of velocity, temperature, and CO, concentration (with MS)

When the ceiling swirl diffuser was in operation, measurements were taken at
sampling pole locations A and B. Numerical experiments were performed to determine
the reliability of the indoor zero-equation model and the RNG k-¢ model for airflow
simulations with the swirl type MS. The predicted results obtained from both models are

presented in Figures 4.24 and 4.25 respectively, and measured data are also presented for
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comparison purposes.

As can be seen from these figures, both the indoor zero-equation model and the RNG
k-¢ model have produced encouraging results, except for the velocity prediction at pole B,
where the air movement was overestimated by the indoor zero-equation model and
underestimated by the RNG k-¢ model. But the reason for the high velocity readings in
the measured data alone pole B could not be determined, as pole A and pole B were
located symmetrically with respect to the supply diffuser; however, it was surprising that
the magnitude of velocities detected at pole B was 0.07 m/s higher than those at pole A.
Since the discrepancies resulting from the two turbulence models were found to be
comparable in this case, it would be reasonable to choose the indoor zero-equation model
to analyze the flow field driven by a ceiling swirl diffuser in this test room. (It is worth
mentioning that, in some other cases with multiple ceiling swirl diffusers (those cases
designed for preparing ANN training data pairs), the indoor zero-equation model ended

up with divergence and thus was replaced by the RNG k-¢ model.)
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Relative to the results obtained in the case of UFAD with swirl diffusers, the
characteristics of the flow field resulting from ceiling mounted swirl diffuser had the
following features: with MS, the room air velocity, temperature, and CO, concentrations
do not significantly vary with height; no temperature stratification could be observed in
the flow field driven by the ceiling mounted swirl diffuser. The implication would be that
the room air was well stirred and the physical quantities were uniformly distributed
throughout the room. Regarding these observations, the experimental data were found to

be consistent with CFD predictions.

4.5 Closing Remarks

As stated in the literature and in Appendix A, CFD simulation has inherent modeling
and numerical errors. This necessitates comprehensive verification of CFD simulation
results with field measured data. This chapter has described the verification treatment,
which was based on experimental work carried out by the author and the data provided
by another research group (Cermak and Melikov, 2005). Data collected from two full-
size office type experimental chambers were used for verification, and both test chambers
contained UFAD and MS systems. Grille-type and passive swirl diffusers, two types of
diffusers commonly used in office spaces, were studied.

This chapter also proposed a simplified modeling approach to simulate the behavior
of swirl diffuser. It was found that the predicted airflow pattern, the air throw height, the
size of the clear zone, and the velocity distribution near the diffuser agreed closely with
the smoke visualization and the expected velocity field. The validity of this modeling
approach could thus be justified.

To assess the credibility of the CFD models created for the test rooms, data regarding
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the vertical profiles of velocity, temperature, and tracer gas (CO,) concentration (in the
case with swirl diffusers) were employed as the objective quantities for verification.
Comparisons between the experimental data and simulation results demonstrated
satisfactory agreement, thus giving confidence in the modeling and numerical approaches
adopted by the present CFD calculations.

Pilot CFD simulations were performed employing both the indoor zero-equation
model and the RNG k-¢ model. Aside from the case of UFAD system with multiple swirl
diffusers, the indoor zero-equation model had produced comparable accuracy and saved
substantial CPU time, in comparison with the RNG k-¢ model. Given this, the indoor
zero-equation model has been used hereafter to analyze the flow field resulting from
UFAD and MS with grille-type diffusers and MS with one swirl diffuser; whereas, in the
cases with multiple ceiling/floor mounted swirl diffusers, the RNG k-¢ model was
employed, since the indoor zero-equation model failed to produce encouraging results.

The validated cases presented in this chapter will serve as the baseline cases for the

ANN training/testing data generation and optimization work hereafter.
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CHAPTER 5

OPTIMIZATION OF VENTILATION SYSTEM DESIGN AND
OPERATION IN OFFICE ENVIRONMENT: IMPLEMENTATION
AND RESULTS

5.1 Introduction

Chapter 2 put forward a CFD simulation-based optimization scheme that was claimed
to be suitable for the optimization of ventilation system design and operation in office
environments. Such an optimizer is targeted at improving the occupant’s sense of thermal
satisfaction and IAQ with minimum energy inputs, and this objective can be realized by
properly adapting the design measures and operational states of ventilation system in
response to the variance in the office’s thermal and airflow conditions.

Appendix A and Chapters 3 to 4 have addressed such topics as the theoretical basis of
CFD, assessment of office indoor environments, and the applicability of CFD for
simulating office indoor environments in some baseline cases. The current chapter builds
on this foundation and sets out to demonstrate the implementation and application of the
CFD simulation-based numerical optimization method.

Section 5.2 puts forward how to establish an ANN model—a relatively inexpensive
model for response surface approximation (RSA), by using the data obtained from
extensive CFD simulations. Such a low fidelity model could replace CFD to compute the
objective function and constraints with sufficient accuracy when implementing GA
optimization; as a result, the computational costs could be significantly decreased. The

training data preparation and ANN model training and testing are also presented in detail
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in this section. Following this, the development and implementation of ANN-embedded
multi-variable GA are illustrated in Section 5.3. For the current problem, the objective
function was constructed to aggregate and weight indicators such as PMV (for thermal
comfort assessment), &, (for IAQ evaluation), and energy usage for cooling purpose and
supply fan operation. Sensitivity analysis was performed in advance to determine the
appropriate weighting factors in the objective function, and the results are presented in
Section 5.3. Under various office thermal/airflow conditions, the optimization method
was applied to adapt the design parameters and operational states of ventilation systems
to realize the research objectives. The optimization results are presented in Section 5.3.
Finally, closing remarks are made in Section 5.4.

It is worth mentioning that the validity and effectiveness of this ANN-based GA
optimization method is also demonstrated through an example searching for the global
minimum of a classic multi-modal optimization problem (Rosenbrock’s function), as

presented in Appendix B.

5.2 ANN Training and Testing

Recalling the statements in Chapter 2, it is clear that the validity and efficiency of
ANN for RSA is critically dependent on the quality of training data sets, the network
topology, and the training method. Issues other than the training data preparation have
already been addressed in Chapter 2; therefore, how to generate representative and
holistic data pairs by performing CFD simulations is put forward before the ANN training

and testing are presented.
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5.2.1 Data pairs preparation for ANN training

Inputs and outputs for ANN

Influential parameters summarized in Chapter 3 (see Table 3.2) were chosen as the
simulation parameters for the CFD study and thus as input variables to the ANN model.
These input variables span a broad range of thermal and airflow parameters, including
inner surface temperature, internal heat load density, indoor contaminant emission rate,
ventilation system type, diffuser type, number of diffusers in office, distance between
diffuser and occupant, distance between return vent and contaminant source, as well as
supply air temperature and flow rate. It is worth mentioning that the influence of outdoor
air temperature on the indoor flow field is characterized by the inner surface temperature,
thus the outdoor air temperature is excluded from the input matrix. Also, the outdoor air
flow rate is controlled to maintain the CO, concentration in the supply air at a constant
level (400 ppm).

Since there were limited options for the ventilation system type, diffuser type, and
number of diffusers, these three parameters were not treated as individual input in the
initial layer of the network. Instead, an input variable (referred to as “system
configuration variable”) was devised to represent a particular system configuration that
could be characterized by a combination of these three parameters. For instance, when
“system configuration variable” was set to one, it denoted the UFAD system with two
grille-type diffusers; when this variable was set to 2, it represented the MS with 1 swirl
diffuser, and so on. To sum up, this resulted in a neural network containing 8 input
variables.

The outputs of ANN include those objective indices introduced in Chapter 3. Indices
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such as PMV, head-to-ankle temperature difference (ATwuecadmoankic), equivalent
temperature (ET) variation (between the left-hand side and right hand side of the
occupant), and local air velocity were used to assess the thermal comfort level; CO,-
based ventilation effectiveness (e,) was used for IAQ evaluation; and fan power input
(Efan) and cooling energy requirement (Eqooring) are taken into consideration to account for
energy consumed by ventilation. Accordingly, each ANN model contains seven output
variables.

Problem associated with training data preparation

Quality of training data is one of the key issues affecting the learning ability of a
network. In order to improve the generalization performance of the network, it was
preferable to train the network with a large number of training data pairs that can cover
the full ranges of design parameters. However, it was evident that the larger the volume
of training data, the longer it would take for the training process. On top of this, it should
be noted that the training data were prepared by performing CFD simulations, too large a
volume of training data would thus result in excessively high computational costs. As a
result, due consideration should be given to the issue regarding how to generate sufficient
but limited training data points in order to ensure the quality of network training on one
hand and avoid excessive CFD case studies on the other hand.

A common approach to design numerical experiments (for data generation in this case)
is to vary one variable at a time and keep the other variables at constant values, repeating
the process for each variable. This would create a case pool of size NX, where N is the
resolution of the variables and K is the total number of variables (here K = 7). It is clear

that, as 7 inputs are under consideration, even a low level resolution would result in a
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large number of case studies. Consequently, care was taken to improve the design of
numerical experiment and shrink the number of cases to be studied.

The concept of factorial design (Montgomery, 1976) is often introduced to address
such an issue. Originally, factorial design theory was applied to design the parameters of
physical experiments, By using a minimum number of experiments, it enables the
assessment of the effects of two or more parameters and their interactive effects on the
objective variables. When performing factorial experiments to identify the influential
parameters, it is typical to select only two values of each variable (that is, NV is set to 2)—
a representative high value and a typical low value over the full range. Then this is a so
called 2% factorial experiment. Therefore, if the principle of 2¥ factorial design were
adopted here, it would have resulted in 27 = 128 cases to be studies. However, this was
based on the idea that each of the input variables can be only set to two possible values,
which would inevitably degrade the learning ability and generalization capability of the
network, especially around the intermediate levels of the input variables. In this study, it
was necessary to introduce a new approach for numerical experiment design into the
context of the current study.

