
Algorithm and Architecture for Simultaneous
Diagonalization of Matrices Applied to
Subspace-Based Speech Enhancement

Pavel Sinha

A Thesis

in

The Department

of

Electrical and Computer Engineering

Presented in Partial Fulfillment of the Requirements
for the Degree of Master of Applied Science at

Concordia University,
Montreal, Quebec, Canada

April 2008

© Pavel Sinha, 2008

1*1 Library and
Archives Canada

Published Heritage
Branch

395 Wellington Street
Ottawa ON K1A0N4
Canada

Bibliotheque et
Archives Canada

Direction du
Patrimoine de I'edition

395, rue Wellington
Ottawa ON K1A0N4
Canada

Your file Votre reference
ISBN: 978-0-494-40897-1
Our file Notre reference
ISBN: 978-0-494-40897-1

NOTICE:
The author has granted a non
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non
commercial purposes, in microform,
paper, electronic and/or any other
formats.

AVIS:
L'auteur a accorde une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par telecommunication ou par Plntemet, prefer,
distribuer et vendre des theses partout dans
le monde, a des fins commerciales ou autres,
sur support microforme, papier, electronique
et/ou autres formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

L'auteur conserve la propriete du droit d'auteur
et des droits moraux qui protege cette these.
Ni la these ni des extraits substantiels de
celle-ci ne doivent etre imprimes ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

Conformement a la loi canadienne
sur la protection de la vie privee,
quelques formulaires secondaires
ont ete enleves de cette these.

While these forms may be included
in the document page count,
their removal does not represent
any loss of content from the
thesis.

Canada

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

ABSTRACT

Algorithm and Architecture for Simultaneous

Diagonalization of Matrices applied to Subspace based

Speech Enhancement

Pavel Sinha

This thesis presents algorithm and architecture for simultaneous diagonalization of

matrices. As an example, a subspace-based speech enhancement problem is considered,

where in the covariance matrices of the speech and noise are diagonalized

simultaneously. In order to compare the system performance of the proposed algorithm,

objective measurements of speech enhancement is shown in terms of the signal to noise

ratio and mean bark spectral distortion at various noise levels.

In addition, an innovative subband analysis technique for subspace-based time-

domain constrained speech enhancement technique is proposed. The proposed technique

analyses the signal in its subbands to build accurate estimates of the covariance matrices

of speech and noise, exploiting the inherent low varying characteristics of speech and

noise signals in narrow bands. The subband approach also decreases the computation

time by reducing the order of the matrices to be simultaneously diagonalized. Simulation

results indicate that the proposed technique performs well under extreme low signal-to-

noise-ratio conditions.

iii

Further, an architecture is proposed to implement the simultaneous diagonalization

scheme. The architecture is implemented on an FPGA primarily to compare the

performance measures on hardware and the feasibility of the speech enhancement

algorithm in terms of resource utilization, throughput, etc. A Xilinx FPGA is targeted for

implementation. FPGA resource utilization re-enforces on the practicability of the design.

Also a projection of the design feasibility for an ASIC implementation in terms of

transistor count only is included.

iv

Acknowledgement

I would like to take this opportunity in expressing my sincere gratitude to my mentor and

research advisor Professor M.N.S. Swamy for his guidance, encouragement and support

throughout my graduate studies. It has been a great pleasure working with him.

I gratefully acknowledge Dr. P.K Meher, faculty of Nanyang Technological

University, Singapore, for his advice from time to time.

I extend my whole-hearted gratitude to my family for their encouragement and

support, without which it could have been impossible to finish this work. Finally, I would

like to thank my friends for their valuable advice and warm support.

Pavel Sinha, April 2008

v

I dedicate this work to my grandfather, late Shri Mrighendra Bhusan Sinha

and I hope this work has made him proud of me...

Table of Contents

List of Figures x

List of Tables xiv

List of Symbols xv

List of Abbreviations xvi

Chapter 1 : Introduction 1

1.1 Introduction and Motivation 1

1.2 Scope and Thesis Organization 5

Chapter 2 : Hardware-Efficient Matrix Diagonalization 7

2.1 Review of Matrix diagonalization using Jacobi Technique 7

2.2 CORDIC Algorithm: A Review 13

2.3 Simultaneous Diagonalization of Matrices using CORDIC 16

2.3.1 GainGR 20

2.3.2 Summary of the Algorithm 21

2.4 Error Analysis of the CORDIC Based Diagonalization Engine 22

2.4.1 Mean Off Diagonal Error of the Diagonalized Matrix 22

2.4.2 Mean Reconstruction Error of the Constructed Matrices 25

2.5 Summary 27

Chapter 3 : Speech Enhancement 28

3.1. Review of Subspace Based Speech Enhancement Technique 28

3.1.1 Optimal Subspace Filter for Speech Enhancement 30

3.1.2 Estimating the Lagrange Parameter n 33

3.2. Frequency Sub-Band Processing into Subspace based Speech Enhancement 35

3.2.1. Theory of Frequency Sub-Band Processing 36

vii

3.2.2. Justifying the Need for Sub-Band Processing 39

3.3. Objective Performance Measures and Experimental Results 40

3.3.1. Signal to Noise Ratio (SNR) 40

3.3.2. Segmental SNR (SSNR): 41

3.3.3. The Itakura Saito distance (ISD) Measure: 42

3.3.4. Modified Bark Spectral Distortion (MBSD) Measure: 42

3.3.5. Experimental Results and Discussion 44

3.4. Summary 49

Chapter 4 : Multiplier-Free Architecture for the Proposed Simultaneous

Diagonalization Scheme 50

4.1. Architecture of the Eigen Domain Filter 51

4.1.1. CORDIC Architecture of a Single Processing Element 52

4.1.2. Multiply and Accumulate (MAC) Unit 55

4.1.3. The Autocorrelation Unit 57

4.1.4. Eigen-Domain Filter Gain Calculation Unit 62

4.1.5. Jacobi Pair (P, Q) Generation Unit 64

4.2. Memory Architecture 66

4.2.1. DMSM Memory Cell 67

4.2.2. DMSM Memory Organization 68

4.3. Memory Controller FSM Design 70

4.3.1. Top Memory Controller 72

4.3.2. Memory Controller Mode-I 75

4.3.3. Memory Controller Mode-II 75

4.3.4. Memory Controller Mode III 76

4.3.5. Memory Controller Mode IV 77

4.4. Parallel Architecture of the Diagonalization Unit 79

4.5. The Master Controller 82

4.5.1. TOP Controller Design 82

via

4.6. Frequency-Subband based Speech Enhancement Processor 82

4.7. Summary 87

Chapter 5 : Results & Discussion 88

5.1 System Level Comparison of Speech Enhancement 88

5.2 Hardware Implementation Results of Subspace based Speech Enhancement 91

5.2.1 FPGA Resource Utilization 91

5.2.2 Throughput Analysis 92

5.2.3 Number of Logic Elements 94

5.2.4 Transistor Count for ASIC Implementation 95

5.2.5 Design Specifications 96

5.3 Implementation results of the frequency subband CORDIC- based subspace

speech enhancement 102

5.3.1 FPGA Resource Utilization 102

5.3.2 Throughput Analysis 102

5.3.3 Number of Logic Elements 103

5.3.4 Transistor Count for ASIC Implementation 104

5.3.5 Design Specifications 109

5.4 Summary 109

Chapter 6 : Conclusion I l l

6.1. Conclusion and Thesis Summary 111

6.2. Future Work 113

References 114

Appendix A: 124

ix

List of Figures

Figure 2.1. Mean Off diagonal error of the diagonalized matrix for varying matrix

sizes, for 100 pairs of randomly generated symmetric matrices, (a) for

varying CORDIC rotations and (b) for varying Jacobi iterations 24

Figure 2.2. Mean reconstruction error of the constructed matrices from the

calculated eigen-vectors and eigen-values for varying matrix sizes, for

100 pairs of randomly generated symmetric matrices, (a) for varying

CORDIC rotations and (b) is for varying Jacobi iteration 26

Figure 3.1 System Overview 36

Figure 3.2: Spectrogram of a typical clean speech of a TIMIT sentence 45

Figure 3.3: Comparison of the spectrogram of speech in Figure 2 corrupted by the

car noise at -10 db SNR with that of the speech after the proposed

filtering 45

Figure 3.4: Comparative performance for car noise at various SNR in terms of

Itakura distance, segmental SNR, and MBSD measures for 20 TIMIT

sentences produces by 10 male and 10 female speakers 46

Figure 3.5: Comparative performance for babble noise at various SNR in terms of

Itakora distanc, segmental SNR, and MBSD measure for 20 TIMIT

sentences produces by 10 male and 10 female speakers 47

Figure 3.6: Comparative performance for F16 cockpit noise at various SNR in terms

of Itakora distance, segmental SNR and MBSD measure for 20 TIMIT

sentences produces by 10 male and 10 female speakers 48

x

Figure 4.1: CORDIC architecture of a single PE 53

Figure 4.2: PE Controller I/O block diagram 53

Figure 4.3: Timing diagram of only the major I/O signals in a PE during operation 56

Figure 4.4: The FSM of the PE master controller 56

Figure 4.5: The FSM of the PE sign controller 57

Figure 4.6: The FSM of the PE execution controller 58

Figure 4.7: MAC unit RTL for serial matrix multiplication 59

Figure 4.8: The autocorrelation unit 59

Figure 4.9: The FSM of the autocorrelation controller 62

Figure 4.10: The eigen-domain filter (with variable SNR) 63

Figure 4.11: The register transfer level (RTL) diagram of the eigen-domain filter 63

Figure 4.12: The FSM of the divide controller 65

Figure 4.13: LUT based serial (P, 0-pair generation 66

Figure 4.14: LUT based parallel (P, 0-pair generation 66

Figure 4.15: Dual port multiple row/column shift memory (DMSM) I/O block

diagram 68

Figure 4.16: DMSM cell I/O block diagram 68

Figure 4.17: The internal structure of the DMSM 70

Figure 4.18: DMSM (dual port multiple row/column shift memory) controller I/O

block diagram 71

Figure 4.19: State transition diagram of the Top memory controller 73

Figure 4.20: Memory controller Mode-1 74

Figure 4.21: Memory controller Mode-II 76

xi

Figure 4.22: Memory controller Mode-Ill 78

Figure 4.23: Memory controller Mode-IV 79

Figure 4.24: Parallel implementation of N/2 Jacobi rotations for a total of R

CORDIC iterations 81

Figure 4.25: Hierarchy of the speech processor controllers 83

Figure 4.26: TOP Controller 84

Figure 4.27: Frequency-Subband Speech processor 85

Figure 4.28: Frequency-Subband Speech Processor 86

Figure 5.1: Comparison of the proposed (SJR) diagonalization vs. Matlab

(Cholesky) factorization (SSF) for factory noise in terms of segmental

SNR and mean MBSD measures of 20 TIMIT sentences from a female

speaker 89

Figure 5.2: Throughput vs. the number of parallel PEs used for different window

sizes 98

Figure 5.3: Throughput vs. the number of parallel PEs used for different clock rates 98

Figure 5.4: Number of hardware elements required as a function of the window

size 99

Figure 5.5: Total number of registers required as a function of the number of

parallel PEs used, for varying window sizes 99

Figure 5.6: Transistor count analysis excluding the data memory, as a function of

the number of parallel PEs used, for varying window sizes 100

XII

Figure 5.7: Transistor count analysis excluding the data memory, as a function of

the number of parallel PEs used, for varying number of parallel

CORDIC elements used 100

Figure 5.8: Throughput results as a function of the number of filter banks for

various number of parallel PEs 105

Figure 5.9: Total number of register as a function of the number of parallel PEs for

various number of filter banks 105

Figure 5.10: Total number of adders used as a function of the number of filter

banks for various number of parallel PEs 106

Figure 5.11: number of hardware elements required as a function of the number of

filter banks 106

Figure 5.12: Transistor count analysis excluding the data memory, as a function of

the number of filter banks used, for varying number of PE elements

used 107

Figure 5.13: Transistor count analysis excluding the data memory, as a function of

the number of filter banks used, for varying number of CORDIC

elements used 107

Figure A-1.Comparison of the eigen-values of (a) matrix A'l and Al'_matlab (b)

matrix A'2and A2'_matlab 127

Figure A-2.Comparing the mesh plots of the diagonalized matrices (a) matrix A'l

and (b) matrix Al'_matlab 127

Figure A-3. Comparing the mesh plots of the diagonalized matrices (a) matrix A'2

and (b) matrix A2'_matlab 128

xiii

List of Tables

Table 5-1: HDL Synthesis report of a Single PE 93

Table 5-2: Timing Summary of a Single PE 93

Table 5-3: FPGA Resource Utilization of a Single PE 94

Table 5-4: Transistor count for various digital logic functions 97

Table 5-5: Design Specifications: Speech enhancement on FPGA 101

Table 5-6: FPGA Resources for 16 bit data path 103

Table 5-7: FPGA Timing Summary for 16 bit datapath 103

Table 5-8 Design Specifications: Subband based speech enhancement on FPGA 108

XIV

List of Symbols

Ad A diagonal matrix that approximates Rd

£d

£x

¥

h
A

M

a(i,j)

add/sub

(c,s)

Ok

E{}

EE

Ex

FMAX

GR

"opt

J(p. q. 6)

MHz

MUX

Myp

ns

Rd

Rx

tr{)

V

Kesidual noise
Speech distortion

KxMmatrix with rank M(M< K)

ith Eigen-value

Eigen-value matrix

Lagrange parameter

Element in a matrix (th row and/'' column)

Addition or subtraction

Cosine and sine pair elements in a Jacobi matrix

Clock signal

Expectation operator

Error signal energy

Signal energy

Maximum clock frequency

CORDIC gain after R iterations

Optimal statistical filter matrix

Jacobi matrix with elements in p'h row and qth co

Mega-Hertz

Multiplexer

Multiplication

Nano second

Covariant matrix of noise d

Covariant matrix of clean speech X

Trace operator

Eigen-vector matrix

XV

List of Abbreviations

ASIC

BSD

CORDIC

DMSM

EVD

FDC

FIFO

FPGA

FSM

ICA

ISD

KLT

LUT

MAC

MBSD

PCA

PE

QSVD

RTL

SNR

SSNR

SVD

TDC

VHDL

VLSI

WLS

Application specific integrated circuits

Bark spectral distortion

Coordinate rotation digital computer

Dual port multiple row/column shift memory

Eigen-value decomposition

Frequency domain constraint

First in first out

Field programmable gate array

Finite state machine

Independent component analysis

Itakora-Saito distance

Karhunen Loeve transform

Look-Up table

Multiply and accumulate

Mean bark spectral distortion

Principal component analysis

Processing element

Quotient Singular Value Decomposition

Register transfer level

Signal to noise ratio

Segmental signal to noise ratio

Singular value decomposition

Time domain constrain

Very high speed integrated circuit, hardware description language

Very large scale integrated circuit

Weighted least squared

XVI

Chapter 1 : Introduction

1.1 Introduction and Motivation

From the beginning of human civilization, speech has been the primary and most

important medium for communication and exchange of ideas and thoughts among

individuals. Even in the 21st century, speech remains to be the primary medium of

communication in our day to day life [1] [2], aviation, military [3], distress calls, etc.

Enhancement of degraded speech over communication channels readily finds its

application in aircraft, mobile, military and commercial communications and in aids for

the handicapped. Applications include both speech over noisy transmission channels (e.g.

cellular telephony) and speech produced in noisy environments (e.g. in vehicles or

telephone booths) [2].

The objective of the speech enhancement algorithms vary widely from noise level

reduction, increased intelligibility, decreasing auditory fatigue, reducing transmission

data rates, etc. In recent years, numerous speech enhancement algorithms have been

proposed. Statistical signal processing has become very popular in speech enhancement

algorithms. The problem of approximate eigen-domain decomposition and joint

diagonalization of a set of matrices has become instrumental in numerous statistical

signal processing applications [4], [5], [6] involving principle component analysis (PCA)

[7], blind beam-forming [8], blind source separation (BSS) [9], frequency estimate [10],

1

Independent component analysis (ICA) [11] and de-noising techniques for single/multi

dimensional signal processing [12]. As their distinguished feature, these methods seek to

extract the desired information about the signal and noise by first estimating, either in

part or full, the eigen-values using the eigen-value decomposition (EVD) technique.

However, the popularity is limited due to its intense computational complexity.

Moreover, the computational requirement of the eigen-domain decomposition increases

exponentially with the matrix size [5], [6], [13].

Another statistical signal processing approach is the projection approximation

subspace tracking. In his work [5], the author has interpreted the signal subspace as the

solution of a projection-like unconstrained minimization problem. The recursive least

square technique has been applied by making appropriate projection approximation.

However, its performance is not well accepted for sensitive applications, where an

accurate estimate of the subspace is necessary [14]. Specially under heavy noise

conditions, the least square algorithm fails to track the subspace. An adaptive Jacobi

method for parallel implementation of singular value decomposition (SVD) has been

given by Shen-Fu Hsiao [13]. A modified parallel adaptive Jacobi method to diagonalize

a symmetric matrix has been presented in [6]. Later, the subspace tracking was addressed

by Benoit and Qing-Guang [15], [16] by an efficient updating scheme of plane rotation-

based eigen-value decomposition (EVD), using a parametric perturbation approach. In a

recent work by Xi-Lin Li and Xian-Da Zhang [17], a non-orthogonal joint

diagonalization method has been presented; it is an approximate non-orthogonal joint

diagonalization technique and analyzes the inefficiency of the weighted least-squares

(WLS) approach used by Wax [18].

2

With the development of eigen-domain estimation algorithms, subspace based

techniques have emerged as a promising statistical tool. Subspace-based speech

enhancement techniques have been designed to reduce noise levels in noisy speech

signals and at the same time minimize speech distortions. The mathematical formulation

leads to a constraint minimization problem, which is readily solved by using the method

of Lagrange multipliers resulting in an optimal statistical speech enhancement filter. The

use of the subspace approach was pioneered by Ephraim and Van Trees [19], who

proposed the optimal estimator for white noise that was later extended to the case of

coloured noise by Hu and Loizou [20]. The original subspace enhancement scheme was

developed in time and frequency domains, leading to the time domain constraint (TDC)

and frequency domain constraint (FDC) versions of the algorithm. The performance of

the subspace algorithm mainly depends on two steps, namely, the accurate estimation of

the noise and noisy speech covariance matrices and the shaping of the residual noise

terms. The former leads to reduced speech distortions, while the latter improves the

quality of the enhanced speech by exploiting the perceptual properties of hearing. Much

of the contemporary research has focussed on developing robust and novel techniques to

obtain better estimates and perform suitable noise shaping.

In the subspace approach, the distortions in the enhanced speech signal are evident in

low SNR conditions. This is due to the inaccurate estimation of the speech and noise

covariance matrices. The poor estimation stems from the fact that the noise and noisy

speech subspaces exhibit an increasing overlap with decreasing SNR [19]. In particular, it

has been identified that the poor estimation of the noise and speech spectra leads to

annoying artefacts such as the "musical noise" in the enhanced speech. Musical noise is a

3

result of spectral spikes occurring at random frequencies caused due to large variance

estimation of noise and speech signals [19]. While masking the residual error mitigates

the effects of the annoying artefacts, it has been pointed out that a more accurate

estimation of the SNR may be beneficial in removing the musical noise. Therefore,

accurate spectral estimation has been recognized as a key step towards robust

performance, and many techniques, such as the multi-taper and Blackman-Tukey, have

been developed for this purpose [21], [22]. Also, the use of wavelet thresholding

technique, such as the SURE, results in more accurate spectral estimates and eliminates

the musical noise [23], [21].

However, in most of the work presented so far, very little effort has been made to

address the problem of real-time computation from a hardware point of view. Most of

these algorithms have implementation issues in real-time. The bottle neck is in achieving

higher throughput rates when implemented on VLSI, followed by the hardware

complexity and the static power dissipation [24]. Most of the modern state of the art DSP

algorithms involving intense statistical estimation become impractical for VLSI

realization or for real-time realizations on high performance system platforms. This

brings in the need for reducing hardware complexity of the algorithms being developed.

