Online Robust Nonblocking Supervisory Control
of Discrete-event Systems

Xiao Yong Chen

A Thesis
in
The Department
of
Electrical and Computer Engineering

Presented in Partial Fulfillment of the Requirements
for the Degree of Master of Applied Science (Electrical Engineering) at
Concordia University
Montreal, Quebec, Canada

December, 2007

© Xiao Yong Chen, 2007

Library and
Archives Canada

Bibliotheque et
* Archives Canada
Direction du
Patrimoine de I'édition

Published Heritage
Branch

395 Wellington Street

395, rue Wellington
Ottawa ON K1A ON4

Ottawa ON K1A ON4

Canada Canada
Your file Votre référence
ISBN: 978-0-494-34588-7
Our file Notre référence
ISBN: 978-0-494-34588-7
NOTICE: AVIS:

L'auteur a accordé une licence non exclusive
permettant a la Bibliothéque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par téléecommunication ou par I'Internet, préter,
distribuer et vendre des théses partout dans

le monde, a des fins commerciales ou autres,
sur support microforme, papier, électronique
et/ou autres formats.

The author has granted a non-
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non-
commercial purposes, in microform,
paper, electronic and/or any other
formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

L'auteur conserve la propriété du droit d'auteur
et des droits moraux qui protége cette these.
Ni la thése ni des extraits substantiels de
celle-ci ne doivent étre imprimés ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,

their removal does not represent
any loss of content from the

thesis.

Canada

Conformément a la loi canadienne
sur la protection de la vie privée,
quelques formulaires secondaires
ont été enlevés de cette these.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

Abstract

Online Robust Nonblocking Supervisory Control of Discrete-event Systems

Xiao Yong Chen

In this thesis, robust nonblocking supervisory control problem (RNSCP) is studied in
which the plant model belongs to a family of models. A drawback of the existing
solutions in the literature is that the entire supervisor which is designed offline needs to

be stored in computer memory for implementation.

In this thesis, we develop an online solution in the form of a variable lookahead policy
(VLP). In this approach, the supervisory commands are computed online when the plant
is in operation, based on the behavior of the plant models in the near future (lookahead
window). In this way, only the plant models need to be stored in computer memory

(which can be usually done more efficiently than that of a supervisor).

To derive our VLP algorithm, we develop a direct offline solution to RNSCP which is
more transparent than the indirect method in the literature. As an illustrative example, we
have used our direct method to solve ‘supervisory control problem with multiple markings
in which the plant under supervision is required to be able to reach any of the multiple

sets of marked states, each corresponding to the completion of a different task.

In some problems, the VLP lookahead window may become unbounded and the VLP
algorithm cannot be applied. To relieve the limitation, state-based RNSCP (RNSCP-S) is
formulated and solved using state-based VLP (VLP-S). If a RNSCP cannot be solved
using VLP, it can be solved using VLP-S as a corresponding RNSCP-S after automaton

refinement.

iii

Acknowledgements

I would like to take this opportunity to extend my profound gratitude to my supervisor,
Dr. Shahin Hashtrudi Zad. Without his instruction and examination, I could not get my

research and this thesis done with a desirable quality.

I also want to express my heartfelt thankfulness to my wife, Guo Hong Zhang. Without
her encouragement and support, I could not pursue my master studies and devote to the

research and thesis work.

I dedicate this thesis to my parents and my brother in China. Their unconditional support
enabled me to be an educated and dependable person and thus be successful in academic,

professional, and personal life.

iv

Contents

List of Figures

List of Tables

Chapter 1 Introduction

1.1

1.2

1.3

1.4

1.5

1.6

Discrete Event Systems

Supervisory Control of Discrete Event Systems
Robustness and Fault Recovery

Literature Review

1.4.1 Supervisory Control

1.4.2 Robust supervisory control

Thesis Objectives and Contributions

Thesis Organization

Chapter 2: Background

2.1

2.2

2.3

Modeling of Discrete-event Systems
2.1.1 Languages

2.1.2 Automata

Offline Supervisory Control

2.2.1 Basic Supervisory Control

2.2.2 Nonblocking Supervisory Control
2.2.3 State-based Supervisory Control

Online Supervisory Control

viii

xi

10

13

16

18

19
19
20
22
28
29
31
33

33

2.3.1 Limited Lookahead Policy

2.3.2 Variable Lookahead Policy
2.4 Robust Supervisory Control

2.4.1 Problem Formulation

2.4.2 An Offline Solution

2.4.3 Illustrative Example

2.4.4 Example: Fault Recovery

Chapter 3: Robust Nonblocking Supervisory Control with Direct Approach
3.1 Robust Nonblocking Supervisory Control: Direct Solution
3.1.1 Direct View of RNSCP
3.1.2 Direct Solution to RNSCP
3.2 The Supremal Direct Solution to RNSCP
3.2.1 The Supremal Sublanguages
3.2.2 The Optimal Solution to RNSCP
3.2.3 Alterative Algorithm
33 Supervisory Control with Multiple Sets of Marked States
3.3.1 Problem Formulation
3.3.2 Solution to RNSCP-MM

Appendix 3.1: TTCT Procedures

Chapter 4 Online Robust Nonblocking Supervisory Control
4.1 Variable Lookahead Policy (VLP)
4.2 Validity of Algorithm 4.1

4.3 VLP Direct Solution: Example

vi

34
39
41
41
43
45

48

51
52
55
65
66
76
82
87
88
91

100

105
105
126

142

Appendix 4.1: Lemmas for Validity Proof 146

Chapter 5 State-based Robust Nonblocking Supervisory Control 151
5.1 Robust Nonblocking Supervisory Control with State Information 151
5.1.1 Preconditions for State Control Domain 152
5.1.2 Problem Formulation 156
5.1.3 Converting RNSCP to RNSCP-S 158
5.1.4 Solution to RNSCP-S 164
5.2 Application to Fault Recovery of A Spacecraft Propulsion System 175
5.2.1 Introduction 175

5.2.2 Modeling of A Simple Propulsion System and its Specification 178

5.2.3 Robust Problem Formulation for the Fault Recovery Problem 184
5.2.4 Manual Solution to Problem 5.1 187
5.2.5 TTCT Solution to Problem 5.1 199
Chapter 6: Conclusion 205
6.1 Summary 205
6.2 Future Research 207

References 209

vii

List of Figures

A simplified propulsion system: Example 1.1 2
The schematic of supervisory control 4
A propulsion system: Example 1.2 8
Supervisory control 28
Plant and two-step lookahead expansion 34
VLP-S expansion 40
Automata for Example 2.1 46
The overall plant for Example 2.1 ’ 47
Realization of Supervisor: Example 2.1 48
Plant with p permanent failure modes 49
Relation of consistent languages 53
Plant automata for Example 3.1 54
Plant automata for Exarnple 3.4 74
Plant automata for Example 3.5 85
Plant automaton and union of markings: Example 3.6 89
Plant automata and intersection of markings: Example 3.7 90
Automata for Example 3.8 98
Plant automata for Exarple 4.1 108
Expansion for the initial state: Example 4.1 109
Plant automata for Example 4.2 111

Expansion for the initial state: Example 4.2 111

viii

.10:

11

. 10:
11
c12:
13
.14
. 15:

. 16:

Plant automata for Example 4.3
Plant automata for Example 4.4
Expansion for the initial state: Example 4.4
Plant automata for Example 4.5
Expansion for the initial state: Example 4.5
Plant automata for Example 4.6

Expansion for the initial state: Example 4.6

Plant automata for Exarnple 5.1

Plant and specification automata for Example 5.2
Given plant and specification automata: Example 5.3
Modified automata: Example 5.3

Resulting automata: Example 5.3

Plant automata for Exarnple 5.4

Expansion for the initial state: Example 5.4

Plant automata for Example 5.5

Expansion for the initial state: Example 5.5
Specification automata for the expansion: Example 5.5
Controllable automata of the first iteration: Example 5.5
Resulting automata of the first iteration: Example 5.5
A propulsion system

Automata of components

Combined automaton of the three valves

The entire plant automata

ix

112

117

117

120

121

143

143

154
155
163
163
164
168
169
171
171
172
173
173
179
180
180

181

L 17:

. 18:

. 19:

. 20:

21

. 228

.23:

. 24:

. 25:

. 26:

.27

.28

. 29:;

. 30:

.31:

The normal model of the propulsion system

Overall specification automaton

Legal behavior of the normal model

Legal behavior of the normal-failure model
Controllable normal automaton of the first iteration:

Offline Solution

Controllable normal-failure automaton of the first iteration:

Offline Solution

Resulting normal-failure automaton of the first iteration:

Offline Solution

Normal expansion for the initial state
Normal-failure expansion for the initial state
Resulting normal automaton of the first iteration:

Online Solution at the initial state

Resulting normal-failure automaton of the first iteration:

Online Solution at the initial state

Normal expansion for the state 1101
Normal-failure expansion for the state 1101
Resulting normal automaton of the first iteration:

Online Solution at the state 1101

Resulting normal-failure automaton of the first iteration:

Online Solution at the state 1101

182

183

185

186

187

188

190

192

193

194

195

196

196

197

198

List of Tables

5.1 . Event list of the propulsion system 179

Xi

Chapter 1

Introduction

This thesis studies robust nonblocking supervisory control of discrete event systems with
model uncertainty, specifically, the exact system model is uncertain but could be one of a
set of possible models. The solutions to the robust control problem in the literature are
calculated at the design stage (offline) which requires a large amount of memory for
implementation. To tackle this issue, an online solution is developed in this thesis which

makes control decision for the current state at run time without storing supervisors.

In this chapter, we first introduce discrete event systems and language modeling in
Section 1.1. Then conventional supervisory control with precise model is introduced in
Section 1.2 followed by robust supervisory control with model uncertainty in Section 1.3.
Fault recovery problem is introduced as a special application of robust supervisory
control. After the literature review on supervisory control and robust supervisory control
in Section 1.4, the objectives and contributions of this thesis are presented in Section 1.5.

In the end, the organization of this thesis is described in Section 1.6.
1.1 Discrete Event Systems

Discrete-event systems (DES) [5] [38] are systems with discrete states. State transitions
are driven by events. Since state transitions are driven by events, we can use the
sequences of events to describe the system dynamic behaviors. A sequence that a system

can conduct represents a sample path of the dynamics of the system.

Example 1.1: Take a simple propulsion system shown in Figure 1.1 as an example. The
system consists of a fuel tank 7, a valve ¥, and an engine E. We assume the tank always
has sufficient fuel. The mechanism of the system is that the engine will be on if the valve
is turned on, and engine will be off when the valve is turned off. The system can be

modeled as a DES.

Xv
EE

Figure 1. 1: A simplified propulsion system: Example 1.1

The states of the system are discrete. Suppose the tank always has sufficient fuel and thus
there is only one state for the tank which is tank full. The valve has two states which are
on and off. The engine also has two states on and off. The overall states of the system can
be represented by the combination of component states. For example, (Tank fu}l, Valve

on, Engine off) is one of the overall system states.

If we associate events to state transitions, state transition of a system can be viewed as

driven by a finite number of events. The events in our propulsion example include: turn

on valve, turn off valve, engine fires, and engine stops. For example, if an event engine
fires happens at the state (Tank full, Valve on, Engine off), then the system state transits

to (Tank full, Valve on, Engine on) driven by the event engine fires.

A sample path of the system can be the following. At the initial state (Tank full, Valve
off, Engine off), if the valve is turned on, then the engine will fire. After that, if the valve
is turned off, then the engine will stop firing. The sample path can be represented as an
event sequence: turn on valve, engine fires, turn off valve, and engine off. All of the
sequences that the system can conduct will form a set of sequences which represents the

overall dynamics of the system. o

If we treat the set of events as an alphabet, then a sequénce will correspond to a word
formed from the alphabet. Similarly, the set of all feasible sequences in a system can be
treated as the language formed from the words that the system speaks. Different systems
own different alphabets and different words. Hence, the dynamics of a system can be

modeled exactly as the language the system speaks.

We mark all of the sequences that indicate that tasks are fulfilled. If any string of a
system can end with a marked sequence, then some task can be always achieved. In this
case, we call the system nonblocking. The above simple propulsion system is
nonblocking if sequences with engine on are marked since we can always bring a system

from any state to a marked state with engine on.

1.2 Supervisory Control of Discrete Event Systems

Some sequences of a system may be undesirable. For example, the engine has to be
warmed up first before the fuel valve is opened in Example 1.1. Therefore, opening valve
before engine is warm is undesirable. Hence, we want to design a controller which

ensures that the valve is not turned on before the engine is warm.

Supervisory control is a feedback control to meet this kind of requirements shown in
Figure 1.2. Supervisors observe sequences of a system and disable events if necessary. In
the above example, when the event engine stops is observed by a supervisor, event turn
on the valve is not allowed at the current state. Only when an event warm up engine is

observed is the event turn on the valve enabled by the supervisor.

Supervisory control is passive feedback control in that it only disables some controllable
events to prevent systems from generating illegal strings and being blocked without
forcing any event to happen. In the above example, events turn on the valve and turn off

the valve are controllable. However, engine fires and engine stops are uncontrollable.

Supervisor

Enabled Observed
events ' sequence

Plant

Figure 1. 2: The schematic of supervisory control

Supervisory Control [5] [38] aims to restrict the system behavior inside the safety
specification. Nonblocking supervisory control ensures the closed-loop system is
nonblocking in addition to ensuring safety specification. Offline supervisory control
synthesizes supervisors in advance for an overall system. Offline supervisor is calculated

once before system operation and stored as a lookup table for referring to at run time.

In linguistic supervision, the control domain is in terms of sequences. System states are
used only for representation of system languages. As a dual procedure of linguistic
supervision, in state-based supervision the specification is given in terms of desirable
states (instead of sequences of events in the linguistic approach). A state-based problem
can also be regarded as linguistic problem in which the specification automaton is a

subautomaton of the plant automaton.

The main issue which impedes the application of supervisory control of discrete event
systems is the difficulty of modeling, computational complexity due to the state
explosion of system and specification automata, and difficulty of storing (offline)

Supervisors.

Online supervisory control [7] has been proposed to solve the problem. Online
supervisory control examines the system’s future behavior over a finite horizon without
modeling the overall plant model and computes the control decision only for the current
string at run time. When the system evolves one step ahead, the calculation is repeated
for the new current state. As a result, the overall system model and specification model
are unnecessary which avoids the state explosion problem of modeling. Moreover, no

supervisor is required to be stored for looking up, which reduces space complexity. In

addition, unlike offline supervisory control, online supervisory can be also applied for

time-varying systems.

1.3 Robustness and Fault Recovery

The traditional supervisory control assumes the system model is certain. However,
system environment is always changing, for example, due to reconfiguration of system

modules, failure of some components, etc.

There are different ways to model system uncertainty. A natural way to model system
uncertainty is to model each possible situation with a certain model and thus the system is
represented with a set of possible models. In addition, there may be a unique specification
for each possible model. The precise system model may or may not be certain at one time
before a system runs. For example, we know the exact model when a certain
configuration scheme is chosen in a reconfigurable system. However, we do not know if

a failure will happen or not in a system.

In case that the precise model is known at the beginning of one operation, we may design
a supervisor using the conventional supervisory control for each possible model and
choose the corresponding supervisor before each operation. The disadvantage is that we
have to design a supervisor for each possible system model and thus computationally
expensive if there are several possible models. Therefore, we may wish to design a

unique robust supervisor which works properly for all possible system configurations.

In case that we do not know the exact model at the start of an operation, traditional

supervisory control will be inapplicable. From now on, we assume that the precise system

model is uncertain before an operation and aim to design an optimal robust supervisor
which meets safety requirement and ensures nonblocking property for all possible plant

models.

Offline robust supervision in discrete event systems has been investigated by researchers
[16] [3] [27]. In this approach, the union behavior of all possible models and the overall
specification is required to be obtained before a supervisor can be synthesized and thus

we refer to it as the indirect approach.

However, online robust supervisory control using lookahead policy has not yet been
developed to the best of our knowledge. We develop a new offline robust supervisory
control with a direct approach, which is more transparent and offers insight to robust
supervision problems. We refer to this approach as the direct approach since it
characterizes the solutions of the robust control problem in terms of sublanguages of each

plant model (rather than those of a union model).

Fault recovery and fault tolerance supervision in discrete event systems becomes more
important with the increase of the system complexity. We require that a system can
conduct its full function and be nonblocking at the normal operation. In addition, if some

components fail, the system shall fulfill all or part of functions and not block.

The safety specification may vary before and after failure happens. For example, the
specification after failure may be less strict than the requirements when the system status
is normal. The questions to investigate include: the existence of a robust supervisor for a

given system with failures and methods for the synthesis of the supervisor.

Conventional supervisory control will not directly solve fault recovery problems. A
supervisor designed for the normal model ceases working if a failure happens. As a result,
the system may violate the specification or become blocking after failure. On the other
hand, a supervisor designed for the entire system model with failure events may result in

blocking in the normal mode.

Fault recovery problems can be solved as a special case of robust supervision problems
[26]. We know the system normal model without failure and the normal-failure model if
a specific failure happens; but we do not know if any failure will happen or which failure
will happen. The system normal model and all normal-failure models form the set of
possible system models. The following example illustrates a fault recovery problem in a

simplified propulsion system.

-1

vV V, V1’ VAR'GVA

Figure 1. 3: A propulsion system: Example 1.2

Example 1.2: A propulsion system with one fuel tank 7; one oxidizer tank T,, five

valves (V;, V2, V;', V2', V37), and two engines (E and £’). We assume the tanks always

have sufficient fuel and oxidizer. Engine E will be on if V; and ¥, is on. Engine £’ will
be on if V;" and V>’ (‘or V3’) are turned on. V5’ is used in the normal status and may
become stuck-closed. In the normal operation, V3’ shall not be used. Assume that a tank
can supply one engine at a time and thus V; and V;’ (V,, V,’,and V3’) shall not be turned
on at the same time. In addition, we assume that a valve can not be turned off until the
engine connected to it fires. We mark the states where some engine is fired (i.e. we want
to be able to start the engine using an appropriate sequence of events). The initial state is

that all valves are turned off and both engines are off.

The intuitive supervision to the system will be as follows. In the normal mode, V3’ is
disabled by a supervisor according to the specification, and V; and V; (resp. V; and V")
are used to turn on and off the engine E (resp. £’). If ¥’ fails stuck-closed at the state
where engine £’ is on, then £’ will be off. In addition, ¥;’ is not allowed to be turned off
when engine E’ is off. In this case, V; is not allowed to be turned on since V;’ is on, and
thus engine £ will also not be fired. As a result, no engine will be on if the supervisor
keeps disabling V3’ and thus the system becomes blocking in the failure mode. Therefore,

V3’ shall be enabled after the failure to get the system recovered. 0

1.4 Literature Review

Supervisory control and robust supervisory control have been studied by researchers. We

briefly review the relevant results and give comments on them.

1.4.1 Supervisory Control

Supervisory control of discrete event systems is first developed in [23] [24]. The events
of a system are partitioned into controllable and uncontrollable events. A supervisor is
defined as a function which maps strings of a system to enabled events. A supervisor is
constructed as a model which represents the desirable behavior. The interconnection of
the system with the supervisor forms the closed-loop system which only generates the

legal strings.

Since only controllable events can be disabled, a supervisor is admissible only if all
uncontrollable events are enabled by it. Controllability theorem shows that a supervisor is
admissible if and only if the closed-loop behavior is controllable with respect to the open-

loop behavior.

In supervisory control problems, a string is marked in the closed-loop system as long as it
is marked in the plant. Hence, if a marked string s is allowed in the closed-loop system
and string s is also a marked string in the plant, then string s will be marked in the closed-
loop system. Nonblocking can be guaranteed in the closed-loop system only if the
marked language of a closed-loop system is relative-closed with respect to the open-loop

marked language.

The existence problem for a supervisor is reduced to calculating the supremal
controllable sublanguage of a given specification. The calculation is further investigated
in [37] by the authors. The supremal controllable sublanguage is characterized as the
largest fixed point of an operator. There is no closed-form expression to compute the

result. Instead, the supremal controllable sublanguage is calculated recursively with an

10

algorithm. It is proved that the algorithm converges in a finite number of iterations if the

system and specification are modeled by finite-state automata.

Limited lookahead supervisory control (LLP) is first proposed in [7]. LLP predicts the
plant behavior in certain steps and makes control decision only for the current string. The

procedure is repeated after some enabled event happens.

Conservative or optimistic attitudes are taken to accommodate the uncertainty of the
system behavior after the limited lookahead window. Conservative attitude may disable
an event even if it can be enabled. As a result, the closed-loop behavior with conservative
limited lookahead policy is never more permissive than the optimal offline solution.
Similarly, an event that shall be disabled may be enabled if optimistic attitude is taken.
This will cause error since illegal sequences or blocking may become unavoidable later.
As a result, the closed-loop behavior with optimistic lookahead policy is never more

conservative than the optimal offline solution.

The behavior of a system under supervision of a lookahead supervisor may be different
than the behavior of the system under supervision of a conventional optimal supervisor.
A larger lookahead window results in a better closed-loop behavior in that it is closer to
the offline optimal solution. In some systems, the closed-loop behavior under supervision
of an online supervisor will be equivalent to the offline supremal solution if a sufficiently
large lookahead window is taken. We call such an online supervisor valid. Nevertheless,
this is not always the case since sometimes the equivalence is never obtained no matter
how long the size of the window is even when plant and specification are finite-state

automata.

11

The lookahead window is represented by a finite tree. The computation of the supremal
controllable sublanguage with respect to the lookahead window is transferred to an
optimal problem in [9] in order to recursively use the results of the previous setup at each
step and thus reduce computational complexity. Each state of the tree is assigned a value
with either 0 or oo, and the control decision for the current string is made according to the
value of the current state and all of its next states. The values for the boundary states are

first assigned and their values are propagated backwards to the root state.

In [10], the authors observe that values of some states in the lookahead window are not
necessary to make a control decision for the current string. The authors propose a
forward searching algorithm which only assigns values if necessary. As a result, it
improves the efficiency of computation. This algorithm is called variable lookahead

policy (VLP).

The above references take a linguistic approach which works on languages. Variable
lookahead supervisory control with state information (VLP-S) [1] takes state-based
approach with variable expansion. It requires that the specification be modeled as a
subautomaton of the plant automaton. In contrast to the linguistic approach, the online

supervisor with VLP-S is always valid.

Extension Based lookahead policy [14] estimates the behaviors of a plant after the N-step
lookahead window. This approach is in fact similar to the conservative approach in the
sense that the resulting supervisor is never more permissive than the offline optimal
solution. Estimate-based lookahead policy for closed language specification is considered

in [28]. Online supervisory control under partial observation is considered in [2] [12].

12

In this thesis, we take the same spirit of VLP to solve robust problems without
transferring to optimal problems. We also investigate VLP-S in robust problems without

assigning values to states.
1.4.2 Robust supervisory control

Lin [16] first considers systems with a set of possible models. This framework of
modeling uncertainty is natural in the sense that a system with uncertainty may not be
modeled by a single model. The specification is assumed to be a sublanguage of the
marked languages of all possible plant models. Robust supervision in this formulation
aims to find a unique supervisor which is suitable for all possible models. The
performance of a solution is compared in terms of the closed-loop languages. The union
of all possible behaviors is first synthesized. There exists a solution to the robust
problems if and only if a sublanguage of the specification can be found that is
controllable and observable with respect to the “union” plant behavior. Park and Lim [20]

[21] generalize Lin’s work to nondeterministic automata.

Takai [29] [30] relaxes the assumption that the specification is a sublanguage of each
marked language. However, it only considers prefix-closed languages. An overall
specification is given as a language and the specification for each possible plant model is
obtained by taking the intersection of the overall specification with the possible plant

model.

Bourdon [3] generalizes Takai’s work to marked languages. Nonconflicting is an
additional condition for the existence of a solution. In addition, a separate specification is

considered for each possible plant model instead of being given as an overall

13

specification for all possible plant models. The overall specification is synthesized from
the individual specifications. The solution to the robust problem is to find a sublanguage
of the synthesized overall specification that is controllable and relative-closed to the
overall plant behavior as well as nonconflicting to the marked behavior of each possible

plant model.

It turns out that the nonconflicting condition used in [3] to ensure nonblocking property
of the closed-loop systems is only necessary and not sufficient. Saboori [27] generalizes
Bourdon’s work to partial observation and replaces nonconflicting with G-nonblocking
condition to remove the above limitation, and shows that G-nonconflicting is a necessary

and sufficient condition for the existence of a robust solution.

There are two other paradigms of robust supervisor control in the literature which are in
terms of languages. Cury and Krogh [11] and Takai [31] [32] model the uncertainty of a
system with w-languages. Given a supervisor which works for a nominal plant, it aims to
maximize the set of plants for which the supervisor is suitable. Park and Lim [19] [22]
model the uncertainty of a system with internal unobservable transitions. This approach is

also based on a nominal plant.

Our work models system uncertainty as done by Lin in [16] and formulates robust
supervisory control problem as in Bourdon [3] and Saboori [27]. Without synthesizing °
the overall plant behavior and the overall specification, we work on the specification and
plant pairs directly to solve the problem. A concept of consistency is defined to offer
insight to the robustness property. In addition to solving robust supervisory control

problem with direct approach offline, we also address the linguistic and state-based

14

robust problem with direct approach online by generalizing traditional online supervisory

control to accommodate robustness.

The objective in fault recovery problems is to ensure that the plant under supervision
meets its specification in faulty modes (as well as normal modes). The specification for

faulty behavior may not be as stringent as those of normal operation.

One way of fault recovery is to model the plant with faults as a finite state automaton.
The states of a plant automaton are divided into normal states and failure states. The part
of the automaton with all normal states forms the normal model. The normal states and
all states after one kind of failures form a normal-failure model. There will be many

normal-failure models if different failures exist.

Modular switching supervisor control [18] [34] designs a supervisor for the normal model
and a supervisor for each normal-failure model. The supervisors can be configured to
control the system in the normal mode and each failure mode. This approach simplifies
supervisor design and implementation complexity. However, it may result in blocking
when the individual supervisors work together as modular supervision. In addition, the

modular supervisor designed is not guaranteed to be the most permissive supervisor.

Another approach [26] is to convert fault recovery problems to robust problems. In this
approach, a single robust supervisor is designed systematically which is suitable for the
normal model and all normal-failure models. The necessary and sufficient conditions for

the existence of solutions to fault recovery problems are obtained in [26].

15

We use fault recovery as an example of robust nonblocking supervisory control to
illustrate our results in state-based robust supervision problem. Hence, we take the second

approach of solving fault recovery problems as robust problems.

1.5 Thesis Objectives and Contributions

The indirect approach to robust problem does not provide insight to the key issue of
robust problems. This thesis develops an equivalent offline algorithm in Chapter 3, which
does not need to synthesize the overall specification and plant. It directly deals with each
plant model and specification pair and thus is referred to as the direct approach. A
concept of consistency is defined which is the key issue to the robustness property. The
necessary and sufficient conditions for the existence of solutions to robust problems are
developed. Algorithms are proposed to compute optimal solutions to robust problems. As
an illustrative example, nonblocking control problem with multiple markings is

investigated.

The drawback of offline robust supervision is that if the possible models (such as failure
modes in fault recovery problems) become numerous, the resulting supervisor may
become too large to be stored in computer memory. One method to deal with this
problem is to develop online methods that compute control commands online. This thesis
aims to offer a transparent direct solution to both linguistic and state-based robust

problem and implement it online.

In Chapter 4, linguistic online robust supervision with direct approach is developed and

its validity is proved. We only generate control action for the current system state. When

16

the system evolves, the algorithm is repeated to calculate the next control action. There is

no need to store any supervisor and thus the supervision implementation is simple.

Traditional limited lookahead policy (LLP) expands each branch to a given step. In fact,
the expansion for a branch can be terminated before the given step is reached in some
circumstance. For example, the behavior after an illegal state or a marked state without

uncontrollable active events has no influence on control decision for the current string.

We generalize LLP to robust supervision problems. Instead of using LLP directly, we
modify LLP to VLP by only expanding the part of the system models that are necessary

for making the control decision for the current state.

Linguistic online solution to robust problem works only if expansion always terminates.
To solve the termination problem, in Chapter 5, a state-based robust problem is
formulated and an algorithm is proposed that always finds an optimal supervisor. It is
shown that any linguistic robust problem can be converted to a corresponding state-based

robust control problem after automaton refinement.

We apply our results of state-based robust supervision to fault recovery problems of a
simplified spacecraft propulsion system. A simplified propulsion system with failure is
modeled as a discrete event system. The fault recovery problem is solved as a state-based
robust problem manually. In addition, the procedure of solving the fault recovery

problem with TTCT [33] is provided.

The main contributions of this thesis can be listed as follows.

17

e A direct approach to robust control problem that is more transparent than the
existing indirect method.

e Application of the direct approach to supervisory control with multiple markings.

e A VLP for online implementation of the direct approach.

e A VLP-S for robust control to resolve the termination issue of VLP.

1.6 Thesis Organization

Supervisory control of DES and its online implementation using LLP is reviewed in
Chapter 2. Also, robust control problem and its indirect solution are examined in this

chapter. Application of RNSCP to fault recovery is also reviewed.

In Chapter 3, we propose a direct robust supervision procedure which offers insights to
robust problems and relaxes the necessity of synthesizing the overall specification and
plant. Nonblocking supervisory control problem with multiple markings is formulated

and solved as a special case of robust problem using our direct approach.

Online synthesis procedure of the new direct approach is further investigated in Chapter 4.
A variable lookahead expansion policy VLP is given for online calculations of robust

control and its validity is proved.

In Chapter 5, RNSCP-S is formulated and an online algorithm VLP-S is proposed to
solve it. A procedure for converting RNSCP to RNSCP-S is proposed. Our results are
applied to a fault recovery problem of a simplified spacecraft propulsion system. A TTCT

procedure for robust supervisor synthesis is also provided there.

Chapter 6 summaries our work and discusses possible directions for future research.

18

Chapter 2:

Background

The behavior of discrete-event systems can be represented using languages. Howeyver, it
is difficult to analyze language models directly and synthesize controller based on
languages. To assist system analysis and design, automata are usually used to represent

languages.

Supervisory control aims to design a supervisor that restricts a system’s behavior in order
to satisfy design specifications by disabling controllable events. A supervisor can be

synthesized offline or online.

In this chapter, we review some of the background material that will be later used in this
thesis. In Section 2.1, modeling of discrete-event systems is introduced. Then, offline
supervisory control is reviewed in Section 2.2. After that, online supervisory control is

presented in Section 2.3. Finally, robust supervisory control is reviewed in Section 2.4.
2.1 Modeling of Discrete-event Systems

Discrete-event systems (DES) are systems that have discrete states and their state
transitions are driven by events asynchronously. Most man-made systems such as
telecommunication systems, manufacturing systems, and computer systems can be
modeled as discrete-event systems. Physical continuous-variable systems can also be

abstracted as discrete event systems.

19

2.1.1 Languages

An event of a discrete-event system takes the current system state to the next state

immediately. We assume only one event happens at a time.

A sequence of events can be treated as a sample trajectory of system behavior and thus
the dynamics of a discrete-event system can be represented as a set of sequences. A
sequence is also called a string, a trace, or a word. The string without any event is called
the empty string and denoted as ¢ . The basic operation on strings is catenation of two
strings. For example, the catenation of two strings # and v forms a new string uv. We

denote the length of a string s as | s|.

