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ABSTRACT 
On Observer Design for a Class of Impulsive Switched Systems 

Arash Mahmoudi 

In this thesis, the problem of state observation for a class of impulsive switched systems is 

addressed. Corresponding to each subsystem, an identity Luenberger observer is employed 

and a switching observer is constructed accordingly. The asymptotic stability property of 

the proposed switching observer is discussed and LMI-based algorithms are given which 

provide necessary conditions for the asymptotic stability of the switching observer for the 

switching signals with an average dwell time greater than a specific value. Since switched 

systems without impulse are a special case of impulsive switched systems, all the results 

in this work can be applied to design observers for switched systems without impulse. The 

design of finite time switching observers for a class of linear switched systems is another 

problem addressed in this work. The finite convergence time property of the proposed 

switching observer is discussed and the exponential stability of the observation error is 

investigated. An LMI-based algorithm is given which provides conditions for the exponen­

tial stability of the switching observer. Finally, the idea of finite time observers for linear 

continuous time systems is extended to linear time invariant discrete time systems. The 

main motivation for this extension is that unlike the famous dead-beat observers designed 

for discrete time systems, the proposed observer in this work need not place all the eigen­

values at the origin, which leads to a much more flexible design compared to the existing 

techniques. 
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Chapter 1 

Introduction 

1.1 Motivation and Related Works 

Switched systems are a class of hybrid systems and have been at the center of increasing 

attention in recent years due to their wide applications in practical systems. In general, 

switched systems consist of several modes of operation and a switching rule that orches­

trates the switching between them. Unlike the stability problem of switched systems that 

has been extensively studied in the literature [7], [8], [23], the observer design problem for 

switched systems has attracted less attention and few works are available in this area, (see 

[4], [5]). Switching can also be applied to control, in order to cope with highly uncertain 

systems [1], [2], [30], [35]. There are many examples of switched systems in power elec­

tronics [14], process control, biomedical and biochemical processes [18] and aerospace, to 

name only a few. In many practical switched systems, due to sudden changes in the states 

of the system at certain instants of switching, the system exhibits an impulsive dynamical 

behavior [9], [15], [20]. There are a few number of works dealing with the impulse factor 

and few results have been developed in this area, [37], [38]. In [37], impulsive phenomena 

are introduced into switched systems and necessary and sufficient conditions for control­

lability and observability of impulsive switched control systems are developed, while in 

[38] necessary and sufficient conditions for stability of impulsive switched systems under 
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switching signals are obtained. Robust asymptotic stability of linear discrete impulsive 

systems and a class of uncertain nonlinear discrete impulsive systems are studied in [24], 

and input-to-state stability properties of impulsive systems are discussed in [16] and [17]. 

In conventional observer design techniques proposed in the literature, the estimation error 

tends to zero asymptotically. However, in many control problems, finite convergence time 

of the error is of great interest, especially in the context of observer-based control systems 

[33]. An example is the chemical batch processing mode where only a finite time period 

is available to perform the process satisfactorily, in comparison with the continuous pro­

cessing mode [3]. The works [11] and [12] present sliding mode based observers which 

provide finite-time convergence by means of nonlinear dynamics. In [34] and [38], moving 

horizon based observers are studied which use on-line solutions of dynamic optimization 

problems and guarantee finite convergence time of the estimation error. The finite-time 

observer introduced in [13] consists of two identity Luenberger observers [26], two gain 

components and a delay element. This observer, compared with the ones designed by either 

of the two approaches mentioned above, has a simpler form. Further, it is shown in [13] 

that finite-time convergence of the observer is guaranteed if the poles of the two Luenberger 

observers are placed in specific regions of the s-plane. 

1.2 Thesis Outline and Contribution 

This thesis focuses on the problem of observer design for impulsive switched systems with 

either continuous or discrete linear subsystems, and LMI-based algorithms are developed to 

guarantee the stability of the proposed switching observer for a class of impulsive switched 

systems with constrained switching rule. Basic theories of linear observers are given and 

stability of switched systems is discussed in Chapter 2. Stability analysis for linear im­

pulsive switched systems is discussed in Chapter 3. Chapter 3 focuses on the problem of 

switching observers for impulsive switched systems. In this chapter, LMI-based algorithms 

for continuous and discrete impulsive switched systems are developed to design switching 
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observers to achieve the stability of error dynamics for constrained switching rules while 

the required average dwell time is minimized. To show the effectiveness of the proposed 

approach, two numerical examples are given. In Chapter 4, the problem of state obser­

vation in finite time for continuous-time LTI switched systems is addressed. Due to the 

simplicity of structure, the finite-time observer proposed in [13] is adopted as a basis for 

developing the main result in this chapter. Therefore, to develop a switching observer for 

the given switched system, a finite-time observer corresponding to each mode of operation 

is designed. It is then shown that the switching observer obtained from switching between 

these observers can observe the exact state of the switched system in finite time provided 

that the system stays in the same mode at least for the duration of an interval of length A. 

Nevertheless, it is still required that the error dynamics of the switching observer be stable. 

To address this issue, a linear matrix inequality (LMI) based approach is considered to de­

sign a finite-time observer for each mode to attain stability for switching with constrained 

average rate rules. It is shown later that the stability of finite-time switching observer can 

be translated into a stabilizability problem for an impulsive switched system. By pursuing 

this approach, an algorithm for observer design using LMIs is developed. To guarantee that 

the observer obtained using this algorithm for each mode operates as a finite-time observer, 

the eigenvalues of the Luenberger observers are placed in a specific region in the left half 

of the complex plane. Next, a common Lyapunov function is found to verify the stability 

of the switching observer while the lower bound for the average dwell time of the switched 

system is minimized. The main contributions of this work given in Chapter 3 and 4 of the 

thesis are submitted to American Control Conference 2008 and accepted for publication in 

European Journal of Control, respectively. See [28]. 
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Chapter 2 

Background 

2.1 Introduction 

When we discuss about feedback control systems, usually it is reasonable to assume that 

the entire states of the system which are desired to be controlled are all available through 

measurements. For a linear time-invariant system given by 

x(t)=Ax(t)+Bu(t), x(to)=xo, t>t0 (2.1a) 

y(t) = Cx(t) (2.1b) 

where x G W, y G W, and H G P are the state, the output and the input of the system, 

respectively, we can design a feedback control of the form u(t) = (f>(x(t),t) provided that 

all states of the system are available. Since in most practical systems the entire state vector 

can not be measured, the feedback control law mentioned before can not be implemented, 

and an approximation of states obtained by an observer will be replaced for the unavailable 

states. Like any other to dynamic systems, an observer is a system and its characteristics 

are free to be determined by its designer. 
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2.2 Basic Theory of Observers 

Without loss of generality we consider the problem of observing the states of a/ree system 

Si. A system is called free when there is no input present. If the available outputs of this 

system are used as inputs to drive another system 5*2, the second system will be an observer 

for the first system, in other words, the states of S2 may track a linear transformation of the 

states of S\. 

2.2.1 Observation of free systems 

Theorem 1 Assume that S\ is a free system governed by x(t) = Ax{t) and is used to derive 

S2 governed by z(t) — Fz(t) +Hx(t). Suppose there is a transformation T which satisfies 

TA-FT = H. Then 

z(t) = Tx(t) + eFt [z(t0) - Tx(to)] Vf > t0 (2.2) 

Proof: See [25]. • 

It is to be noted that to track the states of the first system, all eigenvalues of F should 

have negative real parts. Also it is clear that Si and S2 need not have the same dimension. 

Theorem 2 If A and F have no common eigenvalues, there is a unique solution T for the 

equation TA — FT=H 

Proof: See [25]. • 

Thus, it is concluded that any system 52 which has different eigenvalues from Si can 

serve as an observer for it. This result can be extended for a forced system (a system with 

input) by applying the input of the first system into the observer as well as to the original 

system. Assume that Si is defined by 

x(t)=Ax(t)+Bu(t) (2.3) 
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and that 52 is governed by 

z(t) = Fzit) + Lx(t) + TBu(t) (2.4) 

It can be easily shown that z(t) obtained in (2.4) will satisfy (2.2). Thus, to obtain an 

observer for a system, initially one can obtain an observer for the system assuming that 

system is free, and then consider the effect of input as in (2.4). This observer is often called 

Luenberger observer [26]. 

2.2.2 Identity Luenberger observer 

As mentioned earlier, in general, a Luenberger observer observes a transformation of the 

states of the original system. An obviously convenient observer is the one in which the 

transformation matrix T, which relates the states of the observer to the states of the original 

system, is an identity matrix. Such an observer is often referred to as identity Luenberger 

observer [5]. This requires the identity observer to have the same dimensions as the original 

system and therefore F —A — H (since T = I). However, the characteristics of this observer 

is the same as the one described earlier. The matrix H is determined both by the fixed output 

structure of the original system and by the input structure of the observer. If Si with the 

output vector y E Mp is governed by 

x(t) = Ax(t) + Bu(t), x(to)=xo, t>tQ 

y(t) = Cx(t) 

and the observer S2 which is governed by 

z{t) = Fz{t)+Ly(t) 
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then H = LC. In designing the identity Luenberger observer, the matrix C is a fixed matrix 

and L is the design parameter. Thus, the identity Luenberger observer is determined by 

selecting the matrix L and has the form 

z(t) = (A-LC)z(t)+Ly(t) 

Different matrices for L will result in different observers, but the dynamic of all these 

observers is determined by the matrix A — LC. 

Lemma 1 When the dynamic of the system is given by (2.1) (real matrices A and C), by a 

suitable choice of the matrix L, the eigenvalues of A — LC can be placed at any arbitrary 

location iff the pair (A,C) is completely observable. 

Proof: See [25]. • 

Theorem 3 An identity Luenberger observer with arbitrary dynamic can be designed for 

a linear time-invariant system iff the system is completely observable 

Proof: See [25]. • 

The real parts of the eigenvalues of the observer are selected to be negative, so that 

the state of the observer will asymptotically converge to the states of the original system. 

In practice, these eigenvalues are chosen to be less than the eigenvalues of the original 

system so that the convergence is faster than the other system effects. Theoretically, the 

eigenvalues of the observer can be placed at minus infinity, which results in extremely fast 

convergence. However, in practice this observer becomes highly sensitive to noise; in other 

word this observer will behave like a differentiator. 

Example 1 Consider a linear time-invariant system that has a state space representation as 
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follows 

x(t) = 
Xl (0 

*2(t) 

-2 1 

0 - 1 

y(t) 1 0 

xi(t) 

x2{t) 

xi(t) 

x2{t) 

+ 

An identity observer is obtained by selecting the observer gains 

L = 
L2 

The resulting Luenberger identity observer is obtained as 

A-LC = 
- 2 - L i 1 

0 - L 2 - 1 

which has the characteristic equation given by 

A2 + (3 + Li)A + 2 + L!+L2 = 0 

For any arbitrary (negative) values of X\ and X2 one can obtain the desired values of L\ 

and L2. Assume that the designer would like to make the observer have two eigenvalues at 

—2 and —3. This would give the characteristic equation as A2 + 5X + 6 = 0. Matching the 

coefficients will give us L\ — L2 = 2. Thus the observer is governed by 

"*i(0" 

h{t)_ 

- 4 

- 4 

1 

- 1 

Zl 

_Z2_ 

+ 
2 

2 
y+ 

0 

1 



2.2.3 Reduced order observer 

The identity Luenberger observer has a certain degree of redundancy. Although a subset of 

the system states are already available through direct measurement, this observer constructs 

an estimate for the entire state vector. This redundancy can be eliminated by use of an 

observer of a smaller dimension but still of arbitrary dynamics. Assume that in the system 

given by (2.1) y(t) is of dimension p. An observer of order n — pis constructed with state 

z(t) that approximates Tx{t) for some matrix T of order pxn. Then an estimate of x(t), 

namely, x(t) can be obtained as 

x(t) = 

- 1 r-

z(0 

y(t) 

provided that is invertible. Consider again the system 

x(t) — Ax(t)+Bu(t), x(to)=XQ, t>to 

y(t) = cx(t) 

Without loss of generality assume that p outputs of the system are linearly independent; in 

Ip,P ®P,n-p , i.e. other words, C has rank p. Also assume that C can take the form C 

C is partitioned into a px p identity matrix and a p x (n — p) zero matrix. An appropriate 

change of coordinates is obtained by selecting the matrix D such that 

M = 

is invertible, in which case we write x = Mx to relate the new and old variables. It is 

convenient to partition the state vector as x = 
w 

and rewrite the system equations in the 
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form 

y(t) =Any(t) +Anw(t) + B{u(t) (2.6a) 

w(t) =A2iy{t) +A22w(t) +B2u(t) (2.6b) 

By this construction the vector y(t), which is available through measurement, provides the 

measurement of w(t) for the system (2.6b) by use of an identity observer of order (n — m). 

In fact, A2\y(t) +B2u(t) is the the input for (2.6b) and w(t) is the state to be measured. 

Lemma 2 If(A,C) is completely observable, so is (A\2,A22). 

Proof: See [27]. • 

To construct the reduced order observer for this system, define it in the form 

w(t) = (A22-LA12)w(t) +A2ly(t) + B2u(t) + L(y(t) -Any(t)) 

The matrix L can be chosen such that A22 — LA2\ has arbitrary eigenvalues, or 

z{t) = (A22 -LAX2)z(t) + {A22 -LAn)Ly(t) + (A21-LAU)y(t) + (B2 -LBx)u{t) 

where z(t) = w(t) —Ly(t). By this construction we have the following theorem. 

Theorem 4 Corresponding to an n-th order linear time invariant system having m linearly 

independent outputs, an observer of order (n — m) can be constructed having arbitrary 

eigenvalues. 

