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Abstract 
Model-Based Control of Venetian Blinds 

Brendan O'Neill 

Commercial and institutional buildings are being designed with increased 

transparent areas of the facade. Provision of views to the exterior is desirable, but more 

importantly, human health and productivity benefits may result from well day-lit interior 

spaces. The increased use of natural light, coupled with daylight responsive lighting 

systems, can reduce the peak electrical load and internal heat gains caused by artificial 

lighting. However, excessive transmission of solar irradiance can result in a net increase 

in energy consumption required for cooling, and may also affect the visual comfort of 

occupants. Manually operated shading devices are commonly used to deal with this 

problem, though their control is generally not optimal. 

This thesis investigates the potential of an automated model-based control 

strategy for diffuse reflecting Venetian blinds. Radiosity theory was used to numerically 

approximate the transmittance of a blind and glazing system for clear-sky conditions, and 

to determine the Venetian slat angle required to maintain favourable transmission values 

based on the HVAC demand and the visual comfort of the building occupants. 

Experimental measurements were carried out using a controlled motorized 

Venetian blind installed on a clear glass window unit in a small-office space. The daylight 

transmission of the system was quantified and compared to the modelled prediction. A 

dimmable luminaire was also installed in this zone to determine the electric lighting 

energy savings possible in perimeter zones with the blinds continuously controlled to 

intercept direct sun rays. 
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Chapter 1: Introduction 

1.1 Background 

The trend towards low-energy buildings has been spurred by two recent events: 

the international scientific community reaching the consensus that human activity is 

"very likely" the cause of increases in globally averaged temperatures since the mid-20th 

century (IPCC, 2007); and the continuing global rise of energy prices. In 2003, 

commercial and institutional buildings consumed 14% of Canada's secondary energy 

production. A significant amount of this energy consumption, 13%, was for electric 

lighting alone (OEE, 2006). In the province of Quebec, 17% of total energy use in 2002 

was in the commercial building sector (MRNF, 2004). 

The United Nations Environment Programme (UNEP) states that efficiency in the 

building sector has considerable potential to reduce global energy consumption and 

mitigate greenhouse gases. Active solutions such as lighting controls and solar-shading 

are identified as areas where advances could be made. This is due to the relationship 

between lighting and cooling: as a rule of thumb, one watt of air cooling energy savings 

results from every three watts of lighting energy savings (UNEP, 2007). This is 

especially true in hot climates, but also in cold climates. For example, the UNEP report 

points out that modern commercial buildings built in Sweden's cold climate require 

cooling even at outdoor temperatures of-10°C (UNEP, 2007). 

It has been well understood for centuries, but perhaps neglected during the era of 

electrification and inexpensive hydrocarbons, that the radiative energy from the sun can 

be exploited for both the lighting and heating needs of a building. As a light source, 
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studies show that human health and productivity benefits can result from well day-lit 

interior spaces. However, the thermal energy of solar radiation is not always required, 

and excessive transmission through the building facade may increase overall energy 

consumption due to mechanical cooling. 

The changing sun position throughout the year and the dynamic nature of the 

intensity of the solar flux means that buildings optimised to take advantage of the free 

heat and light cannot be designed under static conditions. The building must adapt to the 

energy source based on the visual and thermal needs of the controlled indoor 

environment, and most importantly, the comfort requirements of the occupants. 

1.2 Motivation 

Commercially available fenestration with low U-Values has been successfully 

developed through the use of multiple glazing with dense gas fills (such as argon), and 

low-emissivity coatings. This technology has given designers the option of having a 

larger transparent area on the building facade, beneficial for daylighting, without 

significantly decreasing the thermal performance of the building envelope. Spectrally 

selective coatings for glazing have also been developed to manage the risk of 

overheating. These coatings reduce the transmittance in the non-visible infrared and ultra

violet wavelengths of the solar spectrum. However, visible light contains about 45% of 

total incident solar energy (Murdoch, 2003). As a result, for the case of clear glazing with 

spectrally selective coatings, overheating may still occur. 

The delicate balance of maximizing daylight transmittance and maintaining visual 

comfort is an ever present control problem. As presented in Figure 1-1, one effective 
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daylighting method in perimeter office zones is to reflect direct beam sunlight towards 

the ceiling, and allow diffuse transmittance in the lower portion of the window. Electric 

lighting savings can be achieved by using dimmable luminaries that are responsive to 

changes in the work-plane illuminance. 

T f 

Dimmable 
• Luminaire 

Photocell 

Upward Reflected 
Illuminance 

Exterior Illuminance: 

Etjn : Direct Normal 

E v : Vertical Sky (Diffuse) 

E w g : Ground Reflected 
(Diffuse) 

^ Diffuse 
Transmission 

Work-Plane 

Figure 1-1: Daylighting Schematic for a Perimeter Office 

Occupants who manually control shading devices, such as Venetian and roller 

blinds, rarely consider energy savings associated with increasing or reducing the solar 

heat gains. Automated shading devices can be employed to carry out this task, and 

various researchers have noted the benefit. 

The motivation of this work was to develop and investigate an automated method 

of controlling Venetian type shading devices that addresses two important issues relevant 

to the control problem: particularly, the prohibitive cost of multiple sensors required for 

control, and the lack of continuous consideration of visual comfort. 
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1.3 Thesis Objectives 

This thesis investigates the control of motorized Venetian blind shading devices 

that protect occupants from the discomfort of glare on clear-sky days, while allowing the 

transmittance of a prescribed amount of daylight. A combined control of the interior 

electric lighting can allow for savings in energy consumption corresponding to peak 

usage by reducing both the electric lighting consumption as well as the related internal 

heat gain from the lamps. Maximizing daylight transmission during times of heating 

demand, and allowing the minimum transmission to meet perimeter lighting needs during 

the cooling season - all while considering discomfort glare - is the ultimate goal of the 

control strategy. 

In this work, a novel control method that uses a simplified Venetian blind 

transmittance model is developed and investigated. By using a model-based control, the 

need for interior sensors for blind control is eliminated. The control of this system is 

open-loop, with the disturbance variable being the exterior vertical illuminance, and the 

final control variable being the illuminance on the interior side of the Venetian blind. 

A numerical model of a fenestration system was created and compared to 

measurements from a full-scale controlled setup. A motorized Venetian blind was 

controlled in conjunction with dimmable fluorescent luminaries in order to investigate the 

relationship between the two components, and define a potential for energy savings 

within perimeter zones. 

In summary, the objectives of this thesis are as follow: 
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1. Develop a simplified transmittance model of a fenestration system composed of 

glazing, window frames, and an interior horizontal Venetian blind. The Venetian 

blind, to be placed in the 'view' portion of a window, will be modelled to 

continuously intercept direct solar radiation, and is to be diffuse reflecting. The 

numerical model will also include an exterior illuminance simulation that will 

allow for discrete calculation of the diffuse transmittance of the blind throughout 

the year, for all blind angles. 

2. Implement a controlled full-scale experimental setup and compare the actual 

measured transmittance to the simulated results. In combination with the 

controlled Venetian blinds, dimmable lighting in the perimeter zone will be 

investigated and the reduction in lighting energy is to be measured. 

3. Investigate the use of the numerical model in an open-loop control strategy 

whereby maximum and minimum allowable transmittance values are used to 

determine the optimal blind angle for clear-sky conditions. Transmittance 

thresholds are to be based on the minimum amount of daylight required on the 

work-plane, and the maximum transmittance allowable in order to ensure visual 

comfort. This model could be ultimately programmed into a blind motor 

controller. 
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Chapter 2: Literature Review 

2.1 Introduction 

This chapter presents a review of relevant literature related to the control of 

shading devices integrated into commercial building facades. The focus for this study is 

the control of motorized Venetian blinds that are used as a dynamic element within the 

fenestration system in order to control the transmittance of solar radiation into the 

occupied building space. The challenge is to allow daylight to penetrate into the interior 

space while mitigating the risk of excessive solar heat gain and occupant discomfort due 

to glare. 

This review also explores the relevant properties of light, the human factors 

related to visual comfort, and the use of manually operated shading devices which are the 

norm in today's buildings. 

2.2 Dynamic Fagades 

The facade of a building consists of various components and is designed to 

separate the exterior and the interior conditions. This building "skin" contains the thermal 

insulation with the exterior, the fenestration that allows for daylighting and views to the 

exterior, and serves as a barrier to the natural elements such as wind and rain. Aside from 

the practical purpose of protecting the occupants, facades are an architectural component 

of the building itself: the shape, form, texture and colour often communicate an 

architectural theme or corporate image. 
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Building design often ignores the climatic boundary conditions for the sake of 

visual impression (Voss, 2000). Dynamic facades are intended to take advantage of the 

natural environment conditions, and use the exterior conditions as either an energy source 

or sink. In other words, they adapt to the available energy from the exterior. "Dynamic" 

encompasses motorized louvers, Venetian blinds and shades, controllable openings, as 

well as advanced glazing, i.e.: electrochromics and electrically heated glazing (Lee et al., 

1998). A static facade - one that is designed for a unique set of boundary conditions -

does not consider the seasonal temperature and solar radiation changes throughout the 

year. Facade systems must be dynamic and flexible in order to accommodate changes in 

the exterior conditions and the building occupants' needs (Seikowitz, 2001). 

Mechanical equipment sizing is dependent on the amount of heat gain from solar 

energy transmitted though the facade fenestration (ASHRAE, 2005). Designing a facade 

that regulates the amount of energy flow from the exterior to the interior may reduce the 

size of mechanical equipment, peak loads and annual energy consumption. However, 

since HVAC systems are traditionally designed to be able to meet peak loading 

conditions, if the equipment is sized dependent on the ability of the solar control, it is 

important that the dynamic facade system be reliable (Seikowitz, 2001). 

For commercial buildings, the internal load is noticeably increasing as more 

electrically powered equipment is being used (Voss, 2000). Also, the trend in buildings, 

and often the legislation in European countries, is to allow higher levels of daylight in the 

office environment. As mentioned by Lee et al. (2004), the design ideology of highly 

glazed buildings originated in Europe, and there is now a growing interest in North 

America to construct buildings with large portions of their facades covered with high 
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transmittance glazing. This change in architectural design is leading to an increased 

demand in sun control systems, including dynamic facades (Lee et al., 2004). As an 

example of the necessity of solar control, Kuhn (2006) cites a highly glazed building in 

Germany having up to 70% of the peak cooling loads caused by solar gains. 

2.3 Daylight 

When discussing the concept of solar control and daylighting, it is important to 

look at the source of this light: the sun. It is well known that the sun emits radiant energy 

over a range of wavelengths, as presented in Figure 2-1 (Gueymard, 2002). The 

extraterrestrial irradiance, which is approximated by blackbody radiation at 5800 K, is 

attenuated as it travels through the earth's atmosphere. Shorter wavelengths (ultraviolet) 

are lost due to the ozone layer, and losses in the higher wavelengths (infrared) are caused 

by gases in the atmosphere, such as water vapour and carbon dioxide (Webb, 2006). The 

peak of the solar spectrum occurs between wavelengths of 380 - 770 nm, which also 

corresponds to the visible range of the human eye. The relationship between irradiance 

(W/m2) and the corresponding lighting metric 'illuminance' (lm/m2 or lux) is due to the 

spectral sensitivity of the eye (Murdoch, 2006). 

In a paper by Webb (2006), which explored the non-visual effects of lighting in 

the built environment, it was pointed out that the design for artificial lighting systems 

only takes into account the visual needs of the occupants, whereas the additional benefits 

of natural light are often not considered. These non-visual effects include the control of 

the circadian rhythm, which dictates hormone secretions and has an effect on the 

sleep/wake cycle. 
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250 500 750 1000 1250 1500 1750 2000 2250 2500 2750 3000 3250 3500 3750 4000 

Wavelength (nm) 

Figure 2-1: Extraterrestrial and Direct + Circumsolar radiation, ASTM G-173-03 Standard Solar 
Reference Spectra, (Gueymard, 2002) 

According to Noguchi et al. (as cited by Veitch, 2006) bright natural lighting on the 

office work-plane - 2500 lux compared to 750 lux - can increase the alertness of 

occupants and enhance their mood. Illuminance levels exceeding 2000 lux are said to be 

quite common in workplaces using daylight, whereas artificial lighting design levels are 

significantly lower (Nabil et al., 2005). Webb concludes that the increased use of daylight 

has the potential to increase safety and productivity in the workplace, and can also benefit 

human health. 

From an energy-conservation standpoint, daylight - or the visible portion of solar 

radiation - has a high efficacy between 100 to 120 lumens per watt at the earth's surface 

(Rosenfeld et al, 1977). Table 2-1 displays the efficacy of different sources of light. As 

seen, the efficacy of diffuse skylight is higher than the widely used standard fluorescent 

(T8) lamps, as well as the more recent high efficiency T5 fluorescent lamps. 
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Table 2-1: Comparison of Light Sources (Murdoch, 2003; *Rosenfeld et al., 1977) 

1 

2 

3 

4 

5 

6 

Lamp 

Incandescent 

Tungsten-Halogen (TH) 

Fluorescent 

Fluorescent 

Direct Beam Sunlight 

Skylight on Vertical 

Type 

60 W 
Standard 

100 WT3 

40-W T8 

35-W T5 

— 

— 

Colour Temp. (K) 

2770 

2800 - 3400 

3500 - 5000 

3500 - 5000 

5800 

5800 

Initial Im/W 

14.8 

16 

94 

104 

100* 

120* 

Life (hr) 

1000 

2000 

20,000 

16,000 

- -

— 

It is important reiterate that that light itself is radiant energy. The amount of 

radiation outside of the visible spectrum contributes only heat to the interior environment, 

and hence it is undesirable for cooling-dominated commercial buildings. As such, the sun 

is an efficace source of light that may enhance health and productivity, and also offset the 

use of less efficient artificial light sources. However, excessive levels of natural light can 

cause unnecessary cooling loads in buildings and may also cause discomfort due to glare. 

2.4 Glare 

Perhaps the most important variable in the control of automated blinds, whether 

Venetian or other, is the mitigation of daylight glare. Maintaining visual comfort is 

fundamental if a shading system is to meet the demands of the user (Kuhn et al., 2000). 

This is especially important in day-lit office spaces, particularly those with computer 

workstations with visual display terminals. 

There are two important types of glare: Disability and Discomfort. Both impact 

human visual comfort in different ways. Disability glare is caused by bright light sources, 
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such as direct sun, and there is an immediate reduction in the ability to see or perform a 

visual task. Discomfort glare is a more subjective phenomenon that is caused not only by 

the brightness of the source, but by source size and contrast with other luminous surfaces. 

This type of glare may not be immediately perceived, but can lead to headaches and 

reduced work performance. Discomfort glare is considered a psychological effect, 

whereas disability glare is a physiological and immediate effect (Osterhaus, 2005). 

Due to the fact that the perception of discomfort glare is subjective, there has been 

significant work in attempting to define indices in order to predict the human response. 

Osterhaus (2005) conducted work to evaluate the existing assessment and prediction 

models, and he concluded that the available methods are of limited practical use for day-

lit offices, and that there has been no method developed to combine both daylighting and 

electric lighting into these models. 

Nazzal (2001) modified the daylight glare index formula (DGT) that was based on 

the Cornell large-source glare formula. Nazzal proposed a new evaluation method for 

daylight discomfort glare, the DGIN. As Osterhaus concluded, Nazzal also states that 

there is a need for a proper glare prediction method in order to promote visual comfort in 

workplaces. The general argument is that the previously developed glare evaluation 

methods work only for artificial sources. 

Fisekis et al. (2003) carried out field experiments to compare the original DGI to 

the modified DGIN proposed by Nazzal. This study used the surveyed response from 

occupants as well as sensors to measure the variables in the DGIN formulation, and 

compare the calculated DGIN index to the response of the subjects. The results showed 

that the method proposed by Nazzal is more effective at predicting mild degrees of glare 
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(up to 22 on the DGI scale), but it underestimates the comfort index beyond this level 

when compared to the standard DGI formulation. Table 2-2 displays the DGI scale and 

corresponding perception of comfort. 

Table 2-2: Discomfort Glare Index (DGI) Multiple Criterion Scale (Fisekis et al., 2003) 

Described Criteria D e
K

s i 9 n a t e d ' ^ o n s S c a | e 

between criteria 

Discomfort zone Just intolerable 

Just uncomfortable 

Intolerable 

Just intolerable 

Uncomfortable 

Just uncomfortable 

28 

26 

24 

Comfort Zone 

Just acceptable 

Just perceptible 

Acceptable 

Just acceptable 

Noticeable 

Just perceptible 

22 

20 

18 

16 

As mentioned by both Osterhaus and Fisekis, no universal generic formulae currently 

exist; hence the glare indices should be used as a guide only. 