Latin hypercube sampling

The Latin Hypercube sampling (LHS) method was used to generate the distribution of
simulation parameters in the numerical experiment. After the original paper (McKay et al.,
1979) where LHS was proposed, it was used widely both in engineering and in risk
analysis. LHS is sometimes referred to as a deterministic simulation of computational
experimentation. This statistical method is targeted at generating collections of parameter

values from an allowable multidimensional distribution.
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Essentially, LHS selects random sampling points for each parameter over its entire
range in a stratified manner. With this method, N sets of design points are generated by
projecting individual variables onto N different levels. The points for each variable are
determined randomly and independently. As a result, the finite samples produced can
reasonably represent the overall uncertainty of the inputs. Taking a problem with two
variables and 5 design points as an example, the square grid containing the sample points
is a Latin Square, which is shown in Figure 5.1. It is worth noting that there is only one

sample in each row and column.

max x;

X1

min x;

min x> max x»
X2

Figure 5.1: Latin square: S random pairings of 2 variables
A Latin hypercube is a plausible generalization of this concept to an arbitrary
dimension, provided there is only one sample contained in each axis-aligned hyper-plane.
The dimension of the hypercube, in other words, the number of sample points, is to be
determined in advance from the user’s needs. McKay (1988) suggested that more than 2»
sampling data sets (N > 2K, N is also the total number of cases) should be generally

sufficient to solve problems of practical interest.
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As previously mentioned, K was equal to 7 in the present case; that is, we were trying
to sample a function with 7 variables for each ventilation system scenario. Given this, N
was set to 18 in the current case—the allowable range of each variable (as listed in Table
3.2) was partitioned into 18 intervals. The number 18 was chosen here, which was
slightly higher than the recommended number of 2K = 14. As a result, 18 suits of random

sample points were then generated to satisfy the Latin hypercube requirements.

s:lf;‘::f‘ett':r“s g:f‘l: Toppy | Vep | Tswr | DDOT | Emission | DRSE
Ranges | o5 45 | 1522 | 80~160 | 20~35 | 0.5~2 | 0.3~1.5 | 0.5-2.5
Case No: (Wm? | (°C) (L/s) (°C) (m) (L/min) (m)

1 41.722 | 19.118 | 80.683 | 30.708 | 1.263 | 0.558 1.108

2 30.299 | 21.652 | 95.444 | 31.085 | 1.203 | 0.633 | 2.429
3 37.659 | 18.477 | 119.099 | 20.518 | 1.719 | 1.107 | 1.366
4 32238 | 20.696 | 134.791 | 34.283 | 0.525 | 1.087 | 2.013
5 35.121 | 17.795 | 85.164 | 32.622 | 1.871 | 1.213 1.191
6 27.487 | 20.441 | 133.246 | 28.672 | 1.630 | 0989 | 2313
7 38.937 | 15.335 | 99.194 | 26.253 | 0.859 | 1.281 1.893
8 29424 | 15.699 | 127.202 | 29.250 | 0.782 | 0.735 | 0.881
9 44.087 | 18.812 | 120.748 | 24315 | 0.934 | 1.429 | 0.745
10 31.173 | 16.710 | 153.321 | 23.629 | 1.004 | 0367 | 0.716
11 40.983 | 19.561 | 156.847 | 20.985 | 0.706 | 0928 | 0.544
12 34.120 | 17.645 | 91.427 | 31.950 | 1.343 | 0872 | 1.828
13 36.198 | 17.327 | 105313 | 22.215 | 1.152 | 1.466 | 2.121
14 26.402 | 15.876 | 141.379 | 27.259 | 1.918 | 0.678 1.577
15 43.693 | 21.438 | 114.696 | 33.882 | 1.477 | 1.338 1.403
16 40.105 | 20.860 | 143.635 | 25.388 | 1.812 | 0485 | 2276
17 32.849 | 16.374 | 109.765 | 22.727 | 1510 | 0.795 | 0.970
18 25.092 | 19.893 | 148.704 | 28.076 | 0.605 | 0316 | 1.614

1 DDO: Distance from diffuser to occupant
1 DRS: Distance from return grilles to contaminant source

Table 5.1: CFD case designed by LHS (for UFAD system with 4 swirl diffusers)

The sample points (by LHS) of the simulation parameters generated for the UFAD

system with four swirl diffusers are listed in Table 5.1 for demonstration purpose. The
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simulation cases designed for the UFAD system with one/two grille type diffusers, for the
UFAD system with two swirl diffusers, for the MS with one/two grille type diffusers, and
for the MS system with one/two swirl diffusers were generated in a similar way; no
attempt was made to list all the sampling points for those scenarios.

By inserting the obtained sampling data points as the input parameters into the
reference CFD program (validated in Chapter 4), extensive CFD simulations were
performed to predict the corresponding outputs and to create the data base for ANN
training. In conjunction with the baseline cases (in which the measurements were taken),
around 150 training data sets were included into the database.

It is worth mentioning that the variations in the heat load density and in the CO,
emission rate were realized by varying the heat power and CO, generation rate from two
extra heat/contaminant sources added to the space, as shown in Figure 5.2. In addition,
the placements of diffusers and return grilles were varied in the CFD model to adjust the
distance from diffuser to occupant (DDO) and the distance from return grilles to
contaminant source (DRS), while the locations of the occupants and the contaminant
sources were kept unchanged. The displacement extremes of the diffusers and the return
grilles are also illustrated in Figure 5.2 (taking the case of the UFAD system with 4

diffusers as an example).
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Figure 5.2: Extra heat/CO; sources and placement of air terminals

Data preprocessing and postprocessing

ANN training process can be made more efficient when certain preprocessing steps
are applied to the raw data pairs. The networks in this study incorporated the hyperbolic
tangent sigmoid function in the initial/hidden layers and a linear transfer function in the
output layer, and Levenberg-Marquardt and Bayesian regularization were selected as the
algorithms when implementing back-propagation training. Given this network structure
and training scheme, it would be preferable to scale the input and target data into the
range of -1 to 1. Prior to being fed into the network, the input data sets were normalized
in this study by using the maximum and minimum values of respective variables.

_ 2[Input(i, j)—— MinInput(i)] 1
[ MaxInput(i)— MinInpur(i)]

Input(i, ) oy G-

where subscript nor stands for normalized value, i denotes the ith variable, j denotes the

127



Jjth data set (or, the jth observation), MaxInput(i) and MinInput(i) are the maximum and
minimum values of the ith input variable found over all data sets, respectively.

After the training process, the outputs from the network corresponded to the
normalized targets; accordingly, it would be necessary to perform de-normalization
manipulations to scale the outputs back into the original ranges. Such an inverse
operation is straightforward,

Output(i, j) = O.S[Outputw (i, j)+ l]x [MaxOutput(i)—MinOutput(i)]+ MinOutput(i)
(5-2)
where i denotes the ith output variable, MaxOutput(i) and MinOutput(i) are the maximum

and minimum values of the ith output variable found over all data sets, respectively.

5.2.2 ANN training and testing results

An ANN with 30 intermediate neurons in the hidden layer was created, trained, and
tested by using the data sets generated from extensive CFD simulations. When adopting
Bayesian regularization training algorithm to improve the generalization capability of the
network, all the candidate data were used for training purpose. The training algorithm
was considered to reach convergence if both the sum of squared error (SSE) and the sum

of squared weights (SSW) stabilized over certain iterations (as shown in Figure 5.3).
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Figure 5.3: Convergence history of ANN training with Bayesian regularization

The training process with 387 epochs took about 15 minutes to reach the convergence
on a dual-processor Pentium IV workstation (Dell Precision 670) with CPU speed at 3.4
GHz. The SSE at the final stage was found to be 0.0131, which could be translated to a
mean squared error less than 1.9x10™ (as the network contained 7 outputs). Out of the
weights and bias assigned to all the neurons (the network contained 30 hidden neurons, 8
inputs, and 7 outputs and thus results in about 8x30+30x7 = 450 weights; also, bias was
assigned to some of the neurons), 467 parameters (indicated by “#Parameters” in the
above figure) were active and behaved as effective linkage in the final trained network.
In addition to the training error, another indicator can be also used to evaluate the
learning capability of network based on “experience”: the regression of the network

outputs on the corresponding expected outputs (as shown in Figure 5.4).
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Figure 5.4 (a): The linear regressions of ANN predicted PMYV on targets
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Figure 5.4 (c): The linear regressions of ANN predicted €, on targets
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Best Linear Fit: A = (0.998) T + (0.0002686)
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Figure 5.4 (e): The linear regressions of ANN predicted Eg,, on targets
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Best Linear Fit: A = (0.999) T + (0.000737)
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Figure 5.4 (g): The linear regressions of ANN predicted AET on targets

The linear regressions plotted above indicate that the final trained network predicted
the desired outputs with adequate reliability. R stands for regression correlation
coefficient in the above figures. For all 7 outputs from the network, it was found that the
corresponding R values were very close to 1, demonstrating perfect correlations between
the outputs and the target values.

Afterwards, 30 extra cases (the simulation parameters were also generated by LHS)
that were not used for training were fed into the network to test generalization.
Comparisons between the ANN outputs and target outputs for these 30 cases demonstrate
how well the network can span the “unseen” scenarios. Figure 5.5 and Table 5.2 present
the relative errors corresponding to the ANN predictions for these 30 test cases (PMV, &,
Ecooling, and Eg,, are presented here for demonstration purpose), which indicate that the
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average error of the network is less than + 6%. For more than half of the 30 cases, the

relative errors were less than 3.5%. Such a small magnitude of relative error demonstrates

the current network’s convincing capability for generalization and for system response

prediction.
Relative error <35% | £65% | <85% | <10.5%
No. of test PMYV 12 8 7 3
cases when €y 15 12 2 1
errors fall into E cooling 20 4 3 3f
the range Efan 20 6 3 1

1 For one testing case, the relative error associated with the ANN predicted Ecooling Was found to be 15%.

Table 5.2: Relative errors in the ANN test cases
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12 -
10 4 X Q
8 Ox 0]
) o PMV
6 A X O o 0 Ventilation Effectiveness
A Ecooling
J ¥ Efan
4 o o X
2 i
o T T T T T
0 5 10 15 20 25
Number of Test Cases

Figure 5.5: Relative errors of the ANN test cases

5.3 Results from ANN-based GA Multi-variable Optimization

5.3.1 Specification of the objective function

When implementing GA, fitness is evaluated inside the GA computation loops by
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calculating the value of the objective function. The formulation of objective function
(sometimes referred to as cost function) would thus have signification impact on both the
search process and the final results.

The goal of current study was to lower the energy consumed for ventilation as much
as possible and how to provide satisfactory comfort and IAQ in an office space. Given
the thermal and airflow conditions and the contaminant level in the office, these
objectives can possibly be achieved through appropriate selection of the ventilation
system type, the diffuser type, and the number of diffusers, through proper placement of
the supply and return terminals, and through moderating the supply air temperature and
flow rate.

As previously mentioned, PMV, CO, concentration-based &,, and energy input for
cooling load offset and fan operation were selected as the indices to measure comfort,
IAQ and energy usage, respectively. Also, the thermal and airflow states of room air had
to comply with the constraints imposed on the head-to-ankle temperature difference
(ATHeaaToankle), the variation of ET over the occupant’s body, and the local air velocity.
Accordingly, the objective function was prescribed by aggregating and weighting the
above indices into one equation.

J(x)=

ABS(PMY, E,, E i
Min[w,c (Z[——PLA(IV—’—)—D + W, g—"gmﬂ + W, ( Z £ ] *+ Weooing [E——I—g—-J + PT }

cooling max

(5-3)
where X is the input vector, consisting of all the controlled variables including the design
parameters and operating settings of ventilation systems. Subscript i denotes the number

of occupants, as PMV is evaluated separately for individual occupant. Wi, Wigg, Wsun, and
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Weooling Tepresent the weighting factors for thermal comfort index, IAQ index, fan power
index, and cooling power index, respectively.

It should be mentioned that GA in the current case was attempting to minimize the
cost function. Therefore, the first term in the cost function represents proximity of
occupants’ thermal sensation (represented by PMV index) to a neutral value; the second
term reflects the removal of indoor contaminants; the third and fourth terms are targeted
at minimizing the energy consumed by space cooling and supply fan; the last term of the
cost function is a penalty term, which accounts for the aforementioned constraints
imposed on the flow and thermal conditions. PMVyux, €ymasxs Efanmaxs and Ecoplingmax are the
maximum values of corresponding objective variables that can be observed from the
training data, which were used to scale the objective variables into a usable range ([0, 1]
in the current case).