If we treat the set of events as an alphabet, then a sequence will be equivalent to a word
formed from the alphabet. Similarly, a set of sequences will correspond to a language
with words formed from the alphabet. The behavior of a discrete-event system can be

interpreted as the language that it speaks.
Definition 2.1: Language Any set of finite-length strings formed from the events in .o

We denote the language that includes the empty string and all possible finite strings from
the event set £ as . A language is a set of sequences, and thus the basic set operations
of two languages L, and L, such as intersection (L, N L,), union (L, U L,), complement
(L7), and relative complement (L, —L,) apply to languages. Irg addition, other

operations on languages such as prefix-closure, post-language, truncation, right quotient

are also defined and will be discussed later.

20

Consider a string s = uv¢ which is formed from catenation of three strings u, v, and ¢.
In this case, u is called a prefix of s; v is called a subtrace of s; and ¢ is called a

suffix of s. The set of all prefixes of strings in a language L forms a new language

denote as L .
Definition 2.2: Prefix-closure Let Le X then L'={se X :qreX stel}. O

If a string s is a prefix of string ¢, then we write s <¢. Since all strings in L belong to
L , we always have L ¢ L. If the inverse inclusion also holds o) Z, then we will have

L = L in which case, we say L is prefix-closed.

- The post-language of a language L after a string s consists of the set of the strings that

the catenation of s with them belongs to L.

Definition 2.3: Post-language The post-language of L X’ after string se X" is

denoted as L/s and defined as: L/s:={teX :stcl}. O

The truncation of a language L < T" to a natural number N consists of strings of L that

have a length less than or equal to N .

Definition 2.4: Truncation L|,:={te L:|t|<N}. O

Definition 2.5: Right Quotient The right quotient of L = X" by M < £ is denoted as

L/M anddefinedas L/M ={seX :3teM,steL}. o

The following lemmas will be used later in this thesis.

21

Lemma 2.1: [7] [8] Let K < Z°,then K/s=K/s forany se X’ .0

Lemma 2.2: [7] [8] Let 4,BC X", then (ANB)/s=A/sNB/s forany seX’. O

Lemma 2.3: [7] [8] Let 4,BC X . 1f se A, then AB/s=(A/s)B. =

Lemma 2.4: [27] Let 4,B < X" . Then, the following three statements are equivalent.

1) ANB=®
2) ANBS =@
3) ANBL =@, a)

It is difficult to study discrete-event systems using only languages. To solve this problem,
other modeling methods such as automata and Petri nets have been proposed to represent

languages. We only discuss automata here. An automaton is also called a generator.
2.1.2 Automata

State transition graph is perhaps the most direct way to define an automaton.
Deterministic automata are automata that every event leads a state to only one state. The

formal mathematical definition of a deterministic automaton is given below.
Definition 2.6: Deterministic Automaton A deterministic automaton G is a five—tuple:

G=(X,%,6,x,,X,) where X is the set of states and X is the finite set of events. & is
the partial transition function from X x X to X . x, is the initial state and X, is the set

of marked states. It is the desirable subset of X . O

22

Note that at any state x, not all events may occur and therefore § is a partial function.
We denote the set of all events that are eligible to occur at the state of G reached by a

string s, as Z;(s) and call it the active events of string s.

The set of all possible sequences from the initial state to a state in the state transition
graph forms a language, which is called the generated (the closed) language of the
automaton. Similarly, the set of all sequences from the initial state to marked states forms

the marked language.

Definition 2.7: Language Represented by an Automaton The language generated by
G=(X,%,6,x,,X,) is L(G):={s € " | 8(x,,s) is defined}. The language marked by

G=(X,Z,6,xy,X,) 18 L (G)={se€ L(G)|(x,,8)€e X,,}. O

It is easier to operate on automata than on languages. The basic operations on automata
are introduced below. We call a state unreachable if no string leads to it from the initial
state. The reachable states of an automaton can be obtained by the following accessible
part operation. The accessible part operation does not affect the languages generated and

marked by an automaton.

Definition 2.8: Accessible Part: Let G=(X,%6,x,,X,) . Then Ac(G):=

(X405 Z58,05 X0 X e y) Where X, ={xeX:35e€X",6(xy,8)=x}, X,.,=X,NX,,

ac? ac,m

and 6, =8| X, xZ—> X, . O

23

The set of all states from which there exists a sequence to marked states are called
coreachable (coaccessible). The following operation only keeps the coaccessible part of

an automaton.

Definition 2.9: Coaccessible Part: Let G = (X,X,5,x,,X,).

Then Codc(G) =(X,,,.,2,0 X,,) where

coac ? x O,coac *

Xgs if x; € X,

XCOGC :{xeXZESGZ*55(x>S)EXm} s xO,coac 2{ and

undefined, otherwise

Orore =0 | X ppue X2 > X O

coac coac *

Coaccessible part operation will result in the same marked language. The generated
language of a nonblocking automaton will remain unchanged after coaccessible part
operation. However, coaccessible part operation will end up with a smaller generated

language if the original automaton is blocking.

Blocking happens in an automaton if there does not exist any trace leading from an
unmarked reachable state to a marked state. Blocking could be in the form of deadlock or
livelock. An automaton could reach an unmarked state with no active event. This is called
deadlock because no further event can be executed at the unmarked state. The system has
a livelock if there exists a strongly connected set of unmarked reachable states such that
no event takes the system outside the set of unmarked states. The formal definition of

blocking is given in terms of languages.

Definition 2.10: Blocking of Automaton An automaton G is called blocking if

L, (G) c L(G) and nonblocking if L (G) = L(G). O

24

Operation Trim is the combination of accessible part and coaccessible part operations.
The automaton after trim operation will be both reachable and nonblocking. The

accessible and coaccessible operations in the trim operation are commutative.

Definition 2.11: Trim: Let G = (X,%,6,x,,X).

Then Trim(G) := CoAc[Ac(G)] = Ac[CoAc(G)]. D

The complement operation of an automaton marks the complement language of the

language marked by the original automaton.

Definition 2.12: Complement: If G=(X,%,6,x,,X,) , then G*“" marks

L,(G“")=3%" - L (G) and generates X" . u!

The product operation G,xG, represents the common language of the languages

represented by the original automata. It represents the intersection of the languages of the

original automata.

Definition 2.13: Product: Let G, = (X,,X,,9,,x,,X,,) and G, =(X,,Z,,5,,x,,X,,).
Then G, xG, = Ac(X,x X,,Z,NZ,,0,(xy,%p), X, XX, ,) where

(0,(x,,0),0,(x,,0)), if 8, (x,,0)nS, (x,,0)!

undefined, otherwise

5(()&71 s Xy), O-) = {

It follows that L, (G, xG,)=L,(G)NL,(G,) and L(G,xG,)=L(G,)NL(G,) . The
union operation of two languages can be realized by intersection and complement since

LUL, =(L° NIP)™.

25

The synchronous product G, || G, represents the parallel behavior of systems. It can be
used to obtain the overall system model from independent subsystems. If an event is a
common event of G, and G,, then it is defined at a state of G, || G, only when it is
active at the corresponding states of both autémata. The next state will be the pair of the

next states of the original automata. If an event is a private event of automaton G,, it is
defined at a state of G, || G, as long as it is active in the corresponding state of G,. The

next state will be the pair of the next state of G, and the current state of G, .

Definition 2.14: Synchronous Product (Parallel Composition):

Let G, =(X,,%,,6,,%,,X,,) and G, =(X,,%,,6,,x,,X,,).
Then G, //G, = Ac(X,x X,,Z, VZ,,0,(xy,Xp), X, x X ,,) Where

(6,(x,,0),0,(x,,0)) ifoeZ NZ, Ad(x,,0)In0,(x,,0)!

(6(x,,0),x,) ifoeX —Z,A6,(x,,0)!

0((x,,x,),0) = . . o
(x,,6,(x,,0)) ifoeX, % Ad)(x,,0)!
undefined otherwise

In synchronous product, G, and G, have an equivalent role. A common event of G, and
G, is not allowed in the synchronous product operation unless it is an active event of the
current state of both automata. In contrast, one automaton of G, and G, in the biased

synchronous product defined below acts as a leader in the state evolution in that state
transition is permitted as long as an event is active at the current state of the leading
automaton. As a result, the resulting automaton of biased synchronous product results has

the same generated and marked languages as the leading automaton.

26

Definition 2.15: Biased Synchronous Product [15]: Given two automata
G, =(X,,Z,,0,,x4,X,,) and G, =(X,,2,,0,,x,,X,,) , the multiple biased
synchronous product of G, is defined as:

G |, G, = Ac(X, x X,,Z,,8,(x4,, %5,), X ,,; X X,) Where

undefined otherwise

1

%y if z o,(x,,0 ifoeZ; (x
5((x17x2)7o-)={(XI ,XZ) Hoe G‘(xl)andxi'z{ ’(!) Gi()

X, ifoeZ;(x)

If an automaton G, is a subgraph of another automaton G,, then we say G, is a
subautomaton of G, . In this case, a state in G, corresponds to only one state in G,. In
other words, if two strings lead to the same state in G,, they will lead to the same

corresponding state in G,.

Definition 2.16: Subautomaton: Let G, =(X,,Z,,0,,%4,X 1) and
G, =(X,,%,,0,,x5,,X,,). G, is called a subautomaton of G, denoted as G, ¢ G, if

0,(x41,8) = 6,(xy,,5) forall s e L(G,). o

Automata are very convenient for system modeling, analysis, and control. However, the
number of states of the product of two automata may be the product of the number of the

original automata. If there are n automata with m states, the product of them may have

m” states. This is called state explosion.

It should be noted that some languages can not be represented by automata with finite
states. Only regular languages can be generated or marked by automata with finite states.
The basic operations in this subsection on two finite-state automata will result in finite-

state automata.

27

2.2 Offline Supervisory Control

Given an automaton G =(X,Z,5,x,,X,,), it is assumed that the event set can be divided
into two disjoint sets £ =X _&Z, where Z_ is the set of controllable events and T, is

the set of uncontrollable events. We want to restrict the system language to a desirable
sublanguage and have nonblocking property by disabling some controllable events. We
call this kind of control, supervisory control. Figure 2.1 illustrates the configuration of

supervisory control.

Supervisor

S(s) $=0)...0,,

Plant

Figure 2. 1: Supervisory control

A supervisor S is a function S:L(G) — 2*. For se L(G), S(s) specifies the enabled
events at some strings in L(G). The control domain is based on strings and thus we call it
linguistic supervisory control. The language generated and marked by the closed-loop

system is denoted as L(S/G) and L, (S/G)=L, (G)NL(S/G).

13

Supervisory control of discrete event systems is a feedback control in that the supervisor

observes the strings generated in the plant and decides which active events should be

28

enabled at the current state. A supervisor shall not disable any uncontrollable event. A

supervisor disabling only controllable events is called an admissible supervisor.

Definition 2.17: A supervisor S is called admissible if it does not disable any

uncontrollable eventin G .
2.2.1 Basic Supervisory Control

The supervisory control of prefix-closed languages is first introduced. The issue of
blocking is not considered. The main concern it to limit the generated sequence in the

plant to the desirable sequences and to prevent undesirable (unsafe) sequences.

We first introduce the languages which can be generated by the closed-loop systems
under supervision of admissible supervisors. They are called controllable languages with

respect to a certain plant and uncontrollable event set. For an language K, if all

uncontrollable continuations EZ” is either outside L(G) or remain in K, then we say

K is controllable with respect to L(G) and X, .

Definition 2.18: Controllability A language K is controllable with respect to another

language M and uncontrollable event set £ if K, "M c K . i

Obviously, @ is always controllable. In addition, controllability is conserved under
arbitrary unions. Therefore, if a language K itself is not controllable with respect to

L(G) and X, , there exists a supremal controllable sublanguage of K denoted as

SupC(K,G).

29

Due to uncontrollable events, the closed-loop system behavior can not be any
sublanguage of L(G). The language of a system under supervision of an admissible

supervisor shall be controllable.

Theorem 2.1: [5] Controllability Theorem Consider an automaton G =(X,Z,d,x,)
with uncontrollable event set ¥ < X and a nonempty language K with Kc L(G) .

There exists an admissible supervisor S such that L(S /G)=E if and only if K is

controllable with respectto L(G) and Z,. O

An optimal (minimally restrictive) supervisor is a supervisor that only disables events

if necessary.

BSCP: Basic Supervisory Control Problem Given DES G with event set I ,
uncontrollable event set £ < £, and specification language E = Ec L(G), synthesize

an optimal supervisor S such that L(S/G)c E. ©

Solution to BSCP: The above BSCP can be solved by simply calculating the supremal

controllable sublanguage K of specification E with respect to L(G) and £, . An

optimal supervisor S can then be realized by an automaton R with L(R) =K = K. O

For the case of prefix-closed languages, closed-form expression exists for the calculation

of the supremal controllable sublanguage. It is given as follows.
Computation of Sup(C(K,G): Prefix-closed Case

If K = K, then SupC(K,G)=K -[(L(G)-K)/L, Iz’ . o

30

2.2.2 Nonblocking Supervisory Control

In most cases, the nonblocking property of the closed-loop system becomes an important

issue to be considered.

Definition 2.19: Relative-closed Janguage (L, (G)-closed) A language K c L (G) is

said relative-closed if K N L, (G)=K . 0

Obviously, the empty language @ is always relative-closed. In addition, the arbitrary
union of relative-closed languages is still relative-closed. As a result, if a language K is
not relative-closed, then there always exists a supremal relative-closed sublanguage of K

denoted as SupR(K,G) . The supremal relative-closed sublanguage of K can be

calculated with the formula SupR(K,G) =K —(L,(G)-K)Z'.

The relative-closure property is conserved under the operation of supremal controllable

sublanguage.

Lemma 2.5: [5] If a language K is relative-closed, its supremal controllable

sublanguage SupC(K,G) will remain relative-closed. o

Theorem 2.2: [S] Nonblocking Controllability Theorem (NCT) Consider DES

G=(X,%,6,x,,X,) where £ < X is the set of uncontrollable events and a nonempty

language K < L, (G). There exists a nonblocking supervisor S such that L (S/G)=K

and L(S/G)=K ifand only if the two following conditions hold:

1) Controllability: KX, N L(G)c K.

31

2) Relative-closure: K M L (G)=K. i

The nonblocking supervisory control problem is formally formed as follows.

BSCP-NB: Basic Supervisory Control Problem - Nonblocking Case Given DES G

with event set ¥ , uncontrollable event set £, <X , and specification language
Ec L,(G), find an optimal (minimally restrictive) admissible nonblocking supervisor

S suchthat L (S/G)c E. O

The solution to the robust nonblocking supervisory control problem is to find the
supremal relative-closed and controllable sublanguage. Since the supremal controllable
sublanguage of a relative-closed language remains relative-closed, the supremal
controllable and relative-closed sublanguage can be computed by computing the
supremal relative-closed sublanguage first and then obtaining the supremal controllable

sublanguage.
Solution to BSCP-NB:

The solution to BSCP-NB is to first calculate L = SupR(E,G) and then compute

K =SupC(L,G). An optimal admissible nonblocking supervisor S can be realized by

an automaton R with L(R)=L_(R) = K. 0

There is no closed-form expression for the calculation of the supremal controllable
sublanguage in the general case. However, iterative procedures using the largest fixed
point techniques are available for the computing the supremal controllable sublanguage
SupC(L,G) when the plant G is finite-state and the language L is regular.

32

2.2.3 State-based Supervisory Control

Let us consider a plant G. The set of all strings leading to a state x of a plant automaton

G from the initial state is denoted by [x]. The post-languages of L(G) of all strings in
[x] are the same denoted by L(G)/[x]. L(G)/[x] can be generated by the accessible part

of the automaton resulted from treating the state x of G as the initial state.

Suppose a trim automaton A marks the legal language £ with L (H)=Ec L, (G). If
H is a subautomaton of G, the control policy for each string in [x] will be the same [1].
Hence, the domain of the supervision map can be based on states rather than strings. A

state-based supervisor is a function §: X — 2%,

2.3 Online Supervisory Control

Oftline supervisory control synthesizes the overall supervisor in advance and stores the
supervisor in memory for looking up at run time. If a system is too complicated, it will be

impractical to synthesize or store offline supervisors.

Online supervisory control does not require modeling overall plant automaton and
specification automaton. Instead, it predicts the system behavior and computes the
control policy only for the current string at run time. As a result, there is no need for
storing any supervisor. In addition, online supervision is suitable for control of time-
varying discrete-event systems where system behavior may change when a system is in

operation.

33

2.3.1 Limited Lookahead Policy

One of the online supervision methods is Limited Lookahead Policy (LLP). LLP expands
the plant language as a tree generator at the current string and stops once a fixed length is
reached for each branch. The automaton of a plant G and its two-step lookahead window
at the empty string are shown in Figure 2.2. LLP takes a linguistic approach since each

node of a tree corresponds to exactly one string.
G a
0,

1 D

o]

Figure 2. 2: Plant and two-step lookahead expansion

Let G denote a DES plant with event set £. We assume that all events are observable
and G is nonblocking m}—) = L(G). Now we want to design a supervisor ¥ to restrict
the plant G to certain specification K < L (G) and keep the system under supervision
nonblocking. In other words, the closed-loop system should satisfy L (y/G)c< K and
Lm_(}//—CT) =L(y/G). We assume K#® and L, (G)—closed K = I?GL,,,(G) . The

procedure of limited LLP is formulated below.

LLP supervisory control calculates the control action for the current string s in five
stages. Firstly, the behavior of G in N steps beyond the current trace s is predicted as a

N-step lookahead tree. Secondly, it determines which traces in the N-step tree are illegal

34

according to the specification. The strings at the boundary of the tree which are not illegal
are called pending strings due to uncertainty of the behavior beyond the lookahead
window. At the third step, one of two different attitudes can be employed to deal with the
ambiguity of the pending traces. The optimistic approach treats all pending traces legal
and marked. On the contrary, the conservative approach views them as illegal. After that,
the supremal controllable sublanguage of the resulting specification with respect to the

lookahead window is calculated. Finally, the conservative (resp. optimistic) control

N
optm

decision . (s) (resp. y2 (s)) at the current string s is made by allowing all

uncontrollable active events and the first event of the sequences of the supremal
controllable sublanguage. After an enabled event o is executed, the new current string

will be so and the same procedure is repeated for the new current string.

There are three important issues in this framework. Firstly, what if the supermal
controllable sublanguage in some lookahead window is @ ? Secondly, how do attitude
and the length of lookahead windows affect the behavior of closed-loop systems? Finally,
under what condition is the online control decision equivalent to the offline optimal

(minimally restrictive) decision? The following definition deals with the first question.

Definition 2.20: Run time error (RTE) If the supremal controllable sublanguage is @

at some current string s € L(G,), then we say there is a run time error at string s. O

If an RTE happens at some string s, then there will be no way to prevent the system from
entering illegal states or becoming blocked. Hence, RTE must be avoided. If an RTE

happens at the initial state, we call it a starting error (SE).

35

The second question is answered by the following properties. In the case of optimistic

policy, L(y},,/G) is bounded and monotone in that SupC(K,G)c L(yY, /G) and
LY/ G) 2 L(yp /G) . In the case that conservative policy is taken and

SupC(K,G)#® , L(y) . /G) is also bounded and monotone in that

L(y 3,/ G) SupC(K,G) and L(y},,./G) < L(y i | G).
The validity defined below is concerned with the third question.

Definition 2.21: Validity An online supervisor y is called valid if the behavior of the
closed-loop system under its supervision is equivalent to the closed-loop behavior under

offline optimal supervision. Namely, L(y/G) = SupC(K,G). m;

Although L(»Y, /G) and L(y”

optm cons

/ G) are monotone and bounded, they do not converge

to SupC(K,G) in general when N goes to infinity. However, a certain lookahead window

size N may exist to make L(y/G) = SupC(K,G) in some cases.

In order to obtain L(y/G) = SupC(K,G), two conditions have to be satisfied:

1) Every uncontrollable subtrace that leads to the illegal region (1_<)w should be

prevented before it is too late.
2) Such prevention should come as late as possible for validity.

The validity condition for both prefix-closed specifications and non-closed specifications

are considered under both optimistic and conservative policies below.

36

Case A: Prefix-closed specification K = K

The length of the longest uncontrollable subtrace of strings in a language X is denoted as

N,(K) and defined below.

Definition 2.22:
: E* * . ..
N, (K) = max{|s|:seX, A(Qu,ve X Jusve K} if ex1st.1ng o
undefined otherwise

The sufficient conditions for validity of LLP in the prefix-closed situation are given in the

following theorems.

Theorem 2.3: [7]If N> N, (K)+2 or N2 N, (L(G))+1,
then L(y.,, /G) = SupC(K,G). O

Theorem 2.4: [7] If no SE happens in L(y”

cons

/G) and N2N,(K)+2 , then

L(yY /1G)=SupC(K,G). O

cons

Case B: Non-closed specification K c K
Before giving the sufficient condition for validity, we define the following languages.

K, ={seK:(VoeZ)so¢L(G)} 2.1)

K, =(LG)-K)/2)NK (2.2)

37

K,. is called the marked legal and controllable language. K 1« 1s the set of legal strings
which is the catenation of a legal string with an uncontrollable event. K, can be

regarded as the frontier of the legal language.

Definition 2.23:

me
mefe

_jmax([t|:(3se K, viehlste K, n(Ve<v<t)svg K, UK, 1} if existing
undefined otherwise

N - max(|t:(Ise K, UieD)ste K, A(Ve<v<tsveK,]} if existing
meme 1 undefined otherwise

N

nere 18 the length of the maximum subtrace which leads the empty string or the marked
legal controllable strings to an illegal string without generating any marked legal

controllable or illegal strings. N, _ is the length of the maximum subtrace which leads

the empty string or the marked legal controllable strings to their neighbor next marked

legal controllable string.

The following theorems give sufficient conditions for validity of an online supervision in

optimistic and conservative attitudes respectively.

Theorem 2.5: [7] Assume SupC(K,G)=#®. If N> N, . +1 step lookahead is taken,

then L(y) /G)=SupC(K,G). @«

optm

Theorem 2.6: [7] Assume no SE happens in L(y” /G) and K= K—mc fNZ2N, __+1

meme

step lookahead is taken, then L(y" /G)=SupC(K,G). m]

38

2.3.2 Variable Lookahead Policy

The expansion of the N-step window in LLP may be unnecessary for each branch. For
example, if a branch reaches an illegal string or a marked legal controllable string before
N-step lookahead, further extension of the string is unnecessary. If a sufficiently large
lookahead window size N will ensure validity of LLP, then all branches will terminate
before N-step is reached. Another shortcoming of LLP is that the computation for the

current string can not be reused when the system evolves.

Variable lookahead policy [10] was proposed to improve computational efficiency. The
supervisory control problem is transferred to an optimization problem there. Strings are
examined forward and in a depth-first approach. Values are assigned only to the nodes of
the N-step expansion tree which are necessary to make control decision for the current
string. In addition, the values assigned in the current expansion tree can be used when the

system evolves one-step ahead. This further reduces computational complexity.

States are examined and values are assigned according to the following rules in VLP. If
an illegal string is reached, « is assigned to the node. If a marked legal controllable
string is reached, value 0 is assigned. If a boundary string of the expansion tree is reached,
o is always assigned in the conservative attitude. Value 0 is assigned to the boundary
strings in the optimistic approach except the illegal boundary strings. For other strings, all
uncontrollable events are examined before all controllable events. If an uncontrollable

o, event leads a string f to a string with o value, o is assigned to string ¢ without

further examining other active events. If a controllable event leads a string ¢ to the next

39

string with value 0, then string ¢ is assigned value 0 without further examining other

controllable events.

Validity may not be ensured in some cases no matter how many lookahead steps are
taken in LLP and VLP. To solve this problem, variable lookahead policy with state
information (VLP-S) [1] was proposed where control domain is states. The difference is
that expansion window is a subgraph of the plant and values are assigned to states. The
expansion at the empty string for the plant G in Figure 2.2 is shown in Figure 2.3.
Expansion always terminates since the number of states is finite for finite-state plants and

regular specifications. No attitude is required and validity is always guaranteed.

S=¢
(D

Figure 2. 3: VLLP-S expansion

In this thesis, we take variable-lookahead policy with both linguistic (VLP) and state-
based (VLP-S) approaches to synthesize valid online supervisors. VLP works only if
expansion always terminates. To solve this problem, we formulate state-based
supervisory control problem and propose an algorithm VLP-S to solve it. We make
control decision by computing the supremal element using fixed point technique which is
more transparent and easier to understand in comparison with the approach of

transferring supervisory control problems to optimization problems.

40

2.4 Robust Supervisory Control

Conventional supervisory control assumes that a plant model is certain and can be
represented by a known automaton. However, this assumption does not always hold and
thus uncertainty has to be modeled. For example, a system may have different

configurations for different tasks and thus we do not have a certain model for the system.

Robust supervisory control is one approach to handle model uncertainty. For example, we
may design a unique supervisor which can meet requirements no matter how the system

is configured.

In this thesis, we develop on-line solutions for a robust control problem. In this section,
we review some of the results on robust control in the literature. There are different ways
to model uncertainty and thus different formulations of robust supervisory control. Here,
we only review the robust supervisory control with the assumption that the system model

could be in a finite set of possible models though the exact model is uncertain.

2.4.1 Problem Formulation

Assume that a system model belongs to a set of possible known models G, with
X, =%, & forall ie]={12,.,n}, and the specification for each possible mode G,

is E, c L (G,). We also assume that an event is controllable (resp. uncontrollable) in all

other plant models if it is controllable (resp. uncontrollable) in one plant model.

Now we want to design a robust supervisor ¥ : Y L(G,) —» 2* where £ = Y £, such that
iel iel

the closed-loop system will meet the specifications and be nonblocking whatever the real

41

plant model could be. When the robust supervisor V is applied to a certain plant model
G, , its function will be ¥, : L(G,) = 2% with V,(s) =V (s)NZ,. In other words, the

closed-loop plant V' /G, denotes V, /G, forall ie .

Admissibility and nonblocking properties of a robust supervisor are required to be

defined before we formally define the robust nonblocking supervisory control problem.

Definition 2.24: A robust supervisor ¥ : Y L(G,) — 2% is said to be admissible if and
iel

only if V' is admissible for all G, where ieI. O

Definition 2.25: A robust supervisor V' : Y L(G,) — 27 is said to be nonblocking if and
iel

onlyif L, (V/G)=L(V/G,) forall ie . O

Definition 2.26: Let 77 be the collection of all admissible and nonblocking robust
supervisors. A supervisor Ve 77 is said to be the maximally permissive supervisor if

LV/G)2LW/G,) forany V e 7 o

The robust nonblocking supervisory control problem is described as below.
Robust Nonblocking Supervisory Control Problem (RNSCP):

Given a set of plants G, with i € I = {1,2,...,n}, the marked language L, (G,) is required
to be restricted into £, < L, (G,) for all i e I. Synthesize an admissible nonblocking
robust supervisor, which solves the problem. If existing, synthesize a maximally

permissive admissible nonblocking robust supervisor. o

42

The next subsection introduces offline indirect solution in the literature to the above

RNSCP. We will develop a robust direct solution later in this thesis.

2.4.2 An Offline Solution

The solution to RNSCP when G,’s are nonblocking is given in [3]. The solution in the

general case is provided in [27]. We refer to this solution as the indirect solution. Before

providing this solution, we need to review the concept of G-nonblocking languages.

Definition 2.27: G-nonblocking Let G = (X,Z,5,x,,X,) . A language K c X" is called

G -nonblocking if KN L, (G) = KN L(G). o

Let N,(K,G) denote the set of G-nonblocking sublanguages of K. The empty language

® is G -nonblocking. In addition, G -nonblocking languages remain G-nonblocking
under arbitrary number of union operations. As a result, there exists a supremal G -

nonblocking sublanguage denoted as SupN,(K,G) . Obviously, if K is G -nonblocking,

then SupN,(K,G)=K . SupN,(K,G) can be calculated using the following formula:

SupN,(K,G)=K - (K NL(G)-KNL (G)=".

Theorem 2.7: [27] Consider DES G, =(X,,Z,,6,,x,,,X,,) withie I ={1,2,...,n}. Let
2, cXZ be the set of uncont;ollable events. Let G be an automaton with
L(G) =iZL(Gi) and L (G)= ,Z L, (G;). Consider a nonempty language K < L, (G).
There exists a supervisor § such that L (S/G,)=KnL,(G,) and
L,(S/G)=L(S/G,) forall i e I ifand only if the three following conditions hold:

43

1) Controllability: EZ" NL(G) < K
2) L, (G)-closure: Kn L (G)y=K
3) G,-nonblocking: K NL (G,)=KNL(G,) forall ieI. o

Definition 2.28: Let G, = (X ,X,,5,,x,,X,,;) Where ¥ < X is the set of uncontrollable

events. Synthesize G with L(G)={/'L(G,.) and Lm(G)=§”(Lm(G,.) . The set of
i=1 i=]

sublanguages of E ¢ L, (G) that is controllable with respect to G, L_(G)-closed, and

G, -nonblocking for all i € / is denoted as RN,C(E,G). ©

The empty language @ isin RN,C(E,G). In addition, languages in RN,C(F,G) remain
in RNC(E,G) under arbitrary number of union operations. As a result, RN,C(E,G) has
a supremal element denoted as SupRN,C(E,G). SupRNC(E,G) provides the optimal

solution to RNSCP.

Offline Solution to RNSCP:

The solution to the RNSCP is to synthesize an overall plant G with L(G) = SHKL(G,.) and
i=1

L(G)= \"{'Lm(Gi) and an overall specification E =[I (E, V(X" -L, (G)INL,(G)
i=1 jel
first. Then, the supremal controllable, L (G)-closed, and G,-nonblocking sublanguage

of E is calculated. Finally, the supervisor V:L(G)—>2* with

LV /G) = SupRN,C(E,G) will solve the robust problem. O

44

There is no closed-form expression to compute SupRN,C(E,G). Nevertheless, it can be

calculated if the following algorithm terminates.
Algorithm 2.1: SupRN,C(E,G)
1) Initialization: let E° = E.
2) Update E' = SupR(E®,G).
3) Update E* = SupC(E',G).
4) Update E° = SupN,(E*,G,), E* = SupN,(E*,G,),..., E"** = SupN,(E",G,).
5) If E™? # E°, thenlet E® = E™? and go to step 2.
6) SupRN,C(E,G)=E". al

2.4.3 Illustrative Example

We introduce a running example and solve it using the above indirect approach. The
same problem will also be solved using direct approach offline and online developed in

Chapter 3 and 4 respectively.

Example 2.1: A system model could be either G, or G, shown below. Assume that
E={a,B.y, A, pu,v,w} with £ ={a,B,y, A, 4} and £, = {u,v,w} . The specification
languages for G, and G, are E, ={¢,af,afu,afua,ay,ia,iav, Aavf} and
E, ={s,a,af,apu,afua,afa,afaf aya, u} respectively. Synthesize an optimal

admissible nonblocking robust supervisor which solves the problem.

45

O R CA O ©
{i RNORSG,
Yoo

P A)—w—)——(0)

- o —{0)— «—0)

—(0)

G,

Figure 2. 4. Automata for Example 2.1

The language generated and marked by the plant models are:

L(G)) = {¢,a,af,apu,afuc,afa,apfoff oy, ara, A, Aa, Aav, Aav B}
L(G,) ={¢,a,af,afu,afua,afo,afefl,ay,aya, 1, pw, uwa, B}
L.(G)) ={¢,af,afu,afua,afa,affaf,ay, ia, Aav, Lav}
L.(G,)={s,a,af,afu,afua,afo,affaf,aya, p, pwa} .

