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Abstract

Kernel Dimension Reduction Approaches for Multivariate Process Control

Thrasivoulos Tsagaroulis

The great challenge in quality control is to devise computationally efficient algorithms to detect and di-
agnose process defects. Univariate statistical process control charts are currently used as an integral part in
statistical quality control of engineering processes. Unfortunately, most data are inherently multivariate and
need to be modelled accordingly. Major limitations such as higher data complexity and difficulty in inter-
pretation have limited the application of multivariate techniques in process control. Motivated by the recent
advances in dimensionality reduction algorithms and in order to effectively monitor highly correlated data,
we introduce in this thesis new multivariate statistical process control charts based on the eigen-analysis of
kernel matrices. The core idea behind our proposed techniques is to develop a theoretically rigorous method-
ology for multivariate statistical process control. We use scalp-recorded electroencephalograms (EEGs) as
our real-world multivariate data source to demonstrate the effectiveness of our proposed algorithms. EEGs
consist of vast amounts of complex data that require a trained professional to perform a proper analysis.
Moreover, the currently used methodologies for analyzing EEGs are very labor-intensive. To circumvent
these limitations, we show through extensive experimentation that our proposed approaches can be applied
successfully in the analysis of EEGs by automating the detection of events. The task of classifying the
events would still, however, be left to a professional clinician,

For ease of visualization and analysis of EEGs, we designed a user-friendly Graphical User Interface
(GUI) to test the performance of the proposed kernel dimension reduction techniques, and to also perform a

comparison with the most prevalent methods used in multivariate process control.
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CHAPTER

Introduction

The use of multivariate statistical process control is facilitated by the proliferation of sensor data that is
typically complex, high-dimensional and generally correlated. Almost every new experiment or application
requires the availability of considerable amount of data for the purpose of analysis. Depending on the type
of data, various techniques of data analysis are used to extract useful information and arrive at conclusions.
Modern industrial processes contain a large number of variables that are regularly monitored and inspected
for defects [1].

This type of process monitoring is known as statistical process control (SPC). The concept is based on
the assumption that high variation leads to inferior quality. Therefore when several process parameters are
controlled within specific targets, the end product tends to be in control and within specification. To achieve
this, samples are frequently collected for each variable and displayed with the visual help of a control
chart [2]. An example would be the measurement of solder paste on Printed Circuit Board Assemblies
(PCBA) when components are being soldered in temperature controlled ovens. The solder paste thickness
is measured at several locations on a specific quantity of PCBAs at the beginning of a production run. If
the thickness is within specification at the fixed locations, the run is given the go ahead. If multivariate
techniques were used, the correlation between the measurements at the various locations on the various
PCBAs could guide the maintenance technician or engineer in diagnosing the root cause of insufficient
solder or too much solder - two of the main causes of failures for newly manufactured PCBAs.

A control chart is a useful statistical tool that can be used to distinguish and detect between common

causes of variation (random noise) and special causes (signal). The samples are plotted over time between



two thresholds defined as control limits. Samples exceeding the limits indicate a fault or a special cause of
variation. Any outliers indicate that the process needs to be investigated to determine and remove the root

cause of variation [3]. Figure 1.1 depicts such a control chart.

Outrof-control ﬂ
AL L
VoYV .

Lower Control
Limit

Figure 1.1: Control Chart.

Electroencephalographs (EEGs) are an example where vast amounts of complex data are present and
require a trained professional many hours to perform analysis.
In this thesis, we present multivariate statistical dimensionality-reduction techniques for analyzing com-

plex data.

1.1 Framework and Motivation

Univariate statistical process control is widely used to monitor and diagnose faults and outliers, as in the
example of the solder paste measurement. For attribute variables, common charts used are the count chart
(c chart) and the fraction defective chart (p chart). For continuous variables, operators and engineers use the
the X-bar chart, R chart and S chart. These tools are very well documented and understood [5].
Unfortunately, variables are highly correlated in most processes. Currently, most industries model their
processes by monitoring each variable independently of the other. The thickness of solder paste at the
various locations is treated as a separate variable, for example, in the electronics manufacturing industry.
As a consequence, operators are overwhelmed and have difficulty in determine the root cause of failure
when there is insufficient solder or too much solder in several places during a single production run [5]. In
Figure 1.2, two highly correlated variables are modelled dependently. The process is operating under normal

operating conditions within the ellipse. Any sample falling outside the ellipse is an outlier. However, if the



variables were modelled independently, the control region would be defined within the rectangle. Some

out-of-control observations would be misidentified as being in control.

@  1r-control Observations

f? . Qut-of-control Observations

Normal
Ranga for X2

+— Normal
Range for X1

-

Figure 1.2: Covariance Between Variables.

1.2 Background

This thesis addresses the application of dimensionality reduction techniques for the analysis of multivariate

data. The following background material is presented to provide context for this work.

1.2.1 Hotelling’s T-squared Statistic

Let X = [z1,22,...,2,)T be an n x p data matrix of n vectors x; € RP, where each observation x; =
(w1, ... ,%4p) is a row vector with p variables.
Phase I of the 72 control chart consists of establishing an outlier free reference sample [5]. Hotelling’s

T? statistic, also referred to as Mahalanobis distance, is defined as



where
1

n—1

1 n n ~ ~
&= E;mi and S = z;(wi——m)T(wi—m)
1= 1=

are the sample mean and covariance matrix respectively.

The Phase I upper control limit (UCL) and lower control limit (LCL) of 72 control chart are given by

vor — =1’ il pn—p-1

no 1+ [P pnp

(m—1)? [g=b=lFi-¢

LCL — n—p—l 2710;”—17—1
m 1 + [n—:L;J—l]Fl—%,P’n“P—l

where Fy, ., ., is the value of the inverse of the F' cumulative distribution with v and v degrees of freedom,
evaluated at the confidence level (1 — «).

In Phase 11, any outliers identified during Phase I are removed and the remaining observations are used to
recalculate the T2 statistic. In other words, the Phase II T? statistic is given by Tf =(&;—-z)S Y& ~z)7,
where X = [1,&,...,%n)T is the new observed data matrix, also referred to as the historical data. Again,
any historical data that is plotted outside the control limits and had an assignable cause determined are
discarded. Phase II verifies if the process is generating and maintaining values that are considered in control.

The control limits for Phase II are

UCL - p(n+1)(n-1)

n(n—p) PP
_ pln+1)(n-1)
LCL = WFl—%yPyn“P

Unlike the univariate control charts, the T statistic does not represent the original variables and therefore
when an out of control situation occurs we can not determine if it was due to an excess variation of a
particular variable or due to a change in the covariance/correlation matrix.

To circumvent these problems, the principal component chart may be used. This control chart can
detect changes in the covariance/correlation structure and it may indicate the specific domain that created

this excess variation [5]. It also has the advantage of reducing the number of dimensions that need to be

analyzed [14].



1.2.2  Principal Component Analysis

Principal Component Analysis (PCA) is a method for transforming the observations in a dataset into new
observations which are uncorrelated with each other and account for decreasing proportions of the total
variance of the original variables. Each new observation is a linear combination of the original observations.

Standardizing the data is often preferable when the variables are in different units or when the variance

of the different columns of the data is substantial. The standardized data matrix is given by
Z=(X-1z)D™/?,

where 1 = (1,...,1)T isan x 1 vector of all 1’s, and D = diag($) is the diagonal of the covariance
matrix.

It is worth pointing out the the covariance matrix R of the standardized data Z is exactly the correlation
matrix of the original data, and it is given by R = D~1/25D~1/2,
PCA is then performed by applying eigen-decomposition to the matrix R, that is R = AAAT where A =
(a1,...,ap,)is apx p matrix of eigenvectors (also called principal components) and A = diag(A1,...,Ap)
is a diagonal matrix of eigenvalues. These eigenvalues are equal to the variance explained by each of the
principal components, in decreasing order of importance. The principal component score matrix is an n X p
data matrix Y givenby Y = ZA = (yy,...,y, )T which is the data mapped into the new coordinate system

defined by the principal components. Moreover,
L o7 I 1,7
cov(Y)= —=Y"'Y=—"—A"Z'ZA = A.
n—1 n—1

Hence, besides retaining the maximum amount of variance in the projected data, PCA also has the following
property: the projected data y;, are uncorrelated with variance equal to var(y;) = A fork =1,...,p.
Assuming we want 99.7% confidence intervals, the upper control limit (UCL), the center line (CL) and

the lower control limit (LCL) are given by

UCL = 43/ A
CL=0
LCL = =3+/\



1.2.3 Dimensionality Reduction Techniques

As mentioned earlier, selecting the correct number of eigenvectors k will separate the signals of the process
from the random noise. Several techniques exist for determining the value of the reduction order, but there
is no apparent dominant technique [3].

The explained variance test determines the number of k components by calculating the number of eigen-
vectors needed to represent a certain percentage of the total variance. Given that each eigenvalue (A\)
represents a certain percentage of the variance, the explained variance test equation can be given by

Pt A
f:i S
Since the minimum percentage (%) is arbitrarily chosen, the number k components needed for each appli-
cation may be too low or too high [2, 3].

