Abstract Property Verifier based on Multiway
Decision Graphs

Kamran Hussain

A Thesis
in
The Department
of

Electrical and Computer Engineering

Presented in Partial Fulfillment of the Requirements
for the Degree of Master of Applied Science (Electrical & Computer Engineering)
at
Concordia University

Montréal, Québec, Canada

September 2007

(© Kamran Hussain, 2007

A

Library and
Archives Canada

Published Heritage
Branch

395 Wellington Street
Ottawa ON K1A ON4
Canada

NOTICE:

The author has granted a non-
exclusive license allowing Library
and Archives Canada to reproduce,

publish, archive, preserve, conserve,

communicate to the public by

telecommunication or on the Internet,

loan, distribute and sell theses
worldwide, for commercial or non-
commercial purposes, in microform,
paper, electronic and/or any other
formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

Bibliothéque et
Archives Canada

Direction du
Patrimoine de I'édition

395, rue Wellington
Ottawa ON K1A ON4
Canada

Your file Votre référence
ISBN: 978-0-494-40883-4
Our file Notre référence
ISBN: 978-0-494-40883-4

AVIS:

L'auteur a accordé une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par télécommunication ou par I'Internet, préter,
distribuer et vendre des théses partout dans

le monde, a des fins commerciales ou autres,
sur support microforme, papier, électronique
et/ou autres formats.

L'auteur conserve la propriété du droit d'auteur
et des droits moraux qui protége cette thése.
Ni la thése ni des extraits substantiels de
celle-ci ne doivent étre imprimés ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,

their removal does not represent
any loss of content from the

thesis.

Canadg

Conformément a la loi canadienne
sur la protection de la vie privée,
quelques formulaires secondaires
ont été enlevés de cette these.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

ABSTRACT

Abstract Property Verifier based on Multiway Decision Graphs

Kamran Hussain

Symbolic model-checking tools encounter state-explosion problem when verify-
ing designs with large data paths. Multiway Decision Graph (MDG) model-checker
uses abstract data representation and applies abstract operations to address the
state explosion problem. The MDG verification tool, also known as Abstract Ver-
ifier, takes as input the specification (written as properties) and the description of
the design, and then proves or disproves if the design satisfies these properties. The
original specification language of the Abstract Verifier was called L,,q, that provides
temporal operators and abstract data types to formalize properties. Meanwhile, the
Property Specification Language (PSL) has changed the verification world by in-
troducing very rich temporal operators but without abstract data types. In this
thesis, we propose a new specification language called Abstract Property Language
(APL), for the MDG model-checker. This language replaces the Lq44 specification
language by introducing new operators borrowed from PSL to improve its expres-
siveness. We provide the formal definition of this language in BackusNaur form
(BNF) and provide its formal semantics based on the computational model of the
Abstract Verifier. APL is associated with a front-end translator that accepts APL
specifications and builds verification-ready models to be handled directly inside the
MDG model-checker. Finally, we have validated our APL language and the trans-

lator tool on the verification of several test benches including Look-Aside Interface
(LA-1) design.

iii

To My Father - Tasadduq Hussain

v

ACKNOWLEDGEMENTS

First of all, T would like to thank the almighty God for giving me all the blessings
throughout my life and for the opportunity to make this thesis possible.

It gives me great pleasure to thank all those who have helped me in my re-
search work. The first person I would like to sincerely thank is my supervisor, Dr.
Otmane Ait-Mohamed. Without his guidance, his expert advice, his support and
continual encouragements, this thesis would not have been possible. I express my
heartfelt gratitude to him. I sincerely thank Dr. Sofiene Tahar, who along with my
supervisor have created one of the best research groups in this field. To all my fellow
researchers in Hardware Verification Group (HVG) at Concordia University, I thank
you for your friendship, your thoughtful discussions and productive feedbacks. Most
importantly, I thank you all, the entire HVG family, for standing next to me when
my father passed away. Without your encouragements and support, I would not

have been able to continue my research work.

Last but not least, I thank my family and relatives, here and overseas, for
their constant moral support and their prayers. Your support was invaluable in

completing this thesis.

TABLE OF CONTENTS

LIST OF TABLES e, ix
LIST OF FIGURES e, X
LIST OF ACRONYMS e xii
1 Introduction : 1
1.1 Thesis Contribution. 5

1.2 ThesisOutline. 7

1.3 Related Work 8

2 Background 10
2.1 Temporal Logic and Specification 10
2.1.1 Linear Time Logic 11

2.1.2 Computation Tree Logic 13

2.1.3 Full Branching-Time Logic 14

2.1.4 Categories of specification 15

2.2 Multiway Decision Graphs 15
2.2.1 Abstract State Machine 17

222 Structure of MDG L 17

2.2.3 Verification Algorithms 19

2.3 Abstract Verifier 20
231 MDG-HDL 21

2.3.2 Specification Language for MDG Model-Checking 29

2.3.3 Model-Checkingin MDG 31

2.4 Construction of Translators 33
2.4.1 Lexical Analyzer 34

242 Syntax Analyzer 35

243 Context Handler 36

vi

244 Code Generator, 36

3 Language Description 38
3.1 PSLanditssubset in APL 39
3.1.1 BooleanLayer 39
3.1.2 Temporal Layer 40
3.1.3 Verification Layer, 43
3.1.4 Modeling Layer 44

3.2 Lpgganditssubsetin APL 44
3.3 Abstract Property Language(APL) 47
3.3.1 Syntax of Abstract Property Language 47
3.3.2 Semantics of Abstract Property Language 49
3.3.3 APL Language Restrictions 51

4 Generating Composite Model 53
4.1 Tool Specification 54
4.1.1 Platform and interface 56
4.1.2 Output filenames 56
4.1.3 Processing files 57

4.2 AVT Architecture 57
421 MainModule 59
422 Model Scanner 60
4.2.3 Symbol Manager 62
424 Translator Module, 65
425 Write Manager 65
426 Error Manager 66

43 Translator 67
4.3.1 Lexical Analyzer 68
4.3.2 Syntax Analyzer 71

vil

4.3.4 Context Handling and Code Generation

4.3.5 Flag Circuit Generation .

5 Experimental Results

5.1 Performance Comparison

5.2 Area Evaluation of the Generated Circuit

5.3 Application: Verification of the LA-1 Interface
5.3.1 Specification
5.3.2 MDG Model-checking Results

6 Conclusion and Future Work

A.1 Read-port of Look-Aside Interface in MDG-HDL

A.1.1 Algebraic Description

A.1.2 Circuit Description
A13 Order Description
A.2 Generated monitor circuit for LA-1in MDG-HDL

A.2.1 Example Specification

A.2.2 Monitor Circuit in Circuit Description File
A.3 Modified Order Description File .
A.4 Modified Algebraic Specification File
A.5 Generated Condition file for the MDG model-checker

Bibliography

viii

89
89
92
94
96
96

98

101
101
101
102
104
105
105
106
109
111
111

112

1.1

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9

4.1
4.2
4.3
4.4
4.5
4.6

5.1
5.2
5.3
5.4

LIST OF TABLES

Raising the abstraction level 4

Logical Operators considered for APL 40
Example property violating simple subset rules. 41
LTL operatorsin PSL 41
next operators considered for APL 42
SERFE operators considered for APL 43
Operator Synonyms 46
L4 and APL Lexical Rules 47
Property. templates 51
APL restrictions 52
Condition file naming strategy. 56
Data collected from algebraic file. 61
Flag output according to property templates. 66
Token List. 70
Boolean expression mapping. 77
Temporal expression mapping. 78
Performance of AVT compared to L,,q,-Tools 90
Area Evaluation. L 93
Read-port specification in APL. 97
Verification results for Read-port specifications. 97

X

1.1
1.2
1.3

2.1
2.2
2.3
24
2.5
2.6
2.7
2.8
2.9
2.10
2.11
2.12

3.1

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8

LIST OF FIGURES

Model-checking method
L44 Tools: front-end of the Abstract Verifier
Proposed front-end of MDG methodology

BDDsto MDGs.
MDG Verification
OR gate in MDG and its corresponding MDG-HDL description. . . .
MDG-HDL description of a Comparator
An abstract counter Lo
Model-Checking in MDG
Basic structure of a compiler. L.

AST for a+b+c..

MDG Model-Checking Algorithms.

Composite model with flag output.
Top view of the generator tool.
Structure of AVT.
Main Module.

Symbol Manager
Top view of the Translator module.

Translator. L,

65

49 Syntaxflow. 68

4.10 Syntax Tree 71
4.11 AST for function expressions. 76
4.12 AST for compare expressions. 77
4.13 AST for boolean expressions. 78
4.14 AST for temporal expression examples. 79
4.15 AST for LET expression. 80
4.16 Annotated AST. 82
4.17 Circuit representing property. 86
4.18 Completion of Monitor Circuit. 87
4.19 The Flag Circuit 87
5.1 Performance Comparison. 91
5.2 Effect of 'next’ on area (logarithmic scale on Y-axis). 92
5.3 Look-Aside Interface (LA1). 95
5.4 Read-port representation in MDG-HDL. 96

xi

LIST OF ACRONYMS

ABV Assertion-Based Verification

AP Atomic Proposition

APL Abstract Property Language
ASM Abstract State Machine

BDD Binary Decision Diagram

BNF Backus-Naur Form

CFG Context-Free Grammar

CTL Computation Tree Logic

DAG Directed Acyclic Graph

DF Directed Formula

DFA Deterministic Finite Automata
FL Foundation Language

FPGA Field-Programmable Gate Array
FSM Finite State Machine

LA-1 Look-Aside Interface

LTL Linear Temporal Logic

MDG Multiway Decision Graph

NFA Non-deterministic Finite Automata
OBE Optional Branching Extension
PSL Property Specification Language
RE Regular Expression

RTL Register Transfer Level

SERE Sequence Extended Regular Expression
SV SystemVerilog

SVA System Verilog Assertion

YACC Yet another compiler-compiler

xii

Chapter 1

Introduction

A major challenge in digital system design is ensuring correctness of the design at
the earliest phase possible. Encountering design errors in manufactured products
have lofty economic consequences. The impact is more severe in digital designs
of critical applications. Given the number of devices and number of gates per IC
chip growing radically, verification engineers must find a way to provide adequate
verification coverage without drastic increase in verification time and cost.

Simulation-based methods are standard practice in the industrial community
for hardware verification. However, they cannot offer complete coverage because the
number of test cases grows significantly with the complexity of the design. Recently,
formal verification methods have become an important complement because of their
ability to find errors early in the design cycles through exhaustive exploration of all
possible behavior.

In formal verification, the goal is to mathematically establish that the system
under verification satisfies its specification. There are three main aspects when using
formal verification techniques: the implementation of the system, its corresponding
specification (or reference model) and the relationship between the implementation
and the specification (or reference model). Among the three, it is the relationship

that needs to be ascertained. The system representation can be at any level of

abstraction. Its specification, refers to the properties, can be given by behavioral
descriptions, abstract structural description, temporal logic formulae, and so forth.
Formal verification methods are usually categorized into three major techniques:
theorem proving, equivalence checking and model-checking.

Theorem proving is generally an interactive approach where the implementa-
tion and the specification are stated in formal logic. The correctness is obtained by
mathematically proving their relationship, equivalence or implication. The logic is
characterized by a proof system that defines a set of axioms and a set of inference
rules. Inference rules are applied until the desired theorem is proven. Theorem prov-
ing requires expertise and significant efforts on the part of the user in developing
specifications of each component and in guiding the theorem prover through a large
set of lemmas. As a result, this technique has limited practice in the industry, and
it is mainly used for verifying critical parts of systems. The most popular theorem
proving tools are Boyer-Moore Theorem Prover Nqthm [32], the Cambridge HOL
system [27] and PVS [33].

Equivalence checking is a method to prove that two design representations of
the same system are functionally equivalent. The two representations are usually
at two different levels of abstraction. One common scenario of equivalence checking
can be comparing a circuit’s gate-netlist description with its RTL description. It is
usually divided into two classes: Combinational equivalence checking and Sequen-
tial equivalence checking. In combinational equivalence checking, the circuits to be
compared are converted into canonical representations of boolean functions, usually
BDDs [14] which are then structurally compared to conclude the relationship. For
example, MDG [1], an academic tool, and Synopsys Formality [3], a commercial tool,
offer combination equivalence checking. On the other hand, in sequential equivalence
checking, the two designs are represented using state-encoding. The equivalence is

then proven by building the product finite state machine and checking whether the

output is invariant for any initial states of the product machine. It can verify equiva-
lence between RTL and behavioral models because it only considers the behaviors of
the models. However, due to state-space limitations, it cannot check large designs.

MDG and VIS [4] are examples of tools that can perform sequential equivalence

Behavioral or
RTL Model

checking.

Desired
specfication

P

Model Checker

(Is Mi=p ?)

or
No +Counter Example

Figure 1.1: Model-checking method

Model-checking techniques are attractive verification method because of their
high automation. Like equivalence checking, model-checking is historically a decision
graph based method. It uses state space algorithms on finite-state models to check if
the desired specification is satisfied. Specifications are expressed in a propositional
temporal logic. An algorithm is employed to automatically explore the state-space
and ascertain if the specification is verified by the state-transition graph. A top
view of this method is depicted in Figure 1.1. Depending on success or failure, a

model-checking tool gives the answer yes or no respectively. When the verification

3

fails, a counter example is provided that helps the user in tracing the source of the
error. This counter example is also known as the failure trace.

Model-checking algorithms have been explored since early eighties and signifi-
cant results have been published [26]. The introduction of Bryant’s Binary Decision
Diagrams (BDD’s) [14] piloted a breakthrough in the size of a transition system
that can be verified. Since then, a number of researchers have explored BDD-based
symbolic technique and have published results [28] [30] [31]. The drawback of this
method is that they usually suffer from the state-explosion problem when verifying
designs with large data paths.

A new class of decision graph, called Multiway Decision Graphs (MDGs), was
proposed as a solution to the state-space explosion problem by Cerny et al. in
1997 [15]. In MDG based model-checking approach, data signals are denoted by
abstract variables, and data operators are represented by un-interpreted function
symbols. As a result, a verification based on abstract-implicit-state-enumeration
can be carried out independently of data path width, substantially lessening the
state explosion problem. Table 1.1 shows the abstraction level of MDG compared
to traditional methods. A model-checking methodology is typically comprised of
three major parts: a specification language, a system modeling language and a set
of algorithms to perform model-checking. In existing MDG methodology, these are
Lmdg 37}, MDG-HDL [38] and MDG model-checker [15] [35] respectively.

Table 1.1: Raising the abstraction level

Conventional method Multiway Decision Graph
ROBDD [14] MDG
Finite State Machine Abstract State Machine

Implicit state enumeration [28] | Abstract state implicit enumeration of ASM

CTL based model-checking Based on first-order abstract CTL*

In our work, we explore L,,q, property specification language that facilitates

4

the formal representation of desired specification in MDG based model-checking

methodology. We also investigate how the written specifications are processed in

MDG based model-checking.

1.1 Thesis Contribution

The existing MDG model-checking process requires two sets of tools: a back-end
model-checker and a front-end comprised of Ly, tools [37]. The front-end is a set
of tools that provides a mechanism to process the desired specification written in
terms of properties. The existing L,,q4, specification language, used as specification
language in MDG model-checking to write properties, is based on the first-order
abstract CTL* class of temporal logic [36]. In order to create the verification-ready
model, the property formulae are processed to construct additional circuitry that
is added to the original model. The result is a composite model (Figure 1.2) in
MDG-HDL. The composite model is fed to the back-end model-checker to formally

verify if the specification holds.

(" Modify model "\ Original Mode!

in external < —
\— editor / Modified Model MDG
(g ' 1 4 User Composite Model| i0del-Checker
- [Next] .
| Create Composite Model | 1 . ified Model
.| + Specification A

[Func] Incorporate
Functions Used

Composite Model

Figure 1.2: L,,4, Tools: front-end of the Abstract Verifier

After investigating the language description of L.4e and the implementation
of its tools, we have concluded that both can be improved without affecting the
model-checking algorithms offered by the MDG model-checker [35]. The apparent

issues are following;:

e The front-end parsing process requires modifying the syntax of original model

in an external editor. This is due to lexical restrictions in L4y language.

e An extra file specifying all the functions used in specification is needed. This

is parsed by the Func tool (Figure 1.2).
¢ Concrete functions (cross-terms) used in specification cannot be handled [12].
e More than one tool is needed to build the composite model.

e The generated composite model needs to be manually fixed (edited) in order

to comply with the rules of MDG-HDL [12].

i =) Original Model
el + Specification .
, Proposed Tool - - User Composite Model vod I\I/lgﬁ)
' S Composite Model odel-Lhecker

Figure 1.3: Proposed front-end of MDG methodology

Our goal is to develop a new front-end (Figure 1.3), where a single tool will
accept the original model with its specifications written in an improved language and
will efficiently create the verification-ready composite model. Thus, the proposed

improvements are:

e Remove Lyq, language restrictions, thereby creating a new language.

o Support expressions of L,,4, but use appropriate standardized operators from

PSL [6]. Also add PSL expressions to improve expressive-power.