We then solve the problem using the existing offline indirect approach. First, we

synthesize the overall plant G with L(G)=L(G))VL(G,) and L (G)=

L,(G)VUL,(G,). The automaton of G is shown in Figure 2.5.

46

G ﬁ—@—@—H@
¥ A0
w
%%W%H@kﬁ@‘aﬁ@
Figure 2. 5: The overail plant for Example 2.1
The generated and marked languages of G are:
L(G) = {e,a,af,afu,afua,afa,afof,ay,aya, A, Aa, Aav, Aavp, u, uw, pwa, B}
L,(G) ={s,a,af,afu,afua,afa,afaf,ay,ava, la, lav, Aavp, i, uwa .
The overall specification will be:
E={¢s,a,af,afu,afua,ay,aya, ia, Aav, Aavf, u} .
We then use Algorithm 2.1 to find SupRN,C(E,G).
Initialization: £° = E.

Iteration 1: E° is L (G)-closed and thus E' = E°. E' is not controllable with respect

to G . Thus, we calculate the supremal controllable sublanguage of E' to get E*. E? is

the language by removing string # from E'. E? is not G, -nonblocking for all i € I. For

example, string aya belongs to E'n L(G,) butitis notin E* N L, (G,). The supremal

47

G, -nonblocking sublanguage E’ of E’ is E°® ={e,a,af,afu,cfua,ay,a, iy,
Aavf}. E® is not G,-nonblocking. For example, string @y belongs to EmL(GQ) but
it is not in m The supremal G,-nonblocking sublanguage E* of E* will be
E* ={e,a,af,afu,afua, o, av,AavfB} . Since E* # E°, we let E° = E* and take

the next iteration.

Iteration 2: E° does not change in this iteration and thus we stop with the optimal
solution E° =supRN,C(E,G) = {&,a,ap,afu,afua,ia,lav,Aavf} . We can verify

that £° will be controllable, L, (G)-closed, and G, -nonblocking. The supervisor can be

realized by automaton R in Figure 2.6 with L(R)=L_(R) = E°. o

B
—e

@@ @ ®

Figure 2. 6: Realization of Supervisor: Example 2.1
2.4.4 Example: Fault Recovery

One of the application of the theory of robust control is in fault recovery problems. In

fact, fault recovery problems can be solved as a special case of robust problems. Suppose

48

a DES G has p failure modes F, ..., F » - Assuming single-failure scenario, G can be in

ptimodes: N, F,, ..., F .

P

Assume the states of the overall plant model with failures can be partitioned into normal

states X, and different failure states X, shown in Figure 2.7. The subautomaton
containing only the normal states X, is the normal model of the plant G, . The
subautomaton with the normal states X,, and one type of failure states, say X Foisa
normal-failure model referred to as G, . We want that each model under supervision

meets its corresponding specification and be nonblocking.

XF 1
&\/
XN
’5\
XFp

Figure 2. 7: Plant with p permanent failure modes

We assume the following: all events are observable; failures are permanent; only one
failure happens at a time, and all modes agree on if an event is controllable or

uncontrollable. Fault recovery problem can be described as follows.

49

Fault Recovery Problem (FRP):

Given a DES with a normal model G, and normal-failure models G, for
iel={2,..p} and their corresponding specifications E, <L, (G,) and

Eyr. € L, (Gy;) for i e I, synthesize a supervisor S:Z" — 2% such that:
1) L,(S/Gy)CE, and L, (S/Gy)=L(S/G,)

2) L,(S/Gy) S Ey; and L, (S/Gy.)=L(S/Gy.) foralliel. o

Fault recovery problem FRP can be treated as a special case of robust supervisory control

problem. Since a FRP can be treated as a RNSCP, solving the corresponding RNSCP will

automatically solve the FRP.

50

Chapter 3:

Robust Nonblocking Supervisory Control with Direct

Approach

The indirect approach to the solution of the robust control problem characterizes the
solutions in terms of sublanguages of the legal behavior of the union of plant models.
This chapter develops a new direct approach to RNSCP which describes the solutions in
terms of sublanguages of the legal behavior of each plant. This characterization of
solutions relies on the concept of consistency of languages introduced here. The resulting
direct approach, in our opinion, is a more transparent approach especially for the purpose

of the development of online solutions.

The organization of this chapter is as follows. Offline direct approach to RNSCP is first
developed in Section 3.1. Algorithms are then proposed in Section 3.2 to calculate the
optimal solution to the robust nonblocking supervisory control problem (RNSCP). The
running mathematical problem in Example 2.1 is solved there using the offline direct
approach. Section 3.3 discusses an application of RNSCP, namely, supervisory control

with multiple sets of marked states.
3.1 Robust Nonblocking Supervisory Control: Direct Solution

We investigate robust nonblocking supervisory control problem assuming that the exact
plant model is unknown but only could be one of a set of models. We review RNSCP

before we derive a direct approach to solve it.

51

RNSCP—Robust Nonblocking Supervisory Control Problem:

Given a set of plants G, with i e / (with I ={l,...,n}), the marked language L, (G,) of
plant G, is required to be restricted into its specification E, ¢ L (G,) for all ie .

Synthesize an admissible nonblocking supervisor, which solves the problem. o
3.1.1 Direct View of RNSCP

Suppose a supervisor V' solves RNSCP and let us denote the set of marked closed-loop

languages as a language n-tuple (L, (V' /G),),...,L,, (V' /G,)). What shall be the necessary

conditions that the language n-tuple (L, (V/G,),...,L,(V/G,)) has to satisfy? This

question takes a direct view at RNSCP.

Like traditional supervisory control, controllability and relative-closure are necessary.

The direct approach considers the language n-tuple (L,(V/G,),....L,(V'/G,)) and

therefore it is useful to define controllability and relative-closure properties of language

n-tuple (M,,...M).

Definition 3.1: (Controllability) Language n-tuple (M,,..,M,) is said to be
controllable with respect to closed language n-tuple (L(G)),...,.L(G,)) iff
MZE, 1 LG)cM, foralliel. o

Definition 3.2: (Relative-closure/L(G;)-closure) Language n-tuple (M,,...,M) is said

to be relative-closed with respect to language n-tuple (L, (G)),....L,(G,)) iff

M, 1 L (G)=M, foralliel. o

52

If a string s can be generated by more than one model, a robust supervisor can either

enable it in all those plants or disable it in all those plants. Namely,

LV/G)N[L(G;)-L(V/G,)]= @ for all i, j el has to be satisfied for a supervisor V’
to solve RNSCP. This means that if a string is enabled in ¥/ G,, then it is either enabled
in V/G; or cannot be generated by G, at all. Since V' has to be a nonblocking
supervisor, it is necessary that W=L(V/Gi) for all iel . Therefore,
mm[L(Gj)—m]=d) 1s required for all i,j e/ . This motivates the

definition of consistency.

Definition 3.3: (Consistency) A Language n-tuple (M,,...,M) is said to be consistent

with respect to a closed language n-tuple (L(G)),..,L(G,)) if and only if

M,N(L(G,)-M,)=® forall i,jel. O

Nz

Figure 3. 1: Relation of consistent languages

53

The relation of any two languages M, and M ; belonging to a consistent language n-tuple

(M,,...,M,) can be represented by the Venn diagram in Figure 3.1. There is no string

inside the shaded areas which corresponds to those strings enabled in one closed-loop

system and disabled in the other closed-loop system.

Consistency is a necessary condition for the existence of a robust supervisor from the
above analysis. Here, we give a simple example to show that no robust supervisor could
be synthesized if consistency of specifications is not satisfied. We also synthesize a

supervisor for a consistent sublanguage n-tuple of the specifications.

Example 3.1: Two possible plant models G, and G, are shown in Figure 3.2. For
simplicity, all events are assumed controllable. We synthesize a robust supervisor which
restricts L(G,) = {¢,a,b} and L(G,)={¢,a,c} inside specifications E, ={¢,a,b} and

E, ={g,c} respectively.

P
==CO,
GO

- <:></®
TG

Figure 3. 2: Plant automata for Example 3.1

54

(E,,E,) is not consistent with respect to the closed behavior pair (L(G,),L(G,)) since
EI (L(Gz)—E) ={a} # ®. It is impossible for a supervisor V : L(G,) U L(G,) = 2*
to satisfy L(V /G,) = E and L(V/G,)= EZ— since event a is required to be enabled in

G, but disabled in G, at the initial state. From the formulation of the problem, a robust

supervisor is required to work for both plant models.

On the other hand, let M| ={¢,b} C E, and M, = E, = {g,c} . Observe that (M,,M,) is
consistent with respect to closed behavior pair (L(G,),L(G,)) . A supervisor
V:L(G,)V L(G,) - 2* with V(&) = {b,c}, V(b) = D, and V' (c) = ® will guarantee that

LVIG)=M, ={g,b} and L(V/G,) =M, = {&,c}. o
3.1.2 Direct Solution to RNSCP

Theorem 3.1 provides necessary and sufficient conditions for the existence of an

admissible nonblocking robust supervisor.
Theorem 3.1: DRNCT (Direct Robust Nonblocking Supervisory Control Theorem)

Consider a set of plants G, =(X,,X,,5,,X,;) where ie] ={1,2,...,n}. £=YZ, can be
el

partitioned as two disjoint sets =X \&Z, where Z_ and I, are the set of controllable

and uncontrollable events respectively. Given a language n-tuple (M,,...,M,) where

M,#® and M,c L, (G,) for iel, there exists an admissible nonblocking robust

supervisor ¥ such that L, v/ G,)=M, forall i e I if and only if:

55

1) Controllability: (M,,...,M) is controllable with respect to (L(G,),...,L(G,)).

2) Relative-Closure: (M,,..,M,) is relative-closed with respect to

(Lm (Gl)9"'7 Lm (Gn)) *
3) Consistency: (M,,...,M) is consistent with respect to (L(G,),...,L(G,)). O
We need the following lemmas to prove Theorem 3.1.

Lemma 3.1: Assume that M, # ® and M, < L, (G,) for all i € /. Let language n-tuple
(M,,..,M,) be controllable and consistent with respect to language n-tuple

(L(G)),....L(G,)) . If we define a set of admissible supervisors ¥, : Y L(G,) — 2* with
iel

Vi(s) =

{ceX|soeM,)} if s e L(G,)
otherwise

for all i € I and synthesize a modular supervisor V : Y L(G,) > 2* with V(s)= Y V.(s),
iel iel

then L(V/G,)=M,=L(V,/G,) forall ie .
Proof: From controllability, we have L(V,/G,)=M, forall ie 1.

To show L(V/G,) =]\7, for all i e I, it suffices to show s € L(V /G,) < s e M, for all

stings in the two languages. We prove this by induction on the length of all the strings.

56

Induction base: The base case is when the length of strings is zero. ¢ is the only string

with zero length. We have ee L(V/ G,) by definition. We also have gel_l; by

assumption A7, # @, Therefore, the induction base holds.

Induction hypothesis: we assume that s € L(V'/G,) iff s € M, for all s with length less

orequalto n (|s|<n).
Induction step: forall c € Z.

(&): Let sceM, . It is obvious that socelL(lV,/G) and soeL(G,) since

L(V,/G)=M, and M cL, (G,) < L(G,) . Therefore, we have o e V.(s) , which

implies o € V(s) and thus so e L(V/G,.) .

(=):Let so e L(I7/G,.) . It is obvious that so € L(G,) since L(I7/G,-) c L(G).
Suppose o ¢ V,(s), then we have:

soeL(V,/G)=M, = soeL(G)-M,
=>Vjel :saeﬂ_lj (By Consistency)
=>Vjel:sogL(V,/G,) (ByL(V,/G)=M,)
=Vjel:ocgV,(s) (By definitionof V',)
:angVj(s)
= o eV(s)

=soeLV/G).

57

This is contradictory with soe L(V/ G,) . Thus, we have oceV(s) and

socelL(lV,/G,) =1T1~,.-. Asaresult, sc € L(V /G,) & so eﬁ—a’:.
We conclude that L(V /G,) =]\7, =L(V,/G,) forall i e I.This completes the proof. O

Remark 3.1: Lemma 3.1 indicates that because of consistency of (M,,.... M), V does
not allow any extra string in L(V'/G,) comparing with L(V,/G,)=M, . Without

consistency, LV / G,)=A7,. may not necessarily be true. This clearly shows the

importance of consistency. O

The following two examples show that the closed-loop behavior L(¥ / G,) is exactly the

same as the closed-loop behavior L(V,/G,) for all i € {1,2} when consistency exists.

Example 3.2: Consider the consistent pair (M,,M,) in Example 3.1 where M, = {¢,b}
and M, = {¢,c}. We synthesize a modular supervisor ¥ as shown in Lemma 3.1 such

that L(V/G,)=M, = L(V,/G,) forall i e {1,2}.

The modular supervisor V(s) = Vi(s)LV,(s) can be derived from the two supervisors

{ceX|soceM,} if s € L(G,)
()] otherwise

Vi L(G)VL(G,) —> 2" with V(s)= { and

V, 1 L(G) UL(G,) - 2% with V,(s) =1 0 SZIso €M} if s L(Gy)
D otherwise

58

For example, V(e)={b} and V,(¢)={c} at string s=¢& , and thus
Vie)= Vi(e)uV,(e)=14{b,c} . We can see that L(V/Gl) = A-T, ={e,b} and

LV /G,)=M, ={g,c}.

Obviously, L(V,/G,)=M, ={e,b} and L(V,/G,)=M, ={e,c} . This shows that

LWV /G)=M, = L(V,/G,) forall ie{l,2} dueto consistency. O

Example 3.3: Let us consider the inconsistent languages E, = {€,a,b} and E, = {&,c}

in Example 3.1. We synthesize a modular supervisor ¥ as shown in Lemma 3.1 and

show that L(I7/Gi) = E = L(V,/@G,) does not hold for all i e {1,2}.

The modular supervisor 7 (s) = Vi(s)WV,(s) is synthesized the same way as Example
3.2. For example, V(¢)={a,b} and V,(g)={c} at string s=¢& , and thus

V(e)=V,(e)LV,(e) = {a,b,c}. We can see that L(V /G,) = {¢,a,c}.

Obviously, L(V,/G,) = E, ={¢,c}. This shows that LWV /G,)#E, = L(V,/G,) due to

inconsistency. i

Lemma 3.2: Consider the language n-tuple (M,,...,M,) and the modular supervisor ¥

in Lemma 3.1. Assume that (M,,..., M) is relative-closed with respect to language n-

tuple (L, (G)),...,L,(G,)). Then Lm(I7/G,.) =M,=L,(V,/G,;) forall ie .

Proof: M, is relative-closed with respect to L, (G;) and thus by Theorem 2.2

L,(V,/G)=M,.

59

L,VIG)=LWV/G)NL,(G,)

M.NL(G,) (by Lemma 3.1)
Mi

(M, is relative-closed with respect to L, (G,))

We conclude that L (I7/G,.) =M, =L,(V,/G,). This completes the proof. m

In Lemma 3.3, we show that consistency of (M,,...,M,) is a necessary condition for
existence of a nonblocking supervisor ¥ such that L,(V/G,)=M,#® forall ie . In

other words, it is impossible to synthesize a nonblocking supervisor ¥ to guarantee

L,V/G,)=M, forall i e if consistency of (M,,...,M) is not satisfied.

Lemma 3.3: Let V' be a robust nonblocking supervisor with L (V/G)=M, # ®
(iel). Then (M,,..,M,) must be consistent with respect to language n-tuple

(L(G)),....L(G))).
Proof: (by Contradiction)

Suppose]TJ:I (L(Gj)—]TJj) #® forsome i,jel.
M1 (L(G))-M)#®=3se M1 (L(G,)~M))
:>se]\7,.‘/\seL(Gj)/\seE]\7j

=sel(V/IG)rse L(G)rsg L(V/G,).

It shows that s is enabled in G, by V but disabled in G, by ¥ . But the robust

supervisor V' cannot distinguish G; from G, and thus we reach contradiction. Therefore,

60

]Tl:l (L(G)) —A7j-) =0. MI (L(Gj)-ﬁj) =® means that (M,,...,M,) is consistent
with respect to language n-tuple (L(G,),...,L(G,)). ©
We are ready to provide proof to Theorem 3.1 at this point.

Proof of the Theorem 3.1 (DRNCT):

(f): Given (M,,..,M) which meets the three conditions in Theorem 3.1, we need to

synthesize an admissible nonblocking robust supervisor ¥ with L, 7/ G,) =M, for all

iel.

Define a set of admissible supervisors V, : Y L(G,) — 2* with
iel

{ceZ, |sceM,} ifsel(G,)
() otherwise

V,-(S)={

for all ie/ and synthesize the modular supervisor V : Y L(G,) > 2* with
iel
V(s)= Y V,(s). We show that ¥ is an admissible nonblocking supervisor which meets
iel

the specification.

1) It follows from Lemma 3.1 that L(I7/G,.)=]\7,. for all ie . Note that V is

admissible since M, is controllable with respect to L(G,) forall ie .

2) It follows from Lemma 3.2 that L, (V/G,) =M, E, forall iel. It shows that

V meets safety specification.

61

3) L,(V/G)= L(V/G,)=M, for all i e I from Lemma 3.1 and 3.2. It shows that

V' is a nonblocking supervisor.

(Only If): Assume that there exists an admissible nonblocking supervisor ¥ such that for

everyiel:L, (V/G;)=M,. We need to show the language n-tuple (M ,...,M,) meets

the three conditions in Theorem 3.1.

1) (Controllability): M, is controllable with respect to L(G,) (for all i e I) since

V' is assumed to be admissible. Thus, (M,,...,M) is controllable with respect to

(L(G)),....L(G,)) by definition.

2) (Relative-closure): By assumption, ¥ is a nonblocking supervisor and therefore,

by Theorem 2.2 M, is relative-closed with respect to L (G,) (for all ie).
Thus, (M,,..,M,) is relative-closed with respect to (L,(G)),...,L,(G,)) by

definition.
3) (Consistency): Follows from Lemma 3.3.

This completes the proof. =i

If the specification language n-tuple (E,,...,E,) in RNSCP does not meet the three

conditions in DRNCT, there will not exist an admissible nonblocking supervisor V' that

ensures L, (V/G,)=E, for all iel . However, there may exist an admissible
nonblocking supervisor ¥ suchthat L (V/G,)=M, c E, forall i e I for sublanguages

M,cE (iel).

62

Since the direct approach is in terms of language n-tuple, it will be useful to consider the
inclusion relation and the intersection and union operations for language n-tuples.
Definition 3.4: A language n-tuple (M,,..,M,) is said to be included in another

language n-tuple (¥,,...,N,), denoted as (M,...M,) < (N,....,N,), iff M, c N, for all

iel. O

Definition 3.5: The union of two language n-tuples (M,,..,M,) and (N,,..,N,) is

defined as (M,,...M,) U(N,,..,N,) =(M,UN,,..M, UN,). m

Definition 3.6: The intersection of two language n-tuples (M,,...,M,) and (N,,...,N,) is

defined as (M,,...,M,) "(N,,...N,) =(M,"N,,..M, NN,). i

It is obvious that (Pwr(Z"))" forms a complete lattice of language n-tuples with bottom

element (®@,...,®) and top element (X°,...,Z7).

We are now able to solve RNSCP using DRNCT. Theorem 3.1 indicates that the solution

to RNSCP is reduced to finding (M,,...,.M,) C (E,,...,E,) which meets controllability,

relative-closure, and consistency conditions. Then, a supervisor could be synthesized in

the form of the modular supervisor in Theorem 3.1.

Proposition 3.1: Modular Solution to RNSCP
If a sublanguage n-tuple (M,,.,M,) c(E,,.,E,) meets the three conditions in

Theorem 3.1, then the modular supervisor ¥ synthesized in Theorem3.1 will solve

RNSCP.

63

Proof: Follows from the proof of Theorem 3.1. o

Remark 3.2: The notation of consistency of an n-tuple (M,,...,M,) was first introduced
in [25] in the study of robust supervisory control. In [25], consistency was referred to as
“blocking-invariance”. There the solution of the robust control problem is provided when
the open-loop language n-tuple (L, (G,),...,L,(G,)) is consistent with respect to
(L(G,),...,L(G,)) . Furthermore, it is shown that under certain assumption on the plants
G, ..., G,, if (L,(G),...,L,(G,)) is not consistent, the original problem can be
transferred to an equivalent robust control problem in which the open-loop marked
language n-tuple is consistent and thus the robust control problem can be solved. In
summary, [25] provides solution for a class of robust control problem. In this thesis, we
show that the key to the solution of robust control problem is to consider the consistency
of the closed-loop marked behaviors. Through this observation, we obtain all of the
solutions of the robust control problem. Furthermore, in our direct approach, we

characterize the solutions of the problem using consistent language n-tuples which

provides a more transparent setup for the development of online solution (in Chapter 4).

Alternatively, a monolithic supervisor can be synthesized as shown in the following
Theorem 3.2 for a given sublanguage n-tuple (M,,..,.M,) < (E,,...,E,) that meets the

three conditions in Theorem 3.1. We then show it is equivalent to the modular supervisor.

64

Theorem 3.2: Alternative Solution to RNSCP:

If a sublanguage n-tuple (M,,..,.M,) <(E,,..,E,) meets the three conditions in

Theorem 3.1, then the monolithic supervisor I}:YL(G,.)—>22 with

iel

I}(s) ={ocel|soe YA?,.} solves RNSCP.
iel

{062,|S0’€A77} if se L(G,)

Proof: Since]T/[T c L(G,), we can write V,(s) = _
) otherwise

or simply V(s)={c|sceM,} . Thus P(s)=YV(s)=Y{o|soceM,} =
iel iel

{alsaeﬁlor...orsoeE}={a‘[so*e Y]\7:}=I}(s). m]
iel

Once a set of languages (M,,...,. M) < (E,,...,E,) meeting conditions in Theorem 3.1 is

obtained, a supervisor ¥, can be synthesized for each G, such that L(V,/G,) =M, and

the robust control law will be V(s) =YV, (s) to solve RNSCP. Alternatively, a
iel

monolithic supervisor V can be implemented by constructing an automaton that marks

and generates Y]\7,. to solve RNSCP. The monolithic supervisor V is identical to the

iel

modular supervisor ¥ .
3.2 The Supremal Direct Solution to RNSCP

We investigate the existence of a supremal direct solution to RNSCP in this section. We

first generalize the existence of the supremal controllable and the supremal relative-

65

closed sublanguage to the robust situation. The existence of the supremal consistent
sublanguage n-tuple is then proved. After that, we prove the existence of the supremal
relative-closed, controllable, and consistent sublanguage n-tuple and propose algorithms

for its computation.
3.2.1 The Supremal Sublanguages

First we show controllability and relative-closure are preserved under arbitrary unions.

Controllable sublanguage n-tuples of (£,,...,E,) form an upper semilattice since the

arbitrary union of them remains an element in it.

Lemma 34: If (M,,.,M,) and (N,,.,N,) are controllable with respect to
(L(G,),...,L(G,)) , then (M,,.,M,) U(N,,.,N,) =(M,UN,,...M, UN,) is

controllable with respect to (L(G,),..., L(G,)) .

Proof: For all ie /, M, and N, are controllable with respect to L(G,) which implies
that M, U N, is controllable with respect to L(G,). Therefore, (M, UN,,...,M, UN,)

is controllable with respect to (L(G,),...,L(G,)) by definition. o

Lemma 3.4 can be proved for arbitrary unions. Furthermore, (®,...,®) is controllable
with respect to (L(G,),...,L(G,)). As a result, if a language n-tuple (E,,...,E,) is not
controllable, there always exists a supremal sublanguage n-tuple of (E,,..., E,) which is

controllable. In other words, the supremal controllable sublanguage n-tuple denoted as

66

SupC((E,,...,E,)) is well defined and it is an element inside the upper semilattice of

controllable sublanguage n-tuples.

Similarly, the set of relative-closed sublanguage n-tuples of (E,,...,E,) forms an upper

semilattice. The supremal relative-closed element SupR((E,,...,E,)) is well defined and

it is an element inside the upper semilattice of relative-closed sublanguage n-tuples.

Lemma 3.5: If (M,,..,M,) and (N,,..,N,) are relative-closed with respect to
£,(G),...,L,(G,)) , then (M., M,) U(N,.,N,)) =(M,UN,,..M, UN,) is

relative-closed with respect to (L, (G,),...,L, (G,)).

Proof: For all ie/, M, and N, are relative-closed with respect to L, (G,;) which
implies that M, UN, is relative-closed with respect to L (G,) . Therefore,
(M, UN,,..M, UN,) is relative-closed with respect to (L,(G,),....L,(G,)) by

definition. O

Lemma 3.5 can be proved for arbitrary unions. Furthermore, (®,...,®) is relative-closed
with respect to (L, (G)),...,L,,(G,)). As a result, if a language n-tuple (E,,...,E,) is not
relative-closed, there always exists a supremal sublanguage n-tuple which is relative-
closed. In other words, the supremal relative-closed sublanguage n-tuple denoted as

SupR((E,,...,E)) is well defined. It is inside the upper semilattice of relative-closed

sublanguage n-tuples.

We now show that consistent sublanguage n-tuples also form an upper semilattice. The

following lemma shows that consistency is also preserved under union operation. In

67

addition, there always exists a supremal consistent sublanguage n-tuple of (E,....,E,)

denoted as SupS((E,,....E,)).

Lemma 3.6: If (M,,.,M,) and (N,,..,N,) are consistent with respect to
(L(G))....,L(G,)) , then (M,,...M,) UWN,.,N,) =(M,UN,,...M, UN,) is

consistent with respect to (L(G,),...,L(G,)) .

Proof: We only need to show M_,Y_N,I (L(G;)-M,YN,)=® forall i, je .

M, YN,1 (I(G))-M,YN,)=(M,YN)I (L(G,)-M,YN,)
=[M,1 (I(G,)-M ;YN)IY[N,1 (I(G,)-M, YN,)]
c[M,1 ((G)-M YN, 1 (L(G))-N,)]
=P

Hence, we infer that M, YN, I (L(G,)-M ;YN ,)=® forall i,jel. O

Definition 3.7: The class of consistent sublanguage n-tuples of a language n-tuple

(E,,....,E,) is denoted as S((E,,...,E,)) and defined as:
SE,,..E,)) ={(K,.. K,) S (E,,.. E) | Vi, je LK, N(L(G,))-K,)=®}. ©

Obviously, (®D,...,®) is an element of S((E,,...,E,)) and Lemma 3.6 can be generalized
to arbitrary unions. We take the union of all the elements of S((E,....,E,)) and denote it
as SupS((E,,...,E,)), which belongs to S((E,,...,E,)), and is the supremal consistent

sublanguage n-tuple of (£,,...,E,).

68

Lemma 3.7: The supremal consistent sublanguage n-tuple of (£,,...,E,) denoted as

SupS((E,,....E)) exists. m]

We next define an operator Q and prove that a sublanguage n-tuple of (E,,...,E,) is

consistent if and only if it is a fixed point of Q. The implementation of operator Q in

TTCT is given by Procedure 3.1 in Appendix 3.1.

Definition 3.8: The operator Q:(Pwr(E)),...,Pwr(E,)) = (Pwr(E)),...,Pwr(E))) is
defined on sublanguage n-tuples of (&,,...E,) according to

Q((K,sK,)) = (K, - DZ",..,K, —DZ") where D= Y(I(G,)-K,). O
iel

Theorem 3.3: Given (£,,...,E,) c(L(G)),..,.L(G,)) , a sublanguage n-tuple of
(E,.....,E,) is consistent if and only if it is a fixed point of the operator Q. m]

We need the following lemmas to prove Theorem 3.3.

Lemma 3.8: If (X|,...,K,) is a fixed point of Q, then s e 1?, N L(G,) implies s € E; .

Proof: (By Contradiction) It follows from the assumption that K, = K, — DZ” and thus
K, "DZ" = ® which implies K, "DZ" =® by Lemma 24. Let seX,NL(G,).
Suppose s ¢ K_j .

seL(G)rseK, =>sel(G)-K,

=seD

=seDY

69

=S¢ —K_,
It is in contradiction with s € K, . As a result, we have s € K—J m
Lemma 3.9: If (X,,...,K) is a fixed point of Q, then it is consistent.

Proof: We need to show that Zm(L(Gj)—K_;) =® forall i,jel. If E,. =@, then
ZG(L(GI.)—K_j) =0, If 12’7 # @, then let s k—, We have only two cases for any
string s. If s ¢ L(G,), it implies that s ¢ L(G,)-K, . If s€ L(G,), it implies s € K,

by Lemma 3.8 and thus s ¢ L(Gj)—K_j . As a»result, I?, N(L(G)) —7(7) =@, 0o

Lemma 3.10 shows that the reverse direction of the above lemma holds.

Lemma 3.10: If (K,...,K,) is a consistent sublanguage n-tuple of (E,,...,E,), then it is

a fixed point of Q.

Proof: Forevery i, je I:

K,N(LG)-K)=D=K,N[Y(IG,)-K)]=
jel

=K, ND=®
=K ,NDL" = (by Lemma 2.4)
=K, =K,-DT’.

Therefore, (K,,...,K,) is a fixed point of Q. o

Proof of Theorem 3.3: Follows from Lemma 3.9 and Lemma 3.10. O

70

Obviously, (®,...,®) is a fixed point of Q . Furthermore, if (X,,..,K,) and
(K,',....,K,") are fixed points of 2, then (X,,....K,) U(X,',...,K,") is a fixed point of

Q. Therefore, there exists a largest fixed point of Q denoted by (X,’,...,K,").

Corollary 3.1: Given (E,,..,E,) < (L(G)),...,L(G,)) , SupS((E,,....E)) is the largest

fixed point (K, ,...,K,") of the operator Q.

Proof: We have to show that (K]*,...,K"*)=SupS((E,,...,E,,)). First, the largest fixed
point (K,",...,K,") is a fixed point and thus consistent with respect to (L(G)),...,L(G,))
by Lemma 3.9. Therefore, (Kl*,...,K”*) c SupS((E,,....E,)) . In addition,
SupS((E,,...,E,)) is a consistent sublanguage n-tuple of (£,,..,E,) and thus a fixed
point of Q by lemma 3.10. Therefore, SupS((E,,....E,)) < (K]*,...,K”*). As a result, we

conclude that (K,",..., K,)=SupS((E,,...,E,)). O

We have proved that the supremal consistent sublanguage exists and is the largest fixed
point of operator (2. We need to propose an algorithm to find the largest fixed point and
thus equivalently the supremal consistent sublanguage. The following algorithm
computes the supremal consistent sublanguage n-tuple if it terminates in a finite number

of steps.

71

Algorithm 3.1:
1) Initialization: (K/,...,K’)=(E,,...,E,).
2) Update (K/",...,K/"")=Q((K{,...K})),j=0.
| 3) If K/* # K/ forsome 1<i<n ,then gobacktostep2. o

Remark 3.3: If (E,,..,E,) or (L(G)),...,L(G,)) has a finite number of strings, then

Algorithm 3.1 will converge in a finite number of steps. For example, the finite

expansion trees of VLP algorithm in Chapter 4 have a finite number of strings.

Theorem 3.4 indicates that the above algorithm will compute the largest fixed point
(K ,.-K,) of Q for (E,,..,E,) and thus SupS((E,,..,E,)) if it terminates. The

implementation of Algorithm 3.1 in TTCT is given by Procedure 3.3 in Appendix 3.1.