A different approach was recently taken by the International Energy Agency's 

(IEA) Solar Heating and Cooling Task 31. In Subtask 'A' of Task 31, the Daylight Glare 

Probability (DGP) index was developed in order to model occupant use of lighting and 

shade controls (Ruck, 2006). This method calculates the probability that a person will be 

disturbed, instead of a fixed glare magnitude index such as presented for the DGI. In this 

particular study, the surveyed responses from users were correlated to measurements of a 

CCD camera in order to develop probabilities of discomfort. However, as this method is 

new, the authors caution that their results should be confirmed by additional assessments, 
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and that the probability model should be tested with other shading systems (Wienold et 

al., 2006). 

The work in the glare prediction field allows one to evaluate the discomfort that 

may result from a certain facade design, but it may also be used for a control application. 

The maximum fenestration illuminance threshold could be set based on the DGP or DGI 

scale, but it may also be later commissioned and adjusted to better respond to the 

occupants' needs. The minimum illuminance from the fenestration could be programmed 

to meet the minimum indoor illuminance requirement on the work-plane which, 

according to Voss (2000), is the basic requirement of a solar gain management system for 

facades. 

2.5 Fenestration 

The term fenestration refers to the arrangement, proportion and design of 

windows, skylights and door systems in a building. Fenestration is a system of 

components that include the transparent glazing material, most commonly glass; opaque 

portions such as the framing and mullions, and may include external or internal shading 

devices. In general, fenestration affects building energy use through four basic 

mechanisms: thermal heat transfer, solar heat gain, air leakage and daylighting 

(ASHRAE, 2005). 

When considering the effectiveness of a fenestration product in managing the 

energy flow from solar radiation flux, two parameters are often cited: the solar heat gain 

coefficient (SHGC) in North America, and the total solar energy transmittance or G-

Value in Europe (ASHRAE, 2005; Kuhn et al., 2000). In fact, these two quantities 
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describe the exact same phenomena: the percentage of total incident solar radiation 

transferred to the interior through the complete fenestration system. The energy flux 

includes the transmitted portion through the glazing, as well as the inward flowing 

portion that is first absorbed by the opaque components and then transferred to the 

interior via conduction, convection and radiation (ASHRAE, 2005). Because of the 

interaction of different components and materials from a large variety of manufacturers, 

determining the inward flowing component is currently not a straightforward process, and 

relies on measuring scale-models using calorimetry or fenestration empirical models 

(McCluney, 1998). 

2.5.1 Glazing 

Advances in the last 30 years in glazing technology have been quite significant. 

Specifically, spectrally selective coatings applied to glazing are capable of reflecting the 

ultraviolet and infrared radiation (McCluney, 1998). The term iow-e glass' is often used 

to describe these coatings due to the fact that as the reflectivity at a certain wavelength 

increases, the absorptance decreases (Kirchoff s law states that the absorptance and 

emissivity of a material are equal for any given wavelength and incidence angle). 

Architectural glass is mostly opaque to radiation in the longer wavelengths, such as that 

emitted by objects at room temperature. Without a coating the emissivity is near 0.86 due 

to absorbed radiation, and with a coating it can be lowered to 0.10 (ASHRAE, 2005). The 

result is a reduced U-Value of the fenestration since glass at lower temperatures radiates 

less heat to the exterior. 
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The optimum spectral selectivity of incident solar radiation is climatic dependent. 

Figure 2-2 displays the ideal transmittance of spectral selective coatings for hot and cold 

climates (ASHRAE, 2005). 

WAViiiWTM, ym 

Figure 2-2: Demonstration of Two Spectrally Selective Glazing concepts, Showing Ideal Spectral 
Transmittances for glazing intended for Hot and Cold Climates (ASHRAE, 2005) 

Spectrally selective coatings influence greatly the SHGC of a window as they can 

drastically limit heat gains, especially those in the non-visible range. However, as it was 

discussed earlier, about half of solar radiation energy is contained within the visible 

spectrum. Thus, for clear glass, it is equally important to include shading devices within 

the fenestration system in order to limit overheating. 

2.5.2 Properties of Shades and Blinds 

shade (noun) : a flexible screen usually mounted on a roller for regulating the 
light or the view through a window 

blind (noun): something to hinder sight or keep out light: as a : a window 
shutter b : a roller window shade c : Venetian blind 

- Merriam-Webster Dictionary (2005) 
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It is well accepted, from both an energy conservation and a comfort standpoint, 

that solar shading is absolutely necessary in buildings with large glazing areas. The view, 

daylight and connection to the outdoors provided by windows is desirable, however the 

fenestration product must control glare, solar transmittance and maintain thermal and 

visual comfort. Glazing alone rarely can provide this level of control, and thus some form 

of shading device is necessary (Selkowitz, 2001). 

Shading devices vary from exterior fixed objects such as overhangs, louvers, 

shutters and awnings; to roller and Venetian type blinds, which may be positioned in an 

intermediate zone such as between multiple-glazing, within a double-facade or internally 

in the conditioned space. Shading may also be provided by a building's geometry, as well 

as by other surrounding structures or geographical features. 

Extensive work to develop numerical models of the transmittance of blinds and 

shading devices has been carried out over the years. This work has mostly focussed on 

developing building energy simulation models, and the determination of the SHGC or G-

Values. The European Union JOULE programme (van Dijk et al., 1998) had the goal of 

developing detailed product information of novel glazing and solar shading devices. This 

project involved creating a database and software tool to allow designers to calculate the 

daylight distribution and to design for glare avoidance. This led to the development of the 

European software tool WIS (van Dijk et ah, 2003), which looks at slat-type solar 

shading devices and can calculate the G-value of the fenestration system. 

The Solar Shading Project at Lund University, with phase 1 focussing on exterior 

and phase 2 on interior and inter-pane devices, studied the performance of solar shading 
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devices in order to develop comparable G-values. The general conclusion was that 

external shading products are twice as effective as internal products with respect to 

reducing the peak cooling loads. A computer software ParaSol was developed, which is 

used to determine the solar transmittance properties of glazing and shading systems, with 

the blinds at fixed angles (Bulow-Htibe et al., 2001) 

Optical and thermal properties, including the G-Value and SHGC, depend greatly 

on the fenestration component as a system. The radiation exchanges are a complex 

process, especially when taking into account the variable angle-dependent transmittance 

when using Venetian blinds (Kuhn, 2006). SHGC values listed by ASHRAE for Venetian 

blinds apply for incidence angles of 30 degrees or less, and a warning is given that these 

values do not consider important azimuthal angle effects (ASHRAE, 2005). 

Klems et al. (1997) developed numerical models and conducted spatial-averaged 

measurements to determine the SHGC of fenestration with a Venetian blind layer. The 

European ALTSET project (Rosenfeld, J. et al., 2001) compared modelled and measured 

values of complex glazing, including fixed and variable Venetian blinds. They treated the 

fenestration as a system composing of layers, with the normal reflectance as the input to 

the model. They concluded that their models, used with caution, are suitable for use in 

building energy simulation tools. Breitenbach et al. (2001) explored the optical and 

thermal performance of primarily diffuse reflecting Venetian blinds integrated within a 

double-glazed window unit. 

Kotey et al. (2006) developed a simplified layer-based model of fenestration with 

Venetian blinds similar to the work of Klems, but not as computationally intensive. 
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As seen, research in the area of modelling Venetian blinds is quite extensive. 

However, the variations of Venetian blind products, the lack of detailed optical properties 

available from manufacturers, and the issues involved with the human interaction 

continue to present challenges from both a modelling and an implementation point of 

view. 

2.5.3 Venetian Blind Variations 

Venetian blind (noun) : a blind (as for a window) having numerous horizontal 
slats that may be set simultaneously at any of several angles so as to vary the 
amount of light admitted. 

- Merriam-Webster Dictionary (2005) 

This current study focuses on the control of Venetian blinds. In the literature, it is 

often pointed out that Venetian blinds offer more control over fenestration transmittance 

than their most common counterpart, roller shades (Lee et al., 2002). Venetian-type 

blinds, with angle-adjustable horizontal slats, louvers or lamallae, are often more 

accepted in commercial or institutional settings because the practicality and utility of the 

product outweigh aesthetic design criteria (French, 1941). 

There are various Venetian blind products on the market. The most common are 

extruded aluminum blinds with a concave feature. It is convention that the inward 

curving side of the Venetian slat face towards the interior. This results in an overlapping 

of the blind slats, when fully closed, so that light transmission is limited. 

The reflectance and angle of the horizontal slats are the most important 

parameters for determining transmittance, with the latter more deterministic than the 

former (Bulow-Hube et al., 2001). Whether the horizontal slats are specular reflective or 
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diffuse reflective will change the functionality of the device. For example, A. Rosenfeld 

and Seikowitz (1977) proposed the novel use of a combined system of Venetian blinds. 

Reflective blinds are positioned in the upper "beam reflecting" section of the fenestration 

unit. The intent is to have the slats orientated to reflect the sun's rays deep into the space. 

This is practical only if the blinds are positioned at the top part of the window since direct 

reflectance towards occupants' eyes is highly undesirable. 

Rosenfeld and Seiko witz (1977) also suggested that the lower 'view' portion of 

the window should be covered by light coloured, opaque Venetian blinds. The diffuse 

reflecting characteristics of this shade would allow for it to be operated as a diffuse 

emitting side-light, as presented in Figure 2-3. 

- T 
Specularly 
reflected daylight 

"View" 
Portion of 
Fenestration 

& Diffuse 
transmitted 
daylight i 

Figure 2-3: "Beam reflecting" blinds in upper portion of fenestration; Diffuse emitting side-light in 
lower "view"portion. (Rosenfeld et al., 1977) 

Other innovative horizontal lamellae venetian-blind-type shading devices have 

also been developed. These include slats with micro-prismatic features that change the 
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direction of the blind reflectance, as well as slats with W-shaped profiles, as shown in 

Figure 2-4 (Retrosolar1). 
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Figure 2-4: Innovative Retrosolar © Mico-Prismatic and W-Shaped Blind Profiles 

2.6 Blind Control 

The intent of this study is to control the 'view' portion of a Venetian blind shading 

system, described by Rosenfeld et al. (1977), where the Venetian blinds are primarily 

diffuse reflecting, and of a standard concave design. Other studies have been conducted 

for innovative control strategies of reflective Venetian blinds (McGuire, 2005), and also 

roller blinds. This review specifically looks at the issues surrounding the control of 

interior blinds, and specifically the issues related to venetian-type blind control. 

www.retrosolar.de 
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2.6.1 Occupant Behaviour / Manual Control 

It is well recognised that shading devices are capable of controlling glare, 

reducing cooling load, and providing privacy. The latter is a human factor that is 

subjective, and from an engineering perspective can be solved only by allowing manual 

user override to any shading system. 

Occupant behaviour relating to shade control has been studied by various 

researchers, especially those concerned with modelling the energy performance of 

buildings. Reinhart (2004) reviewed the closing criteria of manual operated blinds. He 

notes that different criteria have been used for a variety of energy modelling procedures. 

The approaches vary from modelling blinds to be closed when direct sunlight is present 

(Vartiainen, 2001); assumed presence of glare (i.e.: Lee and Selkowitz (1995) equalized 

glare with transmitted direct solar radiation of 94.5 W/m ); and overheating in non-air-

conditioned spaces (i.e.: Goller (1998) assumed blinds closed when the internal 

temperature exceeds 26°C). Newsham (1994) assumed that initially blinds are open at the 

beginning of the day, but closed for the rest of the day if the facade of the workspace has 

been exposed to irradiance values above 233 W/m2. 

This assumption that blinds are closed and are not again opened corresponds to 

the work cited by Bulow-Hube (2001), where it was found that occupants may not open 

shading devices once they are closed, especially if they expect to be uncomfortable. It 

was noted that these habits may be changed through education or if the occupant has 

strong environmental values. Reinhart (2003) also mentions that work by Lindsay et al. 

(1993) and Inoue et al. (1988) point to the fact that the general motivation of occupants to 

actuate blinds is to avoid glare rather than to prevent overheating. 
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Reinhart (2004) concluded that manual control is more of a stochastic nature 

when considering lighting and blind control. This led to the development of the 

LIGHTSWITCH software for evaluating electric lighting and daylight controls. 

These findings show that manually operated shading devices are quite commonly 

misused. For example, Foster et al. (2001) found that blinds may be left untouched in 

single offices for periods of weeks, or even months. Considering the potential energy 

savings and comfort improvements, especially in shared office spaces where no true 

ownership of the blind control is exerted, the potential for automated blinds is quite good. 

2.6.2 Automated Control Strategies 

Due to the fact that manual shading devices are rarely used as designed (Kuhn et 

al., 2000), the initial design assumptions of the facade and associated shading coefficients 

may not be congruent with the actual operating conditions. The anomaly between design 

and actual conditions can affect the energy consumption estimates, and thus the 

corresponding sizing of a variety of a building's mechanical equipment (Foster et al., 

2001). 

Extensive work has been done on investigating automated control strategies of 

shading devices. The challenge has been to balance the thermal requirements of the 

building with the visual and thermal comfort of the occupant, as well as the psychological 

constraint that the occupant desires a view to the exterior. Depending on the exterior 

view, the user of the shading system may have a higher tolerance to the effects of glare 

and thermal discomfort (Biilow-Hube, 2001). 

Closed-loop systems are the most prevalent type of control applications for 

Venetian blinds. A generalized schematic of this control is presented in Figure 2-5. 
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Figure 2-5: Generalized Closed-Loop Blind Control Schematic 

A modulating control based on the measured exterior illuminance or irradiance on the 

window plane was tested by Galasiu (2004). The system employed an interior sensor 

measuring the transmitted illuminance at the glazing. During a one-year monitoring 

period, in conjunction with dimmable fluorescents, it was found that electric lighting 

energy savings were greater with this photo-control application, compared to static 

blinds. 

DiBartolomeo et al. (1996) developed a closed-loop proportional control system 

that controls the daylight transmitted through Venetian blinds based on the measurements 

of a calibrated ceiling mounted sensor. The algorithm was designed to always block 

direct sun, and adjust the blind angle to maintain the design work-plane illuminance with 

daylight, if possible. The blinds were positioned at one-minute intervals. An innovative 

sun angle sensor was also developed for this study that determines the sun altitude when 

the sun is in the window plane, eliminating the need for calculations with a real-time 

clock and site-dependent commissioning. Dimmable electric lighting was used to 

supplement insufficient quantities of daylight. Lighting energy savings of 62-83% were 

realized compared to a system with no daylighting controls. Changing the time step from 

one minute to five minutes decreased lighting savings by 1-2%. The author does note, 
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however, that while the control objectives were met, visual comfort for occupants may 

not have been optimal. 

A method to calculate the correlation between interior mounted illuminance 

sensors and the daylight contribution was developed by Park et al. (2003). This method 

allows for the development of closed-loop proportional control strategies that can be used 

to adjust the Venetian blind angle in order to increase the daylight contribution to the 

work-plane. 

Kuhn et al. (2000) investigated two different control strategies for Venetian blinds 

in order to aid the planning process to assess overheating. They modelled the 

performance for the Venetian positioned on the exterior side of the glazing. When the 

facade is illuminated by the sun, the Venetian blinds were modelled to be either closed or 

positioned at the "cut-off angle to block direct beam radiation. The cut-off angle strategy 

was identified as the worst-case for overheating protection, but that it optimizes view to 

the exterior while protecting against glare from direct irradiation. Using real weather 

data, the calculated annual G-Value of the closed strategy was 0.04, compared to 0.2 for 

the cut-off strategy. 

Open-loop control for shading devices found in the literature involved roller blind 

systems. An example of open-loop control is presented in Figure 2-6 . 

Blind Plan© 
ce Set-Point 

Exterior 
Illuminance 1 

Transmittance Model Change Blind Angle 

Blind 
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Figure 2-6: Generalized Open-Loop Blind Control Schematic 
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Roche (2002) developed an open-loop control algorithm that determined whether direct 

sun was incident on the facade: an empirical formula was used to compare the measured 

exterior vertical illuminance to that of the predicted exterior illuminance for clear-sky 

conditions. The shades were automatically positioned to allow beam radiation to 

penetrate a maximum of 1 metre from the facade. 

An open-loop control system provided by Mechoshade was tested (Pedersen, 

2004) for the recently completed New York Times Building, in New York city. The 

design team constructed a one-floor scale mock-up equipped with automated roller blinds 

and dimmable lighting (Lee, 2006). Similar to the strategy implemented by Roche, the 

Mechoshade system measures exterior illuminance, with three sensors in this case, and 

determines the sky-condition compared to an ASHRAE clear-sky. Solar geometry is 

calculated and the shades are then positioned based on the maximum allowable direct 

beam penetration. 

Another example of an innovative control strategy for roller blinds involved the 

use genetic or fuzzy-logic algorithms in order to adapt the control algorithm to better suit 

user preferences (Guillemin et al., 2002). 

There were no cases of open-loop (model-based) control systems for Venetian 

blinds found in the literature review. 

2.7 Integrated Daylight and Lighting Control 

The instantaneous nature of the changes in exterior sky conditions and the 

variable transmittance of the fenestration system can cause fluctuating illuminance levels 

on the interior work-plane. It is desired to maintain or control the interior illuminance 

levels such that they do not fall below design levels, exceed a certain maxima, or disturb 
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occupants. In response to the changes in transmitted daylight, the electric lighting system 

may also have an adjustable luminous output. 