With the emerging need for eigen-domain estimations and statistical filters in most of the

real-time signal processing applications, complexity increases exponentially with the

window size used in the algorithm.

The requirement for executing computationally-intensive functions at hardware speed

can only be satisfied by the emerging application specific integrated circuits (ASICs).

Even though ASICs offer highest possible performance at lowest silicon cost, they suffer

4

from inflexibility. Besides, if a particular application needs a large number of functions to

be executed in real-time, then a large number of ASIC chips will be required, and thus, is

not cost effective [25]. Field programmable gate arrays (FPGA) on the other hand are

high performance programmable hardware that allows flexibility and reconfigurability

for realizing a diverse class of functions. Research in the area of mapping complex DSP

algorithms onto reconfigurable FPGA has revealed that the FPGAs are adequate and best

suited for mapping most of the computationally intensive applications, due to their

efficient static ram-based LUT designs offering an optimum cost-performance trade-off

[26].

1.2 Scope and Thesis Organization

The above discussion provides sufficient background to establish the fact that statistical

signal processing is highly computationally intensive. Emerging speech enhancement

algorithms fully rely on statistical computations, such as eigen-domain estimations.

Hardware implementation issues also limit the application of such algorithms in real

time. In this thesis, the problem of simultaneous approximate diagonalization of multiple

matrices is studied. As an application, the problem of subspace-based speech

enhancement technique is considered, while keeping in mind the implementation issues

of modern day VLSI circuits. A solution to the problem of achieving high throughput and

reduced computation cost is also addressed through an innovative frequency subband

5

processing. The subband approach exploits the inherent low variance of the speech and

noise signals in a limited frequency region as opposed to using the full band.

This thesis consists of six chapters. Chapter 2 mainly focuses on the joint

diagonalization of matrices. It gives an insight to the Jacobi-based matrix diagonalization

technique. It also provides a review of the CORDIC algorithm. The later part of the

chapter presents an innovative technique to approximately diagonalize a pair of

symmetric matrices simultaneously, based on the extension of the Jacobi diagonalization

technique combined with the CORDIC implementation scheme. This results in an

efficient multiplier-free hardware implementation of the algorithm, and has been shown

later in Chapter 4. Chapter 3 focuses on a time domain constrained subspace-based

speech enhancement algorithm. Starting with a brief discussion on speech enhancement,

this chapter also extends the time domain constrained algorithm to an efficient frequency

subband speech processing technique for improved performance. Chapter 4 deals with the

architecture that supports the CORDIC based Jacobi core for simultaneous

diagonalization of matrices used in speech enhancement. The area-optimized architecture

for the sub-band sub-space optimal filter is also presented. Chapter 5 then discusses the

results and comparisons that justify the hardware implementation. Later, the overall

system performance of the speech enhancement architecture is discussed. The FPGA

resource utilization of the architecture is also presented. Finally, Chapter 6 contains some

conclusions and focuses on some of the future work that could be carried out.

6

Chapter 2 : Hardware-Efficient Matrix

Diagonalization

Matrix diagonalization is equivalent to transforming the underlying system of equations

represented by the matrix, into a special set of coordinate axes in which the matrix takes

this canonical form. The process of diagonalization essentially consists of computing the

eigen-values, which are the diagonal entries of the diagonalized matrix while the

eigenvectors, also known as the characteristic vectors, make up the new set of axes

corresponding to the diagonal matrix. This chapter briefly presents a review of the

Jacobi-based diagonalization algorithm followed by a review of the CORDIC-based

computation technique. The later part of the chapter presents an innovative and simple

extension of the Jacobi technique to diagonalize multiple symmetric matrices using the

CORDIC algorithm.

2.1 Review of Matrix diagonalization using Jacobi Technique

The Jacobi-based matrix diagonalization algorithm is a numerical technique for

calculating the eigen-values and eigen-vectors of a real symmetric matrix. The method is

named after the German mathematician, Carl Gustav Jakob Jacobi. Jacobi method has

attracted attention for applications dealing with eigen-values of symmetric matrices,

since they have an inherent unique property that facilitates parallel execution of the

7

algorithm. It works by performing a series of orthogonal similar transforms. The key

property in achieving the diagonalized matrix lies in the fact that each of these orthogonal

transform produces an approximate diagonalized matrix, which is "approximately more

diagonal" than its predecessor. Eventually, when the off-diagonals are small enough to be

declared zero, the matrix is considered to be diagonalized.

Let, A be a real symmetric matrix to be diagonalized and J an orthogonal matrix, then

the orthogonal transforms are given by, Ai+i<r-JTAjJ where, i indicates the present

orthogonal transform index. The diagonalization of A is achieved by systematically

reducing the "norm" of the off-diagonal elements of A at each transform, given by [27],

[28],

off(A)= \LUY?Ma\
m

(2.1)

where fly corresponds to the elements of matrix A. The orthogonal matrix is also known

as the Jacobi rotation matrix and is of the form

r7

J (p, q, 6) = -s

0

(h

P

q
(2.2)

where (p, q) is an index pair, 0 is the angle of rotation, and c and s are the cosine and sine

values of the angle 0. The first step involved in the Jacobi diagonalization technique

requires computing the index pair (p, q) satisfying the condition l<p <q <n, followed

by computing the cosine-sine pairs (c, s) such that the norm of the off-diagonal elements

is reduced. Matrix Ai+i is the transformed version of the matrix At, and for convenience,

these are denoted by A' and A respectively. Matrix A is updated only in the rows and

columns corresponding to p and q, as J is essentially an identity matrix except for the

four positions indicated by the index pair (p, q). As a consequence, the sub-matrix

Q-pp apq

®qp &qq
corresponding to

transformation is given by

in A gets transformed to
a qq

a,

a, pq

qp a. qq

in A' and this

a'
PP

a'
IP

a'
pq

a'
m_

c

-s

s

c

T

* a a
pp m

a a
IP W

c s

-s c

As the Frobenius norm is preserved by the orthogonal transforms, we have

(2.3)

o2 +d +202 =a'2 +aa +2aa =aa +aa
pp w m PP m m PP <?<?

off(Af=\\AfF-^l
1=1

= \\4-fa2+(a2 +a2 -a'2 -a'2) II \\F L~in \ PP m PP qq)

=off(A)2-2al

i=i

.2 ", 2

pq

(2.4)

(2.5)

It is in this sense that A moves closer to being diagonal with each Jacobi step. The

diagonalization of A as shown by (2.3) is subjected to the condition

U CL pq &pq\C S J ~r yO-pp ®-qq)CS
(2.6)

The following logic thus falls into place:

9

If (apq=0 or a„=0)

(c,s) = (l,0) & A' = A
Else,

r=aqq a"p t = s/c = Um(0)
2aP, .

(2.7)
End

Combining (2.6) and (2.7) we get

t2+2vt-\ = 0

or

The values of c and s can now be resolved by

c = \/Jl + t2 and 5 = /c (2'9)

It is important to select the smaller of the two roots, as it ensures that \e\ < n 14 and has

the effect of minimizing the difference between A and A' since

;j,« (2-10)

The convergence of the Jacobi method is of a quadratic nature. The classical Jacobi

algorithm can then be summarized as follows [27] :

10

a
pi

= max,v.

V—I„; eps = tolftAft

While off (A)>eps

Choose (p, q) so

(c, s) = sym.schur2(A, p, q)

A=J(p,q,0)

V=VJ(p,q,6)

End

In the above, the function sym.schur2 determines the 2-by-2 rotation. Given an (nxn)

symmetric matrix A and integers p and q that satisfy 1< p < q < n, the function

sym.schur2 computes a cosine-sine pair (c, s) such that if A ' = J(p, q, 0)TA J(p, q, 6), then

a'Pq = a 'gp = 0 and hence, A' is diagonal.

Function : [c, s] = sym.schur2 (A, p, q)

If A(p, q)^0

x = (A(q,q)-A(p,p))/(2A(p,q))

If x>0

t =

e

t =

I

-1

-)

(r + Vl + r2)

/ (- r + Vl + r 1
- i M c = 1/V1 + ^2

Else

End

s = tc

c = 1

11

An interesting and unique property of the Jacobi algorithm is its ability to facilitate

parallel execution of the algorithm. To illustrate this, let n = 4, i.e., we consider a (4x4)

matrix. We group the six sub problems into three transform sets as follows:

transform, set (1) = {{1, 2), (3, 4)}

transform, set (2) = {(7, 3), (2, 4)}

transform, set (3) = {(7, 4), (2, 3)} (2 - 1 1)

Note that all the transforms within each of the three rotation sets are "non-

conflicting". That is, transforms pairs (1, 2) and (3, 4) can be carried out in parallel.

Likewise, the transform pairs (1, 3) and (2, 4) can be executed in parallel and so can the

pairs (1, 4) and (2, 3). In general, we say that pairs (1, 4) and (2, 3). In general, we say

that

(hJt).(hJ1).:..(inJn) N={n-l)n/2 (2.12)

is ^parallel ordering of the sets {(*,./) |l <i< j <n) if for s = 1, ... , n-1 the transform

set transform.set(s) = {{ir,j) :r = 1 +n (s-l)/2 : ns/2] consists of "non-conflicting"

rotations. This requires n to be even. The case of n being odd can be handled by adding

an extra row and an extra column of zeros to A. A complete parallel execution of the non-

conflicting transform sets could certainly reduce the computation time drastically,

however, at the expense of additional hardware. The hardware requirements for a

complete parallel execution of the non-conflicting transform sets grow exponentially with

the increase in the size of the matrix. In practice, therefore, a complete parallel approach

is definitely not a viable solution for large matrix sizes. However, a folded parallel-serial

12

approach is usually an attractive choice, since it maintains a balance between the

hardware cost and the performance [29].

A detailed discussion of error analysis of the Jacobi algorithm is available in [30],

[32]. Wilkinson was the first to perform an error analysis for the Jacobi algorithm for

symmetric matrix diagonalization. Later, a refined error analysis was presented by

Demmel and Veselic in 1992 [31], where he shows that the Jacobi algorithm is more

accurate than the QR factorization algorithm used for matrix diagonalization.

2.2 CORDIC Algorithm: A Review

Digital signal processing has been historically dominated by microprocessors with

enhanced features such as single cycle multiple-accumulate instructions, zero over-head

looping, special addressing modes and bit-reversal techniques. Though the DSP

processors offer low cost and high flexibility, they do not meet the true demands of DSP

tasks. This has led to the development of iterative algorithms that could be mapped well

on to the hardware. With the advancements in reconfigurable computing techniques such

as the FPGAs, hardware-based approaches have become more and more viable than the

traditional software-based approaches [26]. Among these algorithms are a class of shift-

add algorithms for computing a wide range of functions including certain trigonometric

functions, and are collectively known as CORDIC.

CORDIC is an acronym for Coordinate Rotation Digital Computer. The original

work is credited to Jack Voider [33]. Extensions to the CORDIC theory based on the

13

work by John Walther [34] and others provide solutions to a broader class of functions.

These functions are computed with simple extensions to the CORDIC architecture [29].

Though many functions are not strictly computed as in a CORDIC algorithm, they are

often included because of their close similarity.

The problem of real-time solutions for navigation purposes was one of the prime

motivations for the development of the CODIC algorithm. The CORDIC algorithm has

found its way into diverse applications including the 8087 math coprocessor, the HP-35

calculator, radar signal processors and robotics [35]. CORDIC rotation has also been

proposed for computing discrete Fourier, discrete cosine, discrete Hartley and discrete

chirp-z transforms, filtering, singular value decomposition (SVD) and solving linear

system of equations [34], [35], [36], [37] and [38].

Vector rotations are one of the key components for computing the various

trigonometric functions as well as for conversions from polar to rectangular coordinate

system and vice versa. They can also be used for computing vector magnitudes [29] and

as a building block in certain transforms such as the DFT and DCT. The CORDIC

algorithm provides an iterative base for such vector rotations by only shift and adds

operations, thereby being extremely useful for VLSI implementations [35]. The original

algorithm, credited to Voider [33], is basically a series of transforms given by

y

cos# - s i n 0

sin Q cos#

= cos 0
1

tan6>

x

y.

tan 0

1
x

y
(2.13)

which rotates a vector in the cartesian plane by an angle 6. So far, nothing is simplified in

terms of the hardware required, as it involves multiplication operations. However, if we

14

can restrict the rotation angle such that tan(6) - ± 2'', the multiplication by the tangent

term is simply reduced to a bunch of shift and addition operations. Any arbitrary angle of

rotation is obtained by a series of rotations, where the decision of the direction of rotation

at the ith stage is governed by the sign of the angle by which the axes are to be rotated.

Thus, (2.13) is simplified to

Xi+\

JM.
= Ki I

1

d,2~'

-dt2~r

1

~x

J (2.14)

where

Kt= cos [tan-1 (2" '))=-r=i
1+2--

(1
dt={

for 6 >0

for 9<0

Kj is known as the scaling constant, while dt as the directional bit. The product of AT,-'s is

pre-computed in the system and results in only a constant coefficient multiplication, thus

leading to an efficient VLSI implementation. The product approaches 0.6073 as the

number of iterations tends to infinity. Therefore, the rotation algorithm has a gain, and

the exact gain depends on the number of iterations and obeys the relation

Gain
MVTTP

(2.15)

A CORDIC rotation is primarily achieved by a sequence of angle rotations. The angular

values are supplied by a small lookup table (one entry per iteration) or are hardwired,

15

depending on the implementation. The angle accumulator introduces a difference

equation to the CORDIC algorithm, to keep track of the total angle rotated for the given

number of iterations, and is given by

Z^^Zi-dtJan^r) (2.16)

where, Z, stores the angle accumulated at the i'h iteration. Most of the CORDIC functions

are achieved by setting different initial conditions to (2.14) and (2.16) [33], [34], [37].

VLSI implementation of the CORDIC algorithm has also found itself in serial, parallel

and folded semi parallel-serial implementation schemes due to efficient shift and add

functional units. Though the convergence of the CORDIC algorithm is quadratic [27], its

recursive nature hampers the overall system throughput rate.

2.3 Simultaneous Diagonalization of Matrices using CORDIC

This section presents a CORDIC-based scheme to simultaneously diagonalize multiple

symmetric matrices. The Jacobi rotation technique to diagonalize a single matrix [27] is

now extended for the diagonalization of multiple matrices. Let, Aj and A2 be two real

symmetric matrices intended to be simultaneously diagonalized and J an orthogonal

matrix, then the extension of the algorithm is based on performing a sequence of

orthogonal similar update pairs An+i<r-JTA]jJ and A2i+i*—JTA2iJ, where ' j ' indicates the

index of the present orthogonal transform. Each transform has the property that each new

16

pair Aj and A2, are "more diagonal" than its predecessor. The orthogonal matrix J is the

Jacobi matrix as given by (2.2).

Let the elements of the two matrices Ai and A2 be anj and 02/,;, and let v,,y be the

elements of the eigen vectors matrix V. Matrices A\ and A2 are updated only in the rows

and columns of p and q as J is essentially an identity matrix except for the four positions

indicated by the index pair (p, q). The 2-by-2 transformations are shown below:

&\pp Q \pq
1 1

Cl\qp Q\qq

CI 2pp CI 2pq
1 1

CI 2qp CI 2qq

V pp V pq
I I

V qp V qq

C S

-S C

c s

-s c

Q\pp a\pq

a\qp a\qq

fypp fypq

Chqp Chqq

1 0

0 1

IT r V V
pp pq

V V
qp qq

c s

-s c

c s

-s c

c s

-s c

(2.17)

(2.18)

(2.19)

The initial step in the simultaneous diagonalization involves primarily choosing the

Jacobi pair (p, q) that satisfies l<p <q <n and secondly, computing the cosine-sine pair

(c, s) such that the norm of the off-diagonal elements of both A\ and A2 are reduced in

each transform, similar to that shown in Section 2.1. Let us denote the transformed

matrices after the Jacobi rotation of ^4; and A2 as A) and A 2 respectively with elements

a nj and a 21- The simultaneous diagonalization of matrices A\ and A2 is constrained by the

condition

a[= 0, a i = 0 and a'2 = 0, a'2 = 0 (2.20)

Combining (2.17), (2.18), (2.19) and (2.20), we have

17

a , (c2 - s2)+ (a, - a ,)cs = 0

Now, combining (2.21) and (2.22) we get

(2.22)

f (2.23)

where 7 is the tangent of the chosen angle of rotation. It can be shown that choosing t to

be the smaller of the two roots ensures |<9|<;z74and also has the effect of minimizing the

difference between A and A . Let

(«1W + «2<J-(<V + «2;J (2.24)
T =

The lowest absolute value of / satisfying (2.23) has been shown to be [27]

t =
sign(v)

-| + Vl + r2
= tan(#) =

(2.25)

where 9 determines the angle of the Jacobi rotation. From (2.25) it can be shown that

^ (2.26) r
ngn(0) sign\p)- sign

r

tan

v v

sign(x)

H + Vi + X
- sign (0

J)

Therefore, the desired direction of rotation is given by

di = sign {a,qq+a2qq)-{a^pp+a2pP)

(2.27)

Similarly, we can show that the sign of the angle of rotation for the M different matrices

to be

f M

sign (d)~ sign
Z("

2 a*.
\ <=i

(2.28)

Thus, (2.28) determines the sign of the angle required for Jacobi transform that best

diagonalizes Mdifferent symmetric matrices.

So far, the computation of (2.17), (2.18) and (2.19) requires computing the

trigonometric sine and cosine values of the Jacobi rotation angle. However if the angle of

the Jacobi rotation is restricted, such that tan(9)=2~', the multiplication operations

required in (2.17), (2.18) and (2.19) simply reduces to shift and add operation, similar to

the CORDIC algorithm given by [37], [33], [29]. We approach the desired Jacobi rotation

in an iterative way with a step size of 2\ i being the iteration number. The iterative

CORDIC approach of computing a single Jacobi rotation for Ai and A2 can now be

expressed as

= * ?

=KI

1

di.2"

d,2-<]
1

T

*
(%P;

KA
(%*V
(%-Pj

* 1

Ur
d,r

1

1 di.r

•di.2'1 1

iT

(V,+;

d,T

K; =
1

-2i -Ji+r

-di.2'' 1

1 di.2''

-d,r 1

and dt= ±1

(2.29)

(2.30)

(2.31)

(2.32)

ith where f *),• refers to the value of (*) at the i iteration and GR is the net scaling factor that

depends on the total number R of CORDIC iterations. Kt and dj are the scaling constant

and the direction of the Jacobi rotation respectively at the i'h CORDIC iteration and c/, is

given by (2.30). Thus, every Jacobi rotation in (2.17), (2.18) and (2.19) corresponds to R

successive CORDIC iterations given by equations (2.29), (2.30) and (2.31). The update

of the angle of rotation in each such CORDIC iteration is given by

19

Zi+1 = Zt - tan'(I') (2.33)

where Z,+/ indicates the total angle yet to be rotated by the CORDIC algorithm after the

i'h iteration in order to complete the required Jacobi rotation. Z, approaches zero with

higher CORDIC iterations. Due to the angle rotation of 2° in the first iteration, the

algorithm is restricted to the rotation of ± 77/2, hence the convergence of the CORDIC

algorithm in each Jacobi rotation is guaranteed as the angle to be rotated in each such

Jacobi rotation is constrained by \&\< n 14 . A higher number of CORDIC iterations

fetch a lower value of the "norm" of the off-diagonal elements in the diagonalized

matrices, giving a higher computational accuracy. This tradeoff between the

computational accuracy and the cost could easily be exploited depending on the

application requirements. Appendix A gives a simple numerical example for a better

understanding of the diagonalization process.

2.3.1 GainG/j

Equations (2.32) to (2.34) bear an inherent gain in the system as represented by the factor

GR, which is the gain constant for every 7? CORDIC iterations. For applications such as

matrix diagonalization, multiplication of the gain matrix GR becomes inevitable, thereby

ruining the advantage of the multiplier-free CORDIC algorithm. However, this can be

overcome by fixing the total number of CORDIC iterations in each step of the Jacobi

rotation, thereby fixing the value of GR in (2.32), since 7? indicates the total number of

CORDIC iterations. The diagonalized matrices are obtained by solving (2.29) to (2.31)

and are constrained by fixing the total number of CORDIC iterations, thereby yielding

20

scaled diagonalized matrices. With known scaling values, the scaling could be nullified in

subsequent stages of signal processing, wherein the scaling operation can be performed

with in the filter itself without any extra hardware overhead. Therefore, the gain GR can

be neglected during the process of diagonalization of the matrices using the CORDIC

algorithm. The neglected gain is easily compensated at a later stage in the system.