The magnitude of the weighting factors are to be specified by the user according to
personal preference and based on a sensitivity analysis. Different decision-makers will
not have the same goals in system design. For example, when a user is more concerned
about the overall comfort level than IAQ, w, would be set to a higher value relative to
Wiaq; for maximum energy efficiency design, Wi, and weyoing can be set to 1, whereas wy
and wj,, can be set to 0; etc. Results from sensitivity analysis by varying the magnitude of

individual weights are presented in the next section.

5.3.2 Sensitivity analysis—impact of weighting factors on optimization

results

Trade-offs always exist between the attempts to improve air quality/comfort level and

the attempt to reduce energy usage for ventilation. The relative magnitude of weighting
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factors in the prescribed objective function represents user preference as mentioned in
previous section. Appropriate values of such factors can be only determined by fine-
tuning through investigative optimization searches.

Using sensitivity analysis, which is frequently used to identify the influence of input
parameter variations on simulation or experimental results, the following work was
carried out to diagnose the impact of various combinations of weighting factors on the
optimization results.

A hypothetical case for an office equipped with a four-swirl-diffuser UFAD system
was taken as the subject of the sensitivity analysis. In the reference case, the values of
uncontrolled variables were given as: the internal heat load density was 30 W/m>, the
inner surface temperature was 35 °C, and the emission rate of CO, sources was 1.0 L/min;
whereas the controlled variables were set to: supply air temperature was at 20 °C, the
system delivered 80 L/s of conditioned air into the office, and the distance from the
diffuser to the occupant and the distance from the return grille to the contaminant/heat
sources were taken as 1.74 m and 2.3 m, respectively. The above office configurations
and thermal/airflow conditions in the baseline case resulted in PMV value, €y, Ecooling, and
Efn as 0.98, 1.29, 1.83 kW, and 0.1628 kW, respectively.

To assess the sensitivity of optimization results to the variations of weighting factors,
five exploratory GA optimization searches were launched with this base model. The
convergence history of a typical GA search is plotted in Figure 5.6. In each GA search,
the values of particular weighting factors were altered and entered into the objective
function; accordingly, the GA engine was re-started to search for the optimal controlled

variables to minimize the various versions of the objective function. The optimal
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solutions guided by these five combinations of weighting factors were then compared

with the objective indices obtained from the baseline case, demonstrating the relative

improvement.

Table 5.3 illustrates the results obtained from the sensitivity analysis (in the table’s

Improvement column, the positive number represents saving in energy demand or

improvement in comfort and IAQ with respect to the results of the baseline case, and vice

versa). In Table 5.3, w;, wz, ws, and wy stand for Wi, Wiag, Weooling, and wy, respectively.
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As demonstrated by Table 5.3, the optimization results were highly sensitive to the
choice of weighting factors. When the relative magnitude of a weighting factor is
increased and thus the objective function places more emphasis on the corresponding
target term, this target would be enhanced by the optimizer. For example, Weooiing in
Combination B (W3 = Weooiing = 2) was higher than that in Combination A (W3 = Weooling =
1); not surprisingly, Combination B yielded an optimization solution with 30% saving in
cooling energy demand (relative to the baseline case), whereas Combination A required
33% more cooling energy (also relative to the baseline case). The saving in cooling
energy with Combination B was achieved by increasing the supply air temperature
(Tsupply) from 15 °C to 22 °C and by keeping the supply air flow rate (V) unchanged. In
addition, though the Tyl Was increased and Vi, remained the same, the PMV and ¢,
were not compromised in the case with Combination B; this was because the diffusers
were relocated closer to the occupant (DDO = 0.5 m) and the return grilles were moved
closer to the contaminant/heat source (DRS = 0.5 m).

Also, as can be clearly seen from the optimization results guided by weighting factors
Combination A, D, and E, the improvements in PMV were usually achieved at the cost of
increased cooling and fan energy requirements. If the relative magnitude of w, was
strengthened, as with Combination D and E where w; (w,) was kept at 1 while wy (Wiaq)
and w3 (Weooting) Were weakened, the more than encouraging improvements in comfort
level (demonstrated by PMV values close to neutral with Combinations D and E) came
with the price of lower values of ¢, and greater cooling energy demands. The increases in
Ecooling With Combination D and E were due to the increase in overall Vg, (156 L/s with

Combination E vs. 80 L/s in the baseline case) and the drop in Tgppy (17.56 °C with
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Combination D and 15.06 °C with Combination E vs. 20 °C in the baseline case).

Since the interests of current research span all the three issues—thermal comfort, IAQ,
and energy usage, the implications from Table 5.3 are: Combinations B and C appear to
be appropriate choices for weighting factors in the current study. This is because the
optimal solutions guided by these two combinations produced improvements in all the
objective targets, and the improvements in these three aspects are more or less balance.

It is worth noting that the choice of weighting factors is problem dependent, in some
optimization cases with overhead MS, it was found that the combination of wy, = 0.5, wis,

= 0.25, Weooting= 1, and wy,, = 0.5 produced reasonable results.

5.3.3 Optimization case studies

Once the values of weighting factors were determined in the aforementioned objective
function, GA could be then applied for minimization search. When given the value of un-
controlled variables (also included in the input matrix), such as the inner surface
temperature (Tqyf) at exterior walls, the internal head load density, and the indoor
contaminant emission rate, GA will start searching for an near optimal set of control
variables, containing superior system type and diffuser type, appropriate number of
diffusers, better placement of supply and return air terminals, and optimal supply air
temperature and flow rate, with the goal of achieving the research objectives. Typically,
an ANN-based GA search takes 5 to 10 minutes to converge on a dual-processor Pentium
IV workstation (Dell Precision 670) at 3.4 GHz speed.

First case study: varying the internal heat load density

The first set of results presented here demonstrate how the optimization engine adapts

to the variations in the internal heat load density, with the goal of improving the comfort
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level and IAQ and cutting down the energy usage at the same time. The internal heat load
density explored here ranged from 25 W/m® to 45 W/m? which was realized by
increasing the heat generation from the two extra heat sources (as shown in Figure 5.2).

When varying the heat load, the other uncontrolled variables, including the Tgys and
contaminant emission rate, were kept at constant levels—the wall surface temperature
was set to 25 °C and the overall CO, emission rate was fixed at 1.0 L/min. Results with
both the UFAD system and the MS are presented here. The original UFAD system
contained 4 swirl diffusers, and the supply diffusers were located 1.74 m away from the
occupants and the return grilles were 2.3 m away from the extra contaminant/heat sources.
For the original MS (with only 1 swirl diffuser), DDO and DRS were set to be at 0.5 m
and 2.3 m, respectively. Both the original systems delivered 100 L/s of conditioned air at
18 °C. These design parameters and operating states were extracted from the test
conditions in the original experimental chamber (Cermak, 2004), which was designed
and operated by senior building professionals.

Under these conditions, the GA optimization search spanned the realistic ranges (as
listed in Table 3.2) of the controlled variables. The optimizer was allowed to choose
between the swirl-type and the grille-type diffuser and to decide where to place one or
two diffusers in the office. The supply air temperature of UFAD was allowed to vary
between 15 °C and 22 °C; while the supply air temperature of MS could vary between 13
°C and 20 °C. DDO may vary from 0.5 m to 2.0 m and DRS could vary from 0.5 m to 2.5
m.

In the case of UFAD, the weighting factors (Wi, Wisg, Weoolings and wgy,) in the

objective function were taken as 0.5, 0.1, 1, 0.5 (determined from the sensitivity analysis);
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whereas 0.5, 0.25, 1, 0.5 were assigned to these weights in the case of MS. Table 5.4

illustrates how the optimized operational states and design parameters adapt in response

to the variance in internal heat load density. Since the optimizer found UFAD with 4 swirl

diffusers and MS with 2 swirl diffusers performed better than the original system

configurations, the “improved UFAD” here denotes UFAD with 4 swirl diffusers in the

office and the “improved MS” denotes MS with 2 swirl diffusers in the office.

Original Tsuppty (°C) 18
UFAD Veup (L/s) 100
(4 swirl DDO (m) 1.74
diffusers) DRS (m) 23
Internal heat
load density 25 30 35 40 45
Improved (W/m?)
UFAD Tauppty (°C) 20 18.641 | 18.203 18 16.844
d(i‘;ff::;g) Vap (L/s) | 119,550 | 122,300 | 124.600 | 125.540 | 125.670
DDO (m) 1.544 1.343 1.043 | 0936 | 0.693
DRS (m) 1.058 1.033 0.500 | 0.534 | 0.500
Original Tuppy (°C) 18
MS (1 Veup (L/S) 100
swirl DDO (m) 0.500
diffuser) [ DRS (m) 2.300
Internal heat
load density 25 30 35 40 45
Improved (W/m?)
MS 2 Tsupply (°C) 18.981 | 18.231 | 18.115 | 18.057 | 18.000
difsfv‘:;'rs) Vap (L/s) | 120962 | 120.672 | 120.076 | 120.264 | 120.072
DDO (m) 0.631 0.711 0.813 | 0.922 1.077
DRS (m) 1.850 1.505 1.500 | 0.504 | 0.500

Table 5.4: Optimized design measures/operational states vs. heat load density

(Tsure= 25 °C; overall CO, emission rate = 1 L/min)

It can be seen from the above table that the design parameters and operational states of

the ventilation systems responded to the increasing internal heat load (realized by
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increasing the heat generation from the two extra heat sources) in the following ways:

o The supply air temperature of the improved UFAD presented a descending trend
as internal heat load increases.

o Both the improved UFAD and the improved MS delivered a larger amount of
conditioned air (approximately 120 L/s) into the space in comparison with the
original systems (100 L/s) to satisfy the cooling load.

o With both the improved UFAD and improved MS, the return grilles were relocated
closer to the heat sources (as demonstrated by the decreasing DRSs as internal
heat load increased), relative to the original systems.

o With the improved UFAD, DDO was reduced gradually as the heat load increased,
which means the air is delivered in the vicinity of the occupant to offset the
impact of surplus heat; however, this tendency can not be observed with the
improved MS. This may be because, in the latter case, as the two ceiling mounted
diffusers were moving away from the occupants (increase in DDQO), they were
approaching the heat sources and can thus act directly and efficiently on the heat
sources.