Daylight responsive lighting systems are capable of reducing lighting electricity 

consumption by 20 to 50% (IEA, 2001) due to either dimming technology or on/off 

switching. The reduced use of electric lighting can also significantly reduce the cooling 

load of the building (Tzempelikos et al., 2007). 

Ideally, an integrated shading and lighting control system would work together to 

continuously maximize the daylight contribution to the work-plane illuminance while 

minimizing the use of electric lighting. In the heating season, the maximum allowable 

daylight based on comfort requirements would be desirable; in the cooling season, the 

minimum required daylight to allow optimal dimming of perimeter electric lighting. 

These shading controls could be linked with the building control system in order to 

determine the state of the HVAC demand, the occupancy, and the scheduling. 

2.7.1 Electric Lighting Control 

Electric lighting controls have been available on the market for almost two 

decades, but their application has been limited (Lee, 2006; Escuyer, 2001). In order for 

the transmitted daylight into an office space to make a contribution to energy efficiency, 

the appropriate control of the electric lighting system is essential (Littlefair, 1998). 

Fluorescent lighting is predominant in the commercial building sector due to its 

high efficacy (Murdoch, 2003), as was seen in Table 2-1. As fluorescent lamps require 

high voltages during start-up, ballasts are required for their operation. High frequency 

electronic dimmable ballasts are a technology that has been replacing conventional 

magnetic ballasts as they are more efficient and operate at higher frequencies, resulting in 
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less stroboscopic effects (To et al., 2002). As an added advantage, they may also be used 

to dim the luminous output of the lamp using pulse-width modulation. 

Dimmable ballasts that receive an analogue control signal, such as 0-10V, were 

the first on the market and are still prevalent. The advent of digital controls and the 

standardized Digital Addressable Lighting Interface (DALI) open-protocol has resulted in 

a more flexible and robust technology. DALI controlled ballasts receive a digital 8-bit 

signal which corresponds to a standard percent reduction in luminous output. This allows 

for various DALI capable lighting fixtures to consistently dim at the same rate and 

magnitude (Pflaum, 2001). 

The work-plane illuminance is the basic criterion that is used for lighting control. 

The amount of electric lighting needed to compensate the daylight contribution is relative 

to the relationship between the photo-sensor position used for control and the lighting 

fixture arrangement and properties (Park et al., 2003). Most applications of interior 

daylight-linked lighting control use an interior photo-sensor and a mathematical 

relationship to determine the work-plane illuminance (IEA, 2001). 

2.7.2 Target Work-Plane Illuminance 

The design illuminance level to be maintained on the work-plane is dependent on 

the needs of the occupants. This quantity may differ between individuals and their tasks, 

and also whether the source of light is artificial or natural. 

Love (1998), in a survey of offices, found that occupants may be satisfied with 

lower illuminance levels provided by daylight than those required by electric lighting 

design. Another field study of office workers by Escuyer (2001) found that the preference 

of illuminance varied greatly, ranging from 100 - 600 lux. For those working primarily 
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on computers, low illuminance levels (100-300 lux) were preferred. In a case study of the 

New York Times building, the work-plane illuminance set-point when using occupant 

adjustable dimmable electric lighting was 400 lux, even though the design set-point range 

was 484-538 lux (Lee, 2006). 

Dimmable lighting that allows user control may be able to overcome the design 

ideal of fixing the work-plane illuminance at a single value. Galasiu (2006) conducted an 

extensive literature review on occupant satisfaction with control systems in day-lit 

offices. She states that fully automated lighting control systems have low occupant 

acceptance, and thus allowing individual override is preferable. Escuyer (2001) also 

concluded that the ideal lighting control system for office environments, and from a 

comfort point of view, should allow the electric light illuminance to be chosen and 

changed throughout the day. 

These studies show that a set work-plane illuminance is not required for occupant 

satisfaction. On the contrary, just like the natural cycle of exterior light levels, the 

occupant should be allowed to change the illuminance levels throughout the day. 

Increasing the use of natural light, while allowing control and user input, could satisfy the 

illuminance levels desired by the occupant. 
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Chapter 3: Numerical Model of Venetian Blind 
Transmittance 

3.1 Introduction 

A numerical model based on radiosity theory (Murdoch, 2003) was created and 

programmed in MathCAD 200H (PTC Inc.2) software. This model was developed in 

order to predict the transmittance of the fenestration system - including glazing and blind 

- for clear sunny days. The important input parameters are geographic location, facade 

orientation, sky conditions and blind and glazing properties. The model may be used for 

standard Venetian blinds and glazing systems, and at any geographical location and 

facade orientation. However, the validation was carried out only with one type of 

motorized Venetian blind system. 

3.2 Blind Properties 

The model developed for this study was specifically created for standard concave 

Venetian blinds with horizontal slats that have primarily diffuse reflecting surfaces. 

Physical blind properties required for this model include the slat width and separation 

distance between slats, as well as the average reflectance of the slat throughout the visible 

wavelengths. 

2 www.ptc.com 
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3.2.1 Blind Reflectance 

The 'view' portion of the fenestration requires that shading devices are diffuse 

reflecting into the interior space (Rosenfeld et al., 1977). Thus, diffuse reflection was 

only considered in this model, and the surface was considered to be ideal Lambertian. 

This assumption was made in order to simplify the calculation procedure, and has been 

used by others when considering total solar radiation blind transmittance (van Dijk, 

2003). 

The average reflectance through the visible wavelengths may be calculated for a 

given blind surface. For example, the measured reflectance of the blind slats used in this 

study for experimental validation is presented in Figure 3-1. 
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Figure 3-1: Spectral reflectivity of a grey Venetian blind slat (M. Collins) 
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The average spectral reflectance calculation considers the spectral power 

density P(X), the spectral sensitivity of the eye, V{A), as well as the spectral reflectivity 

of the surface p(A), and is calculated as follows: 

770«m 

\p(X)-P{X)-V(X)-dX 

ravg 
380«m 

nOnrn (3-1) 

\P{X)V{X)dX 
380nm 

The average specular reflectance at varying incidence angles for the experimental 

Venetian slats is shown, as a percent of total reflectance, in Table 3-1. As seen, the 

specular reflectance at normal incidence is quite small, and increases with incidence 

angle. Due to this, the diffuse reflectance assumption will not be as valid when the blind 

is not positioned at the 'cut-off angle, or near normal to the sun rays (See Figure 3-2). 

Table 3-1: Average blind slat specular reflectance for varying incidence (M. Collins) 

Incidence 
Angle (Degrees) 

0 
30 
45 
60 

Average specular reflectance 
(% of Total) 

0.9 
3.4 
3.0 
2.2 

3.2.2 Blind Geometry and Cut-Off Angle 

When direct irradiance is incident on the facade, the 'cut-off angle is the 

minimum angle that the blind may be opened while still blocking direct beam radiation 

(ASHRAE, 2005). Figure 3-2 presents a side-profile of two opposing Venetian blind slats 

positioned to be in the cut-off angle relative to the sun. The width of the slat, w, 
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separation distance, s, and blind slat angle, (3, are shown. The profile angle, d, of the sun 

must also be calculated. (See Section 3.4 for profile angle discussion) 

Figure 3-2: Blind geometry nomenclature 

The relation between s, w, d, and P may be determined using the Sine Law: 

/? = sin - i cos( d)• — 
w 

•d (3 -2 ) 

The cut-off angle is to be used as the minimum blind angle, however if 

restrictions exist on the maximum allowable interior blind illuminance, higher blind 

angles can be calculated and implemented in order to ensure user preference or visual 

comfort. 

As shown in Figure 3-3, the calculated blind angle,/?, for the experimental blinds 

approaches zero degrees as the profile angle, d, approaches 37.5 degrees. In order to 

maintain visual contact with the exterior while still blocking direct luminance, the 

minimum slat angle may be set to zero degrees, essentially horizontal, for high profile 

angles. 
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Figure 3-3: Venetian slat cut-off angle, /3, as a function of profile angle, d, for Venetian blind used 
in experiment 

Negative blind angles would result in views of the sky, which is also undesirable for glare 

purposes (Bulow-Hiibe, 2001), and are thus avoided. 

3.3 Glazing Properties 

The glazing is represented in this model by its diffuse and direct beam 

transmittances, respectively xW(j and xwb. The direct beam transmittance of glazing is 

dependent on the solar incidence angle, whereas most manufacturers list only normal 

incidence transmittances (ASHRAE, 2005). As this is the case, the properties of the 

glazing used for the validation of the model were measured experimentally (See Section 

4.5). A function with respect to the solar incidence angle was derived from a curve fitted 

to experimental data, and then implemented in the model. This is displayed in equation 

3.3. 
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rwb = -0.294 • 6>3 + 0.435 • B2 - 0.258 • 9 + 0.769 (3-3 ) 

where, 9 is the solar incidence angle in radians. Measured data for the transmittance of 

the glazing is plotted in Figure 4-11. 

3.4 Solar Geometry 

The control of the slat angle is highly dependent on the position of the sun. Also, 

predicted sky illuminance is also a function of sun position. The calculation procedure for 

determining the solar coordinates is well defined (Duffie et al, 2006) and depends on the 

latitude and longitude of the geographic location. 

As mentioned earlier, the defining parameter for determining the minimum blind 

angle is the solar profile angle, d. The profile angle is defined as the projection of the 

altitude angle on the vertical plane perpendicular to the building facade (Duffie et al., 

2006). This is calculated as in equation ( 3-4 ), where a is the solar altitude and y is the 

solar surface azimuth. 

tan(a) 
d = tan" (3-4) 

cos(/) 

The solar surface azimuth calculation requires that the azimuth angle of the fa?ade is 

known and inputted into the model. Figure 3-4 displays the parameters used to define the 

solar position relative to the surface (facade) normal. 
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Perpendicular vertical plane 

Figure 3-4: Solar Geometry Nomenclature 

3.5 Exterior Clear-Sky Illuminance - Modelling 

In order to model the transmittance of the fenestration system on a clear day, the 

components of the sky radiance must be separated and used in the calculation. The goal 

of calculating the components of the illuminance, diffuse and direct beam, on a clear day 

was to first evaluate the effectiveness of the sky illuminance model, but also to determine 

the feasibility of using a single exterior sensor to determine whether the sky is in fact 

clear or not. The assumption is that if a modelled clear sky vertical illuminance is 

significantly higher than the actual measured value, then the sky may be considered 

overcast and the blinds subsequently opened. 

35 



3.5.1 Sky and Solar Illuminance 

Exterior diffuse vertical illuminance and direct normal beam illuminance were 

estimated using a combination of the CIE Clear Sky Model (Duffie et al., 2006) and the 

ratios of horizontal diffuse illuminance to vertical diffuse illuminance developed 

experimentally by Perez (Perez et al., 1990). 

The CIE model predicts the horizontal sky illuminance using the following 

formula: 

Ehc = 1000 • [A + B sinc {a)\ lux ( 3-5 ) 

where for clear-sky conditions, the constants are displayed in Table 3-2. 

Table 3-2: CIE Sky Illuminance Model Constants (Murdoch, 2003) 

Sky Type 

Clear 

Partly-Cloudy 

Overcast 

A 

0.8 

0.3 

0.3 

B 

15.5 

45 

21 

C 

0.5 

1 

1 

For estimating the direct normal solar illuminance, the solar illuminance constant, 

Esc, is used. This value is equal to 127.5 klux. The extraterrestrial illuminance, for any 

given day, is thus adjusted for the slightly elliptical shape of the earth's orbit around the 

sun (Murdoch, 2003). Equation ( 3-6 ) displays this result: 

Ext ~ Esc' 1 + 0.034 cosf— -(w-2) 
(,365 

(3-6) 

Where n is the Julian day number. 

Finally, atmospheric attenuation is accounted for and direct normal solar 

illuminance at sea-level, E(jn, may be expressed as: 
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Edn=Exl-e-cm (3-7) 

where c is the optical atmospheric extinction coefficient, with a value of 0.21 for a clear 

sky (0.8 for a partly-cloudy sky), and m is the ratio of the mass of atmosphere in the 

actual earth-sun path to the mass when the sun is directly overhead at sea level. It is 

defined as the inverse of the sine of the solar altitude angle: 

™ = - r - - (3 -8 ) 
sm(cr) 

3.5.2 Horizontal to Vertical Illuminance Ratio 

The relationship between the horizontal and the vertical clear-sky illuminance 

changes throughout the day, and throughout the year. The Perez (1990) model was 

developed to extrapolate the components of sky illuminance and irradiance from 

measurements of global horizontal and direct beam irradiance. In place of measurements 

of global and direct beam, calculated values from the CIE Clear Sky Model were used 

and the ratio of diffuse horizontal to diffuse vertical calculated. 

The ASHRAE Fundamentals Handbook (2005) also contains diffuse horizontal to 

diffuse vertical irradiance ratios, Y. The formulation for this ratio is defined in equation 

(3-9). 

Y = 0.55 + 0.437cos(0) + 0.313 cos2 (0),i/cos(0) > -0.2 

F = 0.45,(/rcos(6')<-0.2 ( " ' 

However, unlike the ratios determined using the Perez method, the ASHRAE ratios are 

location and elevation independent. The values of the two different methods differ. 

Figure 3-5 displays the ratios of vertical to horizontal illuminance for March 28 and May 

1, comparing both the ratios of Perez and those from ASHRAE. 
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Figure 3-5: Vertical to Horizontal Ratios from ASHRAE and Perez Model 

Due to the fact that they consider the site location and elevation, the Perez ratios were 

used within the exterior illuminance model rather than the ASHRAE ratios. 

3.5.3 Reflected Ground Light 

Illuminance due to light reflected from the ground was considered in this model, 

and is a contribution to the total vertical illuminance on the fagade. The horizontal 

illuminance on the ground, Eg, was calculated by including the contributions from the 

horizontal sky illuminance, Ehc, and the direct normal beam illuminance, Edn, as follows: 

Eg=Ehc+Edn.sm(a) (3-10) 

where a is the solar altitude. 

As the ground is assumed to be a horizontal flat diffuse-emitting surface infinitely long in 

both horizontal directions, the view factor between two surfaces at right angles is 0.5 

:00 8:00 10:00 12:00 14:00 
Solar Time 

16:00 18:00 20:00 
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(Murdoch, 2003). The resulting illuminance on the vertical surface, Ewg, from the 

illuminated ground is given by: 

E =
ps'Es ( 3 _ n ) 

where p is the ground reflectance. The ground reflectance was set at 0.2 (concrete) 

when no snow cover was present, and 0.7 when there was snow. 

3.6 Radiosity Theory 

Radiosity theory is a method for calculating the transfer of radiant energy between 

surfaces. The analysis may also be referred to as multiple-bounce flux transfer (Murdoch, 

2003). The basic method assumes diffuse reflecting surfaces and the calculation of the 

form, or view, factors between surfaces is required. The basic flux transfer in a diffuse 

enclosure is: 

M^M^+p^MjF, ( 3 _ 1 2 ) 
j 

where: 

• Mj is the final luminous exitance of surface / (lux). 

• Mj 0 is the initial luminous exitance of surface i (lux). 

• Pj is the diffuse reflectance of surface /. 

• Mj is the final luminous exitance of surface/. 

• Fj_j is the view factor between surfaces/ and /. 
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Essentially, the sum of the inter-reflections from all surfaces is considered, and the final 

luminous exitance, Mj, of each surface may be calculated. 

3.6.1 View Factor Calculation 

The view factor calculations used in this model are based on Hottel's Crossed-

String Method (Kreith, 1986). Referring to Figure 3-6, the blind system was simplified to 

be composed of a series two overlaying Venetian slats. Four surfaces were assumed: the 

two slats, and the interior and exterior openings. 

Figure 3-6: Hottel's Crossed-String Method employed for Venetian blinds 

The general form of the view factor equation, with L referring to surface length, is 

presented in equation ( 3-13 ). 

_, ad + cb-ab — cd 

F>-> = —L, ( 3 - ' 3 > 

The position of the blind slats with respect to one another changes when the slat 

angle is adjusted. As such, the view factor must be calculated for each blind angle 

increment. 
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3.6.2 Blind Illuminance 

In this model, the illuminance of the Venetian slat was calculated based on the 

contributions of the transmitted diffuse clear sky illuminance, Evc, the ground reflected 

illuminance, Ewg, and the component of the beam radiation, E$n, normal to the slat 

surface. The slats were assumed to reflect incident radiation as an isotropic diffuse 

surface (i.e.: equal properties in all directions). At the cut-off angle, direct incidence is 

near normal. However, it has been noted from other research that at greater incidence 

angles, such as when the blinds are maintained at horizontal, the specular reflectance is 

higher and the diffuse surface assumption may lead to inaccuracy (Kuhn et al., 2000). 

Figure 3-6 showed the modelled blind surface layout. It was assumed that the 

glass, surface 3, was adjacent to the blind slats, / and 2, and view factors were calculated 

depending on the calculated blind angle, p. Similarly, view factors were calculated 

between the lower slat, 1, and the upper slat, 2, and also between the two slats and the 

interior open edge of the Venetian blind, surface 4. The view factor calculated between 

surfaces 3 and 4 allows for the calculation of the transmittance of diffuse exterior 

daylight directly into the room. 