2.3.2 Summary of the Algorithm

The algorithm described in Section 2.3 is summarized below. The construct 'Seq'

represents segments to be executed in sequence while the construct 'par' indicates the

segments to be executed in parallel. These are constructs similar to the ones used in a

parallel programming language like 'Handel-C to describe sequential and parallel

operations. The algorithm extracts the inherent parallel property of the CORDIC

algorithm. However, it could also be executed completely sequentially. In Chapter 4 we

implement a semi-parallel sequential architecture of the algorithm on hardware.

Algorithm:
For J - 1 : Total number ofJacobi Iterations

For p = I: n-1
Par: {

For all q = {p+1 : 1: nj
Seq: {

For R = 1 : Total number of CORDIC rotations
Compute equations (2.29) to (2.31)

End
; Seq End

End
; Par End

End
End

21

2.4 Error Analysis of the CORDIC Based Diagonalization

Engine

This section gives a graphical understanding of the computational error of the CORDIC

based matrix diagonalization algorithm. The dominating errors that affect the system

performance in a major way are the off-diagonal elements of the diagonalized matrix and

the reconstruction error from the eigen-vectors and eigen-values. It is observed through

computer simulations that the reconstruction error is predominantly due to the off-

diagonal elements, when we consider the overall system performance of a speech

enhancement system in terms of the signal to noise ratio. Detail description of the speech

enhancement system is given later in Chapter 3.

2.4.1 Mean Off Diagonal Error of the Diagonalized Matrix

Figure 2.1 shows the mean off-diagonal error of the diagonalized matrices for varying

matrix sizes, for 100 pairs of randomly generated symmetric matrices. Figure 2.1 (a)

shows the mean off-diagonal error of the matrix pairs for varying number of CORDIC

rotations, keeping the total number of Jacobi iterations to 40. Figure 2.1 (b) shows the

mean off-diagonal error of the matrix pairs for varying number of Jacobi iterations,

keeping the total number of CORDIC rotations to 30. P-Crd-x indicates the proposed

algorithm for x number of total CORDIC rotations and P-Itr-j indicates the proposed

algorithm for y number of total Jacobi iterations. A higher number of Jacobi iterations

22

indicate that the study of the off-diagonal error of the matrix pairs in Figure 2.1 (a) is

mainly due to the varying CORDIC rotations, as the contribution of the off-diagonal error

due to Jacobi iterations becomes negligible. Similarly Figure 2.1 (b) assumes that the off-

diagonal error is mainly due to the varying number of Jacobi iterations, under the

assumption that the CORDIC iterations contribute negligible off-diagonal error for higher

number of CORDIC rotations. The mean off-diagonal error shown in Figure 2.1 indicates

the presence of higher residual error in one of the matrices compared to that of the other.

This indicates that the error generated in the proposed algorithm is slightly biased

towards one of the matrices. However such biases could be significantly minimized by

introducing higher number of both Jacobi iterations and CORDIC rotations, as can be

seen from Figure 2.1. The purposed algorithm indicates lesser off-diagonal residues for

higher order matrix pairs when compared to that of the Matlab-Cholskey factorization

algorithm.

23

5

0.2

0.18

0.16

0.14

0.12

0.1

0.08

0.06

0.04

0.02

0

-X
- -£f- r

-4fc^.

-e — P-Crd-5
-A — P-Crd-10
- i P-Crd-20
-*• — P-Crd-30
* — Matlab

-TS^-7
- + o

!
15

n
6

0.35

0.3

0.25

0.2

0.15

0.1

0.05

— P-Crd-5
— P-Crd-10
— P-Crd-20
— P-Crd-30
— Matlab

20 40 60
Matrix size NxN

80 20 40 60
Matrix size NxN

80

(a)

6

0.25

0.2

0.15

0.1

0.05

1 i
\ i

1 1

— e - p-itr-5
— A P-ltr-10

1 P-ltr-20
— + _ p.|tr-40

* Matlab

; \ ;
_L 1 i>

> l l
i l l

i l l
l 1 l

1 1 1

0.35

CM
X

0.25

5

0 20 40 60
Matrix size NxN

80

0.15

0.05

20 40 60
Matrix size NxN

(b)

Figure 2.1. Mean Off diagonal error of the diagonalized matrix for varying matrix sizes,

for 100 pairs of randomly generated symmetric matrices, (a) for varying CORDIC

rotations and (b) for varying Jacobi iterations.

24

2.4.2 Mean Reconstruction Error of the Constructed Matrices

Figure 2.2 shows the mean reconstruction error of the matrices constructed from the

calculated eigenvectors and eigenvalues for varying matrix sizes, for 100 pairs of

randomly generated symmetric matrices. Figures 2.2 (a) shows the mean reconstruction

error for the matrix pairs for varying number of CORDIC rotations, keeping the number

of Jacobi iterations to 40. P-Crd-x indicates the proposed algorithm for x number of total

CORDIC rotations and P-Itr-y indicates the proposed algorithm for y number of total

Jacobi iterations. Figure 2.2 (b) shows the mean reconstruction error for varying total

number of Jacobi iterations, keeping the number of CORDIC rotations to 30. The mean

reconstruction error shown in Figure 2.2 indicates that the proposed technique clearly out

performs the Matlab-Cholesky factorization. This is as expected since the eigen vectors

generated by the proposed method are highly orthogonal and their orthogonality is well

preserved in each CORDIC rotation and Jacobi iteration. Section 2.3 explains this in

more detail.

25

1.8

1.6

1.4

1.2

1

0.8

0.6

0.4

0.2

0

1.4

1.2

0.8

0.6

0.4

0.2

— e — P-Crd-5
— A — P-Crd-10

1 P-Crd-20
* — P-Crd-30
ik - Matlab

CM

1.4

1.2

0.8

0 .6

0.4

0.2

20 40 60
Matrix size NxN

80

(a)

-\-l
^K

— P-ltr-5
— P-ltr-10
— P-ltr-20
— P-ltr-40
— Matlab

CM

x

0.9

0.8

0.7

| 0.6

"ft

$ 0.4

20 40 60
Matrix size NxN

80

0.3

0.2

0.1

0

20 40 60
Matrix size NxN

1 I

TV"
i i -

— e — P-ltr-5
—<£> — P-ltr-10 -

1 P-ltr-20
*- — P-ltr-40 -

— * — Matlab

\ \
i * '

.... Kb,.
1 1

^

20 40 60
Matrix size NxN

80

(b)

Figure 2.2. Mean reconstruction error of the constructed matrices from the calculated

eigen-vectors and eigen-values for varying matrix sizes, for 100 pairs of randomly

generated symmetric matrices, (a) for varying CORDIC rotations and (b) is for varying

Jacobi iteration

26

2.5 Summary

In this chapter we have presented a brief introduction to the Jacobi based matrix

diagonalization technique for symmetric matrices. This well known technique is a

computationally efficient numerical technique for symmetric matrix diagonalization

problems. This technique also provides an intuitive mechanism for parallel

implementation. However, in practice, a complete parallel implementation becomes

unreasonable for very large matrix sizes due to an exponential increase in the hardware

requirements; hence, mostly a folded semi-parallel approach is very often preferred.

This chapter has also reviewed the basics of the CORDIC algorithm. The

CORDIC implementation exploits the advantage of mapping powers of 2 constant

coefficient multiplications effortlessly onto digital hardware, thereby reducing the

computational elements to a set of shift and addition operations. At the core of the

CORDIC algorithm is the iterative vector rotation, which has a very high convergence

rate.

We have further presented a simple extension of the Jacobi algorithm for

simultaneous diagonalization of multiple symmetric matrices, which has been efficiently

mapped onto the CORDIC implementation scheme, thereby making a complete

multiplier-free implementation of the simultaneous diagonalization technique possible.

Being iterative in nature, for most practical applications, it provides an easy tradeoff

between the computational accuracy and the execution speed. The error analysis of the

proposed technique shows a performance similar to that of the Matlab-Cholesky

factorization as the size of the matrices increase.

27

Chapter 3 : Speech Enhancement

Speech enhancement is the term used to describe the process of improving the perceptual

aspects of human speech. With the increase of digital communication in the last 50 years,

speech enhancement has attracted increasing attention in different speech processing

problems. Speech enhancement primarily consists of removal of noise from degraded

speech while maintaining the speech quality over an audible threshold.

3.1. Review of Subspace Based Speech Enhancement

Technique

The application of signal subspace approach has traditionally found its place in frequency

estimation, direction of arrival estimation and system identification [64], [59], [39]. It is

only recently that it has been applied for speech enhancement applications. The basic

concept is to project the noisy speech signal onto two subspaces: the signal-plus-noise

subspace and the noise subspace. As the noise subspace contains only the noise process,

the signal can be recovered by removing the components of the signal in the noise

subspace while retaining the components of the signal in the signal subspace. The

decomposition of the signal into its subspaces is usually done by either using the singular

28

value decomposition (SVD) [63], [59] or the eigen value decomposition (EVD) [56],

[10], [64], [39] .

Dendrinos et al. [63] have proposed a SVD-based technique making use of the basic

idea that the eigenvectors corresponding to the largest singular values contain signal

information, while the eigenvectors corresponding to the smallest singular values contain

noise information. Thus, the largest singular values are sufficiently informative enough to

reconstruct the enhanced signal. This has given impressive SNR improvements mostly

for signals corrupted with white noise. The work of Dendrinos et al. [63] was further

extended by Jensen et al. [59] using the Quotient SVD (QSVD) approach to tackle the

problem of removal of colored noise. By arranging the signal data in a Toeplitz matrix,

they arrange the data in a Hankel matrix and compute the least square estimate of the

signal-only Hankel matrix. However, the computational inefficiency of the QSVD, along

with its inability to either shape or control residual noise, is not attractive. Ephraim and

Van Trees [19] then came up with an optimal estimator that would constrain the residual noise

while minimizing the speech distortion. This essentially leads to solving a constrained

minimization problem. This technique uses the Karhunen-Loeve transform (KLT), which

decomposes the vector space of the noisy signal into a signal and noise subspace. The

estimated signal is then obtained by performing an inverse KLT after nullifying the noise

components from the signal and noise subspaces in the KLT domain. The traditional

spectral subtraction method that introduces a lot of musical noise is overcome by the sub-

space approach, yielding a much better speech quality. Ephraim and Van Trees's

formulation of the subspace approach is based on the assumption that the input noise is

white. Their work was further enriched by Yi, Hu and Loizou by their generalized

subspace approach for enhancing speech that is corrupted by colored noise [19]. This lead

29

to an optimal linear estimator that minimizes the speech distortion while suppressing the

background noise, using time-domain constrains (TDC). The following sections highlight

the theory behind the design of a subspace approach speech enhancement engine based

on certain time domain constraints for handling colored noise.

3.1.1 Optimal Subspace Filter for Speech Enhancement

A linear speech production model is assumed for clean speech X, given by, X = ¥ S,

where ¥ is a K x M matrix with rank M (M < K) and 5 is a M x 1 vector, respectively.

The covariance matrix of X, which is also a positive definite matrix, is given by

Rx = E{X XT) = W RXWT (3-1)

Since the rank of the matrix Rx is M, it has K - M zero eigen-values. With the

assumption that the noise is additive and uncorrelated with the speech signal, the

corrupted signal is given as

Y=W S + d = X+d (3.2)

where Y, X and d are the ^-dimensional noisy speech, clean speech and noise vectors

respectively. The linear estimator X of the clean speech X is given by, X = H.Y, where

H is a K x K matrix. This estimate would essentially generate an error signal e due to the

incorrect estimate of the signal and is given by

E=X-X=(H- I)X + H d= Ex+ed (33)

30

where e represents the speech distortion and e, the residual noise [19]. The associated
X

energies s?x and sd of the distortion signal and the residual noise are given by

4 = E[eT
x ex] = tr(E[eT

x e J) = tr (HRX HT - HRX - RXHT + Rx)

and 7d = E[eT
ded] = tr(E[eT

ded]) = tr (HRdH
T) (3.4)

The optimal linear estimator is obtained by solving the linear time-domain constrains,

leading to the solution of a constrained minimization problem. Essentially, the estimator

estimates the enhanced speech keeping the speech distortion below a threshold, which is

adaptively set for every speech frame. The constrained minimization problem is given

below.

Minimize : sx

Subject to: -£2
d^

d
 (3 5)

where a is a positive constant. The solution to the above constrained equation is given

by [19]

Hopt=Rx(Rx+M.Rdy> <3-6)

where Rx and Rd are the covariance matrices of the clean speech and noise, respectively,

and ju is the Lagrange multiplier. After using the eigen-decomposition of

RX—UAXU , the simplified estimator is given by

Hopt= U\(AX+ fiUTRdUf' If (3.7)

31

where U and Ax are, respectively, the unitary eigenvector matrix and the diagonal

eigenvalue matrix of Rx. In the case of white noise with variance 0d , Rd = Od I and the

estimator described above reduces to that of Ephraim and Van Trees [19]. It basically

approximates /^by the diagonal matrix

&d=diag(E(\u]d\2), E(\uT
2d\2), ..., E(\uT

Kd\2)) (3 8)

where £4 and d are, respectively, the K: eigenvector of Rx and the noise vector

estimated from the speech-absent segments of speech. Thus, the approximated sup-

optimal estimator developed by Ephraim and Van Trees, which is not suited for colored

noise is given by

Hopt*UAx(Ax+MAdy
luT (3 - 9)

Later the work was improved by Hu and Loizou [19], by studying the matrix U Rd

U, which they found to be weakly diagonalizable. This is not surprising, since the

eigenvectors of Rx, which are supposed to diagonalize Rd could diagonalize Rd only in

the case of white noise. On the contrary, it can be shown [28] that there may exist an

eigen-space, which is common to both the matrix spaces Rx and Rd, thus essentially

resulting in the simultaneous diagonalization of both Rx and Rd- The simultaneous

diagonalization as given by [19] is as follows:

VTRXV = A£

VTRdV=I (3.10)

32

where Aj; and V are the eigen-value and eigen-vector matrices respectively. Using the

eigen-decomposition of Rx and Rj, the optimal estimator is further simplified as shown

below.

Hopt=RdVAsUE+liI)-1VT

= V-TA£(AZ+MI)-1VT (3.11)

It has been shown in [19] that the Lagrange parameter ju must satisfy

S2={tr{(VTrfAl(A£+Miy2} (3 1 2)

where sd = Kd . The enhanced signal is obtained by X = Hopt Y, where Y is the noisy

input speech signal. This fundamentally amounts to a transform V being applied to the

noisy signal Y and then the enhanced signal X estimated by appropriately applying a gain

function in the transformed domain and then taking the inverse transform (V) of the

modified components, as shown by (3.11). The gain matrix is given by

G = A% {Ax + pt I)' , a diagonal matrix.

3.1.2 Estimating the Lagrange Parameter fi

So far we have described the optimal estimator as given by (3.11); however, it requires

the calculation of the Lagrange parameter ju. Ideally, to parametrically compute the

Lagrange parameter pi, it would require solving (3.12), which is certainly not a trivial

task. Therefore, an approximation of the Lagrange parameter is the next option.

33

Estimation of // involves the risk of either over estimating the parameter resulting in a

high back ground noise suppression but with heavy speech distortion, or an under

estimation of the parameter that would lead to minimum speech distortion but low back

ground noise suppression. Hence, the estimate of the parameter // is critical.

Ideally, we would like to minimize the speech distortion in speech-dominated frames,

since the speech signals will have a masking effect on the noise; hence, the value of //

would then be dependent mostly on the short-time SNR. Hu and Loizou [19], therefore,

chose the following equation for estimating pi:

M = Mo-(SNRdb)/s (3.13)

where pio and s are constants chosen experimentally, and SNR^b = lOlogio SNR. It is to

be noted that a similar equation was used in [19] to estimate the over-subtraction factor in

spectral subtraction. However, it has been shown that the method proposed by Hu and

Loizou provides a better trade-off between speech distortion and residual noise compared

to the approach in [19], which uses a fixed value of pi regardless of the segmental SNR.

The estimate of the SNR is found directly by replacing the signal energy by their

m
eigen-values, X E along with their corresponding eigenvectors V/c

[i.e., Xf=E{\v{x\2)),

tr(V%V) Zf^f (3.14)
SNR = T

tr (Rx) The segmental SNR definition thus reduces to the traditional SNR definition of—-—-
tr {Rd)

for an orthogonal matrix V.

34

3.2. Frequency Sub-Band Processing into Subspace based

Speech Enhancement

In this section, we develop a technique to tackle the problem of inaccurate estimation of

the covariance matrices, keeping in mind the masking properties and computation

complexities. We address this by focusing on the subbands rather than treating the full

band signal. The subband approach exploits the inherent low variance of the speech and

noise signals in a limited frequency region as opposed to using the full band. This

technique automatically results in subband-based covariance matrices that are much more

accurate compared to the full band counterpart. This accurate estimate of the covariance

gives a better estimate of the clean speech under heavy noise conditions, as will be

evidenced by the results obtained (see Section 3.3.5.). Further, by using the frequency

sub-band technique we can update the covariance of the noise and noisy speech

independently in each subband. This is possible since many of the frequency subbands do

not often contain speech activity, even though there is activity in the other subbands. Thus,

even though there may be speech detected in the full-band signal, the subband technique

offers a better covariance estimation by allowing band selective covariance update in

contrast to the full band approach. The subband technique involves simultaneous

diagonalization of much smaller matrices compared to the full band case. This not only

results in a higher accuracy, as will be seen from computer simulations, but also reduces

the computational cost, since the computational complexity for matrix diagonalization

increases as the cube of the size of the matrix [73].

35

3.2.1. Theory of Frequency Sub-Band Processing

The subband implementation of the subspace enhancement scheme is illustrated by the

block diagram in Figure 3.1. As a first step, the noisy speech signal is broken down into

M narrow band frequency segments using a perfectly re-constructible filter bank

followed by down sampling, as shown in Figure 3.1. Letyj, Xj and rij denote the noisy

speech, clean speech and noise signals in t h e / frequency sub-band. Then, assuming an

additive noise model we obtain

y=Xj+nj

where the noise and speech are assumed to be uncorrelated in each subband.

(3.15)

Input

Signal

("N' points/
frame)

Ix
tx

F
i
1
t
e
r

B
a
n
k

tx

Down
sampling

by'M'

m M

Subband Speech/Pause

Detection

Subband SHR Estimator

4M

'M' Subband

Decomposition
Filter Bank

Subband Filter

Estimator

Up
sampling

by'M'

fM

-»
Subband Speech/Pause

Detection

Subband SNR Estimator

P

*
Subband Filter

Estimator

+
-HtM

tx
tx

F
i
1
t
e
r
B
a
n
k

tx

Output

Signal

— •
("N1 points/

frame)

Subband Filtering with WM'
Samples per frame

M' Subband
Reconstruction

Filter Bank

Figure 3.1 System Overview

36

Now, in each subband, an independent subspace speech enhancement linear estimator is

employed to obtain the enhanced speech in that particular subband. Let Hj be the optimal

linear estimator for they'"' subband; then, the clean speech estimate Xj in that subband is

obtained by Xj = Hj. Yj , where Hj is a KxK matrix. The error signal is given by

SJ =XJ +XJ = (Hj-I)xj + Hj T V S (3 , 1 6)

where the two error components e .̂and en. denote the speech distortion and residual

noise for the / subband. The corresponding energy components could be expressed as

4 =E [Snj S] = tV {E [4 Si) (3AV

Following the procedure used in [19], an optimal linear estimator can be derived by

considering the following constrained optimization problem, where the speech distortion

term in (3.17) is minimized subject to the constraint that the residual noise error term in

(3.18) is reduced to a value that is lower than the threshold:

Minimize: si.
Xj

Subject to: - e2
n. < d) (319)

where, 8. is a positive constant in each subband and is assumed to be a function of the

subband segmental signal to noise ratio (SSNR) in our case. The constrained

minimization in (3.19) leads to an optimal filter

37

Hj= RXj(RXj+HjRn) (3.20)

where pi. is the Lagrange multiplier, and Rx, and Rn. are the KxK clean speech and noise

covariance matrices, respectively. In each segmental frequency, a decision is made to

distinguish between a pause frame and a speech frame based on a simple comparison of

the present frame energy to that in the past few frames. Based on this decision, an update

of the autocorrelation of the noise or speech is estimated, using which the linear estimator

is constructed. As shown in [19], the simultaneous diagonalization of Rx. and Rn.

generalizes the optimal estimator in (3.20) to handle the case of colored noise when

VfRnjVj = I (3.21)

where Ax. and V.- are the subband eigen vectors and eigen value matrices, respectively.