Theorem 3.4: If Algorithm 3.1 terminates in a finite number of steps, say m, then

(K),...K")=SupS((E,,....E)). O

Lemma 3.11 shows that Q is a monotone operator, which is used for the proof of

Theorem 3.4.

Lemma 3.11: If (M,,..,M,) C (N,,...,N,), then Q((M,,...M,)) < Q(N,,...,N,)).

Proof: Q((M,,...M,))=(M,-D,%",...M,~D,%") where D, = Y(L(G,)~M,).
iel

Q((N,.,N,))=(N, -D,%,..,N, -D,E") where D, = Y(L(G) - N)).

72

Vie,M,cN,=M,cN,
= Vie LL(G)-M, 2 L(G))- N,
=D, 2D,

=D, 2 oD,Z.

Viel,M,-D,®" cN,-D,%’

cN,-DX.
Therefore, we have Q((M,,...,M,)) < Q((N,,...,N,)). o

Proof of Theorem 3.4: 1) first, we show that (K",...,K) is a fixed point of Q. If the
algorithm terminates in a finite number of steps, then (X/",..,K') satisfies
(K" ,..K))=QK{,...K))) and thus (K",..,K") is indeed a fixed point of Q.

Therefore, (K{",...,K") is a consistent sublanguage n-tuple of (E,,...,E,) by Lemma 3.9,

and thus (K/",...,K,") < SupS((E,,....,E,)) .

2) Secondly, we prove SupS((E,,....E,)) < (K",..,K) by induction. Initially, it is
obvious that SupS((E,,...E,)) < (E,,.E,) =(K},...,K°). The induction base holds.
Then, we assume that SupS((E,,...E,)) <(K{,..K) . We need to show that
SupS((E,,....E,)) < (K{",..,K/"") . From Lemma 3.10 and 3.11, We have
SupS((E,,....E,)) = QSupS(E, ,....E,)) € QUK{,...K])) = (K{",..,K]""). Therefore,

we have SupS((E,,....E))) < (K",...K).

73

From 1) and 2), we conclude that (X.",...,K")=SupS((E,,....E,)).

Algorithm 3.1 is used to calculate the supremal consistent sublanguage of the problem in

Example 2.1. The following example illustrates the procedure of Algorithm 3.1.

O @@+
R e

\{@r—u——so

@ 0@
G,

O
% %\@H@

® o

Figure 3. 3: Plant automata for Example 3.4

Example 3.4: A system model could be either G, and G, shown in Figure 3.3. Assume

that all events £ = {a, #,7,4, u,u,v,w} are controllable. We show how to compute the

supremal consistent sublanguage of given specifications.

The language generated and marked by the plant models are:

L(G]) = {e,a,aﬂ,aﬂu,aﬂua,aﬂa',aﬂaﬁ,a;/,aya,Z,ﬂa,/lav,/lavﬂ}

L(G2) = {89a’aﬂaaﬂusaﬂ““?“ﬂaaaﬂaﬂaa}/’a}/aslunuwa)uwaa ﬂ}

74

L. (G)) ={¢,af,afu,afua,afa,afef,ay,ia, Aav, lavB}

L. (G,) ={e,a,af,afu,afua,afa,cfaf,aya, p, pwa} .

Assume that the specification languages are:

E, ={e,af,afu,afuc,ay, Aa, Aav, Aavf}

E, ={g,a,af,afu,afua,afc,afaf,aya, u}.

We can verify the specifications are not consistent with each other. For example,
ayaeEm(L(Gl)—E_’,) which implies Em(L(GJ—-ET)#@ . We now employ

Algorithm 3.1 to compute the supremal consistent sublanguage of the specifications.
Initialization:

K! ={e,af,cfu,apua,ay, Aa, Aov, Aavf}.

K;) = {g9a5aﬂ’aﬂu7aﬂua7aﬂa’aﬁaﬂ7a}/a9#} .
Iteration 1:

D = {afa,afafl,aya, B, pw, pwa'} .
K! =K -D¥" ={¢,af,afu,afua,ay,ia, lav, lavf}.

K) =K, - D% = {s,a,af,afu,afua, i1} .

K| does not change from K, but some strings are removed from K] in comparison

with K. Thus, we proceed to the next iteration.

Iteration 2:

75

D ={afa,afof,ay,aya, B, uw, uwa}
K! =K! -DI' ={¢,af,afu,afua, Aa, Aav, Aavf}

K} =K, -DY" ={e,a,af,cfu,cfuc, 11}
Both K} and K change after this iteration, thus the next iteration has to be taken.

Iteration 3:

D ={apa,afaf,ay,aya, B, pw, pway .
K} =K!-DX ={eg,af,afu,afua,ia,lov,Aavf}.

K, =K -DI' ={g,a,af,afu,cfua, i} .

Neither K, nor K; changes thus we stop here. The resulting supremal consistent
sublanguages are K, ={¢,af,afu,afua,ia,lav,AavB} and K, = {¢,a,af,apfu,

afua, u} . m;

We have defined the supremal controllable sublanguage, the supremal relative-closed
sublanguage, and the supremal consistent sublanguage in this subsection. In the next
subsection, they are used to compute the supremal relative-closed, controllable, and

consistent sublanguage, which characterizes the optimal solution to RNSCP.
3.2.2 The Optimal Solution to RNSCP

If a language n-tuple (E,,...,E,) is not relative-closed, controllable, and consistent, there

may exist many sublanguage n-tuples which are relative-closed, controllable, and

consistent. The collection of all relative-closed, controllable, and consistent sublanguage

76

n-tuples is denoted as RCS((£,,...,E,)). Any direct solution to RNSCP is characterized

by an element of RCS((E,,....E,)).

Definition 3.9: RCS((E,,...,E,)) represents the collection of all sublanguage n-tuples of
(E,,....E,) that are controllable and consistent with respect to (L(G,),...,L(G,)) and

relative-closed with respect to (L, (G,),...,L,(G,)). 0

We show that RCS((E,,...,E,)) forms an upper semilattice. Lemma 3.12 shows that the

union of two language n-tuples in RCS((£,,...,E,)) still belongs to RCS((E,,...,E,)).

Lemma 3.12: If (M,,..,.M,) and (N,,.,N,) belong to RCS((E,,....E,)) , then

(M,,...M) U(N,,...,N,) will belong to RCS((E,,....,E,)).

Proof: Follows from Lemma 3.4, 3.5, and 3.6 and definition of RCS((E,,....E,)). O

Lemma 3.12 can be easily generalized to arbitrary union. Furthermore, (®,...,®) is the
bottom element of RCS((E,,...,E,)) . Therefore, the supremal relative-closed,
controllable, and consistent sublanguage denoted as SupRCS((E,,...,E,)) is well defined
and can be obtained from the union of all elements in RCS((E,,...,E,)). Thus, we have

the following lemma.

Lemma 3.13: 1) SupRCS((E,,...,E,)) exists.

2) SupRCS((E,,....E,)) = Y{K | K € RCS((E, ..., E,))}.

77

3) SupRCS((E,,...,E,)) € RCS((E,,..E,)). o

Remark 3.4: We expect that we can derive the indirect optimal solution
K = SupRN,C(E) from the direct optimal solution (X,,...,K,) = SupRCS((E,,....E)),
and vice versa. They are both optimal solutions to RNSCP from different approaches. It

is not difficult to prove that K = YK, and K, =KL, (G,). o

iel

We then define operator Q and show that a sublanguage n-tuple of (E,,...,E,) is in

RCS((E,,...,E,)) if and only if it is a fixed point of Q.

Definition 3.10: The operator Q:(Pwr(E,),...,Pwr(E))) = (Pwr(E,),...,Pwr(E))) is
defined on sublanguage n-tuples of (E,,....E,) according to

QK. K,)) = SupS(SupC(SupR((K ... K,)))) . o

Theorem 3.5: A language n-tuple is in RCS((E,,...,E,)) if and only if it is a fixed point

of Q. 0

We need the following lemmas to prove Theorem 3.5.

Lemma 3.14 : If (X,,...,K) is a fixed point of Q, thenitisin RCS((E,,....E,)).

Proof: SupS(SupC(SupR((K,,....K,)))) =(K,,...,.K,) since (X,,...,K,) is a fixed point

of Q. Obviously, SupR((X,,....K,)) < (K,,...,K,) . In addition,

(K>, K,) = SupS(SupC(SupR(K, ..., K,))))

< SupC(SupR((K,,....K ,)))

78

< SupR((K,,....K,)).
Thus, SupR((K,,....K,))= (K,,..,K,) . Similarly, we have SupC((X,,....K,))=

(K, K,) and SupS((K,,s K,)) = (K, s K.) .

Therefore, (K,,...,K,) is controllable and consistent with respect to (L(G,),...,L(G,)),
and relative-closed with respect to (L, (G)),....L,(G,)). As a result, (X,,...,K,) is an

element in RCS((E,,...,E,)). i
Lemma 3.15: If (X,,...,K,) € RCS((E,,...,E,)), then it is a fixed point of Q.

Proof: (X,,..,K,) is controllable, consistent, and relative-closed. Therefore,
QK,,....K,)) = SupS(SupC(SupR((K,,....K) = (K,,....K,) , which shows that

(K,,....K,) isafixed pointof Q. ©
Proof of Theorem 3.5: Follows from Lemma 3.14 and 3.15. O

Corollary 3.2: The largest fixed point (X,,..,K,) of Q exists and is equal to

SupRCS((E,....,.E,)) .

Proof: (®,...,®) is a fixed point of Q. Furthermore, if (X,,...,K,) and (X,',...,K ') are
fixed points of Q, then so is (X,...,K,) u.(K]',...,K"’). Therefore, the largest fixed
point of Q exists.We have to show that (X, ,...,K,)= SupRCS((E,,...,E,)) . First, the
largest fixed point (X ,...,K,) is a fixed point and thus an element in RCS((E,,....E,))

by Lemma 3.14. Therefore, (X;,..,K.) < SupRCS((E,,..E,)) . In addition,

79

SupRCS((E,,...,E,)) is an element in RCS((E,,...,E,)) and thus a fixed point of Q by

*

Lemma 3.15. Therefore, SupRCS((E,,...E,)) < (K, ,...,K.). As a result, we conclude

that (K ,...K,)= SupRCS((E,,...,E,)) . 0

Up to now, we have shown the union of solutions to RNSCP is still a solution, and there
exists a supremal solution to RNSCP. Optimal solution to robust nonblocking supervisory

control problem reduces to the calculation of SupRCS((E,,...,E,)) . We next propose an

algorithm to compute SupRCS((E,,...,E,)).
Algorithm 3.2:
1) Initialization: (K/,...,K?)=(E,,...,E,).
2) Update (K/",...K/")=Q(K/,..,K})),j=0.
3) 'If K/* # K/ for some 1 <i<n,then go to step 2. O

Theorem 3.6 indicates that the above algorithm indeed computes the supremal

sublanguage if it terminates with (K",..,K,’) at the m™ step. Namely,

(K",...K)') =SupRCS((E,,....,E,)) . We first prove Q is a monotone operator in

Lemma 3.16. The monotone property is the key issue of the proof of Theorem 3.6.

Lemma 3.16: If (M,,...,M) C (N,,...,N,), then Q((M,,...M,)) < QUN,,....N,)).

Proof: Q((M,,..., M,)) = SupS(SupC(SupR((M, ..., M,))))

c SupS(SupC(SupR((N,.,...,N,))))

80

= Q((N,,..N,)).

Therefore, we have Q((M,,....M,)) < Q(N,,...,N,)). o

Theorem 3.6: If Algorithm 3.2 terminates in m steps to (K,..,K!) , then

(K. K}") = SupRCS(E, ..., E,)) -

Proof: a) First, we show that (X[",...,K") is a fixed point of Q. If the algorithm
terminates in m iterations, then - its result (K",...K]') satisfies
(K),...K)=Q(K/,...,K)) and thus (X/",..,K) is a fixed point of Q. Hence,
(X/,...K)) is in RCS((E,,..E,)) by Theorem 3.5, which implies that

(K["....K") < SupRCS((E, ... E,)).

b) Secondly, we prove that SupRCS((E,,...E))) < (K, ,K,’,") by induction. The
induction base holds since initially SupRCS((E,,...,E,)) < (E,,....E,) =(K.,...,K>).
Now we suppose SupRCS((E,,..E,) <(X/,.,K!) and show that
SupRCS((E,,...E,)) < (K{",.,K/") . This is true since SupRCS((E,,...E,))=
Q(SupRCS((E,,....E,))) < QUK ..., K}) = (K{",...,K/"") (The first equality results
from Theorem 3.5 and the inequality from Lemma 3.16). Therefore, wé have

SupRCS((E,,....E,)) < (K[",...K)").

From a) and b), we conclude that (Kl*,...,K"*)=SupRCS((E,,...,E"). O

81

3.2.3 Alterative Algorithm

We next discuss some properties of relative-closed language n-tuples which enable us to
modify Algorithm 3.2. It is straightforward to generalize traditional results that the
supremal controllable sublangauge of a relative-closed language remains relative-closed

to the case of robust control.

Lemma 3.17: If a language n-tuple (X|,..,K,) is relative-closed with respect to
(L,(G),....L(G)) , then its supremal controllable sublanguage n-tuple

SupR((K,,...,K,)) will remain relative-closed with respect to (L, (G,),...,L, (G,)).

Proof: Follows from Lemma 2.5 and the definition of relative-closure (Definition 3.2). O

Similarly, Lemma 3.18 shows that the supremal consistent sublanguage n-tuple preserves

the relative-closure property.

Lemma 3.18: If a language n-tuple (X,...,K,) is relative-closed with respect to

(L, (G),...L,(G,)), then its supremal consistent sublanguage n-tuple SupS((X,,...,K,))

denoted as (K, ,...,K,") will remain relative-closed with respect to (L, (G,),....L, (G,)).

Proof: Denote K| ML, (G,) as K,. We have to show that (K,...K))=(K|,...K). It
is immediate that (K| ,...,K,) < (X,,...K,). We then show that (K,...,K) is consistent

and (K,,...,K,) < (K,,...,K,), which implies (X,,...,K,) (K, ,..,K,”). We have

82

K =K, since K, <K, NL,(G)=K and K, =K nL(G)cK =K . Hence,

*

(K,,,K,) is consistent since (X, ,..,K,) is consistent. In addition,

K, =K' NnL,(G)cK,NL,(G,)=K, for all iel. Thus, (X,,..K.) = (K, ,..K,").

Asaresult, (K| ,..K,)=(K,,...K,). a)

If (X,,.,K,) is relative-closed, Q((X,,....K,)) =SupS(SupC(SupR((K,,...K))))
reduces to Q((X,,...,K,)) = SupS(SupC((X,,...,K,))) . From the above lemmas, we
observe that Q((X,,...K,)) =SupS(SupC((X,,....K,))) remains relative-closed if
(K,,...,K,) is relative-closed. Therefore, the supremal relative-closure operation only

needs to be conducted at the beginning of Algorithm 3.2.

Based on the above observation, Algorithm 3.2 can be modified to Algorithm 3.2A.
Theorem 3.7 shows the correctness of Algorithm 3.2A. The implementation of Algorithm

3.2A is provided by Procedure 3.5 in Appendix 3.1.
Algorithm 3.2A:

1) Initialization: (K/,...,K°) = SupR((E,,....,E,)) .
2) Update (K/",...,K/*") = SupS(SupC((K{ ,...,K}))),j = 0.
3) If K/ # K/ forsome 1 <i<n ,then go to step 2. o

Theorem 3.7: If Algorithm 3.2A terminates, it will calculate SupRCS((E,,...,E)).

83

Proof: We only need to show the relative-closure property is always satisfied during the

iteration by induction. The induction base holds since (K/,..,K}) = SupR((E,,...,E,)) is
relative-closed. We now assume (K/,..,K/) is relative-closed. We have to show
(K{*,..,K/*") remains relative closed. SupC((K{,...,K])) is relative-closed by Lemma
3.17. In addition, SupS(SupC((K/,...,K]))) is still relative-closed by Lemma 3.18. As a

result, (K/*',...,K/*") maintains relative-closed. o

Consistency has clear physical meaning and offers insight to robustness in RNSCP. In
addition, we do not synthesize the overall specification and plant language in the direct

approach.

Offline direct approach Algorithm 3.2A is used to solve the same problem in Example
2.1. The following example illustrates the procedure of offline direct approach. The result

is exactly the same as the solution of offline indirect approach in Example 2.1.

Example 3.5: A system model could be either G, or G, shown below. Assume that
Z={a, B,y A, pu,v,wy with X ={a,f,7,4, 4} and £, = {u,v,w}. We synthesize the

optimal admissible nonblocking robust supervisor for given specifications.

The language generated and marked by the plant models are:

L(G)) ={e,a,af,apu,afua,afa,afaf,ay ,aya, A, Aa, Lav, Aavf}

L(G,) = {s,a,af,afu,afuc,afc,afaf ,ay,aya, p, uw, pwa, B}

L,(Gy) = {&,aB,apu,afua,afa,afap,ay, ra, Aav, Lavp}

L, (G,) = {&,a,af,afu,afua,afa,afaf aya, pu, pway .

84

Assume that the specification languages are:

E, ={¢,af,afu,afua,ay,la,Aav, Aavf} .

E, ={e,a,af,apu,afua,afa,afaf ,aya, u} .

OO0
B~

Yoo

OO ®
Gz

@@
_{% H%\@H@

” N

Figure 3. 4: Plant automata for Example 3.5

We now employ Algorithm 3.2A to compute the supremal solution to the robust problem.
Initialization:

K? = SupR(E,) = E,.

K = SupR(E,)=E,.

Iteration 1:

85

K is controllable, however, K is not controllable since ueK! and

,uweK_SZ“ NL(G,) but uwe E;". The supermal controllable sublanguages are first

calculated in this iteration.

SupC(K)) = {e,af,afu,aPua,ay,ia,lav, LavB} .

SupC(K)) = {e,a,af,afu,cfuc,afo, afaf,aye} .

Obviously, (SupC(K,"),SupC(K})) is not consistent. For example, o and aya are
disabled in G, but enabled in G,. We next calculate the supremal consistent sublanguage

in this iteration.

K| = SupS(SupC(K)) = {&,af,afu,afua, ia, lav, LavB} .

K, = SupS(SupC(K))) = {e,a,af3,cfu,cfuct} .

After this iteration, K| and K, are different with K and K, respectively and thus next

iteration has to be preformed.

Iteration 2:

SupC(K|) = {¢,aB,afu,afua,ay,la, lav, lavfB}.
SupC(K,) = {¢,a,af,apu,afua,afa,afaf,aya} .
K} = SupS(SupC(K,)) = {e,of,afu,afua, ia, lav, iavf} .

K} = SupS(SupC(K))) = {&,a,af,afu,afua}.

86

Neither K nor K; changes from K| and K) respectively. Hence, we stop here. The
optimal direct solution to this problem is (K,,K,) = (K?,K}). We can verify that
K, UK, =K ={¢s,a,0f,afu,afua,ia, Aav, Aav3} where K is the indirect solution in

Example 2.1. O

Once Algorithm 3.2A terminates, the three conditions in DRNCT are satisfied and the
supremal solution is obtained. Then, a modular or a monolithic robust supervisor can be

realized to ensure the specifications and the nonblocking requirement.

In the next section, we consider an application of robust supervisory control in the

solution of supervisory control with multiple sets of marked states.
3.3 Supervisory Control with Multiple Sets of Marked States

The dynamics of a discrete event system can be modeled with automaton. The prefix-
closed language generated by the automaton represents all the possible sequences that can
be generated by the system. Among them, some sequences of an automaton are marked.

The marked sequences indicate completion of tasks.

In different situations, we may choose, instead of a single, multiple sets of sequences to
mark since we would like differept targets to be reached. Traditional supervisory control
has to design a supervisor for each set of marked states. For example, in a propulsion
system, we only mark the sequences which lead to states in which the engine is on in the
case that we want a propulsion system to be turned on. In other situation, we only mark
the sequences which take the syétem to states with engine off if the target is to cut off the

propulsion system.

87

Instead of designing a supervisor for each set of marked states, we would like to design a
supervisor for different set of marked states for simplicity. Traditional supervisory
control cannot satisfy this requirement. However, the problem can be solved as a special
case of robust nonblocking supervisory control problems. We form the nonblocking
supervisory control problem with multiple sets of marked states and convert it to a
corresponding robust supervisory control problem. We only investigate the solution to the
corresponding robust supervisory control problem since solving it will automatically

address the original problem with multiple sets of marked states.

3.3.1 Problem Formulation

We consider the nonblocking supervisory control problem for a system with multiple sets
of marked states. The definition of such a system and its corresponding languages are
first given.

Definition 3.11: A plant with multiple sets of marked states can be represented as an
automaton G =(X,Z,d,x,,X . ¢ m,,)' L(,,';)(G) represents the marked behavior with
only states in X, marked. 0

We assume that all events are observable. The supervisory control problem with multiple
sets of marked states is formally described as follows. From now on, we refer to multiple
sets of marked states as multiple markings instead for brevity.

Nonblocking Supervisory Control Problem with Multiple Markings (NSCP-MM)

Given a plant with multiple marking G =(X,%,d,x,,X X mn) and specifications

m sesey

E,.gL‘,:"(G) for all iel={2,.,n} , synthesize a supervisor S such that

LYS/IG)y=L(S/G)NLY(G)c E, and LV (S/G)=L(S/G) forall iel. o

88

The above problem 1is not equivalent to designing a supervisor for

GA=(X,%,0,x,,X, U---UX,) with specification E=YE, or designing a

iel

supervisor for GB=(X,Z,5,xO,Xm1 r\‘--me“) with specification E=1 E, . The

iel

following examples illustrate these.

Example 3.6: A system has event set X = {a,b} where event a represents turning on the

system and event b means turning off the system. Both g and & are controllable. The
system model G is given in Figure 3.5. State 0 represents that the system is ready. States
1 and 2 stand for system on and off respectively. In some situation, we choose states 0

and 1 marked as X, . In another, states 0 and 2 are marked as X, . Assume all strings
are legal. We design a supervisor which is nonblocking in both marking situations X,

¢ A Do
o DD

Figure 3. 5: Plant automaton and union of markings: Example 3.6

The plant with the union of marking is GA shown in Figure 3.5. The conventional
supervisor y: L(G) —» £ will be y(g) ={a},y(a) ={b},y(ab) =D . This supervisor y

will be blocking when marking is X, . o

89

Example 3.7: A plant G with event set £ ={a,b,c,d} has two sets of marking
X, =1{0,,2} and X, ={1,3}. Only event b is uncontrollable. Assuming all strings are

legal, we design a supervisor which is nonblocking in both marking situations.
C
¢ LD (DD
c
(D (DO

Figure 3. 6: Plant automata and intersection of markings: Example 3.7

The plant with the intersection of marking is GB shown in Figure 3.6 and the

intersection of specifications is {¢}. There is no conventional supremal supervisor for
GB . However, supervisor y which enables all active events at all states will be a
solution to the multiple marking problem. ©

There is only one generated languages L(G) in a system with multiple markings.

However, the marked languages are multiple and denoted as L (G) with ie I. NSCP-

MM can be treated as a special case of the general robust nonblocking supervisory

control problem. The model uncertainty is due to the different markings in this situation.

We can convert a multiple marking supervision problem to an equivalent robust

nonblocking supervisory control problem by defining G, = (X,Z,5,x,,X,,) forall ie [
which form the set of possible plant models. Obviously, we have L(G)=L(G,),
LYG)=L,(G), L(S/G)=L(S/G,), and L(S/G)=L,(S/G,) for all iel. The

equivalent robust problem is formally described as follows.

90

Robust Nonblocking Supervisory Control Problem with Multiple Marking (RNSCP-

MM)

Given a set of plants G, =(X,X,0,x,,X,,) where i e I ={1,2,...,n} and specifications
E.cL, (G) for all iel , synthesize a supervisor all S such that

L,(S/G)=L(S/G)NL,(G)<E and L, (S/G)=L(S/G,) foralliel. @

We would like to explore the specialty of RNSCP-MM in comparison to the general
RNSCP. Taking a plant with two possible marking as an example, the robust supervisor
S solving the above problem has to satisfy that L _(S/G,)cCE, and
L (S/G)=L(S/G,) aswellas L (S/G,)c E, and L _(S/G,)=L(S/G,). We know
L(S/G,)=L(S/G,) since G, and G, are exactly the same plant with the same

generated behavior. The difference is only due to the marking. Therefore, we know the

equivalence L, (S/G,)=L,(S/G,) has to be satisfied for S to be a solution to the

problem.

Solving RNSCP-MM will automatically solve NSCP-MM. We only investigate solution

to RNSCP-MM in the next subsection.

3.3.2 Solution to RNSCP-MM

We take direct robust supervision approach to solve the RNSCP-MM. The following
theorem provides necessary and sufficient conditions for existence of a solution to

RNSCP-MM.

91

Theorem 3.8: Given a language n-tuple (X,...,K,) where K, #® and K, c L,(G,)

for all i e I in RNSCP-MM, the necessary and sufficient conditions for the existence of

an admissible nonblocking robust supervisor ¥ such that L (V/G,)=K, for all ie

arec.

1) K, is controllable with respect to G, . (Controllability)

2) K,is L,(G,)-closed. (Relative-closure)
3) K, = ITJ for all i, j € I . (Equiclosure) O

To prove Theorem 3.8, we only need to show that the equiclosure condition is equivalent

to the consistency condition. In this special formulation, we have one more assumption

which is L(G;) = L(G,) for all i,jel . Theorem 3.9 provides the proof that the

consistency reduces to equiclosure in the special case RNSCP-MM.

Theorem 3.9: Let K, c L, (G,) and K, c L, (G;) in RNSCP-MM. Then, Z = K_J iff

K, and K, are consistent.

Proof: We need to show K, =K, & [(L(G)-K,)NK, =®A(L(G,)-K,)NK, = D]

forall i, j € I.In RNSCP-MM, we have L(G,) = L(G,) forall i,je 1.

=) : (LG)-K)NK,=(L(G)~K)NK,=® . Similarly, we can show

(LG)-K)T K, = .

92

(©): (LG)-K)NK,; =0 =L(G,)NK,” NK, =0

Similarly, we can show E, c K——j As aresult, we conclude that E,— = 7(7 .]

Next we show that the operation Q(K,)=K,—DX" in the computation of SupS(")

reduces to Q(K)=K,"H where H =1 z . First, we prove the following lemmas.
Jjel

Lemma 3.19: Assume that L(G,)=L(G;)=L for all i,je/ and K, c L forallie /.

Then LN DX’ =D where D= Y(L-K,).
kel

Proof: (2): It is straightforward.

(<) : (By contradiction) Suppose s€ LN DX but s¢ D. We have s¢ L —Z for all
iel and thus se K, for all ie/. We have K,N(L-K)Z = for all iel by
Lemma 2.4 since Z N (L —IZ) =@ . Hence, we infer that s ¢ (L —7{.)2* foralliel,

which means s ¢ Y ((L—K,)Z"). Therefore, we have s ¢ (Y(L-K,))L" = DZ’, which
kel kel

is contradictory with s € DZ". Thus, we have s€ D .

As aresult, we conclude that LN DX =D. O

93

Lemma 3.20: Assume that L(G,)=L(G,)=L forall i,jel and K, c L for all ie .

Then, K, "D =K, "DZ".

Proof: K, "DY =K,nLA DY’

=K.nNnD (by Lemma 3.19)]

i

Lemma 3.21: Assume that L(G,)=L(G;)=L for all i,je/ and K, c L for all ie /.

Then, K, - Y(2'-K,) =K, - Y(L-K,) forall ie].
jel

Jjel

Proof: (c): Y(Z' ~I?j) -) Y(L—j('—j) since X" —k_j QL—[Tj for all je . Hence,
jel Jjel

wehave K, - Y(£'-K,) K, - Y(L-K,).
jel

jel

(2): seK,~Y(L-K,)=>sek,rse Y(L-K,)
jel

jel
:)SEK,./\SEL/\(V]'EIZSE(L—K——;))
:>seK,./\seL/\(\'/jelzseZ))
=>sek A(Vjel:seZ -K))

=>sek rse Y(E -K,)

jel

=sek, ~ (YT -K)).
jel

Hence, we infer that K, - Y(Z' - K 2K, -Y(L —K_j). As a result, we conclude that
jel

Jel

K-YE -K)=K,-Y(L-K)). =
jel

Jjel

94

We are ready to prove the equivalence of operator €2 and operator Q in RNSCP-MM.

The above lemmas are used in the proof of Theorem 3.10.

Theorem 3.10: Assume that L(G,) = L(G,)=L forall i,jel and K, c L forall ie .

Then, Q(K,) = Q(K,).

Proof: Q(K,) =K, NH

=K,n(l X))

Jjel

=K,' —(I]?j)co
jel
_—_Ki _(YK—jco)

Jjel

=K, -(YE' -K))

=K,.—(j\€{'l(L—K_j)) (by Lemma 3.21)
=K,-D

=K, —ZAD

=K, —EmDZ‘,* (by Lemma 3.20)
=K,-Dx’

=Q(K,).]

Denote the collections of all equiclosed sublanguage n-tuples of (Z,,..,E,) as

E(E,,...E)) . (D,.,D) c(£,...E,) and E((E,,....E,)) is closed with respect to

95

union operation. Therefore, the supremal equiclosed sublanguage denoted as

SupE((E, ..., E,)) is well-defined.

The supremal consistent sublanguage n-tuple SupS((E,....,E,)) reduces to the supremal
equiclosed sublanguage n-tuple SupE((E,,...,E,)) in RNSCP-MM. In the light of the

above observation, we assert that SupE((E,,...,E,)) is equal to the largest fixed-point of

the operator Q.

The supremal equiclosed sublanguage n-tuple SupE((E,,...,E,)) can be calculated using

the following algorithm if it terminates. The algorithm can be regarded as a reduced

version of Algorithm 3.1.

Algorithm 3.3:
1) Initial language n-tuple (K, ,...,K°)=(E,,...,E,).
2) Update (K{™,..,K/*")=Q(K/,...K)),j=0.
3) If K" # K/ forsome 1<i<n , go back to step 2. O

We next show that there exists a supremal solution to RNSCP-MM. Any language n-
tuple including (®,...,®) that meets the three conditions in Theorem 3.8 will be a
solution to RNSCP-MM. In addition, the arbitrary union of solutions to RNSCP-MM
remains a solution. Therefore, the supremal solution to RNSCP-MM exists. It is the
supremal relative-closed, controllable, and equiclosed sublanguage n-tuple of the

specifications. This supremal element is denoted by SupRCE((E,,....E,)).

96

The Supremal Solution to RNSCP-MM: The solution to RNSCP-MM is to calculate

the supremal sublanguage n-tuple SupRCE((E,,....E,)) . An optimal modular or

monolithic supervisor can then be realized to solve the problem. i

SupRCE((E,,...,E,)) 1is the largest fixed point of operator 9 defined as

Q((K],...,K"))=SupE(SupC(SupR((Kl,...,K,,)))) . In addition, we infer that the

supermal equiclosed sublanguage of a relative-closed language n-tuple remains relative-

closed.

The algorithm below calculates the supremal solution to the above problem RNSCP-MM
if it terminates. It first calculates the supremal solution as the reduced form of Algorithm

3.2A and then synthesizes supervisor monolithically or modularly.

Algorithm 3.4:
1) Initialization: (K},...,K") = SupR((E, ..., E,)) .
2) Update (K{",...K/") = SupE(SupC((K{,..,K}))),j = 0.
3) If K/* = K/ for some 1<i<n , then go to step 2.