The initial equivalent source exitance of surface 3 (window) was modelled as 

being the diffuse sky and ground reflected daylight transmitted through the glazing. The 

initial source exitance of surface 1 is due to the reflected incident direct beam rays, 

transmitted through the glazing. Figure 3-7 displays the initial sources. 
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Figure 3-7: Initial Equivalent Source Exitance of Blind Surfaces 

Numerically, the initial exitance terms are defined in equations (3-14) and (3-15 ). 

Mi,o = *wb • Edn • cos(0,to ) • Kfr(me • Kslat ( 3-14 ) 

Mifi=(Evc+Ewg)-Twd (3-15) 

where Bsiat is the incidence angle from the slat surface normal, and xwd and Twb are the 

diffuse and beam transmittances, respectively, of the glazing. The correction factors, 

Kframe and Ksiat, are used to account for the shading from the window frame, and also 

when the slats are not fully illuminated. Both of these factors are the ratios of the 

illuminated to shaded areas of the blind slat, and are explained in section 3.6.3. 

Assuming that the reflectance of the glazing (surface 3) is zero, the flux transfer 

equation ( 3-12 ) can be expressed in matrix form as: 

"M," 

M2 

M3 

_M4_ 

X,o~ 
0 

M3fi 

0 
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Since the system is not exactly an enclosure, further adjustments to the formulation must 

be made. The final exitance of surface 4, M4, is the actual illuminance on the interior 

plane of the blinds, directed towards the interior space. The reflectance of this surface 

was set to equal unity, and no reflected illuminance from surface 4 was added to the other 

surfaces. Accounting for this adjustment, and knowing that the view factors Fu are equal 

to zero, the equation can be reduced to: 

~MX~ 

M2 

M 3 

- M 4 . 

= 

Xo" 
0 

M30 

0 

+ [M, M2 M J MA\ 

0 

A -Fi-i 

PlFX-i 

0 

P2~F2-X 

0 

Pl-F2-3 

0 

0 

0 

0 

0 

F*-x 
F*-2 

^ 4 - 3 

0 

(3-17) 

Equation (3-17) can also be simplified as follows: 

I-

Px'FX-2 Px'FX-3 0 

0 

0 

0 

Pl'F2-\ 
0 

F4-X 

0 

0 

FA-2 

P2 "^2-3 

0 

^ 4 - 3 

TM , _ 
M2 

M3 

l M 4 . 

X,o" 
0 

M3fi 

0 

where the 4 x 4 identity matrix is denoted as /. The solution is thus: 

M2 

M 3 

PrFi-2 -Pi-F\-s ° 

-P2'F2~\ 

0 

- ^ 4 - 1 

1 

0 

-FA-2 

~P2'F2-3 

1 

" ^ 4 - 3 

0 

0 

1 

M »,o 

M 3,0 

(3-18) 

( 3-19 ) 

By substituting the reflectance for all surfaces as the slat reflectance, psIat, the solution of 

final illuminous exitance of each surface, as in equation ( 3-19 ) may be solved by matrix 

inversion. Particularly, the solution of the exitance of surface 4, M4, is the estimated 

illuminance of the interior plane of the Venetian blinds. 
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3.6.3 Correction Factor due to Shading 

Two correction factors were applied, as was seen in equation ( 3-14 ), due to 

shading from both the window frame and the upper Venetian slat. The assumption that the 

Venetian blind is directly adjacent to the glazing does not account for possible shading 

due to the window frame and the gap between the Venetian slat edge and the glazing. 

Furthermore, the upper Venetian slat will shade the lower slat when the blind angle is not 

positioned exactly at the cut-off angle. Correction factors were used in order to simplify 

the calculation procedure. That is, when the slats are not fully illuminated from direct 

beam illuminance, it was decided to reduce the total slat illuminance, ES]at, by the 

percentage of the area that is shaded. 

Figure 3-8 shows a plan view of a single Venetian slat. The distance between the 

glazing and the Venetian blind, Dg, and the shaded length, Ds, that is not illuminated from 

direct beam illuminance, are defined. The total slat length, Lsiat, is also shown. 

Window 
Frame 

Lslat 

Figure 3-8: Plan view of Venetian slat, showing shaded distance, Ds 
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The correction factor, Kframe, is defined as: 

K — 1 — 
- ^ frame ~ l 

D. 
( 3-20 ) 

-'slat 

where: 

D. = • 
D„ 

tan r+-
71 (3-21) 

Likewise, the correction factor for shading due to the upper slat, Ksiat, must be defined. 

Figure 2-1 shows the side view of two slats. The shaded distance in this case is defined as 

x. The separation distance between slats, s, is also shown. 

Figure 3-9: Lower Venetian slat shaded by upper slat 

The correction factor, Ks]at, is defined as: 
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Kslat=l-
w 

(3-22) 

where w is the slat width and the shaded distance, x, is defined as a function of the profile 

angle, d: 

s • cos(<i) 
x = w-- ( 3-23 ) 

sin(d + P) 

The application of these shading correction factors eliminates the need for 

extensive view factor calculations. This is exemplified in Figure 3-10, where two parallel 

horizontal Venetian slats are shown from the view looking towards the glazing. The 

bottom slat is shaded by the frame, as was shown in Figure 3-8. To use the view factor 

method, the system is divided into five surfaces, with surface 5 being an intermediary 

surface. 

Upper Slat 

4 

' 5 

J ™ ™ ™ - Lower Slat 

Un-shaded Area 
D« 

Lslat 

Figure 3-10: Shaded slat due to frame: View factor calculation 

The system of view factor equations (Incropera et al., 2002) is the following: 

7,-2 = U^zAV, 
(Lslal-Ds) 

(3-24) 
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As = i1^1 (3-25) 

1 + ^ -
D. 

/ » = • 

1/2 
{ , Y 

1 + 
vA (3-26) 

And from the reciprocity theory: 

/ ;_3=/ i - S - /s -3 ( 3 - 2 7 ) 

Taking the weighted average of the contribution to each section, in order to have a 

factor that averages the contribution from surface 1 to the total illuminance of the bottom 

side of the upper slat, gives the following: 

factor = / l-2 ' {Ls,°> ~D*) + f^'D> ( 3 _ 2 8 ) 

Of course, averaging the value of illuminance such that it is reduced by the above 

factor is also a simplification of the process. The alternative would involve discretizing 

the entire surface and integrating the radiosity calculation across the blind slat, which was 

considered overly extensive for this application. 

The equivalent correction factor, Kframe, is compared to the result of the view 

factor calculation in Figure 3-11. The result shows that the percent reduction, Kframe> 

leads to a similar result to that of the calculation using the view factor method. 
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Figure 3-11: Comparison of correction factor Kframe to View Factor Calculation 

Similarly, the view factor calculation method for Ks]at would involve substituting Ls]at 

with the slat width, w. 

3.7 Numerical Model 

The numerical model was employed with time-steps (5-minutes) chosen to 

correspond to the experimental setup. Selection of the time-step implemented on the 

control algorithm is important in order to ensure that direct sun is always blocked, 

dependent on the solar profile angle, d. For this experiment, the minimum blind angle 

increment was 10 degrees due to physical limitations of the blind system, discussed in 

section 4.3. In order to ensure a correct time step, the rate of change of the required blind 

angle with respect to time was calculated. For example, for April 20th the required 

calculated blind angle is plotted in Figure 3-12. 
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Figure 3-12: Blind cut-off, rate of change for April 20 

The maximum derivative of the blind angle with respect to time throughout the range is 

1.98 degrees per minute. This maximum rate is similar throughout the year. Thus, the 

blind angle must be incremented 10 degrees at a minimum time-step of five minutes. 
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Chapter 4: Experimental Setup 

4.1 Introduction 

In order to test the transmittance model that was developed, a full scale 

experiment was conducted. This section describes the experimental setup, the equipment 

used and the procedure of measurement. 

4.2 Zone 

The experiment was undertaken in the top floor of the Concordia University 

Engineering and Visual Arts building in Montreal, Canada (45°30' N, 73°36' W). The 

facade surface azimuth is approximately 20 degrees west of south, and there are no 

external obstructions to direct solar irradiance (See Figure 4-1). 

Figure 4-1: Concordia University EV Building, Montreal, Canada 
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One glazing unit of the research lab facade was isolated by enclosing the area 

with white drapes. A second glazing unit in the zone was blacked out. The zone may be 

considered as being a small office space with one window. The dimensions of this area 

are 2.2m perpendicular to the facade, by 1.8m wide and 3m high. Figure 4-2 displays the 

interior facade of the research lab, without the divisions between windows. 

< .-'•: Zone——-> 

Figure 4-2: Venetian blind section 

4.3 Venetian Blind 

Somfy Canada Inc.3 provided Concordia University with a motorized Venetian 

blind to be used in the control experiments. The Venetian blind was manufactured to 

specified dimensions and thus covers the complete glazing unit and is well aligned with 

the window frame. The distance between the glazing and the blind is approximately 15 

cm. The individual slat width, w, is 47 mm, and the separation distance between the slats, 

s, is 44 mm. The Venetian blind used for this experiment is shown in Figure 4-3. 

3 www.somfy.com 
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Figure 4-3: Dimensions of Experimental Venetian Blind 

The blind is actuated by a 24 VDC powered motor. The motor action spools the 

strings joining all slats. In the upward direction, the slats fully tilt downward, and are 

subsequently lifted towards the motor. The inverse is true for the downward direction. As 

such, a change in direction of the blind motor action changes the tilt angle, p\ of the 

horizontal slats. 

The slats are grey and, as was shown in Figure 3-1, the slat normal reflectance is 

highly diffuse in the visible range. Table 3-1 showed the average specular reflectance, as 

a percent of total, in the visible range and at varying incidence angles. 

4.3.1 Venetian Blind Automation 

The motorized Venetian blind was controlled using the relays of an Agilent 

34907A data acquisition and control unit (DAQ), as shown in Figure 4-4. An algorithm 

was programmed in a PC running the control software VEE Pro. The algorithm (Figure 
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4-5) calculated the real-time solar geometry and the appropriate blind cut-off angle on a 

continuous loop running every five minutes. 

A 24VDC power supply was connected in series with the relays, as well as the 

DC blind motor. Supplying the blind motor with power involved switching the relay from 

open to closed state. The maximum switching speed of the relays was the limitation for 

the minimum pulse size that could be sent to the motor, and hence the smallest blind 

angle increment. The result of the maximum switching speed of the control unit and the 

physical properties of these particular Venetian blinds was a minimum blind increment of 

approximately 10 degrees. 

Figure 4-4: Venetian Blind Control Setup 

The purpose of the control was to test the transmittance model while continuously 

implementing the cut-off angle, and to determine the corresponding interior blind 

illuminance levels throughout the day. In order to maintain a consistent control of the 
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implemented blind angle and to simplify the control structure of the algorithm, the blinds 

were closed completely at each time step, and the appropriate blind angle was then 

implemented to the nearest 10 degrees. This eliminated the need for a position memory 

within the control algorithm loop. 

Puls$ Size = 
10' 

Time Delay of 
5 minutes 

Calculate 
Profile Angle 

Pulse = 
Roof(P) / Pulse Size 

Record Data: 

Figure 4-5: Experimental Cut-Off Angle Algorithm 
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4.4 Dimmable Electric Lighting 

Canlyte Inc.4 donated a dimmable fluorescent luminaire to Concordia University 

for use in the experiments, and this was installed within the zone, parallel to the facade 

(Figure 4-6). This luminaire contains two 4-foot fluorescent T5 lamps, each with a full-

power consumption of 28 W. The ballasts are capable of dimming the lamps from 100% 

to 1% using the DALI (Digital Addressable Lighting Interface) protocol. 

Figure 4-6: Lightolier Dimmable Fixture with Integrated Photocell 

This luminaire maintained the zone work-plane illuminance at a maximum of 400 

lx with no other lighting sources, and has an integrated photocell that measures the 

upward reflected illuminance. The set-point for the photocell was set to the maximum, so 

that the illuminance would not drop below 400 lux. The design illuminance for the 

Concordia EV Building is 375 lux. 

The luminaire was positioned at a height of 2.5 m from the ground, and 1.7 m 

from the facade. At this height, the integrated photocell senses a radius of 1.4 m a t 

ground level (The angle of measurement from the sensor is specified to be 35°). Thus, the 

4 www.canlyte.com 
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window illuminance was not in the sensor's line of view. The experimental setup is 

shown in Figure 4-7. 

Exterior 

Photosensor 

V 

3m 

^ 

2.2 m 

Figure 4-7: Sensor Placement and Experimental Setup 

The total measured luminaire power consumption is plotted in Figure 4-8 for 

dimming values from full-scale to 1% of the luminous output. A digital value is sent to 

the ballast (254 for 100%, and 85 for 1%) via the integrated photocell, and using the 

DALI communication protocol. 
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Figure 4-8: Luminaire Power Consumption versus DALI digital dimming value 

Since all DALI compliant devices dim their luminous output at the same rate (Pflaum, 

2001), the power consumption versus percent luminous flux can be calculated. This is 

shown in Figure 4-9. 

20 40 60 80 

Percent Luminous Flux (%) 
100 

Figure 4-9: Luminaire power consumption versus percent luminous flux output 
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The dimming signal sent to the ballast was recorded using in-house software 

provided by Tridonic Inc.5, the manufacturers of the photocell. The integrated photocell 

of the luminaire does not provide data over the DALI bus, and cannot be queried like 

other DALI devices. Instead, the software queries the ballast level using the DALI bus, 

and the digital value is recorded with time. The values of the dimming level of the ballast 

were recorded at 3-minute intervals, and the digital values were converted to the 

corresponding power value using the measured power profile shown in Figure 4-8. A 

handheld photosensor was used to verify that the work-plane illuminance was maintained 

at a value greater than 400 lux. 

4.5 Sensor Layout 

In order to quantify the transmittance of the fenestration, exterior and interior 

photocells and pyranometers were installed as shown in Figure 4-7. Vertical illuminance 

measurements were taken using two Li-Cor LI-210 (Figure 4-10) photometric sensors: 

one positioned on the exterior of the building facade, and the other placed near the 

interior plane of the Venetian blinds. The sensors have a spectral response from 380nm -

700 nm and are pre-calibrated against a standard lamp using 683 lumens per watt as the 

value of spectral luminous efficacy at a wavelength of 555 nm. The accuracy of these 

sensors is 5% for most light sources with a maximum deviation from linearity of 1% up 

to 100 klux. The sensors are cosine corrected for incidence angles up to 80 degrees. 

The Agilent DAQ was used to record the signal from the sensors. The calibrated 

voltage measurement was programmed into the VEE Pro control algorithm as the final 

5 www.tridonicatco.com 
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action in the control sequence so that the readings were taken after the blind was set to its 

position. 

Figure 4-10: Li-Cor 210 Photometric sensor (Li-Cor Biosciences ) 

4.6 Glazing Transmittance 

To determine the transmittance of the glazing, a photocell was placed on the 

interior side of the glass. The ratio of interior illuminance to exterior illuminance, when 

the solar irradiance levels were below 100 W/m2, was used for the diffuse transmittance 

of the glazing. The average value from 1900 one-minute measurements was found to be 

0.62, with a standard deviation of 0.02. 

Figure 4-11 displays the recorded data for the beam transmittance when irradiance 

values were greater than 300 W/m2. Note that the incidence angles are relative to the 

window surface normal. 

6 www.licor.com 
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Figure 4-11: Measured glazing direct beam transmittance, TWb 

60 



Chapter 5: Experimental Results and Model Verification 

5.1 Introduction 

The experimental objective of this study was twofold: 

1) Compare the modelled prediction of the blind transmittance for clear-sky 

conditions to the actual measured values. The purpose was to evaluate the 

Venetian blind transmittance model, and whether it would be sufficient for 

controlling the blinds on clear days. 

2) Measure the electrical power consumption of the luminaire installed within the 

test zone. The objective was to quantify the electrical energy reduction of using 

daylight controlled luminaires along with controlled Venetian blinds. These 

experiments were conducted on clear days with the blinds controlled to be at the 

cut-off angle. 

5.2 Clear-Sky Model 

The clear-sky model described in section 3.5 combined the CIE clear-sky model 

with the vertical to horizontal sky illuminance ratios developed by Perez (1990). The 

direct beam, sky and ground reflected daylight on the vertical facade was modelled for 

each day that experiments were carried out at the Concordia University EV-building in 
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Montreal. These modelled values were compared to the measured values of vertical 

illuminance that were taken at the exterior of the building. 