Applying the eigen decomposition of (3.21) in (3.20), we can rewrite the subband linear

estimator as

H.=R (R +u.R Y=VrTA (A +u.lYvT=V.G.VT n22)
j XJ \ XJ r*j nj J j xj\ xj r~j) j j J J l J - z z y

where the gain matrix Gj is a diagonal matrix that is intended to attenuate the eigen

values of the autocorrelation of the noise according to the Lagrange parameter fij. As

mentioned earlier, this parameter is very important. It determines the amount of speech

distortion for a minimum noise residue in the corresponding subband. A large estimate of

this parameter would eliminate much of the background noise at the expense of

introducing speech distortion and conversely, a small estimate would minimize the

speech distortion at the expense of introducing large residual noise. It has been shown in

38

[19] that//,- does not have a closed form expression in terms of 8 , which forces the use

of a linear expression for the Lagrange parameter, as done in [19]. The Lagrange

parameter thus obtained is then scaled by the SSNR of they' subband. This incorporates

the subband Lagrange parameter as a function of the SSNR in that frequency band. The

estimated signal from each frequency segment is up sampled and reconstructed in the

filter bank to generate the final full band estimated signal.

3.2.2. Justifying the Need for Sub-Band Processing

The proposed subband technique assumes that the noise is uncorrelated in each of the

subbands and may or may not be uncorrelated in the over-all signal. Thus, the approach

proposed here is a more generalized one. Computer simulations indicate that the

simultaneous diagonalization of Rx. and Rn. in each subband has a greater degree of

accuracy in terms of numerical computations as compared to that in the full band

approach. The down sampling in the filter bank drastically reduces the matrix size in each

subband as compared to that in the full band case. This reduces the computation

complexity of the diagonalization unit, since the computational complexity increases as

cube of the order of the matrix. Speech frames are taken at a speech length of 32 ms in

order to preserve speech property, from which enhancement is possible [67]. A 32ms of

speech on an 8000 sample/s sampling rate would require a buffer length of 256 words,

with a simultaneous diagonalization core of the order 256. On the contrary, with a 4

channel filter bank, it would require 4 individual buffers of length 64, with the

simultaneous diagonalization core to only handle matrices of order 64. As the cube of 64

39

is a much smaller number than that of 256, the increase in hardware due to the 4 channel

filter bank is well compensated by the reduced hardware in the matrix diagonalization

engine. It will be shown in Chapter 4 that the hardware complexities of higher order

diagonalization engines result in lower throughput, which is the primary bottle neck in

processing higher signal rates. Hence, the frequency subband technique also provides a

solution for parallel implementation of speech enhancement in dealing with signals of

higher sampling rates.

3.3. Objective Performance Measures and Experimental

Results

In this section, we will fist describe the objective measures that have been used for

quantitative performance measure of the overall system performance. We will then

present the experimental results of the sub-band based speech enhancement engine.

3.3.1. Signal to Noise Ratio (SNR)

SNR is the most often chosen measure because of its computation simplicity. Let y(n),

x(n) and d(n) denote the noisy speech signal, clean speech signal and noise signal,

respectively, and x(n) the corresponding enhanced signal. The error signal e(n) can be

written as

40

e(n) = x(ri) - x\n)

The error signal energy can be computed as

n n

and the signal energy as

Ex= I,nx2(n)

The resulting SNR measure (in db) is obtained as [69], [68]

(3.23)

(3.24)

(3.25)

SNR = 10logJ0^h=10log Zn*\n)
'10 In [*(«)" *(»)]'

(3.26)

3.3.2. Segmental SNR (SSNR):

The SSNR measure is a variant of the SNR, and is formulated as follows [68], [69]

SNRseg=^llOlog10
n = mi- N + 1

i:j
 N+Mri)-mv

n=m: - N + 1
(3.27)

where mo, mi, ... , mu-i are the end-times for the M frames, each of which is of length

N. For each frame, the SNR is computed and the final measure is obtained by averaging

these measures over all the segments of the waveform. For some of the frames, the SSNR

is either unrealistically high or unrealistically low, thus providing a biased estimate of the

SSNR. This issue is addressed by discarding the SSNR values below or above a

predefined lower or upper SSNR threshold value, respectively. In this work, we have set

the higher threshold value to be 35 db and the lower one to be -10 db.

41

3.3.3. The Itakura Saito distance (ISD) Measure:

The ISD measure is based on the linear prediction (LP) coefficients. Specially, for each

frame m, we obtain the LP coefficients a(m) of the clean signal and the LP coefficients

P(fri) of the enhanced signal. The ISD measure is defined by [68], [69]

[q(m) - p(m)] TRx{m)[a(m)-P(m)\

d{m) j
a(m) Rx(m)a(m) (3.28)

where Rx(jn) is the autocorrelation matrix of the mth frame of the clean speech.

3.3.4. Modified Bark Spectral Distortion (MBSD) Measure:

The difference between the MBSD measure [40] and SNR, SSNR and ISD measures is

that the MBSD measure takes into account a psycho-acoustical model, which is absent in

the other three models. The MBSD measure is defined as the average difference of the

estimated loudness which is perceptible, while the bark spectral distortion (BSD) measure

is defined as the average squared Euclidean distance of the estimated loudness. The BSD

and the MBSD measures are defined by the following equations [40]:

BSD =
•jj/Lj = 0 E/=7 [Lx (0 - L- (Q] ^29)

M-l

MBSD = — >
I V 1

M
j-o

K

^/(/)|LP(0-Lf(0 (3.30)

U = l

where./' is the frame index, Mis the number of frames, / is the critical band index, K is the

number of the critical bands, /(/) is the indicator of perceptible distortion at the /th critical

42

band, L)/\i) is the z'th band Bark-spectrum of the/h frame of the clean signal, and L~ (f)

is the ith band Bark-spectrum of the fh frame of the enhanced signal. The perceptible

indicator I(i) is set to either 1 or 0. If the difference between the bark spectrum of the

clean speech and the enhanced speech is below the noise masking threshold, indicating

that the distortion is not perceptible, the parameter I(i) is set to 0, otherwise it is set to 1

[40]. The Bark scale is a psycho-acoustical scale named in memory of the scientist

Heinrich Barkhausen (1881 - 1856), who introduced a measure for the level of loudness

[41]. The resolution of human auditory system is described by the critical band tuning

curves of the inner ear. Based on psycho-acoustical experiments [41], the frequency

range is divided into critical bands. The concept of critical bands leads to a nonlinear

warped frequency scale called the Bark scale. The unit of this frequency scale is Bark,

where each critical band has a bandwidth of 1 Bark. The transform of the frequency /

into Bark scale is approximately given by [41],

Bark = 13 arctan (0.00076 f) + 3.5arctan((f/7500)2) (3.31)

The scale ranges from 1 to 24 and corresponds to the first 24 critical bands of hearing.

The subsequent band edges are (in Hz) 20, 100, 200, 300, 400, 510, 630, 770, 920, 1080,

1270, 1480, 1720, 2000, 2320, 2700, 3150, 3700, 4400, 5300, 6400, 7700, 9500, 12000,

15500. In this thesis, with 8000 samples/s the number of critical bands K is chosen as 18.

This also helps in an appropriate comparison of the results with those in [19].

Calculations of the/h frame Bark-spectrum has been well described in [70], where the

spectral average of the individual critical bands over the entire spectrum provides the

bark spectrum of that particular frame.

43

3.3.5. Experimental Results and Discussion

We evaluate our frequency sub-band (FS) algorithm on 20 sentences from the TIMIT

database that includes 10 male and 10 female speakers. The proposed enhancement

parameters are: sampling rate = 8 KHz, number of subbands = 32 and window size = 32.

A perfect reconstruction filter bank obtained using the 'Daubechies 18' wavelet packet

analysis function is employed. The enhanced vectors are hamming windowed and

combined using the overlap-add-synthesis method while a rectangular window is used to

estimate the covariance matrices. The clean speech files are corrupted by employing an

additive noise model, where the car, babble and F-16 cockpit noises from the NOISEX

database are added to the clean speech files at -10, -5, 0, 5 and 10 dB SNRs. Figure 3.2

shows the spectrogram of a typical clean speech of a TIMIT sequence, and Figure 3.3

those of the speech corrupted by the car noise at -10 db SNR and the corresponding

speech after the proposed filtering. The FS algorithm is compared against Ephraim-Van

Trees (EV) [19] and Hu-Loizou (HL) [19] subspace schemes, using three evaluation

measures, namely, the segmental SNR, the Itakura distance and the MBSD. A

comparative analysis of the three algorithms in terms of the above mentioned objective

measures are illustrated in Figures 3.4, 3.5 and 3.6 for the car, babble and F-16 cockpit

noises. It is easily seen that the proposed FS technique outperforms the EV and HU

methods from the point of view of all the three measures under low SNR conditions. The

improvements are substantial at very low SNRs of -10 and -5 dB and diminish with

increasing SNR, as is to be expected.

44

Figure 3.2: Spectrogram of a typical clean speech of a TIMIT sentence

4000

o

§ 2000
a-

CD !s*- 1*-

0.5 1.5 2
Time (s)

4000

o

I 2000
cr

0.5 1 1.5 2 2.5 3 3.5
Time (s)

Figure 3.3: Comparison of the spectrogram of speech in Figure 2 corrupted by the car

noise at -10 db SNR with that of the speech after the proposed filtering.

45

0.5

0.45

0.4

0.35
CD
O

I 0.3

1 0.25
CD

-t—»

0.2

0.15

0.1
0.05

k I
"4

\ ' ^\
T- -J- - - ^ - |

X '

\k

\

;.....

- A FS

* HL
EV

---;-

V !
/'-V^ i

4.5

3.5

or
z
CO

•4—'

c
CD

E
CD

to 2.5

1.5

FS
HL
EV

a
C/)
CO

u.u

0.7

0.6

0.5

A FS

* HL
EV

~ r •

0.4

0.3

0.2

- • - - - -

..._ >._ T. _ —

V u \

-10 0 10 -10 0 10
Noise SNR (db) car Noise SNR (db) car

0.1
-10

\ V v

0 10
Noise SNR (db) car

Figure 3.4: Comparative performance for car noise at various SNR in terms of Itakura

distance, segmental SNR, and MBSD measures for 20 TIMIT sentences produces by 10

male and 10 female speakers.

46

CD
O

c

2
w
b
CD
i _
O ^.
CO

0.35

0.3

0.25

0.2

0.15

0.1/

0.05

0

+

"A-

FS

HL

EV

4.5

| 3.5
</)

I *
CD

2.5

1.5

—A— FS

=< HL

_ + _ EV

'"""1?
/ ' *

/ ; , I
{ -'~ - - ;' -i - - •• -

/ / '

--i

X—

1

0.5

0.45-

0.4

0.35

| 0.3

0.25

i

0.2

0.15

0.1

:

\

- - -J

I

- V-. -

•

-

_

• • -

--

s -

&;

\

_A-

*

1 -

I ._

r
~i

i ~

i _

", " t ~~

Jk

- F S

HL
- E V

V-3
-10 0 10 -10 0 10 -10 0 10

Noise SNR (db) babble Noise SNR (db) babble Noise SNR (db) babble

Figure 3.5: Comparative performance for babble noise at various SNR in terms of Itakora

distanc, segmental SNR, and MBSD measure for 20 TIMIT sentences produces by 10

male and 10 female speakers.

47

O
c

Q

o

0.3

0.25

0.2

0.15

0.1'

0.05

/- FS

- HL

EV

-_

_'v 1

1 v£^»

4.5

- 3 . 5

01
z
- 3
B
CD

E
CD

w 2.5

0.6

0.55

0.5

0.45

0.4

| 0.35

0.3

0.25

-10 0 10
Noise SNR (db) f16

-10 0 10
Noise SNR (db) f16

0.2

0.15

0.1

r ~

(Z)
—

1
>

U
.

I
H

I

J

-- - -1 - -

V x I

1 ^&
-10 0 10
Noise SNR (db) f16

Figure 3.6: Comparative performance for F16 cockpit noise at various SNR in terms of

Itakora distance, segmental SNR and MBSD measure for 20 TIMIT sentences produces

by 10 male and 10 female speakers.

48

3.4. Summary

In the initial section, the basics of a subspace based speech enhancement system have

been reviewed. In the subsequent sections an innovative subband-based speech

enhancement analysis technique that exploits the slow varying characteristics of speech

and noise signals over narrow frequency segments, has been proposed. The accurate

covariance estimation of the noise and speech in the subband results in a better

performance in low SNR conditions as compared to that of full band subspace-based

speech enhancement techniques. The proposed technique also provides for an inherent

parallel implementation scheme and reduces the computational complexity. The proposed

scheme makes no assumptions of the spectral characteristics of the noise, but only assumes

that the noise and speech are uncorrelated in each of the subbands. The performance of the

proposed scheme has been evaluated in terms of the Itakora distance measure, segmental

SNR and modified bark spectral distortion measure (MBSD), and compared with that of two

of the well-known full band subspace-based speech enhancement techniques, namely, the

subspace based speech enhancement developed by Ephrime and Van Trees, and the

generalized subspace based speech enhancement for coloured noise by Yi Hu and Loizou.

Improvement in speech enhancement using the subband-based subspace speech enhancement

technique is clearly visible from the results that have been obtained.

Having presented the subband-based subspace speech enhancement algorithm in this

chapter, the next chapter, Chapter 4 presents an hardware architecture for implementing

the speech enhancement algorithm on FPGA. The architecture utilizes the simultaneous

diagonalization algorithm discussed in Chapter 2 and implements a subspace-based

speech enhancement processor.

49

Chapter 4 : Multiplier-Free Architecture

for the Proposed

Simultaneous Diagonalization

Scheme

So far we have described a CORDIC based algorithm for simultaneous symmetric matrix

diagonalization. We have also presented a frequency-subband speech enhancement

algorithm. In this chapter, we will describe the hardware architecture that efficiently

diagonalizes the symmetric covariant matrices of speech and noise, and computes the

optimal estimator, using which we enhance the noisy speech, thus rendering it to be a

speech enhancement processor. The necessary supporting hardware modules such as the

memory modules and controllers are also presented. The architecture is coded in VHDL

using the Xilinx ISE design flow to target a FPGA implementation. All the simulation

results are obtained using the ModelSim simulation software from Mentor graphics. The

time limitation of this Master's thesis has compelled the use of FPGA due to its shorter

design time compared to that of an ASIC counterpart. However, in Chapter 5, a

projection of an ASIC equivalent implementation is studied from the perspective of total

transistor count only.

The speech processor has been divided into the following sub-blocks.

1) Eigen domain Filter

2) Memory Architecture

50

The subsequent subsections explain the architecture in detail. However, the experimental

results of their FPGA implementation in terms of the hardware utilization and the overall

system performance measures are discussed in Chapter 5.

4.1. Architecture of the Eigen Domain Filter

The eigen-domain filter is responsible for the process of speech enhancement on a frame

by frame basis. The core of this filter is a CORDIC based diagonalization engine

(described in Chapter 2), which simultaneously diagonalizes the two symmetric covariant

matrices. Apart from the CORDIC core, the eigen-domain filter consists of other units as

well. This includes the autocorrelation unit, eigen-domain filter gain calculation unit, and

a multiply and accumulate (MAC) unit for executing matrix multiplications which make

up the entire eigen-domain filter. Dividing the design into subparts also makes

designing, testing, debugging and design-reusability easier and convenient. The following

are the sub-blocks of the eigen-domain filter:

1) CORDIC architecture of a single processing element (PE)

2) Multiply and accumulate (MAC) unit

3) The autocorrelation unit

4) Eigen domain filter gain calculation unit

5) Jacobi pair (P, Q) generation Unit

51

4.1.1. CORDIC Architecture of a Single Processing Element

The proposed architecture of a single processing element (PE) is shown in Figure 4.1.

The operation of the PE is divided into two modes: first, finding the appropriate direction

of the CORDIC rotation and second, the CORDIC transform. In the first part of the PE

operation, the desired CORDIC direction is computed, as given by (2.30) and is stored in

the 1-bit sign register, sign(0), shown in Figure 4.1. In the second mode, the CORDIC

rotations, as given by (2.29) to (2.31), are computed based on the sign which is already

computed in the previous mode. This completes one single CORDIC iteration. The

architecture is fully pipelined for maximum performance in terms of the data transfer

rates. Due to the shift and add nature of the operations given by (2.29) to (2.31), the

architecture is well suited for FPGA/ASIC implementation. At the beginning of the

diagonalization process, the eigen-vector matrix V is initialized to an identity matrix.

Since the CORDIC iteration is an orthogonal transform, the resultant eigenvector matrix

V is also an orthogonal matrix. The covariant matrices that are to be simultaneously

diagonalized are symmetric, and as a result, the eigen-values and eigen-vectors are also

real. This discards the need for complex arithmetic units. A single PE unit computes one

CORDIC iteration as given by (2.29) to (2.31), and R such rotations complete a single

Jacobi iteration. To achieve higher data rates, a number of such PE units could be

cascaded to increase the overall throughput. This also makes the architecture very

scalable. There are four registers in between the adders that act as pipeline registers. The

architecture given in Figure 4.1 has serial data I/O interfacing in order to decrease the

total number of I/O pins used by this unit. Figure 4.2 shows the I/O block diagram of the

52

Data In (i)

a) p q

zzt:
a l q p m
a qq

I
a2 pp

X
a2 p q

a2 q p

in
a*,, K

Sign(a-b)

Sign (c/d) * »\ Sign(e)l_

L2
Reset

Clk

S h i - / - ;

L i — ^ - 1

H aw b-

H a«qq

T
•H a 2 p p

E
•I a2 p q ^ x

a2l qp

I
aiqq t

Z)«to In (i)

Figure 4.1: CORDIC architecture of a single PE

» EPE (N)

• CS
Start -
Done<

Master PE
Controller

— • Start S
Done S

— • Start E
i Done E

Start E
Done PE Execution

Controller

• EPE (N)

•CE

Figure 4.2: PE Controller I/O block diagram

53

PE controller units. These controllers are basic state machines, controlling the state

transition of the PE unit. The next section describes the state transition of the controllers

in brief, through finite state machine (FSM) diagrams. The controllers are responsible for

synchronous operations within each PE. The controller unit consists of a PE master

controller which in turn synchronizes and controls the PE sign controller and the PE

execution controller. Figure 4.3 shows the timing diagram of some of the important I/O

signals of a single PE.

(a) PE Master Controller FSM Design

The PE master controller synchronizes the operation between the PE sign controller unit

and the PE execution controller. The FSM of the PE master controller is shown in Figure

4.4. It operates on two 2-by-2 matrices and calculates (2.29) to (2.31). Controlled by the

"start PE controller Unit" control signal to start the operation, the PE master controller

asserts the "Done PE Controller" at the end of the execution.

(b) PE Sign Controller

The PE sign controller is responsible for calculating the direction of the CORDIC

rotation as given by (2.33). Figure 4.5 describes the FSM of the sign controller. In the

first eight clocks, the input data vector is loaded through the data in bus on to the shift-in

registers. Subsequently the sign of the angle to be rotated is computed as given by (2.33).

Parameters such as P and N are internal counters that are used by the FSM to keep track

54

of the input data loading and the availability of the data outputs.

