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ABSTRACT 

Algorithm and Architecture for Simultaneous 

Diagonalization of Matrices applied to Subspace based 

Speech Enhancement 

Pavel Sinha 

This thesis presents algorithm and architecture for simultaneous diagonalization of 

matrices. As an example, a subspace-based speech enhancement problem is considered, 

where in the covariance matrices of the speech and noise are diagonalized 

simultaneously. In order to compare the system performance of the proposed algorithm, 

objective measurements of speech enhancement is shown in terms of the signal to noise 

ratio and mean bark spectral distortion at various noise levels. 

In addition, an innovative subband analysis technique for subspace-based time-

domain constrained speech enhancement technique is proposed. The proposed technique 

analyses the signal in its subbands to build accurate estimates of the covariance matrices 

of speech and noise, exploiting the inherent low varying characteristics of speech and 

noise signals in narrow bands. The subband approach also decreases the computation 

time by reducing the order of the matrices to be simultaneously diagonalized. Simulation 

results indicate that the proposed technique performs well under extreme low signal-to-

noise-ratio conditions. 
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Further, an architecture is proposed to implement the simultaneous diagonalization 

scheme. The architecture is implemented on an FPGA primarily to compare the 

performance measures on hardware and the feasibility of the speech enhancement 

algorithm in terms of resource utilization, throughput, etc. A Xilinx FPGA is targeted for 

implementation. FPGA resource utilization re-enforces on the practicability of the design. 

Also a projection of the design feasibility for an ASIC implementation in terms of 

transistor count only is included. 
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Chapter 1 : Introduction 

1.1 Introduction and Motivation 

From the beginning of human civilization, speech has been the primary and most 

important medium for communication and exchange of ideas and thoughts among 

individuals. Even in the 21st century, speech remains to be the primary medium of 

communication in our day to day life [1] [2], aviation, military [3], distress calls, etc. 

Enhancement of degraded speech over communication channels readily finds its 

application in aircraft, mobile, military and commercial communications and in aids for 

the handicapped. Applications include both speech over noisy transmission channels (e.g. 

cellular telephony) and speech produced in noisy environments (e.g. in vehicles or 

telephone booths) [2]. 

The objective of the speech enhancement algorithms vary widely from noise level 

reduction, increased intelligibility, decreasing auditory fatigue, reducing transmission 

data rates, etc. In recent years, numerous speech enhancement algorithms have been 

proposed. Statistical signal processing has become very popular in speech enhancement 

algorithms. The problem of approximate eigen-domain decomposition and joint 

diagonalization of a set of matrices has become instrumental in numerous statistical 

signal processing applications [4], [5], [6] involving principle component analysis (PCA) 

[7], blind beam-forming [8], blind source separation (BSS) [9], frequency estimate [10], 
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Independent component analysis (ICA) [11] and de-noising techniques for single/multi

dimensional signal processing [12]. As their distinguished feature, these methods seek to 

extract the desired information about the signal and noise by first estimating, either in 

part or full, the eigen-values using the eigen-value decomposition (EVD) technique. 

However, the popularity is limited due to its intense computational complexity. 

Moreover, the computational requirement of the eigen-domain decomposition increases 

exponentially with the matrix size [5], [6], [13]. 

Another statistical signal processing approach is the projection approximation 

subspace tracking. In his work [5], the author has interpreted the signal subspace as the 

solution of a projection-like unconstrained minimization problem. The recursive least 

square technique has been applied by making appropriate projection approximation. 

However, its performance is not well accepted for sensitive applications, where an 

accurate estimate of the subspace is necessary [14]. Specially under heavy noise 

conditions, the least square algorithm fails to track the subspace. An adaptive Jacobi 

method for parallel implementation of singular value decomposition (SVD) has been 

given by Shen-Fu Hsiao [13]. A modified parallel adaptive Jacobi method to diagonalize 

a symmetric matrix has been presented in [6]. Later, the subspace tracking was addressed 

by Benoit and Qing-Guang [15], [16] by an efficient updating scheme of plane rotation-

based eigen-value decomposition (EVD), using a parametric perturbation approach. In a 

recent work by Xi-Lin Li and Xian-Da Zhang [17], a non-orthogonal joint 

diagonalization method has been presented; it is an approximate non-orthogonal joint 

diagonalization technique and analyzes the inefficiency of the weighted least-squares 

(WLS) approach used by Wax [18]. 
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With the development of eigen-domain estimation algorithms, subspace based 

techniques have emerged as a promising statistical tool. Subspace-based speech 

enhancement techniques have been designed to reduce noise levels in noisy speech 

signals and at the same time minimize speech distortions. The mathematical formulation 

leads to a constraint minimization problem, which is readily solved by using the method 

of Lagrange multipliers resulting in an optimal statistical speech enhancement filter. The 

use of the subspace approach was pioneered by Ephraim and Van Trees [19], who 

proposed the optimal estimator for white noise that was later extended to the case of 

coloured noise by Hu and Loizou [20]. The original subspace enhancement scheme was 

developed in time and frequency domains, leading to the time domain constraint (TDC) 

and frequency domain constraint (FDC) versions of the algorithm. The performance of 

the subspace algorithm mainly depends on two steps, namely, the accurate estimation of 

the noise and noisy speech covariance matrices and the shaping of the residual noise 

terms. The former leads to reduced speech distortions, while the latter improves the 

quality of the enhanced speech by exploiting the perceptual properties of hearing. Much 

of the contemporary research has focussed on developing robust and novel techniques to 

obtain better estimates and perform suitable noise shaping. 

In the subspace approach, the distortions in the enhanced speech signal are evident in 

low SNR conditions. This is due to the inaccurate estimation of the speech and noise 

covariance matrices. The poor estimation stems from the fact that the noise and noisy 

speech subspaces exhibit an increasing overlap with decreasing SNR [19]. In particular, it 

has been identified that the poor estimation of the noise and speech spectra leads to 

annoying artefacts such as the "musical noise" in the enhanced speech. Musical noise is a 
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result of spectral spikes occurring at random frequencies caused due to large variance 

estimation of noise and speech signals [19]. While masking the residual error mitigates 

the effects of the annoying artefacts, it has been pointed out that a more accurate 

estimation of the SNR may be beneficial in removing the musical noise. Therefore, 

accurate spectral estimation has been recognized as a key step towards robust 

performance, and many techniques, such as the multi-taper and Blackman-Tukey, have 

been developed for this purpose [21], [22]. Also, the use of wavelet thresholding 

technique, such as the SURE, results in more accurate spectral estimates and eliminates 

the musical noise [23], [21]. 

However, in most of the work presented so far, very little effort has been made to 

address the problem of real-time computation from a hardware point of view. Most of 

these algorithms have implementation issues in real-time. The bottle neck is in achieving 

higher throughput rates when implemented on VLSI, followed by the hardware 

complexity and the static power dissipation [24]. Most of the modern state of the art DSP 

algorithms involving intense statistical estimation become impractical for VLSI 

realization or for real-time realizations on high performance system platforms. This 

brings in the need for reducing hardware complexity of the algorithms being developed. 