The scree plot shown in Fig. 1.3, plots the eigenvalues in decreasing magnitude. The number of com-
ponents k is chosen at the knee where the graph changes from being vertical to becoming horizontal. In
Fig. 1.3 we can observe a typical scree plot for a data matrix containing 7 variables. In this case, we would
choose 2 components. The identification of the number of components may be ambiguous to identify and
therefore hard to automate [3].

The pareto chart is a combination of the two previous methods discussed. It linearly plots the accu-
mulative percentage of each eigenvalue and display the individual percent variance contribution of each
component in decreasing order in a bar graph. We can select the k components by observing the break of
the linear curve. If the break is between two components, we may look at the bar graph and decide on the
total variance each component will additional contribute. By looking at the pareto chart in Fig. 1.4 we can
observe that k& = 2 seems to be the appropriate choice. In order to simplify the automation, we selected
all the components whose cumulative explained variance is greater or equal to 95 percent as our cutoff

(approximately 20).

1.2.4 Electroencephalograms

An EEG is a very useful, non-invasive way, of monitoring brain activity. Electrodes are placed on specific

locations on the scalp and recordings are made of the signals that are detected. The trained EEG interpreter
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can determine whether a person is asleep, awake, or is having some sort of a seizure, simply by looking
at the data that is recorded [13]. EEG reading involves the interpretation of wave forms largely by their
frequency and to a lesser extent by the morphology of the wave or of the wave complex of several waves.
The difficulty lies, in part, in recognizing artifacts and also in being able to differentiate normal variants
from abnormalities. Frequency means the number of waves per unit time (i.c., per second). The frequencies
of the EEG waves run from 0.5 per second to hundreds/second. Waves are usually defined by their frequency
and are divided, on this basis, into: alpha, beta, theta, and delta. Certain waves have characteristic forms
irrespective of their frequency and are recognizable by their shape. In other instances, pairs or groups of
waves have typical appearances. Single waves that are specially shaped include, for instance spikes or
sharp waves - waves that rise rapidly to a point and fall away equally dramatically with a base that is small
compared to the wave’s amplitude. Some wave forms can be recognized by their morphology and these
include two main types: specially shaped waves, and specially shaped wave complexes [28].

A scalp-recorded EEG is generated by the pooled activity of billions of cortical neurons influenced by
shared activity between cortical and subcortical regions [4]. Each EEG electrode records activity from
multiple generators of EEG activity. A standard for the placement of electrodes was established [10]. This
standard was known as the 10-20 International System of Electrode Placement. The letters F, C, T, P, and
O refer to the “frontal”, “central”, “temporal”, “parietal”, and “occipital” regions of the skull. The odd
numbers refer to left hemisphere sites and even numbers refer to right hemisphere sites. Thus, C4 refers
to the right central region. The term ”10-20” refers to the placement of electrodes placed 10 percent or 20
percent of the total distance between specified skull locations. Studies have shown that these placements
correlate with the corresponding cerebral cortical regions [10]. Of the 21 electrodes used, 19 are used for
scalp sites recording cortical areas and 2 are placed on the earlobes as reference electrodes. Figure 1.5
depicts the regions on the scalp [11].

Two basic types of EEG montages are used: Referential (mono-polar), and Bipolar. The referential
montage involves collecting information at a specific electrode relative to a common reference electrode.
The main advantage of referential montages is that the common reference allows valid comparison of activity
in many different electrode pairings. Mono-polar montages have the disadvantage where no single reference

is ideal. Reference sites may pick up EEG activity. Another disadvantage is that electro-myographic (EMG)
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Figure 1.5: EEG Measurement Sites on the Scalp.

or heart-beat (EKG) artifacts may occur [10].

Bipolar montages show the difference in activity between two active scalp sites. A major advantage of
bipolar montages is that localization of electrophysiological events is easier. By examining a sequence of
bipolar derivations, the occurrence of a specific spike of the EEG can be found when searching for a phase
reversal of the electrical signal as one moves spatially from left to right [10].

The EEG data we analyzed contained of the following channels:

1. Fpl-F7 is the Left Frontal Pole region to Left Frontal region

2. F7-T3 is the Left Frontal region to Left Temporal region

3. T3-T5 is the Left Temporal region

4. T5-0O1 is the Left Temporal region to Left Occipital region

5. Fp2-F8 is the Right Frontal Pole region to Right Frontal region
6. F8-T4 is the Right Frontal region to Right Temporal region

7. T4-T6 is the Right Temporal region

8. T6-02 is the Right Temporal region to Right Occipital region



10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

1.3

. T3-Cz is the Left Temporal region to Central Vertex region

Cz-T4 is the Scalp Vertex region to Left Temporal region
Fp1-F3 is the Left Frontal Pole region

F3-C3 is the Left Frontal region to Left Central region

C3-P3 is the Left Central region to Left Parietal region

P3-01 is the Left Parietal region to Left Occipital region
Fp2-F4 is the Right Frontal Pole region to Right Frontal region
F4-C4 is the Right Frontal region to Right Central region
C4-P4 is the Right Central region to Right Parietal region
P4-02 is the Right Parietal region to Right Occipital region

Ol is the Left Occipital region

02 is the Right Occipital region

Contributions

The contributions of this thesis are as follows:

< Kernel Principal Component Analysis of EEG Data: We present a user-friendly graphical interface

to analyze EEG data using multivariate statistical dimensionality-reduction techniques. The use of
multivariate statistical process control is facilitated by the proliferation of sensor data that is typically
complex, high-dimensional and generally correlated. Electroencephalographs (EEGs) consist of vast
amounts of complex data that require a trained professional to perform a proper analysis. We apply
a robust multivariate statistical process control chart using kernel principal component analysis to the
analysis of EEGs. The proposed control chart is effective in the detection of outliers, and its control

limits are derived from the eigen-analysis of the Gaussian kernel matrix in the Hilbert feature space.
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Our experimental results demonstrate the effectiveness of dimensionality reduction using PCA and

kernel PCA in analyzing multivariate data.

< Kernel Isometric Mapping of EEG Data: We introduce a multivariate statistical process control chart
using kernel isometric feature maps (kernel Isomap). The first step is to creates an kernel Isomap
matrix and then perform eigen-analysis on the mapped data in the second step. The proposed control
chart is effective in the detection of outliers, and its control limits are derived from the eigen-analysis
of the kernel matrix in the Hilbert feature space. Our experimental results demonstrate the effective-

ness of dimensionality reduction using Kernel Isomap control charts in analyzing multivariate data.

< Kernel Locally Linear Embedding Algorithm for Qutliers Detection: We introduce a new multivari-
ate statistical process control chart for outliers detection using kernel local linear embedding algo-
rithm. The proposed control chart is effective in the detection of outliers, and its control limits are
derived from the eigen-analysis of the kernel matrix in the Hilbert feature space. Our experimental re-
sults show the much improved performance of the proposed control chart in comparison with existing

multivariate monitoring and controlling charts.

1.4 Thesis Overview

The organization of this thesis is as follows:

O The first Chapter contains a brief review of essential concepts and definitions which we will refer
to throughout the thesis, and presents a short summary of material relevant to multivariate statistical

process control.

0 In Chapter 2, we introduce principal component analysis and kernel principal component analysis as
effective methods for dimensionality reduction of multivariate data. The effectiveness of our method

will be demonstrated through the analysis of EEGs.

0 In Chapter 3, we introduce kernel Isomap as a new multivariate statistical process control chart for
dimensionality reduction. A detailed description of the algorithm and EEG analysis results will be

presented to demonstrate the performance of the proposed approach.

11



U In Chapter 4, we introduce kernel LLE as a new multivariate statistical process control chart for di-
mensionality reduction. A detailed description of the algorithm and comparison with similar method-

ologies will be presented.

O In the Conclusions Chapter, we summarize the various methodologies that were presented for dimen-
sionality reduction, and we propose several future research directions that are directly or indirectly

related to the work performed in this thesis.

12



CHAPTER

Kernel Principal Component Analysis of EEG Data

The use of multivariate statistical process control is facilitated by the proliferation of sensor data that is
typically complex, high-dimensional and generally correlated. Almost every new experiment or application
requires the availability of considerable amount of data for the purpose of analysis. Depending on the type
of data, various techniques of data analysis are used to extract useful information and facilitate conclusions.

Electroencephalographs (EEGs) are one such example whereby vast amounts of complex data are present
and require a trained professional many hours to perform a proper analysis. In this chapter, we present a
multivariate statistical dimensionality-reduction technique for analyzing EEGs. Our experimental results

demonstrate the effectiveness of our proposed approach in the analysis of multivariate data [12].

2.1 Introduction

PCA is an exploratory multivariate data reduction technique for simplifying complex data. In a data set with
many correlations, we need a technique to look at the overall structure of the data. PCA is based on linear
correlation and it transforms original variables into new uncorrelated variables. The goal of PCA is to reduce
the dimensionality of a data set (sample) by finding a new set of variables, smaller than the original set of
variables which retains most of the sample’s information. Moreover, PCA can be used to reduce number of
dimensions in data, find patterns in high-dimensional data, or visualize data of high dimensionality.