(c) PE Execution Controller

The PE execution controller is responsible for computing (2.29) to (2.31). The computed

results are stored in the output shift registers. Figure 4.6 shows the FSM of the PE

execution controller. The timing diagram is shown in Figure 4.3.

4.1.2. Multiply and Accumulate (MAC) Unit

Figure 4.7 shows a simple multiply and accumulate (MAC) unit as described in [75]. A

MAC unit essentially computes the sum of products. Since any kind of matrix

multiplication can be mapped to a series of sum-of-product operations, the MAC unit is

essentially used to perform the computation of matrix multiplication operations.

Computation of (3.10) in Section 3.1.1 requires a series of matrix multiplication

operations, which is performed by the MAC unit. The MAC unit is also used by the

autocorrelation unit to compute a series of matrix multiplication operations. Appropriate

data is placed on to the data in busses, data in 0 and data in 1 and the output is obtained

from the data out bus. The MAC unit consists of a multiplication unit and an addition

unit, with pipeline registers in between each computation element for achieving a higher

system clock. The accumulator is controlled by a single synchronous reset signal, which

is used to reset the accumulator before computing a sum-of-products. The autocorrelation

unit is described next.

55

Start | | '. i

Start S

Start E

Shi

LO

LI

L2

1 j :

Data-in XXXX , 1<wX a , < ' , ' < i *XB I (' i ' , ,X l , l t ,M))^i<p'PXaI(i,'q)Xa2<,''P1i

• i—i

: : • 1

i—i
i—i

'a2<<i,q> XXXXXXXXXXXXXX^**] (y(pA) X(i-|>tJ

1

•

(V<M> XXXXXXXXXXXXXXXXXXXXXXXXXXX

Figure 4.3: Timing diagram of only the major I/O signals in a PE during operation

C Reset J 4

Idle

Assert "Done PE Controller"

Figure 4.4: The FSM of the PE master controller

56

C Reset \
l.llli'iiRMHIIIlig'

Idle

P = 8; N = 1

Reset =1;Sh1 =0;L0 = 0;
L1 = 0; L2 = 0; P = P - 1

Assert "Done_PE_Sign"
L2 = 0

Figure 4.5: The FSM of the PE sign controller

4.1.3. The Autocorrelation Unit

The autocorrelation unit consists of two FIFOs that facilitate the computation of the

autocorrelation coefficients in combination with the MAC unit, which has already been

discussed before. The architecture of the autocorrelation unit is shown in Figure 4.8. It

consists of two first-in-first-out (FIFO) memory elements, FIFO-A and FIFO-B and two

2-to-l multiplexer. The depth of the FIFO buffer is equal to that of the input frame buffer

length. A dedicated controller synchronizes the internal timing. The FIFOs store the input

frame and place the corect data on to the data input busses, data in 0 and data in 1 of the

57

(Reset \ ,

Assert "Done PE Execution

Figure 4.6: The FSM of the PE execution controller.

58

Data in 0 Data in 1

Reset

C l k - = ^

Data out

Figure 4.7: MAC unit RTL for serial matrix multiplication

x(n)

Data in

Clk
7=i

* * *

1
• n

FIFOB

Control
Signals

-• To data bus "Data in 0" of MAC unit

Shift in 2 ^

zfr

-> To data bus "Data in 1" of MAC unit

4— Clk

Figure 4.8: The autocorrelation unit

MAC unit. The autocorrelation coefficients are computed in the MAC unit and are stored

appropriately in the memory unit. The autocorrelation coefficients of the input frame are

computed as follows [71]

N-l-m

(m) = y x(n) x{n +ni) m = 0, 1, ... N-l (4.1)

n = 0

59

where r(m) is the autocorrelation coefficient with a lag m and N is the input frame size.

Thus, it can be seen that the autocorrelation coefficient of any lag is computed as the

inner product of a two vectors, the input vector x(m) and the shifted form of the input

vector x(n+m). Implementation of the matrix multiplication is well documented in the

literature and has been described in [27], [72], [73]. The computation of the m'h lag

autocorrelation coefficient requires the shifting of the input vector x(n) m times to form

x(n+m). The delay element in the return path of FIFO-B provides this shift operation.

Thus, with the calculation of each autocorrelation coefficient, the delay element

introduces a shift of one to the input vector. This yields a sufficiently accurate estimate of

the autocorrelation matrix, under the assumption that the signal remains stationary over

the entire frame. The autocorrelation matrix is a canonical arrangement of the

autocorrelation coefficients to form a Toeplitz matrix [74]. The Toeplitz matrix is

diagonalized in the later stages of the speech enhancement processor, which is explained

in Section 4.3.2. The autocorrelation matrix is assumed to be that of either a noise- or a

speech-dominant frame.

The FSM of the autocorrelation controller unit is shown in Figure 4.9. The order of

complexity of computing all the autocorrelation coefficients is 0(n) [75]. The FSM has

been parameterized with variable L, which indicates the length of the input frame and

which is also the size of the input FIFO buffer depth. Other variables such as P and Z,

used in Figure 4.9, are internal counters used by the controller.

60

Assert "Autocorrelation
Unit complete"

L - norg; n = nbrg ; P - norg; Z = norg

H = {A, B} Depending on Noise or speech frame

I F

_j. Shift in 1 = 1;
——*> L = L -

^

Shift in 2 = 1;
1; S = 1

X
L = P;S = 0;

Shift_in_1 = 0;
Shift in 2 = 0;

T
Shift in_1 = 1; Shift_in_2 = 1;

L = L-1;S = 0; Z=P;
Place data out from FIFO A and

FIFO B on to data in bus of
MAC unit.

ShiftJnJ = 1; Shift_in_2 = 1; S = 0;
Z = Z - 1 : L = P;

Store the autocorrelation coefficients r(z) from the
MAC unit to the memory element [H];

Reset MAC unit accumulator

61

Figure 4.9: The FSM of the autocorrelation controller

4.1.4. Eigen-Domain Filter Gain Calculation Unit

The eigen-domain filter has been described in Section 3.3, where the eigen-domain filter

is given by (3.11). The transform is determined by the eigen-vectors while the eigen

values are used for filtering. The eigen-domain filter gain G as described in Section 3.1.1

is a function of the Lagrange parameter and the eigen-values. The Lagrange parameter is

computed adaptively based on the input frame SNR. The Lagrange parameter is given by

(3.13), while (3.14) describes the SNR computation. Figure 4.10 shows the block

diagram of the eigen domain filter, showing the I/O pins of the unit. This unit has I/O

pins, namely, data in, data out, start signal, load control signal L and input threshold

parameter, /uo as an input parameter. The input threshold Lagrange parameter is an

experimentally-set parameter and for our work it is set to 4. Figure 4.11 shows the

architecture of the eigen-domain filter gain unit. It consists of an FIFO buffer of length

equal to that of the input frame size, a 3-to-l MUX, an addition unit and a serial division

unit. The synchronization of each component is maintained by the eigen-domain gain

controller unit through the various control signals. In the first n clocks, the accumulator

computes and holds the summation of the n input data. In the next clock, the value stored

in the accumulator is shifted by an amount of 2~'°82(n). This completes the computation

given by (3.14). In the next clock, this computed value in the accumulator is subtracted

from the value /u0 stored in the register /u0; this completes the computation of (3.13).

Next, the eigen-domain filter parameter G, given by Az(Az + /u I)'', is computed serially

62

in the subsequent clock cycles in combination with the divide unit. The order of

complexity of the serial divide operation is 0(1), where / is the number of bits in each

Threshold input

Data in

Start

Data out

Figure 4.10: The eigen-domain filter (with variable SNR)

Data in BUS

Clk-

SfO - \

1

x(n)

JAin
I Clk LI

shift by 2
0 I - *

•log(n)

JUO

a JT
IY SO^\MUX / Gain Unit

Controller

Done
Div. Done

• Start

Data out
BUS

Figure 4.11: The register transfer level (RTL) diagram of the eigen-domain filter

63

word, while that of the overall eigen-domain gain calculation unit is of 0(n x I), where n

is the size of the input frame buffer. For implementations requiring higher throughput

rates, a parallel implementation of the divide unit would further improve throughput

rates. However, for the purpose of this thesis, in order to meet 8000 samples/s data rate, a

serial divide unit is sufficient. A simple shift and add serial divide unit is implemented as

given by [75] and the FSM of the divide unit controller is given in Figure 4.12.

4.1.5. Jacobi Pair (P, Q) Generation Unit

Jacobi pairs have been described earlier in Sections 2.1 and 2.3. These are index pairs

that select the elements for the Jacobi transform. Section 2.3.2 also summarizes the

algorithm in which the Jacobi pairs (P, Q) are generated in order to simultaneously

diagonalize the multiple matrices using CORDIC. Figure 4.13 shows a complete serial

implementation of the (P, Q) pair generation algorithm while a complete parallel

implementation has been described in Figure 4.14. The implementation scheme uses look

up tables (LUTs). We have chosen this scheme, as LUTs are easily implemented on

FPGAs [26]. The address to the LUTs comes from a linear address counter. A complete

Yl\Yl-l)

serial implementation would require a single LUT of depth —-— , where n is the order of

the matrices to be diagonalized, whereas for a complete parallel implementation, n/2

LUTs would be required, each having a depth of (n-1). An alternate implementation

scheme would involve computing the (P, Q) pairs on the fly, thereby eliminating the LUT

scheme, and would be well suited for an ASIC implementation. Figure 4.14 shows n/2

LUTs generating multiple (P, Q) pairs in parallel. The parallel (P, Q) pair generation

64

facilitates the parallel execution of the Jacobi algorithm. In most practical cases, the

number of parallel implementation of the Jacobi rotation would be optimized to meet the

required throughput.

C Reset }

Figure 4.12: The FSM of the divide controller

65

LUT (P, Q)
-? r

2

- i c

P. Q — T (p-Q}

Adress Counter
1 Increment

Figure 4.13: LUT based serial (P, 0-pair generation

T
(i-i)

1

LUTl LUT 2

r. Q -iv>Q)

h

P. Q -}(P2,Q2)

a
Figure 4.14: LUT based parallel (P, gj-pair generation

4.2. Memory Architecture

LUTn/2

f. Q >&.ej

a Adress Counter

TE Increment

Reset

The memory unit is a very important component of the speech enhancement

processor. We have seen, that for matrix diagonalization, the core computational element

consists of matrix transpose, matrix addition and matrix multiplication. These operations

require accessing the matrix elements in various patterns, which cannot be well supported

by regular linear memory arrays. During diagonalization, as seen in Chapter 2, each

Jacobi rotation requires fetching the matrix elements belonging to a row and column as

pointed by the Jacobi index pair (P, Q). The sequence in which P and Q are generated, is

also not linear. Thus using a standard linear memory array would drastically reduce the

66

throughput rate as well as increase the hardware over-head to generate nonlinear

addressing. This is the primary motive behind developing a memory architecture that best

meets the requirements of the diagonalization core. The design of the memory unit is

such that it facilitates the diagonalization process in terms of addressing scheme and also

reduces read/write access time. It is similar to the concept of the transpose memory

developed in [76].

Figure 4.15 shows the I/O block diagram of the dual port multiple row/column shift

memory (DMSM). The DMSM can perform read and write operations at the same time in

two different locations and hence, the name dual port. The idea behind this memory is to

consider it as a vector memory to perform rotation, shift, read and write operations on

selective rows or columns. The DMSM has three standard groups of I/O busses, namely,

data input bus and output data bus, address bus and control bus. Data in and Data out

busses are of width K. The Horr. /Vert, is a 1 bit select line that identifies an operation

either on a row or on a column. The output select bus is the read address of either a row

or a column, as specified by the Horr. /Vert, select line. The output select bus is of width

log2(n), where nxn is the size of the covariance matrices. The shift select bus provides the

address of either a row or a column on which the shift operation is to be performed. The

shift select bus is more like the address bus for the data out bus and the input select bus is

like the address for the data in bus.

4.2.1. DMSM Memory Cell

67

The DMSM memory cell is the nucleus of the DMSM memory unit. It consists of a

synchronous D-latch with load enable. The load enable is selected either by the column

shift or the row shift input signal. The input bus is multiplexed with data from two bus

sources; the data in horizontal bus and the data in vertical bus. The data in select signal

selects one of these two busses to facilitate either a row or a column operation. Figure

4.16 provides the DMSM memory cell structure.

Data in

Data out

log(n)

\-f- Output Select ^Address

iog(n) f Busses
DMSM \h-f- Shift Select

(nxn) Kbits
Input Select ~\

Horr.

Control

./Vert.) B u s s e s

DMSM I/O

Figure 4.15: DMSM I/O block diagram.

Colum Shift

Data out

Row Shift

Data in Select

Data in Horr.
Data in Vert.

Figure 4.16: DMSM cell I/O block diagram

4.2.2. DMSM Memory Organization

68

file:///h-f-

The memory organization of the entire DMSM memory is shown in Figure 4.17. It has

nxn DMSM memory cells, two address decoders for row and column decoding, one «-to-

1 multiplexer unit and a few glue-logic. Each DMSM can hold a single nxn matrix at a

time. Due to repetitive structural elements of the DMSM memory cells, the DMSM

memory unit is well suited for ASIC implementation, wherein the DMSM block could be

developed as a hardware hard-macro block. The DMSM has the mechanism to selectively

shift either a row or a column. The DMSM organization is similar to a linear memory

array in terms of the addressing scheme. However, selective row/column shift operation

introduces an extra overhead of a 2-to-l multiplexer in each DMSM memory cell, and

thereby increases the complexity of the DMSM compared to a linear memory array in

[75].

69

Shift Select

HorrVVert.

Data In

Input Select

Figure 4.17: The internal structure of the DMSM

4.3. Memory Controller FSM Design

Having discussed the internal structure of the DMSM unit, this section explains the

memory controller of the speech enhancement processor and its design. This controller is

responsible for various memory operations such as read, write and rotate. It is also

responsible for generating valid addresses to the DMSM unit during the process of matrix

diagonalization and other matrix manipulation operations involved in the process of

70

speech enhancement. Synchronization between the DMSM unit and the diagonalization

unit is a challenging task for this controller. This section describes the functionality of the

memory controller FSM. The entire memory controller is broken down into four parts. A

single master controller, called the Top Memory Controller, is dedicated for coordinating

the data flow among the other sub parts. The following are the sub-parts of the memory

controller FSM.

a) Top memory controller

b) Memory controller Mode I

c) Memory controller Mode II

d) Memory controller Mode III

e) Memory controller Mode IV

The execution of the controllers are sequential, hence only one sub-controller is executed

at any given moment. Sections below describe the state transition of each of the FSM's.

Figure 4.18 shows the DMSM controller I/O block diagram. The internal registers and

Internal Reg.

P

Q
n

Mode

Address

00

01
10
11

Writing to
internal
registers {

Start —>
Done 4—

dress —t

data —I

ntrol —>

Top
Memory

Controller

—•star t data out
—Moad(P,Q) J

—> start
i— done J

—t start data out
1— done

—t start data out
I— done

—• start data out
1— done '-

• Mode I

- Mode II

• Mode III

• Mode IV

> Mode V

Figure 4.18: DMSM controller I/O block diagram

71

their corresponding internal addresses are also shown. The controller is programmed via

the internal registers, namely, P, Q, n and Mode. Registers P and Q hold the Jacobi pairs

(P, Q) for the current operation, while n holds the length of the input frame buffer. The

register Mode displays the present mode being executed by the controller. This is more

like a test register used for testing purpose only. These registers are written and read via

the address, data and control busses used for writing to the internal registers.

4.3.1. Top Memory Controller

The state transition diagram of the Top memory controller is given by Figure 4.19. This

controller synchronizes the other four memory controllers and asserts the "Done Main

memory controller" signal at the end of the execution. The speech enhancement

processor contains three DMSM memory elements, namely, DMSM elements A, B and V.

The covariant matrices that are intended to be diagonalized are stored in DMSM A and B

on a frame-by-frame basis. DMSM A stores the autocorrelation of speech-dominant

frames, while DMSM B stores the autocorrelation of noise-dominant frames. The

computed eigen-vector matrix is stored in DMSM V. Another DMSM element called

DMSM Tmp is used to store an intermediate matrix of size (nxn). The Top memory

controller supervises the execution of each sub-memory controller which are described in

the subsequent sections.

72

Idle

d$k

Execute Mode iV m-i

Assert "Done Top Memory Controller"

Figure 4.19: State transition diagram of the Top memory controller.

73

f Reset ^

Idle

Load appropriate data to PE
elements based on input (P,Q)

Jacobi pairs

•
Load DMSM V with eigen

vector matrix & Load DMSM A
with eigen value matrix

Assert "Mode - 1 Complete"

Figure 4.20: Memory controller Mode-I

74

4.3.2. Memory Controller Mode-I

The memory controller Mode-I starts to function once the autocorrelation matrix is

loaded to either DMSM A or B depending on the dominance of the frame by either noise

or speech. The FSM unit is parameterized by the frame buffer length, number of parallel

CORDIC elements, etc., which ensures design reusability. Mode-I is responsible for

initiating the loading of appropriate data into to the CORDIC-based Jacobi

diagonalization unit and making it ready for the diagonalization. Once the diagonalization

is complete, it loads the computed eigen-vector and eigen-value matrices into DMSM V

and A respectively. Figure 4.20 shows the flowchart that describes the important

operations in Mode - 1 .

4.3.3. Memory Controller Mode-II

Computation of the gain matrix described in Section 3.1.1 is the key functionality of the

memory controller Mode-II. The gain matrix is basically responsible for proper filtering

operations in the eigen-domain. It requires the computation of the Lagrange parameter as

shown in Section 3.1.1 and 4.1.3. Since the gain matrix is diagonal, it is temporarily

stored in a FIFO buffer, called FIFO G. Having computed the gain matrix, the next step is

to compute the optimal filter, which is done in memory controller Mode-Ill. Due to a low

data rate requirement of only 8000 samples/s, we implemented the serial matrix

multiplication using the MAC unit described in Section 4.1.5. However, to speed up the

process for higher data rate requirements, other fast matrix multiplication techniques

75

could be used as described in [55]. Figure 4.21 shows the flow chart describing the

important operations in Mode - II.

Load Eigen domain filter unit with
eigen values from DMSM A

W Compute gain matrix

Load Computed gain matrix to FIFO G
[Note gain matrix is a diagonal matrix]

Assert "Mode - II Complete"

Figure 4.21: Memory controller Mode-II.

4.3.4. Memory Controller Mode III

The memory controller Mode - III uses the gain matrix computed in Mode-II and

performs two serial matrix multiplication operations using the MAC unit. In Mode-II, as

76

the gain matrix was stored in FIFO G, the following operations now take place: Tm/?<—

V. G & G<~ VTY, where DMSM V contains the eigen-vector matrix, FIFO G contains the

diagonal elements of the gain metrix as computed in Mode-II, FIFO Y contains the input

noisy speech vector that is to be enhanced, and DMSM Tmp holds the temporary (nxn)

matrix. Both DMSM A and B are unavailable for storing the temporary matrix. This is

due to the fact that the values stored in DMSM A and B are required for estimating the

next frame autocorrelation. The memory controller Mode - III loads appropriate data on

to the data bus for the MAC unit to perform matrix multiplication and also to store the

computed temporary data back to DMSM Tmp and FIFO G respectively. The stored

matrix in DMSM Tmp and the vector stored in FIFO G are intermediate values and do not

have any specific physical meaning. In Mode - IV, the matrix multiplication of Tmp and

G gives the estimated enhanced speech vectors for the current frame, after which the

entire process repeats for the next speech frame. Figure 4.22 shows the flow chart

describing the operation in Mode - III.

4.3.5. Memory Controller Mode IV

The memory controller Mode-IV computes a serial matrix multiplication operation on

data from DMSM Tmp and FIFO G. Appropriate data is placed on the data bus for the

MAC unit to start the computation. The final output vector is obtained after performing

an overlap-and-add operation with the previous output frame. The resultant vector is the

estimated enhanced speech vector from the noisy speech vector of the current frame.

Figure 4.23 shows the flow chart describing the important operations in Mode - IV.