The comparison between modelled and measured values for a clear day with 

dispersed clouds on January 7, 2007 is presented in Figure 5-1. The agreement between 

the modelled and measured values was quite good, especially when the facade was 

directly illuminated by the sun. Since there was snow cover on this day, it can be seen 

that the modelled value depends on the effect of ground reflectance. 
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Figure 5-1: Modelled exterior vertical total hemispherical illuminance compared to measured, and 
the effect of varying the modelled ground reflectance for January 7, 2007 

The reflectance of fresh snow is about 0.75 (Murdoch, 2003), and for the model 0.7 was 

used to account for the urban landscape. Other values of reflectance were used as a 

comparison. The maximum error occurred in the early morning, due to shading from a 

nearby building, and in the evening when the sun was setting behind Mont Royal. The 
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percent error for various times throughout the day is displayed in Table 5-1. Sensor error 

Table 5-1: Error between modelled and measured values (January 7, 2007) 

Time 

9:14 
9:59 
10:59 
11:59 
12:59 
14:54 

p = 0.2 
21.7 
18.1 
21.7 
15.5 
15.3 
1.8 

Percent Error 
p = 0.7 

11.7 
7.6 
12.0 
5.6 
6.3 
9.7 

p = 0.8 
9.7 
5.5 
10.0 
3.6 
4.5 
11.3 

Modelled and measured values of exterior vertical illuminance for a clear day on 

March 28, 2007 are presented in Figure 5-2. This data shows very good agreement 

between the modelled and measured values. In this case, there was no snow cover and the 

ground reflectance was set to 0.2. 
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Figure 5-2: Modelled exterior vertical total hemispherical illuminance compared to measured for 
March 28, 2007 

One major observation was the reduction in total illuminance when the sun was 

parallel with the building facade. This can be attributed to the reduced reflectance from 

neighbouring buildings, as their facades were not directly illuminated. Error from the 

sensor cosine correction is not expected to be a cause of this decrease as the luminaire 

photocell also reads a decrease at this time (Figure 5-13). This is further exemplified for 

data collected on May 3, 2007 (Figure 5-3), where the morning was clear and the large 

increase when the sun passes in front of the building facade can be easily seen. In order to 

account for reduction in the modelled values, the ground reflectance was reduced to zero 

when the solar surface azimuth was between 85 and 95 degrees. 
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Figure 5-3: Modelled exterior vertical total hemispherical illuminance compared to measured, 
showing the effect of the sun passing in front of the building, May 3, 2007 

The changing value of ground reflectance would be difficult to implement in a 

model-based control algorithm. The goal is to use the modelled exterior illuminance to 

develop thresholds for when the sky is clear. Since the illuminance from ground 

reflectance is only a small part of the total illuminance, it is expected that these thresholds 

can still be developed. 
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5.3 Fixed Blind Angle: Model Verification 

Experiments were conducted to record the exterior vertical illuminance and the 

interior blind illuminance for fixed slat angles. Two separate cases were studied: 

1) Clear-sky winter, with slats at 40 degrees; 

2) Clear-sky spring, with slats at 70 degrees. 

5.3.1 Clear-Sky Winter, Fixed Slat: 40 degrees 

Measurements were conducted during a sunny day on January 7, 2007, to quantify 

the transmittance of visible light through the studied fenestration system with the 

Venetian blind slat angle set at 40 degrees. This angle satisfies the required cut-off angle 

for the majority of the day, and was chosen as a case where higher transmittance would 

be desired for the heating season. Measurements were taken of the exterior vertical 

illuminance and irradiance, as well as the interior transmitted vertical illuminance and 

irradiance on the interior side of the Venetian blinds. The sampling period was one 

minute. Figure 5-4 displays the modelled and measured results of interior blind 

illuminance for this day. 
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Figure 5-4: Interior Blind Illuminance, Slat Angle = 40°, ground reflectance = 0.7 (Jan. 7, 2007) 

This data shows that the modelled and measured values are in reasonable agreement 

when the actual sky conditions were clear. The absolute error at the peak illuminance is 

in the order of 1,500 lux. Measurement error is +/- 770 lux at this time. Since the actual 

recorded exterior illuminance was slightly higher than that modelled (Figure 5-1), a 

comparison of the measured and modelled transmittance of the system was carried out. 

Figure 5-5 displays a comparison between the modelled and measured 

transmittances for January 7, 2007. The maximum absolute error between the modelled 

and experimental values of transmittance is about 0.05, and this occurs early in the 

morning. At noon, the predicted versus measured transmittance had absolute errors in the 

order of 0.015. Accumulated error in the measured transmittance, considering 5% error in 

both the measured exterior and interior illuminance, is +/- 0.011. It is expected that the 
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error which occurs may be due to increased specular reflection effects at high incidence 

angles (62 degrees at 9:00). 
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Figure 5-5: Transmittance, Slat Angle = 40°, ground reflectance = 0.7 (Jan. 7, 2007) 

5.3.2 Clear-Sky Spring, Fixed Slat: 70 degrees 

On May 3, 2007, the blind angle was set to 70 degrees throughout the day in order to 

compare the experimental and predicted results at higher blind angles. This would be 

comparable to a situation where daylight is desired without excessive solar gains. Results 

of the modelled versus measured data correspond well at this blind angle, as shown in 

Figure 5-6. The peak illuminance values, such as observed at 10:25, are the result of 

direct beam penetration through the string holes of the Venetian blind. 

The modelled transmittance for this day is displayed in Figure 5-7. 
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Figure 5-6: Interior Blind Illuminance, Slat Angle = 70", ground reflectance = 0.2 (May 3, 2007) 
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Figure 5-7: Transmittance, 70" Slat Angle, Modelled vs. Measured (May 3, 2007) 
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In this case, the absolute error between the modelled and measured values is of the order 

of 0.05 during early morning and before sunset. Maximum accumulated error in the 

measured transmittance is +/- 0.005. The modelled values of transmittance are seen to be 

quite accurate for the case of the 70 degree blind angle near noon. It should also be noted 

here that the modelled values do not take into account the reflected illuminance from the 

interior space, and at low exterior illuminance the electric lighting from the interior space 

contributes to an error between the measured and modelled values. 

These results show that at fixed blind angles the model can predict with good 

accuracy the transmittance of the fenestration system at peak illuminance values. This is 

the most important requirement of the model-based control strategy. 

5.4 Controlled Blind: Cut-Off Angle 

As mentioned in section 4.3.1, the experimental setup allowed for the blinds to be 

controlled in increments of 10 degrees. The full-scale experiment was carried out with the 

Venetian slat angle controlled to be at the cut-off angle when direct sunlight was present 

on the facade. As noted before, the blinds were maintained at horizontal when the profile 

angle was large enough for horizontal slats to block direct beam illuminance. 

5.4.1 Daylight Transmittance 

Figure 5-8 presents the modelled and measured exterior vertical illuminance 

values for March 20, 2007. The sky was clear for the entire day, and the modelled values 

corresponded very well with the measured values. 

70 



100000 

90000 

80000 

X 
3 

fl> o c 
(0 c 

Measured Modelled 

6:00 7:00 8:00 9:00 10:00 11:00 12:00 13:00 14:00 15:00 16:00 17:00 18:00 

Local Standard Time 

Figure 5-8: Modelled exterior vertical global illuminance compared to measured (March 20, 2007) 

Figure 5-9 displays the modelled and measured interior blind illuminance for the 

same day. The results correspond well early in the day and in the evening. However there 

is a large discrepancy at high solar altitude angles (thus high profile angle) and when the 

blind angle is near horizontal. 
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Figure 5-9: Interior Blind Illuminance, Controlled Slat Angle, Modelled vs. Measured (March 20, 
2007) 

The absolute error between the modelled and measured value of approximately 7,000 lux 

points to a problem in the model (Maximum sensor error is 1,100 lux). The difference is 

most likely a result of the specular reflection, which is not considered in the model and 

was observed to occur at near horizontal blind angles when direct beam sunlight is 

reflected directly into the space. The modelled and measured transmittance values are 

displayed in Figure 5-10. The maximum accumulated error in measured values is +/-

0.015. 
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Figure 5-10: Transmittance, Controlled slat angle, Modelled vs. Measured (March 20, 2007) 

In order to reduce the effect of specular reflection, data was collected for a similar 

day (March 28) with the blinds controlled to have a minimum slat angle of 10 degrees. 

Exterior illuminance values for this day were previously shown in Figure 5-2. Measured 

and modelled values of interior blind illuminance are presented in Figure 5-11. The 

transmittance values for this day are shown in Figure 5-12. 
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Figure 5-11: Interior Blind Illuminance, Controlled Slat Angle with 10 degree minimum, Modelled 
vs. Measured (March 28, 2007) 
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Figure 5-12: Transmittance, Controlled Slat Angle with 10 degree minimum, Modelled vs. 
Measured (March 28, 2007) 
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The difference between peak modelled and measured transmittance is about 10% 

on March 20. This is reduced to 6% on March 28. This result shows that the transmitted 

illuminance from specular reflection may be reduced significantly by a small increase in 

the minimum blind angle. 

The results do show, however, that there is a discrepancy for the modelled results 

in the early morning. This is expected to be from the above noted specular reflection 

effect at high azimuth angles. The observed error only occurs in the morning when the 

high incident angles may result in specularly reflected daylight to the exterior, rather than 

diffuse reflection into the interior. 

5.4.2 Electric Lighting Energy Reduction 

The use of a dimmable fluorescent luminaire in conjunction with the controlled 

blinds can give a generalized idea of the power reduction that can be realized in perimeter 

zones. It is shown that the luminaire in this zone can be dimmed to its lowest level when 

the blind illuminance exceeds approximately 3,500 Ix. On clear days, this condition was 

satisfied for most of the day even when the blind angle was maintained at cut-off. 

The reduction of the transmitted illuminance when the solar surface azimuth is 

near 90 degrees, as was seen in Figure 5-9, causes the luminaire to abruptly increase its 

output. The resulting power consumption curve of the luminaire corresponding to a 

controlled blind scenario is presented in Figure 5-13, along with measured interior blind 

illuminance values for March 20, 2007. 

75 



35000 

30000 

25000 
"5" 
3 
^ 20000 
o 
c 
Q 
•E 15000 

E 
,3 
~" 10000 

5000 

0 

\ 

\ 

I 
I 

I 

L Luminaire Power 
Measured Interior 
Blind Illuminance 

T : ";A; 
^ 

55 

50 

45 

40 

35 

30 

25 

20 

15 

10 

Q) 

5 
o CL 
<l> 
i _ 

re 
c 
E 
3 
_1 

6:00 7:00 8:00 9:00 10:00 11:00 12:00 13:00 14:00 15:00 16:00 17:00 18:00 

Local Standard Time 

Figure 5-13: Exterior Illuminance and Dimmed Luminaire Power consumption (March 20, 2007) 

The luminaire used in this study has a non-linear power consumption profile, as 

was shown in Figure 4-8, which is a function of the digital dimming level. At 100% 

luminous output, the luminaire consumes approximately 64 watts. 

Using the data obtained from March 20, 2007, three cases for light control in this 

zone, and the corresponding power consumptions are presented in Table 5-2. The base 

case used is when there is no control, or when the luminaire is at full power from 6:00 am 

to 6:00 pm. Compared to the base case, the results from the measurements on March 20, 

2007 show that a 67% reduction in lighting power consumption during the 12-hour 

period is possible. 

Further energy savings may be realized if the luminaire is switched off, rather 

than maintaining the output at 1%. In this case, a 77% reduction in power consumption is 
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possible. This method, however, may not be advisable for electronic dimmable ballasts as 

the lifespan and power consumption at ballast start-up needs to be considered (To et al., 

2002). 

Table 5-2: Effect of control strategies on luminaire power consumption 
(March 20, 2007) 

Case 

No Control (Base) 

Dimming to 1% 

Turn off at 1% 

Consumption (kJ) 
(6:00 -18:00) 

2,765 

923 

631 

Percent 
reduction 

— 

67% 

77% 
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Chapter 6: Discussion 

6.1 Applicability of Model-Based Control for Motorized Blinds 

It was found from the experimental results in this study that the model developed 

to predict the transmittance of a fenestration system with an interior mounted Venetian 

blind is sufficient to predict the interior blind illuminance on clear-sky days. This is 

especially true for high blind angles and during the peak daylight period. 

It is proposed that an application could be developed that uses the results of this 

study to control Venetian blinds located on un-shaded areas of the building facade. As 

presented to this point, the control strategy would work on clear-sky days and for 

Venetian blinds with surfaces that are predominantly diffuse-reflecting in the visual range. 

The clear-sky illuminance model presented is also effective at determining the 

total vertical illuminance on a facade. As a result, when the sky is clear, no exterior 

sensor would be required for this control as the transmittance model exterior illuminance 

input variables could be those determined by the clear-sky model. A more complex 

system would use multiple sensors to measure the direct and diffuse components of 

illuminance, to be used as inputs. Either way, determination of whether the sky is actually 

clear or not, and to what extent shading from the blinds is necessary, would have to be 

undertaken. 
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6.2 Control for Visual Comfort 

Nazzal's (2005) method of calculating the revised discomfort glare index (DGIN) 

was used to roughly quantify an upper threshold within the experimental space at 

Concordia University. It was desired to derive a maximum blind illuminance threshold 

that would maintain visual comfort for an occupant in a small office space, and that could 

easily be programmed within a controller. Of course, since the daylight glare prediction 

models are not very reliable, as mentioned in the literature review, using the DGIjv 

calculation method is good only for an approximation. Any control system would need to 

be flexible enough to allow commissioning so that the subjective response of the 

occupant could be considered in setting a maximum blind illuminance threshold. 

The relationship between the blind illuminance and the illuminance of the floor, 

wall and ceiling was modelled for the experimental zone. A model of a 3-surface 

enclosed area was used (Murdoch, 2003), as shown Figure 6-1 and detailed in the 

appendices. Surface 1 of this model represents the fenestration and, as a worst case 

scenario, the whole surface was considered to be the glazing and Venetian blind. Surface 

2 is defined as the back wall, and surface 3 the side walls and floor. 

A radiosity analysis of the space was carried out, with the initial illuminance of 

the blind considered to be the transmitted illuminance from the exterior. The final 

illuminance of the surfaces was calculated by solving the radiosity equations. 
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Figure 6-1:3-Surface Interior Room Model, with Surface 1 as window 

Nazzal's method requires that the window luminance is inputted, as well as the 

luminance from the surrounding surfaces, at the location of the occupant. This was 

calculated considering the worst case scenario of an occupant viewing the window 

directly. The result was that for this office space, the maximum initial illuminance of the 

interior blind surface would need to be below 13,000 lux in order to maintain a DGI 

below 24, which is the threshold for visual comfort. The final blind illuminance, due to 

reflection from the interior surfaces, is calculated to be 15,000 lux, which is the blind 

illuminance that would cause discomfort. 

6.2.1 Modelled Control for Comfort: Heating Season 

The model developed for this study was used to calculate the controlled blind 

angle necessary for maintaining the blind illuminance below a given threshold. The 

model was run to calculate the required blind angle in order to maintain the blind 

illuminance below 12,000 lux, just below the worst-case threshold calculated for this 

space by using the DGIjy. This case of control could be required in the heating season, 

when maximum solar gains are desired without hindering visual comfort. 
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Figure 6-2 presents the calculated blind angle, in increments of 10 degrees, 

required to maintain the blind illuminance below 12,000 lux, along with the cut-off angle, 

for January 7 and for the Concordia University EV Building facade. The calculated blind 

illuminance is also presented. Assuming no error in the model, angles up to 60 degrees 

would be required. It should be noted that for this case, the implemented blind angle 

would be greater than the calculated cut-off angle only for a short time period. 
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Figure 6-2: Controlled Blind Angle to maintain transmitted blind illuminance due to transmission 
from the exterior below 12,000 lux on January 7. 
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6.3 Control for Cooling Load Reduction 

To demonstrate the model-based control capability of reducing the cooling load, 

in addition to the cooling load reduction associated with reduced lighting energy 

consumption, the strategy would be to limit the transmittance to levels such that the 

requirements for daylighting are met, while reducing unnecessary solar gains. As was 

seen from the data presenting the transmittance at a fixed blind angle of 70 degrees 

(Figure 5-6), very high blind angles are required to maintain the peak blind illuminance 

below 10,000 lux. Thus, it may be considered from the earlier comparison of modelled to 

experimental results that this model-based control case could be quite accurate. 

It was seen in section 5.4.2 that in the studied perimeter zone, a blind illuminance 

of 3,500 lux was required to fully dim the luminaire. Considering a mid-summer day, 

July 1, the controlled blind angle model was used to calculate the required angles needed 

to limit the blind illuminance to 4,000 lux (Figure 6-3). This example demonstrates the 

control for minimizing the solar gains, while slightly exceeding the daylighting needs. 
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Figure 6-3: Controlled Blind Angle to maintain blind illuminance below 4,000 lux on July 1. 

Of course, this case does not take into account the exterior view requirements of the 

occupant, which would be severely reduced for most of the day. 

The illuminance distribution on the work-plane was also calculated for this day, 

using the 3-surface model. Nodes were positioned at 0.5 metre spacing perpendicular 

from the window, centred in the room, and as displayed in Figure 6-4. 
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Figure 6-4: Calculated Work-Plane Illuminance Node Position 

Figure 6-5 displays the calculated work-plane illuminance with respect to time, and 

Figure 6-6 with respect to the distance from the window. 
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Figure 6-5: Calculated Work-Plane Illuminance Distribution 
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Figure 6-6: Calculated Work-Plane Illuminance from Window Surface 

As shown in Figure 6-6, the calculated illuminance on the work plane stays above the 

minimum 400 lux for most of the day. 