¢ Develop a single tool (Figure 1.3) that can process specifications and generate

respective composite models.

e Improve performance of the front-end specification processing.

1.2 Thesis Outline

This thesis is made up of six chapters. It is organized as follows:

e In Chapter 2, we give brief background information on topics that are required

to comprehend materials presented in Chapters 3 and 4.

o In Chapter 3, the description of Abstract Property Language (APL) is pro-
vided along with its syntax and semantics. Here, we also present the subsets

of Lynqg [36] and PSL [6] considered in constructing APL.

o In Chapter 4, the requirement, the specification and the design of the proposed
tool (Figure 1.3) are presented in details. Major part of the tool is a trans-
lator that translates APL specification to MDG-HDL. We provide the lexical
and syntactic rules used in this translator as regular eXpressions and in BNF

respectively.

o In Chapter 5, experimental results are presented. It includes performance
analysis and analysis of generated circuit area. It also presents model-checking

results of the Read-port of Look-Aside Interface [20].

o Finally we conclude in Chapter 6 with a brief discussion on future work.

1.3 Related Work

As related work to ours, we cite the work of Eric Gascard [16]. He presented a pro-
cess of generating deterministic finite automata from a given PSL SERE expression
[6]. The work describes a tool which generates a VHDL description of a monitor
checking circuit from a PSL SERE formula. This is achieved by creating a parser for
PSL language. The syntax tree produced by the PSL parser is then given to the au-
tomata construction module. The VHDL monitors are directly translated from the
expressions. These monitors are later synthesized on FPGA (Field-Programmable
Gate Array).

Marc Boulé and Zeljko Zilic described a way to generate hardware assertion
checkers to be used in an emulation environment [25]. To use assertions in hard-
ware emulation, they have introduced a checker generator tool, called MBAC, that
can transform PSL assertion units into Verilog modules. The transformation in-
cludes boolean layer, temporal layer and assert directive of the verification layer.
The Verilog modules are synthesized on FPGA. The assertion signals are externally
monitored by the verification engineer.

Morin-Allory and Borrione showed a unique method of synthesizing monitors
from PSL assertions [24]. In their work, primitive monitor blocks are built for each
foundation language operator of PSL. Generic monitors are built for operators that »
can have different number of operands. These monitors are written in synthesizable
subset of VHDL. Construction of complex monitors are done by interconnecting
primitive monitors. They have proved the correctness of the monitors using PVS
theorem prover [33]. To do this, each monitor is converted to its respective finite
state machine (FSM) and translated into PVS input formalism.

Abarbanel et al. gave birth to FoCs (Formal Checkers), an automatic gener-
ation of simulation checkers [34]. It takes PSL assertions and translates them into
HDL Checkers, which in turn are integrated into the simulation environment. These

Checkers monitor the simulation results on a cycle-by-cycle basis for violation of the

8

properties. Each Checker implements a state machine that enters and asserts an
error state if the respective property fails to hold in a simulation run. The language
of the checkers can be VHDL or Verilog. The tool first translates a given assertion
into non-deterministic finite state automaton (NFA). The obtained NFA is converted
into a deterministic finite state automaton (DFA). Finally, HDL form of the checker
is generated from the DFA. The translation process is based on the work of Ilan
Beer [23].

The major difference between the work presented in this thesis and the works
presented in the above paragraphs is the target application. The above mentioned
related works are presented with application to either simulation or emulation based
verification environment in mind. The research closely related to ours is the work
done by Ying et al. [36], in creating L,.q, language and its processing tools, called
Lag-Tools. In this case the targeted application is MDG based model-checking. In
our work, we present a new language based on L4, with added operators from
PSL, and present an improved tool to perform the processing of specifications writ-
ten in terms of properties. Given a model of a hardware design in MDG-HDL and its
respective specification in terms of properties, the outcome of both Lyg,-Tools and
our proposed tool is a verification-ready composite model. This model is combina-
tion of the original model and the generated monitor (checker) circuit, representing

the specification, in MDG-HDL.

Chapter 2

Background

In this chapter, we provide a brief background on following topics:
¢ Classification of temporal logic and specification.
o Multiway Decision Graphs (MDGs).
e Abstract Verifier or MDG verification tool.

e Construction of Translators.

2.1 Temporal Logic and Specification

In model-checking methods, desired specifications are usually written in proposi-
tional temporal logic formulae [9]. This allows the user to write propositions with
respect to time. The model of time is represented either in linear time (LTL) [29)
or branching time (CTL) [26]. CTL* is a logic that combines the expressive power
of LTL and CTL. It is also known as full branching-time logic.

10

2.1.1 Linear Time Logic

In linear time logic, the structure of time is a totally ordered set (S, <), isomorphic
to the set of natural numbers (N, <) [17]:
If AP is a set of atomic propositions, a linear time structure is defined as

M(S, R, L), where:
e S: a set of states.
e R C S xS transition relation function with Vses Jycs . (s,8')€ R.

o L:S — 24P ig a labeling of each state with the set of atomic propositions

true in that state.

If R is a function, i.e. for every state there exists exactly one successor state, then

we obtain a linear structure. Following is an example (Figure 2.1):

e Model M(S, R, L) N\

S ={so, 81, Sz, ...}

So St S2
R O »@ (.
p pq ru

AP ={p,q,r, u, v}
\ L(SO) = {p}’ L(S1) = {p! q}1 L(S2) = {r’ U}, /

Figure 2.1: Model Structure

In propositional linear temporal logic (PLTL), one can use propositional logic

as building block and apply temporal operators to specify properties. The syntax

of it is defined as a least set of formulae generated by the following rules [17]:
1. Each atomic proposition is a formula;

11

2. If p and q are formulae then —p and p A ¢ are formulae;

3. If p and q are formulae then pUq and Xp are formulae.

Semantics of a formula p of PLTL with respeét to a linear-time structure
M(S,x, L), where x is the transition relation, is defined below. Here, we write
M,z = p iff p € L(sg) for atomic proposition p to mean that in structure M
formula p is true on timeline (path) x; z* denotes the suffix path si, sii1, si+2; and

so forth.
1. M,z }=p iff p € L(sy).
2. M,z |= —p iff not M,z k= p.
3. M,z }:p/\q iff Mz =pand M,z = q.
4. M,z = Xp iff M,z = p.
5. M,z = p U qiff 3j(M, 27 |= ¢, and VYocic;(M, z* | p)).

A PLTL formula p is satisfiable iff there exists a linear-time structure M:=(S,
z, L) such that M,z |= p, and any such structure defines a model of p.

Following are some examples (Figure 2.2):
fp O—0O—0C—@— G 600 -0~
p P P p |y

Xp O—@—O—0O— 1rlq @@ @ 07—
1Y

P P p q

Figure 2.2: LTL formulae and time.

12

2.1.2 Computation Tree Logic

Computation tree logic (CTL) was first proposed by Clarke and Emerson [18]. It
is based on branching time temporal logic (BTTL). Here, the time is modeled as a
branching tree-like structure where each moment may have many different successor
moments. Along each path, the timeline is isomorphic to the natural number. To
specify a property in CTL, we simply apply the path operators along with temporal
operators to the propositional building blocks. There are two strict restrictions in

CTL:

1. The LTL operators F, G, X and U are immediately preceded by a path quan-
tifier.

2. Time operators cannot be combined directly with the propositional connec-

tives.
The syntax of CTL are governed by the following rules:

1. Every proposition is a CTL formula;

2. If p and ¢ are CTL formula, then so are —p, (p A ¢), AXp, EXp, A(pUg),
E(pUg).

The remaining operations can be derived from the above rules. The truth of a
formula is determined on a given state and not on a branch of the time structure.
The structure resembles an infinite computation tree. A temporal formula p is
satisfied by a model M with transitions T', if it is true for all the initial states s of

the model. The semantics of CTL formula is given below:
1. M,so l=piff pe L(sp).
2. M,sq = —p iff not M, s = p.
3. M,so l=pAqiff M,so =pand M, s, = q.

13

4. M, so = AXp iff for all states s, with (s, s,) € T, M, s, = p.
5. M, sy |= EXp iff for some state s, with (s, s,) € T, M, s, = p.

6. M, so = A[pUq] iff for all paths (so, s1,. . .), there exists a j > 0 with M, s’ = ¢,
and M, s' |= p holds Vp<;;.

7. M, sy = E[pUgq] iff for some path (s, s1, ...), there exists a j > 0 with M, s |=
g, and M, s' |= p holds Vp<;;.

Figure 2.3 shows intuitive meanings of some CTL formulae.

EGf

Figure 2.3: CTL formulae and time.

2.1.3 Full Branching-Time Logic

This class of logic formula combines the branching-time and linear-time operators.
In CTL*, a path quantifier can be a prefix to an assertion composed of arbitrary
combination of the temporal operators: F, G, X and U. Like CTL, the tree is formed

by designating a initial state so in model M, and then unwinding the structure into

14

an infinite tree with so as the root. The semantics of the path quantifiers and

temporal operators remain the same.

2.1.4 Categories of specification

The specifications are written as properties of the system. They are categorized as

follows:

1. Safety property: ensures that nothing ‘bad’ will ever happen. Depicted as =

Gp, where p is true at the time.

2. Liveness property: ensures that something ‘good’ will eventually happen. De-

picted as = Fp, where p will eventually be true at some point in the future.

3. Precedence property: ensures precedence order of events. Depicted as = pUgq,

where g is true in present time or p is true until ¢ becomes true.

Among the three, safety property is the most used when writing specifications of a

design under verification.

2.2 Multiway Decision Graphs

The underlying formal system of MDGs is a subset of many-sorted first-order logic
improved with a distinction between abstract sorts and concrete sort. Concrete
sorts have finite enumerations, while abstract sorts do not. The enumeration of a
concrete sort « is a set of distinct constants of sort a. The constants occurring
in enumerations are referred to as individual constants and the other constants as
generic constants. They could be viewed as O-ary function symbols. The distinction
between abstract and concrete sorts leads to a distinction between three kinds of

function symbols.

15

The vocabulary of many-sorted first-order logic consists of sorts, constants, variables,
and function symbols or (operators). A function symbol is defined as follows:

Let f be a function symbol of type a; X ag X -+ + X an — Qny1.

1. If apy is an abstract sort, then f is an abstract function symbol.
2. If on... any1 are concrete, then f is a concrete function symbol.

3. If apy1 is concrete while at least one of the o;... «, is abstract, then f is

referred to as cross-operator.

Concrete function symbols must have explicit definition. Abstract function symbols
and cross-operators are uninterpreted.
An interpretation is a mapping ¥ that assigns a denotation to each sort, con-

stant and function symbol, such that:
1. The denotation ¥(«) of an abstract sort « is a non-empty set.

2. If o is a concrete sort with enumeration ay,as,- - - ,a, then

U(a) = ¥(a),¥(az), -, ¥(an) and ¥(a;) # ¥(a;) for 1 <i<j<n.
3. If ¢ is a generic constant of sort o, then ¥(c) € ¥(a).

4. If f is a function symbol of type a; X ag X -+ X 4y — any1 then U(f) is a

function from cartesian product V() x - - ¥ (o) into the set U(any1).

If X is set of variables then a variable assignment with domain X, compatible with
an interpretation ¥, is a function ¢ that maps every variable x € X of sort o to
an element p(x) of ¥(a). We write % for the set W-compatible assignments to
the variables in X. ¥, = P if P denotes truth under an interpretation ¥ and a
W-compatible variable assignment ¢ to the variables that occur free in P. | P if
a formulae P denotes truth under every interpretation ¥ and every W-compatible

variable assignment to the variables that occur free in P.

16

2.2.1 Abstract State Machine

In MDGs, a state machine is described using finite sets of input, state and output
variables, which are pair-wise disjoint. The behavior of a state machine is defined by
its transition/output relations including a set of reset states. An abstract descrip-
tion of the state machine, called Abstract State Machine (ASM) [19], is obtained
by letting some data input, state or output variables be of abstract sort(s), and
the datapath operations be uninterpreted function symbols. As ROBDDs are used
to represent sets of states and transition/output relations for finite state machines
(FSM), MDGs are used to compactly encode sets of (abstract) states and transi-
tion/output relations for ASMs. This technique replaces the implicit enumeration

technique [28] with the implicit abstract enumeration [15].

2.2.2 Structure of MDG

MDGs can be viewed as a generalization of BDDs. With BDDs, we can represent
formulae written in boolean logic with leaf nodes labeled with boolean values. But
it can also be viewed as representing an assertion, with the leaf nodes labeled by
propositions. This idea can be generalized to accommodate abstract types. For
example, let G represent the graph of the boolean formula (—z A Fy) V (z A FY),
where, Fy and F} are the boolean formulas represented by the sub-graphs G, and
G respectively. In many sorted first-order logic, the graph G can be viewed as
representing a formula:
(z=0)AF)V(z=1)AF)).
Three possible generalizations of G and the corresponding formulas are shown in

Figure 2.4. Fy, F; and F; are first-order formulas represented by the sub-graphs Gy,

G and G respectively. Sorts and functions are annotated in the graphs.

1. From G to G': = € {0,1} — z € {0,2,3}, and Graph G represents the

17

formulas:

(z=0ANFR)V((z=2)AF)V((z=3)AF).

2. From G to G": 2 € {0,1} — z € {a,y, f(a,y)}, and Graph G” represents the

formula:

V(($=a)/\F0)V (z=y)AF)V((=

3. From G to G = € {0,1} — g(z) € {0,2,3}, and Craph G represents the

formula:

f(a,

Y)) A Fa).

((9(z) = 0) A Fo) v ((9(x) = 2) A F1) V ((9(2) = 3) A).

G:

Boolean variable»

Boolean Constanty 0

Go

Sort [3: abstract

G
Abstract variable of g ~~--

Generic constantof B _ _y 8

3 g

Go

Gy

G2

Gy

G2

P ——

Sort¢y:[0,1.2,3,4]

Concrete variable of &

Individual constant of &

Sorty:[0,1,2,3,4]
Grrnnmne Cross operator of &

g — Individual constant of &

The above generalized decision graph G', G” and G" are examples of Multiway

Decision Graphs (MDGs).

Figure 2.4: BDDs to MDGs.

18

2.2.3 Verification Algorithms

The MDG software package includes algorithms for disjunction, relational product,
pruning-by-subsumption (PbyS), and reachability analysis. Except for PbyS, the
operations are a generalization of first-order terms of algorithms on ROBDD, with
some restrictions on the appearance of abstract variables in the arguments. In the
reachability analysis procedure, starting from the initial set of states, the set of states
reached in one transition is computed by the relational product operation. The
frontier set of states is obtained by removing the already visited states from the set
of newly reached states using the pruning-by-subsumption (PbyS) operation. If the
frontier set of states is empty, then the reachability analysis procedure terminates,
since there are no more unexplored states. Otherwise the newly reached states
are merged (using disjunction) with the already visited states and the procedure
continues where the next iteration with the states in the frontier set as the initial
set of states. A facility to carry out simple rewriting of terms that appear in the
MDGs is also included. This allows algorithms to provide a partial interpretation
of an uninterpreted function symbol. A detailed description of the operations and
algorithms can be found in [15]. The following sub-sections describe the important

verification methods provided by the MDG tools.

Combinational Equivalence Checking

The MDGs representing the input-output relation of each circuit are computed using
the relational product of the MDGs of the components of the circuits. Then taking
advantage of the canonicity of MDGs, it is verified whether the two MDG graphs are
isomorphic. Using this technique, we can verify the equivalence of two combinational

circuits.

19

Sequential Equivalence Checking

The behavioral equivalence of two sequential circuits can be verified by checking
that the circuits produce the same sequence of outputs for every sequence of inputs.
This is achieved by forming a circuit from two circuits by feeding the same inputs to
both and verifying an invariant asserting the equality of the corresponding outputs

in all reachable states.

Model Checking

MDG model checker provides both safety and liveness property checking facilities
using the implicit abstract enumeration of an abstract state machine. In MDG
model-checking, the design is represented in MDG-HDL and the properties to be
verified are expressed by formulae in Ly,g,. The ASM model of L4y and the RTL
model is composed along with a simplified invariant. The simplified invariant is

checked on the composite machine using the implicit abstract enumeration of the

ASM.

2.3 Abstract Verifier

Abstract Verifier, also known as MDG Verification Tool, consists of set of tools.
These include a composite model generator in Ly, tools (Figure 2.9) at the front-
end and a collection of services that are implemented as a library package under
Quintus Prolog [2] at the back-end. The package includes a reachability-analysis
procedure, applications for combinational and sequential hardware verification at
RT level [39], and model-checking applications for a subset of first-order abstract
CTL* [36].