77

Load the MAC unit with DMSM V and
FIFO G for matrix multiplication

Complete V.G & store the resultant
matrix in DMSM Tmp

Load DMSM VT & Input noisy speech
vector Y

Compute VT & Store the
resultant vector in FIFO G

Figure 4.22: Memory controller Mode-Ill.

78

GEO

Load the MAC unit with FIFO G &
DMSM Tmp

Compute Tmp.G & store the resultant
vector in output buffer

Perform overlap and add operation with
previous frame

Assert "Mode - IV Complete"

Figure 4.23: Memory controller Mode-IV.

4.4. Parallel Architecture of the Diagonalization Unit

With the introduction of different hardware elements of the speech enhancement

processor, we now explore the possibilities of parallel implementation of the speech

79

enhancement algorithm. We have already mentioned in Chapter 2 that the Jacobi

algorithm has an inherent unique property that facilitates parallel execution of the

algorithm. The Jacobi algorithm as mentioned in Chapter 2 can have a total of n/2 parallel

computation elements running at the same time, where nxn is the size of the input frame

buffer. This algorithm has already been introduced in Section 2.1. The CORDIC

algorithm, also introduced in Section 2.2, is an iterative algorithm and can be

implemented in a systolic architecture. Systolic architectures of simple CORDIC

implementation are well documented in the literature and are given in [29], [36], [37].

The purpose of this section is to introduce a parallel implementation scheme for the

simultaneous diagonalization algorithm introduced in Section 2.3. For a better

understanding, the algorithm already presented in Section 2.3 is re-written below.

Algorithm:
For J = I : Total number of Jacobi Iterations

For p = 1: n-1

Par: {

For all q = {p+l : l:n}

Seq: {

For R = 1 : Total number of CORDIC rotations

Compute equations (2.29) to (2.31)

End

} Seq End
End

} Par End
End

End

It can be clearly seen that the section under the construct "Par", can be executed in

parallel. Another interesting point to note is that within each construct "Seq", the

80

CORDIC algorithm is executed in order to compute (2.29) to (2.31). As already shown in

[37], the CORDIC systolic architecture further provides scope for increasing the overall

throughput of the system. Figure 4.24 provides a complete parallel implementation

scheme of the algorithm proposed in Section 2.3. Each row computes a single Jacobi

transform given by index pairs (P, Q). Thereby, in a complete parallel implementation

scheme, maximum such possible pairs are N/2. Input to each row is AQ, 2), indicating

matrices Ai and A2 as given by (2.29) to (2.31). As shown earlier in Section 2.2, a total of

R CORDIC iterations complete one single Jacobi rotation, therefore each row in Figure

4.24 comprises of a total of R cascaded PE elements connected in pipeline. Figure 4.24

provides a complete parallel implementation of the proposed algorithm, consuming a

total of RxN PE elements. However, in reality, to ensure the best possible cost effective

implementation, an optimal total number of PE elements are implemented on hardware

by choosing the best number of parallel Jacobi rotations that sufficiently meet the overall

system throughput requirement.

A1,2 (P. Q) 1 •

A,.2(P.&2

PE (0. 0)

PE (0.1)

PE 0. o)

PE (i.i)

-•I PE(R-I.O)

PEm-i. (R-l. I)

- • A;,2(P.Q),

-> A',,2(PQ)2

A I, 2 (P. Q)N/2 • PE (0. N/2) PE (I. N/2) PE, (R-I.N/2) + A-U2(P,Qh

Figure 4.24: Parallel implementation of N/2 Jacobi rotations for a total of R CORDIC

iterations.

81

4.5. The Master Controller

This section integrates all the controllers under a single roof. Figure 4.25 describes

graphically the hierarchical tree of the controllers. This also enables easier testability and

design reusability. The controller, "TOP Controller''' is the supreme controller and is

primarily responsible for synchronization between the rest of the controllers.

4.5.1. TOP Controller Design

The master speech processor controller, Top _Contr oiler is described below. It is

responsible for synchronizing all the blocks. Figure 4.26 shows the FSM of the

Top_Controiler. This controller operates on a frame by frame basis. It is expected that in

a system integration this would intern be controlled by a system controller, which could

either be a microcontroller or a stand-alone controller. The initialization of this controller

is done through the parameter n, which is the size of the input frame buffer.

4.6. Frequency-Subband based Speech Enhancement

Processor

So far we have described the speech enhancement processor that utilizes the simultaneous

diagonalization of two symmetric matrices using CORDIC implementation. We have also

described a technique in Chapter 3, which incorporates an innovative frequency-subband

82

technique into the subband based speech enhancement algorithm. This technique

considers the subbands rather than considering the full-band signal. Details of this

technique can be found in Section 3.2. For the sake of this thesis and simplifying the

problem, we have assumed the presence of a wavelet filter bank as a hardware hard-

macro block as presented in [53]. Figure 4.27 shows the block diagram of a complete

frequency-subband speech enhancement processor. This could certainly be considered as

a future product for applications in the field of telecommunication, military use, etc.

Figure 4.28 shows the flow chart describing the important operations of the frequency

subband based speech enhancement processor that performs wavelet decomposition

(assuming the presence of the wavelet filter bank hardware unit as in [53]) and handles

the I/O frames to/from the AC97 audio codec (DAC/ADC) controller.

Top Memory Controller

~>

- *

_>

— •

"MODEJ"
Controller

"MODEJI"
Controller

"MODEJI"
Controller

"MODEJV"
Controller

"TOP" Controller

*PE Master" Controller

*PE_Sign"
Controller

"PE_Exec"
Controller

"Gain Unit" Controller

'DivideJJnit"
Controller

"Auto Corr" Controller

Figure 4.25: Hierarchy of the speech processor controllers.

83

C Reset J

Assert "Start Autocorrelation"

V
ait |

Initialize (P,Q) & n

Generate (P,Q) Pair

Start Executing Mode I

Start PE Controller

Wait

Done Mode I

Start Executing Mode IV

Start Executing Mode II

I Y

"'Complete alF"
(P,Q)Pair^

N

Figure 4.26: TOP Controller

AC 97
Audio Codec

Data
I/O

» •

Corrupted Enhanced
Speech Speech

External
Clock _

Control I/O

AC 97 Audio
Codec Controller

Overlap &
Add Filter

Wavelet
Synthesis
Filter
Bank

Wavelet
Analysis
Filter
Bank

M Clock Divider

JE3L
Main
Controller

Internal
Control
Registers

E

System

Clock

'. Control

: Signals

(P,Q) Pair
Generation
Block

&
PQ

Memory
Controller

X

Memory

Correlation Unit

Gain Computation Unit

MAC Unit

Diagonalization
Unit SPEECH

PROCESSOR

Figure 4.27: Frequency-Subband Speech processor

85

(Reset /Stop)

Idle

Collect Control & System Parameters
(n, N, CORDIC Order, etc)

Collect Input Frame from AC 97
Audio Codec Output buffer

Perform Wavelet Decomposition
to get "N" Channels;

Z = N;

•w
Collect Frame from Channel "Z"

Compute subspace based
Speech Enhancement on

individual subband, "Z"

•

Z = Z - 1

Perform Wavelet Analysis on
Channels - 'N '

Perform add and overlap
operation

Deliver Output Frame to AC97
audio codec controller output

frame buffer

Figure 4.28: Frequency-Subband Speech Processor.

86

4.7. Summary

In this chapter, we have presented the hardware architecture of the speech enhancement

processor based on the subspace based technique, which we have already described in

Chapter 3. The core of the hardware consists of the diagonalization architecture that best

maps the simultaneous diagonalization of two symmetric matrices described earlier in

Chapter 2. The simultaneous diagonalization architecture is completely multiplier free

making it very attractive for both the FPGA and ASIC implementations. A high performance

dual ported memory has been introduced to best assist the diagonalization core and increase

the overall throughput. The dual port memory increases the throughput of the system by

reducing the complexity of the memory addressing scheme required for matrix manipulation

operations such as, forming a Toeplitz autocorrelation matrix from the autocorrelation

coefficients and performing matrix transpose operations, which otherwise would have

increased the system overhead significantly. The dual port feature of this memory also helps

the concurrent data read and write operations. Finally, we have also presented the

architecture for the frequency subband-based speech enhancement technique. In summary,

this chapter has described the hardware platform for the subspace-based speech enhancement

processor that integrates the simultaneous diagonalization technique described in Chapter 2

and the frequency subband speech enhancement technique described in Chapter 3.

Some of the intricate details of the architecture have also been discussed. To give an

insight into the controllers used and their state machine description, the state transition

diagrams of the significant controllers have been shown. FPGA implementation results of

the architecture in terms of resources utilization and throughput analysis will be presented

in Chapter 5.

87

Chapter 5 : Results & Discussion

So far, we have discussed the CORDIC-based diagonalization technique and its hardware

architecture. We have also seen the utilization of such simultaneous diagonalization

algorithms on a subspace based speech enhancement algorithm. Further, techniques have

been studied to enhance the data rate and reduce complexity by exploring the subband

behavior of the speech signal. In this chapter we present the simulation results and

discussions that confirm the theory developed so far. Results presented in this chapter

include the system level simulation as well as the hardware level simulation.

5.1 System Level Comparison of Speech Enhancement

The process of simultaneous diagonalization has already been described in Chapter 2,

followed by its hardware architecture in Chapter 4. Chapter 3 describes the subspace

based speech enhancement technique. The architecture of the speech enhancement

processor is described in Chapter 4, and is coded in VHDL using the Xilinx ISE design

flow software from Xilinx while the VHDL simulations are performed using the

ModelSim software from Mentor graphics. The Matlab tool from MathWorks is used for

performing all the mathematical calculations and in obtaining the performance measures.

The VHDL model is implemented on a Xilinx FPGA and its resource utilization studied

and presented later in the chapter. The input stimulus to the FPGA is generated from

88

Matlab and its output vectors are captured using the ChipScope tool which is supported

by the Xilinx ISE tool chain. This tool captures the data from the data bus of interest on

the FPGA and stores the data vector in a text file, thereby facilitating the analysis of the

computed data from the FPGA. The output vectors are used by Matlab to extract the

performance measure metrics.

A speech enhancement experiment, which incorporates the simultaneous

diagonalization technique into the subspace based speech enhancement algorithm, is

performed. The diagonalization technique described in Chapter 2 is used to

simultaneously diagonalize the noisy speech and noise autocorrelation matrices.

z 5

I 4
E

A SSF(chol)

* SJR
i
*

_ M

/ J

i /

: _ -f- _ J

/ l

/

i i

--

Q
CO
CO

10 15 20
SNR

0.4

0.35

0.3

0.25

0.2

0.15

0.1

0.05

\
\
\ —*—

A J-

\ \ !

V,

SSF(chol)

-SJR

• > s

\ \

... __ \\

10 15
SNR

20

Figure 5.1: Comparison of the proposed (SJR) diagonalization vs. Matlab (Cholesky)

factorization (SSF) for factory noise in terms of segmental SNR and mean MBSD

measures of 10 TIMIT sentences from a female speaker.

89

The diagonalization of the covariance matrices of the noisy speech and the noise lead to

the projection of the noisy signal into a signal-plus-noise subspace and a noise subspace.

From these two subspaces, the clean speech is estimated by nulling the signal

components in the noise subspace and retaining the signal subspace. The subspace-based

speech enhancement technique has already been described in Chapter 3. We evaluate the

subspace-based speech enhancement algorithm on 10 TIMIT sentences produced by a

female speaker. Factory noise at various SNR is added linearly from the NOISEX data

base. Figure 5.1 compares the speech enhancement performance measures of the

proposed simultaneous diagonalization technique to that of the Matlab-Cholskey

technique. The performance of the speech enhancement algorithm is observed in terms of

the SSNR and MBSD measures, from the Xilinx FPGA, for speech data sampled at 8

KHz, on a frame size of 32 ms of speech, i.e 256 data points, a Hamming window is

applied with 50% overlap and add. It can be seen from Figure 5.1 that the proposed

simultaneous diagonalization technique, when incorporated in the subspace-based speech

enhancement technique, provides a hardware-friendly multiplier-free implementation

scheme, whose performance results are comparable to that of the Matlab. Achievement of

the computationally efficient hardware system comes with a cost of a slight compromise

in the performance of the speech enhancement. Figure 5.1 shows a minimum deviation of

only 0.5 db in the SSNR measures compared to the Matlab-Cholskey technique, for

factory noise at 20 db, whereas a maximum deviation of 2 db is seen for noise at 5db.

The deviation in performance is seen more at low SNR conditions, whereas in higher

SNR conditions, both the performance of the two algorithms are comparable.

90

5.2 Hardware Implementation Results of Subspace based

Speech Enhancement

Having discussed the overall system performance measures, we now focus on the

feasibility of the speech processor implementation on a FPGA and later project its

feasibility for targeting VLSI implementation. The following sub-sections summarizes

different parameters such as throughput, FPGA resource utilization, total transistor count

and total logic element used. Sections 5.2.1 to 5.2.3 given below describe the throughput

analysis, number of logical elements and total transistor count for the CORDIC based

subspace speech enhancement core. Section 5.2.4 summarizes the specification of the

core.

5.2.1 FPGA Resource Utilization

The proposed CORDIC-based subspace speech enhancement circuit is behaviourally

modelled in VHDL for a 16 bit fixed point data path. A synthesis report on the FPGA

resource utilization and timing constrains of a single PE is given in Tables 5.1, 5.2 and

5.3. The targeted Xilinx FPGA (XC2VP30-7ff896) indicates the average resource

utilization by a single PE to be less than 2% at a clock speed of 117 MHz. Tables 5.1 and

5.3 provide an estimate of the total number of PEs that could be accommodated on a

given FPGA, thereby giving a rough estimate of the total number of PEs that could be

implemented. Table 5.2, on the other hand, provides the maximum achievable system

clock frequency corresponding to the minimum clock period, along with minimum input

91

and output hold time. The meta-stability in flip-flops can be avoided by ensuring that the

data and control inputs are held valid and constant for specified periods before and after

the clock pulse, called the minimum input hold time and the minimum output hold time

respectively. Hence, abiding by the timing summary becomes very crucial in the proper

functioning of the logic circuits. Timing summary report along with FPGA synthesis

report provides valuable information to the system designer and helps in optimally

picking design tradeoffs.

5.2.2 Throughput Analysis

The throughput is defined as the number of signal samples processed by the speech

processor per second. Throughput is a function of the frame buffer size used, total

number of parallel CORDIC based Jacobi elements and the system clock. Figure 5.2

shows the variation of the throughput as a function of various frame buffer size. A

threshold of 8000 samples/s has been marked by the dashed red line to indicate the

minimum throughput requirement. It is clearly seen from the graph that the throughput

increases significantly with the decrease in the frame buffer size. In other words, for a

fixed data rate the flexibility in choosing the number of parallel elements is limited by the

frame buffer size. This is a major design constrain in the CORDIC-based subspace

speech enhancement engine. Figure 5.3 describes the variation of the throughput as a

function of the number of parallel CORDIC based Jacobi elements used, for various

clock frequencies. It clearly shows that a single PE implementation is just not possible to

meet the minimum throughput rate of 8K samples per second for a system clock less than

92

400MHz. Figures 5.2 and 5.3 provide the design flexibility for optimally choosing the

system clock and the window size, which indirectly optimizes the design for low power

consumption. Low power design is an important requirement for a portable device, such

as the speech enhancement engine, in hand held communication devices.

Table 5-1: HDL synthesis report of a single PE

Macro Statistics

32-bit Add/Sub

1-bit Registers

32-bit Registers

32-bit comparator

32-bit Mux (4-to-l)

No.

8

1

20

1

8

Table 5-2: Timing summary of a single PE

Summary

Min. clock

Min. input hold

Min. output hold

Time

4.608 ns (217 MHz)

5.89 ns

2.82 ns

Table 5-3: FPGA resource utilization of a single PE.

Resources

No. of Slice

No. of Slice Flip Flop

No. of4inputLUTs

No. Used

250 out of 13696

110 out of27392

477 out of 27392

Utilized

<2%

< 1 %

<2%

5.2.3 Number of Logic Elements

The number of logic elements used is a very important design parameter. This determines

the total transistor count, routing congestion and the total power consumption. In this

section we examine as to how the design parameters, such as the frame buffer size and

the number of parallel elements that adversely affect the number of logic elements are

being chosen. Figure 5.4 indicates that the number of multiplier elements and the number

of FIFO elements used remain constant for various window sizes. However, the data

memory, which is directly related to the window size grows with the increase in the

window size and almost saturates around the window size of 300 to 400. To maintain a

window size that is power of 2, suitable for generating hardware addressing, we choose a

window size of 256. Figure 5.5 shows the total number of registers required for varying

window size and number of parallel elements used. In Chapter 4, we have seen that the

number of registers in each of the hardware components is linearly dependent on the

window size; hence, as expected, it turns out that the overall register count also obeys

94

linear dependencies with the number of PE elements being used. These graphs assist in

designing for optimal tradeoffs between speed, power and area.

5.2.4 Transistor Count for ASIC Implementation

The implementation of the speech enhancement processor has been done on an FPGA

primarily because of the time constrains. However, the study of the architecture remains

incomplete unless the feasibility of the architecture is studied for an ASIC

implementation. This section, therefore, addresses this issue by studying the estimated

total transistor count for an ASIC implementation of the speech enhancement core. This

also gives a rough estimate of the design complexity. Table 5.4 lists the transistor count

assumed in this thesis for the various logic function used. Transistor count is estimated

based on the area optimized implementation of digital logic circuits which has been

studied in [5]. As described in [5], the cost functions used in Table 5-4 are defined as

(b-\ \
C(a,b) = 4 2YJ(b-i) + 2b-a+]

V i=a)
(5.1)

D(a,b,c) = 2b'a+'xc W

With one of the three inputs to a full adder fixed, (we assume the fixed input is Cin for

convenience, where Q„ is the input carry bit), we have used 12 and 14 transistors for C,„

= 0 and C,„ = 1 respectively, instead of 30 transistors for an ordinary full adder [50]. The

occurrence rates of Q„ = 0 and Q„ = 1 are statistically assumed to be the same as Bc/2

bits out of Bc bits. The adder with subtractor selection needs 8 more transistors for an

95

extra 2-to-l MUX and an inverter compared to that needed for the original full adder as

described in [50].

Figure 5.6 shows the transistor counts as a function of the number of parallel PEs for

various window sizes, keeping the number of CORDIC rotations fixed at 16. Figure 5.7,

on the other hand, shows the transistor counts for various numbers of parallel CORDIC

elements (NPCE), keeping the window size fixed at 256. NPCE indicates the number of

rows in Figure 4.25, i.e., the number of CORDIC operations taking place in parallel. In

custom ASIC design, data memories are normally considered as hard-macros and are

hardcoded pre-defined blocks, which are provided directly by the semiconductor vendors.

These hard-macros are hand layout designs, optimized for area and power consumption.

Hence, the transistor count given in Figures 5.6 and 5.7 are excluding the data memory

and considers minimum length transistors.

5.2.5 Design Specifications

Table 5.5 summarizes the design specification of the CORDIC-based speech

enhancement -processor when implemented on a Xilinx FPGA. A throughput rate of

11600 Samples/s is achieved on a system operating at 200 MHz and a frame buffer size

(window size) of 256 data points. An estimated transistor count of 1158 K makes it

comparable to the 80486 single processor produced by Intel [77], having a total transistor count

of 1200 K and first produced in 1989.

96

Table 5-4: Transistor count for various digital logic functions.

Logic

INV (1 bit)

XOR(l bit)

2x1 MUX (1 bit)

Adder

(Fixed Cin)

Cin=0 (5c/2bits)

C,,=l (2?c/2bits)

Adder (Bc bit)

Adder/Sub.