Proof: See [27]. • 

2.3 Nonlinear Observers 

In the previous sections we have seen that to observe the states of a linear system, one 

can construct a linear observer that has the same structure as the system plus the driving 
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feedback term whose role is to reduce the observation error to zero. Although in case of 

nonlinear systems the construction of state observer is much harder, one can use the same 

logic as for linear systems to construct a nonlinear observer for the system. Consider a 

nonlinear system defined by 

x(t) = f(x(t),u(*)) (2.7a) 

y(t) = g(x(t),u(t)) (2.7b) 

where x eW,y EM.P, and u € Rm, / and g are nonlinear vector functions, respectively, of 

dimensions n and p. Based on the knowledge of linear observers for linear systems, one 

can propose the following structure for a nonlinear observer 

x\t) = f(x(t),u(t))+L(y(t) -y(t)) (2.8a) 

y(t)=8(x(t)At)) (2.8b) 

Thus the nonlinear observer is defined by 

x(t)=f(x(t),u(t))+L(y(t)-g(x(t),u(t))) (2.9) 

In general the observer gain L is a nonlinear matrix function that depends on x and u, i.e. 

L = L(x, u). Like the linear case it has to be chosen such that the observation error at steady 

state tends to zero. The observation error dynamics is determined by 

e{t) = x{t) -x~{t) = f(x(t),u(t)) ~/(*(0,"(0) 

-L(g(x(t),u(t)) - g(x(t),u(t))) 

By eliminating x{t) from the error equation, one can obtain 

e(t)=f(x(t),u(t))-f(x(t)-e(t),u(t))-L(g(x(t),u(t))+Lg(x(t)-e(t),u(t)) 
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In the steady state we have 

0 = f(x(t),u(t))-f(x(t)-e(t),u(t))-L(g(x(t),u(t))+Lg(x(t)-e(t),u(t)) 

It is clear that e = 0 is the solution of this equation which means that the constructed ob­

server may have e — 0 at steady state. The gain L = L(x, u) must be chosen such that 

the observer and error dynamics are asymptotically stable. The asymptotic stability is ex­

amined using the first stability method of Lyapunov. The Jacobian matrix for the error 

equation is given by 

r _df(x-e,e) w „ Adg(x-e,e) 
Je — = 1-,{X, U) TT-. r 

oe d(x — e) 

By the first stability method of Lyapunov, the Jacobian matrix must have all the eigenvalues 

in the left half plane for all working conditions, that is, for all x € X and u EU, where X 

and U are the sets of admissible states and control inputs. The error dynamics asymptotic 

stability condition is 

Re{Xi(Je,s.t :e = 0,x<=X,u£U)}< 0, VA(-

Similarly, for the observer we have 

_ df(x,u) ^Adg(x,u) 
J*~ dx L[X,U) dx 

It is required that the observer is also asymptotically stable or equivalently 

Re{Xi{Jz,s.t :e = 0,xeX,uEU)}< 0, VA(-

2.4 Switched Systems 

Many practical systems and processes consist of several modes with different dynamical 

behaviors in each mode of operation. Such systems and processes are modeled by a class 
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of systems known as switched systems. In general switched systems consist of several 

modes of operation and a switching rule orchestrating the switching between them, where 

the switching rule determines the active mode of operation (subsystem) at each instant of 

time. The class of continuous time switched systems considered in this work are described 

by 

x(t) =Aa(t)x(t) +Ba{f)u(t) (2.10a) 

y{t)=Ca{t)x{t) (2.10b) 

The function a maps the time axis into an index set N = {1,2, • • • ,N} whose elements 

represent the index of the active LTI system at any given time. For example, a(t) = i 

where i e W indicates that the z'-th mode is active. Matrices At, Bt, Qi G {1,2, • • • ,N} are 

constant matrices and determine the dynamical behavior of the switched system when the i-

th mode is active. Usually when we discuss about switched systems initially it is convenient 

to assume that o : [0,°°) —» N, N = {1,2, ...,N}, is a piecewise constant function of time. 

o(t) is often called the switching signal. o{t~) = j while o(t+) = i indicates that t is a 

switching instant and the system switches from the j-th mode to the r'-th mode at time t. 

Based on the nature of the switching signal a{t) there are two distinct classes of switching. 

If there is no restriction on the switching signal it is called arbitrary switching, otherwise 

we call it constrained switching. As we shall see in the coming chapters, based on the type 

of switching (arbitrary or constrained), we have to use different stability analysis methods. 

Moreover, if the state of the switched system is continuous for any control input, that 

is, the state does not jump at the switching instants, then the switched system is Non-

impulsive, otherwise we call the system Impulsive. It is discussed in the next chapter that 

in many practical systems there are changes in the states of the system at certain instants of 

switching and the system exhibits impulsive dynamical behavior. 
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2.5 Basic Definitions 

Since Lyapunov stability theorem is used frequently in the next two chapters, basic facts 

and definitions related to this theory are reviewed in the next subsections. 

2.5.1 Lipschitz functions 

A real valued function / defined on a subset of real numbers D C I 

/ : D - > R 

is called Lipschitz continuous if there exist a constant B > 0 such that for all x\, xj in D we 

have 

\f{xl)-f(x2)\<B\xx-x2\ 

The function is called locally Lipschitz continuous if for every x in D there exists a neigh­

borhood of x such that / restricted to this neighborhood is Lipschitz continuous. 

In reviewing the definition of stability attention is restricted to time invariant systems de­

scribed by 

x = f(x), xeM" (2.11) 

where / : M" —> K" is locally Lipschitz, also it is assumed that the origin is an equilibrium 

point of the system (2.11), i.e /(0) = 0. 

2.5.2 Stability definitions 

Without loss of generality one can assume the initial time to be to = 0. The origin is said 

to be a stable equilibrium point of (2.11), in the sense of Lyapunov, if for every e > 0 there 

exists a 8 > 0 such that 

| J C ( 0 ) | < 5 =*• \x(t)\<£ V f > 0 
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If the origin is stable we simply say that the system (2.11) is stable. A similar convention 

applies to other stability concepts introduced below. 

The system (2.11) is called asymptotically stable if it is stable and 8 can be chosen such 

that 

|x(0)|<<5 =» *(*)-• 0 as t-+°° 

Region of attraction is the set of all initial states from which the system trajectories con­

verge to the origin. If the region of attraction is the entire state space, then the system 

(2.11) is called globally asymptotically stable. If the system trajectories converge to the 

origin when the initial state is selected in some neighborhood of the origin the system is 

said to be locally asymptotically stable. Finally, the system (2.11) is called exponentially 

stable if there exist three positive constants a, c and A such that the inequality 

\x[t)\<c\x{Q)\e-k\ V?>0 

holds for all solutions of the system with |*(0)| < a. If the above condition holds for all a 

then the system is said to be globally exponentially stable. 

2.5.3 K, Koo and KL functions 

A function f(x) : [0,°°) —• [0,<») is of class K if it is continuous, strictly increasing and 

/(0) = 0; moreover if / is unbounded it is said to be of class Kx. A function f(x,y) : 

[0, oo) x [0, oo) —• [0, oo) is said to be a class KL function if for each fixed y > 0 the function 

f(x,y) is of class K and for each fixed x > 0 it is decreasing to zero as y —* <*>. Based on the 

definitions of different classes of functions the stability definitions mentioned earlier can 

be rewritten in a more compact way. The system (2.11) is stable if there exists a O" > 0 and 

a class K function / such that, provided |x(0)| < a, we have 

|*(OI</l*(o)|, v?>o 
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for all solutions of the system. The system (2.11) is asymptotically stable if there exists a 

o > 0 and a class KL function such that, provided |x(0)| < <J, we have 

l*(OI</(l*(o)l,0, v*>o 

If this condition holds for all initial states then the system is globally asymptotically stable. 

Finally if the class KL function is of the form f(x,y) = cxe y for some c, X > 0 then the 

system is exponentially stable. 

2.5.4 Continuous differentiability 

A function f(x, t) where f :Dx [a, b] —> Rn for a region D C R" is said to be continuously 

differentiable over D x [a, b] if both f(x; t) and ^ are continuous over D x [a,b]. 

2.5.5 Positive definite functions and matrices 

A continuously differentiable function V : R" —> K is said to be positive definite in a region 

D of Rn that contains origin if 

• V(x)>0 VxeD,x^O 

• V(x) = 0ffix = 0 

• All sub-level sets of V are bounded 

Furthermore, V is said to be positive semi-definite if V(x) > 0,Vx G D, x^O. Conversely, 

if the first condition of the above definition is changed to V(x) < 0, then V is said to be 

negative definite, and if it is changed to V(x) < 0, V is called negative semi-definite. 

A matrix Anxn is said to be positive definite if for all nonzero vectors x EC" 

Re{x*Ax}>0 
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where x* denotes the conjugate transpose of the vector x. When A is a real matrix the above 

condition reduces to 

xTAx > 0 

If A is positive-definite, one writes A > 0. One can conclude that all eigenvalues of a pos­

itive definite matrix are positive. Definition of positive semi-definite and negative definite 

can be concluded in the same way as for semi-definite and negative functions. 

2.5.6 Lyapunov stability theorem for systems with no input 

Let x = 0 be an equilibrium point for a system described by: 

x = f(x) 

where / : D —> R" is locally Lipschitz and D C R" is a domain that contains the origin. Let 

V : D —> R be a continuously differentiable, positive definite function in D. 

• If V(x) = ^ is negative semi-definite, then x = 0 is a stable equilibrium point. 

• If V (x) is negative definite, then x — 0 is an asymptotically stable equilibrium point. 

In both cases above V is called a Lyapunov function. It is to be noted that these conditions 

are only sufficient. Failure of a Lyapunov function candidate to satisfy the conditions for 

stability or asymptotic stability does not necessarily mean that the equilibrium is not stable 

or asymptotically stable. 

An important class of systems is the class of linear time invariant systems. For this class of 

systems the above Lyapunov theory is simplified as follows. 

Theorem 5 A linear time invariant system described by 

x{t) =Ax(t) 
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is asymptotically stable iff for any symmetric positive definite matrix Q = Q > 0 there 

exists a unique positive definite matrix P = PT > 0 such that 

ATP + PA = -Q 

Proof: See [19]. • 

2.6 Switching Observers 

Consider again the switched system described by (2.10). To design an observer to ob­

tain an approximation of the states of the switched system different methodologies can be 

employed, but in general to observe the states of a switched system one has to design a 

switching observer, i.e., for each mode, an observer 0 ( is designed and employed when the 

corresponding mode is active. This indicates that the observer is a switched system as well. 

A classic Luenberger switching observer is an observer which employs identity Luenberger 

observers in each mode of operation to observe the state of the switched system and obeys 

the following general formulation 

x = AG(t)x[t) + Bc{t)u(t)+La{t) (y(t)-Ca{t)x) (2.12) 

where x is the state estimate, La^, a(t) E {1,2, • • • ,N} are Luenberger observers gains and 

x(0) is the initial condition of the observer and is chosen a priori. As mentioned earlier, it is 

clear from the structure of the observer that it is also a switched system. The most important 

issue when designing a classic switching observer, i.e. a switching observer consisting of 

Luenberger observers, is to choose the gains such that the stability of the estimation error, 

i.e., x(t) — x(t), is guaranteed. Similar to the well known fact that there is no guarantee for 

the stability of a switched system consisting of stable modes, it will be shown in the next 

chapter that employing a stable observer for each mode does not guarantee the stability of 

the switching observer in general. 
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Theorem 6 Consider again the switched system described by (2.10), and assume that the 

pairs (A,-,C(), i = 1,2, ...,N, are all observable. If there exists a symmetric positive definite 

matrix P such that 

{Ai-LiCi)TP + P{Ai-LiCi)<0, i=l,2,...,N 

then the estimation error in the switching observer (2.12) is exponentially convergent to 

zero. 

Proof: See [4]. • 
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Chapter 3 

Observer Design for a Class of Impulsive 

Switched Systems 

3.1 Introduction 

In many practical switched systems, due to sudden changes in the states of the system at 

certain instants of switching, there is an impulsive dynamical exhibition behavior. There are 

a few number of works dealing with the impulse fact and few results have been developed 

in this area. In this chapter the problem of observer design for impulsive switched systems 

with either continuous or discrete linear subsystems is discussed and LMI-based algorithms 

are developed to guarantee the stability of the proposed switching observer for a class of 

impulsive switched system with constrained switching rule. 

3.2 Stability of Impulsive Switched Systems Under Con­

strained Switching 

In this section stability of impulsive switched systems with either continuous or discrete 

subsystems is investigated. In the first subsection sufficient conditions to guarantee the 
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stability of impulsive switched systems with continuous subsystems is obtained while sta­

bility analysis for impulsive systems with discrete subsystems is discussed in the second 

subsection. 

3.2.1 Stability of continuous impulsive switched systems 

An impulsive switched system with N modes of operation obeys the following general 

formulation 

x(t) = fa(t)(x(t),u(t)), t^thl= 1,2,... 

M0=£cr(0,<r(r-)(*('~))> * = */, /= 1,2,... W 

x(to) =x0 

where x EM.n and u e Rm are the state and the input of the system. Furthermore, faM 

and ga(t),o{t~) a r e a Rn x Rm -> R" and R" -> R" functions, respectively, and {t\,t2,•••} 

is a sequence of increasing impulse times in [to,°°). The right continuous function a(t) : 

[to,oo) —* N is the switching rule, where N = {1,2, • • •, Af} . By construction of this im­

pulsive switched system the state of the system x(t) : [to,°°] —• M" is right continuous. 

Furthermore, (.)~ denotes the left-limit operator, and a(t) = i shows that the the i-th mode 

is active (Vz e N). The relation a(t) = i while a(t~) = j means that t is a switching in­

stant, and that the system switches from the j-th mode to the i-th mode at time t. Without 

loss of generality, one can assume that the origin is the equilibrium point of this system 

when there is no input; i.e. /cr(;)(0,0) = 0, \/t > to. 
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Consider a class of linear impulsive switched control system given by 

x(t) = Aa^x(t)+Ba^u(t), t ^ ti,l = 1,2,... 

x(t) = Gaft)a/,-)x(t~), t = ti,l= 1,2,... 
< w { ' (3.2) 

y{t) = Ca{t)x{t) 

x(t0) =x0 

where x G R", y € Rp, and M € Rm are the state, the output and the input of the system re­

spectively. Aa(t), #<r(f)> C<s{t) and Ga(t^a(t-) are constant matrices with proper dimensions. 