In this chapter, we present a multivariate statistical quality control methodology for analyzing EEG data.
The primary motivation behind using multivariate statistical techniques is to reduce the data so that it can

be interpreted by a trained person in minutes rather than hours. Multivariate statistical techniques have been
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used extensively to analyze the data in various industries over the last three decades. Recently, sensor tech-
nology is making gigabytes upon gigabytes of data available for analysis and this collected data is most often
multivariate in nature [1] [30]. In this chapter, we demonstrate the effectiveness of multivariate statistical
techniques and in particular principal component analysis (PCA) and kernel PCA [24] in analyzing and
interpreting EEG data.

Kernel Principal Component Analysis (KPCA) provides a set of nonlinear axes in the input space, thus
allowing it to represent complex data distributions with a small number of axes. We apply a multivariate
statistical process control chart using kernel principal component analysis to the analysis of EEGs. The
proposed control chart is effective in the detection of outliers, and its control limits are derived from the
eigenanalysis of the Gaussian kernel matrix in the Hilbert feature space. Our experimental results demon-

strate the ability to detect events in EEGs.

2.2 Problem Formulation

PCA is a powerful technique for data reduction and visualization. It involves a mathematical procedure
that transforms a number of possibly correlated variables into a smaller number of uncorrelated variables,
called Principal Components (PCs). PCA is based on linear correlation and it transforms original variables
into new uncorrelated variables that represent the original data using fewer dimensions. The first principal
component accounts for as much of the variability in the data as possible, and each succeeding component
accounts for as much of the remaining variability as possible. The first principal component goes through the
centroid and minimizes the square of the distance of each point to that line. The second principal component
also goes through the centroid, and also goes through the maximum variation in the data, but is orthogonal
to the first Let X represent the EEG data, with 1m observations and p channels: principal component in order

to be uncorrelated.

Ti1... :Illp

Tml « o Tmp
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The mean and the covariance matrix of the k retained components of the EEG data are given by:
1 & 1 -
izgzlxl] and szzmZ}(Iij—.f‘)2,i=1,2,...,m,j=1,2,..,k
= 1=

are the sample mean and covariance matrix respectively.
Since the various channels of the EEG have potentially different units of measurement and/or magni-

tudes, we standardize the data:

T8 i =1,2,,m,5=1,2,,k

Zij =
8j

The 5" principal component is a linear combination of the standardized variables:
Yj=c121 4+ c3jZa+ ...+ cijZi, j = 1,2,k
The principal component scores of the it* observation for the % principal component are as follows:
Yij = a152i1 +ag52ia + ...+t agize, = 1,2,k
The variances of the k principal component scores are given by the eigenvalues of the covariance matrix:

AL, A2, A

2.3 Proposed Method

PCA is a linear transformation of the original data set into a smaller number of components while keeping
most of the variance [14]. PCA has two main advantages over other multivariate statistical process control
techniques. First, the principal components are uncorrelated and second, only a few components are needed
in order to capture most of the variance [5].

Kernel principal component analysis is a nonlinear generalization of PCA, and consists of mapping the
data to a higher (possibly infinite) dimensional feature space via a nonlinear map, and then computing the
dot products in the feature space. Suppose we have an input data set X = {x; : ¢ = 1,...,m} where
each observation x; is an p-dimensional vector and the distribution of the data is nonlinear. The Kernel

PCA algorithm consists of two main steps: the first step is to linearize the distribution of the input data

15



by using a nonlinear mapping ® : R? — F from the input space RP to a higher-dimensional (possibly
infinite-dimensional) feature space F. The mapping ® is defined implicitly, by specifying the form of the
dot product in the feature space. In other words, given any pair of mapped data points, the dot product is
defined in terms of a kernel function K (x;, z;) = ®(z;) - ®(z;).

The most commonly used kernel is the Gaussian kernel K (z, y) = exp(—||z — y||?/(20?)) with parameter
0. In the second step, PCA in applied to the mapped data set ® = {®; : i = 1,...,m} in the feature space,
where ®; = ®(z;). The second step of kernel PCA is to apply PCA in the feature space by performing an

eigendecomposition on the covariance matrix of the mapped data which is given by

i mZ)T(I) ()

where ®(x;) = O(x;) — (1/m) 31, ®(x;) is the centered mapped data.

The eigenvectors of C' are given by

ov= Y e (g es) - Ry

where «; = (E)(:cz)Tv) /(p{m—1)). In other words, an eigenvector of C'is a linear combination of {‘5(:131-)}.

"g[r—*

Taking the dot product of & (x ;) with v yields
~ m o~ ~ ~
@(m]) V= Zaiq)(mi) . Cb(.’BJ) = ZaiKij’
which implies that p(m — 1)a; = >0, aif?ij. Hence
Ka= o,

where & = (a1,...,an) and i = u(m — 1). That is, o is an eigenvector of K. If the eigenvectors of C

are orthonormal (i.e. vTv = 1) then

m m
1= ’UT’U = Z aiozjq)(mi) . <I>(:c]) = Z OziOéjKij
1,7=1 5,J=1

= aTKa=pum- Da'a

and hence |la|| = 1//u(m —1).
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Algorithm: Kernel Principal Component Control Chart

1. Choose the appropriate o for the Gaussian kernel matrix
2. Construct the kernel matrix K = (Kj;) of the mapped data: Ki; = K (x;, ;) = ®(x;) - O(x;).

3, Construct the kernel matrix X = HKH of the centered mapped data, where H = I — J/n the
centering matrix is defined in terms of the identity matrix I and the matrix of all ones J.

4. Find the largest p eigenvectors o, (r = 1,...,p) of K and their corresponding eigenvalues [i.

5. Given a test point & with image ® (), compute the projections onto the eigenvectors v,. given by the
equation
~ 1 i ~ -~
U B(T) = ———= ) o;P(x;) P(x)
(n~1) =

Table 2.1: Algorithmic steps for Kernel PCA.

The main algorithmic step of the proposed kernel principal component chart as shown in Table 2.1.
Assuming we want £3c confidence intervals, the upper control limit (UCL), the center line (CL), and

the lower control limit (LCL) of the kernel principal component chart are

UCL = +3\/iiy
CL=0
LCL = -3[ir

17



2.4 Experimental Results - PCA

In this section, we demonstrate the effectiveness of PCA, as implemented in the GUI we developed. The
analysis was repeated on three hours of data of three patient files containing various events. It can be seen

that PCA control charts detected outliers. The results are summarized in the following subsections.

Analysis of Patient File *A’

Fig. 2.1 through Fig. 2.11 show the charts generated by analyzing an EEG from a sample patient file. The
first four charts represent the first four Eigenvectors related to the first four principal components. Figure
2.6 depicts a pareto diagram of the variance of each principal component relative to the sum of all principal
components. Figure 2.7 depicts a scree plot of the variance due to each principal component. Typically,
the knee of the scree plot is used to determine how many principal components will be used to represent the
data. In our case, we used 95 percent as our cutoff. That is to say, 95 percent of the variance of the first 1000

seconds of the data in patient file A’ can be attributed to seven principal components.
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Figure 2.1: User Interface: EEG Channels Read into Software Tool.
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Figure 2.2: PCA: Eigenvector Al From Sample 0 to Sample 200000 of Patient *A’ File.
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Figure 2.3: PCA: Eigenvector A2 From Sample 0 to Sample 200000 of Patient A’ File.
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Figure 2.4: PCA: Eigenvector A3 From Sample 0 to Sample 200000 of Patient *A’ File.
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Figure 2.5: PCA: Eigenvector A4 From Sample 0 to Sample 200000 of Patient *A’ File.
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Figure 2.6: PCA: Pareto of Explained Variance From Sample 0 to Sample 200000 of Patient *A’ File.
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Figure 2.7: PCA: Scree Plot of Explained Variance From Sample 0 to Sample 200000 of Patient *A’ File.
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Figure 2.8: PCA Control Chart of First Principal Component From Sample 0 to Sample 200000 of Patient
"A’ File.
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Figure 2.9: PCA Control Chart of Second Principal Component From Sample 0 to Sample 200000 of Patient
’A’ File.
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Figure 2.10: PCA Control Chart of Third Principal Component From Sample 0 to Sample 200000 of Patient
’A’ File.
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Figure 2.11: PCA Control Chart of Fourth Principal Component From Sample 0 to Sample 200000 of
Patient A’ File.
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Analysis of Patient File *B’

Figure 2.12 through Figure 2.22 were generated by analyzing an EEG from patient file ”B”. The first
four charts represent the Eigenvectors of the first four principal components. Figure 2.17 depicts a pareto
diagram of the variance of each principal component relative to the sum of all principal components. Figure

2.18 depicts a scree plot of the variance due to each principal component.
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Figure 2.12: User Interface: EEG Channels Read into Software Tool.
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Figure 2.13: PCA: Eigenvector Al From Sample 6.4e+006 to Sample 6.6e+006 of Patient ’B’ File.
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Figure 2.14: PCA: Eigenvector A2 From Sample 6.4e+006 to Sample 6.6e+006 of Patient ’B’ File.
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Figure 2.15: PCA: Eigenvector A3 From Sample 6.4e+006 to Sample 6.6e+006 of Patient 'B’ File.
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Figure 2.16: PCA: Eigenvector A4 From Sample 6.4e+006 to Sample 6.6¢+006 of Patient *B’ File.
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Figure 2.17: PCA: Pareto of Explained Variance From Sample 6.4e+006 to Sample 6.6e+006 of Patient B’
File.
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B:*: PCA Explained Variance Scree Piot
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Figure 2.18: PCA: Scree Plot of Explained Variance From Sample 6.4¢+006 to Sample 6.6e+006 of Patient
"B’ File.