4) Synthesize the monolithic supervisor I}(s)=(YI?,.)/ §NZ or the modular
} iel

supervisor 17(s) =Y V,(s) where V,(s) = E/s NZ. o
i€l

m

Assume the above algorithm terminates with (K|",...,K") at the m" iteration. Following

from the general RNSCP and the -equivalence of SupE((E,,....E,)) and

97

SupS((E,,...E,)) , we have (K|",..,K)') = SupRCE((E,,...,E,)) . The resulting
nonblocking supervisors V and ¥ will solve RNSCP-MM with L, (I}/G,.)=K, and

L,(V/G)=K,.

Example 3.8: A plant with two different markings is shown in Figure 3.7. Assume that
all events are controllable. We synthesize a supervisor which restricts each plant model

into its specification and ensures the closed-loop behavior of each model is nonblocking.

The generated behaviors of G, and G, are exactly the same while the marked languages
of G, and G, are different. Therefore, it can be solved using Algorithm 3.4. The plant
languages are L(G,)=L(G,)={¢,a,ab,abc,abd} , L (G,)={g,a,abc} , and
L, (G,)={g,a,abd} . Assume the specifications are E, =L, (G,)={¢,a,abc} and

E, =L (G,)={¢,a,abd}.

¢

DA DX

o4

exe!

¢4

6

Figure 3. 7: Automata for Example 3.8

The procedure that solves the problem using Algorithm 3.4 is illustrated below:

98

Initialization: Calculate (K,K;) = SupR((E,,E,)). The result is K = {£,a,abc} and

K;_) ={e,a,abd}.

Iteration 1: Compute (K, ,K,) = SupE(SupC((K;,K?)). The result is K| = {¢,a} and
K, ={e,a}. Since both K and K are different from K and K, the next iteration is

taken.

Iteration 2: Compute (K;,K;) = SupE(SupC((K;,K})). The result is K = {¢,a} and
K? ={¢,a}. Since neither K] nor K is different from K, and K, respectively, we

stop here.
Solution: The solution will be L(I}/Gl) = E? = {g,a} and L(I}/Gz) = }{? ={g,a}. O

Supervisory control problem of a discrete event system with multiple marking can be

solved as a special case of robust nonblocking supervisory control problem. There exists
a unique property L(G,) = L(G,) for all i, j € I, which can be used to make the solution
easier. The consistency condition in the general robust nonblocking supervisory control

problem is replaced by the equiclosure condition in robust nonblocking supervisory

control problem with multiple markings.

99

Appendix 3.1: TTCT Procedures

Consider a system with a set of » possible models (G,,..G,) and corresponding
specifications (E,,..E,). Assume (E,,...E,) is marked by trim automata (H,,...H,) . The

procedure of computing Q((£,,..., E,)) in TTCT is given in the following.
Procedure 3.1: Omega((H,,....,H,))
1) Find out strings disabled in G, :

Obtain HM, by marking all states of H, . Then, compute
HMCOM, = Complement(HM,) . Obtain GM, by marking all states of G, . The
automaton D, = Meet(HMCOM,,GM,) marks the language L(G,)—E, . Obtain DST,
by deleting all active events at the marked states and then adding selfloop of X at the

marked states of D,. The resulting automaton DS7, marks the language (L(G,) - EI)Z* .
2) Find the disabled strings DST, to DST, in G, to G, similarly:

3) Derive the overall disabled strings.

DCOM, = Complement(DST,);...; DCOM, = Complement(DST,) .
DA, = Meet(DCOM,,DCOM,); DA, = Meet(DA,,DCOM,); ...;

DA, = Meet(DA, ,,DCOM,).

n—12

100

D = Complement(DA,) . The automaton D marks Y[(L(G,) —E)Z*] which is the same
iel

as [Y(L(G) - B2

4) Remove the disabled strings from (£,,...E,).
DCOM = Complement(D) . Obviously, DCOM and DA, mark the same language.

Finally, we have Omega((H,,...,H,)) = (Meet(H,,DCOM),...,Meet(H ,,DCOM)) .

no

We next derive the procedure SupSis to compute SupS((E,,...,E,)) in TTCT. We have

proved that the supremal consistent sublanguage is the largest fixed point of operator €,
which can be calculated by applying operator Q on the specification n-tuple repeatedly
until a fixed point is reached. Hence, testing equivalence of two languages is required.

We first develop Equivalence procedure Eg in TTCT before procedure SupSis in TTCT
is given. The following procedure Eq checks if two languages E, and E, marked by R,

and R, are equivalent in TTCT.
Procedure 3.2: Eq((R,,R,))
1) First, check if £, C E,.
RCOM , = Complement(R,). RA = Meet(R,,RCOM,).
2) If there is some marked state in R4, then return False.

3) Then, Check if E, C E,.

101

RCOM, = Complement(R,) . RB = Meet(R,,RCOM)

4) If there is some marked state in RB, then return False.

5) Return True. o

We are now ready to develop the procedure of calculating SupS((E,,...,E,)) in TTCT.

Although operator Q in the computation of the supremal consistent sublanguages can be

computed using the procedure Omega in TTCT, there is no closed-form formula for

calculating the supremal consistent sublanguages. An iterative procedure has to be taken

until consistency is satisfied. Assume (F,,...,E,) is marked by trim generators
(H,,....H,) . The procedure of calculating the supremal consistent sublanguages in TTCT

is illustrated below.

Procedure 3.3: SupSis((H,,...,H,))

1) Initialization: (E.,..., E)) = (E,,....E,).

2) Compute (E/",...,E"") = QUE/,...,E])) where j >0 using Procedure 3.1 Omega.

3) Check if E/" = E/ using procedure Eq for all 1<i<n. If E/* #E; for some

1<i<n,then j=j j+1 andgotostep2. O

We finally develop TTCT procedure for implementing Algorithm 3.2A. Operations
SupR , SupC, and SupS are required in Algorithm 3.2A. In addition, testing equivalence

of two languages is also required. All of the operations shall be implemented by existing

102

commands or their combination in TTCT in order to obtain the SupRCS using Algorithm

3.2Ain TTCT.

The existing command SupCon in TTCT calculates the supremal controllable

sublanguage. The supremal consistent sublanguages can be computed using Procedure

3.3 SupSis in TTCT. Testing equivalence of two languages can be fulfilled using

Procedure 3.2 Eg in TTCT.

There is no command to compute the supremal relative-closed sublanguage in TTCT.
However, a closed-form expression exists for the calculation of supremal relative-closed
sublanguages. All operations in the closed-form expression can be computed using the

existing commands in TTCT.

We present a procedure SupRa for calculating the supremal relative-closed sublanguage
in TTCT before we propose the procedure SupRSCa that implements Algorithm 3.2A

using TTCT. Assuming a language K is marked by automaton H , the following

procedure computes SupR(K) in TTCT.
Procedure 3.4: SupRa(H)

1) Compute HCOM = Complement(H) . The automaton R = Meet(HCOM ,G) marks

the language L (G)-K .

2) Obtain RST by deleting all active events at the marked states and then adding self

loop of X at the marked states of R. The resulting automaton RST marks the language

(L, (G)-K)X".

103

3) Obtain RSTCOM = Complement(RST) and RA = Meet(RSTCOM ,H) .

The automaton RA will mark the language SupR(K). o

Up to now, all procedures in TTCT required for calculating SupRCS are developed. We
can use them to implement Algorithm 3.2A using TTCT. The procedure SupRCSa that

computes SupRCS using TTCT is illustrated below.

Procedure 3.5: SupRCSa((H,,....,H,))

1) Compute (K!,...,K?) = SupR((E,,..., E,)) using Procedure 3.4 SupRa .

2) Compute (K{*,.,K™)=SupS(SupC((K{,...,K7))),j =0 where j>0 using the

existing command procedure SupCon and newly developed Procedure 3.3 SupSis.

3) Check if K/*' = K/ using Procedure 3.2 Eq for all 1<i<n.If K/*' # K/ for some

1<i<n ,thengotostep2. O

104

Chapter 4

Online Robust Nonblocking Supervisory Control

Robust nonblocking supervisory control problem was solved offline using direct
approach in Chapter 3. However, it is difficult to implement when the plant model is very

complex.

In this chapter, offline direct robust supervisory control is implemented online to avoid
storing supervisor explicitly. We first develop an algorithm to solve RNSCP online and
then prove its validity. The running problem in Example 2.1 is solved online using the

algorithm.
4.1 Variable Lookahead Policy (VLP)

A variable lookahead policy is introduced to solve RNSCP. We review RNSCP before

we derive an online algorithm with direct approach to solve it.

RNSCP—Robust Nonblocking Supervisory Control Problem:

Given a set of plants G, with i e [= {1,2,...,n}, the marked language L, (G,) of plant G,
is required to be restricted into its legal behavior E, ¢ L, (G,;) for all i € /. Synthesize

an optimal admissible robust nonblocking supervisor, which solves the problem. o

Offline solution with direct approach was investigated in the previous' chapter. The direct

approach to RNSCP can also be implemented online without exploring the entire plant

105

models. We only expand the part of the models that is sufficient for valid control decision

making. We assume without loss of generality that £, is L (G,)-closed forall ie /.

Conventional limited lookahead policy [7] expands a plant as a tree generator to a fixed
length, takes conservative or optimistic attitude to the pending traces, and then makes
control decision after computing the supremal element. Run-time error may happen due

to uncertainty of the unexpanded system behavior.

Here, we apply certain expansion stop rules to the tree generators instead of a fixed
expansion length. Each string stops only when the future behavior of the system does not
affect the valid control decision for the current string. Hence, no attitude is required and
no run-time error happens. As a result, the correct decision for the current string will be
obtained if the expansion for the current string stops. In addition, the overall online
supervision will be valid if the expansion stops for all strings executed in the closed-loop

system.

We first investigate how expansion shall be done for online robust supervision.
Obviously, expansion of all possible models shall be conducted simultaneously since the
control decision is made for the same string in all possible models. In addition, all events
following the current string shall be expanded since we want to decide which active

events of the current string can be enabled.

Next we would find the length of expansion that can ensure validity. In other words, we
want to explore under what conditions the expansion of a branch of an expansion tree can
be terminated without uncertainty for valid online control decision. Generally speaking, if

there is no uncertainty about control decision for the current string at all boundary strings,

106

then the expansion will ensure the online control decision for the current string is the

same as the offline optimal supervision.

In order to offer formal description of the expansion stop rules, we define illegal
language, legal marked language, legal marked controllable language, legal marked
uncontrollable language, and legal transient language. They form a partition of the entire
possible strings of a system. The definitions of these languages in robust problems are
different with those in conventional (non-robust) problems. For example, a string is
illegal in the specification of one model may be legal in the specification of another
model. A string marked in one possible model may not be marked in another possible
plant model. A string leading to a marked state with only controllable active events may
lead to a marked state with uncontrollable continuity in another model. The definitions of
illegal language, legal marked language, legal marked controllable language, legal

marked uncontrollable language, and legal transient language are given below.

If a string is illegal in one model, it shall be removed from all possible models. Hence, it
is unnecessary to expand its following strings. Such a string is called an illegal string.

Note that an illegal string is not necessarily illegal in all models.

Definition 4.1: The language denoted by K ,, consists of strings that are illegal in some

plant model: K, '={se Y L(G,;)|Jiel:se (L(G,.)——E,.)}. O
X Jjel

107

The illegal language K., will be K ﬁ,E* N (Y L(G,)). The legal language denoted as
’ jel

Koo Will be (Y L(G;))-K All active uncontrollable events of a legal string shall
jel

lega, illegal *

be expanded since we do not know if they will lead to illegal strings or result in blocking.

If a legal string is marked in all plant models, none of its following controllable events
needs to be expanded. This will not affect the control decision for the current string. All
legal strings that are marked in all plant models form the legal marked language. The
following example illustrates that no active controllable events of a legal marked string is

required to be expanded for correct online decision.

Example 4.1: A system with two possible plant models is shown in Figure 4.1. The
marked states are denoted by a double circle. Assume all events are controllable and all
strings are legal. We expand the system for the initial state such that correct decision can

be made.

o DD (D
@ ==

Figure 4. 1: Plant automata for Example 4.1

108

Exp) ﬁ@)—a‘%@—b——e
Exps —%@)—a—bﬁ

Figure 4. 2: Expansion for the initial state: Example 4.1

The controllable events ¢ and d are not expanded at string ab that is marked in both
models. The expansion for the initial state is shown in Figure 4.2. The supremal solution

for the expansion windows will be ({¢,ab},{¢,a,b}). Hence, event a will be enabled by

the online supervisor at the initial state. This agrees with the offline supervision. O

Definition 4.2: The legal marked language denoted as K, consists of legal strings that

are marked in all plant models which contain the strings:

K,={se YL(G,)|Viel :se L(G)=seE NL,(G)=E}. O
jel

The legal marked language can be further divided into legal marked controllable

language and legal marked uncontrollable language.

Definition 4.3: The legal marked controllable language K, consists of strings that are
in K, and followed by no event or only controllable events in all plant models that

contain the strings: K,, ={se K, |Viel:se L(G)=>Z,;,(s)SZ }. O

109

Definition 4.4: The legal marked uncontrollable language K, consists of strings that
are in K, and followed by uncontrollable events in some plant model:

K, ={sekK,|JielrnseL(G):Z;(s)NZ, #D}. O

Obviously, K,,. and K, form a partition of K, and thus K, =K, &K

mu mu "

Expansion should not stop at a legal string that is unmarked in all models since we do not
know if there is blocking in the future. Hence, its following controllable events shall also
be expanded in addition to its uncontrollable events. If a legal string is marked in some
models but not marked at least in one model, its following controllable events shall also
be expanded. All legal strings that are not marked in some model form the legal transient

language.

Definition 4.5: The legal transient language K, consists of legal strings which are not

tran

in legal marked language X, : K

tran

= {SEJZIL(Gj)lseKiHegalUKm}' o

The following example uses the same problem in Example 4.1 to illustrate that the

controllable events of legal transient strings have to be expanded.

Example 4.2: A system with two possible plant models is shown in Figure 4.3. The
‘marked state is denoted by a double circle. All events are controllable and all strings are

legal. Expand the system for the empty string £ such that correct decision can be made.

110

0 D (DD
o DD DD

Figure 4. 3: Plant automata for Example 4.2

We show that controllable events are required to expand at a legal transient string for

correct online decision.

SN) WD
SN) S g

Figure 4. 4; Expansion for the initial state: Example 4.2

At the current string s = ¢, its active event a is expanded in G, and G, simultaneously.
String a 1s marked in G, but not in G,. If we stop expansion at string a, the expansion

windows will be the trees shown in Figure 4.4. The robust solution for the expansion

window is ({€},{€}) . Hence, the online supervisor will disable event g at string ¢ .

However, event a is enabled by the offline robust supervisor. Therefore, expansion shall
not terminate at the string a which is marked in one model but another. The active event

b of the string a is required to expand. |

The legal language K, is composed of legal marked language K, and legal transient

legal

language K The overall system behavior Y L(G,) is partitioned as:

jel

tran

111

Y L(G,) =K,

jel

&K, &K, &K, . The following example uses the same problem

illegal tran *

in Example 2.1 to illustrate this.

Example 4.3: A system model could be either G, or G, shown in Figure 4.5. Assume
that ¥ = {a, 8,7, 4, u,u,v,w} with £, ={a,f,7,4,u} and =, ={u,v,w}. Given certain

K, , K

illegal > me mu ?

specifications, we find the K and K, for the system and verify that the

tran

overall behavior can be partitioned as the four languages.

G1 /O—)0 —+—0) o2 /@—WHO*‘ 9

—eaas e o~ aeroe
(0
s Moo

Figure 4. 5: Plant automata for Example 4.3

The overall system behavior L(G,) U L(G,) is
{e,a,af,apu,afua,afa,apaf,ay,aya, B, A, Aa, Aav, Aavp, u, pw, pwary . Assume
that the specifications are F, ={¢,af,afu,afua,ay,ia,lav,Aavff} and

E, ={s,a,af,apfu,afua,afa,afaf,aya, u} respectively.

The illegal language Ko 18 {a}fa,ﬁ,laﬁa,aﬂaﬂ,p_w,ywa} . The legal marked
controllable language K is {e,afu,afua,iav,Aavf3} . The legal marked

mce

uncontrollable language K, is {af,Aa,u} . The legal transient language K, 1

112

K K and K

me > mu tran

{o,ay,A}. We can verify that K are disjoint and form a

illegal *

partition of the overall system behavior L(G,) U L(G,). o

We now can formally present the expansion rules for our variable lookahead policy. All
plant models are expanded simultaneously as a tree generator. Note that a node in a tree
corresponds to a sole string and thus we do not differentiate a node and its corresponding

string thereafter. The expansion rules are as follows:
Expansion Rules:
1) All plant models are expanded simultaneously as tree generators.

2) All active events following the current string shall be expanded.

3) Stop expanding strings in K ..

4) Stop expanding strings in K, .

5) Stop expanding the controllable events of strings in X, .

6) Expand uncontrollable events of strings in K

mu*

7) Expand all events of strings in K

tran *

We call expansion according to the above rules variable lookahead policy (VLP) since
the expansion does not stop at a fixed length. The expansion can be done recursively with

either breadth-first or depth-first approach. The following procedure Expansion(s) takes

113

recursive depth-first expansion approach and returns the expansion trees Exp, for the

current string s if it terminates.
Expansion(s):

1) Initialization: Exp, :={c} forall ie .

2) Forall a e XN (Y L(G;)/s):
iel

2.1)forall iel,
if sa € L(G,), then Exp, = Exp, U {a}.
2.2) Expan(x).
3) Retumn. i

Given a set of possible plant model G, and corresponding E,, the expansion procedure

of Exapnsion(s) for the current string s is as follows. One of the active events

{a,,...,a,} at the current string s is expanded by calling a recursive procedure Expan(t).
For instance, ¢, is first expanded. Once Expan(c,) returns, another active event of the
current string s, say «,, is expanded the same way by calling Expan(a,). The

expansion is executed until all active events of the current string s are expanded.
Expan(y)

1) Case steK,

tran

114

Forall feXAstBe Y L(G,),
iel

Forall iel,
if stB € L(G,), Exp, .= Exp, U {tf}.
Expan(1B) ;
Return.

2) Case ste K, :

Forall BeX AstfeYL(G,),
iel

Forall iel,
if stB € L(G,), Exp, = Exp, U {tf3}.
Expan(tp) ;
Return.
3) Caseelse (ste K.,):

Return. i

Expan(a,) for the active event o, of the current string s is executed recursively with a
depth-first approach. If string sa, is a legal transient string, all active events {£,,..., 5, }

at string sa, are expanded by calling Expan(ca, B,) to Expan(e,f3,). 1f string sa, is a

115

legal marked string with active controllable events {c,,...,c,,} and uncontrollable events
{u,,....u,} , then only Expan(au,) to Expan(a,u,) are called recursively for all
uncontrollable events. Expansion of string «, returns without calling Expan(a,f) for

any active event f if sa, is illegal or legal marked controllable.

We call the resulting expansion of G, (as a tree generator) Exp,, once expansion for the

current string s terminates. The current state s is treated as the initial state of the

expansion Exp;.

Definition 4.6: The set of generated strings of Exp, is denoted as L(Exp,). The set of
marked strings L, (Exp;) consists of strings in L(Exp,) which belong to L (G,)/s .

Namely, L, (Exp,)=L,(G,)/sNL(Exp,). o

We take the same problem in Example 2.1 to illustrate the expansion for the empty string

according to the above expansion rules.

Example 4.4: A system model could be either G, or G, shown in Figure 4.6. Assume
that £ ={a,B,7, 4, pt,u,v,w} with T ={a,B,7,4, 4} and Z, = {u,v,w}. Assume that
the specifications are E, ={¢,af,afu,afua,ay,la, lav, lavp} and
E, ={s,a,af,cfu,acfua,afa,afafl ,aya, u} respectively. We obtain the expansion

for the empty string & using the expansion rules and depth-first approach.

116

/O_°H@_H@_ﬁ‘%@ /@-WHO—— (0

e o — —O——®
R
0

Figure 4. 6: Plant automata for Example 4.4

X /O—“H@“’_e@ Exp, /@— w0
Ot DD @@
N ;

Yoo ™ Noe

Figure 4. 7: Expansion for the initial state: Example 4.4

Exps

Initially, L(Exp,) = {¢} and L(Exp,) ={¢}. All active events {«a, 5,4, u} of the current
string ¢ shall be expanded. For instance, o 1is first expanded and thus L(Exp,) = {¢,a}
and L(Exp,)={g,a}. The active events {f,y} of a shall be further expanded since
string « is a transient string. Assuming that B 1is first expanded, we have
L(Exp,) ={¢e,a,af} and L(Exp,)={e,a,af} . The active uncontrollable event u of
string f3 shall be further expanded since string aff is a legal marked uncontrollable
string. At this time, we have L(Exp,) = {¢,a,af,apfu} and L(Exp,)={¢,a,aff,apfu}.
The expansion for this branch of the tree generators stops and returns at the string afu

since affu is a legal marked controllable string. Next, the second event y following

117

string s = 1s expanded. We omit the rest of expansion procedure for brevity. The

resulting expansion is shown in Figure 4.7. o

The specification with respect to the expansion window Exp, is taken as
E, /snL, (Exp,) and will be relative-closed with respect to L, (Exp;) as shown in the

following lemma.

Lemmad4.1: E,/sNL, (Exp;) is L, (Exp;)-closed.

Proof: E,/sN L, (Exp,)NL, (Exp) S E, /s L, (Exp,)
=E/smLm(Expi) (by Lemma2.1)
=E /snL,(G)/sNnL, (Exp,)
=[E,nL (G))/sNL, (Exp,) (by Lemma 2.2)

=E, /sNnL,(Exp;). (E s L,(G,)-closed)

On the other hand, E,/sNL, (Exp,) < E,/sNL,(Exp,)NL,(Exp;). As a result, we

have E,/sNL, (Exp,))NL, (Exp,)=E,/sNL (Exp,)). 0O

All plant models are expanded simultaneously. Any string in L(G,)/s will be expanded

in Exp, ifitis expanded in Exp,. Namely, L(Exp,) N L(G,)/s < L(Exp,).

Lemma 4.2: L(Exp;,) "(L(G;)/s~ L(Exp;)) =D

Proof: L(Exp,)N (L(G;)/s— L(Exp;)) = L(Exp,) " L(G,)/ s ™ L(Exp ;)

118

< L(Exp;) N L(Exp,))* (All models are expanded simultaneously)

=0,

Hence, we have L(Exp,) N (L(G;)/s = L(Exp;)) = . o

Since all active events of the current string are expanded (Rule 2 of Expansion), strings in

sZ N L(G;) will be expanded in Exp,.

Lemma4.3: L(G,)/sNZ = L(Exp,)NZ

Proof: 1 € L(G,)/sNZ = st € s(L(G,)/ sN L)

= st € S(L(G,)/s) N sZ (by Lemma 4.A.7)
= ste L(G,)NsZ (by Lemma 4.A.5)
= te L(Exp,) (All active events of s are expanded)

=>teL(Exp,)NZ.

Hence, we have L(G,)/sNZ < L(Exp,)"Z. On the other hand, it is immediate that

L(G;)/s "X 2 L(Exp;,)NZ. As aresult, we have L(G,)/sNZ = L(Exp,)NZ. ©

Definition 4.7: A string ¢ in the expansion window for the current string s is called a
boundary string if there is no active event in all plant models or some of its active

events are not expanded in some plant model:

{te Y L(Exp,)| Qi € I,t € L(Exp,) NtZN(L(G,)/ s — L(Exp;) # D)}. o

The boundary strings are either illegal strings, legal marked strings. No active event of

illegal strings and marked controllable strings is expanded. No active controllable event

119

of marked uncontrollable strings is expanded. All active uncontrollable events of legal
strings are expanded. In other words, only active uncontrollable events of illegal strings
are not expanded. The following example illustrates the boundary strings in expansions

for the current string with the same problem in Example 4.4.

Example 4.5: A system model could be either G, or G, shown in Figure 4.8. Assume
that X ={a,B,7,4, 1t,u,v,w} with 2, ={a,B,7,A, 4} and X = {u,v,w}. Assume that
the specifications are E, ={¢,ap,afu,afua,ay,la, lav, Lavf} and
E, ={¢,a,aff,afu,afuc,afoa,afaff ,aya, u} respectively. We obtain the expansion
for the empty string & using the expansion rules and depth-first approach. Indicate the

boundary strings of the expansions and verify that the boundary strings are either illegal

strings or legal marked strings.

&, /O_H@_H@_B_@ 5 /@—%*‘@

& i@ — S —O——®
—Q

Figure 4. 8: Plant automata for Example 4.5

120

Exp; x/ O— V‘@ Expz /u’) QH@

ﬂ@ﬂuﬁcirf@w@ -HQQEKH@H@
Yoo Yoo

Figure 4. 9: Expansion for the initial state: Example 4.5

The classification of strings was given in Example 4.3. The expansion in Figure 4.9 is
obtained as shown in Example 4.4. The boundary strings in the expansions are
{af,afu,aya, B, Aav, pwa} . {aya, B, pwa} are illegal strings. {afu, Aav} are legal

marked controllable strings. af is a legal marked uncontrollable string. ©

Lemma 4.4: Let ¢' be a boundary string of an expansion Exp, (with ie [) for the

current string s. If st'¢ K, , then t'e L, (Exp,) .

Proof: We write t=1'fiu where fe€X and u e X’ . String ¢ could be either an illegal

string or a legal marked string. Since st' is not an illegal string (st'¢ K), it will be a
legal marked string. Hence, we have st'e L (G,), which implies that t'e L (G,)/s .

Therefore, we have 'e L(Exp,) N L, (G,)/ s , which means that 'e L _(Exp,). ©

Lemma 4.5: Let K < L(Exp,) where Exp, is the expansion of G, for the current string

s. If sSKNK, =®,then KX, N L(G,)/s < L(Exp,).

Proof: Let t € K. ¢ can only fall into the following three categories.

121

Case 1: ¢ is not a boundary string. We have = L(G,)/s < L(Exp,) since all active

events of the non-boundary string ¢ are expanded. This implies that

1z, NL(G,)/s € L(Exp,) .

Case 2: ¢ is a legal marked boundary string. We have 1, N L(G,)/s < L(Exp,) since all

active uncontrollable events of the marked string ¢ are expanded.

Case 3: ¢ is an illegal boundary string. This case is not possible since sk N K =0

implies st ¢ K .
Therefore, we conclude that KX, N L(G,)/s < L(Exp,). O

We would like all branches of expansion for the current string to terminate at certain
steps. This will be the case if a finite number of steps will always bring a string to an

illegal string or a legal marked controllable string.

Definition 4.8: N' is the maximal length of subtrace before an illegal string or a legal

marked controllable string is reached:

illegal U ch)} if existing

A max{|t|:teX |(@ste YL(G)A(Ve<p<tspe K
= iel
undefined otherwise

O
The expansion may not terminate at some strings in some problems. However, it always
terminates if N' exists. In other words, the existence of N' is a sufficient condition that

ensures termination of the expansion for all strings. The expansion will always terminate

before or at the worst when N' step is reached for each branch.

122

Theorem 4.1: Expansion always terminates if N” exists.

Proof: It follows from the definition of N' and the expansion stop rules. For all branches

of the expanded tree generators, a string in K , UK, will be reached from the current

string s no longer than N' steps by definition of N'. The expansion for a branch of the

tree generators will terminate at the string in K, UK, according to the stop rules.

Hence, the expansion for any branch will terminate before or at the worst at the N' steps.

0

We have proved that the existence of N' will guarantee termination of expansion. Before
we apply online algorithm, we may want to test if N' exists to avoid unstoppable
expansion. Obviously, it exists, for example, in the special case that each plant model or

specification can be represented as a finite tree generator.

In the prefix-closed case, N' exists if there is no loop formed with uncontrollable events
in specification automata or plant models. There will be no uncontrollable loop in
specification (legal) automata if there is no uncontrollable loop in plant automata. In case
that there are uncontrollable loops in plant models or specification (legal) automata, N

still exists as long as all uncontrollable loops violate the overall specifications.

The procedure of deriving control policy online is as follows. The expansion of each
model is obtained first. Then, the direct approach is taken to calculate the supremal
controllable and consistent sublanguage n-tuple for the expansion. After that, the control

policy for the current string is applied accordingly. Once an enabled event happens, the

123

above procedure is repeated for the new current string. The following algorithm derives

the online control decision. We denote Y L(Exp ;) as L(Exp).
jel

Algorithm 4.1:
1) Initialization: s=¢.
2) Expand each model to obtain Expi at current string s by calling Expansion(s).
3) Let T,y =E,/snL,(Exp,) forall ie .
4) Calculate (7;',...,T,") = SupRCS((T, ... T,)

5) Derive control policy

7(5)= (YT)T = {1 [T U(- L(Exp,)]} » L(Exp) N Z.

6) Wait until an enabled event o happens.
7) Replace s with s =50, and go back to step 2. m]

Remark 4.1: The current string s may not exist in some possible plant models. For
instance, if only m of total n possible plant models include s, then only the m plants

that include string s are expanded. Renumber the expansion as J ={I',2",...,m'} .
(', T,") = SupRCS((T 4., T,,)) in Algorithm 4.1 will reduce to

(', ") = SupRCS (T, 4., T,,,,)) accordingly.)

124

The control policy at string s can be obtained from either the union operation or

intersection operation once 7' is computed. They are equivalent since we have

i

Y=

|
iel iel

[(T,"U (2" - L(Exp,))]}1 L(Exp) which follows from consistency.

We may choose the inactive events of a state to be enabled or disabled by a supervisor
without affecting the closed-loop behavior. The inactive events are chosen disabled in

Algorithm 4.1.

Remark 4.2: Algorithm 4.1 takes direct approach. Instead, indirect approach can be

taken for the expansions by first synthesizing overall expansion Exp and specification 7,
and then computing 7" = SupRN,C(T,, Exp) . Like the offline supervision, we expect that

T =YT, and T, =T NL, (Exp,).0

iel

Remark 4.3: Expansion procedure at step 2 of Algorithm 4.1 is required only for the
empty string & and all boundary strings. Instead of conducting expansion by calling
Expansion(s), the expansion for non-boundary strings can be obtained directly from their

previous expansions. For instance, let Exp, . be the expansion for the current string s . If

the next current string so is a transient string in X, ,, then expansion for so can be

trsn 2

obtained directly, which will be the subtree of Exp,, withnode so asitsroot. O

Remark 4.4: The operation Q((Tlt_o,...,T,;,o))=SupS(SupC'(SupR((Tl:O,...,T,,',O)))) that

calculates SupRCS((T,ZO,...,T,;’O)) in Algorithm 4.1 reduces to 9((7’1:0,...,7];’0))=

125

SupS(SupC((T]:O,...,T n',O))) since (T]:O,...,T,;’O) is relative-closed and the language remains

relative-closed during the iterations. o
4.2 Validity of Algorithm 4.1

We show the validity of Algorithm 4.1 in this section. If we assume the expansion for all

strings always terminates and the offline optimal solution is not empty, then Algorithm

4.1 is valid in the sense that the online direct solution L(7/G,) is the same as the offline

optimal direct solution L(I}/ G, forall iel.