(Fixed Ctn)

C t e=0 (5c/2bits)

C/B=l (5c/2bits)

Adder/Sub. (Bc bits)

2" = Bc

(ROM)

Decoder

Data

Register (1 bit)

Transistor Count

2

8

6

\2(Bc/2)

14(5c/2)

305c

(12 + 8)(5c/2)

(14 + 8)(5c/2)

30BC+SBC

C(\,k)

D(l,k,Bc)

16

97

Window size = 64
% Window size = 91

— * - Window size = 128
Window size = 182

— D - Window size = 256
Window size = 360

— V - Window size = 512
Throughput = 8K Samples/sec

30 40
No. of Parallel PEs

70

Figure 5.2: Throughput vs. the number of parallel PEs used for different window sizes

15 20
No. of Parallel PEs

Figure 5.3: Throughput vs. the number of parallel PEs used for different clock rates.

98

10

10°

£ 10
XI

tn
"£ 3
| 10

_D
LU

d 10

10'

10"

M
M

1
III

M

il

|
h ^ - -

1
±

- -[

: _ _ -^_K^r-rv_T
C P S - " " " ^ I

~ 1

!

;
_ 5

i—^—*J—-*—

in
i

in
i

in
i

in
i

III 1
111 1

III
1

III 1

111 1

1 1 , - - - "

' ''
1 (.

1 1

L 1
t 3

C I

1 ______-1©- - " !

I +

1 1
1 1

1 1
1 1

p : t _

1 1
1 ^ _ L Uf

: : : = =-e*: : - - i : :E: :
1 1

| |
1 (.

L 1
c _t

r~~ i i

!
1
1

__
1

= = = = = £ * = = = E

I

I

I
L
tr

= = = = = 1 = =: = =̂
— e — Mux 2 Input

* Data Memory
— * - Multiplier
—£_ FIFO(nxl)

i

1 1
£ _ _ _ _ }

1 U4f 1

I

|
p _

L _ *

50 100 150 200 250 300 350
Window Size

400 450 500 550

Figure 5.4: Number of hardware elements required as a function of the window size.

1
1
to

CO

160

140

120

100

| 80

2>
-•— <n

o
6

60

40

20

0

w v -*?-

i

I I

1 I

— *-
- - -$-

Window size = 64
Window size = 91

* Window size = 128
e Window size = 182
L3 - Window size = 256

Window size = 360
— V - Window size = 512

I I
I I

I I

1 1

i ._ L-.fy

-_=r^#— r —
i

i

i
i i

j

I

I

- V

- El

- A
A -_ *

10 20 30 40
No. of Parallel PEs

50 60 70

Figure 5.5: Total number of registers required as a function of the number of parallel PEs

used, for varying window sizes.

99

4500

4000

3500

3000

2500

2000

1500

1000

500

I I

w ' ^ ;] J"-

— + — Window size = 64
— $ — Window size = 91

•ft Window size = 128
- i— Window size = 182

— Q - Window size = 256
Window size = 360

— V — Window size = 512

- V

; ;

! _ _ . - £]

10 20 30 40
No. of Parallel PEs

50 60 70

Figure 5.6: Transistor count analysis excluding the data memory, as a function of the

number of parallel PEs used, for varying window sizes.

I

1

5000

4500

4000

3500

3000

2500

2000

1500

1000

500

— + - NPCE= 8
— £ — NPCE = 12

— * ~ N P C E = 16
NPCE = 23

— Q - NPCE = 32
NPCE = 46

— V - NPCE = 64

" " " " > "

i — i

i i 57

_ ! _ ^ '

\/
i / i

I I ^ I

T , r "I

J7' \ -\S ' ..!-

! 1 1

i i
i i
i i

J - n

,- ", '

' i

10 20 30 40
No. of Parallel PEs

50 60 70

Figure 5.7: Transistor count analysis excluding the data memory, as a function of the

number of parallel PEs used, for varying number of parallel CORDIC elements used.

100

Table 5-5: Design specifications of the CORDIC-based speech enhancement processor

implemented on a Xilinx FPGA (XC2VP30-7ff896).

Design Parameters

Throughput

Number of filter banks

Window Size

Clock Speed

No of parallel PEs

No of parallel CORDIC elements

Percentage overlap in frame buffer

No of CORDIC iterations performed

No of Jacobi iterations performed

Data path bit width

Total Multipliers used

Total number of FIFO elements

Word Length

Total Adders used

Total Registers used

Data Memory Used

Total Mux used (2-to-l equivalent)

Total Transistor Count

Values

11623 Samples/sec

1 (Single channel)

256

200 MHz

16 (Jacobi Iterations)

16

25%

20

40

16 bits

1 (Multiplier free Diagonalization element)

4 (16 bits x 256 words)

16 bits

2563

39 K Word (16 bits each)

16 bits x 192 K

(Hard Macro)

1282

1158 K Approx. (Excluding Data Memory)

101

5.3 Implementation results of the frequency subband

CORDIC- based subspace speech enhancement

The frequency subband technique was introduced in Chapter 3 and the architecture for

the same is subsequently considered in Chapter 4. This section presents the

implementation results of the frequency subband CORIDC-based subspace speech

enhancement processor. Implementation in terms of the FPGA resource utilization,

throughput analysis, number of logic elements used and the total transistor count results

is studied.

5.3.1 FPGA Resource Utilization

The resource utilization of the FPGA (XC2VP30-7ff896) for an NxM processor size is

given in Tables 5.6, excluding the data memory unit, where N represents the number of

frequency-subbands and M the number of parallel elements. Tables 5.7 provide the

timing summary of Table 5.6 for a 16 bit data path.

5.3.2 Throughput Analysis

This section shows the dependency of throughput on increasing number of frequency-

subbands, i.e., the number of filter banks. NPE indicates the number of parallel

processing units. Figure 5.8 presents the net throughput analysis for varying number of

filter banks. It can be clearly seen that the maximum gain in throughput is up to a

102

maximum of 10 subbands, beyond which the increase in throughput is minimal when

compared to the increase in the number of subbands.

Table 5-6: FPGA resources for 16 bit data path.

NxN

8x8

16x16

64x64

No. of slice

3221

6440

25765

No. of slice FF

5108

10216

40864

No. of 4 input LUT

3452

6920

27649

Table 5-7: FPGA timing summary for 16 bit data path.

NxN

8x8

16x16

64x64

Min. Clock

188.111 MHz

188.111 MHz

188.111MHz

Min. input hold

2.805 ns

3.516 ns

5.624 ns

Min. output hold

3.293 ns

3.293 ns

3.293 ns

5.3.3 Number of Logic Elements

Figures 5.9 to 5.11 show the number of logic elements in the hardware such as MUXs,

registers, adders, multipliers, data memory and FIFO for varying number of frequency

subbands and number of parallel PEs. Figure 5.9 shows the total number of registers

required for varying window size and number of parallel elements used. As expected, the

variation turns out to be almost linear. These graphs aid in making design tradeoffs

103

between the speed, power and area. Figure 5.10 shows the total number of adders

required for varying filter bank size and number of parallel CORDIC elements. Figure

5.11 shows the variation in the 2-to-l MUX, multiplier and FIFO required as a function

of the number of parallel elements.

5.3.4 Transistor Count for ASIC Implementation

The total transistor count estimate is shown in Figures 5.12 and 5.13. Table 5-4 has

already presented the transistor count estimates of the individual blocks. Figure 5.12

studies the transistor count dependencies for varying number of filter banks and number

of parallel PEs. Figure 5.13, on the other hand, shows the transistor counts for various

numbers of parallel CORDIC elements (NPCE). This once again presents another view of

the design feasibility for ASIC implementations. However, importing a design from an

FPGA to an ASIC implementation would require optimization in several dimensions such

as the ASIC technology to be used, transistor routing and power estimation, and this is

beyond the scope of this thesis. Hence, only an estimate of an ASIC feasibility is

projected via the total transistor count. Transistor count shown in Figure 5.12 excludes

the data memory and assumes the presence of hard-macro memory blocks.

104

30 40
No. of Filter Banks

Figure 5.8: Throughput results as a function of the number of filter banks for various

number of parallel PEs.

10

10

i 10°

10"

I I I I I I

1 + [1) 1

I I I I I I

I I I I I I

- I + l - V ~ ~ H <- 1 - :

- * * - * - — £ -L — - * • — t —^ = — i-^f - — 3 - — - — t _ — _ _ i _ — ^

1 5^^: | __ 1 j . _ _ _. _,_. -__&.

C & " ! ? $ — H . -C 1 — T - T - J

c f^ i i i i

1 1 1 1
1 1 1 1
1 1 1 1

1 1

— +- - Filter Bank = 1

— * - Filter Bank = 4
G Filter Bank = 8
Q Filter Bank = 16

Filter Bank = 32

— V - Filter Bank = 64

10 20 30 40 50
No. of Parallel Elements

60 70

Figure 5.9: Total number of register as a function of the number of parallel PEs for

various number of filter banks.

105

(0

&
c

— *- - Filter Bank = 1
Filter Bank = 2

— * - Filter Bank = 4
--—e— Filter Bank = 8
— E - Filter Bank = 16

Filter Bank = 32
— V - Filter Bank = 64

20 30 40 50
No. of Parallel Elements

70

Figure 5.10: Total number of adders used as a function of the number of filter banks for

various number of parallel PEs.

B
c

w
•8

mJ

102

101

i n "

£©-© ©—

T>
- if-0.

7

-±~ -- t
1
1

— _j
1

t 1
1

I I I I

1

_ +

i J = J _

1
i

1
1

1

^
I I I I

- 4 -

~ T

1
i

-------z^-zz

1

1

l

l -l

T

^ ^ I - " " I I I

-J? - r

i

- -+• —

- 1 —

_ + _ _

1

!
1
1
1

1

1
1

T I I

I I t
I I I

1

1
1

1

+•

— © — 2-

, Q

_—-£

- 4

nput MUX
* MultiDlvier

rO(nx1)

10 20 30 40
No. of Filter Banks

50 60 70

Figure 5.11: number of hardware elements required as a function of the number of

filter banks.

106

--*- - N P E = 1
---$- NPE = 2

* - N P E = 4
O NPE = 8
Ld - NPE = 16

NPE = 32
V - N P E = 64

30 40
No. of Filter Banks

Figure 5.12: Transistor count analysis excluding the data memory, as a function of the

number of filter banks used, for varying number of PE elements used.

&

1
+ NPCE= 8
•*--••• NPCE = 12
if - N P C E = 16

NPCE = 23
— 3 - NPCE = 32

NPCE = 46
— V - NPCE = 64

30 40
No. of Filter Banks

70

Figure 5.13: Transistor count analysis excluding the data memory, as a function of the

number of filter banks used, for varying number of CORDIC elements used.

107

Table 5-8 Design specifications: Subband based speech enhancement on FPGA.

Design Parameters

Throughput

Number of filter banks

Frame size of each parallel element

Effective over all frame length

Clock speed

No of parallel PEs

No. of parallel CORDIC elements

Percentage overlap

No of CORDIC iterations performed

No of Jacobi iterations performed

Data path width

Total Multipliers used

Total FIFOs used

Total Adders used

Total Registers used

Total Data Memory used

Total Mux used

Transistor Count

Values

14488 Samples/sec

4 per sub-band

64 words

256 words (Full-band signal)

100 MHz

1 (Jacobi Iterations per sub-band)

1 per sub-band

50%

20 Iterations per sub-band

40 Iterations per sub-band

16 bits

4 (Excluding Filter bank)

16 (16 bits of 64 words each, excluding Filter

bank)

44 (16 bit each, excluding Filter bank)

12 K (16 bits each, excluding Filter bank)

(16 bits x 48 K) Hard Macro

1288 (2-to-l equivalent, excluding Filter bank)

2400 K Approx

(Excluding Data Memory & Filter bank)

108

5.3.5 Design Specifications

Table 5-8 summarizes the design specifications of the frequency subband processor. A

throughput of 14488 samples/s has been achieved on a system operating at 115 MHz. An

estimated transistor count of 2400 K makes it comparable to the Pentium processor

produced by Intel in 1993 to have a total transistor count of 3100 K [77].

5.4 Summary

This chapter has presented the reader with the FPGA implementation results of the

subspace-based speech enhancement algorithms that have already been presented in

Chapters 2 and 3. The initial part of this chapter presented the overall system

performance measures in terms of the SSNR and MBSD. The design has been

categorized into two parts, the full band version of the CORDIC-based subspace speech

processor and the frequency-subband CORDIC based subspace speech processor. The

later part of this chapter presented the design tradeoffs in implementing the processor on

an FPGA. Important design parameters such as the throughput and the number of logic

elements were presented for varying number of filter banks, number of parallel PEs,

frame buffer size (Window size) and the system clock. A projection of the feasibility of

the VLSI implementation of the design has also been shown in terms of the transistor

count. Design specifications of both the full band and subband designs have been given.

It has been observed that the VLSI implementation of the speech enhancement processor

109

based on a very high number of subbands become impractical; similarly, achieving a very

high throughput rate also becomes impractical in the pure full band implementation. An

optimum design would, therefore, pick the most suitable number of subbands to equally

take advantage of the increase in throughput rate and retain the implementation feasibility

in terms of the hardware overhead due to the subbands. This gives us the freedom to

optimize the design parameters and this could be studied as part of future work.

110

Chapter 6 : Conclusion

In this thesis, we have explored the simultaneous matrix diagonalization of a number of

symmetric matrices keeping in mind the hardware implementation issues. As an

application, we have considered the subspace based speech enhancement problem. Later,

it has been shown that the use of subband processing enhances the overall system

performance and also increases the overall system throughput. This has enabled the

processing of data at a much higher sampling rate compared to the full-band

implementation. Due to time limitations of the thesis, only an FPGA implementation has

been studied and a projection of the transistor count has been made for an ASIC

implementation.

6.1. Conclusion and Thesis Summary

We have presented an innovative technique for simultaneous diagonalization of multiple

symmetric matrices to address the emerging popularity of the eigen-domain signal

processing technique in realtime. The proposed technique has been based on the Jacobi

rotation of matrices using the CORDIC iterative approach. Due to the simplicity of its

computational elements such as shift-and-add, the architecture becomes ideally suited for

targeting FPGA/ASIC implementation. The proposed diagonalization technique has

shown better results as compared with that of the Matlab-Cholesky factorization. It has

111

been demonstrated that the system performance of the speech enhancement processor is

at par with the overall system performance achieved from Matlab simulation, using the

Matlab-Cholskey factorization method, in the presence of reasonable noise conditions.

A subband-based speech enhancement analysis technique, which exploits the slow

varying characteristics of the speech and noise signals over narrow frequency segments,

has also been proposed. The accurate covariance estimation of the noise and speech in the

subbands has resulted in a better performance under low SNR conditions as compared to

that of the full band subspace-based speech enhancement technique. The proposed

technique also provides an inherent parallel implementation scheme and reduces the

computational complexity. The proposed scheme makes no assumptions of the spectral

characteristics of the noise, but only assumes that the noise and speech are uncorrelated

in each of the subbands.

In the later part of the thesis, we have presented the hardware architecture along with

simulation results. System level simulations have been performed to highlight the

performance gain along with hardware implementation results. The speech enhancement

processor has been implemented both for the full band and the subband algorithms. Also,

a projection of the processors ASIC counterpart has been suggested from the transistor

count point of view.

112

6.2. Future Work

Some of the areas for future development are as follows:

• ASIC implementation of the proposed simultaneous diagonalization technique for

high data-rate applications such as software defined radio and video applications

involving de-noising issues.

• A custom ASIC implementation would certainly attract more attention from

industry in using the subspace-based speech enhancement for commercial use.

• Various other techniques such as incorporating fast number systems such as the

residue number system could further increase the throughput.

• Considering various noise models and predefined templates of the noise

autocorrelation matrices would boost the overall system performance. This would

provide a better autocorrelation estimate of the noise, which is the key to a better

speech enhancement performance.

113

References

[1] G. S. Sarkar, "Speech science modeling for automatic accent and dialect

classification" PhD Thesis, University of Colorado at Boulder, 2007.

[2] D. O'Shaughnessy, "Speech Communication: Human and Machine" 2nd edition,

Wiley-IEEE Press 1999.

[3] V. Zummeren and I. James, "A speech communication course concept for

Marine Corps Command and Staff College in partnership with Northern Virginia

Community College-Woodbridge", PhD Thesis, George Mason University,

2004.

[4] E. Moreau, "A generalization of joint diagonalization criteria for source

separation", IEEE Trans. Signal Process. Vol. 49, pp. 530-541, March 2001.

[5] B. Yang, "Projection approximation subspace tracking," IEEE Trans. Signal

Processing, Vol. 43, No. 1, pp. 95-107, Jan. 1995.

[6] B. Cernuschi-Frias, S.E. Lew, H. J. Gonzalez and J. D. Pfefferman, "A parallel

algorithm for the diagonalization of symmetric matrices", Proc. IEEE Int.

Symposium on Circuits and Systems, ISCAS-2000, Vol. 5, pp. 81-84, May 2000.

[7] B. N. Flury, "Common principle components in k groups", J. Amer. Statist.

Assoc, Vol. 79, pp. 892-897, 1984.

[8] J. F. Cardoso and A. Souloumiac, "Blind beamforming for non Gaussian

signals, " Inst. Elect. Eng. Proc. F, Vol. 140, no. 6, pp. 362-370, 1993.

114

[9] A. Belouchrani, K. Abed Meraim, J. F. Cardoso, and E. Moulines, "A blind

source separation technique based on second order statistics," IEEE Trans.

Signal Process., vol. 45, no. 2, pp. 434-444, Feb. 1997.

[10] O. J. Micka and A. J.Weiss, "Estimating frequencies of exponentials in noise

using joint diagonalization," IEEE Trans. Signal Process., Vol. 47, no. 2, pp.

341-348, Feb. 1999.

[11] L. De Lathauwer, B. De Moor and J. Vandewalle, "Independent component

analysis and (simultaneous) third-order tensor diagonalization", IEEE Trans.

Signal Process. Vol. 49, No. 10, pp. 2262-2271, 2001.

[12] P. Gruber, F.J Theis, K. Stadlthanner, E.W. Lang, A.M Tome and A.R Teixeira,

"Denoising using local ICA and kerael-PCA", Proc. IEEE Int. Conf. Neutal

Networks, Vol. 3, pp. 2071 - 2076, July 2004.

[13] S. F. Hsiao, "Adaptive Jacobi method for parallel singular value

decompositions", Proc. IEEE Int. Conf. Acoust., Speech and Signal Processing,

ICASSP-95, Vol. 5, pp. 3203-3206, May 1995.

[14] M. Alonso, G. Richard and B. David, "Accurate tempo estimation based on

harmonic + noise decomposition", EURASIP Journal on Advances in Signal

Proc, Vol. 2007, Article ID 82795, 2007.

[15] B. Champagne and Q. G. Liu, "Plane rotation-based EVD updating schemes for

efficient subspace tracking", IEEE Trans. Signal Process. Vol. 46, pp. 1886-

1900, July 1998.

115

[16] B. Champagne and Q. G. Liu, "A New Family of EVD Tracking algorithms

using givens rotations", Proc. IEEE Int. Conf. Acoust, Speech and Signal

Processing, ICASSP-96, Vol. 5, pp. 1-4, May 1996.

[17] X. L. Li and X. D. Zhang, "Nonorthogonal Joint Diagonalization Free of

Degenerate Solution", IEEE Trans. Signal Process. Vol. 55, pp. 1803-1814, May

2007.

[18] M. Wax and J. Sheinvald, "A least-squares approach to joint diagonalization,"

IEEE Signal Process. Lett, Vol. 4, no. 2, pp. 52-53, Feb. 1997.

[19] Y. Ephraim and H. L. Van Trees, "A signal subspace approach for speech

enhancement," IEEE Trans. Speech and Audio Processing, Vol. 3, pp. 251-266,

July 1995.

[20] Y. Hu and P.C. Loizou,"A generalized subspace approach for enhancing speech

corrupted by colored noise," IEEE Trans. Speech and Audio Processing, Vol.

ll,pp.334-341, July 2003.

[21] Y. Hu and P.C. Loizou, "Speech enhancement based on wavelet thresholding the

multitaper spectrum," IEEE Trans. Speech and Audio Processing, Vol.

12, pp.59-67, Jan 2004.

[22] F. Jabloun and B. Champagne,"Incorporating the human hearing properties in

the signal subspace approach for speech enhancement", IEEE Trans. Speech and

Audio Processing, Vol. 11, Issue 6, pp.700-708, Nov. 2003.