As can be seen from the charts above, seven principal components represent 95 percent of the variance
for this slice of data of patient ”B” file. Clearly, seven principal components is a dimensionality reduction
relative to twenty input channels. This is also demonstrated by the principal component control charts below

(Figure 2.19 through 2.22).
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Figure 2.19: PCA Control Chart of First Principal Component From Sample 6.4e+006 to Sample 6.6e+006
of Patient "B’ File.
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B dataset: PC 2
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Figure 2.20: PCA Control Chart of Second Principal Component From Sample 6.4e+006 to Sample
6.6e+006 of Patient ’B’ File.
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Figure 2.21: PCA Control Chart of Third Principal Component From Sample 6.4e+006 to Sample 6.6e+006
of Patient B’ File.
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B dataset: PC 4
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Figure 2.22: PCA Control Chart of Fourth Principal Component From Sample 6.4e+006 to Sample
6.6e+006 of Patient ’B’ File.

Analysis of Patient File *C’

Figure 2.23 through Figure 2.29 were generated by analyzing an EEG from patient file ”C”. Figure 2.26
depicts a pareto diagram of the variance of each principal component relative to the sum of all principal

components. Figure 2.27 depicts a scree plot of the variance due to each principal component.

R
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Figure 2.23: User Interface: EEG Channels Read into Software Tool.

Note that only two principal components are required to explain away over 95 percent of the variance

for patient file ”C” in the interval between sample 1.17e+006 and sample 1.37e+006.
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Figure 2.24: PCA: Eigenvector Al From Sample 1.17e+006 to Sample 1.37¢+006 of Patient *C’ File.
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Figure 2.25: PCA: Eigenvector A2 From Sample 1.17e+006 to Sample 1.37e-+006 of Patient *C’ File.
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Figure 2.26: PCA. Pareto of Explained Variance From Sample 1.17¢+006 to Sample 1.37e+006 of Patient
"C’ File.
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Figure 2.27: PCA: Scree Plot of Explained Variance From Sample 1.17e+006 to Sample 1.37e+006 of
Patient ’C’ File.
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Figure 2.28: PCA Control Chart of First Principal Component From Sample 1.17e+006 to Sample
1.37¢+006 of Patient ’C’ File.
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Figure 2.29: PCA Control Chart of Second Principal Component From Sample 1.17¢+006 to Sample
1.37e+006 of Patient *C’ File.
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2.4.1 Experimental Results - Kernel PCA

In this subsection, we demonstrate the effectiveness of KPCA by repeating the analysis on the same three
EEGs and at the same intervals using Kernel PCA. It can be seen that KPCA control charts detected outliers.
The results are summarized in the following subsections. In all the experiments, the width of the Gaussian

kernel is estimated as follows

2 m
o= WZIM - zj,

i<J

where [21,...,2m]7 is the standardized data.

Analysis of Patient File *A’

Fig. 2.30 through Fig. 2.40 show the charts generated by analyzing an EEG from a sample patient file.
Figure 2.35 depicts a pareto diagram of the variance of each principal component relative to the sum of all

principal components. Figure 2.36 depicts a scree plot of the variance due to each principal component,
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Figure 2.30: User Interface: EEG Channels Read into Software Tool.

As can be seen from the scree plot and pareto diagram, each principal component accounts for very
little of the variance. However, useful results are still possible as will be seen when the outliers/events are
classified later on. A few of the eigenvectors and control charts are presented, for comparison purposes with

PCA and the other techniques described in later chapters.
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Figure 2.31: Kernel PCA: Eigenvector A1 From Sample 0 to Sample 200000 of Patient ’A’ File.
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Figure 2.32: Kernel PCA: Eigenvector A2 From Sample 0 to Sample 200000 of Patient *A’ File.
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Figure 2.33: Kernel PCA: Eigenvector A3 From Sample 0 to Sample 200000 of Patient *A’ File.
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Figure 2.34: Kernel PCA: Eigenvector A4 From Sample 0 to Sample 200000 of Patient *A’ File.
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Figure 2.35:

File.

Figure 2.36:
’A’ File.
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Figure 2.37: Kernel PCA Control Chart of First Principal Component From Sample 0 to Sample 200000 of
Patient ’A’ File.
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Figure 2.38: Kernel PCA Control Chart of Second Principal Component From Sample 0 to Sample 200000
of Patient ’A’ File.
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A dataset: PC 3
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Figure 2.39: Kernel PCA Control Chart of Third Principal Component From Sample 0 to Sample 200000
of Patient ’A’ File.
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Figure 2.40: Kernel PCA Control Chart of Fourth Principal Component From Sample 0 to Sample 200000
of Patient ’A’ File.
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Analysis of Patient File ’B’

Fig. 2.41 through Fig. 2.51 show the charts generated by analyzing an EEG from a sample patient file.
Figure 2.46 depicts a pareto diagram of the variance of each principal component relative to the sum of all

principal components. Figure 2.47 depicts a scree plot of the variance due to each principal component.
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Figure 2.41: User Interface: EEG Channels Read into Software Tool.
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Figure 2.42: Kernel PCA: Eigenvector Al From Sample 6.4e+006 to Sample 6.6e+006 of Patient B’ File.
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Figure 2.43: Kernel PCA: Eigenvector A2 From Sample 6.4e+006 to Sample 6.6e+006 of Patient *B’ File.
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Figure 2.44: Kernel PCA: Eigenvector A3 From Sample 6.4e+006 to Sample 6.6e+006 of Patient B’ File.

40



Kermel,CAB: A4
25 T

il ”l“ o H’uh

h T “‘ v I J
” W‘ i 1 MM ’iw H‘ h I "N

1 L ¢ L . L L ( L
100 200 300 400 500 800 700 800 900 1000

Figure 2.45: Kernel PCA: Eigenvector A4 From Sample 6.4e+006 to Sample 6.6e+006 of Patient B’ File.
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Figure 2.46: Kernel PCA: Pareto of Explained Variance From Sample 6.4e+006 to Sample 6.6e+006 of
Patient ’B’ File.

Analysis of Patient File °C’

Fig. 2.52 through Fig. 2.58 show the charts generated by analyzing an EEG from a sample patient file.

Figure 2.55 depicts a pareto diagram of the variance of each principal component relative to the sum of all
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Figure 2.47: Kernel PCA: Scree Plot of Explained Variance From Sample 6.4e+006 to Sample 6.6e+006 of
Patient "B’ File.
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Figure 2.48: Kernel PCA Control Chart of First Principal Component From Sample 6.4¢+006 to Sample
6.6e+006 of Patient 'B’ File.
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B dataset: PC 2
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Figure 2.49: Kernel PCA Control Chart of Second Principal Component From Sample 6.4¢+006 to Sample
6.6¢+006 of Patient "B’ File.
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Figure 2.50: Kernel PCA Control Chart of Third Principal Component From Sample 6.4e+006 to Sample
6.6e+006 of Patient 'B’ File.
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Figure 2.51: Kernel PCA Control Chart of Fourth Principal Component From Sample 6.4e+006 to Sample
6.6e+006 of Patient "B’ File.

principal components. Figure 2.56 depicts a scree plot of the variance due to each principal component.
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Figure 2.52: User Interface: EEG Channels Read into Software Tool.
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Figure 2.53: Kernel PCA: Eigenvector Al From Sample 1.17e+006 to Sample 1.37¢+006 of Patient *C’
File.
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Figure 2.54: Kernel PCA: Eigenvector A2 From Sample 170000 to Sample 370000 of Patient *C’ File.
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Figure 2.55: Kernel PCA: Pareto of Explained Variance From Sample 170000 to Sample 370000 of Patient
’C’ File.
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Figure 2.56: Kernel PCA: Scree Plot of Explained Variance From Sample 170000 to Sample 370000 of
Patient *C’ File.
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Figure 2.57: Kernel PCA Control Chart of First Principal Component From Sample 170000 to Sample
370000 of Patient "C’ File.
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Figure 2.58: Kernel PCA Control Chart of Second Principal Component From Sample 170000 to Sample
370000 of Patient *C’ File.
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2.5 Conclusions

In this section, we introduced new multivariate quality control charts by performing PCA and KPCA on
EEGs. The main idea behind our proposed technique is to define new control charts used to detect outliers.
The eigenvalues can be used to define control limits of our proposed control chart. The experimental results

clearly show a that PCA and KPCA can be used to reduce the dimensionality of multi-dimensional data.

48



CHAPTER

Kernel Isometric Mapping of EEG Data

In this chapter, we present a robust multivariate statistical process control chart using kernel isometric feature
maps (Isomap). The kernel Isomap control chart creates an Isomap kernel matrix and then performs an eigen
decomposition o the mapped data. The proposed control chart is effective in the detection of outliers, and
its control limits are derived from the eigen-analysis of the kernel matrix in the Hilbert feature space. Our
experimental results demonstrate the effectiveness in analyzing multivariate data using the Kernel Isomap

algorithm.