Theorem 4.2: (Validity) Assume N' exists for a set of plant and specification pairs G,

and E, with i €] and the offline robust solution is not empty. Let V and 7 be the
resulting monolithic supervisors of offline Algorithm 3.2 and online Algorithm 4.1

respectively. Then, L(V / G,)=L(y/G,), which means y is valid . o

We propose and prove some lemmas before we prove Theorem 4.2. Lemma 4.7 and

Lemma 4.13 are the key to the proof of Theorem 4.2. We denote
K, =SupRCS(E,,L(G;)) , T,=SupRCS(E,/s,L(G;)/s) , and T,'=SupRCS
(E; /s L,(Exp;), L(Exp,)) with little notation abuse. K, is the offline direct solution
by Algorithm 3.2 or 3.2A. T, is the supremal L, (G,)/s -closed, controllable, and
consistent sublanguage at the current string s with respect to the post language L(G,)/s.

T;' is the supremal L, (Exp,)-closed, controllable, and consistent sublanguage at the

i

126

current string s obtained online from Algorithm 4.1. 7, is introduced to bridge the gap

between 7,' and K.

Lemma 4.6: If se]?,., then K, US_T,. =EUS]_"i.
Proof: If follows from Lemma 4.A.2. m}

If a marked strings st enabled by the offline optimal robust supervisor in L(G,), then

string ¢ will be enabled by the optimal robust supervisor in L(G,)/s and vice versa.

Lemma 4.7: Assume s € IZ Then, T, =K, /s.

Proof: 1) First, we show K, /s c T,. For this, we prove that K, /s € RCS(E, /s,L(G,)/s).
Note that K, /s c E, /s since K, C E,. Next, we establish controllability, L, (G,)/s -

closure, and consistency.

1) Controllability:

K2, 1 L(G)cK, = (K32, 1 LG))/scK,/s (by Lemma 4.A.3)
= (EZ"’,.)/SI L(G,))/sc K, /s (by Lemma 2.2, Lemma 2.1)
=(X,/9)2,,1 L(G)/scK,/s (by Lemma 2.3)
=K, /sx,, 1 L(G)/scK,/s. (by Lemma 2.1)

i) L, (G,)/ s -closure:

K 1L(G)=K,=(K,1L(G))s=K,Is

127

=K,/s1 L,(G) s=K,/s (by Lemma 2.2)

=>K,/s1 L (G) s=K,/s. (by Lemma 2.1)

ii1) Consistency:
K1 (LG)-K)=0= (&K1 (LG)-K))/s=

=K, /s1 (L(G)-K,)/s=D (by Lemma 2.2)

=K, /s1 (I(G,)/s-K,/s)=® (byLemma 2.1, Lemma 4.A.9)

=K, /sl (L(G,)/s—K,;/5)=D. (by Lemma 2.1)
Therefore, K;/s e RCS(E,/s,L(G,)/s) which implies that K,/s T, since 7, is the

supremal element.

2) Now, we show T, ¢ K, /s. We first prove that sT, c K, by showing that K, U sT; is

controllable, L, (G,)-closed, and consistent.

1) Controllability:

K, UsT,Z,, NL(G,) = (K, UsT)Z,, N L(G,) (by Lemma 4.6)

u,i u,i

=(K,2,, UsTE

i™ui

)N L(G)

u,i

i

(K2, NLG)VGTE,, NIG)

u,i

c I?, v (sﬁZ,,,i N L(G,)) (K, is controllable with respect to L(G,))
=K, Us(TZ,, N L(G,)/s) (by Lemma 4.A.8)

c I?,_ usf. (7 is controllable with respect to L(G,)/s)
=K, usT,. (by Lemma 4.6)

1

128

i1) L, (G,)-closure:

K,UsT,1 L, (G)=(K,usT)NL, (G) (by Lemma 4.6)

=(K,NL,(G) VT, AL, (G,)

=K, u(sT, "L, (G,)) (K, is relative-closed wrt. Lm(Gi))
=K, US(mem (G))/s) (by Lemma 4.A.8)
=K, UsT,. (T, 1srelative-closed wrt. Lm(Gi/s))

iii) Consistency:

K, UsT, N (L(G)~ K, UsT)) = (K, UsT) " (L(G,)~K, UsT;) (byLemma4.6)
=[K, N(L(G))~ K, UsT)VIsT, N (L(G,) - K, UsT))]
SIK, N(L(G) =K NVIsT, N (L(G,) - sT))]
= O U[sT, N (L(G,) - sT))] (K, is consistent wrt. L(Gi))
=sT, N[L(G,) - (s UsT,)] (by Corollary 4.A.1)

c sT, N (I(G,) - sT;)

= s[]—; N(L(G,) - Si"j—.)/s] (by Lemma 4.A.8)

= [T, " (L(G,)/ s~ (sT,)/ 5)] (by Lemma 4.A.9)

=s[T, " (L(G,)/s-T,)] (by Lemma 4.A.6)

=0, (7, is consistent wrt. L(Gi)/s)
Hence, we have K, u sT;T NIG)-K;usT,)=® . As a result,

K, vsT, e RCS(E,,L(G,)) and thus K, Y sT, < SupRCS(E,,L(G,)) = K, which implies

129

sT, c K, . Therefore, we have (s7;)/s < K, /s by Lemma 4.A.3 and thus 7, < K, /s by

Lemma 4.A.6. Hence, we conclude that 7, = K, /s . o

Lemmas 4.8 to 4.13 are used to show Lemma 4.14, which indicates that the unexpanded

part will not affect the control decision in comparison with full expansion.

If a string ¢ is enabled by the optimal robust supervisor in some expansion L(G,)/s,

then st has to be legal. In other words, all illegal strings will be removed by the optimal

robust supervisor for the expansion L(G,)/s.

Lemma 4.8: If t e T, for some i € I, then st ¢ K,.

Proof: ¢t € f =>Vjel:te¢ L(Gj)/s—JTj. (T; 1s consistent wrt. L(G,)/s)
Forevery jel:

Case 1: st ¢ L(G;) > st ¢ L(Gj)—-E—j.

Case 2: ste L(G;) > te L(G,)/s

=tel,

:?teEj/s
:teEj-/s
:steE—;

=ste L(G,)-E,.

130

Hence, we always have st ¢ L(G,) - EJ— for all j e /. Therefore, we have st ¢ K . O

The optimal supervisor for the expansion L(G,)/s will be a nonblocking supervisor if it

is used to control the expansion Exp,.
Lemmad.9: T, "L, (Exp,) =T. N L(Exp,)

Proof: We first show that 7, N L, (Exp,) 2 7_“, N L(Exp,). Let re 7_’, N L(Exp,). Then,
we have r € L(Exp;) and r e f , which means there exists a string t such that ¢>r and

t e T,. Obviously, we have t € L(G,)/s.
Case 1: t € L(Exp,)

tel.NL(Exp,) =>tel,NL,(G)/sNL(Exp,)
=tel,nL, (Exp,)

=>rel.nL,(Exp,).

Case 2: t ¢ L(Exp,;) . We denote the boundary string in L(Exp,) which leads to t as t’.

Obviously, we have r <f'<¢.

tel. =>t'e]_“I
=st'¢ K, (by Lemma4.8)
=>t'e L, (Exp,) (by Lemma 4.4)

=tel, NL,(Exp,)

=>t'e Y_’imLm(Gi)/smLm(EJq),.)

131

=>t'el,NL,(Exp;) (T is L,(G,;)/s~-closed)

=>rel,NnL, (Exp,).

Therefore, T, "L, (Exp,) 2T, ~ L(Exp,) . On the other hand, it is immediate that

T,nL,(Exp)c T, N L(Exp,). As aresult, wehave T, "L, (Exp,) = 7_", NL(Exp;).0

If a string ¢ is enabled by the optimal robust supervisor in some expansion L(Exp,), then

st has to be legal. In other words, all illegal strings will be removed by the optimal

robust supervisor for the expansion L(Exp,) .
Lemma4.10: If r € f’ for some ie [, then st ¢ K ,.
Proof: teT'=te L(Exp,)

=Vjel:te L(G,)/s—L(Exp;). (4.1) (byLemma4.2)
tel'=Vjel:teL(Exp,)-T,'". (42) (T, is consistent wrt. L(Exp,))
Forevery jel:
Case 1: st¢ L(G,) = st ¢ L(G,)-E, .

Case2: ste L(G;) > te L(G,)/s

=>teL(Exp)) (by4.1)
=>tel) (by4.2)
=>tek,/s

132

:teEj/s (by Lemma 2.1)
== E_j

=ste L(G,)-E,.
Hence, we always have st ¢ L(G;) - Ej forall jeI. Therefore, wehave st¢ K ..o
Corollary 4.1: Forevery ie [, s?}_'m K,=.

Proof: Let r € sf’. We can write » = st where ¢ € f‘ Hence, st ¢ K, by Lemma 4.10

and thus r ¢ K . This implies that sT,' N K.,=®.o

All active uncontrollable events of the strings that are enabled by the supremal supervisor

for expansion L(Exp,) are expanded.
Lemmad.l1: TS, NL(G)/s=T, N L(Exp,)

Proof: We have 7?,.'2" N L(G,;)/s = L(Exp,;) by Corollary 4.1 and Lemma 4.5. This
implies that TTI.'EH NL(G,)/ s c]T,.'E" N L(Exp;) . On the other hand, it is straightforward
that 7,2, NL(G,)/s2T/E, nL(Exp,) . As a result, we have 'S, NL(G,)/s =
1—? 2, NL(Exp,) m]

If a string ¢ is enabled by the optimal robust supervisor in some expansion L(Exp,), then

it will be expanded in other models which include it. Namely, if a string is not expanded

133

in one model L(Exp,), it will not be enabled by the optimal robust supervisor in the

expansion L(Exp,) .
Lemma 4.12: 7,' " (L(G,)/s - L(Exp,)) = ®.

Proof: We have f.'m(L(Gj)/s—-L(Expj)) < L(Exp;) N (L(G;)/s— L(Exp;)) , which

implies that 7,' " (L(G,)/s ~ L(Exp,)) =@ since L(Exp,) "(I(G,)/s— L(Exp,)) = ®

by Lemma 4.2. o

If a marked string inside L(Exp,) is enabled by the optimal robust supervisor in the
expansion L(G,)/s, it will be enabled by the optimal robust supervisor in the expansion
L(Exp,) . In addition, if a marked string is enabled by the optimal robust supervisor in the

expansion L(Exp,), it will be enabled by the optimal robust supervisor in the expansion

L(G,;)/s.

Lemma4.13: 7'=T,nL _(Exp,).

(C) : We first show that 7,'c T, by showing 7,'e RCS(E,/s,L(G,)/s).
1) We prove that 7;' is controllable with respect to L(G,)/s.

T,'S, NL(G,)/s =T,', O L(Exp,) (by Lemma 4.11)

c JT,' . (7;' is controllable with respect to L(Exp,))

2) We then show that 7;' is L (G,)/s -closed

134

L'1 L,(G)/s =TT L(Exp)1 L,(G,)/s
=T'1 L,(Exp,)

=T'. (T."is L, (Exp,)-closed)

3) We finally show that 7;' and T,' are consistent with respect to L(G,)/s and L(G s

T'1 (L(G))/s~T,) =TT [(L(G))/ s = L(Exp,) Y (L(Exp) ~T,)]
(by Lemma 4.A.11)
=[T,'T (L(G,)/s - L(Exp)] Y[T,'1 (L(Exp,)~T,)]
=[T,'l (L(G,)/s~L(Exp,)]Y ®
(T;' is consistent with respect to L(Exp,))

=0, (by Lemma 4.12)

Hence, we have T;'e RCS(E,/s,L(G,)/s). We infer that 7,'c T, since T, is the supremal
clement of RCS(E,/s,L(G,;)/s) . In addition, it is immediate that 7,'c L (Exp,) .

Therefore, we conclude that 7,'c 7,1 L, (Exp,).
(2): Wenextshow T 1 L, (Exp,) is a sublanguage of 7,'.
1) We prove that T, " L (Exp,) is controllable with respect to L(Exp,).

T, "L, (Exp,)S, N L(Exp,) < T2, " L(Exp,)
=T2, NL(G,)/ s L(Exp,)

< T, N L(Exp,)

135

(T; is controllable with respect to L(G,)/s)
=T.NL, (Exp;) (by Lemma 4.9)

2) We next show that 7, "L (Exp,) is L, (Exp,)-closed.

I,NL,(Exp;)NL,(Exp;) < f N L, (Exp;)

T,NL,(G,)/sOL,(Exp,)

=T.1 L,(Exp,;). (T is L,(G,)/s-closed)

On the other hand, we have 7, "L, (Exp,)N L, (Exp,) 2T, "L, (Exp,) . Therefore, we

conclude that 7, N L, (Exp YN L, (Exp,)=T,"L, (Exp,).

3) Finally, we last show that 7,1 L, (Exp,) and T,1 L, (Exp;) are consistent with

respect to L(Exp;) and L(Exp;).

Z_",O(L(G].)/s—J_j) =0 (T, 1s consistent with respect to L(G,)/s)
=T, "L, (Exp) " L(Exp,) " (L(G,)/s~T,) = ®
=T, N L, (Exp,) N[L(Exp) " (L(G,)/ s ~T,)] = ®

=T, N L, (Exp,) N[(L(Exp;) " L(G,)/ 5) — (L(Exp,) N T,)] = @
(by Lemma 4.A.12)

=>T,NL,(Exp,)N[L(Exp;)-T,NL,(Exp;)]=®. (byLemma4.9)

136

From 1) to 3), we have T;1 L, (Exp,)e RCS(E,/sNL,(Exp,),L(Exp,)) and thus
I,1 L,(Exp;) < SupRCS(E, /s L, (Exp,),L(Exp,)) =T,'. Therefore, we conclude that

I'=T,1 L, (Exp,). O

Remark 4.5: The results 7;' for the current string s can be reused for the following

strings until a boundary string is reached. For instance, let Exp,, be the expansion and
T,is be the supremal elememt for current string s. If the next current string so is a

transient string, then 7T,

iso

= T,, /o, which means the control policy at string s will be

y(so)=[Y(T,,/o)NE. o
iel

Remark 4.6: A string included in s7;, will be included in stT,,,. On the other hand, a

1

string included in s¢7;, will be included in 57} if it belongs to sL(Exp,). O

i,st

If an active event of the current string s is enabled by the optimal robust supervisor in

the expansion L(G,)/s, it will be enabled by the optimal robust supervisor in the
expansion L(Exp;) and vice versa. The unexpanded part does not affect the optimal

control decision for the current string s .
Lemmad4.14: T, nZ=T NZ.

Proof: 7,NZ =T, NL(G,)/sNZ
=T, N L(Exp,)NE (by Lemma 4.3)

=T, 1 L,(Exp;)1 X (by Lemma 4.9)

137

=T'l Z. (by Lemma 4.13) mi

Lemma 4.15: If language n-tuple (M,,...,M,) is consistent with respect to language n-

tuple (L(G)),...,L(G,)), then M, N L(G)c M, forall i,je .
Proof: If]\71 N L(G,) = ®, then the lemma is obviously true.
If M—j NL(G,)# D, thenlet s e]_\/I_j M L(G,). Now we have:

sejTl—ij(G,)ﬁseATj/\seL(G,)
=>(s¢ L(G,.)—A7,.) Ans e L(G,) (by Consistency)
el

As aresult, we have]TJ: NL(G,) < 1\7, . O

Corollary 4.2 If language n-tuple (M,,...,M) is consistent with respect to language n-

tuple (L(G)),...,L(G,)), then M, "L(G,) = M, N L(G,) forall i, je 1.
Proof: It is immediate from Lemma 4.15 and]\7—; NL(G,) c L(G,). o

Lemma 4.16: If language n-tuple (M,,...,M,) is consistent with respect to language n-

tuple (L(G,)....,L(G,)), then (Y M,)"L(G,) =M, forall ie .
Jjel

Proof: Y M, NL(G)=[M,NL(G)]V{ Y [M,LG)]}

Jel, j#i

=M, N L(G,) (by Corollary 4.2)

138

s .

We are now ready to provide the proof of Theorem 4.1. We prove L(I}/ G)=L(y/G,)
by induction on the length of strings in L(I} /1G,) = IZ .
Proof of Theorem 4.2: (Validity)

By Induction:

1) Induction base: The induction base holds for zero-length string since we have

ecL(V/G)and e L(7/G,).

2) Induction hypothesis: we assume that s € L(I}/G,.) iff se L(7/G,) for all strings

with length n orless (|s|<n).
3) Induction step: We then show so € L(I}/G,) iff so e L(7/G,) forall ceX.

soeL(I}/G,.)Gsoel?,

<—_->O'EE/S

<oek,/s (by Lemma 2.1)
@oef . (by Lemma 4.7)
<:>0'ef.' (by Lemma 4.14)

S oe(YT,) N L(Exp,)
Jjel

(by consistency of (7;,...,7.) and Lemma 4.16)

139

SoeY YT ' (All active events of string s are expanded)
jel

Ssel(y/G)YrsoeL(G)roeyp(s) (bythe definition of 7)

osoel(7/G,). (by the definition of L(7/G,)) O
Definition 4.9: We say run-time error happens at string s if 7,'=® forsome ie /. O

Proposition 4.1: Assume that K, # @ for all i € /. Then, no run-time error happens in

Algorithm 4.1.

Proof: It suffices to show 7;'# ® for all strings s € K, . We have:

I'=T,nL, (Exp,) (by Lemma 4.13)

= 7_’, N L(Exp;) (by Lemma 4.9)

=K, /sNL(Exp,). (by Lemma 4.7)

We also have se L(G;) and thus L(Exp,)# @ . Moreover, we have K,/s#® by

assumption and thus K, /s # @ . As a result, we conclude that 7.' # ® and thus there is

no run-time error. O

Algorithm 4.1 derives a single robust control policy. Only one supervisor is synthesized
which we refer to as monolithic supervisor. Alternatively, we may deﬁve a supervisory
decision from each language 7;' and combine the supervisory decisions to make control
decision. We refer to this as modular supervision even though 7' is calculated using all

expansion windows. The step 5 of Algorithm 4.1 can be modified as follows in the

modular supervision. The other steps are unchanged.

140

Algorithm 4.1A:

All steps are the same as Algorithm 4.1 except step 5:

Step 5) Derive control action y, (s):f'r\Z for each model. Obtain control policy

7()= Y7, = {1 [1,(6) U (- (L(E,) " DY N L(Ewp) . ©

Just like the offline algorithms, we expect the equivalence of the online monolithic and

modular supervision. The following theorem gives the formal proof of their equivalence.

Theorem 4.3: Let 7 and ¥ be the monolithic and modular supervisor obtained from

Algorithm 4.1 and 4.1A. Then, L(y/G,)=L(7¥/G,) and L, (7/G,)=L, (7 /G,).

Proof: We know eeL(y/G,) and eeL(¥/G,) . It suffices to prove
L(7/G)=L({y/G,) by showing p(s)=7(s) for any string s. We have

() =(YT,)NZ and 7(s) = Y(T,'NE) forall s e L(G).
iel iel

(YIVNZ =Y (T,'nE) implies that 7(s)=7(s) and thus L(}/G,)=L(7/G,) . In
iel iel

addition, we have L, (7/G)=L (¥/G,) since by definition L (7/G,)=

L(7/G)YNL,(G)and L, (7/G)=L(F/G)NL (G). o

We have shown the validity of Algorithm 4.1. The validity of Algorithm 4.1A follows
immediately since it is equivalent to Algorithm 4.1. Similarly, there is also no run-time

error in Algorithm 4.1A.

141

4.3 VLP Direct Solution: Example

Online direct approach Algorithm 4.1 is used to solve the same problem of Example 2.1.
The control policy for the empty string is derived in the following example to illustrate
the procedure of the algorithm. The control policy for other strings can be obtained the

same way.

Example 4.6: A system model could be either G; or G, shown below in Figure 4.10.
Assume that = {«, 8,7, 4, p,u,v,w} with Z_ ={a,B,7,A, 4} and , = {u,v,w}. Given
certain specifications, we synthesize an optimal admissible nonblocking robust supervisor

which solves the problem.
The language generated and marked by the plant models are:

L(G)) = {e,a,af,afu,afuc,afo,affaf, oy, aya, A, Aa, Aav, Lavf}

L(G,) ={¢,a,af ,afu,afua,afa,afaf ,ay,ayva, y, pw, pwa, f}

L. (G,) = {e,af,afu,afuc,afa,afaf,ay, ia, Aav, AavF}

L (G,)={¢s,a,af,cfu,afua,ofa,affaf ,aya,u, pwa} .

Assume the specification languages are:

E, ={s,af,afu,afuc,ay, la, Aav, Aavf} .

E, ={e,a,af,afu,afua,afa,afafl,aya, i} .

142

% —@——®
H%H%\@»H@

=
//{:}—-——{>—~-—e<>

@@
e

Figure 4. 10: Plant automata for Example 4.6

G2

We now employ Algorithm 4.1 to derive control policy for the empty string.
1) Initialization: s =¢.

2) Expansion for the empty string is illustrated in Example 4.4. The resulting expansions

of G; and G; for the initial string are Exp; and Exp, as shown in Figure 4.11.

/O_“H@—V_e@
X Exp2
OO H@iﬂ—e@ue@

N\

Moo ™ N

Figure 4. 11: Expansion for the initial state: Example 4.6

Exp1

3) Let T, = E, /s L, (Exp,) = {s,aB,apfu,ay, Aa,Aav} and T,,=E,/sN L, (Exp,)

= {8,a,aﬂ,aﬂz‘,a}’a,ﬂ}.

143

4) Calculate (7,',T,') = SupRCS((T},T,,)) : Algorithm 3.2A is employed to compute the
supremal element. 7}:0 and TQ',0 are relative-closed with respect to L (Exp,) and

L (Exp,) respectively.
Iteration 1:

TI:O is controllable, however, Tz',o is not controllable since uncontrollable event w at

string u leads outside T—2; The supermal controllable sublanguages are first calculated

in this iteration.
SupC(T,,) = {&,af,aPu,ay,Aa, Aav} and SupC(T,,) = {&,a,af,apu,ara} .

Obviously, (SupC(T,,),SupC(T,,)) is not consistent. For example, ayar is disabled in

Exp, but enabled in Exp,. We next calculate the supremal consistent sublanguage in this

iteration.

T,, = SupS(SupC(T},)) = {&,apB, afu, Ao, Ao} .

T,, = SupS(SupC(T,,)) = {€,a,0,cpu} .

After this iteration, 7, and T,, are different with T,, and T, , respectively and thus next

iteration has to be taken.

Iteration 2:

SupC(T;,) = {&, o, afu, Aar, Ay and SupC(T;,) = {g,a, a8, aPu}

144

T,, = SupS(SupC(T},)) = {&,aB,aBu, Ao, Aav} .

T, = SupS(SupC(Ty,)) = (e, 0, a3, afu}

Neither 7}, nor 7, changes from T,, and T,, respectively. Hence, we stop here. We
can verify that the resulting language 2-tuple (7},,7,,) is an element of RCS(T,,,T;,).

As artesult, we have T, = {¢,af3,afu, Aa,Aav} and T, = {¢,a,af3,0fu} .
5) The overall solution is T,' uT. 2 ={e,a,aff,afu, Aa, Alav} . Hence, the control decision
for the empty string is 7(£) = (I, UT,) NS = {or, A} . o

The online control decision for the empty string is the same as the offline direct solution.
The procedure of algorithm 4.1 is illustrated in this example. Online algorithm only
computes the solution for the expansion window rather than the entire plant. It reduces

computer memory requirement at the cost of online computing power.

145

Appendix 4.1: Lemmas for Validity Proof

Lemma 4.A.1: Let A,BeS". Then, AB= AU AB.

Proof: (2): First we show A c AB and AB c AB .

If A=®, then Ac AB will be ture. Suppose A#®. For every s € A, there exists

st € A thus we have stu € AB for any u € B. This implies that s € AB . Hence, we have

ZQAB.

For every s AB, there exists uc 4 and ve B such that s=uv. ve B implies that
there exists vw € B. Hence, we have uvw e AB, which means swe AB and thus s e AB.

Therefore, we have ABc AB.

As a result, we conclude that AU AB c AB.

(©): Let se AB . There exists st € AB. Rewrite st as uv suchthat ue 4 and ve B.
Case l: s<u.

s <u implies that s € A and thus s€ AU AB.

Case2: s>u.

Rewrite s as ua . This implies that ar = v and thus a € v. We infer that a € B and thus

ua € AB. Hence, we have s € AB, which means s € AU 4B.

146

From case 1 and 2, we have AB - AU AB. Therefore, AB=AUAB. O

Corollary 4.A.1: For se X" and AC S, sd=sUsA.

Proof: It is immediate from Lemma 4.A.1.)

Lemma4.A.2: Let A,B,CeX . If AcC,then CUAB=CuU 4B.

Proof: CUAB=CUAB=CuU AU AB by Lemma 4.A.1. CUAUAB=C\U AB

since ZQZ‘.Hence, we have CU AB=C U AB. o
Lemma4.A3:Let 4 BcX .If Ac B,then A/sc B/s.

Proof: t € A/s implies that st € A. Therefore, we have st € B and thus ¢t € B/s since

Ac B.Asaresult, wehave 4/sc B/s. O

Lemma4.A4 Let A, Bc X . Then, Ac B< sAcC sB.

Proof: (=): For ¢t € s4, there exists u € A such that ¢ = su . Therefore, = ¢t = su € sB.

Hence, we infer that s4 < sB.

(<): te 4 implies st € s4A and thus st € sB. Hence, we have r € B . Therefore, we

infer that A B.)
Lemma 4.A.5: Let 4 = =". Then, s(4/s)c A.

Proof: For t € s(A/s), there exists u € A/s such that t =su . u € A/s implies su € A

and thus we have ¢ € 4. Therefore, we conclude that s(A4/s)c 4. mi

147

Lemma 4.A.6: Let AC X" (s4)/s=A.

Proof: Let t € (s4)/s. Then, we have st € s4 which implies that ¢t € 4. Thus, we infer
that (s4)/s < A. On the other hand, let z € 4. Then, we have st € s4 which implies that
t € (s4)/s . Thus, we infer that 4 < (s4)/s. As a result, we conclude that (s4)/s=A4.

=)
Lemma 4.A.7: Let 4,B< X" . Then, s(ANB)=s4ANsB.

Proof: (2): Let te sAnsB. Rewrite ¢ as su. t € sANsB implies € s4 and t € sB,

which means sue€s4 and su e sB . Therefore, we infer that ue AnB and thus

t=sues(ANB).

(©): Let te s(AN B). Rewrite ¢ as su. t € s(AN B) implies u € AN B, which means

su € sA and su € sB. Therefore, we infer that t =su e s4NsB. 0O
Lemma 4.A.8: Let 4,B< X" . Then, sANB=s(ANB/s).

Proof: (2): s(ANB/s)=sANs(B/s) (by Lemma 4.A.7)
cs4dNB. (by Lemma 4.A.5)

(©):tesANB=>tesAAteB.

=dJueA:t=suecB (Write ¢ as su)
=>ucdArueB/s
>ueAnB/s

= sues(ANB/s)

=tes(ANB/s).

148

Hence, we infer that sANB < s(4ANB/s). As a result, we have sANB=s(ANB/s).

D

Lemma4.A.9: Let 4, BC X", Then, (A-B)/s=A/s—B/s.

Proof: t€ (A-B)/s & ste A-B

SsteAnste B
StedlsntegBls

<teAls~Bls.

Hence, we infer that (4—B)/s=A4/s—B/s. m]

Lemma 4.A.10: Let 4,B,Cc X". Then, A—-Cc (4~-B)U(B-C).

Proof: (4-B)U(B-C) =(4NB*)U(BNC)
=[AVBNCT)N[BY W (BNCY)]
2AN[BY V(BN CT)]
= AN[(B” VBN (B” U C™)]
= AN[Z N (B* UC™)]
=AN(BY V()
24NC*

=A-C. O

Lemma 4.A.11: Let 4,B,CeX . If Cc Bc 4,then A-C=(4-B)u(B-C).

Proof: (<): It follows from Lemma 4.A.10.

149

(2): It follows from A-C =ANC” 2ANB”° =4-B and 4-C2(B-C) .

Therefore, we conclude that A-C=(4-B)U(B-C). ©

Lemma 4.A.12: Let 4,8,CeX". Then, An(B-C)=(ANB)—(ANC).

Proof: First, AN(B-C)=ANn(BNC”) =ANnBNC*=(ANnB)-C . Also,
(ANB)=(ANC)=(ANBINANC)’ =(ANB)N (A VC?) =[(ANB)NA° v
[(ANB)NC?]=DPU[(ANB)-C]=(ANB)—C . Therefore, we conclude that

AN(B-C)=(ANB)—-(ANC). i

150

Chapter §

State-based Robust Nonblocking Supervisory Control

We have solved RNSCP offline and online in Chapter 3 and 4 respectively. RNSCP takes
a linguistic approach and the control domain of the resulting supervisors is based on
strings. Online algorithm VLP for RNSCP works only if expansion terminates. However,

this is not always the case.

In Section 5.1, we take a state-based approach and formulate State-based Robust
Nonblocking Supervisory Control Problem (RNSCP-S). Its online solution eliminates the
termination problem of VLP. A robust problem can be treated as RNSCP-S only if
certain conditions are satisfied. This does not imply any limitation in comparison with
RNSCP since an arbitrary RNSCP can be transferred to an equivalent RNSCP-S after
automaton refinement. Fault recovery problem of a spacecraft propulsion system is

solved as a special case of RNSCP-S manually and using TTCT in Section 5.2.

5.1 Robust Nonblocking Supervisory Control with State

Information

Subsection 5.1.1 investigates the preconditions that ensure control domain can be taken
as states. Mutual refinement of automata is defined there. RNSCP-S is formally
formulated in Subsection 5.1.2. Fault recovery problem with illegal states is a special
case of RNSCP-S. A procedure is proposed in Subsection 5.1.3 to convert an RNSCP to

RNSCP-S if a robust problem initially does not satisfy the assumptions in RNSCP-S. In

151

Subsection 5.1.4, the state-based online algorithm is proposed and the validity of the

state-based algorithm is also established.
5.1.1 Preconditions for State Control Domain

The states of automaton model of a system are usually represented by the states of system
components. Hence, states have physical meaning. In addition, we can directly identify
the system state by detecting the component states. Therefore, it is preferable in many

situations that the domain of control law be states rather than strings.

Obviously, the control domain can not be taken as states for arbitrary given plant and
specification automata. In order to be able to take states as control domain, the plant and
specification automata shall meet certain criteria. We next investigate what these
requirements of the plant and specification automata have to be to ensure that control

domain can be states.

Like the standard state-based supervision, in a robust control problem the control policy
at each state shall be the same for all strings leading to the state. This implies that the

specification automaton H, is required to be a subautomaton of the plant model G, for

all i € 7. Moreover, a state in one plant model shall correspond to only one state existing
in another plant model or none since the control domain of VLP-S is state. Therefore, if a

string belongs to both model G, and G, it shall lead to the corresponding states. In the
case that a string s belongs to one model G, (s € L(G,)) but not to another model G,

(s ¢ L(G,)), the state of string s in G, shall not correspond to any state of G, .

152

We call the relation of plants satisfying the above requirements mutually refined. We

formally define the mutually refined relation of two generators below.

Definition 5.1: Mutually Refined Generator Relation Consider two generators

R =(X,,%,,6,,x,) and R, =(X,,X,,5,,x,,). Assume that there exists a one-to-one
relation between a subset of X, and a subset of X,. For simplicity, we assume the
corresponding states in the aforementioned subsets have the same labels. We say R, and
R, are mutually refined if & (x,,s)=7,(xy,,s) in case seL(R)NL(R,) ,
0,(xy;,8) #0,(xp,,t) in case sel(R)-L(R,) for all telL(R,) , and

0,(x,,5) # 0,(xy,,5) incase s € L(R,)—L(R,) forall 1€ L(R)). m]

Lemma 5.1: Consider two generators R, =(X,,X,,0,,x,) and R, =(X,,%,,5,,x,,)

with L(R,) < L(R,) . If they are mutually refined, then R, c R, .