With the emerging need for eigen-domain estimations and statistical filters in most of the 

real-time signal processing applications, complexity increases exponentially with the 

window size used in the algorithm. 

The requirement for executing computationally-intensive functions at hardware speed 

can only be satisfied by the emerging application specific integrated circuits (ASICs). 

Even though ASICs offer highest possible performance at lowest silicon cost, they suffer 
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from inflexibility. Besides, if a particular application needs a large number of functions to 

be executed in real-time, then a large number of ASIC chips will be required, and thus, is 

not cost effective [25]. Field programmable gate arrays (FPGA) on the other hand are 

high performance programmable hardware that allows flexibility and reconfigurability 

for realizing a diverse class of functions. Research in the area of mapping complex DSP 

algorithms onto reconfigurable FPGA has revealed that the FPGAs are adequate and best 

suited for mapping most of the computationally intensive applications, due to their 

efficient static ram-based LUT designs offering an optimum cost-performance trade-off 

[26]. 

1.2 Scope and Thesis Organization 

The above discussion provides sufficient background to establish the fact that statistical 

signal processing is highly computationally intensive. Emerging speech enhancement 

algorithms fully rely on statistical computations, such as eigen-domain estimations. 

Hardware implementation issues also limit the application of such algorithms in real 

time. In this thesis, the problem of simultaneous approximate diagonalization of multiple 

matrices is studied. As an application, the problem of subspace-based speech 

enhancement technique is considered, while keeping in mind the implementation issues 

of modern day VLSI circuits. A solution to the problem of achieving high throughput and 

reduced computation cost is also addressed through an innovative frequency subband 
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processing. The subband approach exploits the inherent low variance of the speech and 

noise signals in a limited frequency region as opposed to using the full band. 

This thesis consists of six chapters. Chapter 2 mainly focuses on the joint 

diagonalization of matrices. It gives an insight to the Jacobi-based matrix diagonalization 

technique. It also provides a review of the CORDIC algorithm. The later part of the 

chapter presents an innovative technique to approximately diagonalize a pair of 

symmetric matrices simultaneously, based on the extension of the Jacobi diagonalization 

technique combined with the CORDIC implementation scheme. This results in an 

efficient multiplier-free hardware implementation of the algorithm, and has been shown 

later in Chapter 4. Chapter 3 focuses on a time domain constrained subspace-based 

speech enhancement algorithm. Starting with a brief discussion on speech enhancement, 

this chapter also extends the time domain constrained algorithm to an efficient frequency 

subband speech processing technique for improved performance. Chapter 4 deals with the 

architecture that supports the CORDIC based Jacobi core for simultaneous 

diagonalization of matrices used in speech enhancement. The area-optimized architecture 

for the sub-band sub-space optimal filter is also presented. Chapter 5 then discusses the 

results and comparisons that justify the hardware implementation. Later, the overall 

system performance of the speech enhancement architecture is discussed. The FPGA 

resource utilization of the architecture is also presented. Finally, Chapter 6 contains some 

conclusions and focuses on some of the future work that could be carried out. 
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Chapter 2 : Hardware-Efficient Matrix 

Diagonalization 

Matrix diagonalization is equivalent to transforming the underlying system of equations 

represented by the matrix, into a special set of coordinate axes in which the matrix takes 

this canonical form. The process of diagonalization essentially consists of computing the 

eigen-values, which are the diagonal entries of the diagonalized matrix while the 

eigenvectors, also known as the characteristic vectors, make up the new set of axes 

corresponding to the diagonal matrix. This chapter briefly presents a review of the 

Jacobi-based diagonalization algorithm followed by a review of the CORDIC-based 

computation technique. The later part of the chapter presents an innovative and simple 

extension of the Jacobi technique to diagonalize multiple symmetric matrices using the 

CORDIC algorithm. 

2.1 Review of Matrix diagonalization using Jacobi Technique 

The Jacobi-based matrix diagonalization algorithm is a numerical technique for 

calculating the eigen-values and eigen-vectors of a real symmetric matrix. The method is 

named after the German mathematician, Carl Gustav Jakob Jacobi. Jacobi method has 

attracted attention for applications dealing with eigen-values of symmetric matrices, 

since they have an inherent unique property that facilitates parallel execution of the 
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algorithm. It works by performing a series of orthogonal similar transforms. The key 

property in achieving the diagonalized matrix lies in the fact that each of these orthogonal 

transform produces an approximate diagonalized matrix, which is "approximately more 

diagonal" than its predecessor. Eventually, when the off-diagonals are small enough to be 

declared zero, the matrix is considered to be diagonalized. 

Let, A be a real symmetric matrix to be diagonalized and J an orthogonal matrix, then 

the orthogonal transforms are given by, Ai+i<r-JTAjJ where, i indicates the present 

orthogonal transform index. The diagonalization of A is achieved by systematically 

reducing the "norm" of the off-diagonal elements of A at each transform, given by [27], 

[28], 

off(A)= \LUY?Ma\ 
m 

(2.1) 

where fly corresponds to the elements of matrix A. The orthogonal matrix is also known 

as the Jacobi rotation matrix and is of the form 

r7 

J (p, q, 6) = -s 

0 

(h 

P 

q 
(2.2) 

where (p, q) is an index pair, 0 is the angle of rotation, and c and s are the cosine and sine 

values of the angle 0. The first step involved in the Jacobi diagonalization technique 

requires computing the index pair (p, q) satisfying the condition l<p <q <n, followed 



by computing the cosine-sine pairs (c, s) such that the norm of the off-diagonal elements 

is reduced. Matrix Ai+i is the transformed version of the matrix At, and for convenience, 

these are denoted by A' and A respectively. Matrix A is updated only in the rows and 

columns corresponding to p and q, as J is essentially an identity matrix except for the 

four positions indicated by the index pair (p, q). As a consequence, the sub-matrix 

Q-pp apq 

®qp &qq 
corresponding to 

transformation is given by 

in A gets transformed to 
a qq 

a, 

a, pq 

qp a. qq 

in A' and this 

a' 
PP 

a' 
IP 

a' 
pq 

a' 
m_ 

c 

-s 

s 

c 

T 

* a a 
pp m 

a a 
IP W 

c s 

-s c 

As the Frobenius norm is preserved by the orthogonal transforms, we have 

(2.3) 

o2 +d +202 =a'2 +aa +2aa =aa +aa 
pp w m PP m m PP <?<? 

off(Af=\\AfF-^l 
1=1 

= \\4-fa2+(a2 +a2 -a'2 -a'2 ) II \\F L~in \ PP m PP qq) 

=off(A)2-2al 

i=i 

.2 ", 2 

pq 

(2.4) 

(2.5) 

It is in this sense that A moves closer to being diagonal with each Jacobi step. The 

diagonalization of A as shown by (2.3) is subjected to the condition 

U CL pq &pq\C S J ~r yO-pp ®-qq)CS 
(2.6) 

The following logic thus falls into place: 
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If (apq=0 or a„=0) 

(c,s) = (l,0) & A' = A 
Else, 

r=aqq a"p t = s/c = Um(0) 
2aP, . 