6.4 Sky Detection 

The greatest impediment to the implementation of the model-based control 

algorithm for Venetian blinds is the ability to determine the real-time sky conditions. The 

direct-beam component of illuminance is predominant, and passing cloud cover can 

drastically reduce this contribution to the total vertical illuminance. From a visual 

comfort and energy efficiency standpoint it is desirable to have the blind control respond 

to changing exterior illuminance levels. This is a challenging task, and has been 

investigated by very few researchers. 
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In the case of the model used in this study, direct beam and diffuse illuminance 

measurements could be used as inputs to successfully determine the blind-angle required 

to obtain the desired transmission of daylight. However, L. Roche (2000) investigated the 

open-loop model-based control strategy for an automated roller-blind control system. 

With regards to the changing sky conditions, Roche states that the use of expensive direct 

beam sun tracking pyrheliometers to determine the components of the exterior 

illuminance is not financially practical. Instead, he determined whether the sun is visible 

from the facade by using a single vertical illuminance sensor. To determine whether there 

was risk of direct sunlight, Roche created an empirical relation for the particular location 

studied and derived a vertical illuminance threshold as a function of solar altitude and 

solar surface azimuth. If the measured vertical illuminance was greater than this 

empirical formulation, the control system concluded that direct beam illuminance was 

prevalent. A roller blind would then descend to allow direct sun penetration to a 

maximum of 1 metre from the interior facade. 

For the case of Venetian blinds, the control is more complex than for a roller 

blind. It is not a simple matter of opening or closing the blind, and the intensity and 

direction of the solar flux is very important for determining the transmittance. 

Furthermore, continuous changes in the blind position would be required to ensure 

constant interior illuminance levels. This frequent step change in blind position would 

surely disturb occupants, and possibly a slow movement of the slats would be more ideal. 

A single exterior illuminance sensor could also be used to compare the measured 

illuminance levels to those calculated from ideal sky models in order to determine 
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whether the sky is clear. If a clear-sky is determined, the modelled components of 

illuminance could be used to calculate the appropriate blind angle. 

From a practical perspective, it is suggested that the control system should 

determine with a certain statistical accuracy whether the sky is cloudy. If indeed 

significant cloud cover exists to block direct beam sunlight, it is unlikely that glare would 

be an issue. In this case, a prudent system would return the blinds to the cut-off angle (as 

a minimum) in order to ensure that occupants are protected from "sun-spots", or slight 

breaks in the cloud cover. The statistical determination of cloud-cover would require a 

continuous record of illuminance measurements: if there is a significant amount of time 

with cloud cover, one can predict with a certain accuracy that, for example, the next five 

to ten minutes will have cloud cover. If this is the case, the blinds are returned to the cut

off angle, or more daringly, retracted completely. Any subsequent measurement that 

indicates that cloud cover is no longer present would return the blinds to the calculated 

angle for the clear-sky condition that produces the desired interior blind illuminance. 

The ability for this system to work depends highly on the maximum comfort 

threshold for interior illuminance. If the threshold is exceeded only by unobstructed 

direct sunlight, then the implementation of the system is simplified. If it is possible that 

obstructed direct beam sunlight could result in an uncomfortable interior blind 

illuminance, or if the diffuse exterior illuminance alone can cause excessive transmitted 

daylight, then this would require that the minimum blind angle be greater than horizontal. 

6.4.1 CIE Sky Models used to determine "Clear-Sky" 

Since the control algorithm will use a continuous calculation of the clear-sky 

model, as presented in this study, one could utilise a secondary sky model to determine 
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the vertical illuminance value above which the sky could be determined as "clear". As a 

comparison, for March 20, the CIE partly-cloudy sky (See section 3.5) is plotted for the 

EV Building facade, along with the clear-sky model, in Figure 6-7. 
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Figure 6-7: CIE Partly-Cloudy and Clear-Sky vertical illuminance for March 20 

For the "small office" space considered for this study, and as presented in section 

6.2, the calculated blind illuminance above which comfort could not be guaranteed was 

determined to be 13,000 lux. The CIE partly-cloudy sky was inputted into the 

fenestration transmittance model with the blind slats maintained at horizontal and using 

March 20 as an example day. The calculated blind illuminance exceeds the upper comfort 

threshold when the exterior vertical illuminance is 50,000 lux, as seen in Figure 6-8. 
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Figure 6-8: Modelled Interior Blind Illuminance using CIE Overcast sky model as simulation input, 
for March 20 

The CIE partly-cloudy modelled values could be used as a comparison for determining if 

the sky is clear. The maximum value would be 50,000 lux for the March 20 case. To be 

cautious, the blind control would return the slats to the cut-off angle when the measured 

exterior illuminance descends below the threshold, in the case that passing clouds reveal 

direct sun. 

It is proposed that the clear-sky threshold be the CIE partly-cloudy sky plus 20 

percent, to a maximum of 50,000 lux (Figure 6-9). Measured values of exterior global 

vertical illuminance above this maximum would implement the clear-sky controlled blind 

angle. 
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Figure 6-9: Proposed Exterior Illuminance control threshold, March 20 

As can also be seen in Figure 6-9, there is no risk of discomfort glare for an overcast sky. 

Measured exterior illuminance below that predicted by the overcast sky could enact 

horizontal slats, or retract the blinds completely. 

6.5 Proposed Control Algorithm 

The proposed control algorithm, to be implemented in perimeter zones with 

exposure to direct sun, is displayed below in Figure 6-10. This open-loop model-based 

blind control requires as an input either the measured or a modelled illuminance on the 

exterior facade surface. Venetian blind and glazing properties necessary for the model are 

also required inputs. 
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Figure 6-10: Proposed Control Algorithm 
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Chapter 7: Conclusions 

A method for controlling Venetian blinds using a numerical model developed 

based on radiosity theory was presented. The goal of this work was to study the potential 

of a model-based control that transmits the visible portion of solar radiation through the 

"view" portion of fenestration (Rosenfeld et al., 1977), while considering the visual 

comfort of occupants, and also the heating and cooling requirements of the building. In 

order to reduce the requirement of interior sensors, typically necessary for closed-loop 

control, an open-loop system that uses a single exterior illuminance sensor to determine 

the state of the sky conditions was explored, and the applicability of the model-based 

control to transmit a prescribed amount of this daylight was investigated through 

experimental measurements. 

Modelling assumptions were required to simplify the complex optical 

characteristics of light transmittance through a glazing and Venetian blind system. This 

included a modelling approach whereby only diffuse reflectance of the blind slats was 

considered, and correction factors were applied to take into account shading due to the 

window frame and incomplete illuminance of the Venetian blind slat, when it exists. It 

was found that the transmittance of the Venetian blind can be modelled with good 

accuracy (less than 1% absolute error) for high blind angles and peak exterior 

illuminance levels. Absolute error in transmittance up to 10% was discovered for 

horizontal blind angles during times of peak illuminance. This is expected to be a result 

of the specular surface reflectivity of the experimental blind slat used in this study, and 
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may be reduced when blind slats are used that have lower angular dependent specular 

reflectivity. 

The combination of the CIE clear sky model, along with the experimentally 

derived ratios of horizontal to vertical illuminance developed by Perez (1990), resulted in 

an excellent ability to predict the exterior vertical illuminance on clear days. Because of 

this, it is possible to use a single exterior sensor to determine the "clearness" of the sky 

and control the blinds accordingly. It is suggested in this study that the blinds be 

maintained at the direct beam 'cut-off angle when the exterior vertical illuminance is 

below a certain threshold, and maintained at the model-based calculated angle when the 

sky conditions are measured as being clear. 

It was also shown, through the numerical model, that the upper value of blind 

illuminance required to maintain visual comfort, and derived based on the Daylight Glare 

Index, could be used as a control set-point when transmitted daylight is to be used both 

for space heating and daylighting. A minimum value of blind illuminance required to 

reduce perimeter zone lighting could also be employed as the control point when 

excessive solar heat gains are to be avoided - specifically, when the cooling system of the 

building is operating, or when load management systems want to shed peak consumption. 

In conjunction with the controlled blind experiment where direct beam 

illuminance was continually blocked, it was found that by using dimmable lighting 

fixtures with integrated photocells - a product that is currently available on the market -

there is the potential to reduce electric lighting in perimeter zones by up to 70%. 

According to other research, and primarily due to the efficacy of daylight compared to 
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artificial light sources, the reduction of every three watts of electric lighting energy may 

correspond to a one watt reduction to the building cooling load (UNEP, 2007). 

This study has demonstrated that for the current design trend of buildings with 

highly glazed perimeter zones, innovative solutions for solar radiation control are viable 

that allow for the transmittance of human health and productivity enhancing daylight, 

while reducing the energy burden of increased cooling loads. 

7.1 Recommended Future Research 

Intelligent building control is becoming increasingly possible and cost effective. It 

may contribute to significant energy savings and improved comfort for the occupants. 

Nevertheless, additional work is recommended in the following areas: 

1. Supervisory control algorithms need to be developed to integrate lighting-

daylighting control with HVAC system control to maximize energy savings. 

2. Occupant response has to be considered in implementing control algorithms for 

blinds. 

3. Groups of blinds with partial exposure to sunlight need to be controlled with 

appropriate control algorithms. 

4. Bi-directional transmittance functions, currently being worked on by other 

researchers (Anderson et al., 2005), may be utilized to develop improved models 

and control algorithms. 
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Transmittance of a Venetian blind and fenestration 
system. 

These calculations show the method where the blind angle is set to the cut-off 
angle. The slat angle can also be forced to stay as a constant value by simply 
setting the blind angle to be a certain angle. 

Blind Geometry: 

Known: 
d, sun profile angle 
s, distance b/w slats 
w, width of slats 

Want to find p, slat angle 

Sine Law: 

sin(d + p) _ sin(90deg - d) 

s w 

sin(d + p) = cos(d)-
w 

w := 47mm s := 44mm 
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The following calculations determine the position of the sun from Duffie and Beckman (2006) and 
Athienitis (1998). The results are to be used in the sky illuminance models. 

SOLAR GEOMETRY: 

Location: Montreal 

Latitude: Lat := 45.5deg 

Longitude: Lon := 74deg 

Sun-Earth line 

West (+) 

LSM := 75deg •• local standard meridian 

\|/ := 20deg •• surface azimuth 

EV16.117 facade: 20° w of s 

Vertical 

', , Projection of 
\ . ^/normal 

Norma 

Enter Day Number: n := l ,2 . . 365 ... Julian day nuber 

Local Standard Time: t := 0,1..23 ... time, in hours 

Declination Angle: 5(n) := 23.45degsiii 360deg 
(284 + n) 

365 

Equation of Time: 

ET(n) := 9.87-siri 4-Ti 
(n - 81) 

364 
7.53-cos) 2-n 

( n - 8 1 ) 

364 
- 1.5-sir« 2-n 

( n - 8 1 ) 

364 

Apparent Solar Time: AST(n,t) := thr + ET(n) + 
(LSM - Lon)hr 

15deg 

Hour Angle: H(n,t) := (AST(n,t) - 12hr)-15 
deg 

hr 
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Sunset hour angle: hs(n) := (acos(-tan(Lat)tan(8(n)))) •• altitude is equal to 0 deg 

hr 
Sunset Time: t (n) := h„(n)-

15deg 
.. from solar noon 

Solar Altitude: (note: result is zero for negative values) 

oc(n,t) := 0.5-asir£(cos(Lat))-cos(5(n))- cos(H(n,t)) + (sin(Lat))-sin(5(n))] ... 
+ 0.5-1 asin(_(cos(Lat))-cos(8(n))- cos(H(n,t)) + (sin(Lat))sin(8(n))]| 

Solar Azimuth: 
<j>(n,t) := acos 

sin(oc(n,t))-sin(Lat) -sin(5(n))^ H(n,t) 

cos(a(n,t))cos(Lat) J |H(n,t)| 

Surface Solar Azimuth: 

y(n,t) := <(>(n,t) - M> 

Surface Plane Angle: psurf := 90deg .. vertical surface (facade) 

Angle of Incidence: 

0(n,t) := acos(cos(a(n,t))-cos(|y(n,t)|)-sin((Jsurfj + sin(a(n,t))-cos(f3surf)) 

.. eq: 12.6, Murdoch 

a(330,t) 

deg 

4(330, t) 

deg 

OU 

0 

46.67 

I ;• t 

/ I I 
-

10 20 
t 

30 

0 10 20 30 
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Window Transmittance n := 79 .. set day number 

From experimental results, the following formula was derived for a double pane, argon filled 
window in a commercial office. 

T w d : = °-62 " diffuse transmittance 

Beam Transmittance: Two seperate data sets were curve fitted. The results are: 

xw(n,t) := (-O.375-0(n,t)3 + O.6450(n,t)2 - 0.423-9(n,t) + 0.797/-(e(n,t) < 90deg) 

T w 2 ( n , t ) : = ( - 0.2949(n,t) + 0.4359 

xw(n,t) 

cw2("'t) 

(n,t)2 - O.258-0(n,t) + O.769J(0(n,t) < 90deg) 

.. dec 29 data 

Sky Model (CIE) 

In an overcast sky, there is no solar illuminance. 

CLEAR SKY will be analysed, as well as the direct sunlight. The component of direct beam 
solar illuminance is predominant. The diffuse reflected ground component (horizontal) will be 
additive 

Sky Illuminance: 

Ehc(n,t):= 10001x-[_0.8 + 15.5(sin(oc(n,t))) ' J ( a ( n , t ) > o) 

... sky illuminance, clear sky, horizontal 

Horizontal to Vertical lllumiance Ratio 

-0.0175t + 0.5001 t - 2.3697 - calculated for March 20 
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Ratio(t) := (-0.0175-t2 + 0.5-t - 23697J-(a(n,t) > Odeg) 

Evc(n,t):=Ratio(t)Ehc(n,t) 

210 r 

Evc(n,t)M0' Ratio(t) 0.6 h 

Solar Direct Beam Illuminance 

c := 0.21 •-• clear sky, c = 0.8 for a cloudy day. 

Ed n(n,t):= 127.5-10 lx-
360 

1 + 0.034-cosJ ( n - 2) 
1 365 

e s i n ( a ( n , t ) ) - K « ( n , t ) = 0 ) ( a ( n t ) > o ) 

... singularity if a=0 

Angle of Incidence on slat: 

Pslat := 20deg •• slat angle used as an example 

EXAMPLE! 

6slat(n,t) := acos(cos(a(n,t))-cos(|y(n,t)|)sin(pslat) + sin(a(n,t))cos(pslat)) 

.. eq: E-Book (Athienitis) 

E (n,t) := Ed (n,t)cos(9slat(n,t))(eslat(n,t) < 90deg) ... illuminance normal to slat 

.. For the case of fixed blind angle 
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Ground Illuminance: 

E (n,t) := Eh (n,t) + Ed (n,t)sin(oc(n,t)) pg := 0.2 •• concrete 

approx. 0.7 for snow 

Eg(n,t) := if[(y(n,t) < -85deg)(y(n,t) > -95deg),Ehc(n,t),Ehc(n,t) + Edn(n,t)sin(a(n,t))] 

.. Above: correction to account for measured reduction in ground illuminance when the sun is 
near parallel to building facade surface. 

Ground to Vertical Window: 

p g E g (n , t ) 
Ew g(n,t):= .. Vertical surface "sees" half of diffuse ground luminance 

E to tai(n,t) := if(9(n,t) < 90deg,Edn(n,t)cos(e(n,t)) + Evc(n,t) + E ^ n . O . E ^ n . t ) + Ewg(n,t)) 

t := 0,.083.. 23 ... Time step changed to 5-minute 

Vertical Exterior Illuminance on Facade 

110 

8 -10 h 

S Etotal<n't) ,A4 
~* o i l ) 
1 Evc^'t) 

3 Ew g(n ) t)4 10 

210 

t 
Local Time, Hour 
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Blind Slat Illuminance 

Pslat:= 0.65 •• slat reflectance of a light grey slat + 10% (slighly metallic paint) 

... Note, this also corresponds to M. Collins' data 

Slat angle for glare reduction (Cut-Off): 

.. PROFILE ANGLE ftan(a(n,t)) 
d(n,t) := atan 

Vcos(y(n,t)) 

(3slat(n,t) := 0.5I asinl cos(d(n,t))-- j - d(n,t)]-(|y(n,t)| < 90deg)(a(n,t) > Odeg) ... 

+ 0.5- asin cos(d(n,t))- - - d (n , t ) (|y(n,t)| < 90deg)( a(n,t) > Odeg) 

.. pslat is Odeg if the sun has not risen (a = 0). When the slat angle is 
calculated to be negative, we keep the slat angle at 0 deg. It is also 0 deg 
when the surface azimuth angle is greater than 90deg. 