Jumps in the state of the system at switching instants are represented by N2 — N matrices 

% V i , j G N , i ^ j . 

The easiest way to represent constrained switching is to introduce a number T̂  > 0, 

often called dwell time [23], and restrict the switching signal such that the time interval 

between every two consecutive switching instants is greater than %&. Since this can be a 

restrictive requirement in general, one can consider the average dwell time instead, which 

allows fast switchings in some instants, provided that their effect would be compensated 

by sufficiently slow switchings in some other instants [23]. 

Definition 1 [23]: Let the number of discontinuities of the switching signal a it) on a 

given interval [to,t) be denoted by N(t,to). The signal a(t) is said to have an average dwell 

time Ta if there exists two positive numbers Afc and xa such that 

N(t,t0) <N0 +t-^ 0<t0< t,\/t>t0 (3.3) 

In the sequel, sufficient conditions are derived for the stability of the impulsive switched 

system given in (3.1). 

Lemma 3 Assume that there exist a C1 Lyapunov function V(x) : M" —* R, two class K^ 
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functions a,\ and 0C2 [22] satisfying 

ai(IWOII) < V(x(t)) < Ck(\\x(t)\\), Vr > t0 (3.4) 

where ||. || denotes any induced norm. Further, assume that there exist a number ju > 1 and 

a strictly negative number XQ for which the derivative ofV(x)for the system (3.1) satisfies 

the inequalities 

V(x(t)) < 2XoV(x(t)), V* G (thtl+i), VZ e {1,2,---} (3.5) 

and 

V(xfo+))<nV(x(tf)), V/€{1 ,2 , - - .} (3.6) 

Then the equilibrium point x = 0 of (3.1) when u{t) = 0 is asymptotically stable for every 

switching signal o(t), with the average dwell time satisfying 

Proof: It can be deduced from (3.5) and (3.6) that 

V(x(t)) < nN^^e2^'-'GW(x(t0)) 

(note that N(t, to) is the number of switchings in the interval [to,t)). Using the definition of 

average dwell time (Definition 1) and replacing the minimum value of average dwell time 

given by (3.7), it follows that there must exist a positive number e such that 

±<f«2-« 
Ta log/I 

and as a result 

N(t,to)<(-^-e)(t-to)+N0 log/i 
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therefore 

V(x(t)) < nNon-e{t-to)V(x(to)) 

Now, it can be concluded from (3.4) that 

\\x(t)\\<ai-\^^-e^WUto)\\)) 

Let j8(||x(f0)||,0 = «i—1(jUJV°/x_e^f—f°^o^(||jc(ro)||))- Since «i is a class K^ function so is 

a i _ 1 . On the other hand, a-i is also a class Kx function and e is a positive number. This 

implies that j8 is a class KL function and hence completes the proof. • 

Remark 1 If the conditions of Lemma 3 hold for a quadratic Lyapunov function, then the 

equilibrium point in the switched system (3.1) will be exponentially stable. 

Remark 2 If the inequality (3.6) in Lemma 3 holds for some 0 < jU < 1, then it can be 

shown that the switched system given by (3.1) is globally uniformly asymptotically stable 

for every arbitrary switching signal [23]. 

3.2.2 Stability of discrete impulsive switched systems 

In this subsection, inspired by the concept of discrete impulsive systems described in [24] 

and previous works on continuous impulsive switched systems, a class of discrete impul­

sive switched systems consisting of M modes of operation (subsystems) are introduced as 

follows 

x(k+1) = Aa{k)x(k)+Ba{k)u{k), k^ki-l,le{l,2,---} 

x(k+l) = Ga{k+1)ark)x(k), k = k[-l, le{l,2,---} 
(3.8) 

y(k) = Ca{k)x(k) 

x(k0) = xo 

where x G R", y € Kp, and u e Rm are the state, the output and the input of the system, 

respectively. Moreover, {k\,k2, • • • } is a sequence of increasing impulse times, for which 
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the following assumptions are satisfied 

Assumption 1 The sequence {k{\ has the property that ki £ N and ko = 0, k\ < £/+i, V/ € 

N. 

Assumption 2 ki+\ — ki > 1, / G N. 

Define M = {1,2, • • • ,M}. The function o(k) : {1,2, •••}—> M is the switching rule and 

determines which of the M modes is active at each time. For instance, a{k) — i and 

o(k— 1) = j indicates that k is a switching instant at which the system switches from 

the j-th mode to the i-th mode. Note that the state of this impulsive switched system 

x(k) : {0,1,2,-••} —• R" experiences impulses at the switching instants. Furthermore, 

Ga^i),a(ki-iy ^ e N is a constant matrix which depends on the index of the active modes 

before and after that specific switching instant. 

To represent constrained switching, a number xa > 0 called average dwell time [23] is 

introduced here in a way similar to the continuous switched systems, which allows fast 

switchings in some instants, provided their effects are compensated by sufficiently slow 

switchings at other instants [23]. 

Definition 2: Let the number of switching instants of the switching signal o(k) on a 

given interval [ko,k) be denoted by N(k,ko). The signal a{k) is said to have an average 

dwell time ka if there exists two positive numbers iVo and ka such that 

k — kn 
N(k, k0) <N0 + ——- 0<k0<k,\/k>k0 (3.9) 

ka 

(note that ka is an integer). In the following, inspired by the works [11], [12], sufficient 

conditions for the stability of impulsive switched system (3.8) are provided. 

Lemma 4 Consider the switched system (3.8) with the switching instants {ki,..., ki, &/+1,...}. 

Suppose that there exists a C1 function V : R" —> R, and two class K*, functions CHi and (&i 
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for which the following inequality holds 

ai(ll*(*)ll) <V(*(*)) < «2(||xW||), Vk>k0 (3.10) 

if there exists a number 0 < j8 < 1 for which V(x(k)) along the solution of the system (3.8) 

satisfies the inequality 

V(x(k+l))<pv(x(k)) ki<k<ki+l-l (3.11) 

and a number /J. > 1 such that 

V(x(k+l))<nV(x(k)), k = kt-\ (3.12) 

then the impulsive switched system (3.8) is asymptotically stable for every switching signal 

o(k) with the average dwell time 

*^> l - j^ (3.13) 
log/3 

Proof: It can be deduced from (3.11) and (3.12) that 

V(x(k)) < LiN{kM)pk-ko~mko)V(x(k0)), \fk > k0 

Using the definition of average dwell time for linear impulsive switched systems (see Defi­

nition 2) and replacing the minimum value of average dwell time given by (3.13), it follows 

there must exist a number p such that 

V(x(k)) < nNo+k-^p^-^-^Vixiko)) 

< ilNoP~Nopk~k°V(x(ko)) 
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1 fcj-1 
where p = \i^pn^~ (one can verify from (3.13) that 0 < p < 1). Now it can be concluded 

from (3.10) that 

||*(*)|| < afH^iS-^p^^dW^o)!!)) 

Let j8(||jc(fc0)||,^)=«i~1(AiiVoj8~;VoP&~'feo«2(lk(fco)||))- Since ax is a class JC function, so 

is 0C\~~l. Moreover, «2 is a class /£«. function as well, and 0 < p < 1. Hence it can be easily 

verified that j6 is a class KL function. This completes the proof. • 

3.3 Observer Design for Linear Impulsive Switched Sys­

tems 

The stability results obtained in the previous section will now be used to develop LMI-

based algorithms for designing a switching observer for the impulsive switched systems 

given by (3.2) and (3.8) such that the stability of the observation error dynamic under the 

constrained switching is guaranteed. 

3.3.1 Observer design for continuous impulsive switched 

Consider a switching observer O, for (3.2) as follows 

i(t) = Atx(t) +Biu(t)+Li(y(t) - Qx(t)), tt<t< ti+i (3.14a) 

x[t+)=Hijx{t-), t = ti (3.14b) 

where o{tf) = i, o(tf) = j , I G N and Vi,j 6 N , i / j . For each mode, an identity Lu-

enberger observer namely Ot is designed and is employed when the corresponding mode 

is active. It is to be noted that N2 —N constant matrices Hij suggest that the proposed 

observer O is an impulsive switched system by its construction. In the remainder of this 

subsection, an LMI-based algorithm is introduced to design the proposed observer (i.e., to 

find the values of L, and H^, Vi, j € N, i ̂  j such that the following properties hold: 
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• The eigenvalues of A,- — LjQ, Vi € N are placed in the left of the line Re {s} = X\ and 

in the right of the line Re {s} = X2, where X\ and X2 are given and Xi < X\ < 0. 

• The stability of the observation error dynamic in the proposed switching observer O 

under the constrained switching is guaranteed. 

• The required average dwell time in the switching observer is minimized. This means 

that the proposed observer can be used to observe the states of a large class of impul­

sive switched systems, in the sense that the switchings are allowed to occur relatively 

fast. 

Remark 3 The first imposed property means that the error in the Luenberger observers 

Oi, Vi € N converges exponentially to zero with rate of convergence greater than X\. How­

ever, if the poles are placed very far from the j(0 axis, the resultant observer gains Li, 

Vi € N will be large. This can lead to a design highly sensitive to the numerical errors and 

prone to implementation difficulties. 

Algorithm 1: Consider the switched system described by (3.2). The following procedure 

is proposed to find the values of L,- and Hy, Vi, j e N . i V j such that all of the properties 

mentioned above hold. 

Stepl: Given X\, X2 where X2 < Ai < 0, find the minimum value of fi for which there exist 

Pi > 0, Xi and Hij, satisfying the following matrix inequalities 

At1 Pi + PiAi - Q1 Xi1 - XjCi - 2XiPt < 0, Vi G N (3.15) 

2X2Pi -Ai'Pi- PiAt + Q1 Xi1 + XfCi < 0, Vi e N 

liPj-GfjPiGij -nPj + GTjPlHij 0 

-VPj + HfjPiGij nPj 

0 PiHij 

HhP 
hj 

Pi 

> o , V U e N , i^j 

(3.16) 

(3.17) 

28 



It is to be noted that this minimization can be formulated as a BMI problem. PENBMI 

can solve this problem efficiently and can be used as a MATLAB function with PEN or 

YALMIP interface. Denote the optimum of the above non-convex optimization problem 

with JX*. 

Step 2: Using the matrices Pi and X,- (V7 G N) obtained in Step 1, find Li, the observer gains 

of O proposed in (3.14) as follows 

Li = PflXi, V i e N (3.18) 

Step 3: If }X* > 1, compute the minimum allowable dwell time as 

logjU* 
Tmin = Ty. (3.1V) 

The above procedure arrives at the minimum value of jx, namely fi*, and gives the matrices 

Pi, Xi, L{ (Vi e N) and H{j, Vi, j G N , i ^ j . The following result is obtained. 

Theorem 7 If there exists N symmetric positive definite matrices Pi, N matrices Xj and 

N2—N matrices Htj, Vi, j € N, z ^ j , which satisfy the LMIs (3.15), (3.16) and (3.17) then: 

i) The eigenvalues of A; — L(Q satisfy the inequality hi < eig(Ai — LiC\) < X\, Vi € N 

ii) If il* > 1, then the error dynamic in the switching observer O is globally uniformly 

exponentially stable for the switching signal o(t) with any average dwell time xa 

greater than Tm}„ given by (3.19). Otherwise (0 < /J* < 1), the error dynamic in 

the switching observer O is globally uniformly exponentially stable for any arbitrary 

switching signal. 

Proof: Since L(- = PflXi or equivalently Xi = i^L,, the inequalities (3.15) and (3.16) can be 

rewritten as 

(Ai - LidfPi + Pi(Ai - LiQ) - 2Aifl < 0, Vi G N 
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2X2Pi - (At - Udf Pi - Pi(Ai - LiQ) < 0, Vi € N 

Now it can be easily concluded from the Lyapunov theory that these two LMIs are equiva­

lent to this inequality hi < eig(At — LiQ) < Ai. 

Assume that the active observer in the time intervals [f/_i,f/) and [*z,*z+i) are j and i, 

respectively. The error dynamic in the proposed switching observer denoted by x(t) can be 

described by 

x(t) = {Ai-Lid)x(t), ti-i<t<thleN (3.20a) 

x(t+) = Gijx(r) - Hijx(r), t = tt,leN (3.20b) 

Define a switched Lyapunov function as 

V(Jc(0) = x(t)TPix(t), ti-x < K t | , / 6 N , V i e N (3.21) 

where i is the index of active modes at each time and Pi, Vi e N are obtained in Step 1. 

Since 

min{AmiB(^)} Pll2 < V{x(t)) < max{;Wc(i>)} ||x||2 ,Vi G N 
i i 

then the Lyapunov function V satisfies (3.4), where ai(||Jc||) and o^(||x||) are defined as 

ai(||jc||) = minikminiPi)} \\xf, Vi e N 

a2(||x||) = max{A,m«(^)} ||x||2, Vi e N 
i 

according to (3.18), since X,- = P(Li, (3.15) can be written as 

(At - LidfPi + Pi(A( - Lid) < 2XxPi 
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Considering the definition of switched Lyapunov function given by (3.21) and the equality 

(3.20a), the above inequality can be rewritten as 

V(x(t)) < 2AiV(jc(0), f/-i <t<thleN 

In other words (3.5) is satisfied by this choice of V. According to (3.20b), the last condition 

of Lemma 3 by this choice of V can be rewritten as 

(x(tr)TGl-x{tf)THlj)Fi(Gtjx(tf)-HiJitr))< 

H(x(tf)T -x(tj-)T)PMtf) -x[tf)) 

or equivalently 

X1 
liPj-GfjPiGij -iiPj + GfjPiHtj 

-LiPj+HljPiGij fiPj - HljPiHtj _ 
X>0 

where X = 
*('/ ) 

x\tf) 
Again this inequality can be rewritten as 

-VPj+HljPiGij nPj 

0 0 

0 H&WiJ. 

> 0 (3.22) 

-,T 
0 

0 PiHtj and using replacing the second term in the above inequality by 

the schur complement one can verify that the above inequality becomes the same as (3.17). 