(2.7) 
End 

Combining (2.6) and (2.7) we get 

t2+2vt-\ = 0 

or 

The values of c and s can now be resolved by 

c = \/Jl + t2 and 5 = /c (2'9) 

It is important to select the smaller of the two roots, as it ensures that \e\ < n 14 and has 

the effect of minimizing the difference between A and A' since 

;j,« (2-10) 

The convergence of the Jacobi method is of a quadratic nature. The classical Jacobi 

algorithm can then be summarized as follows [27] : 
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a 
pi 

= max,v. 

V—I„; eps = tolftAft 

While off (A)>eps 

Choose (p, q) so 

(c, s) = sym.schur2(A, p, q) 

A=J(p,q,0) 

V=VJ(p,q,6) 

End 

In the above, the function sym.schur2 determines the 2-by-2 rotation. Given an (nxn) 

symmetric matrix A and integers p and q that satisfy 1< p < q < n, the function 

sym.schur2 computes a cosine-sine pair (c, s) such that if A ' = J(p, q, 0)TA J(p, q, 6), then 

a'Pq = a 'gp = 0 and hence, A' is diagonal. 

Function : [c, s] = sym.schur2 (A, p, q) 

If A(p, q)^0 

x = (A(q,q)-A(p,p))/(2A(p,q)) 

If x>0 

t = 

e 

t = 

I 

-1 

-) 

(r + Vl + r2) 

/ ( - r + Vl + r 1 
- i M c = 1/V1 + ^2 

Else 

End 

s = tc 

c = 1 
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An interesting and unique property of the Jacobi algorithm is its ability to facilitate 

parallel execution of the algorithm. To illustrate this, let n = 4, i.e., we consider a (4x4) 

matrix. We group the six sub problems into three transform sets as follows: 

transform, set (1) = {{1, 2), (3, 4)} 

transform, set (2) = {(7, 3), (2, 4)} 

transform, set (3) = {(7, 4), (2, 3)} ( 2 - 1 1 ) 

Note that all the transforms within each of the three rotation sets are "non-

conflicting". That is, transforms pairs (1, 2) and (3, 4) can be carried out in parallel. 

Likewise, the transform pairs (1, 3) and (2, 4) can be executed in parallel and so can the 

pairs (1, 4) and (2, 3). In general, we say that pairs (1, 4) and (2, 3). In general, we say 

that 

(hJt).(hJ1).:..(inJn) N={n-l)n/2 (2.12) 

is ^parallel ordering of the sets {(*,./) |l <i< j <n) if for s = 1, ... , n-1 the transform 

set transform.set(s) = {{ir,j ) :r = 1 +n (s-l)/2 : ns/2] consists of "non-conflicting" 

rotations. This requires n to be even. The case of n being odd can be handled by adding 

an extra row and an extra column of zeros to A. A complete parallel execution of the non-

conflicting transform sets could certainly reduce the computation time drastically, 

however, at the expense of additional hardware. The hardware requirements for a 

complete parallel execution of the non-conflicting transform sets grow exponentially with 

the increase in the size of the matrix. In practice, therefore, a complete parallel approach 

is definitely not a viable solution for large matrix sizes. However, a folded parallel-serial 
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approach is usually an attractive choice, since it maintains a balance between the 

hardware cost and the performance [29]. 

A detailed discussion of error analysis of the Jacobi algorithm is available in [30], 

[32]. Wilkinson was the first to perform an error analysis for the Jacobi algorithm for 

symmetric matrix diagonalization. Later, a refined error analysis was presented by 

Demmel and Veselic in 1992 [31], where he shows that the Jacobi algorithm is more 

accurate than the QR factorization algorithm used for matrix diagonalization. 

2.2 CORDIC Algorithm: A Review 

Digital signal processing has been historically dominated by microprocessors with 

enhanced features such as single cycle multiple-accumulate instructions, zero over-head 

looping, special addressing modes and bit-reversal techniques. Though the DSP 

processors offer low cost and high flexibility, they do not meet the true demands of DSP 

tasks. This has led to the development of iterative algorithms that could be mapped well 

on to the hardware. With the advancements in reconfigurable computing techniques such 

as the FPGAs, hardware-based approaches have become more and more viable than the 

traditional software-based approaches [26]. Among these algorithms are a class of shift-

add algorithms for computing a wide range of functions including certain trigonometric 

functions, and are collectively known as CORDIC. 

CORDIC is an acronym for Coordinate Rotation Digital Computer. The original 

work is credited to Jack Voider [33]. Extensions to the CORDIC theory based on the 

13 



work by John Walther [34] and others provide solutions to a broader class of functions. 

These functions are computed with simple extensions to the CORDIC architecture [29]. 

Though many functions are not strictly computed as in a CORDIC algorithm, they are 

often included because of their close similarity. 

The problem of real-time solutions for navigation purposes was one of the prime 

motivations for the development of the CODIC algorithm. The CORDIC algorithm has 

found its way into diverse applications including the 8087 math coprocessor, the HP-35 

calculator, radar signal processors and robotics [35]. CORDIC rotation has also been 

proposed for computing discrete Fourier, discrete cosine, discrete Hartley and discrete 

chirp-z transforms, filtering, singular value decomposition (SVD) and solving linear 

system of equations [34], [35], [36], [37] and [38]. 

Vector rotations are one of the key components for computing the various 

trigonometric functions as well as for conversions from polar to rectangular coordinate 

system and vice versa. They can also be used for computing vector magnitudes [29] and 

as a building block in certain transforms such as the DFT and DCT. The CORDIC 

algorithm provides an iterative base for such vector rotations by only shift and adds 

operations, thereby being extremely useful for VLSI implementations [35]. The original 

algorithm, credited to Voider [33], is basically a series of transforms given by 

y 

cos# - s i n 0 

sin Q cos# 

= cos 0 
1 

tan6> 

x 

y. 

tan 0 

1 
x 

y 
(2.13) 

which rotates a vector in the cartesian plane by an angle 6. So far, nothing is simplified in 

terms of the hardware required, as it involves multiplication operations. However, if we 
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can restrict the rotation angle such that tan(6) - ± 2'', the multiplication by the tangent 

term is simply reduced to a bunch of shift and addition operations. Any arbitrary angle of 

rotation is obtained by a series of rotations, where the decision of the direction of rotation 

at the ith stage is governed by the sign of the angle by which the axes are to be rotated. 

Thus, (2.13) is simplified to 

Xi+\ 

JM. 
= Ki I 

1 

d,2~' 

-dt2~r 

1 

~x 

J (2.14) 

where 

Kt= cos [tan-1 (2" '))=-r=i 
1+2--

(1 
dt={ 

for 6 >0 

for 9<0 

Kj is known as the scaling constant, while dt as the directional bit. The product of AT,-'s is 

pre-computed in the system and results in only a constant coefficient multiplication, thus 

leading to an efficient VLSI implementation. The product approaches 0.6073 as the 

number of iterations tends to infinity. Therefore, the rotation algorithm has a gain, and 

the exact gain depends on the number of iterations and obeys the relation 

Gain 
MVTTP 

(2.15) 

A CORDIC rotation is primarily achieved by a sequence of angle rotations. The angular 

values are supplied by a small lookup table (one entry per iteration) or are hardwired, 
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depending on the implementation. The angle accumulator introduces a difference 

equation to the CORDIC algorithm, to keep track of the total angle rotated for the given 

number of iterations, and is given by 

Z^^Zi-dtJan^r) (2.16) 

where, Z, stores the angle accumulated at the i'h iteration. Most of the CORDIC functions 

are achieved by setting different initial conditions to (2.14) and (2.16) [33], [34], [37]. 