The goal of the optimization is to pull PMV closer to a neutral value, to achieve
maximum ventilation effectiveness (€,), and to minimize the energy requirements for
cooling purpose and for fan operation. Figures 5.7 to 5.10 further illustrate the extent to
which the optimal solution can improve the objective indices in these scenarios with
optimal design configurations and operating parameters, by plotting the PMYV, &,, Eccoling,

and Egy, (resulting from the optimized solution) against the internal heat load density.
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Figure 5.7: Optimization results: PMYV vs. heat load density
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Figure 5.8: Optimization results: g, vs. heat load density

145



Ecooling (kW)

25
-—— Original UFAD
g —a— Improved UFAD
—0— Original MS
—8— Improved MS
1.5 1
1 .
0.5
0 ) 1 1 ] 1
20 25 30 35 40 45 50
Internal heat load density (Wlmz)
Figure 5.9: Optimization results: E¢onng vs. heat load density
0.5
—A— Original UFAD
—aA— Improved UFAD
0.4 1 —o— Original MS
—ii— Improved MS
0.3 - - =
:M
0.2 -
0.1 -
O i 1 I T 1
20 25 30 35 40 45 50

Internal heat load density (Wlmz)

Figure 5.10: Optimization results: Eg,, vs. heat load density
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The above figures demonstrate that, in comparison with the original UFAD system,
the improved UFAD system was able to improve the PMV and &, and cut down the Ecooiing
by significant margins (average improvements at 54%, 30.4%, and 6.6%, respectively).
Since the improved UFAD system is supplying 20 L/s more air into the office, it
consumes ~10 % more energy at the supply fan, in comparison to the original UFAD
system. It is worth noting that the magnitude of fan power input (typically at 0.2 kW
under the tested conditions) was much smaller than the cooling energy requirement
(which ranged from 1 kW to 1.5 kW in this case); therefore, the optimizer sacrificed the
fan power to achieve the above improvements in PMYV, &,, and Ecooling; meanwhile, the
overall energy consumption (Ecooting*Efan) Was reduced.

Figures 5.7 to 5.10 also indicate that the improved MS also substantially enhanced
thermal comfort and ventilation effectiveness (improvements at 45.7% and 8.7%,
respectively), and reduced the cooling energy demand by 6.8%. As expected, the
improved MS required 18.4% more energy to drive the supply due to the higher Vg,
(approximately 120 L/s vs. 100 L/s in the original MS).

Second case study: varying the Tq, s

Another series of optimization tasks were performed to demonstrate how the
optimization engine adapted to the variations in the Tgys. The Tgyr varied from 20 °C to
35 °C, at 5 °C intervals in these cases; meanwhile, the internal heat load density and the
overall CO, emission rate were kept at 35 W/m? and 1.0 L/min, respectively. Results with
both UFAD system and MS are presented next. The design parameters and operation
states of the original systems and the improved systems are described in Table 5.5. It is

worth noting that the UFAD with 2 swirl diffusers was shown to outperform the original
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UFAD with 4 swirl diffusers.

Tsupply (OC) 18
Original UFAD Veup (L/S) 100
(4 swirl diffusers) DDO (m) 1.74
DRS (m) 23
Tsurt °C) 20 25 30 35
Improved UFAD Tsuppty (°C) 20.670 18.125 17.484 16.540
(2 swirl diffusers) Vup (L/s) 121.188 119.800 | 118.970 115.670
DDO (m) 1.992 1.999 1.285 0.697
DRS (m) 1.938 1.641 0.511 0.500
Tsupply (OC) 18
Original MS Vup (L/s) 120
(1 swirl diffuser) DDO (m) 0.500
DRS (m) 2.300
Tsurt (°C) 20 25 30 35
Improved MS T suppty (°C) 18.438 18.054 16.730 15.670
(@ swirl diffusers) Vaup (L/s) 120.145 120 120.016 120
DDO (m) 1.861 0.832 0.889 0.621
DRS (m) 2.250 1.750 1.550 0.650

Table 5.5: Optimized design parameters/operational states vs. Tyt

(Internal heat load density = 35 W/m?; overall CO, emission rate = 1 L/min)

Also, the following figures (Figures 5.11 to 5.14) present how the optimal solution
could improve the objective indices under these tested conditions. The PMV, &, Eccoling,
and Eg,, resulting from the optimized solution are plotted against Tgyy. It can be observed
that, relative to the original MS, the improved MS produced more pleasant thermal
conditions (an average improvement in PMV at 50.9%) and better air quality (e
increases by 18% approximately) with a 11% deduction in Ecooling; While the Egy, into the

original MS and the improved MS were almost identical.
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The improved UFAD also resulted in a more favorable PMV and &, (average
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improvements in PMV and &, were at 69.3% and 6.27%, respectively), with respect to the
original UFAD system; however, when the T,r was raised above 30 °C, the improved
UFAD had to consume slightly higher cooling energy (in comparison with the original
UFAD) to satisfy the relatively high cooling requirement (given that the internal heat
load density was set to 35 W/m® here). With both improved UFAD and MS, the
improvements in overall performance were achieved through more appropriate placement

of diffusers and return grilles (see Table 5.5).

5.3.4 Verification of the optimal solutions

Based on the above optimization work, CFD simulations were performed to verify the
preponderance of the optimal solutions. Both the original systems and the improved
systems were re-simulated by applying the working conditions listed in Tables 5.4 and
5.5. CFD simulation results at two operating points are presented next.

Operating point one (T, = 30 °C; Internal heat load density = 25 W/m?; CO;
emission rate =1 L/min)

Figures 5.15 to 5.17 present the CFD simulation results obtained with both the
original UFAD and the improved UFAD at a particular operating point (Tsyr = 25 °C;
Internal heat load density = 30 W/m?; CO, emission = 1 L/min). The operating conditions
of both the original UFAD and the improved UFAD are presented in Table 5.6 and the
performance improvements are also summarized in Table 5.6. In the Ecooling/Efan column,
the “improvement” corresponds to a reduction in overall power (combining Ecoting and

Egn together).
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Ecooling/

System Operation state PMV &y E,.. (kW)
Original UFAD DRS=23m,DDO=1.74m
(4 diffusers) Toupply = 18 °C, Vgup = 100 L/s 042 |1.324] 1.198/0.158

Improved UFAD DRS=1.03 m,DDO=13m
(4 diffusers) | Toppy = 18.64 %, Vap=1223 s | @13 | 1795] 1.110/0.168
Improvement 69.2% | 36% 5.8%

Table 5.6: Operating point 1: original UFAD vs. improved UFAD

The temperature and velocity distributions in the vicinity of the diffusers, the PMV
contour at 1.1 m height, and the CO, concentration contour in a vertical plane near the
occupant are plotted. These figures illustrate the performance improvements resulting
from the optimal design and operating parameters. For example, the improved UFAD can
cool down the space better (as shown in Figure 5.16) and can more efficiently drew the
contaminant (CO;) away from the occupant (as shown in Figure 5.17), and these
improvements can be realized by relocating the diffusers closer to the occupants and
moving the return grilles closer to the extra COy/heat sources (as highlighted in Figure

5.15).
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Figure 5.15: Temperature contour and discharge velocity: original UFAD (upper) vs.
improved UFAD (lower)
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Figure 5.16: PMYV contour: original UFAD (left) vs. improved UFAD (right)
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Figure 5.17: CO; concentration contour: original UFAD (upper) vs. improved UFAD

(lower)
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Operating point two (Ts,s = 30 °C; internal heat load density = 35 W/mz; CcO,
emission = 1 L/min)

Next, Figures 5.18 to 5.20 present the CFD simulation results obtained with the
original MS and the improved MS at another operating point (Tsyr = 30 °C; internal heat
load density = 35 W/m?; CO, emission = 1 L/min). The temperature distribution near the
return grilles, the velocity vectors adjacent to the diffuser, the PMV contour at 1.1 m
height, and the CO, concentration contour in a vertical plane near the contaminant source
and return grilles are plotted. These figures clearly demonstrate the performance
improvement resulting from the optimized design parameters and operating states with
the improved MS. As demonstrated in the CFD simulations results, the adapted MS
reduced the PMYV value at the level of 1.1 m from 0.7 to 0.45, and it delivered fresh air in
the vicinity of the occupants and resulted in low CO; concentrations in the breathing zone.
The operating conditions of both the original MS and the improved MS are presented in
Table 5.7, and the performance improvements are also summarized in Table 5.7. One
thing worth of mentioning is that, in this case with such a high cooling load, the ceiling
mounted swirl diffuser created non-uniform thermal/airflow conditions in the space and
temperature stratification can be observed from Figure 5.18; however, this differs from
the results demonstrated in Figures 4.26 and 4.27, where the temperature stratification

was not noticeable (in that case, the heat load was much lower than in the current case).
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System Operation state PMV &y Eﬁ:?'l;“é(,)
Original MS DRS=23m,DDO=0.5m
(1 swirl diffusers) | Tsuppty = 18 °C, Voup =120 L/s 0.72 1173 | 1.496/0.246
Improved MS DRS=09m,DDO=1.75m
(2 swirl diffuser) | Topps, = 16.73 °C, Vg = 120 Ljs | 048 | 1367 | 1.346/0238
Improvement 33.3% | 16.5% 9%

Table 5.7: Operating point 2: original MS vs. improved MS
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Figure 5.18: Temperature contour and discharge velocity: original MS (upper) vs.
improved MS (lower)
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5.4 Closing Remarks

Chapter 2 built the theoretical basis of the ANN-based GA optimization approach,
and this chapter has described the implementation and results of this optimization
approach, with the goal of realizing the research objectives—improving the design and
operation of ventilation systems in office environments.

This chapter first described the training and testing of ANN models. The performance
of such a low fidelity model for RSA is critically dependent on the quantity and the
quality of training data sets. Since the training data are to be generated by performing
CFD simulations, it was necessary to design the numerical experiment to save computing
time. The LHS method was incorporated to design sufficient but limited CFD cases (to
generate training/testing data pairs), in an attempt to ensure the quality of network
training and avoid tedious practice of CFD simulations. The simulation parameters
obtained from LHS were presented, and the corresponding CFD simulation results
(approximate 150 data pairs) were used for training the ANN models (with the topology
of 8x30x7).

These 150 training data pairs were employed to train the ANN models, and the back-
propagation training with either Levenberg-Marquardt training function or Bayesian
regularization algorithm was implemented. It was found that such training methods led to
smooth convergence of the training process in current case. Furthermore, 30 additional
cases were designed by applying LHS method, and the CFD predictions from these 30
cases were used for the purpose of ANN model testing. By feeding these 30 data sets (not
previously used for training) into the established ANN model, the effectiveness of the

ANN model in responding to “unseen” information could be demonstrated. The perfect
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regressions of ANN predictions on target outputs (training data sets) and the small errors
found with the 30 test cases demonstrated the network’s convincing learning and
generalization ability.

The established ANN model was incorporated into the GA optimization search,
which substantially sped up the fitness evaluation. Originally, one time fitness evaluation
would take 17 hours by performing a CFD simulation (using RNG k-¢ turbulence model),
whereas the ANN-based GA optimizer was able to reach convergence in 5 to 10 minutes
(one GA optimization search would typically invoke fitness evaluation 5000 times).

The optimization results obtained from two series of case studies demonstrated that
the current formulation of objective function, the choice of weighting factors, and the
optimization methodology developed could efficiently and substantially enhance the
performance of ventilation systems in office environments. Relative to the original
ventilation system configurations in the experimental chamber (Cermak, 2004), the
improved ventilation systems (both UFAD and MS) produced favorable PMV values and
higher CO,-based ventilation effectiveness, with less power for cooling, under the tested
conditions.

In response to the variations in the test conditions (e.g., internal heat load density and
inner surface temperature), the adapted ventilation systems improved the overall
performance by modulating the supply air temperature and flow rate, switching to
different air distribution modes (changing the system type, diffuser type, and the number
of diffusers), and relocating the supply and return air terminals to more appropriate
locations.