Thus all the conditions of Lemma 3 are satisfied by this choice of V. This completes the 

proof. • 

The optimization problem introduced above is non-convex, in general. In the following 

algorithm, some additional assumptions are made on the structure of the proposed observer, 
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to turn the above non-convex optimization problem to a convex LMI problem. 

Algorithm 2: Consider the switched system described by (3.2). The following procedure 

is followed to find the values of L,- and H^, Vz, j G N, z ^ j in the structure of the proposed 

observer O. 

Step 1 :Find the minimum value of ft for which there exist N matrices Z,-, Vz G N, and N 

positive definite symmetric matrices Pi, Vz G N satisfying the following LMIs 

AiTPi + PAi - QTXiT - X& - 2XxPi < 0, Vz 6 N (3.23) 

2X2p - AiTPi + PjAi - QTXiT - XiQ < 0, Vi € N (3.24) 

liPj > GfjPiGij, Vz,; e N, zV y (3.25) 

It is to be noted that this minimization can be formulated as a GEVP problem. (MATLAB 

can solve this problem efficiently). Moreover, denote the optimum of the above convex 

optimization problem with pi*. 

Step 2: Using the matrices Pi and Xj, Vz G N obtained in Step 1, find L,-, the observer gains 

of O proposed in (3.14a) as follows 

Li = Pi-
1Xi, V/GN (3.26) 

Step 3: If [X* > 1, compute the minimum allowable dwell time 

log ;U* 
tmin= 7y^ (3-27) 

Theorem 8 Using this algorithm to obtain the minimum value of fl namely fl*, matrices 

Pi, Xj, Li (Vz G N) and Hi J, Vi,y G N, ( ^ j , we have the following result. If there exists N 

symmetric positive definite matrices Pi and N matrices Xj, Vz G N which satisfy the LMIs 

(3.23), (3.24) and (3.25), then: 

i) The eigenvalues ofAi — LiCi satisfy the inequality X2 < eig(Ai — LiC{) < X\, Vz G N 
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ii) If fx* > 1, the error dynamic in the corresponding switching observer O is globally 

uniformly exponentially stable for the switching signal o(t) with any average dwell 

time Ta greater than Tm,„ given by (3.27). Otherwise (0 < jU* < 1), the error dynamic 

in the switching observer O is globally uniformly exponentially stable for arbitrary 

switching signals. 

Proof: Proof is similar to the proof of the previous theorem, in fact LMIs (3.23) and (3.24) 

guarantees that convergence rate of each Luenberger observer is in the desired region, also 

by substituting Hy — G^, one can verify that LMI's (3.25) and (3.17) are the same. Thus if 

the same Lyapunov function V as in the previous theorem is considered all the conditions of 

Lemma 3 are satisfied by this choice of V and error in the observer is asymptotically stable 

for any impulsive switched system with the average dwell time greater than (3.27). • 

Remark 4 Using this algorithm the proposed switching observer will have the same jumps 

at switching instants as in the impulsive switched system, in other words Hij = Gij will be 

imposed on the structure of the observer. 

Remark 5 The proposed two algorithms in this section can be applied to switched systems 

without impulse, in fact the systems without impulse are a special case of impulsive systems 

when Gij = /. 

3.3.2 Observer design for discrete impulsive switched system 

Consider a switching observer for (3.8) as follows 

x(k+ 1) =Aix(k)+Biu(k) + Li(y(k)-Cix(k)), k^kt-l,leN (3.28a) 

x\k+l)= Hijx(k), k = ki-l,le N (3.28b) 

o(ki) = i, <j(k[_\) = j where I e N and \/i,j € M, i ^ j . For each mode, an identity 

Luenberger observer, namely Ou is designed and is employed when the corresponding 
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mode is active. It is to be noted that M2 —M constant matrices Hjj show that the proposed 

observer O is a discrete impulsive switched system by its construction. 

In the remainder of this subsection, an LMI-based algorithm is introduced to design the 

proposed observer (i.e., to obtain the values of Li and Hij) such that the following properties 

in the observer are held 

• The eigenvalues of A, — LiQ are placed inside the circle centered at the origin with 

the radius r = /3 where j3 G (0,1) is given. 

• The stability of the observation error dynamic in the proposed switching observer 

O under the constrained switching with a needed minimum average dwell time is 

guaranteed. 

Remark 6 Unlike the continuous dynamics that locating the eigenvalues of Luenberger 

observer far from the imaginary axis in LHP results in high gains, in the discrete dynamics 

locating the eigenvalues of Luenberger observer near the origin does not result in high 

gains. In fact, an observer with all of its eigenvalues located at the origin is desirable, and 

is referred to as a dead-beat observer. Unlike the continuous impulsive switching observer 

design, here the desired region for the eigenvalues of a discrete Luenberger observer is 

given only by one parameter j3 (which directly reflects the speed of convergence). 

Remark 7 For a given constant matrix A and a given 0 <r\ < 1, all the eigenvalues of A 

are placed inside a circle in the s-plane centered at the origin with the radius r\ iff there 

exists a positive symmetric matrix P such that ATPA — r\2P < 0. 

Algorithm 3: Consider the switched system described by (3.8). The following steps should 

be followed to obtain the values of L, and Hy, Vi, j EM, i^ j such that all the properties 

mentioned above are satisfied by the proposed switched observer O. 

Step 1: For the given 0 < )3 < 1, find the minimum value of \i for which there exist M 

matrices X,-, Vz € M, and M positive definite symmetric matrices Pi, V/ G M, and M2 — M 
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matrices Hij satisfying the following LMIs 

Tv.T P2Pj AfPi-CfXi 

PiM-XiQ 
> 0 V i . y e M (3.29) 

Pi 

>0, \/ijEM,i^j (3.30) 

liPi-GfjPiGij -nPi + GTjFMj 0 

-liPi+HTjPiGij \iPi HLP 

0 PiHij 

Denote the optimum value of the above non-convex optimization problem with fx*. 

Step 2: Using the matrices Pi and X}, Vi G M obtained in Step 1, find Lt, the observer gain 

of Oi (given in (3.28) for each mode) as follows 

> - i Li = PrLXi, ViGM (3.31) 

Step 3: If /i* > 1, compute the minimum allowable dwell time 

"min — 1 
log/32 (3.32) 

Using this algorithm to obtain the minimum value of /x namely jx*, matrices Pu X„ L, 

(Vz € M) and Hij, Vi,j G M , i 7 j , we have the following result. 

Theorem 9 If there exists M symmetric positive definite matrices Pi > 0, and M matrices 

Xi, Vi G M andM2 — M matrices Hij, \/i,j G M , i / y W/H'C/J satisfy the LMIs (3.29), (3.30), 

then: 

i) The eigenvalues ofAi — LiQ satisfy the inequality \eig(Ai — L,-C,-)| < P, Vi € M. 

»'j If the [l* > 1, £/?e error dynamic in the switching observer O is globally uniformly 

exponentially stable for the switching signal o(k) with any average dwell time ka 

greater than kmi„ given by (3.32). Otherwise (0 < jx* < I), the error dynamic in the 
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switching observer O is globally uniformly exponentially stable for arbitrary switch­

ing signals. 

Proof; According to (3.31), since X,- = /^L„ (3.29) can be written as 

fi2Pj {Ai-LiQfPi 

PiiAi-LiQ) Pi 
> 0 VijEM 

Using the schur complement the above inequality can be rewritten as 

j5zPj - (A,- - Lid)1 PUT Pi(.*i - L£i) > °> v*'> J e M 

or 

P2Pj - (A,- - LiQfPiiAi - LiQ) > 0, Vi, ; G M 

Since (3.33) is valid for Vi,j e M one can conclude the following: 

(3.33) 

(A,- - LidfPiiAi - Ltd) - p2Pi < 0, Vi e M 

which means |eig(A,- — L,-C,-)| < j8. Moreover the error dynamic in the proposed switching 

observer can be described by 

jc(* + 1) = (A,- - Z,-Q)*(*), k^ki-l 

x{k + 1) = Gijx(k) — Hijx(k), k = k\ — \ 

(3.34a) 

(3.34b) 

define a switched Lyapunov function as 

\Tn~ V(x(k)) = x(kyPix(k), k[<k<ki+1 (3.35) 

where i is the index of active modes at each time and Pi, Vi G M are obtained in Step 1. 
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Since 

min{;W-n(^)} Pll2 < V(x(t)) < m a x { ^ ( 3 ) } ||x||2,Vi e M 
i i 

then the Lyapunov function V satisfies (3.10), where ai(||x||) and a2(||x||) are defined as 

ai(||*||) = n r i n { W ^ ) } 11*11, y i e U 

a2(||x||) = max{;Wc(^)}||*l|2, Vi G M 
i 

Considering the definition of the switched Lyapunov function given by (3.35), the inequal­

ity (3.33)can be written as 

V(x(k+\))<p2V(x(k)), kt<k<kl+l 

which means (3.11) is satisfied. To check if the last condition of Lemma 4 (V(x(k[) < 

jj,V(x(ki — 1)) holds by this choice of V, assume the active observer in the time intervals 

[&/_!,&/) is i. According to (3.34b) this condition can be rewritten as 

(x(k)TGjj-mTHlj)Pj(Gitjx(k)-Hi,jik)) < 

H(x(k)T -x(k)T)Pj(x(k) -x(k)) 

or equivalently 

VPj-GljPjGij -nPj + GjjPjHtj 

-HPj + HTjPjGij iiPj - HljPjHij j 
X > 0 
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where X = 
jc(Jfc) 

x(k) 
. Again this inequality can be rewritten as 

liPj-CffjPjGtj -pPj + CffjPjHij 

-LiPj + HljPjGij iiPj 

replacing the second term in the above inequality by 

0 0 

0 HZjPjHiJ. 

> 0 (3.36) 

-,T 
0 

PjBiJ 
0 PjHiJ and us­

ing the schur complement one can verify that the above inequality is the same as (3.30). 

same. • 

Similar to the previous section, to relax the above non-convex problem to an LMI prob­

lem in the next algorithm the same restriction on the structure of the proposed observer 

is made and Hy in the structure of the observer are assumed to be the same as G,y in the 

system. 

Algorithm 4: Consider the switched system described by (3.8). Similar to the previous al­

gorithm the following step are followed to obtain the values of gains L,- and Hy, Vi,j e M, 

My. 
Step 1: For the given 0 < J3 < 1, find the minimum value of jj. for which there exist M 

matrices Xu Vi G M, and M positive definite symmetric matrices Pi, Vz € M, satisfying the 

following LMIs 

P2Pj Ajp-CjXi7 

PiM — X[Ci P[ 
> 0 V i . y e M 

llPi^Gj.PiGij V f , ; e M , i^j 

(3.37) 

(3.38) 

Denote the optimum of the above convex optimization problem with n*. 

Step 2: Using the matrices Pi and X}, Vi € M obtained in Step 1, find L,-, the observer gain 

of Oi proposed in (3.28) as follows 

>-i Li = PrlXi, V / e M (3.39) 
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Step 3: If ju* > 1, compute the minimum allowable dwell time 

= 1 
logjS2 (3.40) 

Theorem 10 If there exists M symmetric positive definite matrices Pi > 0, and M matrices 

Xi, Vz G M which satisfy the LMIs (3.37), (3.38), then if the [A* > 1, the error dynamic in the 

switching observer O is globally uniformly exponentially stable and for the switching signal 

o(k) with any average dwell time ka greater than kmtn given by (3.40). Otherwise (0 < fl* < 

I), the error dynamic in the switching observer O is globally uniformly exponentially stable 

for arbitrary switching signals. Moreover, \eig(Aj — L,-C,-)| < j8, Vi G M. 

Proof: See the proof of Theorem 9. • 

One can verify that if instead of the switched Lyapunov function given in (3.35) an 

alternative form of this function as V(x(k)) = x(k)TPix(k), ki <k < fc/+i is considered, 

Algorithms 3 and 4 will slightly change. In the alternative form of Algorithm 3, LMI 

conditions in Step 1 should be replaced by 

P2Pi AjPi-CjXiT 

PiA-i — XiCi Pi 
>o VfeM (3.41) 

HPj-GfjPiGij -tPj + Cffjiyitj 0 

-liPj+HljPiGij nPj HljPt >0 

0 PiHtj Pt 

V i , y e M , i ^ j 

Similarly, in the new Algorithm 4, LMI conditions in Step 1 should be changed to 

(3.42) 

P2Pt AjPi-CfXiT 

PiA-i — XiCi Pi 
> 0 ViGM (3.43) 

LlPj^GjjPiGij Vi.jGM, iVj (3.44) 
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In the following, inspired by the work given in [7], alternate sufficient conditions for the 

LMI (3.29) are proposed. 