VLSI implementation of the CORDIC algorithm has also found itself in serial, parallel 

and folded semi parallel-serial implementation schemes due to efficient shift and add 

functional units. Though the convergence of the CORDIC algorithm is quadratic [27], its 

recursive nature hampers the overall system throughput rate. 

2.3 Simultaneous Diagonalization of Matrices using CORDIC 

This section presents a CORDIC-based scheme to simultaneously diagonalize multiple 

symmetric matrices. The Jacobi rotation technique to diagonalize a single matrix [27] is 

now extended for the diagonalization of multiple matrices. Let, Aj and A2 be two real 

symmetric matrices intended to be simultaneously diagonalized and J an orthogonal 

matrix, then the extension of the algorithm is based on performing a sequence of 

orthogonal similar update pairs An+i<r-JTA]jJ and A2i+i*—JTA2iJ, where ' j ' indicates the 

index of the present orthogonal transform. Each transform has the property that each new 
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pair Aj and A2, are "more diagonal" than its predecessor. The orthogonal matrix J is the 

Jacobi matrix as given by (2.2). 

Let the elements of the two matrices Ai and A2 be anj and 02/,;, and let v,,y be the 

elements of the eigen vectors matrix V. Matrices A\ and A2 are updated only in the rows 

and columns of p and q as J is essentially an identity matrix except for the four positions 

indicated by the index pair (p, q). The 2-by-2 transformations are shown below: 

&\pp Q \pq 
1 1 

Cl\qp Q\qq 

CI 2pp CI 2pq 
1 1 

CI 2qp CI 2qq 

V pp V pq 
I I 

V qp V qq 

C S 

-S C 

c s 

-s c 

Q\pp a\pq 

a\qp a\qq 

fypp fypq 

Chqp Chqq 

1 0 

0 1 

IT r V V 
pp pq 

V V 
qp qq 

c s 

-s c 

c s 

-s c 

c s 

-s c 

(2.17) 

(2.18) 

(2.19) 

The initial step in the simultaneous diagonalization involves primarily choosing the 

Jacobi pair (p, q) that satisfies l<p <q <n and secondly, computing the cosine-sine pair 

(c, s) such that the norm of the off-diagonal elements of both A\ and A2 are reduced in 

each transform, similar to that shown in Section 2.1. Let us denote the transformed 

matrices after the Jacobi rotation of ^4; and A2 as A) and A 2 respectively with elements 

a nj and a 21- The simultaneous diagonalization of matrices A\ and A2 is constrained by the 

condition 

a[ = 0, a i = 0 and a'2 = 0, a'2 = 0 (2.20) 

Combining (2.17), (2.18), (2.19) and (2.20), we have 
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a , (c2 - s2 )+ (a, - a , )cs = 0 

Now, combining (2.21) and (2.22) we get 

(2.22) 

f (2.23) 

where 7 is the tangent of the chosen angle of rotation. It can be shown that choosing t to 

be the smaller of the two roots ensures |<9|<;z74and also has the effect of minimizing the 

difference between A and A . Let 

(«1W + «2<J-(<V + «2;J (2.24) 
T = 

The lowest absolute value of / satisfying (2.23) has been shown to be [27] 

t = 
sign(v) 

-| + Vl + r2 
= tan(#) = 

(2.25) 

where 9 determines the angle of the Jacobi rotation. From (2.25) it can be shown that 

^ (2.26) r 
ngn(0) sign\p)- sign 

r 

tan 

v v 

sign(x) 

H + Vi + X 
- sign (0 

J) 

Therefore, the desired direction of rotation is given by 

di = sign {a,qq+a2qq)-{a^pp+a2pP) 

(2.27) 

Similarly, we can show that the sign of the angle of rotation for the M different matrices 

to be 

f M 

sign (d)~ sign 
Z(" 

2 a*. 
\ <=i 

(2.28) 



Thus, (2.28) determines the sign of the angle required for Jacobi transform that best 

diagonalizes Mdifferent symmetric matrices. 

So far, the computation of (2.17), (2.18) and (2.19) requires computing the 

trigonometric sine and cosine values of the Jacobi rotation angle. However if the angle of 

the Jacobi rotation is restricted, such that tan(9)=2~', the multiplication operations 

required in (2.17), (2.18) and (2.19) simply reduces to shift and add operation, similar to 

the CORDIC algorithm given by [37], [33], [29]. We approach the desired Jacobi rotation 

in an iterative way with a step size of 2\ i being the iteration number. The iterative 

CORDIC approach of computing a single Jacobi rotation for Ai and A2 can now be 

expressed as 

= * ? 

=KI 

1 

di.2" 

d,2-<] 
1 

T 

* 
(%P; 

KA 
(%*V 
(%-Pj 

* 1 

Ur 
d,r 

1 

1 di.r 

•di.2'1 1 

iT 

(V,+; 

d,T 

K; = 
1 

-2i -Ji+r 

-di.2'' 1 

1 di.2'' 

-d,r 1 

and dt= ±1 

(2.29) 

(2.30) 

(2.31) 

(2.32) 

ith where f *),• refers to the value of (*) at the i iteration and GR is the net scaling factor that 

depends on the total number R of CORDIC iterations. Kt and dj are the scaling constant 

and the direction of the Jacobi rotation respectively at the i'h CORDIC iteration and c/, is 

given by (2.30). Thus, every Jacobi rotation in (2.17), (2.18) and (2.19) corresponds to R 

successive CORDIC iterations given by equations (2.29), (2.30) and (2.31). The update 

of the angle of rotation in each such CORDIC iteration is given by 
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Zi+1 = Zt - tan'(I') (2.33) 

where Z,+/ indicates the total angle yet to be rotated by the CORDIC algorithm after the 

i'h iteration in order to complete the required Jacobi rotation. Z, approaches zero with 

higher CORDIC iterations. Due to the angle rotation of 2° in the first iteration, the 

algorithm is restricted to the rotation of ± 77/2, hence the convergence of the CORDIC 

algorithm in each Jacobi rotation is guaranteed as the angle to be rotated in each such 

Jacobi rotation is constrained by \&\< n 14 . A higher number of CORDIC iterations 

fetch a lower value of the "norm" of the off-diagonal elements in the diagonalized 

matrices, giving a higher computational accuracy. This tradeoff between the 

computational accuracy and the cost could easily be exploited depending on the 

application requirements. Appendix A gives a simple numerical example for a better 

understanding of the diagonalization process. 