The optimized controlled variables were inserted back into the CFD model to verify
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whether or not they could result in improvement in the office environment and to
illustrate the degree of improvement. The controlled variables (simulation parameters)
were held unchanged for the original systems, whereas the improved systems were re-
simulated by applying the optimized controlled variables. The more than encouraging
CFD simulation results at two operating points demonstrated the validity of the optimal
solutions and also verified the suitability and effectiveness of the present optimization
method for advancing the design and operation of ventilation systems in office

environment.
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CHAPTER 6

CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE
WORK

6.1 Concluding Remarks

With growing concerns over the impact of the indoor environment on office workers’
well-being and productivity, coupled with the concern over the rising energy costs for
space heating and cooling in office buildings, building designers and researchers have
turned to advanced ventilation systems that integrate flexible and responsive elements.
Such advanced elements as UFAD, passive swirl diffusers, and demand-controlled
ventilation (e.g., CO, concentration-based) pose challenges to system design and
operation.

The stated objective of the present study was to develop a robust and efficient
simulation-based optimization method that may aid ventilation system design and
operation in office space, with the goal of achieving satisfactory thermal comfort and
indoor air quality (IAQ) with minimum energy cost. Such an objective was deemed a
sufficient challenge due to the complexity of design space and operational measures and
the multidisciplinary performance evaluation.

This thesis has described the development and implementation of a simulation-based
optimization process that integrated CFD for simulating the office indoor airflow field,
ANN for computing the objective indices based upon the CFD solutions, and GA as the
optimization engine driving the optimization search. Collectively, these elements have

contributed to the development of a robust, flexible, and efficient optimization tool that
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well suited the analysis of office indoor environment.

The major steps leading to these developments can be illustrated as follows.
Characterizing office built environment

Considering the current research objective, accurate quantitative evaluation of indoor
environment can be only realized by selecting appropriate criteria to assess the issues of
comfort level, IAQ, and ventilation energy costs. Based upon a literature survey and
review of available CFD simulation results, Chapter 3 outlined what criteria are suitable
for the evaluation of comfort and IAQ in ventilated office spaces. Specifically, PMV-PPD
values, equivalent temperature (ET), head-to-ankle temperature difference (ATHeadToAnkle)s
local air velocity in the vicinity of the occupant, CO, concentration distribution, and CO,-
based ventilation effectiveness were extracted from the literature as the criteria for indoor
environment assessment in this work.

Previously, it has been uncommon to calculate the ventilation energy usage using
CFD-predicted data exclusively; therefore, Chapter 3 also put forward how to derive the
Jan power input (Ef.n) and the space cooling energy demand (Ecooling) based on the supply
air conditions, outdoor air conditions, and the return air states. The supply air conditions
and outdoor air conditions are CFD simulation input variables, whereas the return air
states are to be predicted by the CFD program.

The adoption of these performance assessment indices enabled the current study to
provide a holistic evaluation of thermal comfort, IAQ, and ventilation system energy
efficiency.

Application and verification of CFD simulations of ventilated office indoor

environment
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CFD has been widely employed to simulate indoor airflow and heat transfer for more
than a quarter century. As with any other numerical and modeling approach, CFD does
not necessarily generate accurate or even reasonable results. This necessitates the
comprehensive verification of CFD simulation results against field measured data.

Chapter 4 demonstrated the reliability of CFD simulations conducted in the current
research by comparing the CFD estimates with experimental data obtained from two full-
size office-type test chambers. The experimental facilities enabled the comparative
investigations of the performance of UFAD and mixing ventilation system (MS),
furthermore, both grille-type and passive swirl diffusers have been studied.

In order to overcome the challenge of modeling swirl diffusers, Chapter 4 proposed
and implemented a simplified approach to simulate the behavior of swirl diffusers. It was
found that the predicted airflow pattern, the air throw height, the size of the clear zone,
and the velocity distribution near the diffuser agreed closely with the smoke visualization
and the experimental data. The validity of this modeling approach could thus be justified.

To assess the credibility of the CFD model created for the test rooms, data regarding
the vertical profiles of velocity, temperature, and tracer gas (CO,) concentration (in the
case with swirl diffusers) were taken as objectives for comparison. Generally, the
simulated results agreed satisfactorily with the expectations, thus giving confidence in the
modeling and numerical approaches adopted by the present CFD calculations. The
validated cases could then serve as the reference cases for further preparation of ANN
training/testing data sets.

Exploratory CFD simulations were also performed (as introduced in Chapter 4), using

both the indoor zero-equation model and the RNG k-¢ model to account for turbulence.
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Based on the CPU time required and the degree of accuracies resulting from these two
models, it was found that the indoor zero-equation model was applicable to the cases of
UFAD and MS with grille-type diffusers and the case of MS with one swirl diffuser,
whereas the RNG k-¢ model was more suitable for the cases with multiple ceiling/floor
swirl diffusers.

Applying Latin hypercube sampling (LHS) method to construct design space

The performance of ANN for response surface approximation (RSA) is critically
dependent on the quantity and the quality of training data sets. Prior to performing
extensive CFD simulations to generate the data pairs for ANN training and testing, the
LHS method was introduced to design the numerical experiment. The LHS method was
incorporated to design sufficient but limited CFD cases (to generate training/testing data
pairs), with the goal of ensuring the quality of network training and avoiding excessive
CFD case studies.

Chapter 3 surveyed the literature for parameters that have been proved to significantly
affect the office indoor environment and ventilation energy consumption. 10 parameters
were extracted from the literature and selected as the independent variables in the CFD
modeling and as the controlled states in optimization work, including inner surface
temperature at exterior walls (Tgyy), internal heat load density, contaminant emission rate,
ventilation system type, diffuser type, number of diffusers per office room, supply air
temperature and flow rate, distance from diffuser to occupant (DDO), and distance from
return grille to contaminant/heat source (DRS). Three input variables, namely the
ventilation system type, the diffuser type, and the number of diffusers per office room,

were aggregated to a single input variable, which resulted in a neural network containing
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8 inputs.

Essentially, the LHS selects random sampling points for each parameter over its entire
range in a stratified manner. Given that there were 8 inputs into each ANN model, 18 (18
> 2x7) suits of random sample points were generated within the allowable ranges, by
applying the LHS method. That is, 18 groups of sampling points were substituted into the
reference CFD program and those results from the 18 CFD case studies were used to train
an individual ANN model. In total, approximate 150 (8x18+6 baseline cases) CFD
simulations were performed to prepare the data pairs for ANN training, and 30 extra
simulations were conducted for the purpose of ANN testing. These sampling points were
found to cover the allowable range of each input parameter reasonably well; as a result,
the ANN model created by using these training data was shown to possess satisfactory
leamning and generalization capacity.

Incorporating ANN model for fitness evaluation in GA

Chapter 5 demonstrated the training and testing process involved in the creation of an
ANN model for RSA. Given the training data, a back-propagation training scheme with
either Levenberg-Marquardt training function or Bayesian regularization algorithm was
implemented for ANN training. Such a training method led to smooth convergence of the
training process in the current case. Also, the perfect regressions of ANN predictions on
target outputs indicated the strong learning capacity of the network. Furthermore, 30
additional data sets (not previously used for training) were input into the established
ANN model to test how well the model would respond to “unseen” information. The
relatively small errors found with the 30 test cases demonstrated the network’s

convincing generalization capability.

166



Such a low fidelity model could replace CFD in computing the objective function and
constraints with sufficient accuracy when implementing GA optimization, with the goal
of cutting down the computational effort. Chapter 5 also illustrated the development and
implementation of ANN-embedded multi-variable GA. The incorporation of the ANN
model into the GA optimization search was found to be able to substantially speed up the
fitness evaluation. Originally, one time fitness evaluation would take 17 hours by
performing a CFD simulation (with the RNG k-¢ model), which contrasted with the case
of the ANN-based GA optimizer—the whole optimization searching process reached
convergence within 5 to 10 minutes (one GA optimization search typically invoked 5000
fitness evaluations).

Implementing GA optimization: responding ventilation design and operation to the
variances in office thermal conditions

In the current optimization work, the objective function was formulated to aggregate
and weight indicators such as PMV, &y, Efan, and Ecooling. The magnitude of the weighting
factors could be specified by the user according to design goals and based on sensitivity
analysis, as different decision-makers will not have the same goal. For example, when a
user is more concerned with a specific performance index, he/she would set the weighting
factor corresponding to that objective index to a relatively higher value.

The optimal combination of weighting factors in this study were determined through
sensitivity analysis; accordingly, in the optimization case with UFAD, the weights (w,.,
Wiags Weooling, and wg,) in the objective function were found to be 0.5, 0.1, 1, 0.5, whereas
0.5, 0.25, 1, 0.5 were found to perform well in the case of MS.

A GA with real-value representation was implemented to search for the near optimal
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design configurations and operating states of ventilation systems under particular
conditions, so as to achieve the research objective. Two series of optimization cases were
devised to illustrate how the optimizer would adapt the ventilation system to the changes
in thermal conditions.

The substantial improvements associated with the optimization results demonstrated
that the current formulation of objective function, the choice of weighting factors, and the
simulation-based optimization methodology efficiently enhanced the performance of
ventilation systems in office environments. Under the tested conditions, the improved
ventilation systems (both UFAD and MS) produced more favorable PMV values (up to
60% improvements) and higher CO,-based ventilation effectiveness (up to 30%
improvement) with less power input (up to 10% reduction) for cooling.

In response to the variations in the tested conditions (internal heat load density and
Tsur Were the controlled thermal conditions), the adapted ventilation systems improved
the overall performance through modulating the supply air temperature and flow rate,
switching to different air distribution modes (changing the system type, diffuser type, and
the number of diffusers), and relocating the supply and return air terminals to more
appropriate locations. It is worth noting that the improvements were made based upon the
original ventilation system configurations in the experimental chamber—which were

designed and monitored by senior building professionals (Cermak, 2004).

6.2 Recommendations for Future Work

This study has identified some areas worthy of further investigation. Although the
work elaborated in this thesis represents a contribution to the development of a
simulation-based optimization approach that is applicable to the analysis of office indoor
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environment, much work remains to extend and advance it to a practical tool for aiding
decision making during building system design and operation. Some recommendations
are:

e More and more modern office buildings are monitored continuously in terms of
the ventilation air conditions, the energy usage, the IAQ related indices (e.g., CO;
concentration), and the indoor thermal conditions. Provided that holistic and
comprehensive data are collected and included in a database, the use of ANN can
become even more economical and efficient.

o The office scenarios considered in this work have excluded the impact of solar
radiation passing through exterior window (there was no exterior window in the
test chambers) to the indoor domain. The reasons are twofold. Firstly, the majority
of existing CFD programs can not efficiently capture the behavior of the solar
radiation (though some methods are claimed to be available with Airpak, as stated
in Appendix A). Secondly, the current office-type test chambers are usually
unglazed; therefore, it is often infeasible to obtain reliable data to validate those
cases with solar radiation imposed upon the room air. Consequently, further
improvements in modeling solar radiation behavior within the context of CFD
simulation are required, and such advancements should be transferred to practical
use. Also, it would be beneficial to include exterior glazing into full-scale office-
type test chamber, so as to facilitate reliable field study in this area.

e The CFD simulations performed in the current study have been confined to a
single office with two occupants. In the next stage, a challenging task would be

expanding the problem domain to a larger area of open-plan offices (with cubicles)
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or even to a whole office building, provided that adequate computer resources
become available.