20

(Sequential Verification (seq))

@ombsnat»cnal Verification (comb) ’
Run Prolog —)

z ey
(Reachablhty Analyscs (st))

_ l Equvvalence Checkmg (se))
(Model Checker (mc) '

,,,,,,,

User Load MDG Library

Perform Verificaton

//J Venflcatlon lerary ”

“.a“\’/

\ Quintus Prolog J j

Figure 2.5: MDG Verification

A user needs to represent the model under verification in MDG-HDL accord-
ing to its language specification [38]. He then needs to load the MDG library (Fig-
ure 2.5) in Prolog to run applications available in the library package. If model-
checking needs to be performed, L4, set of tools must be used to get a composite
model. The user must modify the original model using any text editor and write
its specification in L,,4, language in accordance with the restrictions provided in
MDG Model Checker User’s Manual [35]. In the following subsections, we provide
instructions on how to represent models in MDG-HDL and the process of MDG

based model-checking.

2.3.1 MDG-HDL

MDGs describe circuits at the RT level as a collection of components interconnected
by nets that carry signals. Each signal can be an abstract variable or a concrete
variable. The input language for MDG based applications is MDG-HDL. It allows

the use of abstract variables for representing data signals and uninterpreted function

21

symbols for representing data operations. MDG-HDL mainly supports structural
description. In order to represent a design, a user must create three files: an algebraic
description file, a circuit description file and an order description file. To perform
model-checking, he also needs to feed the model-checker with the property file. In

the following subsections, we provide brief discussion on each step.

Algebraic Description File

In this file the user defines custom signal types (sorts), function types and generic
constants used in the hardware description. The built-in types are given in com-
mon.pl in MDG package library [38]. If rewrite-rules are needed to interpret the

function symbols, they are also specified in this file.

o Sorts: Sorts can be one of the two types: abstract or concrete.

1. abs_sort(Sort). - declares Sort as an abstract sort.
— Example: abs_sort(wordn). - declares wordn is an abstract sort.

2. conc_sort(Sort, [list_of_values]). - declares Sort as a concrete

sort having list of constant values as its enumeration.

— Example: conc_sort(bool, [1,0]). Here, bool is a concrete sort
whose enumeration is given in the list [1, 0], where 1 and 0 are treated

as individual constants.

o Functions: There are two types of functions in MDG-HDL: abstract function

symbol and cross function symbol.

function(Func_symbol, Args_sorts, Target_sort) - declares a function
type. Func_symbol is the function symbol. It can be an abstract function
symbol or a cross-operator. Args_sorts is a list of types of the arguments

and Target_sort is the type of the function return.

22

1. Example: function(add, [wordn,wordn],wordn). Here, add is uninter-
preted but could mean addition. It is a function that takes two arguments,
whose sorts are wordn, and returns a result of sort wordn. In this case,

wordn must be abstract sort and add is an abstract function symbol.

2. Example: function(leq, [wordn,wordn] ,bool). leqis a function which
is uninterpreted. It intends to mean less then or equal. The function has
two arguments of abstract sort wordn and returns a result of boolean sort
bool. Here, leq is called a cross-function symbol (or cross-operator or

Cross-op).
o Generic constants: The generic constants are declared the following way:

— gen_const(Gen_const, Sort) declares a generic constant Gen_const

having the type Sort.

— Example: gen_const(min,wordn). Here, min is a generic constant of

sort wordn.

o Re-writing rules: The re-writing rules are written using two keywords: rr and

xtrr.

1. rr(Cs, LHS,RHS) is a conditional rewrite rule: C, = LHS — RHS.
Here, LHS (left hand side) and RHS (right hand side) are terms. C, is
a list of conditions. A condition can be a pair (Xt;,C) composed of a
cross-term and an individual constant, or it is simply a term which is a

goal of the predicate.

— Example: rr([(eq(X,Y),0), (iszero(X),1)],iszero(Y),0). It means
if (eq(X,Y) = 0) and (iszero(X) = 1) then iszero(Y) equals 0.
Here, [(eq(X,Y),0), (iszero(X), 1)] is the condition list.

2. xtrr(C,, LHS, RHS) is a conditional rewrite rule for cross-terms:

23

Cs = LHS — RHS. LHS must be a cross-term and RHS must be
an individual constant. C, may contain arithmetic expressions, but must

not contain cross-term and individual constant pairs.

— Example 1: xtrr([], eq(X, X),1).
It represents the rewrite rule: X=Y = eq(X,Y) — 1. The condition
X=Y (syntactic equivalence) is implicitly expressed in the rule. The
condition list is thus empty.

— Example 2: xtrr([square(X,Y)], sq(X,Y),1).
square(X,Y):- Y is X* X. It represents the rewrite rule:
X?=Y = s¢(X,Y) — 1. The condition X2=Y is an arithmetic
expression. It is evaluated by a Prolog predicate: square(X,Y):-Y
is X x X.

Circuit Description File

A circuit can be described as a structural description, a behavioral ASM description,
or a mixture of structural and behavioral descriptions. A structural description is
usually a net-list of components (predefined in MDG-HDL) connected by signals. A
behavioral description is the transition/output relations of an ASM given by table

construct. Following are the basic constructs:

1. Signal declaration: Each signal must be declared only once in the following

format:

e Format: signal(name, type). Here, name is the name of the signal and

type is the sort of the signal.

e Example: signal(mySig, bool). - declares a signal mySig with type
bool.

2. Component declaration: Components are the basic building blocks in MDG-
HDL.

24

e Format: component(name, definition) - declares a component name

that is defined by definition.

e Examples: Following are some definitions of components from the set of

predefined components in MDG-HDL:

(a) NOT gate: not (input (Input: bool), output(Output: bool)).

(b) Two-input and-gate: and(input(Inputl: bool,Input2: bool),
output (Output: bool)).

(c) Register with control signal: reg(control(Control:bool), input(Input:Sort),
output (Qutput: Sort)).

(d) Uninterpreted function block: transform(inputs(Inputs: [Sort,,

Sorty, ..., Sort,]), function(Func_symbol), output (Qutput:Sort)).

3. Table declaration: Tables are considered as components. It is similar to a
truth table, but it allows first-order terms in the rows. In the list of rows,
the first row is a list containing variables and cross-terms. The last element
of the list must be a (concrete or abstract) variable. All the other variables
in the list must be concrete variables. Starting from the second row, each
row is a list of values that the corresponding variables or cross-terms can
take. The last element in the value list could be a first-order term, which
means an assignment to the output variable. The other elements in the list
must be either don’t-cares (represented by ‘*’) or individual constants in the
enumeration of their corresponding variable sort. The last element a row may

be a term which serves as the default value.

e Format: table(rows).

e Example: component (myTable, table([[myInput,myOQutput], [1, 0]
[11)).

It specifies a NOT gate, where myOutput has value 0 if myInput has value

1; myOutput has value 1 if myInput is not 1.

25

. State variable initialization: User needs to assign starting point for state vari-
ables.

e Format: init_val(Stvar, InitVal). - assigns InitVal to Stvar.

e Eixample:init_val(myState, sO). - assigns sO as the starting state to

myState variable.

. State variable generalization: For abstract state variables, the initial states

should be generalized.
e Format: init_var(InitVal, Sort). - declares InitVal as a generalized
state variable sort to be used in initializations.
e Example: init_val(pc,init_pc). init_var(init_pc,wordn).

. Next state declarations: For sequential circuit, the user should provide the

mapping between state variables and next-state variables.

e Format: st_nxst(Stvar, NextStvar) declares that NeztStvar is the

next-state variable of a state variable Stvar.

e Example: st_nxst(myStateVar, n_myStateVar).
. State partition declaration: It is a 3-level nested list. The inner most list gives
a list of next-state variables. The transition relation MDG, containing all the
variables in the list, forms an individual transition relation. The middle level
list specifies a default partition block.

e Format: next_state_partition(Partitions).

e Example: next_state_partition([[[n_al], [[n_bl], [[n_cl11).

. Qutput partition declaration: It declares Outputs as a list of outputs of the

circuit.

e Format: outputs(Outputs).

26

e Example: outputs([myOutput]).
9. Partition strategy declaration:

e Format: par_strategy(OrdMethod, ParMethod). - declares OrdMethod
as the ordering strategy for individual relations and ParMethod as the

partitioning strategy.

e Example: par_strategy(auto, auto).

Complete details of the MDG-HDL language can be found in its user manual [38].

Order Description File

Like ROBDDs, the MDGs require a total order over all the nodes in the graph. This
order is manually provided by the user using order_main (Symbols) function where
Symbols is a list of variables and cross-operators. We say that symbol a comes
before symbol b if a is at the left side of b in the list. In MDG, a will appear above
b. We may also write it as a < b.

Example: order_main([r,x,c_A,n_c_A,rm_A,n_rm_A,rM_A,n_rM_A,leql).
For node ordering of abstract variables and cross-operators, MDGs have some re-

quirements:
1. If a variable a will appear as a secondary variable in an edge label of node b,

then a < b.

2. If a variable a will appear as a secondary variable in a cross-term having

cross-op f, then a < f.
3. The state variables and next state variables must be in a correspondent order.

4. If using rewriting rule rr(Cs, LHS, RHS), the cross-operators in C, must
come before the terms in LHS in the graph structure. For example, for rule:
rr([(eq(X,Y), 0), (iszero(X), 1)], iszero(Y), 0), cross-operator eq

should come before iszero.

27

Modeling Examples

For logic gates, the input and output signals are always of concrete sort with boolean
values. Abstract sort is pre-defined in the MDG library package. Cross operators
are used when feedback of a datapath is used as part of control. If not, a function
symbol is used. Both, however, are uninterpreted. A simple logic-gate design is
given as an example below containing concrete sorts. The Figures 2.6 and 2.7 show
MDG-HDL representations of an OR-gate and a comparator respectively. More
details can be found in the user manual of MDG-Tools [38].

(a) OR gate: y := x4 Or Xz (b) MDG of OR gate,
Y =X OF Xp

% Algebraic description:

conc_sort(bool, [0,1]).
% Circuit description:

signal(x1,bool).

signal(x2,bool).

signal(y,bool).

component (myAND, and(input(x1,x2),output(y))).
% Order description:

order_main([x0,x1,y]).

Figure 2.6: OR gate in MDG and its corresponding MDG-HDL description.

28

x] ——

X2 —>

eq

(a)

(b)

%Algebraic description:
abs_sort(wordn) .
function(eq, [wordn,wordn] ,bool)}.
xtrr([],eq(X,X),1).
%Circuit Description:
signal(x1,wordn) .
signal(x2,wordn) .
signal(y,bool).

component (comp_function, transform(inputs ([x1,x2]),
function(eq),output(y))).

%0rder description:
order_main([x0,x1,eq,y]).

Figure 2.7: MDG-HDL description of a Comparator

2.3.2 Specification Language for MDG Model-Checking

The property language of MDG model-checking methodology, Lmay, is tailored to fit
the powerful model-checking algorithms available in MDG. It is based on abstract
CTL* [36]. The formulae are divided into two categories: state formulae and path
formulae. State formulae give specification on certain states in the system and path
formulae elaborate on them with respect to time using temporal operators. Its

semantics can be found in the user manual of MDG model-checker [35].
Example: Here, we present some properties written in Lp.q¢ specification

language. Given the model of Figure 2.8 represented in MDG-HDL, the specification

29

can be written as follows:

1. AG (state = c_Fetch & input = c_Inc2) -> X(state = c_Incl));

If state is c_Fetch and input is c_Inc2, then in the next transition state is
c_Inc2.

2. AG ((state = c_Fetch & input = c_Load) -> XX(state = c_Fetch));
If state is c_Fetch and input is c_Load, then in two transition steps state is
c_Fetch.

3. AG((state = c_Fetch & input = c_Inc2) ->
(LET(pc = v1) IN (XXX(pc = finc(finc(v1))))));

If state is c_Fetch and input is c_Inc2, then in three transition steps the
value of pc will be incremented two times. Here, the value of pc in the present
state is stored in v1. The comparison is made between the value of pe after

three transition steps and incrementing the old value of pc twice.

30

¢_Load
pe := loadin

¢_Inct ¢_Inct
double = ¢_Inc2 or ¢_inc2
pc:=pc+1

double = true

Figure 2.8: An abstract counter

Lynag language is discussed in detail in the next chapter.

2.3.3 Model-Checking in MDG
To perform model-checking based on MDG, following steps are taken:
1. Represent the design under verification in MDG-HDL.

2. Perform state exploration to make sure that no error exists. The state explo-
ration service in MDG software package detects and reports all syntax and

semantic errors before performing reachability analysis.
3. Edit the model according to restrictions given in the manual [35].

4. Write the specification according to the manual.

31

5. Run the Ly, tools to generate the composite model and the condition file(s).
6. Run model-checker to verify the model.

To verify subsequent specifications, user needs to repeat steps 4 to 6 in the
above list. The user shall creates a few additional files in order to use MDG model-
checker, part of MDG verification tool implemented as a library package under

Quintus Prolog [2]:

1. A make.pl file that tell prolog application where the MDG library package is.

After running prolog, a user loads the make file.

2. A circuit.pl file that provides the MDG applications the filenames of the models

and their locations. This file can be automatically generated as well.

/

)

B

Modify model Original Model (— Exploratlon (st) 3}
in external - Run Prolog

editor J > o . tlv vf,\t,‘,\

h equential Verification (se
— ModiiedModel | User Load MDG Libary (9 foaton (o))

[Next] | (Modei Checker (mc.)
Create Composite Model |~] . Perform e —
» | Moiied Mode model-checking T Verification lerary y

4

+

Package
Specification - p

ST

[[Func] Incorporate] —
L vFu»ncﬂons Used : } Quintus Prolog H

Composite Model \

J

+
Condition file (s)

Figure 2.9: Model-Checking in MDG

Figure 2.9 shows the modules involved in the model-checking process. When a
user runs the sequential verification application, it loads all the necessary algorithms
that are required to run the model-checker. A user must do it before running the
model-checker application. When the model-checker application is run, the user

must select a property template from the following list:

32

1. A 2. AG

3. AF 4. AU
5. E 6. EG
7. EF 8. EU
9. AGAF 10. AGAU

11 .AF with fairness 12. AGAF with fairness

13 .AU with fairness 14. AGAU with fairness
Based on the chosen template, user must specify the filenames of the composite

model and the condition files. The model checker than runs the algorithm and
produces a result: yes or no. This informs the user if the specification is satisfied

or not.

2.4 Construction of Translators

In this thesis, the proposed tool shall have a component that can perform a trans-
lation between Abstract Property Language (APL) to MDG-HDL. Thus, in this
section, we provide the basic construction technique of such module that can per-
form the required operation. We follow the procedure of compiler construction for
this purpose.

In its most general form - a compiler is a program that accepts as input a
program text in certain language and produces as output a program text in another
language [11]. This conversion process is called translation. The input language of
this process is denoted as the source language, and the output language is denoted

as the target language.

33

Lexical)
Analyzer -|Code Generator
oy 4
Source Language : Syntax Intermediate Target Language
An);l zer Code :
y (AST)

/ An2c>st$ted | - Context Handler|

Figure 2.10: Basic structure of a compiler.

Figure 2.10 shows the basic structure of a compiler. The components are:
Lexical Analyzer, Syntax Analyzer, Semantic Analyzer and Code Generation. A
code optimizing module is usually present in compiler constructions. Since it is not

used in building the proposed tool, we have omitted the module.

2.4.1 Lexical Analyzer

A lexical analyzer or lexer takes an arbitrary input stream and tokenizes it into
lexical tokens. In this thesis, the lexical analyzer is built using a tool called Flex
[22]. Flex automatically generates a lexical analyzer given its lexical specifications.
The specifications are set of patterns written using regular expressions that are
matched against the input. Each time one of the pattern is matched, corresponding
action code is executed. In such a case, the action returns appropriate token to the

syntax analyzer. Attributes of the tokens are also saved along with the tokens.

Example:
1. Pattern: id . [a-z] [a-zA-Z0-9_]*
2. Action: Return the token ID and store its attributes.

34

When pattern of id is matched, its attributes are saved and token ID is provided to

the syntax analyzer.

2.4.2 Syntax Analyzer

A syntax analyzer determines if its input is syntactically correct given a set of syntax
rules and also determines its structure. The syntax rules are given as grammar of
the language. The structure is usually an abstract syntax tree (AST). AST is also
known as parse-tree. The AST accurately shows how the segments of program text
are to be viewed in terms of the specified grammar. In this thesis, Bison [21] is used
to build the syntax analyzer. In Bison, a user specifies the grammar in Backus-Naur
Form (BNF) and provides corresponding actions per production rule in order to
build the AST. User also needs to specify the association types of the operators and
their precedence. When an AST is built, the nodes are annotated with its attributes.

It is then called an annotated AST. In this thesis, AST means annotated AST.

Example:

The grammar given below presents a grammar of an expression that can be an iden-
tifier, or it can be a plus operation between two expressions. Figure 2.11 shows an

example AST of the expression a + b + ¢, where the plus operator is left associative.
e Grammar:

1. expression: expression + expression

2. | id;
e Actions:

1. For the first line: create a node in the AST with corresponding value of

plus and the expressions as its children.