Proposition 1 Assume Q, Vi E M, in (3.29) are full-row rank. Given j5 E (0,1), if there ex­

ists M positive definite matrices Si,--- , SM, M matrices Ui,--- , UM, M matrices Gi, • • • , GM, 

andM matrices Vi, • • • ,VM satisfying 

and 

P2Gi + P2Gj-P2Sj GTAj-CjUj 

AiGi-UiQ Si 

VPi^QGi, V i e M 

> 0 , V i , j e M (3.45) 

(3.46) 

then there exist M positive definite matrices Pi,--- ,PM and M matrices Li, • • • , LM satisfy­

ing 

1 > 0 V i . y e M (3.47) 
fiiAi-Lid) Pt 

Proof: From (3.45), it can be concluded that for all \/i,j E M 

p'Gi + p'G! >j5zSj (3.48) 

and thus the matrix G,-, Vi E M, is full-rank. Furthermore, since Q, Vi E M, is assumed to 

be full-row rank, the matrix Vj satisfying (3.46) is nonsingular, Vi E M matrices. Define 

Li = UiVr1 and hence, rewrite (3.45) as 

P2Gi + !52Gf-P2Sj GjiAj-CfLf) 

{Ai-LiCi)Gi Si 

It follows from positive definiteness of 5,-, Vi E M that 

> 0 (3.49) 

Pl(Sj - Gi)1 Sjl(Sj - Gt) > 0 Vi, j E M 
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or, equivalently 

2nT plGJSjlGi > plGf + jS 2 G i - j8 2 S (3.50) 

It follows from (3.49) and (3.50) that 

pG]S^Gi Gj(Af-CfLf) 

{Ai-LiC^d Si 
> 0 

Therefore, 

G\ 0 

0 St 

P*SJl (A[-CfL[)S7l 

Sr^Ai-Ud) S7 

Gi 0 

0 St 

> 0 

which is equivalent to 

PSJ1 (Af-CfL[)S7l 

Sr^Ai-LjCi) S;1 
> 0 

Let S(- be denoted by P{, Vi € M. Then, one can obtain the following matrix inequality 

(52Pj {M-LidYPi 

PiiAi-LiQ) Pi 
> 0 WijeM 

This completes the proof. • 

It is to be noted that in the inequality given by (3.29), X,- is equal to PiLi. As a result, 

the LMI conditions in (3.29) and (3.47) are the same. 

Remark 8 According to Proposition 1, if the LMI (3.47) does not hold, the proposed al­

ternate conditions (3.45) and (3.46) are also infeasible. To specify the advantage of using 

the proposed alternate LMI conditions, consider an impulsive parameter varying switched 

system. In this case, it is aimed to search for a parameter dependent Lyapunov function 

corresponding to each uncertain modes in the switched system. In this context, introducing 
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slack variables Gi in (3.45) and (3.46) is of great importance which leads to a less degree 

of conservatism [6]. 

Similarly, alternate sufficient conditions for LMI (3.37) can be obtained. 

Proposition 2 Assume Q, Vi G M, in (3.37) are full-row rank. For 0 < jS < 1, if there exist 

M symmetric matrices Si,--- ,SM andM matrices Ui,--- , UM, M matrices G\,-- , GM, and 

M matrices Vi, • • • , VM satisfying 

and 

P2Gi + P2Gj-P2Si GfAf-CfuT 

AiGi-UiQ St 

ViCi = CiGi, V i e M 

> 0 V iGM (3.51) 

(3.52) 

Then there exist M symmetric matrices Pi,-- ,PM and M matrices Li,-- , LM satisfying 

P2Pt {Ai-LiQfPi 

PiiAi-Ud) Pi 
> 0 ViGM (3.53) 

Proof: Proposition 2 can be regarded as a special case of Proposition 1 when all the indexes 

are the same. • 

3.4 Numerical Example 

In this section, two numerical examples are given to show the effectiveness of the proposed 

algorithms. 

Example 1 Consider a continuous impulsive switched system given by (3.2) where the 

switching signal a(t) is a piecewise constant function with the set of images equal to {1,2} 
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and the system in different modes is represented by 

A , = 
- 2 

2 

0 

- 3 
, BX = 

1 

1 
, Ci = 1 

_ 

- 1 

A2; 
- 1 

3 

- 4 

- 8 
, B2 = 

1 

1 
, c2 = 2 - 1 

and 

G12 
- 2 0 

1 1 
G71 = 

1 1 

0 1 

The desired region for both Luenberger observers' rate of convergence is assumed to be 

—10 < AQ < —4. Using Algorithm 2, the observer gains are obtained as follows 

U = 
-16.6293 

-22.6511 
, L2 = 

2.6276 

1.6847 

The minimum value of fi using GEVP (generalized eigenvalue problem) is obtained as 

11* = 36.0086, which implies that the proposed observer is stable for the given impulsive 

switched system for any switching signal with the average dwell time greater than xmin = 

logg(°°4
8f = 0.4480. 

Example 2 Consider a discrete impulsive switched system given by (3.8) consisting of 

two modes represented by the state-space matrices 

A, = 

-0 .2 0 0.1 

0.2 - 0 . 3 0.8 

0.5 - 0 . 3 0.6 

, BX 

1 

1 

0.5 
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A2 = 

-0.1 -0.4 0 

0.3 -0.8 0.5 

0.1 0 0.7 

, B2 = 

1 

1 

- 2 

Ci = 1 - 1 - 2 , C2 = 1 1 

and 

G\2 = 

- 2 1 1 

1 1 1 

1 1 2 

, G21 = 

- 2 1 1 

- 1 1 2 

1 - 1 2 

Assume that it is desired to have the eigenvalues of each Luenberger observer 0, designed 

for each mode inside the circle in the s-plane centered at the origin and with the radius 

equal to 0.3 that is, /3 = 0.3. The minimum value of jU using GEVP is obtained as /i* = 

206.7415. Since imin = 1 - '"So'S)5* = 3 - 2 1 4 1 ' t h e proposed observer is stable for the 

given impulsive switched system for any switching signal with the average dwell time 

greater than or equal to 4. The two Luenberger observer gains are 

Li = 

Using the alternative form of Algorithm 4 which has fewer LMI conditions will result in 

/J* = 9.1325, and the corresponding minimum required average dwell time will be greater 

than or equal to 3. 

-0.0292 

-0.2206 

-0.1575 

, L2 = 

-0.6840 

-0.5613 

0.6031 
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Chapter 4 

A Design Methodology to Observe the 

States of Switched Systems in Finite 

Time 

4.1 Introduction 

In this chapter of the thesis, the problem of state observation for a continuous-time LTI 

switched system is addressed. Corresponding to each subsystem, a finite-time observer 

(FTO) is employed and a switching observer is constructed accordingly. The finite conver­

gence time property of the proposed switching observer is discussed and the exponential 

stability of the observation error is investigated. An LMI-based algorithm is given which 

provides conditions for the exponential stability of the switching observer for the switching 

signals with an average dwell time greater than a specific value. A numerical example is 

given to show the effectiveness of the proposed algorithm. 
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4.2 Continuous Finite-Time Observers (CFTO) 

Consider the following linear time-invariant (LTI) continuous system 

x(t) = Ax(t) + Bu(t), x(to)=XQ, t>to 

y(t) = Cx{t) 

(4.1a) 

(4.1b) 

where x G W1, y G Mp, and u G Rm are the state, the output and the input of the system, 

respectively. The observer design theory for system (4.1), often known as Luenberger ob­

server, is well documented in the literature. In this type of observers, by a proper choice 

of gains, the error in the observation of states approaches to zero exponentially with an ar­

bitrarily fast rate of convergence. Unlike the continuous-time Luenberger observers where 

the convergence is always asymptotic with time, discrete-time Luenberger observers can 

achieve finite convergence time by placing all the eigenvalues of observers at the origin. 

This type of discrete-time observers is often referred to as dead-beat. Nevertheless, a 

methodology to observe the states in finite time using purely continuous observers was re­

cently introduced in [13]. The corresponding observer consists of two identity Luenberger 

observers and a delay A (see Fig. 4.1). It will later be shown that the finite convergence 

time is equal to A. For the system (4.1), 

if = Fij + Liy + Bu, ( i= l , 2 ) 

represents two identity Luenberger observers, where Fl := A — LlC, i= 1,2. Define 

F = 

G = 
B 

B 

Fx 0 

0 F2 

T = 

H = 

mxn 

'nxn 

L1" 

L2 

Z = 
V" 
/ _ 
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By combining these two identity Luenberger observers and introducing a delay A € R+ in 

the structure of the observer, a new state estimate £ can be generated as follows 

Z = Fz + Hy + Gu, t>tQ 

x{t) = K[z(t)-eFAz(t-A)} 

(4.2a) 

(4.2b) 

Structure of this observer is shown in Fig. 4.1. 

y-
u-

Z-tz + tiy+Uu 
J \ . v 

+v r A 

-> 
A 1 

eFA -

Figure 4.1: The structure of a finite-time observer [13]. 

Theorem 11 Let L and A be chosen such that 

i. F is Hurwitz; i.e. all eigenvalues ofF have strictly negative real parts; 

ii. det[r eFAT]^0, 

then the observer given by (4.2) with K :— [I„t„ 0nt„] [T eFAT]~l observes the states of 

the system (4.1) exactly within the finite time A, which implies thatx\t) = x(t)for t > A. 

Proof: See [13]. • 

Remark 9 From the definition ofK, it can be easily shown that KT = In,n and KeFAT = 

It is not difficult to show that for any given A, if the pair (A,C) is observable, L can be 

chosen such that the two conditions in Theorem 11 are satisfied. In fact, as a direct result 

of observability, the first condition can be satisfied by choosing two gains L1 and L2 such 

that the matrices F1 and F2 are both Hurwitz. The following lemma is borrowed from [13] 

to address the second condition. 
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Lemma 5 Let L be chosen such that 

Re{Xj(F2)} < r<Re{Xj(F
1)}<0, j = 1,2,...,, 

for some y < 0. Then det[T eFAT] ^ Ofor almost all A 6 

Lemma 5 states that for almost all arbitrary positive values of A, one can guarantee finite 

convergence time by a suitable choice of L. To this end, it suffices to choose L1 and L2 such 

that the eigenvalues of F1 and F2 have strictly negative real parts and are ordered according 

to the condition of Lemma 5. 

Now, let z{t) = Tx{tQ), where t e [—A + fo,*o] and x(to) is the initial estimate of x(t). 

Then the observation error defined as x = x — x is given by [13]: 

x(t) = { 
KeF^-tohx(to), tQ<t<tQ + A 

(4.3) 
0, t>to + A 

In the following section, the finite-time observers theory will be employed to design an 

observer for linear switched systems. 

4.3 Finite-Time Observers for Switched Systems 

Consider a class of switched linear continuous-time systems with ./V modes of operation 

described by 

*(0 =^<r(0*(0 +*a(0"(0 (4-4a> 

y(t) = Ca{t)x(t) (4.4b) 

with x G W1, y e Rp, and u G Rm denoting the state, the output and the input of the system, 

respectively, a : [0,°°) —> N, where N = {1,2, ...,N}, is a piecewise constant function 
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of time called switching signal. The function cr maps the time axis into the index set 

{1,2,...,N} whose elements represent the index of the active LTI system at any given time. 

The switching instants are determined by a sequence {t\,...,t[,ti+i,...} which can have 

infinitely many members. The matrices A,-, 5, and Q, i G N, are constant matrices with 

proper dimensions. 

Assumption 3 The state in (4.4) is continuous for any control input; i.e. there is no jump 

in the state of the system at the switching instants. 

4.3.1 Proposed finite-time switching observer 

In the sequel, an observer is introduced for the switched system (4.4) which under certain 

conditions observes the states of the system with finite convergence time. 

Assume that in an arbitrary [f/,f/+i) the i-th mode is active; i.e. a(t) = i, t E [f/,f/+i). 

The switched system in this interval can be described by 

x(t)=Aix(t)+Biu(t) (4.5a) 

y(t)=dx(t) (4.5b) 

A finite-time observer for the z'-th mode, denoted by Ot, i € N, can be constructed as follows 

it = FiZi + Liy + Gtu, t{<t<ti+l (4.6a) 

x{t) = Ki[zi(t) - eF'AiZi(t - A,-)] (4.6b) 
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where 

and 

Ft = 
~F> O" 

0 F?_ 
, U = 

V 
A2. 

G,= 
Bi 

A 
, T = 

*nxn 

Inxn 
, Zi = 

V 
A 

F/=Ai-L{Ci, 7 = 1,2 

z!(t)=Fi
i4(t) + Liy + Biu, 7 = 1 , 2 

^ = [/»,„ 0„,„][r e ^ ' T ] " 1 

(4.7a) 

(4.7b) 

(4.7c) 

Assumption 4 The i-th mode is assumed to be observable for all i G N. 

Remark 10 It is to be noted that by the above assumption, the condition of Lemma 5 holds 

and as a result of Theorem 11, the existence of the proposed finite-time observer for each 

mode is guaranteed. 

Combining these N finite-time observers, it is possible to construct an observer, denoted 

by O, for the switched system. For each mode, a finite-time observer 0[ is employed and a 

switching observer is constructed accordingly. The following initial conditions for the i-th 

Luenberger observers at the switching instants ti are considered 

zi(t) = Tx{tl), te[ti-Ai,ti] (4.8) 

where the index of the active mode is equal to i for t G [ti,t[+\), or equivalently i = c (^ + ) . 

Lemma 6 The state estimation x(t) in the proposed observer with the initial condition 

(4.8) is continuous; i.e. x(tf) = x(tf) 
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Proof: From (4.6b) 

x\t+) = Kilzifr) - e^ziih - A,-)] (4.9) 

From (4.8), by substituting ztiti) = Zi(ti - A,-) = Tx(tf) in (4.9), it follows that 

x\tf) = KiTx(tf) - KieFiAiTx\tf) (4.10) 

Since £ , r = / and Kte
FiAiT - 0 , it follows that x{tf) = x(tf). 

It can be concluded from the above lemma that the observation error of the switching 

observer, denoted by x = x — x, is continuous as well. Furthermore, if fy+i —ti< A», the 

observation error is 

x(t) = Ki^-^Tx{ti\ h<t< tM (4.11) 

On the other hand, if ?/+i —ti> A,, the observation error can be described as follows 

Kaft'-tiTxiti), U<t<ti + Ai 
x(t) = { (4.12) 

0, ti + Ai<t<tl+1 

This completes the proof. • 

In the forthcoming theorem, it is shown that if one of the modes of the switched system is 

active for an interval longer than A,, where i is the index of the active modes of operation, 

the exact value of the states of the system is extracted by the proposed observer O. It is also 

shown that regardless of the future switches, the state observation error will stay at zero. 