2.3.1 GainG/j 

Equations (2.32) to (2.34) bear an inherent gain in the system as represented by the factor 

GR, which is the gain constant for every 7? CORDIC iterations. For applications such as 

matrix diagonalization, multiplication of the gain matrix GR becomes inevitable, thereby 

ruining the advantage of the multiplier-free CORDIC algorithm. However, this can be 

overcome by fixing the total number of CORDIC iterations in each step of the Jacobi 

rotation, thereby fixing the value of GR in (2.32), since 7? indicates the total number of 

CORDIC iterations. The diagonalized matrices are obtained by solving (2.29) to (2.31) 

and are constrained by fixing the total number of CORDIC iterations, thereby yielding 
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scaled diagonalized matrices. With known scaling values, the scaling could be nullified in 

subsequent stages of signal processing, wherein the scaling operation can be performed 

with in the filter itself without any extra hardware overhead. Therefore, the gain GR can 

be neglected during the process of diagonalization of the matrices using the CORDIC 

algorithm. The neglected gain is easily compensated at a later stage in the system. 

2.3.2 Summary of the Algorithm 

The algorithm described in Section 2.3 is summarized below. The construct 'Seq' 

represents segments to be executed in sequence while the construct 'par' indicates the 

segments to be executed in parallel. These are constructs similar to the ones used in a 

parallel programming language like 'Handel-C to describe sequential and parallel 

operations. The algorithm extracts the inherent parallel property of the CORDIC 

algorithm. However, it could also be executed completely sequentially. In Chapter 4 we 

implement a semi-parallel sequential architecture of the algorithm on hardware. 

Algorithm: 
For J - 1 : Total number ofJacobi Iterations 

For p = I: n-1 
Par: { 

For all q = {p+1 : 1: nj 
Seq: { 

For R = 1 : Total number of CORDIC rotations 
Compute equations (2.29) to (2.31) 

End 
; Seq End 

End 
; Par End 

End 
End 
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2.4 Error Analysis of the CORDIC Based Diagonalization 

Engine 

This section gives a graphical understanding of the computational error of the CORDIC 

based matrix diagonalization algorithm. The dominating errors that affect the system 

performance in a major way are the off-diagonal elements of the diagonalized matrix and 

the reconstruction error from the eigen-vectors and eigen-values. It is observed through 

computer simulations that the reconstruction error is predominantly due to the off-

diagonal elements, when we consider the overall system performance of a speech 

enhancement system in terms of the signal to noise ratio. Detail description of the speech 

enhancement system is given later in Chapter 3. 

2.4.1 Mean Off Diagonal Error of the Diagonalized Matrix 

Figure 2.1 shows the mean off-diagonal error of the diagonalized matrices for varying 

matrix sizes, for 100 pairs of randomly generated symmetric matrices. Figure 2.1 (a) 

shows the mean off-diagonal error of the matrix pairs for varying number of CORDIC 

rotations, keeping the total number of Jacobi iterations to 40. Figure 2.1 (b) shows the 

mean off-diagonal error of the matrix pairs for varying number of Jacobi iterations, 

keeping the total number of CORDIC rotations to 30. P-Crd-x indicates the proposed 

algorithm for x number of total CORDIC rotations and P-Itr-j indicates the proposed 

algorithm for y number of total Jacobi iterations. A higher number of Jacobi iterations 
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indicate that the study of the off-diagonal error of the matrix pairs in Figure 2.1 (a) is 

mainly due to the varying CORDIC rotations, as the contribution of the off-diagonal error 

due to Jacobi iterations becomes negligible. Similarly Figure 2.1 (b) assumes that the off-

diagonal error is mainly due to the varying number of Jacobi iterations, under the 

assumption that the CORDIC iterations contribute negligible off-diagonal error for higher 

number of CORDIC rotations. The mean off-diagonal error shown in Figure 2.1 indicates 

the presence of higher residual error in one of the matrices compared to that of the other. 

This indicates that the error generated in the proposed algorithm is slightly biased 

towards one of the matrices. However such biases could be significantly minimized by 

introducing higher number of both Jacobi iterations and CORDIC rotations, as can be 

seen from Figure 2.1. The purposed algorithm indicates lesser off-diagonal residues for 

higher order matrix pairs when compared to that of the Matlab-Cholskey factorization 

algorithm. 
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Figure 2.1. Mean Off diagonal error of the diagonalized matrix for varying matrix sizes, 

for 100 pairs of randomly generated symmetric matrices, (a) for varying CORDIC 

rotations and (b) for varying Jacobi iterations. 
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2.4.2 Mean Reconstruction Error of the Constructed Matrices 

Figure 2.2 shows the mean reconstruction error of the matrices constructed from the 

calculated eigenvectors and eigenvalues for varying matrix sizes, for 100 pairs of 

randomly generated symmetric matrices. Figures 2.2 (a) shows the mean reconstruction 

error for the matrix pairs for varying number of CORDIC rotations, keeping the number 

of Jacobi iterations to 40. P-Crd-x indicates the proposed algorithm for x number of total 

CORDIC rotations and P-Itr-y indicates the proposed algorithm for y number of total 

Jacobi iterations. Figure 2.2 (b) shows the mean reconstruction error for varying total 

number of Jacobi iterations, keeping the number of CORDIC rotations to 30. The mean 

reconstruction error shown in Figure 2.2 indicates that the proposed technique clearly out 

performs the Matlab-Cholesky factorization. This is as expected since the eigen vectors 

generated by the proposed method are highly orthogonal and their orthogonality is well 

preserved in each CORDIC rotation and Jacobi iteration. Section 2.3 explains this in 

more detail. 
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Figure 2.2. Mean reconstruction error of the constructed matrices from the calculated 

eigen-vectors and eigen-values for varying matrix sizes, for 100 pairs of randomly 

generated symmetric matrices, (a) for varying CORDIC rotations and (b) is for varying 

Jacobi iteration 
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2.5 Summary 

In this chapter we have presented a brief introduction to the Jacobi based matrix 

diagonalization technique for symmetric matrices. This well known technique is a 

computationally efficient numerical technique for symmetric matrix diagonalization 

problems. This technique also provides an intuitive mechanism for parallel 

implementation. However, in practice, a complete parallel implementation becomes 

unreasonable for very large matrix sizes due to an exponential increase in the hardware 

requirements; hence, mostly a folded semi-parallel approach is very often preferred. 

This chapter has also reviewed the basics of the CORDIC algorithm. The 

CORDIC implementation exploits the advantage of mapping powers of 2 constant 

coefficient multiplications effortlessly onto digital hardware, thereby reducing the 

computational elements to a set of shift and addition operations. At the core of the 

CORDIC algorithm is the iterative vector rotation, which has a very high convergence 

rate. 

We have further presented a simple extension of the Jacobi algorithm for 

simultaneous diagonalization of multiple symmetric matrices, which has been efficiently 

mapped onto the CORDIC implementation scheme, thereby making a complete 

multiplier-free implementation of the simultaneous diagonalization technique possible. 