35

2. For the second line: create a node in the AST with associated value of id

with two NULL children. Here the id is a leaf node.

Figure 2.11: AST for a+b+c.

2.4.3 Context Handler

Based on the attributes of tokens and the context of use, this process checks the
semantics of program text. It is also known as semantic analyzer. For example, a
plus can be an arithmetic operation or a logical OR. Based on the semantic, its usage
should be analyzed. In this case, the operands should be either logical or numeric.
During semantic analysis phase, optimization information is collected, and later it

is used in the code generation.

2.4.4 Code Generator

A code generator produces statements in target language through a process called
code generation. It is a process of systematic replacement of nodes and sub-trees
of the AST by target code segments. This process preserves the semantics. The

AST is re-written to produce a linear sequence of instructions based on the target

36

language. For example, if we consider the AST given on Figure 2.11, as representing
some statement in the source language and consider a target language supporting

procedure plus(inputy, inputy, output), we can do the following:
1. a+b generating a target statement: plus(a, b, output,).

2. (a+b) + c generating a target statement: plus(outputy, c, outputs).

Figure 2.12: AST to target code.

Figure 2.12 shows one of the ways it can be done. Here, plus; can be replaced with
output, and plus; with output,. In this thesis, simple traversal algorithms are used

to generate the target text from AST. The details of which are given in Chapter 4.

37

Chapter 3

Language Description

The purpose of using formal logic to define hardware specification is to avoid ambi-
guities associated with descriptions in natural languages. Defining specification in
formal logic also facilitates automation of verification processes. In model-checking
based verification, specification languages, as expected, are based on temporal logic.
They allow verification engineers to specify how the behavior of a system should
progress over time. This is possible in temporal logic without explicit introduc-
tion of time. Abstract property language (APL) described in this chapter is such a

language.

11. AF.with fairess

Figure 3.1: MDG Model-Checking Algorithms.

In this chapter, we provide detail description of the proposed language. We

introduce Property Specification Language (PSL) and Lyg, specification language

38

and then define subsets of the two languages that are considered in constructing
APL. When we define these subsets, we must keep in mind the model-checking
algorithms implemented in the MDG model-checking package.

The package supports 14 different formats of temporal logic (Figure 3.1).
There are also four algorithms dealing with fairness formulae that allow users to
put constraints on the environment of the design. In this thesis, we only focus on

properties based on the first 10 algorithms given in Figure 3.1.

3.1 PSL and its subset in APL

Property Specification Language (PSL) has recently become an IEEE standard in
2005 [6]. With its crisp syntax and comprehensive formal semantics, it is becoming
the primary choice among assertion languages intended for hardware verification. In
this section, we present a brief introduction to PSL and its subset relevant to APL.

The PSL language structure is based on four layers: Boolean Layer, Temporal

Layer, Verification Layer and Modeling Layer.

3.1.1 Boolean Layer

This layer consists of expressions with valuations true or false. The boolean oper-
ators in this layer are from the respective underlying HDL flavor. For APL, the
underlying layer is MDG-HDL. It is a structural language where boolean operations
are represented by logic components and not by boolean expressions. However, for
its specification language, we are free to choose boolean expressions to represent
logical operations, as the composite model shall be generated by the proposed tool.
We choose the logical operators given in Table 3.1 to be used in APL. The primary
reason for considering these operators is that most users are accustomed to using

them in this syntax.

39

Table 3.1: Logical Operators considered for APL

Operator | Logical Operation HDL Flavor

! NOT Verilog, SystemVerilog , SystemC
i OR Verilog, SystemVerilog , SystemC
&& AND Verilog, SystemVerilog , SystemC
— IMPLICATION Verilog, SystemVerilog , SystemC

— EQUIVALENCE Verilog, SystemVerilog , SystemC

Bit and bit-vectors can be suitably represented by creating concrete signals
in MDG-HDL. Union operator cannot be considered because non-deterministic as-
signments of concretes are not applicable in MDG. The supported expressions and

operators are constrained by the rules of simple subset of PSL [6].

3.1.2 Temporal Layer

This layer consists of temporal properties that allow us to represent relationships
between boolean expressions over time structure. Since PSL is mostly used in sim-
ulation environment, it offers weak and strong temporal operators. Weak operators
allow assertions to pass if simulation traces (finite) end prematurely and nothing
else fails. In such cases, use of strong operators results in failed assertions. By
definition, in formal verification we are dealing with ‘infinite traces’. In MDG based
model-checking algorithms, operators are treated as strong by default. Therefore,
we do not distinguish operators based on the type. In PSL, LTL and SERE style
temporal properties together are known as Foundation Language (FL). In all styles
of temporal properties in PSL, we follow the rules of simple subset [6], briefly dis-
cussed in this section. We shall then discuss Foundation Language and CTL based

Optional Branching Extension styles of PSL.

40

Simple Subset

In simple subset of PSL, the time is seen as flowing from left to right through the
property. The intuitive meaning of it is that if we need to evaluate an atomic entity
at cycle A, then valuation of any entity to the right of it, in the property, should
not need to occur before A. An example of an invalid property is given in Table 3.2.
In the invalid property, ¢ and d need to be asserted before we assert b. Details of

the rules are given in the language reference manual [6].

Table 3.2: Example property violating simple subset rules

Property Valid (?)
AG ((a && XX(b)) — (¢ && X(d))) No
AG ((p && XX(q)) — (XXX (7))) Yes

Foundation Language (FL)

LTL style support all the temporal operators of LTL. Table 3.3 shows LTL operators
and corresponding PSL synonyms [10]. Here, items 2, 4 and 5 have strong operators.
As mentioned before, we shall not make distinction on types of temporal operator.

In APL, all temporal operators shall be treated as strong [10].

Table 3.3: LTL operators in PSL

No. | LTL PSL synonym
1 Gp always p

2 Fp eventually! p
3 Xp next p

4 X!p next!p

5 pUg puntil ! ¢

41

In addition, PSL offers expressive classes of ‘next’, ‘until’ and ‘before’ opera-
tors. Table 3.4 gives two variations of nezt that are considered for APL. The reason
for considering them is their ease of use and applicability in our property templates.
For instance, if a property requires to reason about a state after 32 cycles, it is much
simpler to write next[32] than writing X thirty two times. The complete set of LTL
operators can be found in the PSL LRM [6].

Table 3.4: next operators considered for APL

Property LTL Equivant Description
next! p Xp p holds in the next cycle
next! [* n] p X..X (n-times) p p holds in the n™ next cycle

The other member of the Foundation Language is SERE style. SERE, sequence
extended regular expression, was created so that users can write temporal properties
as easily as they write regular expressions. In this style, the time sequence events
are delimited by a concatenation operator. A set of expressive SERE operators are
provided in this style to easily specify how long or when a boolean entity should be
asserted. Most are very useful in simulation environment. Complete details of SERE
operators and expressions can be found in PSL’s LRM [6]. For now we only consider
the concatenation operator and one of the repetition operators. Table 3.5 gives their
details. More operators can be considered for APL if time permits. Given the
underlying abstraction in MDG methodology, we will use the name abstract SEREs
when they are used in APL.

42

Table 3.5: SERFE operators considered for APL

Operator | Name Example Description

ack is asserted one cycle after req is

; Concatenation operator req ; ack
’ P g5 asserted.

Consecutive repetition
operator

p is asserted for three consecutive cycles
and then g is asserted in the fourth cycle.

[*n] pr*3lq

Since clock is always implicit in MDG methodology, we do not consider any
clock related expressions. The SERE expressions used in APL are thereby un-
clocked. Based on the strict set of algorithms we have, we shall not consider few other
useful operators: suffix, fusion, disjunction, within, etc. Endpoint declarations and
built-in functions are not applicable for the very same reason. Syntax and semantics

of foundation language are given in the language reference manual of PSL [6].

Optional Branching Extension (OBE)

For branching-time temporal logic based formal verification, PSL offers Optional
Branching Extension (OBE). It is based on CTL. Since our MDG model checker is
based on first-order abstract CTL*, we support all OBE operators, with their ap-
plicability governed by their corresponding verification algorithms (See Figure 3.1).

Restriction on until operator still applies based on simple subset rules of PSL.

3.1.3 Verification Layer

This layer consists of directives to the verification tool indicating what to do with
the property in concern. There are five classes of directives: assert, assume, restrict,
cover and fairness. In MDG model-checking algorithms all properties are asserted,
and thus assert is the implicit directive. The fairness constraints can be employed

by using fairness algorithms available in the L,,4, package.

43

3.1.4 Modeling Layer

This layer helps model behavior of design inputs and allows declaring and providing
behavior to auxiliary signals and variables. In MDG model-checking methodology,
the properties are written in first-order abstract CTL*, and the syntax is vastly
different then its HDL flavor. In MDG-HDL, the logic gates are represented struc-
turally using components. The written properties are parsed and embedded as
additional circuit to the original model as checkers. The signals and components

needed to represent these additional circuits are automatically generated.

3.2 Ly, and its subset in APL

Lumag is constructed based on first-order temporal logic. It is a subset of abstract
CTL* [36]. The syntax and semantics of it have already been clearly defined and
established [37]. Our goal is to improve the existing specification language, Lyq,,
and its parser implementation. Therefore, we must consider the L 49 language in
its entirety for APL. Only a few lexical rules for operands are changed, and some
operators are replaced by their synonyms. However, the semantics remain as defined.
Let us revisit the syntax of Lnag.

With a given description of an abstract state machine (ASM) and a set of
ordinary variables (used as storage in properties), the formulae are divided into two

categories: state formulae and path formulae.

State Formulae

1.ty =ty is a state formula, if ¢; is an ASM variable and t, is either an ASM

variable, or a constant, or an ordinary variable.
2. If p, q are state formulae, then so are:

(a) 'p (NOT p),

44

(b) p & q (p AND g),

(¢) p1g(pORg)and
(d) p— q (p IMPLIES gq).

3. LET (v =) in p is a state formula, if v is an ordinary (storage) variable, ¢ is

an ASM variable and p is a state formula.

4. If p is a path formula, then Ap (for all path) and Ep (there exist a path) are

state formulae.

Path Formulae
1. Each state formula is a path formula.

2. If p, q are path formulae, then so are

(a) 'p (NOT p),

(b) p & ¢ (p AND g),

(c) p1q(pORyg),

(d) p— q (p IMPLIES g),
(e) Xp (next p),

(f) Gp (always p),

(g) Fp (eventually p) and
(h) pUq (p until q).

3. LET (v = t) in p is a path formula, if v is an ordinary (storage) variable, ¢ is

an ASM variable and p is a path formula.

Here, LET (vi=t; & ...& (v, = t,) IN p is a shorthand for LET (v;=t,) IN (LET
(v=t2) ... (LET (v,=t,) INp))...)

The proposed changes to incorporate into APL are following:

45

1. Replace comparison operator in the state formula 1 by a conventional one, as
seen in SystemC [7]. ¢, in the formula can also be a function symbol. The
syntax given in Backus-Naur Form (BNF) of L,,q4, [35] supports it when it is
prefixed by a let-equation in the property. The proposed improvement is to
support functions as right terms in any comparison. The assignment operator,

=, used in state formula 3 and path formula 3, remain the same in APL.

2. Replace two boolean operators (Table 3.6): logical AND and OR. Instead of
using ”&” for logical AND and | for logical OR, we use conventional operators

[7] [5] given in Table 3.1.

Table 3.6: Operator Synonyms

Lmdg Operator APL Operator Description
| I Logical OR
& && Logical AND
= == Comparison operator

In addition to the above, few L,,4, lexical rules are not present in APL. The
syntax of Ly,q, given in BNF imposes few restrictions to differentiate between ASM
variable, ordinary variable, function name and symbolic constant. In APL, we shall
only impose lexical restrictions that are inherent in MDG-HDL. Differentiating iden-
tifiers can be done by scanning the implementation of the design. Details of the
scanning process are presented in Chapter 4. The numeric constants in APL do not

support empty strings. These differences are presented in Table 3.7.

46

Table 3.7: L4, and APL Lexical Rules

Identifier

Lmdg

APL /MDG-HDL

ASM variable name

[a-bd-eg-uw-z][A-Za-z0-9]*

[a-z)[a-zA-Z0-9_]*

Ordinary (storage) variable
name

[VI[A-Za-z0-9_1*

[a-z][a-zA-Z0-9_]*

Function name

[fl[A-Za-20-9_]*

[a-z][a-zA-Z0-9_}*

Symbolic constant

[c][A-Za-z0-9]*

[a-z][a-zA-Z0-9_]*

Integer constant

[0-9]*

[0-9]+

Excluding the above mentioned changes, the entire L,,q, is incorporated into APL.

3.3 Abstract Property Language(APL)

Abstract Property Language is based on existing L4, language. It is a subset of
first-order abstract CTL* with added operators and expressions from PSL. In this

section, we present its syntax and semantics.

3.3.1 Syntax of Abstract Property Language

Given a description of an abstract state machine (ASM) and a set of ordinary vari-

ables V to be used as storage in properties, the syntax of APL is given as follows:

1. ty == t3 and t; != %, are compare formulae, where ¢, is an ASM variable; ¢, is
an ASM variable, or a concrete value of ¢; or an ordinary (storage) variable.

In not-equal formula, both operands are of concrete sort.
2. Every compare formula is a state formula.

3. If p, q are state formulae, then so are
(a) Ip

47

(b) p && ¢
© plla
4. If p is a state formula, and v € V, then following is a state formula
e LET (v=1¢)INp
5. If p is a path formula, then Ap and Ep are state formulae.
6. Each state formula is a path formula.

7. If p, q are path formulae and n is a natural number greater than 0, then so are
(a) p
(b) p && q
(€ plq
(d) Xp
(e) Gp
(f) Fp
(g) pUq

(h) pig
Equivalent to (p && Xq) in the absence of empty SERE [6].

(i) plxn]
Represents n consecutive repetitions of p along the timeline. For example,

p[*3] is equivalent to writing (p && Xp && X Xp)
The last two formulae are from unclocked PSL SERE expressions.
8. If p is a path formulae, and v € V, then following is a path formula

o LET (v=1¢) IN p

48

Implication (p — ¢) and equivalence (p < g) formulae are derived from existing

formulae. nezt p is equivalent to X p.

3.3.2 Semantics of Abstract Property Language

APL is constructed using syntax from Ln45 and PSL. The semantics of those syntax
remain the same. The semantics of SERE expressions are presented here in differ-
ent context, and they are named abstract SERE. The intuitive meaning remain as
is. Given a description of an abstract state machine (ASM) and a set of ordinary

variables V to be used as storage in properties, we define the following:

o All formulae are interpreted in the computation forest derived from a given

ASM.
e total state is a set of variables representing state, inputs and outputs;
e 19 = (8o, 51, S2,...) is a full path;
o ;i = (8, Sit1, Sit2,- ..) is a suffix path;

e Valy,(t) denotes the value of the term ¢ where value s is assigned to total
state and value ¢ is assigned to ordinary variables; the assignments are U-

compatible.

® 5,0 = p to denote that state formula p is true at total state s with o assigned

to ordinary variables;

e 7;,0 |= p to denote that path formula p is true along path m; with o assigned

to ordinary variables;

Given the above, we can now present relation |= inductively as follows:

® 5,0 |= th==1, & Valsua(tl) = Va/lsUa(tQ)

49

s,0 =t 1=t & Valy.(t) # Vals,(t2); both operands are of concrete

sort.

s,ol=lp & notsolkp

sofEp&&q :© solEpandso =g

s0Epllg ;& sokEporsolkg

$,0 ELET (v=t)INp :&s,0 k= p, whereo = (o\ {v,0(v)}) U {v, Valy,(t)}

$,0 F Ap % m,0 |= p for every path m; = (si, Si11, Siy2,...) in the compu-

tation forest.

5,0 = Ep :% m,0 |=p for some path m;=(s;, 841, Siz2, . ..) in the computa-

tion forest.

73,0 |= p, where p is a state formula :& s;,0 Ep
0 Elp e not mo Ep

mio Ep&& q o mokEpand mo =g

o E=pllg & molEpormo g

moE=EXp o ma,okEDp

Ti,0 = pg 1 Mo Epand my,0 =g

7,0 = prn] 1 Vicjcipn m,0 ED

7,0 = Gp & Vs mokEDp

1,0 EFp e JpsimokEDp

Ti,0 p= pUq 14 3 miy0 |= g and Vicjok w50 = p
mi,0 |E LET (v=t) INp :& m,0 = p, whereo = (o\ {v,0(v)}) U {v, Vals,u.(t)}

50

3.3.3 APL Language Restrictions

There are few restrictions that apply to the syntax of APL. These restrictions are

described below:

¢ Based on the algorithms implemented in MDG Package(See Figure 3.1), the
nesting of CTL* operators is restricted. Only next operator is free. Ta-
ble 3.8 summarizes the property templates allowed in accordance with the
MDG model checker. However, more templates are covered based on equiva-
lent formulas [17]. The description of temporal logic operators can be found

in section 2.1.