3.1 Introduction

In this chapter, we present a new multivariate statistical process control chart using kernel Isometric Feature
Maps (Isomaps). Isomaps generalize Multi-Dimensional Scaling (MDS) to non-linear manifolds by approx-
imating the geodesic distance along the manifold [15]. A kernel matrix is produced using Isomaps and an
eigen-analysis is performed on the mapped data.

The proposed control chart is robust to outliers detection, and its control limits are derived from the
eigen-analysis of the kernel Isomap matrix in the Hilbert feature space.

The remainder of the chapter is organized as follows. In Section 3.2 we propose a kernel Isomap control
chart. In Section 3.3, we demonstrate the performance of the proposed multivariate control chart, using EEG

data. Finally, we provide conclusions in Section 3.4,
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3.2 Proposed Method

Suppose we have an input data set X = {x; : ¢ = 1,...,n} where each observation x; is a p-dimensional
vector and the distribution of the data is nonlinear. Kernel Isomap algorithm consists of two main steps: the
first step is to linearize the distribution of the input data by using a nonlinear mapping ® : R? — F
from the input space RP to a higher-dimensional (possibly infinite-dimensional) feature space F. The
mapping ® is defined implicitly, by specifying the form of the dot product in the feature space. In other
words, given any pair of mapped data points, the dot product is defined in terms of a kernel function
K(zi,z5) = $(xi) - 2(xy).

For the proposed method, given a data set X = [z, ..., z,,], the geodesic distance calculation is based on a
similar approach used for computing the Isomap for MDS on nonlinear manifolds. The algorithm has two
main steps:

1. Construct a neighborhood graph by connecting a given point to its k-nearest neighbors, and link these
neighboring points by edges with weights equal to the Euclidean distances.

2. Compute the geodesic distances (g; ;) (shortest paths) between all pairs of n points in the constructed
graph using Dijkstra’s or Floyd’s algorithm.

G =( 91‘2, ;) s the (square) geodesic distance matrix of size n x n.

The kernel matrix, Krsomap = —%(I —eeT\G(I — eeT), where e = ﬁ(l, 1,.., DT

Hence, compute the dot products in the feature space.
Once the kernel matrix is formed, we are ready to perform eigen-analysis on the mapped data.

In the second step, eigen-analysis in applied to the mapped data set ® = {®; : 4 = 1,...,n} in the
feature space, where ®; = ®(x;). The second step of kernel Isomap is to apply eigen-analysis in the feature

space by performing an eigendecomposition on the covariance matrix of the mapped data which is given by

C =

n—14

LS ()T ()
=1

where &(x;) = ®(x;) — (1/n) %, ®(x;) is the centered mapped data.
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The eigenvectors of C' are given by

1 L 1 L
v = ;Cv = ;@(mi) (mé(wi)Tv> = ;a@(wi),

where o; = (é(wi)Tv) /(p(n—1)). In other words, an eigenvector of C is a linear combination of {Cf(a:i)}.

Taking the dot product of &(z;) with v yields

&)(CIZJ) V= ZO&Z&;(ZBJ . &;(CC]) = Zaif?ij,
i=1

=1

which implies that z1(n — 1)a; = Y7 ; K;. Hence
Ko = pox,
where & = (a1, ..., o) and i = p(n — 1). That is, o is an eigenvector of K. If the eigenvectors of C are
orthonormal (i.e. vTv = 1) then
n
1=vlv = Z 000 (x;) - B(x;) = Z a;a; Kij
i,j=1 i,j=1

ofKa = pn-1)aoTa

Il

and hence ||| = 1/4/pu(n — 1).

The main algorithmic step of the proposed kernel Isomap chart as shown in Table 3.1.
Assuming we want +30 confidence intervals, the upper control limit (UCL), the center line (CL), and

the lower control limit (LCL) of the kernel Isomap chart are

UCL = +3/[ir
CL=0
LCL = —3\/ir

3.3 Experimental Results

In this section, we demonstrate the effectiveness of Kernel Isomap by repeating the analysis on the same
three EEGs and at the same intervals using Kernel Isomap. It can be seen that Kernel Isomap control

charts detected outliers and the dimensionality was reduced. The results are summarized in the following

subsections.
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[h]

Algorithm: Kernel Isomap Control Chart

1. Construct the squared geodesic distance matrix, G; ; = f)2(xi, ;).

2. e = 1/sqrt(n) x ones(n)’.

3. Construct the kernel Isomap matrix, K;; = —3(I — ee?)G(I — ee”).
4. K = (Kyj) of the mapped data: K;; = K (x;, x;) = ®(x;) - B(x ).

5. Construct the kernel matrix K = HKH of the centered mapped data, where H = I — J/n the
centering matrix is defined in terms of the identity matrix I and the matrix of all ones .J.

6. Find the largest p eigenvectors e, (r = 1,...,p) of K and their corresponding eigenvalues fi,.

7. Given a test point « with image ®(x), compute the projections onto the eigenvectors v,. given by the
equation

v, B(x) =

\/(_T——l_) Z aﬁf(wi) . :IS(:I:)

i==1

Table 3.1: Algorithmic steps for Kernel [somap.

Analysis of Patient File ’A’

Fig. 3.1 through Fig. 3.11 show the charts generated by analyzing an EEG from a sample patient file. Figure
3.6 depicts a pareto diagram of the variance of each principal component relative to the sum of all principal
components. Figure 3.7 depicts a scree plot of the variance due to each principal component. Typically,
the knee of the scree plot is used to determine how many principal components will be used to represent the

data.
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Figure 3.1: User Interface: EEG Channels Read into Software Tool.
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Figure 3.2: Kernel Kernel Isomap: Eigenvector Al From Sample 0 to Sample 200000 of Patient ’A’ File.

Analysis of Patient File *B’

Fig. 3.12 through Fig. 3.22 show the charts generated by analyzing an EEG from a sample patient file.

Figure 3.17 depicts a pareto diagram of the variance of each principal component relative to the sum of all

principal components. Figure 3.18 depicts a scree plot of the variance due to each principal component.
As can be seen from the scree plot and pareto diagram, each principal component accounts for more

variance than did kernel PCA. Of course, the results will be seen when the outliers/events are classified
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Figure 3.3: Kernel Isomap: Eigenvector A2 From Sample 0 to Sample 200000 of Patient *A’ File.
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Figure 3.4: Kernel Isomap: Eigenvector A3 From Sample 0 to Sample 200000 of Patient ’A’ File.
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Figure 3.5: Kernel Isomap: Eigenvector A4 From Sample 0 to Sample 200000 of Patient *A’ File.
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Figure 3.6: Kernel Isomap: Pareto of Explained Variance From Sample 0 to Sample 200000 of Patient *A’
File.
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Figure 3.7: Kernel Isomap: Scree Plot of Explained Variance From Sample 0 to Sample 200000 of Patient
’A’ File.
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Figure 3.8: Kernel Isomap Control Chart of First Principal Component From Sample 0 to Sample 200000
of Patient ’A’ File.
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Figure 3.9: Kernel Isomap Control Chart of Second Principal Component From Sample 0 to Sample 200000
of Patient ’A’ File.
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Figure 3.10: Kemnel Isomap Control Chart of Third Principal Component From Sample 0 to Sample 200000
of Patient ’A’ File.
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Figure 3.11: Kernel Isomap Control Chart of Fourth Principal Component From Sample 0 to Sample
200000 of Patient *A’ File.
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Figure 3.12: User Interface: EEG Channels Read into Software Tool.

later on. Some of the eigenvectors and control charts are presented, for comparison purposes with PCA and

kernel PCA.
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Figure 3.13: Kernel Isomap: Eigenvector Al From Sample 6.4e+006 to Sample 6.6e+006 of Patient A’
File.
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Figure 3.14: Kernel Isomap: Eigenvector A2 From Sample 6.4e+006 to Sample 6.6e+006 of Patient ’A’
File.
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Figure 3.15: Kernel Isomap: Eigenvector A3 From Sample 6.4¢+006 to Sample 6.6e+006 of Patient *A’
File.
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Figure 3.16: Kernel Isomap: Eigenvector A4 From Sample 6.4e+006 to Sample 6.6e+006 of Patient *A’
File.
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Figure 3.17: Kernel Isomap: Pareto of Explained Variance From Sample 6.4¢+006 to Sample 6.6e+006 of
Patient B’ File.
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Figure 3.18: Kernel Isomap: Scree Plot of Explained Variance From Sample 6.4e+006 to Sample 6.6e+006
of Patient "B’ File.
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Figure 3.19: Kernel Isomap Control Chart of First Principal Component From Sample 6.4e+006 to Sample
6.6e+006 of Patient B’ File.
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Figure 3.20: Kernel Isomap Control Chart of Second Principal Component From Sample 6.4e+006 to
Sample 6.6e+006 of Patient B’ File.
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Figure 3.21: Kernel Isomap Control Chart of Third Principal Component From Sample 6.4e+006 to Sample
6.6e+006 of Patient "B’ File.
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Figure 3.22: Kernel Isomap Control Chart of Fourth Principal Component From Sample 6.4e+006 to Sam-
ple 6.6e+006 of Patient "B’ File.
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Analysis of Patient File *C’

Fig. 3.23 through Fig. 3.29 show the charts generated by analyzing an EEG from a sample patient file.
Figure 3.26 depicts a pareto diagram of the variance of each principal component relative to the sum of all

principal components. Figure 3.27 depicts a scree plot of the variance due to each principal component.
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Figure 3.23: User Interface: EEG Channels Read into Software Tool.
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Figure 3.24: Kernel Isomap: Eigenvector Al From Sample 1.17e+006 to Sample 1.37¢+006 of Patient *C’
File.
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Figure 3.25: Kernel Isomap: Eigenvector A2 From Sample 170000 to Sample 370000 of Patient *C’ File.
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Figure 3.26: Kernel Isomap: Pareto of Explained Variance From Sample 170000 to Sample 370000 of
Patient *C’ File.
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Figure 3.27: Kernel Isomap: Scree Plot of Explained Variance From Sample 170000 to Sample 370000 of
Patient 'C’ File.
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Figure 3.28: Kernel Isomap Control Chart of First Principal Component From Sample 170000 to Sample
370000 of Patient *C’ File.
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Figure 3.29: Kernel Isomap Control Chart of Second Principal Component From Sample 170000 to Sample
370000 of Patient *C’ File.