Essentially, when d is greater than 37.5 deg, than the blinds angle is 
calculated to be negative, and in this case the blinds are maintained 
horizontal. 

Pslat(n,t) 

deg 

so 

60 

40 

20 

" I I I I I I I I I 

i 

/ 

i i i i i A i 

-

-

\ t 
0 2.3 4.6 6.9 9.2 11.5 13.816.118.420.7 23 

t 

Now that we have calculated the pslat, we can calculate view factors 
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View Factor Calculations using Hottel's Crossed - String Theory 

1 2 
_ [(ad + cb) - (ab + cd)] 

2L1 

ab: 

cd: 

LI 

L3 

= s 

= s 

:= w 

:= s 

ac := w 

bd := w 

cb = s + w - 2swcos(90deg - pslat) ... from cosine law 

cb( n , t ) :=\ / s + w - 2s-wcos(90deg - (3slat(n,t)) 

ad = ( w-sin (pslat) + s) + ( w-cos (pslat)) 

ad(n,t) := -j(wsin(pslat(n,t)) + s) + (w-cos (pslat(n,t))) 

F! 2(n,t):= 
[(ad(n,t) + cb(n,t)) - (ab + cd)] 

2-L1 

F2 j (n , t ) :=Fj 2(n,t) ..reciprocity 

F3 4(n,t) := 
[(cb(n,t) + ad(n,t)) - (bd + ac)] 

2L3 

F4 3(n,t) := F 3 4(n,t) •• reciprocity 
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Looking at Triangle abc: 

ac + ab - cb(n,t) ... From Incorpora, 3-sided triangle 
Fj 3(n,t):= 

2ac 

Thus : F1 4(n,t) := 1 - F1 3(n,t) - F1 2(n, t) 

w 
F 4 J (n , t ) := - F 1 4 ( n , t ) reciprocity 

F 4 2(n,t):=l-F 4 ^n.t) - F 4 3(n,t) 

w F31(n,t) := — F13(n,t) 

F 3 2(n,t):= 1 - F 3 4(n,t) - F 3 ̂ n.t) 

F 2 3(n,t) := F3 2(n,t)-
w 

F 2 4(n,t) := 1 - F2 3(n,t) - F 2 j(n,t) 

F, 3(n,t) 

F,_4(n,t) Q 5 

F, 2(n,t) 

F 4 ,(n,t) 

F42(n,t) 0 5 

F 4 3(n,t) 

10 20 30 

t 

1 

F2 3(n,t) 

F2_4("'4) 0.5 

F 2 l ^ - O 

1 

\ 

1 

i 

i 
10 20 30 
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Calculate Slat Illuminance 

Pslat(n,t) 

deg 

oc(n,t) 

deg 

Note: when d>37.5deg, 
and blinds are horizontal, 
the complete slat is not 
illuminated 

Re-calculate slat incidence angle for all calculated blind slat angles 

0slat(n,t):= acos(cos(a(n,t))cos(|y(n,t)|)sin(pslat(n,t)) + sin(a(n,t))cos(pslat(n,t))) 

8slat(n, 

deg 

0(n,t) 

deg 

t) 

o u 

100 

50 

1 1 

— '. — 
. ^ f 

\\ J 

1 1 
10 20 

t 
30 

Normal illuminance on the slat 

Esn(n,t) := Edn(n,t)-cos(eslat(n,t))-(8slat(n,t) < 90deg)[|y(n,t)| < (90 - 5.6)deg] 

Note that the term (90-5.6) comes from the frame. That is, solar, surf azi > 84.4 results in full 
shading of the blind slat. 
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110 

Esn(n,t) 

E ^ n . ' ) 
5 10 

1 A' 

i n 
5.75 11.5 

t 

17.25 23 

Result of shading from the window frame: 

X(n,t) := 90deg + y(n,t) ••- phase shift of surface azi... 0° is East 

conditionl(n,t) := (x(n,t) > 85deg) A (x(n,t) < 95deg) •• No shading 

condition2(n,t) := (x(n,t) < 5.6deg) v (x(n,t) > 174.4deg) - some shading from frame 

150mm 
ds(n,t) := if conditionl(n,t),0mm,if condition2(n,t), 1530mm,- , ,. 

V V |tan(x(n,t))| 

shaded length of blind 

s = 44 mm 

d s dus 

dus(n.t) := 1530mm - ds(n,t) - un-shaded length 

Eratio(n t) = .. un-shaded to full slat length ratio (Kframe) 
1530mm 

Where Eratio is the percent of unshaded blind to shaded, along the horizontal. 
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2000 

ds(n,t) 1500 

dus(n,t) 1000 h 

500 h 

The situation where the blind is horizontal, but the complete slat is not illuminanted: 

pblind(n,t) := if (pslat(n,t) = 0deg)(|y(n,t)| < 90deg)(d(n,t) > Odeg), 
wtan(d(n,t)) 

Kslat 

Note that pblind(n,t) is for when the blind is forced to be horizontal, where in fact it should 
have been tilted based on the profile angle. This occurs when the blind angle is calculated to 
be negative. 

Also, it only affects the direct illuminance!! 

0.75 h 

Eratio(n,t) 

pblind(n,t) 

0.25 h 
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Flux-Transfer Analysis: 

Calculate Transmittance through blinds, not considering specular reflection: 

Recall: ps,at(n,t) := 0.65 

Esn(n,t) := Edn(n,t)-cos(0slat(n,t))-(eslat(n,t) < 90deg)[|y(n,t)| < (90 - 5.6)deg] 

Es]a t(n,t) := Tw2(n,t)Esn(n,t)Eratio(n,t)pblind(n,t) ... average illuminance of slat due to 
direct beam sunlight 

• l ( f 

610 " 

W M 
Eqn(n,t) 

410 

210 IA : 
10 20 30 

.. Recall surface definition 
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System of Equations for Radiosity Analysis: 

M3(n,t) := (Evc(n,t) + Ewg(n,t))-Twd 

M^n. t ) = psjat(ii,t).(M2(ii,t).F1_2(n,t) + M3(n,t)-F1_3(n,t) + Es la t(n,t)) 

M2(n,t) = ps la t(n,t)(M3(n>t)-F2_3(n )t) + M1(n, t)-F2 j (n, t)) 

M ^ n . t ) ^ 

M3(n,t) (pslat(n,t)) •F2_3(n,t)-F1_2(n,t) ... 

+ P s l a t (
n» t )F i 3(n.O 

+ p s Ia |(ii,t).E sjat(ii,t) 

} ~ ( p s l a t ( n . t ) ) 2 F 1 2 ( n , t ) F 2 J ( n ) t ) J 

M2(n,t) := p s l a t (n , t ) (M 3 (n , t )F 2 3 (n , t ) + M ^ n . O - F ^ n , ! ) ) 

M4(n,t) := (M2(n,t)-F4_2(n,t) + M ^ . t J F ^ f n . t ) + M3(n,t)-F4_3(n,t)) 

M4 is "blind" illuminance 
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2.5-10 

210 

1.510 
M4(n,t) 

110 

5000 h 

0 2.3 4.6 6.9 9.2 11.5 13.8 16.1 18.4 20.7 23 
t 

Transmittance Calculation: 
Trans(n,t) := 

M4(n,t) 

E to ta l(n,t) 

Three Surface model of small office space. 
This uses a flux-transfer analysis (radiosity) within an 

enclosed room 

Assume window is complete wall of a 3-surface room (surface 1). 

height := 3 m 

width := 1.8m 

.. Entire surface 1 is "window" (ie: 
floor to ceiling) 

length := 2.2m 
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Pj := 0.65 .. blind reflectance 

p := 0.7 •• ceiling reflectance, acoustic tile 

p w := 0.75 •• white paint, wall reflectance p f := 0.2 .. floor reflectance 

p3:= 
(p f + 2 - p w + p c ) 

.. weighted average for surface 3 

Form Factor Calculations: 

A3 := 2 width-length + 2 length-height 

Aj := width-height 

A2 := Aj 

s := 
width 

height 
t := 

length 

height 

f12 := 
7I-S-t 

0.5-ld W)W)' 
2 2 

1 + s + t 

+ t-\jl + s atanl 
( t ^ 

+ s->/l + t • 

ir+ s2y 

atan 

777 2 
tatan(t) - s-atan(s) 

.. form factor 
Murdoch, 2003 

f12 = 0.109 

f 2 1 : - f12 

f12 + f 1 3 = l Thus, f 1 3 : = l - f 1 2 

f23 : - f13 

A 2 f 23 = A3' f32 

f31 : = f32 

Thus, f32 := 

A2' f23 

A3 

f33:= 1 -f31 -f32 
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System of Equations: 

M l = M o l + P3M3" f13 + Pw'M2' f12 

M2 = M o 2 + p r M r f 2 1 + p3-M3-f23 

M3 = M o 3 + p r M r f 3 1 + Pw-M2f31 + P3-M3-f3 3lo 2 = M2 - p r M r f 2 1 - p3-M3-f23 

M o l = M t - p 3 M 3 f 1 3 - p w M 2 f 1 2 

o3 = My(l - pyf33J- P r M r f 3 i - p w
M 2 f 3 i 

In Matrix Form: R . M = M0(n,t) 

( l -Pw f12 -P3"f13 

-P r f 21 1 -P3 f23 

- P r f 3 1 -Pw f31 ! - P 3 - f 3 3 

Mo 

v M 3y 

/MoO 
M o2 

M 
o 3 ; 

n = 79 - day t := 0,1 ..23 change time step 

M0(t) := 

fM4(n,t)^ 

V 0 ) 

initial surface exitance (illuminance of blinds) 

R:= 

1 ~Pwf12 -P3 f 13 

-pyf: 1-121 -p3-f23 

- P l f 3 1 -Pw f31 J ~ P3 f33 

M(t) := R M0(t) solution 

.. So this is the illuminance at each surface. The next step would be to create configuration 
factors from the planes to multiple point sources on the work plane. 
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Calculation of Work-Plane Illuminance 

Calculation referenced from Murdoch (2003) 

L( h 
-ppar 2 

-pperp 2 

atan 
w w ( h Yi 

•atan O 2 /~2 2 r~2 2 /~2 2 
yh + q \ ^ h + q y yw + q \\jw + q JJ 

.. point parallel to a 
plane 

w ' 
atanl — I - •atan 

"J JW^T) [J*w .. point perpendicular to plane 

Position points 0.8 m off of ground (work plane), in the centre of the room 

contribution from surfaces parallel to workplane: 

Note: widths are for half of room .. the results is doubled. 

Roof (surface 3): 
Point 1 

wl := 0.5m w2 := length - wl h := 
width 

q := 2.2m 

M(t), 
L3(t) := 

+ L3(t) 

h \ I w 
atan 

1 ^ wl ( h 
+ —atan [72 2 /72 2 [~~2 2 r~2 2 

W h +q ) \^jh + q J ywl + q V v w l + 1 
h ^ ( w2 ^ w2 

atan H atan o 2 ri 2 r~2 2 rri 2 
ijh + q ^ y h + q y ^/w2 + q y w 2 + q /_ 
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Point 2: 

wl := lm w2 := length - wl 

\( h 
E2 r o o f (t) := L3(t) 

+ L3(t)| 

u* 
^ ( w 

atan 

f h \ 

1 A wl 
•atan 

r~2 2 I 2 2 I 2 2 
\jh + q J ^wl + q \\Jwl + q J 
( w2 \ w2 

atan + atan — 
[72 2 O 2 f l 2 / 7 2 2 

Point 3: 

wl := 1.5m w2 := length - wl 

E 3 r o o f (t) := L3(t) 

+ L3(t) 

atan 

h ^ ^ 

.1 ^ wl ( 
-atan 1,2 2 O 2 /~~2 2 [~~2 2 

w h -t- q ) Vv" + 1 / v w l + 1 V\/w l + <1 
f w2 ~\ w2 

atan + atan - — = r r 
L2 2 /72 2 f ~ 2 2 / ,2 

\/h +q ) \yh +q ) \jw2 +q \\jw2 + 
<\). 

Point 4: 

wl := 2m w2 := length - wl 

E4 r o o f( t) :=L3(t) 

+ L3(t) 

f \ 

\J h + q 

f 
atan w i A wl ( 

-•atan ri 2 rri 2 r~2 2 
\/h + q J ^wl + q Vv w l + 9 
f w2 w2 

• atan • + —atan — 
f~2 2 f~2 2 I 2 2 I 2 2 

V'Jh + q y VVn + 1 / v w 2 + q W w 2 + 1 

Side Walls (surface 3): 

Perpendicular Planes 

h := 2.2m 

E1side(0:= 

wl := 0.5m w2 := length - wl 

L3(t) 

2 

L3(t) 

atan 
wl 

•atan w 1 ^ 

atan 
fw2 

•atan UJ J^FTT) [J?7j 
w2 A 
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wl := lm w2 := length - wl 

E2 s ide(t):=L3(t) 

+ L3(t) 

atan — -
q ( wl ^ 

•atan 
\/(h2 + q2) l \ [h 2 + q2 

atan — I 
q ( w2 j 

atan 
^ ipTT) IJ?T?JJ 

wl := 1.5m w2 := length - wl 

E3 s ide(t):=L3(t) 

+ L3(t)-

fwl 
atan — 

f wl 

( w2 \ q ( w2 i 
atan — atan 

wl := 2m w2 := length - wl 

E4s ide(t) := L3(t) 
f w f 

atan - •atan 
f w\ \ 

+ L3(t) 
fw2^ q f w2 1 

atan — atan 
J (h + q ) U h + q 

Window (surface 1) 

M(t) 
L l ( t ) : = -

Perpendicular Planes (note: points are in the middle of the room) 

width 
h := 2.2m w: q := 0.5m 

Ewl(t):= 
2Ll(t) (v/ 

atan — -•atan UJ f̂|ŷ q?] uz: (qr 
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q := lm 

Ew2(t) := 
2Ll(t) (w\ q 

atan — atanl 
vq h^ (q)' 

w 

i?7 (qr 

q := 1.5m 

Ew3(t) := 
2Ll(t) 

atanl — atanl 

FT <q>' 

W 

ii?+(q?. 

q := 2m 

Ew4(t) := 
2Ll(t) 

atanl — — —atanl 

l^ ( IT i?7 (q^ 

Back Wall (Surface 2) 

M(t). 
L2(t) := 

'1 

Perpendicular Planes (note: points are in the middle of the room) 

width 
h := 2.2m w := q := length - 2m 

Ebl(t) := 
2 L2(t) fv/ 

atan — 

U &r+ (q)2J 

•atari 

x/h2 + (q)2. 

q := length — 1.5m 

2 L2(t) 
Eb2(t):= i-£. 

q := length - lm 

Eb3( t ) := 2 L 2 ( t >. 
2 

atan — 
U 

atan — 
\1 

•atan 

Jly^qT] 1 ^ (q)' 

>/IV7^?] 
•atari w 

Jh 2 + (q)2. 
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q := length - 0.5m 

Eb4(t) := 
2 L2(t) 

atan — - •atan KqJ v/lyT ]̂ IJT; (iT 

Summations 

El(t) := Eb4(t) + Ewl(t) + El s i d e(t) + El r o o f ( t ) 

E2(t) := Eb3(t) + Ew2(t) + E2s ide(t) + E2 r o o f (t) 

E3(t) := Eb2(t) + Ew3(t) + E3s ide(t) + E3 r o o f(t) 

E4(t) := Ebl(t) + Ew4(t) + E4s ide(t) + E4 r o o f(t) 

110 

El(t) 

E2(t) 

E3(t) 

8000 h 

6000 h 

E4(t) 4000 r 

2000 h 

Recall Point Placement: 
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Calculations to determine the blind angle required to 
maintain a certain blind illuminance 

Attempt to solve for M4 = 4000 lux 

Recall: 

+ 0.5-

pslat_cutoff(n,t) := 0.5| asinl cosCdCn.t))-— j - d(n,t) l ( |y(n , t ) | < 90deg)-(a(n,t) > Odeg) ... 

(asinj cos(d(n,t))-—J - d(n,t) j-(|y(n,t)| < 90deg)-(a(n,t) > 0-deg) 

Blind surface illuminance re-defined to be a function of blind angle: 

M4(n,t ,p) := (M2(n,t,p)-F4_2(p) + M1(n,t,p)-F4_1(p) + M3(n,t)F4_3(p)) 

Loop that increases slat angle in steps of 10 degrees until M4 is below the given threshold. 

A(n,t) := Pslat <- Odeg 

while M4(n,t,Pslat) > 4000k 

Pslat <- pslat + lOdeg 

Pslat_cutoff(n,t) if Pslat < pslat_cutoff(n,t) 

Where A(n,t) is the calculated blind angle. 
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Determination of Discomfort Glare Index 

First, the vertical illuminance parallel to the window, at the point where the person is sitting, 
must be calculated. Similar to the work-plane calculation, but now we are looking at vertical 
illuminance. 