Table 3.8: Property templates

Algorithm Template

A A (property)

AG AG (property)

AF AF (property)

AU A (property_1)U (property 2)

E E (property)

EG EG (property)

EF EF (property)

EU E (property 1)U (property 2)
AGAF AG (property_1 =>F property 2))
AGAU AG (property_1 => (property 2 U property 3))

¢ Restrictions on operands are given in Table 3.9. The description of the oper-

ators can be found in section 3.1.1.

o1

Table 3.9: APL restrictions

Operator

Operand restriction

i
i

Left operand cannot be a function or an ordinary (storage) variable.

Both operands must be concrete; left operand cannot be a function or
an ordinary (storage) variable.

Left operand must not contain temporal operators.

Neither side can contain temporal operators.

Left operand must not contain temporal operators.

e Lastly, SERE operators are not to be combined with LTL operators.

52

Chapter 4

Generating Composite Model

In this chapter, we present the details of our proposed tool that can process the
original model of a design along with its specification written in APL and can create
a composite model ready to be verified by the MDG model-checker. This composite
model represents the Design Under Verification with some added circuitry [37]. The
added circuitry has one boolean output for each property. These additional circuits
are called monitors and the boolean outputs are called flags. In Chapter 3, available
property templates were provided. Figure 4.1 shows a composite model, where a

monitor circuit is added to the original design with its flag output.

‘Composite Model)\

Design under
verification

Signal 4

Monitor circuit
for property

Signa; n; Pi
- /

Figure 4.1: Composite model with flag output.

Y

/

Flag i B

93

Before we present the details of the proposed tool, let us discuss the require-

ments (without precedence):

1

10.

It must be a single tool capable of performing the task.

It should not impose any new syntax restriction on the model in MDG-HDL.

. Property templates offered by the tool must concur with the algorithms allowed

in MDG model-checker.

. The specification will follow the APL language specification

The proposed tool should accept a single specification along with the MDG-
HDL source files of the model.

It should process the specification to build monitor circuitry in MDG-HDL

needed for model-checking process.

The added source code must be appended into copies of the original source

files to construct the composite model.

Composite model source files must have convenient names.

. It must report errors, indicating success or failure.

It must produce relevant condition files that are needed for different model-

checking algorithms.

4.1 Tool Specification

In this section, we present a detailed specification of the proposed tool, called Ab-

stract Verifier Translator (AVT). This tool acts as the new front-end of the Abstract

Verifier. In Figure 4.2, a top-level view of the tool is illustrated.

A design implemented in MDG-HDL is composed of three files:

54

Algebraic Circuit Order s PrQ?enty
Description File Description File Description File pec';iﬁa ion
R/E
«©
Q
7]
Invoke APL tool AVT
User -
Report
success or
failure
N

[@

£ 2 2 £

2 = £ 2

Y =y \ Y
New Gircuit New Algebraic New Order New Condition
Description File Description File Description File Files
- T ... LT
e —

e

Figure 4.2: Top view of the generator tool.

1. Algebraic description file: Contains custom sorts (signal types), function dec-

larations and re-writing rules giving the definitions of the functions.
2. Circuit description file: Contains detail description of the design.

3. Order description file: Contains order of the variables and functions to be used

in construction of the graph, MDG.

The AVT is a command line tool accepting four files: algebraic description,
order description, circuit description and a property specification file written in
Abstract Property Language. User must write desired specification of the system in
a separate text file according to APL specification. In the following sub-sections, we
specify platform, file naming strategy, structure of the tool and description of the

proposed new language.

55

4.1.1 Platform and interface

The tool needs to reside on a Sun Solaris system which has Quintus Prolog (version

3.2 or above) installed. Command-line interface requirement /specification is given

below:

Usage: shell_ prompt> ./apl Algebraic_file Circuit_file Order_file Specification_file

4.1.2 Output filenames

To name a composite model file, the tool shall add ‘new.’ at the beginning of the
corresponding original filename. For example, if the original model filenames are:
adder_alg.pl, adder_s.pl and adder_o.pl, then the composite model filenames will be:

new_adder_alg.pl, new_adder_s.pl and new_adder_o.pl.

Table 4.1: Condition file naming strategy.

Number of

Property Template condition file(s) Names

A E 1 new_condition.pl

AG, EG 1 new_condition.pl

AF, EF 1 new_condition.pl

AU, EU 5 new_cond@onl.pl,
new_condition2.pl

AGAF 2 new_cond%tgonl pl,
new_condition2.pl
new_condition0.pl,

AGAU 3 new_conditionl1.pl,
new_condition2.pl

In addition to the composite model, the tool must create one or more condition
file(s). When performing model-checking in MDG, the condition files(s) are required

along with the composite model files. The condition files shall be named according

to the property templates (Table 4.1).

56

The tool will report to the user the filenames of the composite model and
filename(s) the condition file(s). It is the user’s responsibility to make a note of the

filenames before invoking Prolog to run the MDG model-checker.

4.1.3 Processing files

The model files of a design are to be scanned by small scanners implemented in
C/C++. Source files are copied to destination files as is. Destination files are
modified or appended to create the composite model files. All structures of data are
collected and stored to be used later by the tool.

Property files are to be parsed using a translator sub-module with the help of
data collected on symbols. The lexical analyzer and the syntax analyzer shall be
implemented using Flex [22] and Bison [21] respectively. We shall discuss them in

the next sections where the Abstract Verifier Translator (AVT) is presented.

4.2 AVT Architecture

In this section, we present the design of AVT and describe how it generates the
composite model. The tool accepts four files as parameters: three MDG-HDL source
files representing the model and a specification file written in APL. It reports syntax
and semantic errors found in the specification file. It informs the user whether the
construction of the composite model succeeded or not. In case of a failure, it provides

detail of the error.

57

M.odel Specification
files file

Main =
L S *J T Error
SModel B Tl Manager
canner - : e
Translator
el Write
o Manager
Symbol T
Manager

Composite Condition

Model File(s)

Figure 4.3: Structure of AVT.

"The tool consists of six modules (Figure 4.3):

1. Main program: Responsible for dispatching tasks to other modules.

2. Model scanner: Responsible for scanning the original model files and providing

collected data to Symbol Manager.

3. Symbol manager: Manages all symbol data.

58

4. Translator: Responsible for parsing the specification file, generating monitors

with the help of Symbol manager.
5. Write manager: Responsible for writing output files.

6. Error manager: Responsible for providing error details.

Model scanner, Symbol manager and Translator are collection of sub-modules, per-

forming smaller tasks.

4.2.1 Main Module

Main module (Figure 4.4) manages all the tasks required to generate the composite
model and the condition file(s). It is invoked by a user with the model filenames and
its specification filename as command line parameters. The model files represent the
Design Under Verification in MDG-HDL.

It reports failure to the user if number of parameters is wrong and shows in console

the proper usage. The dispatching of tasks occurs in the following sequence:

1. The task of scanning model files to gather symbol information is dispatched

Invoke with r
parameters

Main module

User |«

Report success \
or A
Failure

Syse}
3oeqpas4

4

Other Modules

Figure 4.4: Main Module.

59

to the Model scanner with filenames of the original model files. The scanner

reports success of failure back to the Main module.

2. It sends the specification filename to the Translator module. The module
receives feedback on success and also gets the type of property templates used

in specification.

3. It sends request to Write manager to write state partition block to the target

circuit file, end of the target order file and to generate the condition file(s).

4. Upon success of previous task, it reports the completion to the user. Prints
composite model filenames and the condition filename(s) on the console. It

suggests to the user which template option to choose in MDG model-checker.

4.2.2 Model Scanner

4 ™
. » in i Algebraic
Main Module < Algebraic File Description File
Scanner
Symbol | Circuit File
Manager | - Scanner Circuit
Description File
Write Manager | Order File
Scanner
Order
’ Description
. File
Error Manager | /%/é/ g@dl{/{&l" : T
— J

Figure 4.5: Model scanner.

The Model scanner is a collection of three small scanners, one for each model file

(Figure 4.5). It receives the filenames of the model files from main module and then

60

assigns the tasks to appropriate scanner. If all three report success, it conveys the
message to Main module, otherwise sends a failure message. These scanners do not
look for syntax or semantic errors in the design. It assumes that user has compiled
the design using MDG-Tools. In case of a file handle error, all scanners report to the
Error manager. If the scan of the files shows a component, function or a signal name
starting with ’apl’, an error is reported. It is reserved to be used in the monitor
circuit(s).

Algebraic File Scanner

The scanner for the algebraic file looks for four types of declarations:
1. Abstract sort declarations.
2. Concrete sort declarations.
3. Generic sort declarations..
4. Function declarations.

It collects all symbol data (Table 4.2) and gives them to appropriate list managers
in the Symbol manager. It requests Write manager to write a copy of the algebraic

file as part of the composite model.

Table 4.2: Data collected from algebraic file.

Declaration Example Data Collected
Abstract sort abs_sort (myAbs). Type: myAbs
Values: abstract
Concrete sort | conc_sort (bool, [1,0]). Type: bool
Values: 0,1
Generic sort gen_const (rom,wordn). Type: rom
Values: abstract
Function Function (my_fn, [wordn, wordn], bool). Fn_name: my_fn
' Return type: bool
Argument list:
wordn, wordn

61

Circuit File Scanner

This scanner looks for signal declarations and collects signal names and their types.

For example, if a signal is declared as signal(mySig, bool), then it collects:
e Signal name: mySig
e Type: bool

The scanner requests the write manager to write a copy of the file as target
source without the block representing state partitions. The partition list is copied
to a list structure and given to the symbol manager. Finally, the partition variables
used in the monitor circuit are added to the list by the Translator module and

written to the target source at the end.

Order File Scanner

The order file contains the order of signals and functions of a given design. This is
used by the MDG-Tools to generate the MDG graph. The scanner scans the order
structure and requests Write manager to write to the target order file without the
end of the structure. Signals and functions of the monitor circuit are added to the

list by the Translator module.

4.2.3 Symbol Manager

The Symbol manager is a collection of sub-modules that keep track of symbol names,
their types and values. For functions, function name, its return type and the ar-
gument types are stored. Scope is not an issue in MDG-HDL. All variables and
functions have global scope. It provides add-to-list services to Model scanner and

several query services to the Translator module.

62

q —
Type list manager
Model o — ~
scanner > Symbol - | Signallistmanager | | Translator
e dper: Function list
v manager

Figure 4.6: Symbol Manager

Type List Manager

The type list manager keeps track of all the custom sorts. All abstract sorts have

a string value wordn indicating that they are abstracts and do not have any value.

For the concrete sorts each type is saved with its possible values.

e Examples: Suppose if we have the following in the algebraic file:

1. conc_sort(bool, [0,1]).
2. conc_sort(word2, [0,1,2,3]).

3. conc_sort(state, [s0,s1,s2]).
then the corresponding collected data shall be:

1. type: bool

values: 0, 1

2. type: word2
values: 0, 1, 2, 3

3. type: state

values: s0, sl, s2

Signal List Manager

The signal list manager contains all the signal names along with their types.

63

e Examples: Suppose we have the following in the circuit file:

1. signal(reset,bool).
2. signal(myData,word2).

3. signal(myStateVar, state).
then the corresponding collected data shall be:

1. signal: reset

type: bool

2. signal: myData
type: word2

3. signal: myStateVar
type: state
Function List Manager

The function list manager stores all the function names along with their definition
attributes. Definition attributes are argument sorts (types) and the target sort

(return type).

e Examples: Suppose if we have the following in the algebraic file:

1. function(eq,[wordn,wordn],bool).

2. function(mul,[wordn,wordn],wordn).
then the corresponding collected data shall be:

1. function: eq
argument_sort: wordn, wordn

target_sort: bool

64

2. function: mul
argument_sort: wordn, wordn

target_sort: wordn

4.2.4 Translator Module

. ™\
Specification File
» Error Manager
_/“\
Write _ | Symbol
Manager "1 Manager

Figure 4.7: Top view of the Translator module.

The Translator module (Figure 4.7) compiles the specification file and generates, for
each property, a monitor circuit with a flag output. Our source language is Abstract
Property Language (APL) and the target language is MDG-HDL. It reports syntax
and semantic errors to the Error Manager. It sends queries to the Symbol Manager
anytime symbol data is required to generate a circuit or to simply check semantics.
Since this module is the major component of the AVT, we discuss it in details in the

next section. The following sub-sections discuss the other modules of the design.

4.2.5 Write Manager

The job of the write manager is simply to write all composite files and the condition
file(s). It initially reccives the request from the Main Module to write duplicate of
the algebraic file, specification file without the next-state partition, and the order
file without the closing brackets of the order structure. All subsequent requests

come from the Code Generator. For each MDG-HDL component written, it writes

65

the signals, next state variables and the signals to the order file. The next state
variables are also added to the next-state partition list. When all components have
been written, it generates the order structure, the next-state partition list and the

condition files. The condition files are generated according to Table 4.3.

Table 4.3: Flag output according to property templates.

Property Template | Condition File(s) | Flag signals

A E new_condition.pl | flag
AG, EG new_condition.pl | flag
AF, EF new_condition.pl | flag

new_conditionl.pl | flagl
AU, EU

new_condition2.pl | flag2

new_conditionl.pl | flagl
AGAF

new_condition2.pl | flag2

new_conditionQ.pl | flagl
AGAU new_conditionl.pl | flagl

new_condition2.pl | flag2

4.2.6 Error Manager

The job of Error Manager is to communicate to the user the occurrence of an error.
It keeps a list of errors with identifications. Based on the reported error number, it
prints a message to the user with indication on how to fix it. The AVT is not fault
tolerant. At the presence of an error, it simply prints the error message and informs

the Main Module to quit application. General error problems are following:
o File pointer returns NULL.

e Request for memory returns NULL. System is out of memory.

66

e User does not provide valid parameters for AVT. This error comes from the

Main Module.
e Disk quota errors, etc.
The main tasks the error manager is responsible for are following:
e Convey all syntax errors reported by the Syntax Analyzer.

e Convey all semantic errors reported by the Context Handler.

4.3 Translator

Lexical _k Syntax
Analyzer |~ Analyzer

Specification File

~=4»t Error Manager

A

Intermediate
Code

Write j (AST)

Manager | [0 0]

Context Handler |-
< and
Code Generator |-~

Symbol
Manager

Figure 4.8: Translator.

This module is invoked by the main program with the file name of the specification

file. For the translation, it has APL as the source language and MDG-HDL as the

67

target language. The process of generating the monitor circuit (Figure 4.1) from the

specification has the following steps:

1. Lexical Analyzer tokenizes the specification text based on lexical specification

of the source language, APL.

2. Syntax Analyzer creates annotated abstract syntax tree (AST) based on the

grammar of APL.

3. Simple traversal algorithm is used to handle context and generate the target
code at the same time. Whenever it finds a component to be built, it consults
the Symbol Manager to check semantics. It reports semantic errors to the
Error Manager. If no error exists for the component in concern, it generates
MDG-HDL component code and its associated signals. The components are

written to the target files by the Write Manager.

In the following sub-sections, we discuss each element of the translator module.

4.3.1 Lexical Analyzer

The lexical analyzer reads the input file character by character. It tokenizes the
input based on matched patterns. It provides the current token to the syntax ana-
lyzer (Figure 4.9), when a request is made. Lexer for translator was automatically

constructed using Flex [22].

Characters

Tokens Sentences

Lexical Analyzer Syma@xAnaIyzer

Figure 4.9: Syntax flow.

68

In our tool, the tokens are: identifiers, numeric value, temporal and path oper-
ators, boolean operators, delimiters, etc. In the following subsections, specification

of the lexer is provided.

Definition of White Space

There is no restriction on using white space anywhere in the source. They are used

only to separate tokens. White space is defined by following characters:

1. Space
2. New line character
3. Carriage return

4. Tab

Case Sensitivity

Case insensitivity can lead to very bad programming practices. For example, using
same variable with different cases is not a good programming practice and may
create lot of confusion. Since Quintus Prolog is case sensitive, the obvious choice is

to make the lexer case sensitive as well.

Token Length

There is no restriction imposed on token length. This specification may change

depending on the implementation choices.

Error Reporting

The lexical analyzer does not report any errors. Any character that does not com-

prise a token is simply passed on to the calling application (Syntax Analyzer).

69

Table 4.4: Token List.