Being iterative in nature, for most practical applications, it provides an easy tradeoff 

between the computational accuracy and the execution speed. The error analysis of the 

proposed technique shows a performance similar to that of the Matlab-Cholesky 

factorization as the size of the matrices increase. 
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Chapter 3 : Speech Enhancement 

Speech enhancement is the term used to describe the process of improving the perceptual 

aspects of human speech. With the increase of digital communication in the last 50 years, 

speech enhancement has attracted increasing attention in different speech processing 

problems. Speech enhancement primarily consists of removal of noise from degraded 

speech while maintaining the speech quality over an audible threshold. 

3.1. Review of Subspace Based Speech Enhancement 

Technique 

The application of signal subspace approach has traditionally found its place in frequency 

estimation, direction of arrival estimation and system identification [64], [59], [39]. It is 

only recently that it has been applied for speech enhancement applications. The basic 

concept is to project the noisy speech signal onto two subspaces: the signal-plus-noise 

subspace and the noise subspace. As the noise subspace contains only the noise process, 

the signal can be recovered by removing the components of the signal in the noise 

subspace while retaining the components of the signal in the signal subspace. The 

decomposition of the signal into its subspaces is usually done by either using the singular 
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value decomposition (SVD) [63], [59] or the eigen value decomposition (EVD) [56], 

[10], [64], [39] . 

Dendrinos et al. [63] have proposed a SVD-based technique making use of the basic 

idea that the eigenvectors corresponding to the largest singular values contain signal 

information, while the eigenvectors corresponding to the smallest singular values contain 

noise information. Thus, the largest singular values are sufficiently informative enough to 

reconstruct the enhanced signal. This has given impressive SNR improvements mostly 

for signals corrupted with white noise. The work of Dendrinos et al. [63] was further 

extended by Jensen et al. [59] using the Quotient SVD (QSVD) approach to tackle the 

problem of removal of colored noise. By arranging the signal data in a Toeplitz matrix, 

they arrange the data in a Hankel matrix and compute the least square estimate of the 

signal-only Hankel matrix. However, the computational inefficiency of the QSVD, along 

with its inability to either shape or control residual noise, is not attractive. Ephraim and 

Van Trees [19] then came up with an optimal estimator that would constrain the residual noise 

while minimizing the speech distortion. This essentially leads to solving a constrained 

minimization problem. This technique uses the Karhunen-Loeve transform (KLT), which 

decomposes the vector space of the noisy signal into a signal and noise subspace. The 

estimated signal is then obtained by performing an inverse KLT after nullifying the noise 

components from the signal and noise subspaces in the KLT domain. The traditional 

spectral subtraction method that introduces a lot of musical noise is overcome by the sub-

space approach, yielding a much better speech quality. Ephraim and Van Trees's 

formulation of the subspace approach is based on the assumption that the input noise is 

white. Their work was further enriched by Yi, Hu and Loizou by their generalized 

subspace approach for enhancing speech that is corrupted by colored noise [19]. This lead 
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to an optimal linear estimator that minimizes the speech distortion while suppressing the 

background noise, using time-domain constrains (TDC). The following sections highlight 

the theory behind the design of a subspace approach speech enhancement engine based 

on certain time domain constraints for handling colored noise. 

3.1.1 Optimal Subspace Filter for Speech Enhancement 

A linear speech production model is assumed for clean speech X, given by, X = ¥ S, 

where ¥ is a K x M matrix with rank M (M < K) and 5 is a M x 1 vector, respectively. 

The covariance matrix of X, which is also a positive definite matrix, is given by 

Rx = E{X XT) = W RXWT (3-1) 

Since the rank of the matrix Rx is M, it has K - M zero eigen-values. With the 

assumption that the noise is additive and uncorrelated with the speech signal, the 

corrupted signal is given as 

Y=W S + d = X+d (3.2) 

where Y, X and d are the ^-dimensional noisy speech, clean speech and noise vectors 

respectively. The linear estimator X of the clean speech X is given by, X = H.Y, where 

H is a K x K matrix. This estimate would essentially generate an error signal e due to the 

incorrect estimate of the signal and is given by 

E=X-X=(H- I)X + H d= Ex+ed (33) 
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where e represents the speech distortion and e, the residual noise [19]. The associated 
X 

energies s?x and sd of the distortion signal and the residual noise are given by 

4 = E[eT
x ex] = tr(E[eT

x e J ) = tr (HRX HT - HRX - RXHT + Rx) 

and 7d = E[eT
ded] = tr(E[eT

ded]) = tr (HRdH
T) (3.4) 

The optimal linear estimator is obtained by solving the linear time-domain constrains, 

leading to the solution of a constrained minimization problem. Essentially, the estimator 

estimates the enhanced speech keeping the speech distortion below a threshold, which is 

adaptively set for every speech frame. The constrained minimization problem is given 

below. 

Minimize : sx 

Subject to: -£2
d^

d
 ( 3 5 ) 

where a is a positive constant. The solution to the above constrained equation is given 

by [19] 

Hopt=Rx(Rx+M.Rdy> <3-6) 

where Rx and Rd are the covariance matrices of the clean speech and noise, respectively, 

and ju is the Lagrange multiplier. After using the eigen-decomposition of 

RX—UAXU , the simplified estimator is given by 

Hopt= U\(AX+ fiUTRdUf' If (3.7) 
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where U and Ax are, respectively, the unitary eigenvector matrix and the diagonal 

eigenvalue matrix of Rx. In the case of white noise with variance 0d , Rd = Od I and the 

estimator described above reduces to that of Ephraim and Van Trees [19]. It basically 

approximates /^by the diagonal matrix 

&d=diag(E(\u]d\2), E(\uT
2d\2), ..., E(\uT

Kd\2)) ( 3 8 ) 

where £4 and d are, respectively, the K: eigenvector of Rx and the noise vector 

estimated from the speech-absent segments of speech. Thus, the approximated sup-

optimal estimator developed by Ephraim and Van Trees, which is not suited for colored 

noise is given by 

Hopt*UAx(Ax+MAdy
luT ( 3 - 9 ) 

Later the work was improved by Hu and Loizou [19], by studying the matrix U Rd 

U, which they found to be weakly diagonalizable. This is not surprising, since the 

eigenvectors of Rx, which are supposed to diagonalize Rd could diagonalize Rd only in 

the case of white noise. On the contrary, it can be shown [28] that there may exist an 

eigen-space, which is common to both the matrix spaces Rx and Rd, thus essentially 

resulting in the simultaneous diagonalization of both Rx and Rd- The simultaneous 

diagonalization as given by [19] is as follows: 

VTRXV = A£ 

VTRdV=I (3.10) 
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where Aj; and V are the eigen-value and eigen-vector matrices respectively. Using the 

eigen-decomposition of Rx and Rj, the optimal estimator is further simplified as shown 

below. 

Hopt=RdVAsUE+liI)-1VT 

= V-TA£(AZ+MI)-1VT (3.11) 

It has been shown in [19] that the Lagrange parameter ju must satisfy 

S2={tr{(VTrfAl(A£+Miy2} ( 3 1 2 ) 

where sd = Kd . The enhanced signal is obtained by X = Hopt Y, where Y is the noisy 

input speech signal. This fundamentally amounts to a transform V being applied to the 

noisy signal Y and then the enhanced signal X estimated by appropriately applying a gain 

function in the transformed domain and then taking the inverse transform (V ) of the 

modified components, as shown by (3.11). The gain matrix is given by 

G = A% {Ax + pt I)' , a diagonal matrix. 