M o l := 13000k .. Assume Maximum Initial Blind Illuminance 

Using the above defined 3-surface model: 

Mr 0 
R:= 

1 -Pw f12 -P3'f13 

-p r f 2 1 1 -p3-f23 

- P r f 3 1 -Pw f31 ! -P3 - f 33 

M := R M .. surface illuminances 

M = 

f 4\ 
1.557 x 10 

3.397 x 103 

4.284 x 10 

lx 

.. So this is the illuminance at each surface. The next step would be to create configuration 
factors from the planes to multiple point sources at height of occupant. 

Recall: 

-ppar 
U 

atan •atari 
/72 2 f~2 2 [~2 2 /~2 2 

yh + q \\jh + q ) ^/w + q \ ^ w + q )) 

\\ 

.. point parallel to a 
plane 

Jpperp atan •atan 
"> ^77) IJ?7?. 

w 
.. point perpendicular to plane 
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Position points 1.3 m off of ground (work plane + 0.5m), in the centre of the room 

Solve for vertical illuminance parallel to facade at these points. 

Contribution from vertical surfaces: 

Note: widths are for half of room .. the results is doubled. 

Window (surface 2): 
Point 1 

width 
w := h2:=1.3m hi := height - h2 

q := 2.2m - 2m hi = 1.7 length 

M„ 
LI 

MQ= 1.557 x 10 lx 

E1wind :~ L 1 

+ L1 

( ™ } ( - atan 
2 

q J 
( h2 A ( 

w ( \A \ 
-atan [~2 2 f l 2 f l 2 

\jhl + q y ^w + q Vv w + 1 
( h2 

/ h i 2 + 
h2 

- atan - I + -atan -
/ 2 2 I 2 2 f l 2 f l 2 

\/h2 + q J Vvn2 + q / \ w + q V\/w + q 

Point 2: 

E2wind :~ L 1 

q := 2.2m - 1.5m 

/ hi ^ 

u 
+ L1 

h l 2
 + q 2 ; 

f h2 

atan w •atan 
hi 

/7T2 2 f l 2 f l 2 
ynl + q y ^w + q W w + 9 

( h2 atan + atan 
[73- 2 Uj. 2 f l 2 f l 2 

\jh2 + q y Vv"2 + q y v w +Q Vvw + 1 

Point 3: 

E 3wind : = L 1 

q := 2.2m - lm 

hi 

Uh?T72; 
- atan 

w ( hi 
-•atan 

+ L1 
h2 

[~2 2 f l 2 f l 2 
yhl + q y vw + q Vv w + 1 7J 

~N Y w ^ w ( h2 ~\ 

LlVV; 
atan •atan 

/ 7 1 2 f l 2 f l 2 
•Jh2 +q y Vw + Q W w + 1 
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Point 4: 
q := 2.2m - 0.5m 

E4wind : _ L 1 
r hi 

atan 
f w 

+ L1 

/ h i 2 + 
7 h 2 " \ 7 w \ 

w f hi "\ 
•atan r~2 2 r i 2 r i 2 

yhl + q ) \j-w + q Vv w + 1 
( h2 

h2 \ / w \ w / nz 
atan + atan - — = z 

U3-2 L 3 2 \ 2 2 \ 2 2 
^h2 + q J \ v h 2 + q ) yw + q W w + q 

Side Walls (surface 3): 

Perpendicular Planes 

w2 := 1.3m wl := height - h2 h := 2.2m - 2m 

L3:= 

q -
width 

E 1 s i d e : = L 3 
/"wl 

atan 
q ( wl ^ 

•atan 

+ L3 

^ J(h2 + q2) Wh2 + q2 

(w2\ q ( w2 ^ 
atan - -atan VqJ Jd?77} U*W 

h := 2.2m - 1.5m 

E 2 s i d e : = L 3 atan 
wl 

•atan 
( wl ^ 

+ L3 
fw2 

atan 

«' F77) l ^ 
•atan 

I w2 "\ 

^ FT?) U777 

h := 2.2m - lm 

E3 -J„ := L3 side atan — -
v q ) 

•atan 
/l ^ 

+ L3- atan 

x/(h2 + q2) W h 2 + q2 

j w2^ q ( w2 \ 
•atan 

Vlh +q } Wh +q 
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h := 2.2m - 0.5m 

E 4 „ : J •= L3 side a tan I 
wl q ( wl ^ 

--atari 

+ L3- atan 
( w2 \ q ( w2 \ 

•atan 

^J JW77) 1^/777 

Floor (surface 3) 

L3 = 1.364 x 10 lx 

Perpendicular Planes (note: points are in the middle of the room) 

width 

h := 2.2m - 2m w:= q := 1.3m 

El 
2L3 

floor ~ atan — 

I 
-atara 

h2 + (q)2J 

w 

.J7T (qT 

h := 2.2m - 1.5m 

E2 
2L3 

floor- atan 
vq 

•atan 

N/[hW] l ^ (q)' 

h := 2.2m - l m 

E3 
2L3 

floor-
w 

atan| — 
q IT: <q) 

•atan 
w 

J h 2 + (q)2. 
h := 2.2m - 0.5m 

E4 
2L3 

floor- atan 
Vq 

•atan 

J[h2 + (q)2J Uh2 + (q)2 
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Ceiling (surface 3) 

Perpendicular Planes (note: points are in the middle of the room) 

h := 2.2m - 2m 
width 

w:= q := height - 1.3m 

El 
2L3 

ceil •" atan — -

i •atara 

l_h2 + (q)2 

w 

h2 + (q)2. 

h:= 2.2m- 1.5m 

E2 
2L3 

ceil' 
w 

atanl — 
2 2 

h + (q) 

•atanl 
w 

.J?7 (q)' 

h:= 2.2m- lm 

E3 
2L3 

ceil 
fw 

atan — 
vq 

•atan 

JI>W] lih^T 
w 

(q)' 

h := 2.2m - 0.5m 

E4 
2L3 

ceil atan — 
vq J 2 2 

h + (q) 

•atan 
w 

.Jh2 + (q)2 

Summations Vertical illuminances at points across the room (adaption illuminance) 

Evl := E l w i n d + E l s i d e + El f l 0 C ) r+ E l c d l 

Ev2 := E 2 w i n d + E2 s i d e + E2 f l o o r + E2c e j l 

Ev3 :- E3wjn(j + E3 s jd e + E3f|oor + E3cejj 

Ev4 := E4 w i n d + E4 s i d e + E4 f l o o r + E 4 c d l 

dl := 2.2m - 2m 

d2 := 2.2m - 1.5m 

d3 := 2.2m - lm 

d4 := 2.2m - 0.5m 
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Evl = 1.525 x 104lx dl = 0.2m 

Ev2= 1.272 x 104lx d2 = 0.7 m 

Ev3 = 1.009 x 104lx d3 = 1.2m 

Ev4 = 8.277 x 10 lx 

Calculation of Daylight Glare Index 

This is a calculation of the daylight glare index, from the work of Ali A. Nazzal. It is used for 
determining what the maximum blind illuminance should be. Nazzal bases his calculation 
method on that developed by Chauvel, but he makes it more practical for a simple monitoring 
procedure for a window using photosensors. 

This calculation is for a worst-case scenario. I can calculate the blind illuminance, and thus 
it's luminance (diffuse emitting lamberian surface). I estimate where the user is sitting, which 
in my office is maximum 2.2 m away, though this is much smaller than normal. So I'll look at 
1 to 2 m for this calc. 
The adaption luminance is that provided by the total surroundings, and this is compared to the 
window luminance. The greater the difference between the two values, the more discomfort. 

I assume that the adaption luminance is only affected by the window source, so this is a 
conservative estimate being that other sources are not considered, which would increase the 
comfort. 

Just as a note, the DGI is very sensitive to the Ladaption value 

At 1 to 2 m from the window, it would appear that Eblind < 15,000 lux is reasonable for visual 
comfort. (DGI ~ < 24) 
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b := 2.6m 

a := 1.5m 

Put the person at 1.7m from the window, perpendicular 

d := 1.7m 

X:=-±- Y:=JL 
2d 2d 

°>N : = 
(a-b-cos(atan(X))-cos(atan(Y))) 

X= 0.441 

Y = 0.765 

A:= 

d 

B : 
X D . Y c Y x 

(Aatan(B) + Catan(D)) 

((>! = 0.144 

^pNwindow : _ 2 l 1 ' 

QpNwindow = °-9 0 2 

... Siegel and Howell (1972). Thermal Radiation 
and Heat Transfer. MacGraw Hill, New York 

M„ Ev4 M„ 

window • , ^adaption • , ^exterior • [2-(n - l)]lx 

DGIN:=81og 0.25-

'J 

(^exterior) '^QpNwindow 

} 2 \ ° 5 

Ladaption + 0 0 7 \ L window ' r oNj 

DGIN = 24.002 - calculated for inital blind illuminance of: M o l = 1.3 x 10 lx 

DGIN of 24 is "just uncomfortable" 

Note that this is assuming the full area has a window., meaning we can go higher with the 
blind illuminance. 
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PEREZ (1990) MODEL 

Requires 3 inputs: 

1) Dh : the diffuse horizontal irradiance 

2) I : the normal incidence direct irradiance 

3) Z : the zenith angle, in radians 

In order to calculate Z and Dh, n (Julian day number) is required, 

k := 1.041 - constant 

Calculation of Solar Radiation 

I = 1 3 5 3 ^ - .. solar constant 
2 

m 
"sc 

W") := h 
( 

1 + 0.033-cod 360 dee 
^ 365 

.. normal incidence 

E(Dh,I,Z):= 

( ^ + k-z3 

Dh 

(l + k-Z3) 
... 2) Sky Clearness 

mo(Z) := 
cos(Z) + 0.50572-(96.07995 - Z) 1.6364 

Kasten, F., and A. T. Young. 1989. 

"Revised optical air mass tables 

and approximation formula." 

Applied Optics 28:4735-4738. 

A(Dh,Z,n):= 
Dhmo(Z) 

W") ... 3) sky brightness 

4. Atmospheric precipitable water content 

W a t m(Td):=e 0.07Td-0.075 

Where Td (°C) is the three hourly surface dew point temperature 
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Other Important Variables: 

Ihd(I,Z) := Icos(Z) Horizontal Direct irradiation 

G(Dh,Z,I):= Icos(Z) + Dh Global Horizontal Radiation 

Discrete sky clearness categories (Overcast -> Clear) 

bin(Dh,I,Z) := 1 if (s(Dh,I,Z) < 1.065) 

2 if (1.065 < e(Dh,I,Z) < 1.23o) 

3 if (l.230<£(Dh,I,Z)<1.5) 

4 if (l .5<e(Dh,I,Z)<1.95) 

5 if (l .95<e(Dh,I,Z)<2.8) 

6 if (2.8<£(Dh,I,Z)<4.5) 

7 if (4.5<s(Dh,I,Z)<6.2) 

8 if (e(Dh,I,Z) > 6.2) 

.. 1 is overcast, 

Once we get the bin, we can get our coefficients (a, b and c) 

Global Luminous Efficacy 

agle := 

' 96.83 ̂  

107.54 

98.73 

92.72 

86.73 

88.34 

78.63 

, 99.65 , 

b_gle := 

'-0.47^ 

0.79 

0.70 

0.56 

0.98 

1.39 

1.47 

, 1.86 , 

cg le := 

( 11.5 ^ 

1.79 

4.4 

8.36 

7.10 

6.06 

4.93 

y~4A6; 

d_gle := 
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Direct Luminous Efficacy 

a die := 

' 57.2 > 

98.99 

109.83 

110.34 

106.36 

107.19 

105.75 

J01.18, 

b_dle := 

r-4.55^ 

-3.46 

-4.9 

-5.84 

-3.97 

-1.25 

0.77 

, 1-58 , 

cd le := 

'-2.98^ 

-1.21 

-1.71 

-1.99 

-1.75 

-1.51 

-1.26 

, - U O , 

d die := 

f l l7 .12^ 

12.38 

-8.81 

-4.56 

-6.16 

-26.73 

-34.44 

V -8.29 

Diffuse Luminous Efficacy 

adifle := 

' 97.24 ̂  

107.22 

104.97 

102.39 

100.71 

106.42 

141.88 

^152.23 , 

bdifle := 

'-0.46^ 

1.15 

2.96 

5.59 

5.94 

3.83 

1.90 

, 0.35 , 

cdifle := 

( 12 ^ 

0.59 

-5.53 

-13.95 

-22.75 

-36.15 

-53.24 

^-45.27, 

d difle := 

' -8.91 ^ 

-3.95 

-8.77 

-13.90 

-23.74 

-28.83 

-14.03 

, -7.98 , 

Zenith Luminance Prediction 

az lp := 

'40.86^ 

26.58 

19.34 

13.25 

14.47 

19.76 

28.39 

,42.91, 

cz lp := 

' 26.77 N 

14.73 

2.28 

-1.39 

-5.09 

-3.88 

-9.67 

^-19.62, 

c2_zlp := 

'-29.59^ 

58.46 

100 

124.79 

160.09 

154.61 

151.58 

v 130.8 , 

dz lp := 

' -45.75 ^ 

-21.25 

0.25 

15.66 

9.13 

-19.21 

-69.39 

^-164.08, 
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Model Formulation 

1) Diffuse horizontal illuminance 

dh(Dh,Z,I,n,Td) := if Dh > 0,Dh.fa_difleb.n(Dh)I)Z) + bjMe^^^.W^Td) 

+ C-dif lebin(Dh,I,Z)C0S<Z>" 
+ d - d i f l % i n ( D h , I , Z ) l n ( A ( D h ' Z ' n ^ 

2 

W 
Ylx- — ,01x 

2) Direct Illuminance 

id(Dh,I,Z,Td,n):= ma?d 01x,I a die,. :bin(Dh,I,Z) + b-d,eWn(Dh,I,Z)-Watai(Td) -
,, (5.73-Z-5) 

+ C-dlebin(Dh,I,Z)e 

.+ d - d l e b in (Dh , I ,Z ) A ( D h ' Z ' n ) 

• l x -
W 

3.2 Diffuse Irradiance and Illuminance on tilted surfaces modelling 

(l + cos((3)) a 
Xc = Xh- ( , - F , ) - + F . - + F?sin(p) 

b 

.. where Xc and Xh are, respectively, the tilted and horizontal diffuse value of either 
illuminance or irradiance. f$ is the considered surface's slope, F.1 and F.2 are coefficients 
expresssing the degree of circumsolar and horizon/zenith anisotropy respectively; they are 
functions of the sky condition. The terms "a" and "b" are given below: 

a(e) := max(o,cos(e)) and b(Z) := max(0.087,cos(Z)) 

.. where 0 is the incidence angle of the sun on the considered slope 

Values of F1 and F2 

Ft = F i j + F i 2 A + F13Z ••• circumsolar brightening coefficient 

F2 = F2i + Fo2'A + F23Z .-• Horizon Brightening Coefficient 
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Illuminance Coefficients.... 

/ 

F11IL:= 

V 

F21IL := 

0.01 P 

0.429 

0.809 

1.014 

1.282 

1.426 

1.485 

1.170, 

F12IL := 

'-0.095^ 

0.050 

0.181 

0.275 

0.380 

0.425 

0.411 

v 0.51S l) 

' 0.570 ^ 

0.363 

-0.054 

-0.252 

-0.420 

-0.653 

-1.214 

^-0.300, 

F22IL := 

F13IL := 

f 0.158 ^ 

0.008 

-0.169 

-0.350 

-0.559 

-0.785 

-0.629 

v-1.892, 

' -0 .08P 

-0.307 

-0.442 

-0.531 

-0.689 

-0.779 

-0.784 

^-0.615y 

F23IL := 

'-0.018^ 

-0.065 

-0.092 

-0.096 

-0.114 

-0.097 

-0.082 

^-0.055, 

FlIL(Dh,I,Z,n) := F l l I L ^ , z ) + F12ILbin(Dh , z )A(Dh,Z,n) + F H ^ ^ ^ Z 

F2IL(Dh,I,Z,n) := M H L , ^ ^ + F22 IL
b l-„ (Dh,I,Z)A<Dh 'Z>n> + R m ^ ^ ^ . Z 

dc(Dh,I,Z,Td,n,p,0) := dh(Dh,Z,I,n,Td) (1 - FlIL(Dh,I,Z,n)) 

+ F l IL (Dh , I ,Z ,n ) -^ - . 
b(Z) 

+ F2IL(Dh,I,Z,n)sin(p) 

( l + cos(p)) 
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0 Reference:F:\Thesis Drive\Modelling\hottel_EV_bldg.mcd irradiance compents imported 

Td := 0 •• dew point temp. 

V :=20deg P = 90deg e(t):= e ( t , V , P ) n := 79 

Dh(t) := I d h(t) ••• diffuse horizontal irradiance (From Hottel Model, Duffie and 
Beckman (2006)) 

I(t) := k(t,\|/,p) •• normal incidence direct beam (hottel) 

Z(t) := <|)(t) — zenith angle 

t:= 5hr,6hr.. 18hr 

. x dc(Dh(t),I(t),Z(t),Td,n,B,e(t)) .. vertical to horizontal ratio 
Ratio! t) := 

dh(Dh(t),Z(t),I(t),n,Td) 
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