The current study has focused on the cooling season (which is the common case in
the core zone of an office building); however, the heating energy requirement of an
office building is much higher than the cooling energy requirements in Canada,
due to the long heating season. Therefore, it would be necessary to include the
heating season into the further research context, so as to provide a more realistic
and holistic evaluation.

CO; released from two boxes at fixed locations was taken as the only indoor
contaminant; however, other types of gas phase pollutants and other possible
placement of contaminant source (e.g., area-type sources as carpet or painted
wall/surfaces) are commonly encountered in office spaces. In addition, the impact
of internal partitioning (e.g., partition height and location as well as air gap
underneath, etc.) has been excluded here due to the absence of data for the
validation of the CFD simulations. It would be necessary to address these issues in
further CFD simulations, with the hope to establish a more comprehensive
database.

For the optimization driving method, it would be interesting for further studies to
extend the current single-objective GA to a multi-objective GA. The multi-
objective GA search for a Pareto-optimal front consisting of a set of optimal
solutions. A range of possible optimal solutions is presented to the decision makers.
By searching for the Pareto-optimal front, this type of algorithms can also

minimize cost and maximize energy performance separately and simultaneously.

170



¢ Aside from the CFD simulation, it would also be interesting to incorporate the
building energy simulation into the devised numerical optimization method. As a
project the author is working on, the building energy simulation based
optimization approach is used to explore the topic of “how low we can go (in

terms of energy usage) in office buildings?”
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APPENDIX A

MODELING INDOOR AIRFLOW AND HEAT TRANSFER WITH
C¥D

A.l1 Introduction

Chapter 1 alluded to some issues regarding the applicability of experimental method
for office environment investigations and thus argued for the adoption of CFD techniques
in the present study. From Chapter 2, it can be seen that the numerical optimization
method should be built upon CFD simulations with convincing accuracy. A brief
introduction to the theoretical basis of CFD techniques (especially for indoor airflow and
heat transfer modeling) is presented here. Accordingly, the important factors—important
in that they have great influences on the computation time and simulation accuracy—can
be better understood.

As previously mentioned, factors that may significantly affect the precision of CFD
calculations include the turbulence modeling method employed, the thermal and airflow
boundary conditions prescribed, the differencing scheme used to treat the terms in the
governing equations, the quality of mesh (size and topology of computational grid), and
the reliability of the solution algorithm. These pertinent elements of CFD are described in

subsequent sections.

A.2 Nature of Room Airflow and Turbulence Models

Although the airflow can be laminar or weakly turbulent in some regions of a room,

room airflow is generally considered to be turbulent. For example, Baker et al. (1994b)
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observed that turbulence was weak in the regions remote from the supply diffusers or
blocked by obstacles, but the room air motion was turbulent in most of the flow field.

For turbulence modeling, high resolution techniques such as direct numerical
simulation (DNS) and large eddy simulation (LES) are the most accurate approaches.
DNS depicts the turbulence characteristics by directly solving the Navier-Stokes
equations and thus requires sufficiently small time and length scales (e.g., a length scale
typical less then 0.1 mm for indoor airflow simulation (Murakami and Kato, 1989)); with
LES, small eddies are first filtered from the flow, and Navier-Stokes equations are solved
to represent the remaining large eddies. The identified small eddies are then simulated by
a sub-grid model (Deardorff, 1970). Despite the attractive accuracy, the extremely strict
requirements on computer capacity associated with these two models have impeded their
broad applicability.

In order to reduce the computation time, turbulence transport models have been
introduced into CFD, which allow the use of coarser grids and larger time scales. These
models simplify the treatment of turbulent terms in the Navier-Stokes equations, by
decomposing the turbulent movements to time-mean motions and high-frequency
fluctuations. It is then necessary to introduce empirical correlations or additional
transportation equations to account for the unknown high-frequency fluctuation terms.
Reynolds-stress models, algebraic-stress models, and zero/one/two-equation eddy-
viscosity models belong to this category, among which, the class of k-¢ turbulence models
have gained the greatest popularity in modeling room airflow and heat transfer. With k-¢
models, the turbulent viscosity can be calculated by solving two additional equations

treating the turbulent kinetic energy (k) and the dissipation rate of turbulent kinetic
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energy (¢) as the independent variables. Numerous applications of the standard k-¢ model
in the indoor domain can be seen in the literature (Haghighat et al., 1989; Nielsen, 1989;
Chen and Jiang, 1992; Jones and Whittle 1992; Haghighat et al., 1996; etc.), and no
attempt is made to list all of them here. Furthermore, much effort has been put into
examining the performance of existing k-¢ models in room air simulation. Chen (1995)
compared the simulation results obtained from the standard k-¢ model to that of four
other modified k-& models by implementing all of them to simulate four different types of
room airflow. Though the performances of alternative models may vary from case to case,
depending on the flow characteristics, his studies revealed that the renormalization group
(RNG) k-¢ model (Yakhot and Orszag, 1986) generally performed better than other k-¢
models studied (e.g., for airflow with mixed convection and for airflow induced by
impinging jet). Based on that, the RNG k-¢ model was recommended for indoor air
simulation. Many CFD studies of the indoor domain have made use of the RNG k-¢
model and provided evidence of its preponderance in this area.

The RNG k-¢ model was devised to overcome an issue associated with the standard
k-¢ model—the latter is found to be too dissipative. In the results predicted by the
standard k-¢ model, very often the turbulent viscosity in recirculation area appears to be
too high and vortices are damped out. Yakhot and Orszag (1986) integrated a
mathematical technique called the “renormalization group” method into the standard k-¢
model. This technique is implemented by choosing a group of slightly different constants
and adding a source term.

Aside from two-equation models, zero-equation models have also shown some

promise in room air simulation, due to the further reduction in computing effort and CPU
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time. Instead of solving the transport equations for k and ¢, zero-equation models relate
turbulent viscosity to local mean air velocity using various empirical coefficients. Chen
and Xu (1998) proposed the indoor zero-equation model, which was specifically
developed for room airflow modeling. They applied both the indoor zero-equation model
and the standard k-¢ model to simulation room airflow driven by natural convection,
forced convection, mixed convection, and displacement ventilation. The results indicated
that the indoor zero-equation model can converge 10 times faster and produce a
comparable level of accuracy (Chen and Xu, 1998); particularly, in the case with forced
convection, the indoor zero-equation model outperformed the standard k-¢ model in
terms of capturing the secondary recirculation in the weakly turbulent region (this may be
due to the over-prediction of the turbulent viscosity in this region when using the
standard k- € model, as previously discussed). Srebric et al. (1999) reported that the
indoor zero-equation model was more applicable to stable flows than unstable swirling
flows.

Since the optimization methodology for this study involved a large number of CFD
simulations, it was worth the effort to comparatively examine the applicability and CPU
time requirement of alternate turbulent models. The RNG k-g model and the indoor zero-
equation model were selected and implemented in this study to perform pilot case studies.
The simulation results presented in Chapter 4 presume general familiarity with these
models; therefore, a brief introduction to the pertinent numerical details cannot be
skipped. The Reynolds-averaged governing equations representing the conservation laws
of mass, momentum, and energy, as well as other equations pertaining to steady state

incompressible flow are introduced next. The governing equations with both models are
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presented in a simplified format in three-dimensional Cartesian coordinates.

A.2.1 Governing equations

The RNG k-¢ model

Conservation of mass (Continuity)

Opu; _ 0 (A-1)
ox,

where p is the air density (kg/m®), u; is the mean velocity component in x; direction (m/s),
and x; represents the three Cartesian coordinates, i = 1, 2, 3 corresponding to x, y, z axis.

Conservation of momentum

a/Juiuj ap a au auj
— =t ) = ||+ P\, ~ T e, A2
ox,  ox o [(” «TH )(ax. ox pB(T, ~T)e, (A-2)

J J i

where u; is the mean velocity component in x; direction (m/s), p is the pressure (Pa), u is
the dynamic viscosity (Pa's), u, is the turbulent viscosity (Pa‘s), £ is the thermal
expansion coefficient of air (K1), T, is the reference temperature (K), T is the local
temperature (K), and g; is the gravity acceleration in i- direction (m/s?) (g; = 0 for i #2).

Since the temperature variation in room air is relatively small compared to the
absolute temperature value, Boussinesq approximation is employed to relate local air
density to the local air temperature, which allows faster convergence.

Conservation of energy

opc,uT 9 oT
—f = +u,)—[+S" A-3
Ox, o, l:c‘" olu ”‘)ax.] ? (A-3)

where ¢, is the specific heat of air (J/kgK), o is the inverse effective Prandtl number, and

S, is the thermal source term (W/m®). The inverse effective Prandtl number is
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calculated by applying RNG theory (Airpak, 2002):

0.6321 0.3679

|o-13929 " |o+23929|" 4 (A-4)

log ~1.3929] |0, +23929  p+p,

with o, =1/Pris the inverse molecular Prandtl number,
Pr=c,u/K (A-5)

where X is the thermal conductivity (W/mK).

Species transport equation

0 0 oC
a—(pu,C) = a—(rc’eﬂ g] + SC (A-6)

where C is the mass fraction of a chemical species (ug/kg), I'cpis the effective turbulent
diffusion coefficient for C (kg/ms), Sc is the source term for C (ug/m’s).

The effective turbulent diffusion coefficient is given by,

g +
rceﬁr‘ — ’Llﬁr — Iu /th (A-7)
’ Scy  Scy

with effective Schmidt number = 1.0.

Calculating turbulent viscosity

£

M, (A-8)

where C, = 0.085 is an empirical constant, £ is turbulent kinetic energy (m?*/s?), and ¢ is
the dissipation rate of turbulent kinetic energy (m?/s°).

The turbulent kinetic energy £ is defined as
3 2
k= (u)) (A-9)

1
25

14

where u;’ is the fluctuating component of the velocity in x; direction.
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Transport equation for turbulent kinetic energy (k)

= pr,—L~pet+—|| u+/) |— A-10
o, e, P ax.[” o, )ox, (A-10)

i J J
where 7; is the Reynolds stress tensor and oy = 0.72 is an empirical constant.

And 7; can be written as
pr,; =2uS, — p(2/3)ks, (A-11)

Sjj 1s the mean-strain-rate tensor and is defined by

. Ou,
s, = L[ % (A-12)
To2({ox;  ox

0y is the Kronecher delta, d; = 1 fori = j and §; = 0 for i #j.

Transport equation for dissipation rate of turbulent kinetic energy (&)

2

Opu,& £ _ Ou £ 0 ( V)ae
i —r,—L-Cep—t—I|| u+t/ | — A-13
o, P E e, TP axj[” o, )ox, (A1)

i J

where Ce; = 1.42,

C A (1-4/4,)

Ce, =168+ A-14

“2 1+ g4 (A-19)
k

A= (ﬂ,/zsﬁs . (A-15)

Ao =4.38, £=0.012, 0. = 0.72 are empirical constants.
The indoor zero-equation model

Conservation equations of mass, momentum, energy, and species concentration with
the indoor zero-equation model are the same as those with the RNG k-¢ model; however,
the method used to calculate the effective turbulent heat diffusion coefficient with the

indoor zero-equation model deviates from that with the RNG k-& model.
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The effective turbulent heat diffusion coefficient /.4 here is defined by

o +
T, =i -£YH (A-16)
’ Prw Preff

and the effective Prandtl number Prey = 0.9.