3.1.2 Estimating the Lagrange Parameter fi 

So far we have described the optimal estimator as given by (3.11); however, it requires 

the calculation of the Lagrange parameter ju. Ideally, to parametrically compute the 

Lagrange parameter pi, it would require solving (3.12), which is certainly not a trivial 

task. Therefore, an approximation of the Lagrange parameter is the next option. 
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Estimation of // involves the risk of either over estimating the parameter resulting in a 

high back ground noise suppression but with heavy speech distortion, or an under 

estimation of the parameter that would lead to minimum speech distortion but low back 

ground noise suppression. Hence, the estimate of the parameter // is critical. 

Ideally, we would like to minimize the speech distortion in speech-dominated frames, 

since the speech signals will have a masking effect on the noise; hence, the value of // 

would then be dependent mostly on the short-time SNR. Hu and Loizou [19], therefore, 

chose the following equation for estimating pi: 

M = Mo-(SNRdb)/s (3.13) 

where pio and s are constants chosen experimentally, and SNR^b = lOlogio SNR. It is to 

be noted that a similar equation was used in [19] to estimate the over-subtraction factor in 

spectral subtraction. However, it has been shown that the method proposed by Hu and 

Loizou provides a better trade-off between speech distortion and residual noise compared 

to the approach in [19], which uses a fixed value of pi regardless of the segmental SNR. 

The estimate of the SNR is found directly by replacing the signal energy by their 

m 
eigen-values, X E along with their corresponding eigenvectors V/c 

[i.e., Xf=E{\v{x\2)), 

tr(V%V) Zf^f (3.14) 
SNR = T 

tr (Rx) The segmental SNR definition thus reduces to the traditional SNR definition of—-—-
tr {Rd) 

for an orthogonal matrix V. 
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3.2. Frequency Sub-Band Processing into Subspace based 

Speech Enhancement 

In this section, we develop a technique to tackle the problem of inaccurate estimation of 

the covariance matrices, keeping in mind the masking properties and computation 

complexities. We address this by focusing on the subbands rather than treating the full 

band signal. The subband approach exploits the inherent low variance of the speech and 

noise signals in a limited frequency region as opposed to using the full band. This 

technique automatically results in subband-based covariance matrices that are much more 

accurate compared to the full band counterpart. This accurate estimate of the covariance 

gives a better estimate of the clean speech under heavy noise conditions, as will be 

evidenced by the results obtained (see Section 3.3.5.). Further, by using the frequency 

sub-band technique we can update the covariance of the noise and noisy speech 

independently in each subband. This is possible since many of the frequency subbands do 

not often contain speech activity, even though there is activity in the other subbands. Thus, 

even though there may be speech detected in the full-band signal, the subband technique 

offers a better covariance estimation by allowing band selective covariance update in 

contrast to the full band approach. The subband technique involves simultaneous 

diagonalization of much smaller matrices compared to the full band case. This not only 

results in a higher accuracy, as will be seen from computer simulations, but also reduces 

the computational cost, since the computational complexity for matrix diagonalization 

increases as the cube of the size of the matrix [73]. 
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3.2.1. Theory of Frequency Sub-Band Processing 

The subband implementation of the subspace enhancement scheme is illustrated by the 

block diagram in Figure 3.1. As a first step, the noisy speech signal is broken down into 

M narrow band frequency segments using a perfectly re-constructible filter bank 

followed by down sampling, as shown in Figure 3.1. Letyj, Xj and rij denote the noisy 

speech, clean speech and noise signals in t h e / frequency sub-band. Then, assuming an 

additive noise model we obtain 

y=Xj+nj 

where the noise and speech are assumed to be uncorrelated in each subband. 

(3.15) 
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Now, in each subband, an independent subspace speech enhancement linear estimator is 

employed to obtain the enhanced speech in that particular subband. Let Hj be the optimal 

linear estimator for they'"' subband; then, the clean speech estimate Xj in that subband is 

obtained by Xj = Hj. Yj , where Hj is a KxK matrix. The error signal is given by 

SJ =XJ +XJ = (Hj-I)xj + Hj T V S ( 3 , 1 6 ) 

where the two error components e .̂and en. denote the speech distortion and residual 

noise for the / subband. The corresponding energy components could be expressed as 

4 =E [Snj S ] = tV {E [4 Si) (3AV 

Following the procedure used in [19], an optimal linear estimator can be derived by 

considering the following constrained optimization problem, where the speech distortion 

term in (3.17) is minimized subject to the constraint that the residual noise error term in 

(3.18) is reduced to a value that is lower than the threshold: 

Minimize: si. 
Xj 

Subject to: - e2
n. < d) (319) 

where, 8. is a positive constant in each subband and is assumed to be a function of the 

subband segmental signal to noise ratio (SSNR) in our case. The constrained 

minimization in (3.19) leads to an optimal filter 
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Hj= RXj(RXj+HjRn) (3.20) 

where pi. is the Lagrange multiplier, and Rx, and Rn. are the KxK clean speech and noise 

covariance matrices, respectively. In each segmental frequency, a decision is made to 

distinguish between a pause frame and a speech frame based on a simple comparison of 

the present frame energy to that in the past few frames. Based on this decision, an update 

of the autocorrelation of the noise or speech is estimated, using which the linear estimator 

is constructed. As shown in [19], the simultaneous diagonalization of Rx. and Rn. 

generalizes the optimal estimator in (3.20) to handle the case of colored noise when 

VfRnjVj = I (3.21) 

where Ax. and V.- are the subband eigen vectors and eigen value matrices, respectively. 

Applying the eigen decomposition of (3.21) in (3.20), we can rewrite the subband linear 

estimator as 

H.=R (R +u.R Y=VrTA ( A +u.lYvT=V.G.VT n22) 
j XJ \ XJ r*j nj J j xj\ xj r~j ) j j J J l J - z z y 

where the gain matrix Gj is a diagonal matrix that is intended to attenuate the eigen 

values of the autocorrelation of the noise according to the Lagrange parameter fij. As 

mentioned earlier, this parameter is very important. It determines the amount of speech 

distortion for a minimum noise residue in the corresponding subband. A large estimate of 

this parameter would eliminate much of the background noise at the expense of 

introducing speech distortion and conversely, a small estimate would minimize the 

speech distortion at the expense of introducing large residual noise. It has been shown in 
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[19] that//,- does not have a closed form expression in terms of 8 , which forces the use 

of a linear expression for the Lagrange parameter, as done in [19]. The Lagrange 

parameter thus obtained is then scaled by the SSNR of they' subband. This incorporates 

the subband Lagrange parameter as a function of the SSNR in that frequency band. The 

estimated signal from each frequency segment is up sampled and reconstructed in the 

filter bank to generate the final full band estimated signal. 