3.4 Conclusions

In this chapter, we introduced a new multivariate control chart by using the concept of kernel Isomap eigen-
analysis. The core idea behind our proposed technique is to create an Isomap kernel matrix prior to project-
ing the data into a higher dimension Hilbert space and then extracting the eigenvalues and eigenvectors of
the kernel matrix. The experimental results clearly show dimensionality reduction is successfully achieved

by the use of kernel Isomaps.
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CHAPTER

Kernel Locally Linear Embedding Algorithm for

Outliers Detection

In this chapter, we introduce a new multivariate statistical process control chart for outlier detection using
a kernel local linear embedding algorithm [16]. The proposed control chart is effective in the detection of
outliers, and its control limits are derived from the eigen-analysis of the kernel matrix in the Hilbert feature
space. Our experimental results show the much improved performance of the proposed control chart in

comparison with existing multivariate monitoring and controlling charts.

4.1 Introduction

Traditional process monitoring consists of measuring and controlling several process variables at the same
time [2]. It is increasing difficult to determine the root cause of defects if multiple process variables exhibit
outliers or process deviations at the same moment in time. Multivariate quality control methods overcome
this disadvantage by monitoring the interactions of several process variables simultaneously and determining
hidden factors using dimensionality reduction [5]. The use of multivariate statistical process control is
also facilitated by the proliferation of sensor data that is typically complex, high-dimensional and generally
correlated. Complex processes can be monitored the stability evaluated, using multivariate statistical process
control techniques.

There are typically two phases in establishing multivariate control charts. The data collected in phase I

are used to establish the control limits for phase II.
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In recent years, a variety of statistical quality control methods have been proposed to monitor multi-
variate data including Hotelling’s 72-statistic chart [2], and the principal component analysis control chart
based on principal component analysis [14]. These control charts are widely used in industry, particularly
in assembly operations and chemical process control [5]. The T2 statistic is, however, vulnerable to outliers
and in order to obtain significantly good results, both the mean and the covariance matrix must be robustly
estimated [17-20]. Also, principal component analysis is very sensitive to outliers [5].

In this chapter, we present a new multivariate statistical process control chart using kernel locally linear
embedding. Locally linear embedding (LLE) is a recently proposed unsupervised procedure for mapping
high-dimensional data nonlinearly to a lower-dimensional space [22]. The basic idea of LLE is that of
global minimization of the reconstruction error of the set of all local neighborhoods in the data set. The
proposed kernel LLE control chart is robust to outliers detection, and its control limits are derived from the
eigen-analysis of the kernel LLE matrix in the Hilbert feature space.

The remainder of the chapter is organized as follows. In Section 4.2, we propose a kernel LLE control
chart. In Section 4.3, we demonstrate through experimental results that the performance of the proposed
multivariate control chart has greatly been improved in comparison with existing monitoring and controlling

charts. Finally, we conclude in Section 4.4.

4.2 Proposed Method

LLE algorithm aims at finding an embedding that preserves the local geometry in the neighborhood of
each data point. First, we build a sparse matrix of local predictive weights W; ;, such that 5 Wig =1,
W, ; = 0if z; is not a k-nearest neighbor of z; and then Zj(Wiijacj — ;) is minimized to create the
matrix M = (I — W)T(I — W). Then we define the kernel matrix K = Anael — M, where Amaz 18 the
maximum eigenvalue of M,

Suppose we have an input data set X = {=; : ¢ = 1,...,n} where each observation z; is a p-
dimensional vector. Kernel PCA algorithm [23, 24] consists of two main steps: the first step is to linearize
the distribution of the input data by using a non-linear mapping ® : R? — F from the input space RP to
a higher-dimensional (possibly infinite-dimensional) feature space . The mapping ® is defined implicitly,

by specitying the form of the dot product in the feature space. In other words, given any pair of mapped
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data points, the dot product is defined in terms of a kernel function K (x;, x;) = ®(x ) b(x;).
In the second step, eigen-analysis in applied to the mapped data set & = {®; : i = 1,...,n} in the
feature space, where ®; = ®(x;). The second step of kernel PCA is to perform an eigen-decomposition of

the covariance matrix of the mapped data which is given by

’L

where &(x;) = ®(x;) — (1/n) o1 ®(x;) is the centered mapped data.

The eigenvectors of C are given by

:—C'u_szml( n—l ) Zaz (@),

where a; = (®(w;)Tv)/((n—1)). In other words, an eigenvector of C is a linear combination of {®(x;)}.

Taking the dot product of &(zx ;) with v yields

D(z;) v = Zai&)(xi) - B(z;) = Zaifﬁj,

which implies that u(n — 1)a; = > 1 | asz] Hence
Ka = pa,
where & = (aq,...,0p) and & = p(n — 1). That is, ¢ is an eigenvector of K. Ifthe eigenvectors of C' are

orthonormal (i.e. vTv = 1) then

1= ’UT’U = Z aioajEI;(a:i) . 5(3:]) = Z aiajf?ij

i,j=1 =1
= ofKo=p(n- Dala

and hence ||a| = 1/4/p(n — 1).

The main algorithmic step of our proposed kernel LLE chart as shown in Table 4.1. The kernel LLE algo-
rithm is based on the concepts of LLE and kernel PCA.
Assuming we want +3o0 confidence intervals, the upper control limit (UCL), the center line (CL), and

the lower control limit (LCL) of the kernel LLE chart are
UCL = +3+/fir
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Algorithm: Kernel LLE Control Chart

. Construct a sparse matrix of local predictive weights W; j, such that > j Wij=1,W;; =0ifzjis
not a k-nearest neighbor of z; and Y° (W, jz; — =;)? is minimized.

. Construct the LLE matrix, M = (I — W)T(I — W),
. Construct the kernel matrix K = A\, q0l — M.
. K= (Kzg) of the mapped data: Kz'j = K((Ei,m]‘) = @(mz) . <I>(ac])

. Construct the kernel matrix K = HKH of the centered mapped data, where H = I — J/n the
centering matrix is defined in terms of the identity matrix ] and the matrix of all ones .J.

. Find the largest p eigenvectors o, (r = 1,...,p) of K and their corresponding eigenvalues fi.

- Given a test point = with image ®(x), compute the projections onto the eigenvectors v,. given by the
equation

Uy 5(:0) =

1 LI ~
Tt X @) k@)

Table 4.1: Algorithmic steps for Kernel LLE.

CL=0

LCL = -3+/fi,

4.3 Experimental Results

We conducted experiments on three different data sets with known outliers. In all the experiments, the

number of nearest neighbors was set to one less than the rank of the input matrix and the dimension of the

output matrix was set to the number of input vectors.

4.3.1 Experiment #1: Woodmod Dataset

We tested the performance of our proposed technique on a data set X = [z, 2, .., x0]T (called wood-

mod data [20]) which contains 20 observations as shown in Table 4.2.
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R Zig Tis | @i Tis |
0.5730 | 0.1059 | 0.4650 | 0.5380 | 0.8410
0.6510 | 0.1356 | 0.5270 | 0.5450 | 0.8870
0.6060 | 0.1273 | 0.4940 | 0.5210 | 0.9200
0.4370 | 0.1591 | 0.4460 | 0.4230 | 0.9920
0.5470 | 0.1135 | 0.5310 | 0.5190 | 0.9150
0.4440 | 0.1628 | 0.4290 | 0.4110 | 0.9840
0.4890 | 0.1231 | 0.5620 | 0.4550 | 0.8240
0.4130 | 0.1673 | 0.4180 | 0.4300 | 0.9780
0.5360 | 0.1182 | 0.5920 | 0.4640 | 0.8540
0.6850 | 0.1564 | 0.6310 | 0.5640 | 0.9140
0.6640 | 0.1588 | 0.5060 | 0.4810 | 0.8670
0.7030 | 0.1335 | 0.5190 | 0.4840 | 0.8120
0.6530 | 0.1395 | 0.6250 | 0.5190 | 0.8920
0.5860 | 0.1114 | 0.5050 | 0.5650 | 0.8890
0.5340 | 0.1143 | 0.5210 | 0.5700 | 0.8890
0.5230 | 0.1320 | 0.5050 | 0.6120 | 0.9190
0.5800 | 0.1249 | 0.5460 | 0.6080 | 0.9540
0.4480 | 0.1028 | 0.5220 | 0.5340 | 0.9180
0.4170 | 0.1687 | 0.4050 | 0.4150 | 0.9810
0.5280 | 0.1057 | 0.4240 | 0.5660 | 0.9090

Table 4.2: Woodmod dataset.