Calculating turbulent viscosity

K, =0.03974pV1 (A-17)
where the local turbulent viscosity is related to the local mean air velocity 7 (m/s) and a
length scale / (m). The length scale is chosen as the distance from the nearest wall here.
The above equations fully characterize the turbulent air motion, the heat transfer, and
the chemical species transportation in the flow field. The distribution of the unknowns
(pressure, temperature, three velocity components, chemical species’ concentration, and &

and ¢ with RNG k-g model) can be determined by solving these equations.

A.2.2 Near wall treatment

Strictly speaking, the RNG k-¢ can only apply to the fully turbulent regions
characterized by high Reynolds number. When it comes to the viscous sub-layer near the
solid surfaces/walls, where the viscous diffusion dominates the turbulent diffusion by far
and Reynolds number is relatively low, making use of such a model may yield results
with major discrepancies. One common approach to overcome this limitation is to
introduce a damping function near the wall, which in essence, assumes the form of
velocity and temperature profiles in the boundary layer. Of the many constructions of
wall functions, the widely used “Law of the wall” function (Launder and Spalding, 1974)
is employed in this study.

With this method, the y* values corresponding to the next-to-wall node is controlled
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to ensure that this node is located in the fully turbulent region. Between this node and the
wall, which is considered as a weakly turbulent or even re-laminarized sub-domain in the
boundary layer, the wall function does not solve for the velocity field; instead, it assumes
the profile of velocity to be logarithmic. This is based on the logarithmic profile
approximation of the zero-pressure-gradient flow in the fully developed boundary layer.
The equations are given as follows:

Velocity profile in near wall region

= —nfpy] (A-18)

where u*=,/z, /p is the friction velocity (m/s), with 7, being the wall shear stress

(N/m?), K = 0.399 is an empirical constant, and E reflects the wall roughness (£ = 9.0
here).

The value of y* can be determined based on

y*=(“*”jy (A-19)
Y7,

where y is the actually distance from the nearest wall/surface (m).
At the next-to-wall node, the wall function calculates the values of 7, k£ and ¢ using the
following equations:

Temperature at next-to-wall node

T=T,, — % (A-20)

with g is the heat flux (W/mz), Twa 1s the wall temperature (K), 4. is the convective heat

transfer coefficient (W/m°K).

Turbulent kinetic energy at next-to-wall node
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k= (gl *)?/2 (A-21)

where C, = 0.085 is an empirical constant.
Dissipation rate of turbulent kinetic energy at next-to-wall node

@y )"

Ky next—to-wall-node Ky next—to—wall-node

E =

(A-22)

Where Yuexr-to-wali-node 1 the actually distance from the nearest wall/surface to the next-to-
wall grid (m).

It is worth mentioning that, in the case of the indoor zero-equation model, the
equations introduced in Section A.2.1 can be applied throughout the flow field and
directly to the near wall area; if necessary, the convective heat transfer coefficient 4, on

the boundary surfaces can be determined by

_ My Cp
[+
Preﬁr

h (A-23)

y next—to—wall-node

A.3 Discretization Scheme

The governing partial differential equations introduced in subsection A.2.1 are highly
non-linear and inter-coupled, for example, all the three velocity components appear in
each of the momentum equations, the energy equation, and the transport equation of
species; also, temperature is integrated into the momentum equation in the vertical
direction to determine the local air density. Consequently, the analytical solution of these
equations is often infeasible in most problems of practical interest.

With the CFD technique, discretization strategy is utilized to approximate the

governing partial differential equations by a group of algebraic equations. It is the
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algebraic equations that CFD is attempting to solve. The accuracy of solution is highly
dependent on the discretization scheme applied to each term in the governing equations,
especially to the more challenging convective term (though the diffusion and source
terms also have to be treated).

In Airpak, a control-volume based technique is used for governing-equation spatial
discretization (though other methods are also cited in the literature, such as the finite
element technique). With the control-volume method, the discretization of governing
equations could be only achieved by subdividing the computational domain into small
cells using a system of grid elements. Instead of continuously solving the governing
equations throughout the computational domain, the control-volume method estimates the
values of independent variables (such as velocity components, pressure, temperature, and
species mass fraction) only at those points located at the centers of the cells.

When treating the convection term, both first-order and second-order upwind-
difference schemes are available in Airpak. With the first-order upwind scheme, the value
of a variable at the interface of a control-volume is set equal to the cell-center value in the
upstream control volume; whereas with the second-order upwind scheme, higher-order
accuracy is achieved at cell faces through a second-order Taylor series expansion around
the cell center point. In this study, the first-order scheme was used when performing
investigative CFD simulations to test the applicability of turbulent models and boundary
conditions; while second-order upwind scheme was used when calculating the final

solutions.

A.4 Mesh Topology and Size

When generating the grid system (also referred to as meshes) for equation
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discretization, the main concern is the accuracy of the numerical solution in terms of
characterizing the temperature, velocity, and species concentration profiles in the
problem domain. The numerical solver applies the solution procedure iteratively (moving
from one cell to the neighbor cells and from one line to the next) to the discretized
governing equations (algebraic equations); therefore, the topology and the size of the
mesh plays a significant role in determining the calculation accuracy and computing
speed.

According to the geometrical feature of the room and air terminals, the hexahedral
mesh was used in this study; it is worth mentioning that for cases with more complicated
geometry, the tetrahedral mesh (unstructured) is more applicable than the hexahedral
mesh (Airpak, 2002).

After a grid dependency check (three levels of grid density were comparatively
studied), the meshes in the final simulations were generated by specifying the maximum
spacing interval in X, y, and z direction as 0.05 m, 0.04 m, and 0.05 m, respectively. The
grids are designed to be coarser in those open regions where the variations of temperature,
velocity, and species concentration are trivial. In the areas adjacent to the supply diffusers,
return grilles, and other objects (e.g., heat sources), the meshes are locally refined by
increasing the grid count number according to the actual sizes and aspect ratios of the
objects and the local temperature gradient, heat power output, and flow rate, etc.).

Prior to commencing the solution procedure, it was necessary to check the aspect
ratio, face alignment, and element volume in the mesh (grid quality control), in order to
prevent excessively distorted elements and extremely small mesh sizes (107? m or

smaller). For the current office environment simulation cases, the total number of cells
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generated in the computation domain was within the range of 0.6 to 1.0 million.
Previously, the issue of near wall treatment was introduced; it is obvious that the
location of the next-to-wall nodes (usually represented and measured by y* values
associated with these grids) would have a major impact on the flow description and the
convective heat transfer calculation in the near wall region. The optimal placements of
these nodes are case dependent. In the present CFD studies, the y* values corresponding
to the next-to-wall nodes (at solid surfaces or human body surfaces) are controlled to be
between 30 and 100, which fall in the commonly recommended range of 30 to 120 for k-¢
models with log-law wall function. y* values at and above 70 appear at the ceiling or
floor surfaces adjacent to the supply diffusers, with a peak value detected to be around

108.

A.5 Specification of Boundary Conditions

The accuracy of CFD prediction is highly sensitive to the boundary conditions
assumed and supplied (Awbi, 1998; Xu and Chen, 1998). Versteeg and Malalasekera
(1995) even described a CFD solution exclusively as the extrapolation of thermal and
airflow boundary conditions into the flow field. In this section, how to treat and define
the boundary conditions at diffusers and at solid surfaces are introduced.

Since the room airflow in an office space is primarily driven by inlet diffusers, it is
important for CFD simulations to accurately characterize the air throw coming from the
diffuser as well as the penetration and spread of the air jet to other parts of the room.
Boundary conditions for modeling diffusers

Due to the large scale differences between the room and the diffuser sizes, it is often
infeasible to copy the detailed geometric feature of a diffuser into a CFD model.
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Modeling the diffuser with simplified boundary conditions is the common approach when
performing room air simulation with CFD. Such simplified diffuser models allow the
geometrical details to be neglected, while capturing the velocity field and jet penetration
(Srebric and Chen, 2001).

Though many studies conducted elsewhere attempted to define the diffuser boundary
conditions for modeling purpose (Nielsen, 1997; Chen and Jiang, 1996; Huo et al., 1996),
two primary methods have been widely accepted and applied, namely, the box method
(Nielsen, 1992) and the momentum method (Chen and Moser, 1991a). These two
methods have been identified as the most appropriate approaches for CFD simulations of
indoor airflow (Chen and Srebric, 2000), though the box method was found not suitable
for 'scenarios where the buoyancy force plays a major role in air jet development (Srebric
and Chen, 2002).

1. Box method

The box method does not explicitly model the jet behavior in the immediate vicinity
of the supply diffuser; instead, it specifies flow boundary conditions at the surfaces of an
imaginary box around the diffuser, while the flow within the box is ignored. At the
surface parallel to the supply opening, the boundary conditions are described using
measured data; that is, it is necessary to specify the distributions of the independent
variables (such as velocity, temperature, species concentrations, turbulent kinetic energy,
and dissipation rate of turbulent kinetic energy) at the box surfaces through which the
flow is discharged. At the box surfaces that are perpendicular to the supply opening, the
gradients of these variables crossing the box surfaces are considered to be zero.

Obviously, the size of the box as well as the profiles of these variables around the diffuser
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should be correctly determined to ensure the accuracy of this method.
2. Momentum method

With the momentum method, the supply diffuser is considered a free opening.
Accordingly, the actual discharge velocity (ug) is determined based on the airflow rate
and the effective face area. This discharge velocity (uy) is usually larger than the velocity
value (u) obtained by simply dividing the volumetric flow rate by the face area of the
diffuser. The difference between these two values (uy - u) can be used to calculate a
momentum source term, which can be applied as a supplementary momentum boundary
condition for the diffuser. In this way, the momentum method decouples the momentum
and mass boundary conditions, in order to introduce an accurate amount of air into the
room.

When the air jet leaves the diffuser, the momentum method describes the air throw by

using the isothermal axisymmetric jet formula.

4
n —f, 4, (A-24)
uo y

where u,, is the centerline jet velocity at a distance y from the diffuser (m/s), uy is the
initial jet velocity (m/s), 4y is the effective area (m?), and ; is an user defined constant
characterizing the decay of centerline velocity.

k; may be a function of many factors, such as the diffuser type, Reynolds number at
inlet, jet confinement, and possibility of deflections (ASHRAE handbook, 1997).