TOKEN

Description

Identifier & Numeric Value

NUMBER

[0-91+

IDENTIFIER

[a-z] [a-zA-20-9_]~*

Path and temporal operators

A

upm

E

npn

AG

“AGH

AF

By Nakd

U

“yye

F

“pr

X

¢4

SEMICOLON

“u,n
’

NEXT

Ilnext ”

LET equation operators

LET

“HTET"

IN

“IN"

Boclean Operators

IMPLICATION

“_n

IMPLICATION2

LIS}

EQUIVALENCE

PN

OR

”'l"

AND

&

NOT

“ |

EQUAL

“__nrr

NOT_EQUAL

uy_r

Assignment Operator

ASSIGNMENT

"

Delimiters

OB

“ [ll

CB

u] "

OP

“ (n

Ccp

Al) ”

ocC

ll{ll

cc

u)"

COMMA

“
’

ASTERISK

"

DOT

“

Ignored white spaces

4 \t\n\r”

List of Tokens

Here, the list of tokens is specified (Table 4.4). In accordance with MDG-HDL, an
identifier must begin with a small letter. A numeric value consists of only digits
and may not start with a unary symbol. Since we have followed lexical rules of

MDG-HDL, L,,q4, restrictions are not present in APL. As a result, users no longer

70

need to modify their original model in order to verify them.

4.3.2 Syntax Analyzer

The syntax analyzer requests tokens from the lexer, and based on specified grammar,
it recognizes valid syntax. The traditional way to represent a parsed sentence is
to construct an abstract syntax tree (Figure 4.10). In AVT, these sentences are
expressions that construct a single statement. We use Bison [21] to automatically
construct our Syntax Analyzer. The context-free-grammar of Abstract Property

Language is presented in this chapter.

~ p
Property
Jj}/{m Tree
Expression i Expression
~~~~~~~~~ \\»N.
~~~~~~~~ T
Expression Expression
\ ST
= ‘ \ « B
| ; \ !
| Token Token | N\ Token Token
N
\
\\
Token | Token

Figure 4.10: Syntax Tree

71

Grammar used for AST generation:

Here, we specify the grammar of APL in BNF. The tokens are from Table 4.4.
Delimiters are given as is to improve readability. The grammar used as syntax

specification in Bison is given in following sub-sections.

O Property Templates:

apl_property: A (expression).
| E (expression).
| AG (expression).
| EG (expression).
| AF (expression).
| EF (expression).
| A (expression) U (expression).
| E (expression) U (expression).
| AG ((expression) IMPLICATION2 (F(expression))).
| AG ((expression) IMPLICATION2 ((expression) U (expression))).

O Expressions:

expression: boolean_expression
| sere_expression
| next_expression

| let_expression

s

O Boolean Expressions:

boolean_expression: compare_equation
| expression AND expression

| expression OR expression

72

| expression IMPLICATION expression
| NOT (expression)

| IDENTIFIER

| NOT IDENTIFIER

| expression EQUIVALENCE expression

compare_equation : IDENTIFIER EQUAL right_term
| IDENTIFIER NOT_EQUAL right_term
right_term: IDENTIFIER
| NUMBER

| function

3

O Function Expression:

function: IDENTIFIER (param_list)
param_list: param

| param_list , param
param ID

| Function

0O Temporal Expressions:

next_expression: X expression
| NEXT expression

| NEXT [NUMBER] (expression)

.
)

73

sere_expression: {boolean_expression}
| {repeated_sere}
| {sere_expression ; sere_expression}
H

repeated_sere : sere_expression [* NUMBER]

O LET Expressions:

let_expression: LET(assign_equation) IN (expression)
assign_equation: IDENTIFIER ASSIGNMENT IDENTIFIER
| assign_equation AND assign_equation

b4

4.3.3 Annotated AST Generation:

Bison [21] provides a very easy way to construct abstract syntax tree from syntax
rules. Every symbol in Bison parser has a value. This value gives the actual string
or numeric valuation of the symbol. Each syntax rule can be associated with an
action, C code segment. Whenever a sentence is matched, the corresponding code
- segment is executed. We use these features to build our syntax tree. Root of each
tree is the expression in the property template. For example, say we have a property
of the following template: AG(ezpression). In this case, the ezpression will be the
root node of the AST.

In order to make context handling and code generation a matter of writing a
simple traversal algorithm, we must build the nodes with basic building blocks of
MDG-HDL in mind. In this way, we do not need to re-write the AST but simply
annotate it with pertinent information required for later tasks. In MDG-HDL, the

basic constructs that can be used for generating monitors are:

74

1. Abstract function symbol used in specification are represented as it is defined

in algebraic specification.
2. Table components representing comparisons that contain concrete signals.

3. Cross-term function symbol representing comparisons that contain abstract

signals.
4. Components representing boolean operations.
5. Register component for preserving values.

The automatically generated syntax analyzer reports error if syntax rules are
not matched. Detail errors are reported along with line and word number. In the

following subsections we discuss how to build AST for different class of expressions.

AST for function expressions

An abstract function symbol can only appear on the right hand side of a compare
expression. It has a right child representing the parameter list. The parameter list
containing more than one parameter is separated by comma nodes. Figure 4.11
shows tree constructions of some function expressions. Each signal or variable pa-
rameter is a node with null children. Constructing AST for nested function call is
also shown in Figure 4.11. If a parameter is an ordinary (storage) variable coming
from a LET expression, then it is replaced by the preserved value of the variable.
The nodes are annotated with pertinent information. For example, a simple integer
value per node is used to indicate node type. This allows the context handler and

the code generator to distinguish nodes.

AST for compare expressions

The most basic building block in APL is a compare equation, where the left hand

side must be a signal. The signal can be concrete or abstract. The right hand side

75

inc(a) |- | ine(inc(a)) | - add 2(ab)| . |add3(ab,c)

function function .
add_2 add_3 :

Figure 4.11: AST for function expressions.

can be a signal, a {/alue or a function. The signal on the left hand side is a leaf node.
The right hand side is also a leaf node if it is a signal or a value. If it is a function,
then the right pointer of the comparison node points to the function’s sub-tree.
Node types are annotated to the nodes. The equal operator type is also annotated
based on the type of signal present on the left operand. This allows the context
handler and code generator to comprehend if the comparison is between concretes

or abstracts. Figure 4.12 gives some example AST’s of compare expressions.

AST for boolean expressions

In the grammar of APL, we use some expressions that do not have corresponding
component in MDG-HDL to represent them. Table 4.5 gives their interpretations.
Here, my_bool_sig is a signal of concrete sort bool having values 0 or 1; pand r are
boolean expressions; ¢ can be any expression. For the first two expressions in the

table, we treat them as compare expression and create nodes accordingly.

76

reset==0 | . | mysig_1 == mysig_2 mysig == some function

. Function sub-tree

Figure 4.12: AST for compare expressions.

Table 4.5: Boolean expression mapping.

ExXpression Mapping

my_bool_sig my_bool_sig = = 1

! my_bool_sig my_bool_sig = = 0
p->q 'p Il g

p<->r (!'p 1l g) & (!q |l p)

In MDG-HDL, we have NOT, OR and AND components that we can use,
thus we only use these three operators in AST construction. Figure 4.13 gives basic
AST’s constructed from boolean expressions. Nodes are annotated with node types
indicating the type of operators used. The NOT operator has the operand as its
right child and the left child pointer is assigned to NULL.

AST for temporal expressions

Due to restriction in property templates, only X operators are free to be used

without a path quantifier. The other temporal operators are taken care of by the

7

Sub-tree for p Sub-tree for p Sub-tree for q -1 Sub-tree for p Sub-tree for g {

Figure 4.13: AST for boolean expressions.

algorithms associated with the specification templates. To preserve a value in MDG-
HDL for multiple transitions, we can use the reg component. The next[Number]
and the abstract SERE expressions can be built by using the X operator. Table 4.6
shows their mappings, where p, and ¢ are expressions.

The technique we use to denote X nodes is that instead of creating multiple
nodes for multiple X’s, we simply create one X node with an attribute specifying
the repetition times. X nodes are annotated with this numeric value. This saves
memory and also makes traversal algorithms faster. Figure 4.14 shows example AST

constructed for temporal expressions, where p is an expression.

Table 4.6: Temporal expression mapping.

Expression Mapping using X operator | Intuitive meaning

next [3] p XXX p p is true after 3 transition.

p is true in present

P:q p && (X q) transition and q is true in
the next transition step.

p is true for two transition
p[*2] p&& (X p) steps including present
cycle.

78

Xp - next[2] p : p[*2]

X
repeated = 2

v | repeated=1

Sub-tree for p .) Sub-tree for p /

X
repeated = 1

Sub-tree for p

Sub-tree for p

Figure 4.14: AST for temporal expression examples.

AST for LET expression

The LET expressions are constructed with a top node having IN operator. The left
sub-tree contains all the variable assignment(s) and the right sub-tree contains the

expression where the variable(s) are used. LET expression has the following format:

e LET (p) IN(q),
where where p represents the variable assignment(s) and q represents an ex-

pression, usually a temporal expression.

Figure 4.15 shows an AST constructed from an example. Here, the two AND
operators are annotated with different node types: one indicating a logical AND and
the other is a delimiter to separate the variable assignments. A list of all assignments

are maintained.

79

LET (myVar_1 =in_1 && myVar_2=in_2) IN (X (out_1 == myVar 1 && out_2 == myVar_2))

Figure 4.15: AST for LET expression.

4.3.4 Context Handling and Code Generation

The procedure to build additional circuit for MDG based model-checking was in-
troduced by Ying Xu et al. [37]. Soundness of the verification procedures has been
established [36]. To follow this established procedure in generating additional cir-
cuits for model-checker, we must further annotate the AST. Following sub-section
discusses the further annotation procedure, and subsequent sub-sections present

context handling and code generation algorithms.

Further annotation of AST

'To make search algorithms faster, we convert the AST into a binary search tree

(BST). This makes search algorithms having the complexity of O(logsn) instead

80

of O(n). This is done by using a depth-first in-order traversal of the AST and
assigning order number to the nodes sequentially. The algorithm that takes the root

node pointer as argument is given below, where counter is initialized to zero:

Make_bst (node)
if node.left mnot null then Make_bst(node.left)
node.order_number = counter
increment counter by 1

if node.right not null then Make_bst(node.right)

In order to deal with temporal operators in specification, we must use registers
to reserve values of predicates at transition steps. In our AST, we only have one
type of temporal operator, X. Determining how many registers to put on outputs
of boolean operators, we must keep track of the X operators. To do this, we put a
counter on node structure. The default value of this counter attribute is set to zero.
The annotation can be done using the post-order traversal algorithm given below,
where the module is called with a pointer to the root node of the AST. Here, the
Xrepetition is a node attribute that tells us how many X’s are there and X counter

counts the number of X’s in the corresponding node’s sub-tree.

Assign_Xcounter (node)
if node.left not null then Assign_Xcounter(node.left)
if node.right not null then Assign_Xcounter(node.right)
if node.type is a function or a NOT
then node.Xcounter = node.right.Xcounter
else if node.type is an X
then node.Xcounter = node.right.Xcounter + node.X repetition
else

node.Xcounter = maximum (node.left.Xcounter, node.right.Xcounter)

81

88
xCounter = 3

X
Repetition = 1
reg=2

data_out

AG ((state == s0) -> (X (read_en) &&
next[3] (data_out == mydata))). J

Figure 4.16: Annotated AST.

To complete the annotation procedure in this phase, we perform one more
traversal to assign registers to the to-be-generated MDG-HDL components. It is a

simple pre-order traversal where reg is a node attribute that is initialized to zero:

Assign_registers (node)
if node.type is possible MDG-HDL component
then node.left.reg = node.right.Xcounter - node.left.Xcounter
if node.left not null then Assign_registers(node.left)

if node.right not null then Assign_registers(node.right)

82

This algorithm depends on the restriction that the use of temporal operators
allows time to move from left-to-right fashion through the property. Figure 4.16

gives an example, where the order numbers are given adjacent to the nodes.

Context Handling

Context checking is performed every time a function or a compare equation is en-

countered during code generation.
e Functions:
1. The parameter types are checked by communicating with the Symbol
Manager.

2. If the node type of the parameter yields a variable, a search algorithm
is used to find which type of signal was last assigned to it. The type is

checked with the argument type to preserve semantic correctness.
e Compare equations:
1. The signal type of left hand operand is requested from the Symbol Man-
ager.

2. The right hand side could be a variable, a signal, a value or a function.

The node type tells us if it is a variable or a function.

3. If a query to the Symbol Manager yields a signal then the signal type is
checked to match the signal type of the left operand.

4. If the query tells us that it is a value, the value list of the signal type is
checked to see if the value provided is within the range of possible values

of the signal in left operand.

5. If the right operand is a function, then the function’s return type (target

sort) is matched with the type of left operand signal.

83

6. If the right operand is a variable, then a search algorithm is used to find
which type of signal was last assigned to it. The type is checked with the
left operand signal type.

In all cases, semantic mismatches are reported as semantic errors to the Error Man-

ager.

Code Generation

Building the AST with MDG-HDL in mind allows us to use simple traversal algo-
rithms to perform both context handling and code generation. We traverse trough
the AST in depth-first post-order fashion and look for components to build. Every
time we encounter such an operator that corresponds to a component in MDG-HDL,
we build the circuitry and replace the sub-tree of that node with the output of the
component. This is done by storing an attribute called output string representing
the output of the sub-tree. This string is further modified if registers are needed for
that operator. Throughout the process, requests are made to the Write manager to
write additional signals and circuits to the composite model files. Next state vari-
ables are added to the next-state partition table. List of signals, next state variables
and functions used are added to the target order description file. In our depth-first
post-order traversal, every time we visit a node, we replace the sub-tree with its

output based on following:

1. If the node is a signal or a value of a signal, then the output of that node is

string representation of that signal or the value.

2. If the node is a variable, then its output is its assigned value going through
possible registers. Register components are built and the output signal of the

final register replaces the sub-tree.

3. If the node is a parameter and it is a variable, then the output is replaced in

the same manner as given in item 2.

84

4. If the node is a function, then a function component is built. If registers are
needed then output signal of the final register replaces the sub-tree. Otherwise,

the output signal of the function circuit replaces the sub-tree.
5. If the node is a comparator, then we evaluate the type of the comparison:

(a) If the comparison is between a concrete signal and its value or another
concrete signal, a table component in MDG-HDL is generated and the

sub-tree is replaced with the component’s output signal.

(b) If the comparison is between two abstract signals, then a predefined eq
function symbol is used to generate required circuit. The output signal

of the eq component replaces the sub-tree.

(c) If the comparison is between a signal and a function, then a table or an
abstract function symbol is used based on the type of signal. The inputs

of the components are the signal and the output of the function sub-tree.

In all cases, if registers are required, then register components are built and

the output of the final register in HDL replaces the sub-tree.

6. If the node is of type X or I N, we simply replace the sub-tree with the output
signal of the right sub-tree.

7. If the node is a comma in between parameters, we simply concatenate its

children output strings and the resultant string replaces the sub-tree.

8. If the node is a boolean operator, we simply construct the corresponding cir-
cuitry in MDG-HDL and output signal of the component replaces the sub-tree.
If registers are required, then register components are built and the output of

the final register in HDL replaces the sub-tree.

Figure 4.17 depicts the circuitry generated from AST given in Figure 4.16.

Here, we assume: state is a concrete type with s0 as one of its value, mydata and

85

- ™
!
state % Su _M_,l I' l_(.)l
Table component K 3 3 3 3
s0 (comparator) = % gl é? 3
z g | & reg | & | reg Z
apl_signal 11
data_out eq
E— L_signal,
Function component apl.signat.
mydata (comparator)
read_en apl_signal 10
Table component e re
1 (comparator)) 9 N 9 %
g 3 S
- - - d
& & &

Figure 4.17: Circuit representing property.

data_out are of abstract sort, read_en is of concrete type with bool sort. In this

example the sub-tree outputs are assigned as follows:

1. The comparator (state == s0) sub-tree is replaced with apl_signal_l
2. The NOT sub-tree is replaced with apl_signal_5

3. The comparator (read-in == 1) sub-tree is replaced with apl_signal_8
4. The comparator (data_out == mydata) is replaced with apl_signal 9
5. The AND sub-tree is replaced with apl_signal_10

6. The top OR is represented by apl_signal_11

For all the register components, a control signal is also generated. The control is

assigned the value true by default.

4.3.5 Flag Circuit Generation

In order to complete a monitor circuit generation for a property, we must produce a

flag circuit for it (Figure 4.19). This is in accordance with the MDG model-checking

86

Circuit generated p
By

Circuit for flag
generation

Code generator

]
=
()

(G

£

Monitor circuit for property

p

y

Figure 4.18: Completion of Monitor Circuit.

algorithms developed by Ying Xu et. al [36]. The flag signal output is used by the
respective algorithm to verify the property in concern. Architecture of a flag circuit

is dictated by the corresponding property template. The rules are given below:

false

p |l false p’ = flag
reg >
It AG(p), AlpU q)
N p&& true p’ = flag
reg >

_J

It AF(p), AlgU p), AG(c=> Fp), AG(c =>qU p)

Figure 4.19: The Flag Circuit

qUp), then the flag output:

87

1. If the property template used is one of AFp, AqUp, AG(c = Fp) or AG(c =

P = true && p. Here, true is a constant signal; an AND component is

used to produce the flag output; the inputs for the component are true and p.