Proof: For any string s € L(R,), we have s € L(R,) since L(R,) < L(R,). This implies
that &,(xy,s)=0,(xy,s) since R, and R, are mutually refined. Hence we have

R, < R, by the definition of subgenerators. O

The inverse implication of Lemma 5.1 does not hold. Namely, even if a generator is a

subgenerator of another generator, they may not satisfy the mutually refined generator
relation. For two generator G, and G, with L(G,) < L(G,), mutually refined relation is

stronger than the subgenerator relation. The following example illustrates this.

153

Example 5.1: Given two generators G, and G, shown in Figure 5.1, we verify that

G, < G,, but G, and G, are not mutually refined.

(DO
== (O

Figure 5. 1: Plant automata for Example 5.1

The corresponding states in G, and G, are marked with the same number. Any string in
G, leads to the corresponding state in G,. For example, string ac leads to state 2 in G,

and the state 2 in G,. Hence, G, < G,.

Since string b does not exist in G, , it shall not lead to any state in G, that has a
corresponding state in G,. However, string b leads to state 1 in G, which corresponds to

state 1 in G, . Therefore, the condition of mutually refined relation is not satisfied. o

We next formally give the preconditions ensuring that the control domain of a robust

control problem can be taken as states.
PC: Preconditions of State Control Domain:

PC1) Forall i,j eI, G, and G, are mutually refined.

PC2) Foralliel, H, C G,. o

154

The following example shows the necessity of mutual refinement of plant automata for

state-based control domain.

Example 5.2: Two possible plant models of a system are represented by automata G,
and G, in Figure 5.2. The specification automata for G, and G, are H, and H,

respectively in Figure 5.2. We examine if the control domain can be taken as states.

Do Do (D) DDk D
(DD DD

Figure 5. 2: Plant and specification automata for Example 5.2

Specification automata are subgraphs of plant automata since H, € G, and H, G,. In
addition, one state of G, corresponds to only one state of G,. All common strings of G,
and G, lead to the corresponding states in G, and G,. However, string b is not in G, but
leads to state 1 that exists in G,. Both strings a and b lead to state 1. The control policy
of string a and b are different since y(a) = {e} and y(b) = {c}; thus the control policy of

state 1 depends on which string leads to it. Therefore, the problem can not be solved as a

state-based supervisory control problem.]

Theorem 5.1 provides a formal proof that the preconditions PC will ensure that control

domain can be taken as states.

Theorem 5.1: The control domain can be taken as states if the preconditions PC are

satisfied.

155

Proof: For all strings denoted as [x] leading to a given statex in one plant model G,,
they shall also exist in another plant model G, and lead to state x if state x existsin G,.
In addition, there is no other string leading to state x in G,. Therefore, the post
behaviors of all strings [x] in plant model G, are the same. The specifications of all the

strings [x] are also the same since the specification is a subautomaton of the plant. Hence,
the control policy for all strings [x] leading to the given state x will be the same. As a

result, the domain of supervisory control map can be taken to be the state set. O
5.1.2 Problem Formulation

In many circumstances, the control target is to restrict the system inside the desirable

states. In other words, we would like to prevent a system from entering illegal states. In

this case, specification automaton H; can be obtained by keeping only the legal states of
the corresponding plant model G, and trimming the resulting automaton. Sate-based

robust nonblocking supervisory control problem is formulated as follows.
State-Based Robust Nonblocking Supervisory Control Problem: (RNSCP-S)

Given a set of plant automata G, with i € I, assume they are mutually refined and the
specification automaton /, is represented by an automaton obtained after deleting illegal
states and trimming the resulting automaton. The state X(G,) of plant G, is required to

be restricted into its legal states X (H,) for all i € /. Synthesize an optimal admissible

robust nonblocking supervisor, which solves the problem. ©

156

In RNSCP-S, the plants are assumed mutually refined and thus meet PC1. In addition,
specifications are in terms of legal states and thus meet PC2. Therefore, the control

domain of RNSCP-S can be taken as states.

Remark 5.1: We assume that specifications are given as legal states in RNSCP-S which

implies that the specifications are relative-closed. O

Remark 5.2: In order to make control domain be states, specification is only required to
be a subautomaton of the corresponding plant H, < G,, which means the specification

could be in terms of both illegal states and illegal transitions between some legal states.

In contrast, RNSCP-S requires that the specification is given as only illegal states, which

is a stronger requirement than H, < G, in that in RNSCP-S H, < G, holds and all

transitions between legal states are always desirable.]

Remark 5.3: Fault recovery problems with one permanent failure at a time and
specification given as illegal states can be directly solved as RNSCP-S without
automaton refinement. Plant generators are mutually refined inherently since the normal
states are included in each plant model, and the failure states after different failures are

disjointed. o

We can treat RNSCP-S as a special case of RNSCP. However, this by no means implies
that RNSCP-S has any limitation. As a matter of fact, a problem with arbitrary plants and
speciﬁcatibn automata can be converted to a corresponding state-based problem after
automaton refinement. The next section develops a procedure of transferring an arbitrary

RNSCP problem to a corresponding RNSCP-S problem.

157

5.1.3 Converting RNSCP to RNSCP-S

The specification in RNSCP may not be relative-closed. However, we assume that
specification is relative-closed in RNSCP without loss of generality since we can always

obtain the supremal relative closed sublanguage of the specification otherwise.

The automata in RNSCP usually do not satisfy the two assumptions of RNSCP-S.
Nevertheless, we can always refine plants and specification automata to solve RNSCP as
an equivalent RNSCP-S problem. We first provide and prove a sufficient condition which
ensures the assumptions of RNSCP-S. After that, we propose a procedure to ensure the

above-mentioned sufficient condition.

SC: Sufficient condition for RNSCP-S: Any two generators in {G,,...,G,,H,,....H,}

are mutually refined. m]

Lemma 5.2: Consider a specification generator H and a plant generator G with

L(H)c L(G). If H and G are mutually refined, then specification will be in terms of

legal states.

Proof: Follows from the definition of mutual refinement. All states in G that have
corresponding states in H are legal. All events leading from a legal state to another legal
lstate of G are allowed by H. H can be obtained from G after removing the states from
G that have no corresponding states in H . As a result, the specification is in terms of

legal states. m]

158

Theorem 5.2: The sufficient condition SC guarantees that an RNSCP problem can be

solved as an RNSCP-S problem.

Proof: Specification is in terms of legal states by Lemma 5.2. In addition, all plant

automata are mutually refined. Therefore, the problem can be treated as RNSCP-S. o

In case that the sufficient condition SC is not satisfied in a given RNSCP problem, all
plant and specification automata can be refined to ensure it. A procedure is required to
convert RNSCP to RNSCP-S. Unlike standard supervisory control, robust supervisory

control deals with a set of plants and specifications.

We first generalize the biased synchronous production of two generators [15] [6] to more
‘generators before we formally propose a procedure to guarantee the sufficient condition.

In the standard biased synchronous production ||,, one generator leads another. In the

generalized operation || _, one generator leads a set of other generators.

mr ?

Definition 5.2: (Multiple Biased Synchronous Product ||,)

Given a set of automata R :=(R,R,,...,R,) with R, =(X,,Z.,6,,%,,X,,;), the multiple

1

biased synchronous product of R, is defined as: R, |, (R—{R,})=

Ac(X % x X, 20, 8,(Xgp sees X0)y Xy X oo X X X X) XX X)) where

o((x,,...,x,),0) = .0
(5 1)) {undeﬁned otherwise o¢Z,(x)

i

(%, y0er X,") ifoeZX, (x,) {5,.(x,.,0') ceX, (x)
, and x,'= ’

159

The operation of multiple biased synchronous production of R, does not alter its

generated or marked languages.

Lemma 5.3: L(R, ||, (R—{R,})) = L(R,) and L, (R, ||, (R—{R,})) =L, (R,).

Proof: Follows from the definition of multiple biased synchronous production ||, . O

We are now ready to present the following procedure which converts RNSCP to RNSCP-

S. Consider a set of arbitrary plant automata (G,,G,,...,G,) and corresponding
specification automata (H,,H,,...,H,) and assume that the specifications are relative-

closed with respect to the corresponding plant. The following procedure returns automata

G",G,,...G") and (H,",H,",..,H ") which generates and marks the same
1 2 p 1 2 " g

languages and satisfies the sufficient condition SC for RNSCP-S.

Procedure 5.1:

1) Define the set R = (G,,...,G,,H,,....H,). Add a dump state to each automaton R,

n?
and add transitions of Z— X, (x) from each state x to the dump state. Then, add
self loop ¥ to the dump state. The resulting automata are denoted as

R':= (Gl"""G ! H]',...,Hnw)-

n?

2) Replace G,' in R' with G,, and derive G,"= G, ||,,, (R'—{G,}) forall i e {l,...,n}.

3) Replace H," in R' with H,, and derive H,"=H, ||, (R-{H,;}) for all

ie(l,..,n).]

160

Assume the number of states of each plant and specification automaton is m. Then, the

number of states of any resulting generator of the above procedure will be at most

(m+1)*.

Theorem 5.3: Let (G,",G,",...,G,") and (H,",H,",...,H,") be the resulting automata

from the above procedure. Then, the languages of plants and specifications are
unchanged, and any two of resulting automata are mutually refined. Therefore, the

sufficient condition SC holds and the resulting problem can be solved as an RNSCP-S.

Proof: Rename (G,,...,G,,H,,...,H,) as (R,R,,...,R,,) , (G ,..,G,'.H,",...H,") as

no n >’

(R,".R,",...,R,,") , and (G,",....G,"" . H,",...,H,") as (R'",R,",..,R,,"") . We have
L(R,")=L(R,) and L, (R,'")=L,(R;,) by Lemma 5.3. This implies that languages of

plants and specifications remain the same after the procedure.

We denote the dump state of R,' as x,,. For any string » ¢ L(R,) = L(R,"), we have

S, (xgr,7) = x,,. For any string » € L(R,) = L(R,'"), we have J,(xy,,r) # x,,.

We next show any two resulting automata R, and R;'" are mutually refined. Denote the

. o 3
state of a string s in R," as (x,,%,,,...,X,,.) Where x,_ =3J.(x;,s).

Case 1: se L(R,").

We only need to show s leads to the corresponding state (x,,,x,,,...,%,,) in R;". This is

true by the definition of ||

mr *

161

Case2: s¢ L(R,").

We need to show that any string 7 in R;"" will not lead to the state (x,,x,,,..., x,,,) . It is
obvious that x, =x, by definition of ||, . Denote the state of ¢ in R;" as
(X),5Xp; 50 X5,) - It is straightforward that x, #x, by definition. Hence, we have

X # X, and thus (x,,, X, 50y X5,) 7 (X}, X5, 5000 X,) -

We conclude that R," and R;" are mutually refined from the above two cases. Thus, the

sufficient condition SC of RNSCP-S is satisfied. This implies that the problem can be

solved as RNSCP-S after automaton refinement using Procedure 5.1. o
The following example illustrates the above procedure.

Example 5.3: Two possible plant models of a system are represented by automata G,
and G, in Figure 5.3. The specification automata for G, and G, are H, and H,

respectively in Figure 5.3. We apply Procedure 5.1 to refine them and verify that the
resulting generators meet the sufficient condition SC and that the specifications are in

terms of legal states.

First, we add a dump state to each generator and add transition of inactive events from
all states to the dump state. Self-loops of all events are added to each dump state. The

resulting generators are shown in Figure 5.4.

Then, we take the multiple biased synchronous productions for each plant generators and

specification automata. The resulting generators are displayed in Figure 5.5.

162

G
o)
()
5
5

¢
]
)

Figure 5. 3: Given plant and specification automata: Example 5.3

N |
RIS
Ny

\\\a,b/} \a,b/

S e
& he

:\\a,b/’ \a,b/“

Figure 5. 4: Modified automata: Example 5.3

The states with the same name are the corresponding states in each generator. We can

verify that the resulting generators have the same languages as those of the original

generators, and are mutually refined with each other. Moreover, the illegal states of G,

are 1d’dd’ and 2d’dd’ , and the illegal states of G, are 21°2d’ and d1'dd’. o

163

a

/\Z
)

GZ"
00'00! b——->

H2I|
00'00' b 11'11
’_/

Figure 5. 5: Resulting automata: Example 5.3

5.1.4 Solution to RNSCP-S

RNSCP takes a linguistic approach. Its corresponding online VLP algorithm works only
if the expansion terminates. For example, the expansion of VLP (Algorithm 4.1) for some
strings may not terminate if N' is infinite or undefined. Thus, VLP is not always

applicable.

RNSCP-S takes state-based approach. It has the advantage over RNSCP in that its
corresponding online algorithm always works since the expansion always terminates. The
state-based online algorithm eliminates the expansion termination problem of VLP by

using state information.

164

Offline solution to RNSCP-S is exactly the same as solving RNSCP offline. Like RNSCP,

offline solution to RNSCP-S can take either the indirect approach or the direct approach.

Here, we propose an online direct solution to RNSCP-S. Unlike VLP, the state-based
online algorithm expands the plant graphs directly as subgraphs rather than tree
generators. We first investigate the expansion stop rules and then derive an algorithm for

state-based online robust supervision.

We denote states in plant model G, as X(G;) and marked states in G, as X (G,).
Similarly, we denote states in specification H, as X(H,) and marked states in H, as
X, (H,). Under the assumption, a state in one automaton will correspond to a sole state

in another. Therefore, we refer to a state without specifying a plant or specification
automaton. The overall states form a state set X . A state in X either refers to a
corresponding state in an automaton or does not exist in the automaton. However, a state

in X refers to a state in at least one plant automaton.

A state in X that is illegal in one model may be legal in another model. A state in X
marked in one possible model may not be marked in another possible plant model. A
marked state in X with only controllable events in one model may be a marked state

with uncontrollable continuation in another model.

The definitions of illegal states, legal marked states, legal marked controllable states, and
legal marked uncontrollable states are different from the standard (non-robust) case. They

are formally defined below.

165

Definition 5.3: Illegal states X ; consist of states that are illegal in some possible plant

model: X, = Y(X(G,))-X(H))). O
iel

With the assumptions of RNSCP-S, a state in A, will be marked in H, if it is marked in

G, . Note that all states marked in H, will exist and be marked in G, in RNSCP-S.

Definition 5.4: Legal marked states X, consist of states that are legal and marked in

all plant models that contain them:

X,={xeYX, (H;):Viel,Lxe X(G))=>xe X, (H)}. o
jel

Definition 5.5: Legal marked controllable states X, consist of states that are legal

and marked and have only controllable active event in all plant models that contain them:

X, ={xeX, Viel,xe X(G))=>Z;(x)cZ}. O

Definition 5.6: Legal marked uncontrollable states X consist of states that are legal

mu

marked and have uncontrollable active event in some plant model that contains them:

X, ={xeX, diel,xe X(G)AZ;(x)NZ, #D}. a

Obviously, we have X, =X, &X, where & denotes disjoint union. We are now

1

ready to formally present the expansion rules.
Expansion Rules:

1) All plant models are expanded simultaneously as subgraphs.

166

2) All active events of the current state are expanded.

3) Stop expanding a state if it was previously expanded.

4) Do not expand a state if it is an illegal state in X , .

5) Do not expand a state if it is a legal marked controllable state in X .

6) Expand only the uncontrollable events of a state if it is a legal marked

uncontrollable state in X

mu *

7) Expand all events if a stateisnotin X , U X, . mi

The expansion of VLP is a tree generator. In order to make VLP applicable, expansion
shall be a finite tree and thus finite language. However, the expansion of VLP may not

terminate in some problems.

In contrast, the expansion of VLP-S is a subgraph of plant automaton and thus it can
represent a language with infinite number of strings. In addition, the expansion of VLP-S

always terminates since each plant model is represented by a finite-state automaton.

If we allow infinite tree in VLP, the expansion of VLP can also represent infinite
language. We would like to compare it with the language of VLP-S expansion for a given
current string. The only difference is that the controllable events of marked strings other
than the current string but leading to the current state are expanded in VLP-S but not

expanded in VLP if the current string is marked. In this case, the language of VLP

167

expansion will be a sublanguage of VLP-S expansion. Otherwise, if the current string is

not marked, then the expansion of VLP and VLP-S will be the same.
The following example illustrates the expansion using the above stop rules.

Example 5.4: Given two mutually refined plant generators G, and G, with
2z, ={a,b,c,d,e}, X, ={u,v,w}, and illegal states 1 and 7 shown in Figure 5.6, we

obtain the expansion for the initial state using the above expansion rules.

Py

SN
G T o,
o0
-
b

Figure 5. 6: Plant automata for Example 5.4

G

Gz

The state set X is {0,1,...,7}. All events of the current staté 0 are expanded and thus
states 1, 2, and 3 are included in the expansion. The active events b and e of state 1 are
unexpanded since state 1 is an illegal state. State 2 is a state that isnotin X , U X, and
thus all its active events are expanded. Event a and u leads to existing state 0 and 1

respectively. Event d and w lead to states 4 and 6 respectively. State 3 is a state in X,

168

and thus only uncontrollable event v is expanded and the existing state 4 is reached. No

expansion is conducted at states 4 and 6 since they are states in X, . The resulting

expansion for the initial state is shown in Figure 5.7. mi

:@/‘
Romto NG

Figure 5. 7: Expansion for the initial state: Example 5.4

Alternatively, the expansion can be obtained directly from the following procedure.

Procedure 5.2:
1) Do not delete any active event of the current state.

2) Delete all active events of the illegal states in X .
3) Delete all controllable events of the marked states in X, .

4) For each model, take the current state as initial state and obtain the reachable part.

O

The following algorithm VLP-S employs state-based variable-lookahead policy to derive
supervisors for RNSCP-S. VLP control decision is in terms of the current string. In

contrast, VLP-S control decision is derived for the current state.

169

Algorithm 5.1: (VLP-S)
1) Initialization: x = x;.

2) Expand each model to obtain GX, for all i € / at current state x according to the

expansion rules.

3) Keep the legal states of GX, to obtain specification HX, forall ie /.
4) Let EX, =L, (HX,) forall ie .

5) Calculate (7;',...,7,") = SupRCS((EX,,....EX)) .

6) Derive control policy 7(x) = (12{; TH1 x.

7) Wait until an enabled event ¢ happens.

8) Replace x with d(x,0), and go back to step 2. O

',..T,") = SupRCS((T]:O,...,T,;,O)) in the above algorithm is the largest fixed-point of
the operator Q((X,,...,K,)) = SupS(SupC(SupR((K,,...,K,)))) and can be computed

iteratively. In RNSCP-S, all strings leading to a state have exactly the same post behavior

and specification. The following example illustrates the above algorithm.

170

Figure 5. 8: Piant automata for Example 5.5

Example 5.5: The above VLP-S algorithm is employed to solve the same problem in

Example 5.4. Given two mutually refined plant generators G, and G, with

2, ={a,b,c,d,e}, £, ={u,v,w}, and illegal states 1 and 7 shown in Figure 5.8, we

derive control decision for the initial state O using the above algorithm.

Figure 5. 9: Expansion for the initial state: Example 5.5

171

The expansions GX| and GX, for the initial state O are shown in Figure 5.9. They are
expanded the same way as in Example 5.4. The specifications EX, and EX, for the
expansions are represented by automata HX, and HX, in Figure 5.10. We then employ

the Algorithm 3.2A to iteratively calculate (7,',7,') = SupRCS((EX,,EX,)).

oSt o NI o == 0l -
RoSt ol o

Figure 5. 10: Specification automata for the expansion: Example 5.5

Observe that EX, and EX, are relative-closed with respect to L (GX,) and L, (GX,)
respectively. Initially, we have T,,=L,(HX,) and T,,=L,(HX,) . Then,

(j-;:j+1 ’7-'2’,j+l) = SupS(SupC((Tlv

+Ty,))) is computed iteratively.

T, is not controllable with respect to L(GX,) since uncontrollable event u leads state 2
to illegal state 1. The supremal controllable sublanguage SupC (Tl"o) is represented by the
automaton HX/-IC in Figure 5.11 and is obtained from HX, with state 2 removed. T 2"0

is controllable with respect to L(GX,) and thus SupC(Tz',O) is represented by the

automaton HX2-1C in Figure 5.11. This automaton is the same as HX, .

SupC(T,,) and SupC(T,,) are not consistent since states 1 and 2 are disabled in

expansion GX, but enabled in expansion GX, . The result after the first iteration

172

(T,,.T;,) = SupS(SupC((T;,,T,,))) is represented by generator HXI-2 and HX2-2

o=

Figure 5. 11: Controllable automata of the first iteration: Example 5.5

There is no change in the second iteration and thus the algorithm terminates with the
supremal element (7,',7,") = SupRCS((T, 4,.T,,)) = (T;,,T3,) . T, and T, are represented
by generator HX1-2 and HX2-2. We can verify that they are relative-closed, controllable,

and consistent. The control policy for the initial state 0 will be 7(0) = {¢} from the results
T, and T,. We can verify that 7, and 7, are computed by keeping removing states at

each iteration from the initial generators HX, and HX,. O

HX1-2 HX2-2

Figure 5. 12: Resulting automata of the first iteration: Example 5.5

The proof of validity of VLP algorithm in Chapter 4 can be used for validity proof of

VLP-S algorithm after replacing the current string s with current state x. We do not

173

reiterate the proof procedure. Instead, we provide intuitive explanation why VLP’s proof

works for VLP-S.

The key to the validity of VLP is the expansion rules which ensure that the unexpanded
part always starts from an event at an illegal boundary string or a controllable event at a
legal marked boundary string. This is also true in VLP-S since expansion of VLP-S stops
only at all active events of illegal states and all controllable events of marked states. In
addition, no property of tree generator is used in the validity proof of VLP. Moreover, the
validity proof of VLP still holds if expansion tree is infinite though we assume expansion

of VLP always terminates as a finite tree.

Remark 5.4: All active events from an illegal state will lead to illegal states in RNSCP-S.
Therefore, no active events of illegal strings will be expanded in VLP-S. This is similar
to the expansion in VLP that all active events from an illegal string are not expanded. If
we relax illegal state specification to subautomaton specification in RNSCP-S, then

active events at illegal strings that lead to the legal states may be expanded in VLP-S. o

VLP-S is directly applicable to some situations such as fault recovery with illegal state
specifications where the assumptions are naturally satisfied. All failure modes share a
common normal behavior and their failure states are disjoint. Since specification is given
by illegal states, the specification of each model is obtained by simply removing the

illegal states in the corresponding plant mode.

Unlike VLP, the advantage of VLP-S is that the expansion of VLP-S algorithm always
terminates and thus it is applicable for the most general situations. If the assumption of

RNSCP-S does not hold in some problems, the plants and specification automata can be

174

refined to guarantee the sufficient condition SC. Then, VLP-S can be employed to solve

the problems.

Fault recovery problems with specification given as illegal states automatically satisfy the
preconditions of RNSCP-S. We apply solution to RNSCP-S to solve a fault recovery

problem offline and online manually and using TTCT in the next section.

5.2 Application to Fault Recovery of A Spacecraft Propulsion

System

In this section, state-based robust supervision is used to solve fault recovery problem of a
simplified spacecraft propulsion system [35] [36]. Spacecraft propulsion systems are first
introduced to give background knowledge in Subsection. 5.2.1. Then, a simplified
propulsion system is introduced and its DES model is given in Section 5.2.2. After that,
the problem is formulated in Subsection 5.2.3 and solved with both offline and online
direct approaches manually in Subsection 5.2.4 and using TTCT in Subsection 5.2.5 to

illustrate the procedure of supervisor synthesis.
5.2.1 Introduction

Rocket propulsion [17] is to gain momentum by expelling mass stored in the vehicle
itself. These systems can be divided to spacecraft propulsion systems and booster systems.
Spacecraft engines operate in space environment and thus are different from air-breathing
aircraft jet engines. Characteristics of the environment of spacecraft are high vacuum,

thermal radiation, nuclear radiation, meteoric bombardment, and absence of gravity.

175

Launch Vehicle (Booster) requires large momentum continuously to overcome the
gravity of a plane. In contrast, spacecraft works in the vacuum and zero gravity
environment; therefore, the propulsion system is relatively small and may only work
intermittently. The spacecraft engines can be grouped into main engines and reaction

control engines [17].

The source of energy of propulsion system could be chemical (liquid or solid) or
electrical. Chemical propulsion is the most widely used type since it provides high thrust.
Typical chemical propulsion systems [4] include cold gas systems, monopropellant

systems, bipropellant systems, and solid propulsion systems.

A monopropellant system has only fuel [4]. It is simple and reliable. The commonly used
fuel for monopropellant systems is Hydrazine. Energy is releaéed when hydrazine
decomposes in the combustion chamber. A bipropellant system has both fuel and oxidizer.
Thrust is generated when they are mixed and combusted inside the chamber. The
bipropellant system is suitable for larger thrust generation. The propellants for

bipropellant systems are usually liquid Hydrogen and Oxygen.

Propulsion systems [17] can also be divided into pressurized feed and pump-feed
systems. A typical pressurized propulsion system consists of propellant tanks, propellant
feed systems, and thrust chamber. High-pressure gas such as Helium provides required
pressure to the propellant. Pump-feed systems require pumps, turbines, and sometimes

gas generators. They can provide large propellant flow rates and thus high thrust.

A simple pressurized propellant feed system includes high-pressure gas, pipes, and valves.

Different kinds of valves are used for different purposes. Propellant valves [13] control

176

flow of propellants to main thrust chamber, gas generators, or preburners. Servovalves
[13] are electrohydraulic devices that control fluid flow or pressure in response to an
electrical signal. Pilot valves [13] are used to control a fluid, which in turn controls or
actuates other fluid-flow-contorl components. Check valves [17] enable flow of one
direction and disable the other. Pyrovalves [17] can only operate once. It can seal the

propellant tightly for a long time.

Spacecraft main propulsion motors [17] are used in the missions such as orbit insertion,
retrofiring prior to a planetary landing, ascending from the surface of a planet, plane

change, orbital maneuver, and Hohmann transfers.

Typical applications of reaction control motors (thrusters) [17] include attitude control,
thrust vector control, station keeping, spin-up and spin-down of spin-stabilized spacecraft,
midcourse corrections on deep-space mission, on-orbit drift, on-orbit phase change,

gravity turn, and rendezvous maneuvers.

The main engine controls [17] include mixture ratio control, propellant utilization control,
and thrust control. The secondary controls are composed of tank pressurization controls,
safety control, duration control of engine main stage, engine-system control calibration,
and start-up and shut-down control. The main operations are start-up and cut-off engines.

The common Secondary operations are purging, chill-down before start engine.

There are many motors in one spacecraft [4]. They need to be operated according to some
requirements. For example, some motors need to be fired simultaneously in order to
generate torque. On the other hands, some motors must not be fired at the same time to

avoid canceling their thrust.

177

There are numerous failures in spacecraft [13]. The common failures are valve stuck-
closed, stuck-open, leakage of pipe, sensor failure, combustion chamber failure. We
require the system (propulsion system) under supervision to meet design specification
and to be nonblocking despite failures. Namely, design specifications are required to be

met even when failure happens.

5.2.2 Modeling of A Simple Propulsion System and its Specification

Robustness of spacecraft is critical since they are required to run for a long time with
little attention of human being. Propulsion systems are one of the most important
subsystems on spacecraft. Spacecraft face numerous failures which make offline
implgmentation of robust supervisory control almost impossible due to computational
complexity. We would like to apply our online robust nonblocking supervisory control
algorithms to solve the fault recovery problem of a simplified spacecraft propulsion

system.

We consider a monopropellant rocket with two engines. The schematic diagram of the

system is shown in Figure 5.13. It consists of a fuel tank, three valves, fuel delivery pipes,

and two combustion chambers. ¥, and V, are pyrovalves. They prevent fuel leakage
during the long storage period. Once ¥, and V, are opened, they will remain open unless

they_fail (stuck-closed).

178

Fuel

WA

A

N

o9 Gd

Es

=

Figure 5. 13: A propulsion system

Table 5.1: Event list of the propulsion system

Event label Event Event type

a; Open Valve i Controllable
b; Close Valve 3 Controllable

f Valve 1 stuck-closed Uncontrollable
u; Engine i Thrust up Uncontrollable
d; Engine ; Thrust down Uncontrollable

179

For simplicity, we only consider one failure mode which is Valve 1 stuck-closed when

the valve is open. Assume the fuel tank always has sufficient fuel.

The possible states of components are: Valve 1={0(closed), 1(open), 2(stuck-closed)},
Valve 2, Valve 3 ={0(closed),1(open)}, and Engine={0,1,2,3}. Events and their

properties are listed in Table 5.1.

—@—-0——0 Q=R 0
@0 LErED Ol

Figure 5. 14: Automata of components

d1,d2 d1,d2 d1,d2 u2,d1
/ \ / \ / \ / \

/

Vb
ut,d2

a2-{——
a
2 C21)
\d1,d2/ \d1,d2/ \d1,d2/

Figure 5. 15: Combined automaton of the three valves

180

Automata of components are shown in Figure 5.14. In the model V,, we only consider
failure f at state 1 for simplicity. The two combustion chambers are modeled as a whole.
We mark all states of valves and only the states of the combustion chambers where at
least one engine generates thrust. At state 0 of £, both Engine 1 and Engine 2 are off.
Only Engine 1 is fired at state 1 and only Engine 2 is on at state 2. At state 3, both Engine
1 and Engine 2 are fired. The marked states are shown with double circles. Failure states

are highlighted.

Figure 5. 16: The entire plant automata

181

The combined model of all three valves, V=Sync(V;, V>, V3) is shown in Figure 5.15. The
state of V is represented by a three-tuple (V;, V,, V3). In order to derive the overall plant

automaton from ¥ and E, V shall be modified to include the events {u,,d,,u,,d,} since

they are related to the valves.

Figure 5. 17: The normal model of the propulsion system

We know u; (u;) and d; (d>) can not happen simultaneously at a given state. In addition,
u; (uy) is allowed to happen only if V; (or V>) and V; are opened. Otherwise, d; (resp. d>)
is allowed. For example at state 000, all values are closed and thus events d; and d, may
happen. Hence, we add d; and d; self-loops to state 000 of model V. At state 011, valve 1

is closed and Valve 2 and 3 are opened. Thus, d; and u; are allowed to happen. Hence, we

182

add d; and u; self-loops to state 011. Necessary self-loop can be added to other states
similarly. The automaton of the entire propulsion system G can be obtained by

synchronizing V'’ with E: G=Sync(V "’ E).(Figure 5.16).

The state of the propulsion system is expressed as a four-tuple (£, V;, V5, V3). There are
4x3x2x2=48 states in total. The number of reachable states is 30. The marked states are

states where at least one engine generates thrust.

The normal model Gy of the system is illustrated as Figure 5.17. It is obtained by
removing the faulty states of G. The normal-failure model Gyr of the system is the same

as the entire propulsion system model G shown in Figure 5.16.

The specification is that Engine 1 and Engine 2 shall not be fired simultaneously. In
addition, the closed-loop behavior shall be nonblocking for both the normal model Gy
and the normal-failure model Gyr. Specifications are marked by the automaton SP shown

in Figure 5.18.