Each observation x; = (251, Zi2, Z;3, T4, Ti5) has 5 variables which correspond respectively to:

number of fibers per square millimeter in Springwood

number of fibers per square millimeter in Summerwood

fraction of Springwood

fraction of light absorption by Springwood

o fraction of light absorption by Summerwood

The woodmod data variables are highly correlated as shown in Fig. 4.1, and hence multidimensional
quality control charts should be applied.

Fig. 4.2 shows that the T2 control chart is unable to detect outliers. Also, the principal component
control chart is unable to detect outliers as depicted in Fig, 4.3. We can clearly see in Fig. 4.3 that the
observations 4, 6, 8 and 19 have higher variations than the rest of the observations although they still lie
within the upper and lower control limits.

The kernel LLE chart is able to detect the observations 2, 4, 6, 8, 10, 11, 12, 13 and 19 as outliers as

shown in Fig. 4.4.
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Figure 4.1: Scatter plot of the woodmod dataset.
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Figure 4.2: T control chart.

4.3.2 Experiment #2: Stackloss Dataset

Our second analysis was performed on a dataset called Stackloss shown in Table 4.3. This dataset describes
the plant oxidation of ammonia to nitric acid, and contains 21 observations, where each observation has 4
variables: rate, temperature, acid concentration, and stackloss.

The scatter plot shown in Fig. 4.5 confirms the existence of a high correlation between the variables.
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Figure 4.3: Principal component chart.
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Figure 4.4: Kernel LLE chart.

The T? control chart displayed in Fig. 4.6 was able to identify the last observation (m = 21) as an outlier.
The principal component chart, however, did not detect any outliers as shown in Fig. 4.7.
On the other hand, the kernel LLE chart (see Fig. 4.8) was able to identify observations 1, 2, 3, 15, 16,

17, 18, and 19 as outliers.

74



80

60

40
30

20

10

80

60

40
20

liﬂil ’ 42 l i3 | Liq I

80.0
80.0
75.0
62.0
62.0
62.0
62.0
62.0
58.0
58.0
58.0
58.0
58.0
58.0
50.0
50.0
50.0
50.0
50.0
56.0
70.0

27.0
27.0
25.0
24.0
22.0
23.0
24.0
24.0
23.0
18.0
18.0
17.0
18.0
19.0
18.0
18.0
19.0
19.0
20.0
20.0
20.0

89.0
88.0
90.0
87.0
87.0
87.0
93.0
93.0
87.0
80.0
89.0
88.0
82.0
93.0
89.0
86.0
72.0
79.0
80.0
82.0
91.0

42.0
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28.0
18.0
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19.0
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15.0
14.0
14.0
13.0
11.0
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8.0
7.0
8.0
8.0
9.0
15.0
15.0

Table 4.3: Stackloss data set.
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Figure 4.5: Scatter plot of Stackloss dataset.
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Figure 4.6: T2 control chart
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Figure 4.7: Principal component chart.

4.3.3 Experiment #3: Phosphorus Content Data

Our third analysis was performed on a dataset (Table 4.4) describing the organic and inorganic phosphorus
content of the soil in comparison with the corn grown. Eighteen observations were selected where each
observation has three variables: inorganic phosphorus, organic phosphorus, and plant phosphorus.

The scatter plot of the data set is displayed in Fig. 4.9. As shown in Fig. 4.10, the T control chart was

able to identify the observation 17 as an outlier, whereas principal component chart did not identify any
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Figure 4.8: Kernel LLE chart.

I Zi1 l ZTi2 1 243 I
0.40 | 53.00 § 64.00
0.40 | 23.00 | 60.00
3.10 | 19.00 | 71.00
0.60 | 3400 | 61.00
4.70 | 24.00 | 54.00
1.70 | 65.00 | 77.00
9.40 | 44.00 | 81.00
10.10 | 31.00 | 93.00
11.60 | 29.00 | 93.00
12.60 | 58.00 | 51.00
10.90 | 37.00 | 76.00

23.10 | 46.00 | 96.00

23.10 | 50.00 | 77.00

21.60 | 44.00 | 93.00

23.10 | 56.00 | 95.00
1.90 | 36.00 | 54.00

26.80 | 58.00 | 168.00

29.90 | 51.00 | 99.00

Table 4.4: Phosphorus Content data set,
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Figure 4.9: Scatter Plot of Phosphorous dataset
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Figure 4.10: T2 control chart

outliers as illustrated in Fig. 4.11.

Kernel LLE chart was, however, able to detect the observations 2, 3, 4, 5, 12, 15, 16, 17, and 18 as

outliers as shown in Fig. 4.12.
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Figure 4.12: Kernel LLE chart.
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4.4 Conclusions

In this chapter, we proposed a robust multivariate control chart for outliers detection using kernel locally
linear embedding algorithm. The core idea behind our proposed technique is to project the data into a Hilbert
space in order to extract the eigenvalues and eigenvectors of a kernel matrix. The experimental results clearly
show a much improved performance of the proposed approach in comparison with the current multivariate

control charts.
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CHAPTER

Conclusions

This thesis has presented dimensionality reduction algorithms to analyze multivariate data. Our algorithms
are built on the foundations of kernel matrices and dimension reduction techniques. We have demonstrated
the effectiveness of the proposed methods with real EEG data.

In the next Section, the contributions made in each of the previous chapters and the concluding results
drawn from the associated research are presented. Suggestions for future research directions related to this

thesis are provided in Section 5.2.

5.1 Contributions of the Thesis

5.1.1 Principal Component Analysis of EEG Data

We presented a user-friendly graphical interface to analyze EEG data using multivariate statistical dimensionality-
reduction techniques. The proposed approach consists of reading a specified amount of data from an EEG
file and conducting linear PCA on the data. We also presented a robust multivariate statistical process con-
trol chart using kernel principal component analysis in the analysis of EEGs. The procedure consists of two
main steps: First, the data is transformed to a Hilbert feature space using a gaussian kernel. Second, linear
PCA is performed on the transformed data. Our experimental results demonstrate the effectiveness of our

proposed approach in multivariate dimensionality reduction.
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5.1.2 Kernel Isometric Mapping of EEG Data

We presented a robust multivariate statistical process control chart using kernel isometric feature maps
(Isomap). The kernel Isomap control chart is based on the eigendecomposition of the Isomap kernel matrix.
The proposed control chart is effective in the detection of outliers, and its control limits are derived from the
eigen-analysis of the kernel matrix in the Hilbert feature space. Our experimental results demonstrate the

effectiveness of using Kernel Isomap methods for dimensionality reduction of multivariate data.

5.1.3 Kernel Locally Linear Embedding Algorithm for Outliers Detection

We presented a new multivariate statistical process control chart for outlier detection using a kernel local
linear embedding algorithm. The proposed control chart is effective in the detection of outliers, and its
control limits are derived from the eigen-analysis of the kernel matrix in the Hilbert feature space. Our
experimental results demonstrate the effectiveness of Kernel LLE control charts in detecting outliers and in

the dimensionality reduction of multivariate data.

5.2 Future Research Directions

Several interesting research directions motivated by this thesis are discussed next. In addition to defining
additional new control charts based on kernel methods, we intend to perform the following:
5.2.1 Dimensionality Reduction by Principal Variables

Principal variables are a subset of the original variables that preserve the structure and information carried
by the original variables, to some extent [25]. The advantage to using principal variables is that the rest of
the variables can be discarded. For the EEG data, this should provide a way to determine the EEG channels

that contain the best information.

5.2.2 Investigate Additional Dimensionality Reduction Techniques for Control Charts

Hesian Eigenmaps, Laplacian Eigenmaps are a few more dimensionality reduction techniques to be further

investigated in the development of new control charts.

82



List of References

[1] K. Yang and J. Trewn, Multivariate Statistical Process Control with Industrial Application, ASA-
SIAM, 2002.

[2] D. C. Montgomery, Introduction to Statistical Quality Control, John Wiley & Sons, 2005.

[3] L.H. Chiang, E.L. Russell, and R.D. Braatz, Fault Detection and Diagnosis in Industrial Systems,
Springer, 2001.

[4] J.R. Evans and A. Abarbanel, Introduction to Quantitive EEG and Neurofeedback, Academic Press,
1999.

[5] K. Yang and J. Trewn, Multivariate Statistical Methods in Quality Management, Mc Graw Hill Pro-
fessional, 2004.

(6] W. Ku, R.H. Storer, and C. Georgakis, “Disturbance detection and isolation by dynamic principal

component analysis,” Chemometrics and Intellignt Labaratory Systems, vol. 30, pp. 179-196, 1995.

[7] M. Kano, S. Tanaka, S. Hasebe, I. Hashimoto, and H. Ohno, “Combination of independent component
analysis and principal component analysis for multivariate statistical process control,” Proc. Interna-

tional Symposium on Design, Operation and Control of Chemical Plants, pp. 319-324, 2002.