Theorem 12 The proposed switching observer O observes the states of the system de­

scribed by (4.4) infinite time with no observation error, provided that there exist two con­

secutive switching instants t\ and fy+i such that 

ti+i-ti>At (4.13) 

the index i is equal to <j(tt), as noted before. 
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Proof: It follows from (4.13) and (4.12) that 

x(tl+1) = 0 

On the other hand, the continuity of x(t) yields x(fy+i) = 0. 

Consider now the next switching interval, i.e. [ti+\,ti+2), and let c r ( ^ j ) be denoted by 

j , where j £ W. If f/+2 — f/+i < Aj, the observation error is 

x(t) = KjeF^'tl+^Tx(ti+1), tt+i < t < ti+2 (4.14) 

while if ti+2 — ti+i > Aj, the observation error is 

Kj^'-'Mhxitt+i), tM < t < tl+1 +Aj 
x(t) = { (4.15) 

0, ti+1+Aj<t<tl+2 

In either case, since x(ti+\) is zero, it can be deduced from (4.14) and (4.15) that x(t) = 0 

for all t e [t[+i,ti+2), and by continuity of x, x(ti+2) = 0. It follows by induction thatx(?) 

remains zero for all subsequent switching intervals, i.e. x(t) = 0 for all t > ti+\. This 

completes the proof. • 

Remark 11 If the condition (4.13) holds, then the finite convergence time in the proposed 

switching observer O is ti + Aart+y where [*/,*/+1) is the first interval which satisfies ti+\ — 

*l > Aa(r+)-

Theorem 12 implies that after having a switching interval longer than A; the observation 

error in the switched observer O remains zero, and thus the observation error is bounded. 

This in turn means that if (4.13) is satisfied no other conditions are needed to be imposed 

on the design parameters to achieve a bounded observation error. However, this is only true 

if no uncertainties or source of disturbance exist in the system. Thus, regardless of the fact 

that the condition of Theorem 12 given in (4.13) holds or not, it is desired to obtain each 
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of the finite-time observers 0, such that the error dynamics of O is stable. In the following 

subsection, an algorithm is proposed which results in the stability of the error dynamics of 

O under constrained switching. 

4.3.2 Stability of state observation error dynamics 

Definition 1: Corresponding to the switching observer O, consider a switched system £ 

described by 

0(0 = ^0(0, tt<t<tl+l 
(4.16) 

e(tl
+) = Tx(tf) 

where o(rf) — i and x(t) is the observation error in O. 

Remark 12 9{t) in (4.16) is not necessarily continuous and might jump at the switching 

instants. In other words, the switched system £ is impulsive. 

Definition 2: Assume a class of switching signals denoted by 3£. The switched system $ 

is globally uniformly asymptotically stable over 3£ if there exists a class KL function j5 

[23], such that for all switching signals belonging to JT, 9 in (4.16) satisfies the following 

[23] 

l|e(')ll<J8(||0fo)||,O, V ' ^ ' o (4.17) 

On the other hand, the switched system <§ is globally uniformly exponentially stable over 

3C, if there exist two scalars /3i > 0 and ft > 0 such that for all switching signals belonging 

to S£, 9 satisfies [23] 

110(011 </3i||e(fo)lk-fc('-'o), vt>t0 

Remark 13 Similar definitions of asymptotic and exponential stability can be considered 

for the observation error dynamics of the switching observer O. 
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Lemma 7 State observation error dynamics ofO is globally uniformly asymptotically sta­

ble if the switched dynamic system $ is globally uniformly asymptotically stable. 

Proof:It follows from (4.16) that 

0(O = ^ ' ( ' " " ) 3T^/ ) , ti<t<t[+1 

Note that i — c (^ + ) , compare the above equation with (4.11) and (4.12). If t[+\ —t[< A,, 

the observation error is 

x(t) = Ki8(t), ti<t<tM (4.18) 

On the other hand, if ti+\ —ti> A,-, the observation error can be obtained as following 

Ki9(t), t{<t<ti + Ai 
x(t)={ (4-19) 

0, ti + At <t<t{+i 

Regardless of whether or not f/+i —1[ < A,, the following inequality can be deduced from 

(4.18) and (4.19): 

\\x(t)\\ < KM\\9(t)\\, Vf>r 0 (4.20) 

where KM = max||if,-||, i e W. Since 9 in (4.16) is assumed to be globally uniformly 

asymptotically stable, there exists a class KL function j8 for which (4.17) holds. It can be 

concluded from (4.17) and (4.20) that 

||i(OH<^MJ3(||0(?o)||,O, Vr>? 0 (4.21) 

On the other hand, 0(t0) = Tx(to). Therefore, 

| | Jc(0l |<^/3( | | r^( r 0 ) | | , r ) , Vt>t0 

54 



function as well. Then, the above inequality can be written as 

||Jc(0H<j8(||Jc(tD)||,0, Vt>*o (4.23) 

This implies that the error dynamics in the proposed observer is globally uniformly asymp­

totically stable. • 

Remark 14 It can be similarly shown that the state observation error dynamics of O is 

globally uniformly exponentially stable if the switched system S is globally uniformly ex­

ponentially stable. 

Consider again the switched system £ given by (4.16). Denote the active observer imme­

diately before and after the switching instant t\ with j and i, respectively. According to 

(4.18), if ti - ti-i < A;, then 

x(ti)=x(tf)=Kjd(tf) (4.24) 

and according to (4.19), if ti — f/_i > Ay, then x(t{) = x(tf) = 0. Therefore, from (4.24), 

the switched system & can be rewritten as 

6(t) = Fi0(t), ti<t<tl+1 

TKjG(tf), if f/-f,_i < A ; (4.25) 

0, if f/-f/_i >A ;-

The easiest way to represent slow switching is to introduce a number T̂  > 0, often 

called dwell time [23], and restrict the switching signal such that the time interval between 

every two consecutive switching instants is greater than T .̂ Since this can be a restrictive 

requirement in general, one can consider the average dwell time instead, which allows fast 

switchings in some instants, provided that their effect would be compensated by sufficiently 

slow switchings in some other instants [23]. 
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every two consecutive switching instants is greater than T .̂ Since this can be a restrictive 

requirement in general, one can consider the average dwell time instead, which allows fast 

switchings in some instants, provided that their effect would be compensated by sufficiently 

slow switchings in some other instants [23]. 

Definition 3 [23]: Let the number of discontinuities of the switching signal a(t) on a 

given interval [to,t) be denoted by N(t,to). The signal a(t) is said to have an average dwell 

time xa if there exists two positive numbers xa and NQ such that 

N(t, t0) <N0+
t—^ 0<t0<Vt (4.26) 

In the following, inspired by the works [16], [17], a sufficient condition for the stability of 

the impulsive switched system <§ is given. 

Lemma 8 Consider the switched system given by (4.25) which switches at the time instants 

{t\,...,?/, ti+1,...}. Suppose that there exist a C1 function V : M" —> R, and two class Kco 

functions a,\ and 0L2 for which the following inequalities hold 

ai(||0(OII) < V(0{t)) < O52(||0(O||), Vt > t0 (4.27) 

Assume also that there exist a number }l > 1 and a strictly negative number XQ for which 

the derivative ofV(6(t)) along the solutions of the system (4.25) satisfies the inequality 

V(e(t)) < 2XoV(e(t)), Vr e (thtl+1), VZ e N + (4.28) 

and 

V ( 0 ( ^ + ) ) < M V ( 0 ( ^ ) ) , V/SN+ (4.29) 

Then the switched system (4.25) is asymptotically stable for every switching signal o(t), 

with average dwell time 

la > *min = ^ f £ (4-30) 
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Proof: It can be deduced from (4.28) and (4.29) that (see [21]) 

v(o(t)) < Ju
A^'ro)e2A<,(r--'oV(e(fo)) 

(Note that N(t,to) is the number of switchings in the interval [to,t)). Using the definition of 

average dwell time in (4.26) and replacing the minimum value of average dwell time given 

by (4.30), it follows that there must exist a positive number e such that 

N(t,to)<(^--e)(t-to)+N0 

Therefore 

V(0(O) < MiV~e('"'°V(e(fo)) 

Now it can be concluded from (4.27) that 

Let jB(||0(fo)||,f) be equal to ar1(Ju
A?o^-e^o)a2(| |0(?o)||)). Since a\ and as a result 

a\_1 and ai are all class Kx functions and e is positive, one can verify that j3 is a class KL 

function. This completes the proof. • 

Remark 15 If the conditions of the above lemma hold for a quadratic Lyapunov function, 

the switched system (4.25) will be exponentially stable. 

Remark 16 If the inequality (4.29) holds for some 0 < jU < 1 in Lemma 8, then it can be 

shown that the switched system given by (4.25) is globally uniformly asymptotically stable 

for every arbitrary switching signal [17]. 

In the remainder of this subsection, a LMI-based algorithm is introduced to design the 

proposed finite-time observer O such that the stability of the observation error dynamic 

under the is guaranteed. It can be inferred from (4.11) and (4.12) that the dynamics of 
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the error in each observer 0 ( is determined by eigenvalues of Ft. In this algorithm, the 

following assumptions on the location of eigenvalues of matrices Ft in s-plane are imposed 

• The eigenvalues of Ft are placed in the left of the line Re {s] = Ao, where Ao is a 

given strictly negative value. This means that the error in the Luenberger observers 

converges exponentially to zero with rate of convergence greater than Ao. 

• The eigenvalues of Ft are placed in the right of the line Re {s} = y, where y < Ao < 0 

is given. It is worth mentioning that if the poles are placed very far from the jco axis, 

the resultant gains L; will be large. This can lead to a design highly sensitive to the 

numerical errors. 

• For any given p G (y, Ao), the eigenvalues of F* are placed between the lines Re {s} = 

p and Re {s} = Ao, while the eigenvalues of Ff are placed between the lines Re {s} = 

y and Re{.?} = p. Without loss of generality, assume that p = ^p-. This implies 

that the available space between the lines Re {s} = y and Re {s} = Ao is assumed to 

be shared equally by F^ and Ff. 

On defining the regions R\ and R2 as follows 

/?! - {s\p < Re {s} < Ao} 
(4.31) 

R2 = {s\y<Re{s}<p} 

one can conclude from the above assumption that eigenvalues of Fj1 and Ff lie in regions 

R\ and R2, respectively. Regions i?i and R2 are depicted in Fig. 4.2. 

Algorithm 1: Consider the switched system described by (4.4). 

Step 1: Find 2N matrices X} and Xf,i€. N, and two positive definite symmetric matrices 
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Imx 

s — plane 

R e s 

K 

p = r±k> 

Figure 4.2: The location of the eigenvalues of the matrices F* and Ff 

P\ and P2 which satisfy the following LMIs 

A?PX + PiAt -dTX}T -X}d - 2AoPi < 0 

-AiTI\ -PiAi + CiTX}T +XlQ + (Ao + y)Pi < 0 

AiTP2 + P2At - C?xf - Xfd - (Ao + y)P2 < 0 

-AiTP2 - P2Ai + C?xf + Xfd + 2yP2 < 0 

(4.32a) 

(4.32b) 

(4.32c) 

(4.32d) 

To find the LMI variables X}, Xf, P\ and P2, one can use the LMI toolbox of MATLAB. 

Step 2: Using the matrices Pi, P2, Xf and Xf, i e N obtained in Step 1, find L(-, the 

observer gain of 0, proposed in (4.6) as follows 

u = Lj 

P2~'Xf 
i e N (4.33) 

Define P and Y; as 

P = 
Pi 0 

0 P2 

Yt = TKU i 6 N 

(4.34) 

(4.35) 

where Ki is given in (4.7c). 
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Step 3: Find the minimum value of jU subject to 

AlP - YiTPYi > 0, Vi G N (4.36) 

It is to be noted that this minimization can be formulated as a mincx problem. (MATLAB 

can solve this problem efficiently). Moreover, denote the optimum of the above convex 

optimization problem with /I*. 

Step 4: If jU* > 1, compute the minimum allowable dwell time 

log;U* 
(4.37) 

Remark 17 It can be shown that for any \x satisfying 

j u > ^ ( ^ 0 , ViGN 
"win \i) 

the inequality (4.36) holds. In other words, the optimization problem given in Step 3 of 

Algorithm 1 always has a feasible solution. 

Regarding to this algorithm we have the following result. 

Theorem 13 If there exists a symmetric positive definite matrix P>0, and 2N matrices XJ, 

Xf, i G N, which satisfy the LMIs (4.32a)-(4.32d), then the finite-time switching observer 

O obtained from Algorithm I possesses the following properties: 

i) Each observer Oi, i G N, obtained from Algorithm 1 observes the state of the i-th 

mode infinite time. 

ii) For each observer Oi, i G N, obtained from Algorithm I, the eigenvalues of the ma­

trices F^ and Ff are placed in the regions R\ and R%, respectively (Fig. 4.2). 

Hi) If ii* > I, the error dynamic in the switching observer O is globally uniformly expo­

nentially stable for the switching signal a(t) with any average dwell time Ta greater 
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than zmin given by (4.37). Otherwise (0 < jx* < \), the error dynamic in the switching 

observer O is globally uniformly exponentially stable for arbitrary switching signals. 