SP

1‘1 22

z-u2,d1 Z-ut,u2 2-u1,d2

Figure 5. 18: Overall specification automaton

183

5.2.3 Robust Problem Formulation for the Fault Recovery Problem

As mentioned in Chapter 2, fault recovery problems can be treated as special cases of
robust supervision problems. To solve the fault recovery problems, one can synthesize an
admissible nonblocking supervisor which meets safety requirements in both normal and

failure modes.

In our simple example, the system under supervision shall be nonblocking in both normal
mode and failure mode. In addition, only at most one engine must be on at a time.

Intuitively, the possible control operations will be:

1) Use Engine 1: Operate on Valve 3 to start up and cut off Engine 1. If Valve 1 is stuck-

closed, then open Valve 2.

2) Use Engine 2. Operate on Valve 3 to start up and cut off Engine 2. There will be no

failure since we assume that Valve 1 stuck-closed only happens when Valve 1 is open.

If we solve the probiem using conventional supervisory control, Valve 2 will be allowed
to open after Valve 1 is opened in the system under supervision of the offline supremal
supervisor. Valve 3 is not allowed to open at string a,a, to avoid both engines firing
simultaneously. If Valve 1 becomes stuck-closed, Valve 3 can then be enabled allowing

Engine 2 to fire without risk of two engines firing at the same time.

However, the conventional supervision will reach a deadlock in the normal model if
Valve 1 and Valve 2 are both opened. The active events of the current state are a3 and f.
Event a3 is disabled by the offline supervisor to avoid both engines firing simultaneously.

Failure event f never happens in the normal mode. As a result, no engine can fire and a

184

deadlock is reached in the normal model. Therefore, the traditional supervisory control

will not meet the supervisor synthesis requirements.

The two possible models of the system are Gy and Gyg. The legal behavior of the normal
mode Ey can be derived by taking the product of specification automaton SP and the

normal model Gy. Similarly, the legal behavior of the normal-failure mode Eng is
obtained from SP and Gyr. The resulting automata of Ey and Eyr are H,, and H,,. show

in Figure 5.19 and 5.20.

s

Figure 5. 19: Legal behavior of the normal model

We can see that legal behavior H, is a subautomaton of G, with states 3xxx deleted.
Similarly, specification H . is the subautomaton of G,, by removing the states with

both engines on. Therefore, the specifications can be in terms of illegal states where both

185

engines are fired. We can also see that £, and E,, are relative-closed with respect to

G, and G, respectively. We first set up the RNSCP-S problem for the fault recovery

problem as follows.

Problem 5.1: Given G, and G,, shown in Figure 5.16 and 5.17 and legal behavior

marked by H,, and H,, in Figure 5.19 and 5.20, design an optimal state-based robust
supervisor such that L (G,,)< E,, L,(Gy,7)=L(Gy,7), L, (Gye,¥) < E,r , and

L (Gyr,7)=L(Gy7). o

Figure 5. 20: Legal behavior of the normal-failure model

186

5.2.4 Manual Solution to Problem 5.1
We now employ the direct approach to solve the above fault recovery problem manually

offline and online. We only derive online control policy for the initial state and state

reached by string a,a,u, as an example. The online control decision for the two states is

verified to be the same as the offline optimal decision.

Offline Solution: Now, we apply the Algorithm 3.2A to compute the supremal solution

SupRCS((E,,E,r)) and then synthesize an optimal robust nonblocking supervisor for

the fault recovery problem of the propulsion system.

T »——»32——-\
HCy a3
0000
(o000 5 To001)

T © /'
b3 -

Figure 5. 21: Controllable normal automaton of the first iteration: Offline Solution
E, and E,, are the legal behaviors of the normal model G, and the normal-failure

model G, respectively. E, and E,, are relative-closed with respect to G, and G, .

187

Hence, K, = SupR(E,)=E, and K} = SupR(E,;) = E,-. However, K and K. are
not controllable. For example, uncontrollable event u, takes the state of H,, from 1211

to illegal state 3211 where two engines are fired. We next calculate the supremal

controllable sublanguage SupC(K,) and SupC(K?). They are marked by the automata

HC, and HC,, displayed in Figure 5.21 and Figure 5.22.

d12\
a ° _\
@

|
\ !

\ Wk
a3y
EZ‘IOE b3 &

Figure 5. 22: Controllable normal-failure automaton of the first iteration: Offline Solution

188

SupC(K) and SupC(K?) are controllable and remain relative-closed with respect to
G, and G, . However, they are not consistent. For example, state 0110 can be reached
in G, but is removed in G, . Physically, state 0110 corresponds to state (both engines
off, Valve 1 opened, Valve 2 opened, Valve 3 closed). The supremal consistent
sublanguage K, = SupS(SupC(K,)) marked by HCS, (the same automaton as HC, in
Figure 5.21) is the same with SupC(K,O) . The supremal consistent sublanguage
K, = SupS(SupC(K))) can be marked by automaton HCS,, in Figure 5.23 which is

obtained by removing states 0110, 1110, and 2110 from HC,, .

We can verify that (K|,K,) are now controllable, consistent, and relative-closed with
respect to G, and G, . Thus, (K|,K,) characterizes the optimal solution to the fault
recovery problem. If we realize a supervisor ¥, as automaton HCS,, and a supervisor
V) as automaton HCS), , then the union of supervisors V. and ¥, will be the optimal

robust supervisor for the fault recovery problem.

The resulting supervisor basically disables a, if a, is executed and disables a, if a,

happens. In other words, it prevents Valve 1 and Valve 2 from being open at the same
time to avoid reaching illegal states or being blocked. The supervisor allows Valve 2 to
be opened to fire Engine 2 if Valve 1 becomes stuck-closed. The function of the

supervisor is explained below in more detail.

189

/
i
!

~ a3->
DD

Figure 5. 23: Resulting normal-failure automaton of the first iteration: Offline Solution

At state 0010, a, is disabled by the supervisor to prevent the system from entering state
0110. State 0110 is not a desirable state in the sense that the only active event a, in the

normal model has to be disabled to avoid entering illegal states. As a result, the system
will remain in state 0110 in the normal model without being able to reach any marked

state. In other word, blocking happens in the normal model.

At state 2011, event a, is disabled by the supervisor to prevent system from entering

state 2111 which leads to illegal state 3111 by uncontrollable event u;.

190

At state 2010, the supervisor disables event a, to avoid entering state 2110 where
uncontrollable event d, brings the system to state 0110. We know that state 0110 is not a

desirable state from the previous analysis.

The function of the above supervisor at other states can be interpreted similarly. We

further explain the physical function of the supervisor at some states.

Physically, we can explain the behavior of the closed-loop system at state 2010 as
follows. At the current state 2010, Engine 2 is on and Engine 1 is off, Valve 1 and 3 are
closed, and Valve 2 is open. If g, is executed, it means Valve 1 is open and the system
reaches state 2110. Engine 2 will be off and thus state 0110 will be reached. Only Valve
3 can be operated at the state 0110 in the normal model. If we turn Valve 3 open, then
both engines will be on inevitably, leading to illegal states. If we keep Valve 3 closed,
then both engines will be off which means the system will never reach a marked state and

thus blocking happens in the normal mode. Therefore, event a, at state 2010 has to be

disabled by the supervisor.

From the above analysis, we can see that the resulting supervisor solves the fault
recovery problem and indeed does the work as described in the intuitive operation

discussed before.

Online Solution: We next solve the fault recovery problem using the online direct

approach. Obviously, the fault recovery problem satisfies preconditions of RNSCP-S and

thus VLP-S can be employed. The empty string ¢ and string a,a,u, are taken as

examples to illustrate the online direct robust supervisor synthesis procedure.

191

Figure 5. 24: Normal expansion for the initial state

At Initial State x;, with s=¢ : At string s=¢ , we first expand G, and G,;
simultaneously according to the stop rules. For example, only uncontrollable event f is
expanded at the marked state 1101 of G, and G,,, and no event is expanded at the
illegal state 3111 of G, and G,, . The expansion of the normal model and the failure

model are GX,, and GX . shown in Figure 5.24 and 5.25.

The specification automata HX, and HX,, for the expansions can be obtained by
removing the illegal states 3111 and 3211 from GX, and GX,,. They are relative-

closed but not controllable. For example, state 1111 leads to the illegal state 3111 by

uncontrollable event u,. The supremal controllable sublanguages are represented by the

192

automations HXC, and HXC,, that are obtained from HX, and HX,, by removing

the states 1111,1211, 2111, and 0111.

Figure 5. 25: Normal-failure expansion for the initial state

HXC, and HXC,, are not consistent. For instance, the state 0110 can be reached in
HXC,; but is removed in HXC, . The supremal consistent sublanguages are represented
by HXCS, and HXCS),, shown in Figure 5.26 and 5.27. HXCS,, is the automata by

removing state 0110 from HXC),.. HXCS, is the same automaton as HXC,, .

193

Figure 5. 25: Resulting normal automaton of the first iteration:
Online Solution at the initial state

We can verify that the languages represented by HXCS, and HXCS,, are relative-
closed, controllable, and consistent with respect to GX, and GX,.. Therefore, the
iteration stops and HXCS, and HXCS,, represent the supremal controllable, relative-

closed, and consistent sublanguages.

The control policy at the empty string for the failure model and normal model are then

obtained from automaton HXCS, and HXCS,, respectively. The overall supervision
policy for the empty string will be the union of them. As a result, events {a,,a,,a,} are

enabled by the online supervisor. The online supervisor has the same control policy at the

initial state as the offline solution.

194

B2 ,,—32\

HXCSne 3

oooo # :3
as aD

b3

Figure 5. 26: Resulting normal-failure automaton of the first iteration:
Online Solution at the initial state

At State x reached by s = a,a,u, : At string s = a,a;u,, we take state 1101 of G, and
Gyr as the initial state for expansion and call the reachable part GM ,, and GM ,. . Then,
we expand GM, and GM,, simultaneously according to the expansion rules. For
example, only uncontrollabl‘e events d, and f at the marked state 1100 of GM, and
GM - are expanded. No active event of the illegal state 3211 of GM, and GM ,, is
expanded. The resulting expansion automata of GM, and GM ,, are GX,, and GX,,

as shown in Figure 5.28 and 5.29.

195

a2—

U’

\@\c

[—]

Figure 5. 27: Normal expansion for the state 1101

B ¢

Figure 5. 28: Normal-failure expansion for the state 1101

196

The specification for the expansions will be represented by automata HX, and HX ,, by
removing states 3111 and 3211 from GX, and GX,,. They are relative-closed but not
controllable with respect to GX,, and GX .. For instance, uncontrollable event u, leads
the state 2111 in HX, and HX . to the illegal state 3111. The supremal controllable
sublanguages are represented by the automata HXC,, and HXC,, with states 1111,1211,

2111, and 0111 removed from HX, and HX .

Obviously, HXC, and HXC,, are not consistent since the state 0110 can be reached in
HXC, but is removed in HXC) . The supremal consistent sublanguages are represented
by automata HXCS, and HXCS,.. HXCS, is exactly the same automaton as HXC, .

HXCS - is the automaton from HXC,, with state 0110 deleted.

I
7 \\\\ HXCSy
i \\\
o2 (0100) @
b3 8 b3
T Y T I I

Figure 5. 29: Resulting normal automaton of the first iteration:
Online Solution at the state 1101

We can verify that the languages represented by HXCS, and HXCS,, are relative-

closed, controllable, and consistent with respect to GX, and GX ... Thus, the algorithm

197

terminates and HXCS, and HXCS, provide the supremal solution to the fault recovery

problem.

—

d1
HXCSne
a
1100 11@
ws D @ b3§
- I maaes
az-

—u1 i
a2»~.
2 a3 1200) (1201
O COMCDN D,
| "
d1i‘\ -

g

u2

<®

Figure 5. 30: Resulting normal-failure automaton of the first iteration:
Online Solution at the state 1101

We then derive a control policy for the failure model and the normal model from HXCS N
and HXCS . respectively. Events b, and f are enabled by the supervisor of the failure
model. Event b, is enabled by the supervisor of the normal model. The overall set of
enabled events will be the union of them {b,, /}. As aresult, a, is disabled at the current

state reached by a,a,u, . This agrees with the offline direct solution.

198

The online control policy for other strings can be derived similarly and the same control
policy with the offline control will be obtained. Since the online control policy is exactly

the same as the offline control policy at each string, the online supervisor is valid.

5.2.5 TTCT Solution to Problem 5.1

In the previous subsection, the fault recovery problem was solved manually. Here, the

problem is solved using Procedure 3.5 offline and online.

TTCT Offline Solution to Problem 5.1;

1) Initialization

Build automata G, G, , H,, and H,, using TTCT. H, , and H,, represent
specification languages E, and E,, . Compute H1, =SupR(H,) and

H1y, = SupR(H ;) using Procedure 3.4.

2) Iteration 1:

Calculate H1C) = SupCon(G,,H1,) and HIC,, = SupCon(G,,,H1,,) . Calculate
(H2y,H2,;)= SupS((HIC,,HIC,,.)) using Procedure 3.3. Call procedure Eq and
obtain Eq(H2,,H1y)= False and Eq(H2,,,H1,.)=False. Since H2, and H2,,

are different with H1,, and H1,,, go to the next iteration.

3) Iteration 2

199

Calculate ~ H2C, = SupCon(G,,H2,) and H2C,, = SupCon(G -, H2,,)
(H3y,H3\)=SupS(H2C,,,H2C,;)) using Procedure 3.3. Call procedure Egq
(Procedure 3.2) and obtain Eq(H3,,H2,)="True and Eq(H3,,,H2,,) = Ture. H3,

and H3,, are the same with H2, and H2,,. Hence, H3, and H3,, are controllable

and consistent. STOP.

4) Solution:

The solution is SupRCS((Ey,Ey:)) = (L, (H3y),L, (H3 ~r). If we realize a supervisor
Ve as automaton H3, and a supervisor ¥, as automaton H3,,, then the union of
supervisors ¥, and V, will be the optimal robust supervisor for the fault recovery

problem. m|

We have illustrated the offline solution using TTCT. We can verify that the solution

agrees with the manual offline solution.

TTCT Online Solution to Problem 5.1

We next use TTCT to solve the fault recovery problem online. In order to use TTCT to
solve a robust problem online, the problem shall satisfy the preconditions of RNSCP-S.
Since fault recovery problem with specification given as illegal states can be treated as a
special case of RNSCP-S, the fault recovery problem can be solved online using TTCT.
We expect the same control policy at the current string with the offline solution. We first

derive control policy using TTCT for the empty string.

At initial state x, with s=¢:

200

1) Expansion

Build automata G, Gy, and H,, and H,, using TTCT. H,, and H,, represent
specification languages E, and E,.. We can verify that G, , G, H, , and H NF

satisfy the precondition of RNSCP-S. Hence, we can obtain the expansion for the current

string & using Procedure 5.2. The expansion GX, and GX,, for G, and G, can be

obtained by deleting controllable events of marked states except the current state and all

active events of illegal states from G, and G, , and then taking the accessible part of

them. Then we can employ Procedure 3.5 to compute the supremal element for the

expansion windows as follows.

2) Initialization

Compute HX, = Meet(H,,GX) and HX ,, = Meet(H ,,,GX,,) for the specification
EX, and EX,, of expansion GX, and GX,.. Compute HX1, = SupRa(HX v) and

HX1,; = SupRa(HX ,) using Procedure 3.4.

3) Iteration 1

Calculate HX1Cy = SupCon(GX y,HX1,) and HXIC,, = SupCon(GX -, HX1,,.) .
Calculate (HX2,,HX2,,)= SupSis(HX1C,,HX1C vwr)) using Procedure 3.3. Call
procedure Egq (Procedure 3.2) and obtain Eqg(HX2,, K HXI] v)=False and
Eq(HX2,,,HX1y)= False . Since HX2, and HX2,, are different with HX1 v and

HX1,;, go to the next iteration.

201

4) Iteration 2

Calculate HX2C, = SupCon(GX ,HX2,) and HX2C,, = SupCon(GX ,,,HX2,,) .
(HX3,,HX3 ;)= SupSis((HX2C, ,HX2C,,)) using Procedure 3.3. Call procedure Eq
(Procedure 3.2) and obtain Eq(HX3,,HX2,)=True and Eq(HX3,,,HX2,,) = Ture.
H3, and H3,, are the same with HX2, and HX2,.. Hence, HX3, and Hx3,, are

controllable and consistent. STOP.

5) Solution:

The solution for expansion is SupRCS((EX ,,EX ,;))=(L,(HX3,),L,(HX3,;)). The
control policy for the initial state x, will be the union of the active events of the initial

states in HX3, and HX3,,. Theresultis y(x,) = {a,,a,,a,}. O

We now derive control policy for a state reached by s = a,a,u, which is not the initial

state. Online control policy to other non-initial states can be computed similarly. There is
no way to assign the current state as initial state in TTCT. Thus, the expansion window
can not be directly represented by an automaton obtained in TTCT. To solve the problem,
we derive an automaton that represents the catenation of the current string with all strings
in the expansion window. In the end, we take the post behavior after the current string to

derive the control policy for the current state.

At state x reached by s = a,a,u,:

1) Expansion for the current string s = a,a,u, :

202

Build an automaton A with L,(4)=a,a,u,L" . Generate GA, = Meet(G,,A) and
GAyr = Meet(G,;, A) in TTCT. Obtain Specification automata HA, = Meet(H , ,GA,,)
and HA,, = Meet(H \;,GA,;) in TTCT. Verify that G4, , GA,., HA, , and HA,,
satisfy the precondition of RNSCP-S. Hence, the expansion for string s = a,a,u, can be
obtained directly using Procedure 5.2. The expansion GX, and GX,, for G4, and
GA,r can be obtained by deleting controllable events of marked states except the states

reached by strings in § and all active events of illegal states from G4,, and GA,,, and
then taking the accessible part of them. We then compute the supremal element of

specification for expansions G4, and GA,, using Procedure 3.5 SupRCSa as below.
2) Initialization

Compute HX) = Meet(HAy,GX,) and HX,, = Meet(HA,.,GX,.) for the
specification languages EX, and EX,. of expansions GX, and GX,.. Compute

HX1, = SupRa(HX) and HX1,, = SupRa(HX ,;) using Procedure 3.4.

3) Iteration 1.

Calculate HX1Cy = SupCon(GX ,,,HX1,) and HXI1C,, = SupCon(GX ,,,HX1,,) in
TTCT. Calcﬁlate (HX2,,HX2,.)=SupSis((HX1C,,,HX1C,,)) using Procedure 3.3.
Call procedure Eq (Procedure 3.2) and obtain Eq(HX2,,HX1,)= False and
Eq(HX2,.,HX1,,)= False . Since HX2, and HX2,, are different with HX1, and

HX1,, , go to the next iteration.

203

4) Iteration 2

Calculate HX2C, = SupCon(GX ,,HX2,) and HX2C,, = SupCon(GX ,,; ,HX2,;) .
(HX3,,HX3,;)=SupS((HX2C,,HX2C,;)) using Procedure 3.3. Call procedure Egq
(Procedure 3.2) and obtain Eq(HX3,,HX2,)=True and Eq(HX3,,,HX2,,)="Ture.
H3, and H3,, are the same with HX2, and HX2,.. Hence, HX3, and Hx3,, are

controllable and consistent. STOP.
5) Solution:

The solution for expansion is SupRCS((EX y,EX \z)) = (L, (HX3,),L, (HX3,;)). The
control policy for the state reached by s = a,a,u, will be the union of the active events of

state reached by string s = a,a,u, in HX3, and HX3,,. Theresultis y(x)={b,,f}. O

The'online control policy is verified exactly the same as the offline control policy at the

initial state and the state reached by string @,a,u,. The equivalence can be verified for

other states similarly.

Obviously, the memory requirements of online control policy at the current state are less
than of a supervisor designed based on offline control policy in this simple example. The
benefit of online implementation will be significant for large and complex systems where

offline solution is very complex.

204

Chapter 6:

Conclusion

This chapter summarizes our work in this thesis and points out possible directions for

future work.
6.1 Summary

In this thesis, supervisory control is studied under model uncertainty in which the exact
system model is uncertain but could be one of a set of known models. Offline solution to
robust nonblocking supervisory control problem with a direct approach is first developed
in Chapter 3 and then implemented online with a variable lookahead policy algorithm in
Chapter 4. Nonblocking supervisory control problem with multiple markings is solved as
a special case of robust nonblocking supervisory control problem. State-based robust
nonblocking supervisory control problem is formulated and solved using variable
lookahead policy in Chapter 5. However, RNSCP-S by no means imposes any restriction
in comparison with RNSCP since any RNSCP can be transferred to an equivalent
RNSCP-S after automaton refinement. As an illustrative example, the VLP-S algorithm is

used to solve a fault recovery problem.

Offline robust supervision with indirect approach needs to synthesize the overall plant
model and specification model. Offline robust supervision with direct approach is
proposed in Chapter 3 to relax this requirement. It defines consistent languages which

offer insight to robustness. The sufficient and necessary conditions for direct solution to

205

robust nonblocking supervisory control problem are given and proved. We further show
that there exists a supremal solution to the robust problem. Then, algorithms that achieve

the offline direct optimal solution to RNSCP are developed.

A special application of robust problems is in the control of a plant with multiple sets of
marked states (each set corresponding to completion of a different task). The computation
is simplified by taking the specific property of the problem into consideration that the
generated languages of all possible models are the same. The consistency condition

reduces to “equiclosure” in this kind of problems.

Online solutions to robust problems with direct approaches are proposed in Chapter 4 to
avoid storing supervisors in computer memory by developing control policy only for the
current string. We assume that expansion for each string always termihates. In VLP, the
expansion window terminates for each branch until the uncertainty is resolved and thus
no attitude is required and validity is guaranteed. It is valid in that it has the same control
policy as the offline direct maximal solution does. VLP is suitable for problems where

expansion terminates.

We formulated RNSCP-S in Chapter 5 where control domain can be taken as states.
VLP-S algorithm was proposed to solve RNSCP-S online. VLP solves RNSCP only if
the expansion for each string terminates. In contrast, VLP-S always works for RNSCP-S.
VLP-S has advantage over VLP in that any RNSCP that can not be solved using VLP can

be transferred to RNSCP-S after automaton refinement and then solved using VLP-S.

Fault recovery problems can not be treated as traditional supervisory control problems.

Instead, they can be solved as robust problems. Fault recovery problem with illegal state

206

specification naturally satisfies the setup of RNSCP-S. VLP-S is applied to solve a fault
recovery problem for a simple spacecraft propulsion system. The procedure of computing
solution to robust problems in TTCT (Appendix 3.1) is used to solve the fault recovery

problem of the propulsion system.

6.2 Future Research

We solve the examples of robust control problems manually. Some of the operations
were speeded up using TTCT. However, for studying real-model problems (which are
typically much more complicated), it would be necessary to have all algorithms
implemented as computer code. To have a complete implementation of the design
procedure, we need to establish the finite convergence of the computational procedure for

supremal controllable, relative-closed, and consistent sublanguages.

We assumed full observation of the system events in this thesis. Future research includes
the generalization of the online solution to the robust problem under partial observation.
In order to ensure validity, the expansion stop rules have to be modified to accommodate
unobservable events. Conventional nonrobust online nonblocking supervisory control
problem under partial observation shall be first investigated before online robust

nonblocking supervisory control problem under partial observation is tackled.

Our results can be generalized to timed discrete event systems and decentralized robust
supervision. Future research could focus on obtaining necessary and sufficient conditions
for the existence of a robust supervisor in the above two kinds of robust supervision

problems and the corresponding offline and online solutions.

207

The supervisor design procedure for a given set of possible plant and specification pairs
is examined in this thesis. If some new possible plant models are added or some possible
models are removed, online approach can potentially adjust to the change accordingly.
However, do we need to design a new offline supervisor from scratch? In other words,
can we make good use of the current offline solution to accommodate the changing
environment and save effort of new supervisor synthesis? The validity of the online

approach is another topic for future research.

208

References

[1] N. Ben Hadj-Alouane, S. Lafortune and F. Lin. “Variable lookahead
supervisory control with state information,” IEEE Transactions on Automatic
Control, Vol. 39, pp. 2398-2410, 1994.

[2] N. Ben Hadj-Alouane, S. Lafortune, and F. Lin, “Centralized and distributed
algorithms for on-line synthesis of maximal control policies under partial
observation,” Discrete Event Dynamic Systems: Theory and Applications, Vol. 6,
pp. 379-427, 1996.

[3] S. E. Bourdon, M. Lawford, and W. M. Wonham, “Robust nonblocking
supervisory control of discrete-event systems,” IEEE Transactions on Automatic
Control, Vol. 50, No. 12, pp. 2015-2021, December 2005.

[4] C.D. Brown, Spacecraft Propulsion, AIAA, Washington, DC, 1996.

[5] C. Cassandras and S. Lafortune, Introduction to Discrete Event Systems, Kluwer
Academic, Boston, 1999.

[6] E. Chen and S. Lafortune, “On nonconflicting languages that arise in
supervisory control of discrete event systems,” Systems and Control Letters,
Vol.17, pp. 105-113, 1991.

[7] S. L. Chung, S. Lafortune, and F. Lin, “Limited lookahead policies in
supervisory control of discrete event systems,” IEEE Transactions on Automatic
Control, Vol. 37, No.12, pp. 1921-1935, 1992.

[8] S. L. Chung, S. Lafortune, and F. Lin, “Addendum to ‘Limited Lookahead

policies in supervisory control of discrete event systems’: proofs of technical

209

results,” Technical Report, CGR-92-6, College of Engineering, Control Group
Reports, University of Michigan, April 1992.

[9] S. L. Chung, S. Lafortune, and F. Lin, “Recursive computation of limited
lookahead policies of supervisory controls for discrete event systems,” Discrete
Event Dynamic Systems: Theory and Applications, Vol. 3, pp. 71-100, 1993

[10] S. L. Chung, S. Lafortune, and F. Lin, “Supervisory Control using variable
lookahead policies,” Discrete Event Dynamic Systems: Theory and Applications,
Vol. 4, pp. 237-268, 1994

[11] J. E. R. Cury and B. H. Krogh, “Robustness of supervisors for discrete-event
systems,” IEEE Transactions on Automatic Control, Vol. 44, pp.376-379, 1999.

[12] M. Heymann and F. Lin, “On-line control of partially observed discrete event
systems,” Discrete Event Dynamic Systems, Vol. 4, No. 3, pp. 221-236, 1994.

[13] D. K. Huzel and D. H. Huang, Modern Engineering for Design of Liquid-
propellant Rocket Engines, AIAA, Washington, DC, 1992.

[14] R.Kumar, H. M. Cheung, and S. 1. Marcus, “Extension based limited lookahead
supervision of discrete even“[systems,” Automatica, Vol. 34, No. 11, pp. 1327-
1344, 1998

[15] S. Lafortune and E. Chen, “The infimal closed controllable superlanguage and
its application in supervisory control,” IEEE Transactions on Automatic Control,
Vol. 35, No. 4, pp.398-405, 1990.

[16] F. Lin, “Robust and adaptive supervisory control of discrete event systems,”
IEEE Transactions on Automatic Control, Vol. 38, No. 12, pp. 1848-1852,

December 1993.

210

[17] R. X. Meyer, Elements of Space Technology for Aerospace Engineers,
Academic Press, San Diego, 1999.

[18] M. Moosaei and S. Hashtrudi Zad, "Fault recovery in control systems: A
modular discrete-event approach," Proceedings of International Conference on
Electrical and Electronics Engineering (CINVESTAV/IEEE), Acapulco, Mexico,
pp. 445-450, Sep. 2004.

[19] S.J. Park and J. T. Lim, “Robust nonblocking supervisors for partially observed
discrete event systems with model uncertainty under partial observation,” IEEE
Transactions on Automatic Control, Vol. 45, No. 12, pp. 2393-2396, December
2000.

[20] S. J Park and J. T. Lim, “Robust and nonblocking supervisory control of
nondeterministic discrete event systems using trajectory models,” IEEE
Transactions on Automatic Control, Vol. 47, No. 4, pp. 655-658, April 2002,

[21] S. J. Park and J. T. Lim, “On robust and nonblocking supervisor for
nondeterministic discrete event systems,” IEICE Transactions on Information and
Systems, Vol. E86-D, No. 2, pp. 330-333, 2003.

[22] S.J. Park and J. T. Lim, “Non-blocking supervision for uncertain discrete event
systems with internal unobservable transitions,” IEE Proceedings of Control
Theory and Applications, Vol. 152, pp. 165-170, 2005.

[23] P.J. Ramadge and W. M. Wonham, “Supervisory control of a class of discrete
event processes,” SIAM Journal on Control and Optimization, Vol. 25, No. 1, pp.

206-230, January 1987.

211

[24] P. J. Ramadge and W. M. Wonham, “The control of discrete event systems,”
Proceedings of the IEEE, Vol. 77, No. 1, pp.81-98, Jan. 1989.

[25] A. Saboori and S. Hashtrudi Zad, “Robust supervisory control and blocking-
invariant languages,” Proc. 43th Annual Allerton Conference on Communication,
Control, and Computing, University of Illinois at Urbana-Champaign, pp. 658-
667, September 2005.

[26] A. Saboori and S. Hashtrudi Zad, “Fault recovery in discrete event systems,"
Computational Intelligence Methods and Applications, ICSC Congress, Dec.
2005.

[27] A. Saboori and S. Hashtrudi Zad, “Robust nonblocking supervisory control of
discrete-event systems under partial observation,” Systems and Control Letters,
Vol. 55, pp. 839-848, 2006.

[28] S. Takai, “Estimate based limited lookahead supervisory control for closed
language specifications,” Automatica, Vol. 33, No. 9, pp. 1739-1743, 1997.

[29] S. Takai, “Maximally permissive robust supervisors for a class of specification
languages,” IFAC Conference on System Structure and Control, Nantes, France,
Vol.2, pp.429-434, 1998.

[30] S. Takai, “Robust supervisory control of a class of timed discrete event systems
under partial observation,” Systems and Control Letters, Vol. 39, No. 4, pp- 267-
273, 2000.

[31] S. Takai, “Synthesis of maximally permissive and robust supervisors for prefix-
closed language specifications,” IEEE Transactions on Automatic Control, Vol.

47, pp. 132-136, 2002.

212

[32] S. Takai, “Maximizing robustness of supervisors for partially observed discrete
event systems,” Automatica, Vo. 40, pp.531-535, 2004.

[33] TTCT download site, “ http://www.control.utoronto.ca/DES/ >

[34] C. H. Wang and S. Hashtrudi Zad, “Fault recovery in discrete-event systems
using observer-based supervisors” IEEE Indicon Conference, Chennai, India, Dec.
2005

[35] B. C. Williams and P. P. Nayak, “Immobile robots: artificial intelligence in the
new millennium,” Al Magazine, Vol. 17, No.3, pp.16-35, Fall 1996

[36] B.C. Williams, M.D. Ingham, S.H. Chung, P.H. Elliott, “Model-based
programming of intelligent embedded systems and robotic space explorers,”
Proceedings of the IEEE, Vol. 91, Issue 1, pp. 212 — 237, Jan. 2003.

[37] W. M. Wonham and P. J. Ramadge, “On the supremal controllable sublanguage
of a given language,” SIAM Journal on Control and Optimization, Vol. 25, No. 3,
pp. 635-659, 1987.

[38] W. M. Wonham, Supervisory Control of Discrete-Event Systems, Control Group,
Department of Electrical and Computer Engineering Department, University of

Toronto, 2007, * http://www.control.utoronto.ca/DES/ ”.

213