[8] J. Liang and N. Wang, “Fault diagnosis in industrial reheating furnace using principal component

analysis,” Proc. IEEE Conference Neural Networks & Signal Processing, vol. 2, pp. 1615-1618, 2003.

83



References
[9] H. Zhang, A.K. Tangirala, and S.L. Shah, “Dynamic process monitoring using multiscale PCA,” Proc.
IEEE Canadian Conference on Electrical and Computer Engineering, vol. 3, pp. 1579-1584, 1999.

[10] H. Jasper, “The ten-twenty electrode system of the International Federation,” Electroencephalography

Clinical Neurophysiology, vol. 10, pp. 371-375, 1958.
[11] “http://homes.esat.kuleuven.be/ biomed/biosource/data007/Interictal_Ictal_ EEG.pdf” 2007.

[12] T. Tsagaroulis and A. Ben Hamza, “Statistical process control of electroencephalograms,” Proc. Inter-

national Conference on Modeling and Simulation, Montréal, 2007.
[13] W.C. Chin and T.C. Head, Essentials of Clinical Neurophysiology, Butterworth-Heinemann, 2002.
[14] LT. Jolliffe, Principal Component Analysis, New York: Springer, 1986.

[15] Y. Bengio, J.F. Paiement, and P. Vincent, “Out-of-Sample extensions for LLE, isomap, MDS, eigen-
maps, and spectral clustering,” Technical Report 1238, Départment d’Informatique et Recherche Op-

erational, Université de Montréal, 2003.

[16] T. Tsagaroulis and A. Ben Hamza, “Kernel locally linear embedding algorithm for quality control,”
Advances and Innovations in Systems, Computing Sciences and Software Engineering, Springer, to

appear 2008.

[17] J.A. Vargas, “Robust estimation in multivariate control charts for individual observations,” Journal of

Quality Technology, vol. 35, no. 4, pp. 367-376, 2003,

[18] N.D. Tracy, J.C. Young, and R.L. Mason, “Multivariate quality control charts for individual observa-
tions,” Journal of Quality Technology, vol. 24, no. 22, pp. 88-95, 1992.

[19] J.H. Sullivan and W.H. Woodall, “A comparison of multivariate control charts for individual observa-

tions,” Journal of Quality Technology, vol. 28, no. 24, pp. 398-408, 1996.

[20] F.A. Algallaf, K.P. Konis, and R.D. Martin, and R.H. Zamar, “Scalable robust covariance and corre-
lation estimates for data mining,” Proc. ACM International Conference on Knowledge Discovery and

Data Mining, pp. 14-23, 2002.

84



References

[21] S. Haykin, Neural Networks: A Comprehensive Foundation, Prentice Hall, 2nd edition, 1998.

[22] S. Roweis and L. Saul, “Nonlinear dimensionality reduction by locally linear embedding,” Science,

vol. 290, no. 5500, pp. 2323-2326, 2000.

[23] J. Shawe-Taylor and C. Williams, “The stability of kernel principal components ananlysis and its re-

lation to the process eigenspectrum,” Advances in Neural Information Processing Systems, vol. 15,

367-374, 2003.

[24] B. Scholkopf, A. Smola, and K-R. Muller, “Nonlinear component analysis as a kernel eigenvalue

problem,” Neural Computation, vol. 10, pp. 1299-1319, 1998.

[25] J.A. Cumming, D.A. Wooff, “Dimensionality Reduction Via Principal Variables,” Computational Sta-
tistics and Data Analysis, vol. 52, pp. 550-565, 2007.

[26] P. Filzmoser, “A multivariate outlier detection method” Proc. International Conference on Computer

Data Analysis and Modeling, vol. 1, pp. 18-22, 2004.

(27] M. Hubert, P.J. Rousseeuw, and K. V. Branden, “ROBPCA: a new approach to robust principal compo-
nent analysis,” Technometrics, vol. 47, pp. 64-79, 2005,

[28] B.J. Fisch, EEG Primer: Basic Principles of Digital and Analog EEG, Elsevier, 1999.

[29] K.H. Chen, D.S. Boning, and R.E. Welch, “Multivariate statistical process control and signature analy-
sis using eigenfactor detection methods,” Proc. Symposium on the Interface of Computer Science and

Statistics, Costa Mesa, CA, June 2001

[30] R.L. Mason, and J.C. Young, Multivariate Statistical Process Control with Industrial Applications,
ASA-SIAM, 2002.

[31] P. Huber, Robust Statistics, John Wiley & Sons, New York, 1981.

(32] F.R. Hampel, E.M. Ronchetti, P.J. Rousseeuw, and W.A. Stahel, Robust Statistics: The Approach Based
on Influence Functions, Wiley, 1986.

85



References
[33] A. Ben Hamza and H. Krim, “Image denoising: a nonlinear robust statistical approach,” IEEE Trans.
Signal Processing, vol. 49, no. 12, pp. 3045-3054, December 2001,

(34] PJ. Rousseeuw and A.M Leroy, Robust Regression and Outlier Detection, John Wiley & Sons, New
York, NY, 1987.

[35] A.C. Atkinson and H.M. Mulira, “The stalactite plot for the detection of multivariate outliers,” Statis-
tics and Consulting, vol. 3, pp. 27-35, 1993,

[36] M.S. Chen, J. Han, and P.S. Yu, “Data mining: an overview from a database perspective,” IEEE Trans-

actions on Knowledge and Data Engineering vol. §, pp. 866-883, 1996.

[37] U.M. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and R. Uthurusamy. Advances in Knowledge Discovery
and Data Mining, AAAI/MIT Press, 1996.

[38] P.J. Rousseeuw and K.V. Driessen, “A fast algorithm for the minimum covariance determinant estima-

tor,” Technometrics, vol. 41, no. 3, pp. 212-223,1999,

[39] W.J. Egan and S.L. Morgan, “Outlier detection in multivariate analytical chemical data,” Analytical

Chemistry, vol. 70, pp. 2372-3279, 1998.

[40] F. Angiulli, S. Basta, and C. Pizzuti. “Distance-based detection and prediction of outliers,” JEEE Trans-

actions on Knowledge and Data Engineering, vol. 18, pp. 145-160, 2006.
[41] R.O. Duda, P.E. Hart, and D.G. Stork, Pattern classification, 2nd Edition, Wiley Interscience, 2000.
[42] C.C. Aggarwal and P.S. Yu, “Oulier detection for high dimensional data,” Proc. ACM SIGMOD, 2001.

[43] F.A. Algallaf, K.P. Konis, and R.D. Martin, “Scalable robust covariance and correlation estimates for

Data Mining,” Proc. ACM SIGKDD, 2002.

[44] S. Engelen, M. Hubert, and K. Vanden Branden, “A comparison of three procedures for robust PCA in
high dimensions,” Austrian Journal of Statistics, vol. 34, pp. 117-126, 2005.

[45] L.H. Chiang, R.J Pell, and M.B.Seasholtz, “Exploring process data with the use of robust outlier
detection algorithms,” Journal of Process Control, vol. 13, pp. 437-449, 2003,

86



References

[46] Z. Ge and Z. Song, “Process monitoring based on independent component analysis-principal compo-
nent analysis (ICA-PCA) and similarity factors,”Industrial & Engineering Chemistry Research , vol.
46, pp. 2054-2063, 2007.

[47] A.Hyvarinen and E. Oja, “Independent component anlysis: algorithms and application,” Neural Net-

works, vol. 13, pp. 411-430, 2000.

[48] J.M. Lee, C. Yoo, and LB Lee, “Statisical process monitoring with independent component anlysis,”

Journal of Process Control, vol. 14, pp. 467-485, 2004.

[49] H. Al-Bazzaz and X.Z. Wang, “New statistical process control chart for Batch operations based on

independent component analysis,” Industrial & Engineering Chemistry Research, vol. 43, pp. 6731-
6741, 2004.

[50] J. Mina and C. Verde, “Fault detection using dynamic principal component analysis by average esti-

mation,” Proc. International Conference on Electrical Engineering, pp. 374-377, 2005.

[S1] W. Li and S. J. Qin, “Consistent dynamic PCA based on errors-in-variables subspace identification,”

Journal of Process Control, vol. 11, pp. 661-678, 2001.

[52] J. Chen and C. M. Liao, “Dynamic process fault monitoring based on neural network and PCA,”

Journal of Process Control, vol. 12, pp. 277-289, 2002.

[53] J.F. Cardoso and A. Soulomica, “Blind beamforming for non-Gaussian signals,”/EEE Proc. Radar &
Signal Processing, vol. 140, pp. 362-370, 1993.

[54] W. Hardle, Smoothing Techniques, Springer, 1991.

[55] 1.J. Downs and E.F. Vogel, “A plant-wide Industrial process control problem,” Computers & Chemical
Engineering, vol. 17, pp. 245-255, 1993.

[56] M. Kano, K. Nagao, S. Hasebe, I. Hashimoto, H. Ohno, R. Strauss, and B. Bakshi, “Comparison of
statistical process monitoring methods: application to the Estman challenge problem,” Computers &

Chemical Engineering, vol. 24, pp. 175-181, 2000.

87