2. If the property template used is either AGp or ApUyq, then flag output:
p' = false || p. Here, false is a constant signal; an OR component is used

to produce the flag output; the inputs for the component are false and p.

It is a requirement of the MDG model-checking algorithm that this flag be an
ASM state variable and must be stored in a register in order for the algorithms to

produce correct result (Figure 4.19). Specification and correctness of this method

has already been established [37].

38

Chapter 5

Experimental Results

In this chapter, we present results of performance analysis of the AVT compared
to the Lyqg-Tools, analysis of the generated code and results of model-checking a
sub-block of Look-Aside Interface design [8]. In the first two experiments, we do
not consider memory consumption, because in this case resource requirements of
text-processing compared to the actual model-checking process is negligible. The
experiments were run on a Sun Enterprise E3500, which is a multi-processor system

(6 x UltraSPARC-IIi 400MHz) with 6GB of main memory.

5.1 Performance Comparison

In this section, we compare the performance of AVT and L,,4,-Tools. We analyze the
required time for generating a monitor circuit given a specification. Thus, the design
we choose for this experiment is not critical. For the results given in Table 5.1, we
use a design that has no functionality in real world but provides an interface for us
to perform rigorous experiments. For our specification, we choose a AG(p) property
that has many comparators of both concrete and abstract sorts, comparing stored

values in variables with signal values.
o AG(LET (v; && vy ... && v,) IN (cg — (X (1 Aca... Acy)))).

89

U1, Uz, ..., U are variable assignments and
C1; €2, .. , C are comparisons of stored values in variables with some signal
values. ¢y simply compares a signal with its value. It serves as the trigger

condition.

In each test property, we insert all comparators after the presence of the next
operator and all variable assignments before it. In this way, each increase in the
number of X's in the test property results in creation of n registers in the monitor
circuit, one register per stored signal value. As a result, we get better impact on
the generated monitor circuit when we increase the number of Xs. Ideally the Until
operator has better impact than the nezt operator. However, its restrictive usage
in available property templates makes it ineffective in our experiments.

The inspection of CPU usage and execution time indicates that the AVT is
less processor intensive but produces the same result in less time. We calculate the
average of Execution times. For AVT it is 0.254, and for Lp44-Tools it is 0.498. The

relative performance on average is:

Table 5.1: Performance of AVT compared to Lpq4-Tools

Number AVT AVT AVT | Lmdg Lmdg Lmdg
of ‘X’ E?(CCUIIOI] Performance CPU I?lxecutlor} Performance CPu
operator Tlme (Ey) (P.=1/E)) Usage | Time (E,) in (Py=1/Ey) Usage
in seconds (%) seconds (%)

1 0.09 11.11 22.0 0.19 5.26 63.0

5 0.10 10.00 24.0 0.21 4.76 88.0

10 0.12 8.33 36.0 0.32 3.13 84.0
50 0.16 6.25 28.5 0.37 2.70 76.4
100 0.17 5.88 52.9 0.39 2.56 81.6
150 0.20 5.00 74.3 0.42 2.38 91.4
200 0.21 4.76 65.6 0.47 2.13 86.7
250 0.24 4.17 77.5 0.48 2.08 85.0
300 0.33 3.03 76.4 0.53 1.89 78.0
350 0.35 2.86 80.9 0.60 . 1.67 85.5
400 0.41 2.44 63.1 0.73 1.37 76.5
450 0.44 2.27 63.6 0.81 1.23 82.6
500 0.49 2.04 80.9 0.95 1.05 88.5

90

Numer of X operators
~

W Lmdg Tools

Performance = 1 / Execution Time

Figure 5.1: Performance Comparison.
* Relative Performance = Avg(E,) / Avg(E,) = 1.95

From this result, we can say that on average the AVT performs about 1.95
times faster than the L,,4,-Tools. A graph (Figure 5.1) is presented in this section,
illustrating the performance difference between the two.

The performance gain in APL over Laq tools can be contributed to three key

factors:

e Instead of using an ad-hoc approach we have utilized a conventional method

of translator design.

e By annotating our abstract syntax tree via in-order traversal, we have con-
verted our AST to binary search tree (BST). This makes our search algorithm

having much better complexity of © (logsn) over © (n).

o We have replaced the use of multiple X nodes by a single X node having an
attribute specifying its repetition. This reduces the size of the AST (memory)

and also reduces traversal time.

91

5.2 Area Evaluation of the Generated Circuit

In this section, we evaluate the area of the generated circuit in MDG-HDL given
a specification. In this experiment, we keep in mind that the flag circuit requires
one extra logic gate and one extra register (Section 4.3.5). The design used in these
experiments is the same as the one used in the previous section.

We start by using 'next’ or "X’ operator in one place in the specification and
increment the number of comparisons to observe their affects on the area. The
results are given in Table 5.2. The collected data confirms our expectation that
number of gates and signals will increase linearly with the number of comparisons
we have in our specification formula.

We now use 'next’ operator in one place in the specification and increment
its repetition to observe its affect on the area in composite model. The results are

given in the Table 5.2. The collected data confirms the expectation that number

100000

10000 /-./
1000 /
a //
2
<
100]
e
///0‘/
10 :
/0/ L]
«
1
1 2 3 4 5 10 20 30 40 50 100 1000 5000 10000

Number of 'next' operators

-~ Flip-flops -#— Gates

Figure 5.2: Effect of 'next’ on area (logarithmic scale on Y-axis).

92

Table 5.2: Area Evaluation.

. bool Number . Fli . E'xecution
comparisons | Abstract | Concrete operator | of ext signals 1 og; Gates | tables | functions (T;::; o)
2 1 1 1 0 8 1 2 1 1 0.07
4 2 2 3 0 12 1 4 2 2 0.08
6 3 3 5 0 16 1 6 3 3 0.10
8 4 4 7 0 20 1 8 4 4 0.12
10 5 5 9 0 24 1 10 5 5 0.12
2 1 1 1 1 10 3 2 1 1 0.07
2 1 1 1 2 12 5 2 1 1 0.07
2 1 1 1 3 14 7 2 1 1 0.09
2 1 1 1 4 16 9 2 1 1 0.11
2 1 1 1 5 18 1 2 1 1 0.11
2 2 0 1 1 9 3 3 2 0 0.01
2 2 0 1 3 13 7 3 2 0 0.09
2 2 0 1 10 27 21 3 2 0 0.09
2 2 0 1 100 207 201 3 2 0 0.09
2 2 0 1 1000 2007 | 2001 3 2 0 0.41
2 2 0 1 10000 | 20007 | 20001 3 2 0 27.53
4 4 0 3 1 11 5 5 4 0 0.01
4 4 0 3 3 19 13 5 4 0 0.07
4 4 0 3 10 47 41 5 4 0 0.09
4 4 0 3 100 407 401 5 4 0 0.06
4 4 0 3 1000 4007 | 4001 5 4 0 0.18
4 4 0 3 10000 | 40007 | 40001 5 4 0 36.24
2 1 1 1 1 8 3 2 1 1 0.02
2 1 1 1 2 10 5 2 1 1 0.07
2 1 1 1 3 12 7 2 1 1 0.08
2 1 1 1 4 14 9 2 1 1 0.09
2 1 1 1 5 16 11 2 1 1 0.09
2 1 1 1 10 26 21 2 1 1 0.09
2 1 1 1 20 46 41 2 1 1 0.10
2 1 1 1 30 66 61 2 1 1 0.11
2 1 1 1 40 86 81 2 1 1 0.11
2 1 1 1 50 106 101 2 1 1 0.12
2 1 1 1 100 206 201 2 1 1 0.12
2 1 1 1 1000 2006 | 2001 2 1 1 0.50
2 1 1 1 5000 | 10006 | 10001 2 1 1 12.24
2 1 1 1 10000 | 20006 | 20001 2 1 1 46.62

93

of registers (flip-flops) will increase linearly with the number of 'next’ operators.
We present the fact that even at an unusually large number of 'next’ operators, we
still get the desired generated circuit to be produced within a minute. However, at
500,000 ’'next’ operators, the tool did not produce a result. We do not envision a
specification containing that numbers of 'next’ operators. Figure 5.2 gives the effect
of 'next’ operators on area in logarithmic scaled graph. From these experiments, we

conclude the following:

o Number of 'next’ operators dictate the number of registers required. In terms
of the representation in AST, each increase of number of 'next’ operator in
one path, increments the number of registers by one for each path that does

not go through that operator.

e Number of comparisons involving concrete signals will dictate the number of

tables in the generated circuit.

e Number of comparisons involving abstract signals will dictate the number of

abstract function symbols.
e An extra gate and an extra register are always needed for the flag circuit.

e Number of signals and next state variables to be declared are dictated by all

of the above.

5.3 Application: Verification of the LA-1 Inter-
face

In this section, we verify a part of a data transfer protocol, called Look-Aside Inter-
face (LA1) [20]. This design was originally implemented by the Network Processor
Forum. It is illustrated in Figure 5.3. The design was implemented and verified by

Li et al. [13] using MDG based model-checking methodology.

94

LA-1 Interface

ckk | okk |
- clk_2x
L Clock Frequency o i o me
; Doubler - | P89 e L
ws : b v d2m
dn__ ¢ ol 16 “WritePort- | | | 32
- dpin - - Controlier bwe2m}:
Network |_2%e_ -2 i 4 L Memory/
“Processor-| addrin - it addr. _g Coprocessor
- 24 e 28 ~(Slave).

rs
g dout 16
| dpout 2

Figure 5.3: Look-Aside Interface (LA1).

We collect Read-port specifications of this design, process them using AVT
and present the experimental results of MDG based model-checking in this section.
The MDG-HDL model for the Read Port is shown in Figure 5.4, where signals and

components are represented as follows;
1. input signals clk_2z, pflag and s are of concrete type (bool),
2. input signals d_m and addrin are of abstract sort (wordn),
3. output signals dpout! and dpout(are of concrete type (bool),
4. output signals dout and addr.r are of abstract sort (wordn) and

5. components msw, lsw, parityl, parity2, parity3 and parity4 are abstract func-

tion symbols.

95 -

rs._n0 rs_ni rs_n2 rs_n3

ck 2x > regt {‘ reg2 {— reg3
s_n
rs
ptiag
d_m msw. dn &
= d
E f———<_"J dout
e di dl_r
— lsw. reg7
g (> reg4 [
h1
parity1 o
o) dp1
g dpouti
| parity2 dpl dpli_r reg8
o . 1> regs
parity3 dph0
‘:z\L dp0
E <" dpout0
S dpto dplo_r
. patity P P reg9
i L_1> regé
addrin [——> addr_r

Figure 5.4: Read-port representation in MDG-HDL.

5.3.1 Specification

The specifications are re-written in APL and are presented in Table 5.3. The names
of functions and variables in APL have no restrictions. The LET equations do not
have to start at the beginning of the specification. Boolean signals do not need to

be in compare equation format.

5.3.2 MDG Model-checking Results

We take the specifications and model of Read-port module and process it with AVT
one at a time. The tool gives us the composite model with its condition file based

on the specification. We then proceed to run the MDG model-checker to verify

96

Table 5.3: Read-port specification in APL.

No. Read-port specification in APL
1 | AG((pflag && Irs) — (XX (LET (stored_data=d_m) IN (X (dout == msw(stored_data))))).
AG ((pflag && !'rs) — (XX (LET (stored_data =d_m) IN (X (dout == Isw(stored_data))})).
AG ((pflag & Irs) — (X (LET (stored_data =d_m) IN (X (dpout! == parity1(stored_data))))).
AG ((pflag & Irs) — (XX (LET (stored_data =d_m) IN (XX (dpout1 == parity3(stored_data))))).
AG ((pflag & Irs) — (XX (LET (stored_data =d_m) IN (XX (dpout! == parity3(stored_data))))).

| AW N

the specification. Table 5.4 gives runtime, memory usage and the number of MDG
nodes used for verifying each specification. It also gives time (in seconds) it takes

for AVT to generate the composite models.

Table 5.4: Verification results for Read-port specifications.

AVT runtime MDG. Memory MDG
Spec. No. (seconds) Runtime MB) nodes
(seconds)
1 0.11 18.04 20.19 53837
2 0.09 19.46 23.89 54352
3 0.07 14.24 10.46 49638
4 0.12 55.82 64.45 173087
5 0.14 62.30 92.61 178321

97

Chapter 6

Conclusion and Future Work

MDG based model-checking presents an improvement over traditional BDD-based
model-checking by introducing a technique of representing the design in higher ab-
straction and simplifying the data path operations. As a result, users can effectively
overcome the state explosion problem.

The model-checking algorithms in verification package of Abstract Verifier re-
quire that a user feed the model-checker a composite model that includes a monitor
circuit with one or more flags as output. The flags are monitored by the verification
algorithms to inform the user if a given specification is satisfied by its model of the
design. In case the specification does not hold #rue, the model-checker produces a
counter example. Using this counter example, the user can investigate the source
of the error in design. In this thesis, our focus was on the front-end of the method
where we process the specification text and generate the composite circuit. In Chap-
ter 1, we have outlined the issues that are evident in L4 set of tools. We have
explained the shortcomings of the present representation and implementation, and
our objectives on how to resolve these issues were stated as well.

The specification of the new language, called APL, was presented in Chapter

3. In APL, we have eliminated all the lexical restrictions that were present in the

98

L4y specification language. Consequently, users do not need to modify their origi-
nal model in order to get the verification-ready composite model. With APL, users
can simply use the original model, write their specification in APL and process
both with the AVT tool. While replacing L4, with APL, we have added stan-
dardized operators and introduced new operators borrowed from PSL to improve
expressiveness over Lp,q,. We have provided the formal definition of this language
and provided its formal semantics following Lmdg semantics. In Chapter 4, we have
presented details on how we have accomplished the goal of generating verification-
ready composite models and their condition files, concurring with the requirements
of the MDG model-checking algorithms. We have designed and implemented AVT
as a single independent application, capable of handling first-order temporal logic.
As a result, there is no need for employing multiple tools to process the specifica-
tion (properties). Also, users are not required to create a separate file specifying
the functions used in the properties. By following a recognized process of designing
a translator, we have created an efficient tool that produces the result in almost
half the time compared to the existing tool. Detail results of the performance anal-
ysis and generated-circuit area analysis were presented in Chapter 5. In the same
chapter, we have also presented results obtained by model-checking the Read-port

module of the Look-Aside Interface.

As future work, we provide following research directions:

1. Investigate and design a single user-interface representing both front-end and
the back-end of the MDG model-checking process. If implemented, a user
can write a property, create composite model and perform model-checking by

interacting with the interface.

2. Investigate model-checking algorithms of MDG-Tools and implement new prop-
erty templates allowing the use of 'until’ operator without restrictions. In the

present templates, this operator is only allowed in predefined positions. If

99

the operator is unrestricted, we can incorporate more SERE-like expressions

where a signal is asserted unknown number (zero or more) of times.

. Investigate and develop a translator that can process a design represented in
SystemVerilog or other traditional HDL’s and can automatically generate its

corresponding representation in MDG-HDL.

. Investigate and improve counter-example generation process of MDG model-

checking.

100

Appendix A

A.1 Read-port of Look-Aside Interface in MDG-

HDL

In this section, the source code of the original model is provided.

represented in MDG-HDL in the following three files:
1. Algebraic description file: read_port_2x_alg.pl
2. Circuit description file: read._port_2x_s.pl

3. Order description file: read_port_2x_o.pl

A.1.1 Algebraic Description

(74
0

% File: read_port_2x_alg.pl

(074
0

% Sort specification

abs_sort(mi_sort,wordn).

% Functions

function(fmsw,[wordn],wordn). function(flsw,[wordn],wordn).

function(fparity1,[wordn],bool). function(fparity2,[wordn],bool).

101

The model is

function(fparity3,[wordn],bool). function(fparity4,/wordn],bool).

A.1.2 Circuit Description

7.
0

% File: read_port.2x_s.pl

%

Y%========= Inputs and OQutputs =====
%— Inputs —

signal(pflag,bool).

signal(pflag-n, bool).
signal(rs,bool).
signal(d-m,wordn).
signal(addrin,wordn).
%— Internal signals —
signal(rs_n,bool).
signal(rs_n0,bool).
signal(rs_n1,bool).
signal(rs_.n2,bool).
signal(rs_n3,bool).
signal(en,bool).
signal(dh,wordn).
signal(dl,wordn).
signal(dl_r,wordn).
signal(dph1,bool).
signal(dpl1,bool).
signal(dpll.r,bool).
signal(dph0,bool).
signal(dpl0,bool).

102

signal(dpl0._r,bool).

signal(d,wordn).

signal(dp1,bool).

signal(dp0,bool).

%— Outputs —

signal(dout,wordn).

signal(dpoutl,bool).

signal(dpout0,bool).

signal(addr_r,wordn).