With Airpak, both box method and momentum method are available. Based on the
available performance data associated with the diffuser, the momentum method was
selected in this study to define boundary conditions near the diffusers. It was also

necessary to specify the species concentration, the temperature, the pressure, and the
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turbulent intensity at the air inlets. The modeling of the diffusers under consideration
(grille type perforated panel and swirl diffuser) was introduced in detail in Chapter 4.
Thermal and airflow boundary conditions at solid surface

When modeling room airflow with CFD, the domain boundary is placed at the
internal surfaces of the building envelop assemblies (walls, windows, etc.), thus the solid
masses of the fabrics are excluded from the computational domain. Thermal and airflow
boundary conditions on such solid surfaces as well as on other internal surfaces
(partitions, furniture, occupants’ body surface, etc.) are required to solve the governing
equations in the flow domain. Generally, there are three types of boundary conditions
prescribed for practical problems (taking temperature as the independent variable): (1) T
is given on the boundary surface (referred to as the Dirichlet condition); (2) the

temperature gradient 67/0x, is specified on the boundary surface (referred to as the

Neumann condition), x, is the coordinate normal to the surface and; (3)g = h(T -T ),

re)

where the heat flux ¢, the reference temperature, and the convective heat transfer

coefficient are provided (convective boundary condition, sometimes called the Robin
condition). The following table summarizes the type of boundary conditions supplied to

the solid surfaces encountered in this study.
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Type of

Surface boundary Specification
condition
Exterior window/wall | First type =1, .. -u=0,C=0
Internal

wall/ceiling/floor Second type
(symmetry | 06T/ox, =0, du/ox, =0, 8C/ox, =0,u=0

Surface of Surface)
partitions/furniture
Computer/hght/()ther Thlrd type q= h(T - 7:1mbient )’ q= qtatol / Asurface

heat source
Occupant Third type q= h(T - T;zmbient )’ q= 75/ Aswface

o Ty.yris the temperature on the inner surface of exterior wall or window.

« C s the species mass fraction.

o Tumbiens is the room ambient temperature adjacent to the objects under
consideration.

e quw is the total power of heat generated by a heat source.

o Asurpace 1s the surface areas of a heat source.

Table A.1: Summary of boundary conditions at solid surfaces

The thermal conditions at the two surfaces of an internal wall were taken as identical,
that is, the internal surfaces (e.g., on partitions and furniture surface) have symmetric
boundary condition with no heat flux. Though the fabrics of exterior walls/windows are
excluded from the computation domain, the heat flux passing through would significantly
affect the temperature distribution and the overall airflow pattern in the indoor space. The
exterior walls and windows are not considered as adiabatic, and the thermal boundary
condition is defined by supplying the actual inner surface temperature. There are no
operable windows (or other openings) and the building envelop assemblies are
considered tightly sealed; therefore, zero air leakage (infiltration and exfiltration) is
assumed (no mass transfer through the building envelope).

It is worth addressing the issue of how to treat radiation in CFD simulation. With
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Airpak, the surface to surface model is utilized to model the radiation where temperature
differences exist between two solid surfaces. In addition, the solar load model provides
the possibility of including the effects of direct incident and diffusion solar radiation.
Given the terrestrial location (latitude and longitude), the geometry, the date, the local
time, and the thermal-optical features of boundary surfaces (absorptivity and
transmissivity, for example), the solar load model can estimate the solar radiation

imposed on the building envelope and indoor domain.

A.6 Sequential Solution Procedure

From the governing equations listed in subsection A.2.1, it can be seen that the
velocity components, the temperature, and species mass fraction can be determined by
solving the conservation equations. However, there is no equation for solving pressure.
Airpak uses SIMPLE (Semi-Implicit Method for Pressure-Linked Equations) (Patankar,
1980)—a pressure-correction solution strategy—to bridge the gap. This method
subdivides the solution procedure into five sequential steps.

In each iteration, SIMPLE starts with guessing a pressure field (P*) and solves the
momentum equations to get a tentative velocity field (u;*), accordingly. The estimated
velocity field is inevitably erroneous due to the discrepancies in the hypothetical pressure
values; therefore, in the second step, a velocity-correction adjustment is established by
correlating the velocity-correction term (u;”) with a pressure-correction term (P’). The
velocity-correction formula is then substituted into the continuity equation so that the
pressure-correction terms can be solved in the third step. Next, the velocity-correction
terms are determined and both the velocity and pressure field could be updated. Based on
this, other variables of concern such as temperature and mass fraction of a species can be
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solved in the last step, which ends the iteration loop. After this, the updated pressure (P*)
values are imposed on the momentum equations, and SIMPLE returns to the first step and
moves to the next iteration. This five-step process is repeated until convergence is
reached. Convergence criteria are generally set as follows: residuals of pressure, velocity,
mass, specie concentration, k£ and ¢ should be less than 107 , and residual for temperature
should be less than 107,

The above pressure-velocity linkage solution procedure generates a series of linear
algebraic equations over each iteration. Thus, an efficient equation solver is required to
handle the large-size sparse matrices. The most common method is the Tri-Diagonal
Matrix Algorithm (TDMA) iterative solution procedure, which was employed in this
study.

For the problem under consideration, more than one target variables are to be solved
simultaneously; however, the convergence pace of one variable differs from that of
another. It is necessary to assign different under-relaxation factors to individual variables,
so as to adjust the convergence rates and make them compatible. The optimal values of
under-relaxation factors are case dependent. After tentative calculations, the under-
relaxation factors for pressure, velocity, temperature, species concentration, k, and ¢ are
specified as 0.7, 0.3, 1.0, 1.0, 1.0, and 1.0 in the cases with the RNG k- £ model; while in
the case with the indoor zero-equation model, the under-relaxation factors for pressure,

velocity, temperature, and species concentration are specified as 0.3, 0.2, 1.0, and 1.0.

A.7 Closing Remarks

Chapter 1 placed CFD in the context of the optimization scheme for this study.
Chapter 2 indicated that the numerical optimization required a large number of CFD
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simulations with convincing accuracy. It was thus necessary to provide an overview of
CFD simulation methodology, explaining the factors that may significantly affect the
CPU time and prediction accuracy with CFD modeling.

Although the coverage of this part has been limited and many other alternate
approaches are available, the techniques introduced here were fond be efficient for room
airflow and thermal behavior simulation in previous CFD studies in this area. Therefore,
these are the methods and techniques being used in CFD simulations in the present study.
To sum up, Table A.2 puts forward a brief description of important numerical details

involved in current CFD simulations, which are implemented in Airpak.

Numerical aspects Model/method

Turbulence model Indoor zero-equation model or RNG k-¢ model

Diffuser modeling Momentum method

Discretization scheme Control-volume based technique

Differencing the convection

Second order up-wind scheme
term

Grid type/meshed cell number Hexahedral/0.6~1.0 million

Solution algorithm SIMPLE

Residue < 10~ for mass, velocity, species

Convergence criteria

concentration, pressure, k, &; residue < 10 for energy

Under-relaxation factors with
RNG k-¢

0.7 for pressure, 0.3 for velocity, 1.0 for temperature,
species concentration, k, and €

Under-relaxation factors with
indoor zero-equation

0.3 for pressure, 0.2 for velocity, 1.0 for temperature
and species concentration

Table A.2: Summary of numerical details in the current CFD simulations
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APPENDIX B

OPTIMIZATION SCHEME VALIDATION
B.1 Introduction

A classic optimization problem, the Rosenbrock function, was selected to test the
validity of the ANN-based GA optimization scheme. Such a banana function has a global
minimum that is hidden among many local minima; therefore, it has been widely used to
substantiate the validity and proficiency of the optimization algorithm under
consideration. The problem description, the searching range, the ANN training, and the

optimization results are presented in the subsequent sections.

B.2 The Rosenbrock Function
The Rosenbrock’s function is defined as,
< 2 2
£00 = 3 [100x (x2 = x,,2 )+ (x, ~1)] (B-1)
i=1

It is used here to demonstrate how to implement ANN and GA in Matlab. This banana
function has a global minimum value of 0 at the point x; = 1 (for all i). Such a global

minimum is located in a parabolic shaped flat valley.

B.3 ANN-based Optimization Scheme Validation

As shown in Figure B.1, GA can be applied directly to the Rosenbrock’s function to
search for the global minimum; alternatively, an ANN model can be established to

approximate the Rosenbrock’s function and then GA can be applied to search for the
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minimum using the low fidelity ANN model to evaluate fitness.

Input/Output
Original Function ‘
GA ANN Model for Response
Surface Approximation
Minimum
GA
Minimum

Figure B.1: Test the optimization scheme—flow chart

The ANN constructed here consisted of 1 hidden layer and 6 hidden neurons. 100
input/output data pairs were generated for ANN ftraining purpose, and the ranges of the
input variables were set to [-3, 3]. The 100 input/output data sets are divided to three
groups for training, validating, and testing, respectively (which is referred to as the early
stopping strategy). By doing so, the over-fitting of the training process could be
effectively avoided and the generalization of the network can be improved. Figure B.2
shows the convergence history of the ANN training, validation, and testing. For
comparison, the function surface is plotted based on the original function (Figure B.3)
and the ANN approximation (Figure B.4), good agreement can be observed. In addition,
Table B.1 presents the ANN predicted outputs and the exact output values for the 24 test
data pairs and relatively small errors are observed between the approximations and the
targets, which gives confidence in the network’s generalization ability. It can be

concluded that using 100 data sets for building the ANN model for response
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approximation in the current case can provide satisfactory accuracy.

18 . T ¥ - ,
Training
161 I B s — Validation
................ Test

Squared Error

15 20 25 30

Figure B.2: Convergence of ANN training, validation, and testing with early

stopping technique
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Case No. ANN prediction Target value Relative error (%)
1 882.8535 852.6664 3.540327
2 1260.888 1274.255 1.048992
3 1291.704 1296.574 0.375562
4 197.9195 174.2537 13.58121
5 6248.535 6434.944 2.896827
6 257.3227 246.6945 4.308242
7 242.7786 176.0115 37.93336
8 1118.432 1078.751 3.678375
9 2350.24 2376.465 1.103515
10 139.3358 132.505 5.155072
11 8952.897 8957.844 0.055233
12 338.77 270.1738 25.38967
13 1068.437 1011.017 5.679412
14 139.3531 166.4613 16.28502
15 3970.742 3963.458 0.183782
16 5842.293 5916.05 1.246741
17 577.4952 625.7107 7.705716
18 43.04786 50.75771 15.18951
19 122.991 137.174 10.33941

20 420.6196 399.2133 5.362134
21 5788.898 5948.055 2.675772
22 7502.094 7590.475 1.164367
23 21.75358 15.68107 38.7251

24 2327.6 2453.279 5.122899

Table B.1: ANN predicted and expected outputs for the 24 test data points
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Figure B.4: Surface plotted: ANN approximation of the Rosenbrock function
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Figures B.5 and B.6 comparatively present the convergence history of GA
optimization search for the minimum of the original Rosenbrock function and the ANN-
based GA search. As can be observed from these two figures, the ANN-based GA
optimization search demonstrated the same trend as the GA search based on the original
function and yielded an optimized solution with comparable accuracy (0.00980 in the
ANN-GA case vs. 0.00395 in case with original function). It is worth mentioning that
using the Rosenbrock function as the objective for optimization is a tough job and has
been repeatedly addressed in the literature. Consequently, the optimization results
obtained in this case demonstrated the validity and efficiency of the current ANN-based

GA optimization scheme.
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Figure B.S: Convergence of GA Optimization: the Original Rosenbrock Function
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Figure B.6: Convergence of GA Optimization: ANN approximation of the

Rosenbrock Function
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