Proof: According to (4.33), since X} = PXL\ andZ? = P2Lf, (4.32a)-(4.32d) can be written 

as 

A?PX +P1Ai-Ci
TL}TPl -P1LJQ-2?L0P1 < 0 (4.38a) 

-AiTPx - PiAi + QTLlTP1 +PiLJQ + (Ao + y)Px < 0 (4.38b) 

AiTP2 + P2At - QTLf P2 - P2LfQ -(Xo + y)P2 < 0 (4.38c) 

-AiTP2 - P2At + dTLfTP2 + P2L?Q + 2yP2 < 0 (4.38d) 

From the definition of Ft
l and Ff given in (4.7a), the inequalities (4.38a)-(4.38d) can be 

written as 

{F> - hI)TPi + Pi (F? - V ) < 0 (4.39a) 

( ^ / - ^ f A + f l ^ - F / X O (4.39b) 

(if - 7-^DTP2 + P2(/f - J-^D < 0 (4.39c) 

(yl- Ff)TP2 + P2(yl-F?) < 0 (4.39d) 

It can be concluded from Lyapunov theory that if (4.39a)-(4.39d) hold, then the matrices 

are all Hurwitz. On the other hand, it can be easily shown that for any matrix Q e M" 

and any scalar a, al — Q is Hurwitz iff Re{A;(g)} > a and (g — ocl) is Hurwitz iff 

Re{A;(2)} < a. Thus, it follows that 

r < R e { % ( ^ 2 ) } < ^ < R e { A 7 ( f ; . 1 ) } < A o , 7 - l , 2 , . . . , n 
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Therefore, conditions of Lemma 5 hold and the first two properties of the proposed ob­

server, (i) and (ii), are satisfied. Due to Lemma 7, to guarantee the stability of the proposed 

observer given by Algorithm 1, it suffices to show that the switched system £ in (4.25) is 

globally uniformly asymptotically stable. Thus, it is desired to prove that for all switching 

signals satisfying the average dwell time xa > :rfjr-, & is exponentially stable. To this end, 

according to Lemma 8, it suffices to show that there exists a Lyapunov function such that 

(4.27)-(4.29) are satisfied. 

Consider the following quadratic Lyapunov function 

V(9) = 9TP9 (4.40) 

where P is obtained from (4.34) in Step 2. Since 

Kin{P) \\e\\2 < v(6) < KmxiP) \\ef 

then the Lyapunov function V satisfies (4.27), where ai (s) and ô C*) are defined as 

CC\(s) = Xmin (P)S2, CC2{s)= X ^ (P)s2 

From (4.40), it follows that V(9(t)) = 9{t)TP9{t) + d(t)TP0(t). Since 6(t) = Fi6(t), for 

t^ti, and F/ = At - LJQ, j = 1,2, it can be concluded from (4.38a) and (4.38c) that 

y(0(O) < e{tf 
2AoPi 0 

o (y+Ao)P2 

0(t), t^ti 

It is to be noted that fy denotes the switching instants. On the other hand since y"t < Ao, 

it follows that 

V(9(t)) < B{tf 
2AoPi 0 

0 2AoP2 

e{t) = 2XQ9(t)TPB{t) 
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This means that V(6(t)) < 2AoV(0(f)) for all times except the switching instants, and 

consequently (4.28) holds. 

To check if the last condition of Lemma 8 is satisfied by this choice of V, assume the ac­

tive observer in the time intervals |//_i,fy) and [ti,ti+\) are j and i, respectively. According 

to (4.25), V(9(tf)) can be obtained as 

{ e{t7)TKiTTTPTK;e(t7), if tt - f/_i < A; 

0, if ti-ti-x >Aj 

For the case when V(0(ti+)) = 0, the inequality (4.29) is clearly satisfied. For the other 

case given above, V(Q(ti+)) can be rewritten as 

V(0(t,+)) = d(tf)TYjTPYj6(tf) 

where Yi is obtained in Step 2 (equation (4.35)). One can conclude from (4.36) that 

v(9(ti+)) = e(tf)TYjTpyj9(tf) < 

9(tr)Tn*po(tr) = fv(o(tr)) 

Thus, all the conditions of Lemma 8 hold for the switched system £ given by (4.25). 

This completes the proof. • 

4.4 Numerical Examples 

To show the validity of the Theorem 12 and Algorithm 1 introduced in the previous sec­

tions, three examples with simulation results are supplied in this section. 
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Example 1 Consider a switched system described by 

and 

A, = 

0 0 

1 0 

0 1 

- 3 

- 5 

- 2 

Bi = 

10 

- 9 

10 

, Q = l o l 

A2 

0 0 

1 0 

0 1 

- 4 

- 4 

- 4 

52 = 

8 

- 7 

10 

, C2 = 1 0 1 

where the switching signal o(t) G {1,2} is defined as 

c(t)=\ if te[2KT 2KT + T) 

a(t)=2 if te[2KT + T 2(K+l)T) 

where K E N and T is a constant determining the speed of switching. With this assumption, 

the switching instances are KT, K e N and thus t\+\ —t\ = T. The proposed observer with 
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Yi = —6, j \ = —2 and Ai=A2=0.5 using Algorithm 1 is obtained as 

Lu 

Ux = 

0.1192 

0.4039 

-0.9717 

1.1016 

0.6765 

-2.2522 

, Ln = 

, L22 

17.2379 

-10.1714 

-10.3686 

21.1245 

-22.8602 

-12.9180 

where L\\ and Lyi are identity observers gains for the finite time observer designed for the 

first mode and L21, L22 are the ones for the second mode. 

Simulation result for T = 0.8 is given in Fig. 4.3, which verifies the results obtained from 

Theorem 12. By Theorem 12 the time of convergence should be 0.5. The simulations are 

repeated for T — 0.1 and the results are shown in Fig. 4.4. Since the dwell time is much 

smaller than A/, i = 1,2, finite time convergence is not expected but due to Theorem 13 

the proposed observer is exponentially stable, which is verified by the simulation results. 

Example 2 Consider the system described by 

Ai = 

- 1 2 0 

- 1 0 1 

0 1 -0.45 

Bi 

6 

-1 

1 

, Q = 0 0 1 
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Figure 4.3: Finite time observer with r=0.8 
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Figure 4.4: Finite time observer with 7=0.1 
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and 

A2 = 

0 1 0 

-10 0 1 

0 1 - 1 

B2 = 

- 3 

4 

1 

, C2 = 0 0 1 

The proposed observer with ji = 2j\ = —10, and Ai=A2=0.5 is obtained using Algorithm 1 

as follows: 

Lii = 

^21 = 

-17.7417 

28.1351 

6.0227 

-14.4730 

91.5330 

6.4687 

, ^12 = 

, £22 = 

-27.9206 

38.3612 

7.4192 

-24.6474 

107.6301 

8.7014 

tmin — O.Zb 

From Theorem 13, the minimum acceptable value for the average dwell time in the switched 

system to guarantee exponential stability of the proposed observer is obtained from Algo­

rithm 1 to be imin = 0.28. Simulation results for T = 0.8 > 0.5 are shown in Fig. 4.5. Like 

the previous example, finite convergence time equal to 0.5 is expected which is verified by 

the simulation result. 

Simulations are repeated for 0.5 > T — 0.3 > m̂mi <ind exponential stability of the 

proposed observer guaranteed by Theorem 13 is verified in Fig. 4.6. In the next example 
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Figure 4.5: Finite time observer with T=0.8 
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Figure 4.6: Finite time observer with T=0.3 

70 



the application of this methodology to observe the states of a switched system is applied to 

an industrial water tank system. 

Example 3 Consider a liquid level control system shown in Fig. 4.7. The system consists 

of two tanks, one flow source, two outlet pipes, and one connecting pipe. The pipes contain 

valves that can be opened or closed by an external controller. Based on the status of each 

valve (opened or closed), there are eight different system modes. Consider the following 

three valve configurations 

Model R2:ON Ri,R3:OFF 

Mode 2 RuR2:ON R3 : OFF 

Mode 3 R2,R3 : ON Rx : OFF 

Flow 
source 

Tankl Tank2 

Figure 4.7: The two-tank system of Example 1. 

It is assumed that the flow through the valves is laminar, which implies that the relation 

between the flow rate in the valves and the height of the liquid is linear [31]. Depending 

on the value of the tank capacity CT and the pipe resistance R in each mode the behavior of 

the system is governed by a different differential equation. The state space representation 
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of the system is given by 

x(t)^Aa{t)x(t)+Bo{t)u(t) 

y(?) = ca{t)X(t) 

(4.43a) 

(4.43b) 

where the state x{t) = [h\(t) h2(t)] contains the heights of liquid in the tanks, Ca(t) — 

[0 1], and u(t) = 5e~°-5r(l +sin5izt) is the input flow from the flow source to tank 1. 

The switching signal a(t) in this example is a piecewise constant function with the set of 

images equal to {1,2,3} . Consider the following values for the system parameters: 

CT\ = 5 m2, CT2 = 3 m2, R{=R2 = 300 -=, R3 = 100 
rrf mz 

For the three modes defined above, one can obtain 

Ai = 
-0.0007 0.0007 

0.0011 -0.0011 
, BX 

0.2 

0 

A2 = 
-0.0013 0.0007 

0.0011 -0.0011 
, B2 = 

0.2 

0 

A3 = 
-0.0007 0.0007 

0.0011 -0.0044 
, B3 = 

0.2 

0 

Algorithm 1 is now applied to this problem to observe the height of the liquid in each 

tank while the valve configuration can jump between the three given modes. Set Ao = —2, 

7 = — 8 , p = —5, and let the desired finite convergence time for each observer Oi be Ai = 

A2 = A3 = 0.7. On solving the set of LMIs in Step 1, the observer gains L,, i= 1, 2, 3, 
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are calculated in Step 2 of Algorithm 1. One can verify that the minimum lower bound 

of the average dwell time required for the stability of the estimation error dynamic in the 

proposed observer O is equal to 0.4010. 

Now, let the switching between three modes be governed by the switching signal G\ (t) 

in Fig. 4.8(a). Applying the observer O to the system, the estimates of hi and /*2 are 

obtained and depicted in Fig. 4.8(b) and (c) which comply with the result of Theorem 12. 

Since the condition of Theorem 12 holds in the interval [0,1] (as the time interval is greater 

than A = 0.7), the state estimation error becomes zero at t — 0.7 and stays at zero for 

t > 0.7. This means the finite convergence time is 0.7. The simulations are repeated for 

the case when the switching signal is 02(f)- Since this switching signal does not satisfy 

the condition of Theorem 12, finite convergence time is not achieved, but as expected from 

Lemma 8, the estimation error is exponentially stable. The results obtained in this case are 

depicted in Fig. 4.9. 

As mentioned earlier, there are two Luenberger observers in the structure of the pro­

posed finite-time observer O. To compare the performance of the proposed observer O and 

a single Luenberger observer, assume that only mode 1 (associated with the configuration 

of the valves) is active. In this case estimates of h\ for the proposed finite-time observer 

and the faster Luenberger observer within the structure of the observer O are compared in 

Fig. 4.10. Moreover, assume the switching signal is the same as before (Fig. 4.8a), the 

state estimate observed by the classic Luenberger switching observer and the proposed fi­

nite time switching observer are given in Fig. 4.11. It is perceived from this figure that the 

transient response of the proposed finite-time observer is superior. It is perceived from this 

figure that the transient response of the proposed finite-time observer is superior. 

4.5 Discrete Finite Time Observer (DFTO) 

In this section, the idea of finite time observers for linear continuous time systems is ex­

tended to linear time invariant discrete time systems. The main motivation for this extension 
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Figure 4.8: (a) Switching signal G\(t); (b) finite convergence time to observe hi; (c) finite 
convergence time to observe &2-
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Figure 4.10: Comparison between the proposed finite-time observer and Luenberger ob­
server. 
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is that unlike dead-beat observers designed for discrete time systems, the proposed observer 

in this section need not place all the eigenvalues at the origin. This leads to a much more 

flexible design compared to the existing techniques. 

Consider an observable linear time invariant (LTI) discrete time system 

x(k+l)=Ax(k)+Bu(k), x(k0) = ko, k>k0 (4.44a) 

y(k) = Cx(k) (4.44b) 

where x G M.n, y G MP, and u G Mm are the state, the output and the input of the system, 

respectively. The theory of dead-beat observers for such linear discrete time systems is 

well studied in the literature see [32], [35]. In such observers, by suitable choice of gains 

the error in the observation converges to zero in finite time k>n, where n is the order of 

the system. Unlike a dead-beat observer which is in essence a Luenberger observer with 

all the eigenvalues placed at the origin, in the developed observer in this section there is no 

necessity to place the eigenvalues at the origin, and they can be placed almost anywhere 

inside the unity circle. Consider a linear time invariant discrete time system defined by 

(4.44). Then 

zl(k+ 1) - F'V'(it) +L(y(k) + Gu{k), (i =1,2) 

represents two identity Luenberger observers for the system, where Fl :=A — VC, r = 1,2. 

Let 

G 

= 

B 

B 

F1 0 

0 F2 

T = 

H = 

Inxn 

Inxn 

L1" 

L2_ 

Z = 
V" 
/ _ 
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By combining these two identity Luenberger observers and introducing a delay A € Z+ in 

the structure of the observer, a new state estimate x can be generated as follows 

z(k+l) = Fz(k)+Hy(k) + Gu(k), k>k0 

x(k+l) = K[z(k+l)-FAz(k+l-A)} 

(4.45a) 

(4.45b) 

The structure of this observer is shown in Fig. 4.12. 

z{k+\)=Fz(k)+Hy(k)+Gu{k) <HZ 
C 

Figure 4.12: Structure of discrete finite-time observer. 

Theorem 14 IfL and A are chosen such that 

i. F is Hurwitz, i.e., all eigenvalues ofF are inside the unity circle; 

ii. det[r FAT]^0, 

then the observer given by (4.45a) and (4.45b) with H := [/„,„ 0„,B][r F^T]'1 observes 

the states of the system in (4.44) exactly within the finite time A, i.e. thatx(k) = x(k) for 

k>ko + A. 

Proof: for k > ko, since G = TB and FT = TA - HC, from (4.44) and (4.45) one can obtain 

z(k+l)- Tx(k+l) = Fz(k) +Hy(k) + Gu(k) - T(Ax(k) +Bu(k) 

= F[z(k) - Tx(k)] + [FT - TA + HC]x(k) 
(4.46) 

+ [G-TB]u(k) 

= F[z(k)-Tx(k)} 
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and therefore 

z(k) - Tx(k) = FA[z(k-A)-Tx(k-A)} k>ko + A (4.47) 

By the second condition of the theorem, [r FAT] is assumed to be invertible, therefore 

by the definition of K, it is concluded that K[T FAT] = [/„,„ 0n„] . Using the fact that 

KT = /„,„ and KFAT = 0nj„ the equation of state observation can be rewritten as 

x\k) = K[z(k)-FAz(k-A)] 

= x(k)+K[z(k)-Tx(k)} 

-KFA[z(k-A)-Tx(k-A)] k>k0 

(4.48) 

Using (4.47) implies that x(k) = x(k) for k > k0 + A. • 

Although it is shown that by suitable choice of L and A the proposed observer, estimates 

the states of the system with no error in finite time k = ko + A, it remains to show that such 

suitable choices exist. 