[23] M. Bahoura and J. Rouat, J, "Wavelet speech enhancement based on the Teager

energy operator," IEEE, Signal Processing Lettr, Vol. 8, pp. 10-12, Jan. 2001.

116

[24] J. A.B. Fortes, "Future challenges in VLSI system design", Proc. IEEE

Computer Society Annual Symposium, pp. 5-7, Feb, 2003.

[25] P. Sinha, D. Basu and A. Sinha: "A Novel Architecture of a Reconfigurable

Parallel DSP Processor" IEEE Int. Proc. NEWCAS 2005, July, 2005.

[26] Xilinx, "Introduction and overview", Virtex-II Pro Platform FPGAs, March 9th,

2004.

[27] G.H. Golub and C.F. Van Loan, "Matrix Computations", 3rd edition, Johns

Hopkins University Press, 1996.

[28] S.B. Searle, Matrix Algebra Useful for Statistics. New York: Wiley, 1982.

[29] J. Vails, M. Kuhlmann and K.K Parhi, "Efficient mapping of CORDIC

algorithms on FPGA", IEEE Workshop on Sig. Procc. Sys., 2000, pp. 336 - 345,

Oct. 2000.

[30] J.H. Wilkinson, "Note on the Quadratic Convergence of the Cyclic Jacobi

Process" Numer. Math. 6, 296-300, 1962.

[31] J.W. Demmel and K. Veselic, "Jacobi's Method is More Accurate than QR",

SIAMJ. Matrix Anal. Appl., Vol. 13, pp. 1204-1245, 1992.

[32] J.H. Wilkinson, "The Algebraic Eigenvalue Problem", London, Oxford Univ.

Press, 1965.

[33] J. E. Voider, 'The CORDIC trigonometric computing technique", IRE Trans.

Electron. Comput, Vol. EC-8, pp. 330-334, Sept. 1959.

[34] J. S. Walter, "A Unified View of CORDIC Processor Design", Application

Specific Processors, Edited by Earl E. Swartzlander, Jr., pp. 121-160, Kluwer

Academic Press, Nov. 1996.

117

[35] Yi Yang, "A Distributed Arithmetic Based CORDIC Algorithm and its Use in

the FPGA Implementation of 2-D IDCT", M.A.Sc Thesis, Concordia University,

April 2002.

[36] C. H. Lin and A. Y. Wu, "Mixed-scaling-rotation CORDIC (MSR-CORDIC)

algorithm and architecture for high-performance vector rotational DSP

applications", IEEE Trans, on Circuits and Systems, Vol. 52, no. 11, pp. 2385-

2396, Nov. 2005.

[37] R. Andraka, "A survey of CORDIC algorithms for FPGA based computers",

Proc. ACM/SIGDA sixth International Symposium on Field Programmable, pp.

191-200, 1998.

[38] S. Wang, "A CORDIC Arithmetic Processor", PhD Thesis, University of Texas

at Austin, May 1998.

[39] T. Painter and A. Spanias, "Perceptual coding of digital audio", Proc. IEEE, Vol.

88, Issue 4, pp. 451 -515, April 2000.

[40] W. Yang, M. Benbouchta and R. Yantorno, "Performance of the modified Bark

spectral distortion as an objective speech quality measure" Proc. IEEE Acoustics,

Speech, and Signal Processing ICASSF'-98, Vol. l,pp. 541-544, 1998.

[41] Zwicker, E., "Subdivision of the audible frequency range into critical bands,"

The Journal of the Acoustical Society of America, Feb., 1961.

[42] P. Sinha, M.N.S. Swamy, P.K. Meher, "FPGA Implementation of Fast

Simultaneous Diagonalization of matrices for subspace based speech

enhancement", IEEE Int. Proc. MWSCAS, August, 2007.

118

[43] C. H. You, S. Rahardja, S. N. Koh, "Audible Noise Reduction in Eigendomain

for Speech Enhancement", IEEE Trans, on Audio, speech and language Procc,

Vol. 15, pp 1753-1765, Aug, 2007

[44] P. Sinha, S. Sarkar, A. Sinha, D. Basu, "Architecture of a Configurable Centered

Discrete Fractional Fourier Transform Processor", IEEE Int. Proc. MWSCAS,

August, 2007.

[45] C.H You, S. N. Koh and S. Rahardja,"Signal Subspace Speech Enhancement for

Audible Noise Reduction" Proc. IEEE Acoustics, Speech, and Signal

Processing, ICASSP 05, Vol. 1, pp. 145-148, 2005.

[46] P. Sinha, A. Sinha and D. Basu: "Reconfigurable Single Function Multiple Data

(SFMD) Architecture for a Class of Signal/Image Processing Applications"

IEEE Workshop on Circuits and Systems for 4G Mobile Wireless

Communications, pp 46-49, June, 2005.

[47] Y. Hu and P.C. Loizou, "A perceptually motivated approach for speech

enhancement," IEEE Trans. Speech and Audio Processing, Vol. 11, pp.457-465,

Sept. 2003.

[48] F. Jabloun and B. Champagne, "A Perceptual Signal Subspace Approach for

Speech Enhancement in Colored Noise," Proc. IEEE Int. Conf. Acoust., Speech

and Signal Processing, ICASSP-02, Vol. 1, pp. 569-572, 2002.

[49] M. Klein and P. Kabal, "Signal Subspace Speech Enhancement with Perceptual

Post-filtering," Proc. IEEE Int. Conf. Acoust., Speech and Signal Processing,

ICASSP-02, Vol. 1, pp. 537-540, May 2002.

119

[50] J. M. Rabaey, A. Chandrakasan, and B. Nilolic, Digital Integrated Circuits: A

Design Perspective, Prentice Hall, Upper Saddle River, NJ, 2002.

[51] S. Ogata and T. Shimamura, "Reinforced spectral subtraction method to enhance

speech signal" Proc. IEEE Int., Electrical and Electronic Technology,

TENCON-01, Vol. 1, pp. 242-245 Aug. 2001.

[52] A. Rezayee and S. Gazor,"An adaptive KLT approach for speech enhancement"

IEEE Trans. Speech and Audio Processing, Vol. 9, pp.87-95, July 2001.

[53] J. M. Jou, Y. H. Shiau and C. C. Liu; "Efficient VLSI architectures for the

biorthogonal wavelet transform by filter bank and lifting scheme", Proc. IEEE

Int. Symposium on Circuits and Systems, ISCAS-200I, Vol. 2, pp. 529 - 532,

May 2001.

[54] U. Mittal and N. Phamdo, "Signal/noise KLT based approach for enhancing

speech degraded by colored noise," IEEE Trans. Speech Audio Process., Vol.8,

pp. 159-167, March 2000.

[55] K. Li, Y. Pan and S. Q. Zheng, "Fast and processor efficient parallel matrix

multiplication algorithms on a linear array with a reconfigurable pipelined bus

system", IEEE Trans, on Parallel and Distributed Systems, Vol. 9, Issue 8, pp.

705-720, Aug. 1998.

[56] E. Moulines, P. Duhamel, J. F. Cardoso, and S. Mayrargue, "Subspace methods

for the blind identification of multichannel FIR filters," IEEE Trans. Signal

Processing, Vol. 43, pp. 516-525, Feb. 1995.

[57] D. L. Donoho and I. M. Johnstone, "Adapting to unknown smoothness via

wavelet shrinkage," J. Amer. Statist. Assoc, Vol. 90, pp. 1200-1224, 1995.

120

[58] B. Yang, "Projection approximation subspace tracking" IEEE Trans Signal

Processing, Vol. 43, pp. 95-107, Jan. 1995.

[59] S. H Jensen, P.C. Hansen, S. D. Hansen and J. A. Sorensen. "Reduction of

broad-band noise in speech by truncated qsvd" IEEE Trans. Speech Audio

Processing, Vol. 3, pp. 439-448, Nov. 1995.

[60] S. Paul, J. Gotze and M. Sauer, "Error Analysis of CORDIC-Based Jacobi

Algorithm", IEEE Trans, on Computers, Vol. 44, Issue 9, pp. 1058-1065, July

1995.

[61] E. Moulines, P. Duhamel, J. F. Cardoso, and S. Mayrargue, "Subspace methods

for the blind identification of multichannel FIR filters," IEEE Trans. Signal

Processing, Vol. 43, pp. 516-525, Feb. 1995.

[62] J. Gotze, S. Paul and M. Sauer, "An efficient Jacobi-like algorithm for parallel

eigenvalue computation", IEEE Trans, on Computers, Vol. 42, Issue 9, pp. 1058-

1065, Sept. 1993.

[63] M. Dendrinos, S. Bakamidis, and G. Carayannis, "Speech enhancement from

noise: a regenerative approach," Speech Communication, Vol. 10, no. 1, pp. 45-

57, 1991.

[64] J. D. Johnston, "Transform Coding of Audio Signal Using Perceptual Noise

Criteria," IEEE J. Select Areas Comm., Vol. 6, pp. 314-323, Feb. 1988.

[65] G. Strang, "Linear Algebra and Its Applications ", 3rd ed. New York: Harcourt

Brace Jovanonich, 1988.

[66] J. Johnston, "Transform coding of audio signals using perceptual noise criteria",

IEEE J. Selected Areas Commun. Vol. 6, Issue 2, pp. 314-323, Feb. 1988.

121

[67] D. O'Shaughnessy, "Speech Communication ", IEEE Press, 2000.

[68] J. R. Deller, J. Hansen and J. G. Proakis, "Discrete-Time Processing of speech

signals". IEEE Press, NY, 2000.

[69] Y. Hu, "Subspace and multitaper methods for speech enhancement", Ph.D.

Thesis, University of Texas at Dallas, 2003.

[70] S. Wang, A. Sekey and A. Gersho, "Auditory distortion measure for speech

coding", Proc. IEEE Int. Conf. Acoust., Speech and Signal Processing, ICASSP-

91, Vol. 1, pp. 493 - 496, May 1991.

[71] A. Drolshagen, C. C. Sekhar and W. Anheier, "A Residue Number Arithmetic

based Circuit for Pipelined Computation of Autocorrelation Coefficients of

Speech Signal", Proceedings of the Eleventh International Conference on VLSI

Design: VLSI for Signal Processing, pp. 122 - 127, Jan 1998.

[72] D. Zwillinger,"CRC Standard Mathematical Tables and Formulae", Boca Raton,

FL: CRC Press, pp. 223, 1995.

[73] K. K. Parhi and T. Nishitani, "Digital Signal Processing for Multimedia

Systems", CRC Press 1999.

[74] P. S. Ramirez Diniz, "Adaptive Filtering: Algorithms and Practical

Implementation" Klewer academic publisher, 2002.

[75] J. P. Hayes, "Computer Architecture and Organization", McGraw-Hill, 3rd

edition, 1997.

[76] J.Y.F. Hsieh, A. van der Avoird, P. Kleihorst and T.H.Y. Meng, "Transpose

memory for video rate JPEG compression on highly parallel single-chip digital

122

CMOS imager", Proc. Int. Conf. on Image Processing 2000, Vol. 3, pp. 102-105,

Sept. 2000.

[77] "Buyer's guide to DSP Processors, 2004 Edition": Barkley Design Technology

Inc., http://www.bdti.com.

123

http://www.bdti.com

Appendix A:

A Numerical Example

Below is a numerical example showing the simultaneous diagonalization of two

randomly generated 8x8 Toeplitz matrices A] and A2. Each of the matrices has gone

through a total of 20 Jacobi iterations. Further, each of the Jacobi iterations went through

a total of 20 CORDIC rotations. The diagonalized matrices are shown below as A/'and

A2\ and their eigen-vectors are given my matrix V. Their corresponding diagonalized

matrices using the Matlab-Cholesky factorization technique are given by Ai'jnatlab and

A2'_matlab, while their eigen-values are given by the matrix V_Matlab. Figure A-l

compares the eigenvectors generated from the proposed diagonalization algorithm with

that of Matlab-Cholesky factorization. The figure clearly indicates the proximity of both

the algorithms. Figures A-2 and A-3 shows the mesh plots of the diagonalized matrices in

order to graphically compare the diagonalized matrices of the proposed algorithm to that

of the Matlab-Cholesky factorization. It can be clearly observed that the proposed

technique generates simultaneously diagonalized matrices that are very similar to the

diagonal matrices generated by Matlab-Cholesky factorization.

124

3.5166 8.3083

8.3083 3.5166

5.8526 8.3083

5.4972 5.8526

9.1719 5.4972

2.8584 9.1719

7.5720 2.8584

7.5373 7.5720

A2 =

3.8045 5.6782

5.6782 3.8045

0.7585 5.6782

0.5395 0.7585

5.3080 0.5395

7.7917 5.3080

9.3401 7.7917

1.2991 9.3401

A,' =

-25.53 -0.000

-0.000 4.0859

-0.000 -0.000

-0.000 -0.000

-0.000 -0.000

-0.000 -0.000

-0.000 -0.000

-0.000 -0.000

A2' =

-3.796 0.0000
0.0000 -10.34
-0.422 0.0000
0.6743 0.0000

-0.000 0.6810
-0.000 -0.504
-0.000 -0.293
1.8150 -0.000

5.8526 5.4972

8.3083 5.8526

3.5166 8.3083

8.3083 3.5166

5.8526 8.3083

5.4972 5.8526

9.1719 5.4972

2.8584 9.1719

0.7585 0.5395

5.6782 0.7585

3.8045 5.6782

5.6782 3.8045

0.7585 5.6782

0.5395 0.7585

5.3080 0.5395

7.7917 5.3080

-0.000 -0.000

-0.000 -0.000

0.2680 -0.000

-0.000 2.4120

-0.000 -0.000

-0.000 -0.000

-0.000 -0.000

-0.000 -0.000

-0.422 0.6743

0.0000 0.0000
-13.14 1.7444
1.7444 -7.324
0.0000 -0.000

0.0000 0.0000
0.0000 0.0000
0.9685 -1.579

9.1719 2.8584

5.4972 9.1719

5.8526 5.4972

8.3083 5.8526

3.5166 8.3083

8.3083 3.5166

5.8526 8.3083

5.4972 5.8526

5.3080 7.7917

0.5395 5.3080

0.7585 0.5395

5.6782 0.7585

3.8045 5.6782

5.6782 3.8045

0.7585 5.6782

0.5395 0.7585

-0.000 -0.000

-0.000 -0.000

-0.000 -0.000

-0.000 -0.000

-32.59 -0.000

-0.000 128.74

-0.000 -0.000

-0.000 -0.000

-0.000 -0.000

0.6810 -0.504
0.0000 0.0000
-0.000 0.0000
-17.56 0.0339

0.0339 78.067
1.3082 1.6099
0.0000 0.0000

7.5720 7.5373

2.8584 7.5720

9.1719 2.8584

5.4972 9.1719

5.8526 5.4972

8.3083 5.8526

3.5166 8.3083

8.3083 3.5166

9.3401 1.2991

7.7917 9.3401

5.3080 7.7917

0.5395 5.3080

0.7585 0.5395

5.6782 0.7585

3.8045 5.6782

5.6782 3.8045

-0.000 -0.000

-0.000 -0.000

-0.000 -0.000

-0.000 -0.000

-0.000 -0.000

-0.000 -0.000

-3.087 -0.000

-0.000 -2.882

-0.000 1.8150
-0.293 -0.000
0.0000 0.9685
0.0000 -1.579

1.3082 0.0000

1.6099 0.0000
25.2177 0.0000
0.0000 24.036

125

v=
-0.288

0.4903

-0.386

0.1671

0.1671

-0.386

0.4903

-0.288

0.4389

-0.070

-0.309

0.4552

0.4552

-0.309
-0.070

0.4389

0.2380

0.3406

0.0074

-0.572

-0.572

0.0074

0.3406
0.2380

0.2923

-0.172

-0.325

-0.529

-0.529

-0.325

-0.172

0.2923

Ai'jnatlab =

-43.79

-0.000
-0.000

-0.000

-0.000

-0.000

-0.000

-0.000

-0.000

-16.47
-0.000

-0.000

-0.000

-0.000

-0.000
-0.000

-0.000

-0.000

84.4695

-0.000

-0.000

-0.000

-0.000
-0.000

-0.000

-0.000
-0.000

5.3823

-0.000

-0.000

-0.000
-0.000

AJjnatlab =

-23.57

-0.000

-0.000
-0.000

-0.000

-0.000

-0.000
-0.000

-0.000

-9.253

-0.000
-0.000

-0.000

-0.000
-0.000

-0.000

-0.000

-0.000

47.4274
-0.000

-0.000

-0.000

-0.000
-0.000

-0.000

-0.000

-0.000
-15.20

-0.000
-0.000

-0.000
-0.000

V matlab =

-0.248
0.7672

-1.000

0.6407
0.6407

-1.000

0.7672
-0.248

-0.414
0.3658

-0.087

-1.000
-1.000
-0.087

0.3658

-0.414

0.3247
0.3651

0.1419

1.0000

1.0000
0.1419
0.3651

0.3247

-1.000
0.0537

0.9446

0.0379

0.0379
0.9446

0.0537

-1.000

0.4709

0.1894

0.4825

-0.098

-0.098

0.4825

0.1894

0.4709

0.0126

-0.656

0.2576

0.0615

0.0615

0.2576

-0.656

0.0126

0.4865

-0.1331

-0.4816

0.1169

0.1169

-0.4816

-0.1331

0.4865

0.3519
0.3548

0.3452

0.3620

0.3620

0.3452

0.3548

0.3519

-0.000

-0.000

-0.000

-0.000

2.1609

-0.000

-0.000
-0.000

-0.000

-0.000
-0.000

-0.000

-0.000

0.4781

-0.000
-0.000

-0.000

-0.000

-0.000

-0.000

-0.000

-0.000

-4.4726

-0.000

-0.000

-0.000
-0.000

-0.000

-0.000

-0.000

-0.000
-3.802

0.000

0.000

0.000
0.000

6.249
0.000

0.000

0.000

-0.000

-0.000

-0.000
-0.000

-0.000

-24.45

-0.000
-0.000

-0.000

-0.000

-0.000
-0.000

-0.000

-0.000

37.978
-0.000

-0.000

-0.000

-0.000

-0.000

-0.000
-0.000

-0.000
30.779

0.4841
-1.000
0.5554

-0.129
-0.129
0.5554

-1.000
0.4841

-1.000
-0.454

-0.990

0.2232
0.2232

-0.990

-0.454

-1.000

0.9040

-0.7343
-0.2975

-1.0000

-1.0000
-0.2975

-0.7343
0.9040

0.5822
0.5826

-0.179

-1.000
-1.000

-0.179
0.5826

0.5822

126

140

120

100

80

60

40

20

0

-20

-40

-60

(a)

Proposed
— + — Matlab-Cholesky --H

\

i i ! /.
' i i J

— _ j — J — i — + ' _

> i i
- - * H — j — i —

0
j3
CD >
C
CD
D)

i l l

80

60

40

20

0

-20

/in

(b)

— Proposed
— +— Matlab-Cholesky

, _, _ _ _, _..

/

- / -

i i /

~-4-4-"Uq
i V\

: :.. .__.)!.4 ._
i !\

.....±. L.y..:.....j

/ 4"V

2 4 6
Eigen value number

0 2 4 6
Eigen value number

Figure A-1.Comparison of the eigen-values of (a) matrix A 'i and A I'jnatlab (b) matrix

A'2and A 2'jnatlab

127

(a)

CD

,2
CD

>
c
d>
u>

LU

200 - r - - -

0 0
Column Row

(b)

0 0
Column Row

Figure A-2.Comparing the mesh plots of the diagonalized matrices (a) matrix A '1 and (b)

matrix Ai 'jnatlab

(a)

0 0
Column Row

(b)

<B
= 15
>

E
ig

e

_ _ _ - - 1

5 0 - r - - - - - - r !

0 -

-50.
8

1
' 1 _

' -- L ~ - - - - - " _ ~ :L~- -~

' _ - - a--__ "
~^-~i-^l" _ _"_"_---—-_-

0 0
Column Row

Figure A-3. Comparing the mesh plots of the diagonalized matrices (a) matrix A '2 and

(b) matrix Ajjnatlab

128