%— Components —

signal(const_one,bool).

component(const1,constant_signal(value(1), signal(const_one))).
component(not1,not(input(pflag),output(pflag_n))).
component(reg0,reg(input(pflag_n),output(pflag))).
component(not2,not(input(rs),output(rs_n))).
component(andl,and(input(rs_n,pflag),output(rs_n0))).
component(regl,reg(control(const_one),input(rs_n0),output(rs_nl))).
component(reg2,reg(control(const_one),input(rs_.nl),output(rs.n2))).
component (reg3,reg(control(const_one),input(rs_n2),output(rs_n3))).
component(orl,or(input(rs.n2,rs_n3),output(en))).

component (msw,transform (inputs([d_m]),function(fmsw),output(dh))).
component(lsw,transform(inputs({d_m]),function(flsw),output(dl))).
component(parity1,transform(inputs([d-m]),function(fparity1),output(dphl))).
component(parity2,transform(inputs([d-m]),function(fparity2),output(dpll))).
component(parity3,transform (inputs([d_m}),function(fparity3),output(dph0))).
component(parity4,transform(inputs([d-m]),function(fparity4),output(dpl0))).
component(reg4,reg(control(const_one),input(dl),output(dlr))).
component(reg,reg(control(const_one),input(dpll),output(dpll.r))).
component (reg6,reg(control(const_one),input(dpl0),output(dpl0._r))).
component (mux1,mux(sel(rs_n2),inputs([(1,dh),(0,dlr)]),output(d))).

103

component(mux2,mux(sel(rs.n2),inputs({(1,dph1),(0,dpll.r)]),output(dpl))).
component(mux3,mux(sel(rs_n2),inputs([(1,dph0),(0,dpl0.r)]),output(dp0))).
component(reg7,reg(control(en),input(d),output(dout))).
component(reg8,reg(control(en),input(dpl),output(dpoutl))).
component(reg9,reg(control(en),input(dp0),output(dpout0))).
component(forkl,fork(input(addrin),output(addr.r))).

%— Partitions —

outputs([]).

output_partition([[[]]])-

next_state_partition([

pfiag-n]], ([n-rsn1l], [in-rs-n2], (fn.rs-n3]], [[n-dlt]}, [n_dpl1.s]}, ([n.dplos]}, [[n_dout]],
[n_dpoutl]],[[n_dpout0]]]).

%— State variable, next state variable mapping—

st_nxst(pflag,pflag-n).

st_nxst(rs_nl,n_rsnl).

st.nxst(rs_.n2,n_rs_n2).

st_nxst(rs_n3,n_rs_n3).

st_nxst(dlr,n_dlr).

st_nxst(dpll_r,n_dpll_r).

st_nxst(dplO_r,n_dplO_r).

st_nxst(dout,n_dout).

st_nxst(dpoutl,n_dpoutl).

st_nxst(dpout0,n_dpout0).

% — Partition strategy—

par_strategy(default, default).

A.1.3 Order Description

(74
0

104

% File: read_port_2x_o.pl
%

order_main([

const_one, pflag, pflag n, rs, d_m, addrin, rs_n, rs_n0, rs_nl, rs_n2, rs.n3, en, dh, dl, dl.r,
dphl,dl1, dpll_r, dph0,dplO, dpl0_r, d, dpl, dp0, dout, dpoutl, dpout(, addr_r, n_rs_nl,
n.rsn2, nrsn3, n.dlr, n.dpllr, n.dpl0._r, n_dout, n.dpoutl, n_dpout0, fmsw, fisw,

fparityl, fparity2, fparity3, fparity4]).

A.2 Generated monitor circuit for LA-1 in MDG-
HDL

In this section, we give an example specification and then provide source code of
the generated monitor circuit in MDG-HDL. The new verification-ready model is

comprised of the following three files:
1. Circuit description file: new_read_port_2x_s.pl
2. Order description file: new._read_port_2x_o.pl

3. Algebraic description file: new_read_port._2x_alg.pl

A.2.1 Example Specification

AG((pflag && 'rs)-> (XX(LET (vi=dm) IN (X(dout==fmsw(v1)))))).

Here, only one condition file is needed. It is named new_condition.pl

105

A.2.2 Monitor Circuit in Circuit Description File

%

% File: new_read_port_2x_s.pl

(074
Y

% *** Added Signals and Components for Model-checker =

% *** NOTE: Original next_state_partition is modified and added at the end.
% — Control signal for all reg components.

signal(apl_control_signal,bool).

component(apl_control_signal_comp, constant_signal(value(1),signal(apl_control_signal))).
% — Boolean constant component —

signal(apl_added_signal_1,bool).

component(apl_comp_1_constant, constant._signal(value(0),signal(apl_added_signal_1))).
signal(apl.added_signal 2 ,bool).

signal(n_apl_added_signal_2,bool).

component(apl_reg_comp_0, reg(control(apl_control_signal),
input(apl-added_signal_1),output(apl-added_signal _2)}).
st.nxst(apl-added_signal 2, n_apl-added_signal 2).

init_val(apl-added_signal 2, 1).

signal(apl-added_signal_3,bool).

signal(n-apl-added signal_3,bool).

component(apl reg_comp.1, reg(control(apl_control.signal),
input(apl.added_signal_2),output(apl-added_ signal 3))).
st_nxst(apl.added_signal 3, n_apl_added signal 3).

init_val(apl-added signal 3, 1).

signal(apl-added signal_4,bool).

signal(n_apl.added signal_4,bool).

component(apl.reg_comp_2, reg(control(apl.control_signal),
input(apl-added_signal.3),output(apl-added _signal._4))).
st_nxst(apl-added_signal 4, n_apl-added_signal 4).

106 .

init_val(apl-added-signal 4, 1).

% — Concrete comparator component —

signal(apl_added signal 5, bool).

component(apl_comp_2_concrete_comparator, table(|[pflag,apl_added_signal 5], [1, 1] |0])).
% — Concrete comparator component —

signal(apl.added_signal 6, bool).

component (apl_comp_3_concrete_comparator, table([[rs,apl-added_signal 6], [0, 1] |0])).
% — AND gate component —

signal(apl-added_signal _7,bool).

component (apl_comp_4.AND,

and (input(apl.added_signal _5,apl.added_signal_6),output(apl-added.signal 7))).
% — NOT gate component —

signal(apl_added signal_8,bool).

component(apl_comp_5_NOT,
not(input(apl-added._signal_7),output(apl-added.signal 8))).
signal(apl-added_signal_9,bool).

signal(n-apl-added_signal_9,bool).

component(apl_reg_comp_3, reg(control(apl_control_signal),
input(apl_added_signal_8),output(apl-added_signal 9))).
st.nxst(apl-added_signal 9, n_apl_added_signal 9).

init.val(apl_added.signal 9, 1).

signal(apl-added signal_10,bool).

signal(n_apl_added_signal_10,bool).

component(apl.reg_comp_4, reg(control(apl_control_signal),
input(apl_added_signal 9),output(apl-added_signal_10))).
st_nxst(apl-added_signal_10, n_apl_added_signal_10).
init_val(apl_added.signal_10, 1).

signal(apl-added_signal_11,bool).

signal(n_apl-added signal_11,bool).

107

component(apl-reg_comp_5, reg(control(apl.control_signal),
input(apl_added.signal_10),output(apl.added_signal_11))).
st_nxst(apl_added_signal 11, n_apl.added_signal 11).

init_val(apl added_signal 11, 1).

% — Variable component —

signal(apl-added_signal_12,wordn).

signal(n_apl_-added_signal 12,wordn).

component(apl_reg_comp_6, reg(control(apl_control_signal),
input(d-m),output(apl-added signal 12))).

st_nxst(apl-added_signal_12, n_apl.added signal_12).

% — Function component —

signal(apl-added_signal 13,wordn).

component(apl_comp_function.1, transform(inputs([apl.added signal 12]),
function(fmsw), output(apl_added_signal 13))).

% — Abstract comparator component —

signal(apl_added_signal_14,bool).

component(apl_comp_function_2, transform(inputs([dout,apl_.added_signal 13]),
function(absComp), output(apl-added_signal-14))).

% — OR gate component —

signal(apl_added_signal_15,bool).

component(apl_comp_7_OR,

or(input(apl-added_signal 11,apl added_signal_14),output(apl_added_signal_15))).
% — OR gate component —

signal(apl_added signal 16,bool).

component(apl_comp_8_OR,
or(input(apl_added_signal 4,apl added signal_15),output(apl-added_signal_16))).
% — Property flag component —

signal(flag,bool).

signal(n_flag,bool).

108

component (ag_property_comp, reg(control(apl.control_signal),
input(apl.-added _signal_16),output(flag))).
st_nxst(flag, n_flag).
init_val(flag, 1).
% — Modified Next State Partition —
next_state_partition([
pflag.n]],
n_apl_addedsignal.2]],
n_apl_added_signal_3]],
n_apl_added signal_4]],

[
i
[
[
[n_apl.added signal 9]],
[n_apl_added _signal _10]],
[n_apl_added signal 11]],
[

[

[

[

[

[

[

[
[n-apl.added signal 12]],
[[n-flag]],

[n.rsnl]],

[nrsn2]},
[
[l
[[n
[
([
[

[nrsn3]],

A.3 DModified Order Description File

(4
0

% File: new_read_port_2x_o.pl

109

07
0

order.main(]

apl_control_signal,
apl_added_signal 1,
apl.added_signal 2,
n_apl-added_signal 2,
apl-added_signal_3,
n_apl_added_signal 3,
apl_added_signal 4,
n_apl_added_signal 4,
apl.added_signal 5,
apl_added_signal 6,
apl_added_signal 7,
apl.added_signal_8,
apl_added_signal .9,
n_apl.added_signal 9,
apl_added_signal 10,
n-apl_added_signal 10,
apl.added_signal_11,
n-apl.added_signal_11,
apl.added_signal 12,
n.apl added_signal 12,
apl.added_signal 13,
apl-added_signal_14,
apl-added_signal 15,
apl-added_signal_16,
flag,

n_flag

D-

110

A.4 Modified Algebraic Specification File

We simply use the built-in eq function for abstract comparator in this case, so no
modification is needed. We make a copy of the original for the composite model

and name it “new_read_port_2x_alg.pl”.

A.5 Generated Condition file for the MDG model-

checker
%
% File: new_condition.pl
%

signal(signal102,bool).

signal(flag,bool).

component(select102,constant_signal(value(1), signal(signal102))).
component(c_cond_comp102,fork(input(signal102),output(flag))).
outputs([flag)).

order_cond([signal102,flag]).

111

Bibliography

[1] MDG home page. http://hvg.ece.concordia.ca/mdg/.
[2] Quintus Prolog. http://www.sics.se/quintus/.

[3] Synopsys Formality home page. http://www.synopsys.com/products/

verification/verification.html.
[4] VIS home page. http://vlsi.colorado.edu/~vis/whatis.html.

[5] TEEE Std 1800: SystemVerilog - Unified Hardware Design, Specification, and
Verification Language, 2005.

[6] IEEE Std 1850: IEEE Standard for Property Specification Language (PSL),
2005.

[7] IEEE Std 1666: SystemC Language Reference Manual, 2006.

[8] Habibi A., Ahmed A. I., Mohamed O. A., and Tahar S. On the design and
verification methodology of the look-aside interface. In Proceedings on Design,

Automation and Test in Furope, volume 3, pages 290-295, 2005.

[9] Pnueli A. The temporal logic of programs. In 18th IEEE Symposium on Foun-
dation of Computer Science, pages 46-57, Jerusalem, Israel, Israel, 1997. Weiz-

mann Science Press of Israel.

112

[10]

[11]

[12]

[13]

[16]

[19]

Eisner C. and Fishman D. A Practical Introduction to PSL. Springer Science
and Business Media, U.S.A., 2006.

Grune D., Bal H., Jacobs C., and Langendoen K. Modern Compiler Design.
John Wiley and Sons Ltd., England, 2004.

Li D. Towards first-order symbolic trajectory evaluation using mdgs. Masters

thesis, Concordia University, Montreal, Quebec, Canada, 2006.

Li D. and Mohamed O. A. Mdg-based verification of the look-aside interface.
In Canadian Conference on Electrical and Computer Engineering, pages 1064—

1068, 2006.

Bryant R. E. Graph-based algorithms for boolean function manipulation.

Transactions on Computers, C-35(8):677-691, 1986.

Cerny E., Corella F., Langevin M., Song X., Tahar S., and Zhou Z. Automated
Verification with Abstract State Machines using Multiway Decision Graphs. For-

mal Hardware Verification: Methods and Systems in Comparison. Springer

Verlag, 1997.

Gascard E. From sequential extended regular expressions to determinstic finite
automata. In ITI 8rd International Conference on Information and Communi-

cations Technology, pages 145-157, 2005.

Emerson E.A. Temporal and Modal Logic. Handbook of Theoretical Computer

Science. Elsevier Science Publisher, 1987.

Clarke E.M. and Emerson E.A. Design and synthesis of synchronization skele-
tons using branching time temporal logic. In Proceedings of the Workshop on

Logics of Programs, volume 131, pages 5b2-71. Springer Verlag, 1981.

Corella F., Langevin M., Cerny E., Zhou Z., and Song X. State enumeration
with abstract descriptions of state machines. In Proc. IFIP WG 10.5, 1995.

113

[20]

[21]
[22]

[23]

[24]

[25]

[26]

[27]

28]

[29]

Network Processing Forum. Look-Aside (LA-1) Interface, Implementation
Agreement, Revision 1.1. Kluwer Academic Publishers, 2004.

GNU. Bison: GNU parser generator. http://www.gnu.org/software/bison/.
GNU. Flex: The fast lexical analyzer. http://flex.sourceforge.net/.

Beer 1., Ben-David S., and Landver A. On-the-fly model checking of rctl for-
mulas. In Computer Aided Verification, pages 184-194, 1998.

Morin-Allory K. and Borrione D. Proven correct monitors from psl specifica-
tions. In DATE ’06. Proceedings on Design, Automation and Test in Europe,
volume 1, pages 1-6, 2006.

Boule M. and Zilic Z. Incorporating efficient assertion checkers into hardware
emulation. In Computer Design: VLSI in Computers and Processors., pages

221-228, 2005.

Clarke E. M., Emerson E. A., and Sistla A. P. Automatic verification of finite-
state concurrent systems using temporal logic specifications. ACM Transactions

on Programming Language and Systems, 8(2):244-263, 1986.

Gordon M. and Melham T. Introduction to HOL: A Theorem Proving Environ-
ment for Higher-Order Logic. Cambridge University Press, Cambridge, U.k.,
1993.

Coudert O., Berthet C., and Madre J. C. Verification of synchronous sequential
machines based on symbolic execution. In Proceedings of the international

workshop on Automatic verification methods for finite state systems, pages 365—

373, New York, NY, USA, 1990. Springer-Verlag New York, Inc.

Lichtenstein O. and Pnueli A. Checking that finite state concurrent programs

satisfy their linear specification. In POPL ’85: Proceedings of the 12th ACM

114

SIGACT-SIGPLAN symposium on Principles of programming languages, pages
97-107, New York, NY, USA, 1985. ACM Press.

[30] Burch J. R., Clarke E. M., McMillan K. L., and Dill D. L. Sequential circuit
verification using symbolic model checking. In 27th Proceedings on Design

Automation., pages 46-51, 1990.

[31] Burch J. R., Clarke E. M., McMillan K. L., Dill D. L., and Hwang L. J. Symbolic
model checking: 1020 states and beyond. In Fifth Annual IEEE Symposium on
Logic in Computer Science, LICS 90, pages 428439, 1990.

[32] Boyer R.S. and Moore J.S. A theorem prover for a computation logic. Technical
Report 54, Computational Logic, Inc., 1990.

[33] Owre S., Rushby J.M., and Shankar N. Pvs: a prototype verification system.
In International Conference on Automated Deduction, pages 748-752, 1992.

[34] Abarbanel Y., Beer 1., Glushovsky L., Keidar S., and Wolfsthal Y. Focs: Auto-
matic generation of simulation checkers from formal specifications. In Computer

Aided Verification, pages 538-542, 2000.
[35] Xu Y. Mdg model checker user’s manual. Technical report, 1999.

[36] Xu Y. Model Checking for a first-order temporal logic using multiway decision
graphs. Phd. thesis, University of Montreal, Quebec, Canada, 1999.

[37] Xu'Y., Cerny E., Song X., Corella F., and Mohamed O. A. Model checking for
a first-order temporal logic using multiway decision graphs. In CAV ’98: Pro-

ceedings of the 10th International Conference on Computer Aided Verification,
pages 219-231, London, UK, 1998. Springer-Verlag.

[38] Zhou Z. Mdg tools v(1.0) user’s manual. Technical report, 1996.

115

[39] Zhou Z., Song X., Corella F., Cerny E., and Langevin M. Description and veri-
fication of rtl designs using multiway decision graphs. In ASP-DAC 95, CHDL
95, VLSI °95: Design Automation Conference, pages 575-580, 1995.

116