Remark 18 It is to be noted that a necessary condition for Condition i in theorem 14 to 

hold is the observability of the pair (A,C) in system (4.44). 

Lemma 9 IfH and A are chosen such that detfF1 — F2 ]^=0 then 6eX\T FAT] ^ 0. 

proof: since 

[T FAT] = 
1 Fl 

1n,n 1 

1 F 
1n,n r 

2A 

'n,n 

0n,n F^-F 
A „ 2 A 

it is concluded that det[T FAT] = ( l ) ( - l )"( l )det[F l A -F 2 A ] . 
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Theorem 15 For almost all values ofl} andL2, det[T FAT] ^ 0 iff A > n, where n is the 

order of the system (4.44). 

proof: let A > n, and assume L1 and L2 are chosen such that the matrix F2 is nilpotent 

(i.e. all eigenvalues of F2 are at the origin) while eigenvalues of F1 are all nonzero. Then 

det[FlA-F2A] = det[FlA~0] = detFlA^0. Since det[F lA-FzA] is an analytical function 

(polynomial function) of elements of the matrices L1 and L2, and is non zero for this specific 

choice of Ll and L2, due to the principle of isolated zeros [10] is non zero for almost all 

matrices L1 and L2. 

Now let A < n. Since the system is assumed to be observable there is a transformation 

matrix S such that 

0 0 0 ••• - a 0 

1 0 0 ••• -ax 

0 1 0 ••• - a 2 
S~lAS = A = 

0 1 —a, •n— 1 

cs = c = 0 0 0 ••• 1 

For the given L1 and L2 define L1 = S^L1 and L2 = 5-1L2. It is not difficult to show that 

the matrices F\ = (A — LXC)K and Fi = (A — L2C)A, depending on the value of A have at 

least one identical column; in fact one can obtain 

A + number of identical columns in F\ and F2=n 

which results in the determinant of [F\ — fy] being equal to zero for all values of A < n. For 

the general case one can obtain 

det[(A -LlC)A- (A -L2C)A] = 

det(5[(A - LlC)A - (A - tfcftf-1) 
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det(S) det[(A - Llcf -(A- L2C)A} det(S~l) 

4.5.1 Error in observation 

To have a clear idea about what is happening in the observer before it observes the states of 

the system with no error, in this subsection the value of error in the time interval JCQ < k < 

ko + A is obtained. 

Assume that z{k) = Tx(ko) for ke{ko — A + i,...,ko}, then (4.46) gives 

z(k) - Tx{k) = Fk~k» [z(ko) - Tx(ko)} 

= Fk-k°[Tx(ko)-Tx(ko)} 

= Fk-k°T [x{k0) - x(ko)] k>ko 

and from (4.48) it follows for k0 < k < ko + A that 

x(k) = K\z(k)-FAz(k-A) 

= x(k) + KFk~k°T (x(ko) - x(k0)) 

Therefore 

x(k) = x(k) - x{k) = KFk~kQ T (x(k0) - x(k0)) k0<k<k0 + A 

The error over the entire time axis is obtained as 

KFk-k»T(x{ko) -x(k0)), ko<k<kQ + A 
x(t) = { (4.49) 

0, k0 + A<k 
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Chapter 5 

Conclusions 

5.1 Overall Summary 

In this work, necessary conditions for the stability of continuous and discrete impulsive 

switched systems are presented. LMI-based algorithms are developed subsequently to de­

sign observers for impulsive switched systems. These algorithms guarantee asymptotic 

(exponential) stability of the error dynamics in switching observers for a special class of 

impulsive switched systems under constrained switching. Moreover, a finite-time switch­

ing observer for a linear continuous switched system is presented. The proposed observer 

switches between finite-time observers, each designed for a subsystem, and observes the 

states of the switched system. The observation error vanishes in finite time provided that 

there are two consecutive switching instants with a time-gap larger than the finite conver­

gence time of the active observer between the two instants. Regardless of this property, 

the observer under constrained switching will be stable if the proposed algorithm in this 

thesis is utilized to design the switching finite-time observer. The simulation results show 

the efficiency of the proposed technique in reducing the observation error to zero in finite 

time for different switching signals. 
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5.2 Future Work 

Generally, regarding to the structure of switched systems and switching signals, there are 

two main areas that can be further investigated. The design of switching observers for im­

pulsive switched systems when the switching signal is not necessarily available a priori is 

an open problem for future research. To be more specific, as in many practical systems in 

industry, the index of the active mode in a switched system may be known only a short time 

after the system has switched to the corresponding mode. Design of switching observers 

for impulsive switched systems while the switching signals are known after a delay is an 

open area of research to extend the current work. Design of switching observers for non­

linear uncertain impulsive switched systems is another interesting area for future research. 

As mentioned in Chapter 4, unlike the famous dead-beat observers, the proposed dis­

crete finite time observer in this work need not place the eigenvalues at the origin which 

leads to a more flexible design compared to the existing techniques. Specially in the case 

of discrete time switched systems if there is an interest to observe the states of the system 

in finite time, using the famous dead-beat observer to observe the state of each mode will 

restrict the designer to place all the eigenvalues of each observer on the origin and there is 

no guarantee for the stability of the switching observer after designing each dead-beat ob­

server, while employing the proposed finite time observer will allow the designer to place 

the eigenvalues anywhere inside the unity circle. Designing discrete finite-time switching 

observer to observer the states of discrete switched systems is another open problem for 

future work. 

83 



References 

[1] A. G. Aghdam and E. J. Davison, "Pseudo-decentralized switching control," Auto­
matic^ vol. 39, no. 2, pp. 317-324, Feb. 2003. 

[2] A. G. Aghdam and E. J. Davison, "Decentralized switching control for hierarchical 
systems," Automatica, vol. 43, no. 6, pp. 1092-1100, Jun. 2007. 

[3] R. Aguilar-Lopez and R. Martinez-Guerra, "Robust state estimation for repetitive 
operating mode process: Application to sequencing batch reactors," Chemical Engi­
neering Journal, vol. 126, no. 3, pp. 155-161, Feb. 2007. 

[4] A. Alessandri and P. Coletta, "Switching observers for continuous-time and discrete-
time linear systems," Proceedings of the 2001 American Control Conference, Arling­
ton, VA, vol. 3, pp. 2516-2521, 2001. 

[5] W. Chen and M. Saif, "Observer design for linear switched control systems," Pro­
ceeding of the 2004 American Control Conference, Boston, MA, vol. 6, pp. 5796-
5801,2004. 

[6] J. Daafouz and Bernussou, "Parameter dependent Lyapunov functions for discrete 
systems with time varying parametric uncertainties," Systems Control Letters, vol. 
43, pp. 335-359,2001. 

[7] J. Daafouz, P. Riedinger and C. lung, "Stability analysis and control synthesis for 
switched systems: a switched Lyapunov function approach," IEEE Transactions on 
Automatic Control, vol. 47, no. 7, pp. 1883-1887, Nov. 2002. 

[8] R. A. DeCarlo, M. S. Branicky, S. Pettersson and B. Lennartson, "Perspectives and 
results on the stability and stabilizability of hybrid systems," Proceedings of the 
IEEE, vol. 88, no. 7, pp. 1069-1082, Jul. 2000. 

[9] S. G. Deo and S. G. Pandit, Differential Systems Involving Impulses, New York: 
Springer-Verlag, 1982. 

[10] J. Dieudonne, Foundations of Modern Analysis, New York: Academic, 1969, p. 200. 

84 



[11] S. V. Drakunov, "Sliding-mode observer based on equivalent control method," Pro­
ceedings of the 31st IEEE Conference on Decision and Control, Tucson, AZ, pp. 
2368-2369, Dec. 1992. 

[12] S. V. Drakunov and V. Utkin, "Sliding mode observers. Tutorial," Proceedings of the 
34th IEEE Conference on Decision and Control, New Orleans, LA, pp. 3376-3378, 
Dec. 1995. 

[13] R. Engel and G. Kreisselmeier, "A continuous-time observer which converges in 
finite time," IEEE Transactions on Automatic Control, vol. 47, no. 7, pp. 1202-1204, 
Jul. 2002. 

[14] C. S. Gomez Quintero, I. Queinnec and M. Sperandio, "A reduced linear model 
of an activated sludge process," Ninth IFAC International Symposium on Computer 
Applications in Biotechnology, Nancy, France, Mar. 2004. 

[15] Z. H. Guan, T. H. Qian, and X. Yu, "Controllability and observability of linear time-
varying impulsive systems," IEEE Transactions on Circuits and Systems I, vol. 49, 
pp. 1198-1208, Aug. 2002. 

[16] J. P. Hespanha, D. Liberzon and A. Teel, "On input-to-state stability of impul­
sive systems," Proceedings of the 44th IEEE Conference on Decision and Control, 
Seville, Spain, pp. 3992-3997, Dec. 2005. 

[17] J. P. Hespanha, D. Liberzon and A. Teel, "Lyapunov characterizations of input-to-
state stability for impulsive systems," Proceedings of the 44th IEEE Conference on 
Decision and Control and 2005 European Control Conference, Seville, Spain, pp. 
3992-3997, Dec. 2005. 

[18] J. G. Kassakian, M. F. Schlecht, G. C. Verghese, Principles of Power Electronics, 
Addison-Wesley, Boston, Massachusetts, 1991. 

[19] H. K. Khalil, Nonlinear Systems, Prentice Hall, Upper Saddle River, New Jersey, 
2002. 

[20] V. Lakshmikantham, D. D. Bainov, and P. S. Simenov, Theory of Impulsive Differ­
ential Equations, Singapore: World Scientific, 1989. 

[21] V. Lakshmikantham and S. Leela, Differential and integral inequalities: Theory and 
applications, Vol I Ordinary Differential Equations, vol. 55 of Mathematics in Sci­
ence and Engineering, Academic Press, New York, 1969. 

[22] D. Liberzon, Switching in Systems and Control, Birkhauser, Boston, Massachusetts, 
2003. 

[23] D. Liberzon and A. S. Morse, "Basic problems in stability and design of switched 
systems," IEEE Control Systems Magazine, vol. 19, no. 5, pp. 59-70, Oct. 1999. 

85 



[24] B. Liu and X. Liu, "Robust stability of uncertain discrete impulsive systems," IEEE 
Transactions on Circuits and Systems II: Express Briefs, vol. 54, no. 5, pp. 455-459, 
2007. 

[25] D. G. Luenberger, "Observing the state of a linear system," IEEE Transactions on 
Military Electronics, vol. MIL-8, pp. 74-80, Apr. 1964. 

[26] D. G Luenberger, "An introduction to observers," IEEE Transactions on Automatic 
Control, vol. 16, no. 6, pp. 596-602, Dec. 1971. 

[27] D. G Luenberger, "Determining the State of a Linear System with Observers of Low 
Dynamic Order," Ph.D. Dissertation, Dept. of E.E., Stanford University, CA, 1963. 

[28] A. Mahmoudi, A. Momeni, A. G. Aghdam and P. Gohari, "Switching between finite-
time observers," conditionally accepted (subject to modifications) for publication in 
European Journal of Control. 

[29] P. H. Menold, R. Findeisen and F. Allgower, "Finite time convergent observers for 
linear time-varying systems," The 11th Mediterranean Conference on Control and 
Automation, Rhodes, Greece, Jun. 2003. 

[30] A. Momeni and A. G. Aghdam, "An adaptive tracking problem for a family of re­
tarded time-delay plants," International Journal of Adaptive Control and Signal Pro­
cessing, vol. 21, pp. 885-910, Dec. 2007. 

[31] K. Ogata, Modern Control Engineering, Prentice-Hall, Inc., Englewood Cliffs, New 
Jersey, 1990. 

[32] B. Porter, "Deadbeat state reconstruction of linear multivariable discrete-time sys­
tems," Electronics Letters , vol. 9, no. 8, pp. 176-177, 1973. 

[33] T. Raff, P. Menold, C. Ebenbauer and F. Allgower, "A finite time functional observer 
for linear systems," Proceedings of the 44th IEEE Conference on Decision and Con­
trol, and 2005 European Control Conference, Seville, Spain, pp. 7198-7203, Dec. 
2005. 

[34] C. V. Rao, J. B. Rawlings and D. Q. Mayne, "Constrained state estimation for non­
linear discrete-time systems: stability and moving horizon approximations," IEEE 
Transactions on Automatic Control, vol. 48, no. 2, pp. 246-258, Feb. 2003. 

[35] M. M. Tousi, I. Karuei, S. Hashtrudi-Zad and A. G. Aghdam, "Supervisory control 
of switching control systems," Systems and Control Letters, vol. 57, pp. 132-141, 
Feb. 2008. 

[36] M. E. Valcher and J. C. Willems, "Dead beat observer synthesis," Systems and Con­
trol Letters, vol. 37, pp. 285-292, 1999 

[37] G. Xie and L. Wang, "Necessary and sufficient conditions for controllability and ob­
servability of switched impulsive control systems," IEEE Transactions on Automatic 
Control, vol. 49, no. 6, pp. 960-966, 2002. 

86 



[38] G. Xie and L. Wang, "Stability and stabilization of switched impulsive systems," 
Proceedings of the 2006 American Control Conference, Minneapolis, MN, pp. 4406-
4411,2006. 

[39] G. Zimmer, "State observation by on-line minimization," International Journal of 
Control, vol. 60, no. 4, pp. 595-606, 1994. 

87 