3.2.2. Justifying the Need for Sub-Band Processing 

The proposed subband technique assumes that the noise is uncorrelated in each of the 

subbands and may or may not be uncorrelated in the over-all signal. Thus, the approach 

proposed here is a more generalized one. Computer simulations indicate that the 

simultaneous diagonalization of Rx. and Rn. in each subband has a greater degree of 

accuracy in terms of numerical computations as compared to that in the full band 

approach. The down sampling in the filter bank drastically reduces the matrix size in each 

subband as compared to that in the full band case. This reduces the computation 

complexity of the diagonalization unit, since the computational complexity increases as 

cube of the order of the matrix. Speech frames are taken at a speech length of 32 ms in 

order to preserve speech property, from which enhancement is possible [67]. A 32ms of 

speech on an 8000 sample/s sampling rate would require a buffer length of 256 words, 

with a simultaneous diagonalization core of the order 256. On the contrary, with a 4 

channel filter bank, it would require 4 individual buffers of length 64, with the 

simultaneous diagonalization core to only handle matrices of order 64. As the cube of 64 
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is a much smaller number than that of 256, the increase in hardware due to the 4 channel 

filter bank is well compensated by the reduced hardware in the matrix diagonalization 

engine. It will be shown in Chapter 4 that the hardware complexities of higher order 

diagonalization engines result in lower throughput, which is the primary bottle neck in 

processing higher signal rates. Hence, the frequency subband technique also provides a 

solution for parallel implementation of speech enhancement in dealing with signals of 

higher sampling rates. 

3.3. Objective Performance Measures and Experimental 

Results 

In this section, we will fist describe the objective measures that have been used for 

quantitative performance measure of the overall system performance. We will then 

present the experimental results of the sub-band based speech enhancement engine. 

3.3.1. Signal to Noise Ratio (SNR) 

SNR is the most often chosen measure because of its computation simplicity. Let y(n), 

x(n) and d(n) denote the noisy speech signal, clean speech signal and noise signal, 

respectively, and x(n) the corresponding enhanced signal. The error signal e(n) can be 

written as 
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e(n) = x(ri) - x\n) 

The error signal energy can be computed as 

n n 

and the signal energy as 

Ex= I,nx2(n) 

The resulting SNR measure (in db) is obtained as [69], [68] 

(3.23) 

(3.24) 

(3.25) 

SNR = 10logJ0^h=10log Zn*\n) 
'10 In [*(«)" *(»)]' 

(3.26) 

3.3.2. Segmental SNR (SSNR): 

The SSNR measure is a variant of the SNR, and is formulated as follows [68], [69] 

SNRseg=^llOlog10 
n = mi- N + 1 

i:j
 N+Mri)-mv 

n=m: - N + 1 
(3.27) 

where mo, mi, ... , mu-i are the end-times for the M frames, each of which is of length 

N. For each frame, the SNR is computed and the final measure is obtained by averaging 

these measures over all the segments of the waveform. For some of the frames, the SSNR 

is either unrealistically high or unrealistically low, thus providing a biased estimate of the 

SSNR. This issue is addressed by discarding the SSNR values below or above a 

predefined lower or upper SSNR threshold value, respectively. In this work, we have set 

the higher threshold value to be 35 db and the lower one to be -10 db. 
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3.3.3. The Itakura Saito distance (ISD) Measure: 

The ISD measure is based on the linear prediction (LP) coefficients. Specially, for each 

frame m, we obtain the LP coefficients a(m) of the clean signal and the LP coefficients 

P(fri) of the enhanced signal. The ISD measure is defined by [68], [69] 

[q(m) - p(m)] TRx{m)[a(m)-P(m)\ 

d{m) j 
a(m) Rx(m)a(m) (3.28) 

where Rx(jn) is the autocorrelation matrix of the mth frame of the clean speech. 

3.3.4. Modified Bark Spectral Distortion (MBSD) Measure: 

The difference between the MBSD measure [40] and SNR, SSNR and ISD measures is 

that the MBSD measure takes into account a psycho-acoustical model, which is absent in 

the other three models. The MBSD measure is defined as the average difference of the 

estimated loudness which is perceptible, while the bark spectral distortion (BSD) measure 

is defined as the average squared Euclidean distance of the estimated loudness. The BSD 

and the MBSD measures are defined by the following equations [40]: 

BSD = 
•jj/Lj = 0 E/=7 [Lx (0 - L- (Q] ^29) 

M-l 

MBSD = — > 
I V 1 

M 
j-o 

K 

^/(/)|LP(0-Lf(0 (3.30) 

U = l 

where./' is the frame index, Mis the number of frames, / is the critical band index, K is the 

number of the critical bands, /(/) is the indicator of perceptible distortion at the /th critical 
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band, L)/\i) is the z'th band Bark-spectrum of the/h frame of the clean signal, and L~ (f) 

is the ith band Bark-spectrum of the fh frame of the enhanced signal. The perceptible 

indicator I(i) is set to either 1 or 0. If the difference between the bark spectrum of the 

clean speech and the enhanced speech is below the noise masking threshold, indicating 

that the distortion is not perceptible, the parameter I(i) is set to 0, otherwise it is set to 1 

[40]. The Bark scale is a psycho-acoustical scale named in memory of the scientist 

Heinrich Barkhausen (1881 - 1856), who introduced a measure for the level of loudness 

[41]. The resolution of human auditory system is described by the critical band tuning 

curves of the inner ear. Based on psycho-acoustical experiments [41], the frequency 

range is divided into critical bands. The concept of critical bands leads to a nonlinear 

warped frequency scale called the Bark scale. The unit of this frequency scale is Bark, 

where each critical band has a bandwidth of 1 Bark. The transform of the frequency / 

into Bark scale is approximately given by [41], 

Bark = 13 arctan (0.00076 f) + 3.5arctan(( f/7500)2) (3.31) 

The scale ranges from 1 to 24 and corresponds to the first 24 critical bands of hearing. 

The subsequent band edges are (in Hz) 20, 100, 200, 300, 400, 510, 630, 770, 920, 1080, 

1270, 1480, 1720, 2000, 2320, 2700, 3150, 3700, 4400, 5300, 6400, 7700, 9500, 12000, 

15500. In this thesis, with 8000 samples/s the number of critical bands K is chosen as 18. 

This also helps in an appropriate comparison of the results with those in [19]. 

Calculations of the/h frame Bark-spectrum has been well described in [70], where the 

spectral average of the individual critical bands over the entire spectrum provides the 

bark spectrum of that particular frame. 
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3.3.5. Experimental Results and Discussion 

We evaluate our frequency sub-band (FS) algorithm on 20 sentences from the TIMIT 

database that includes 10 male and 10 female speakers. The proposed enhancement 

parameters are: sampling rate = 8 KHz, number of subbands = 32 and window size = 32. 

A perfect reconstruction filter bank obtained using the 'Daubechies 18' wavelet packet 

analysis function is employed. The enhanced vectors are hamming windowed and 

combined using the overlap-add-synthesis method while a rectangular window is used to 

estimate the covariance matrices. The clean speech files are corrupted by employing an 

additive noise model, where the car, babble and F-16 cockpit noises from the NOISEX 

database are added to the clean speech files at -10, -5, 0, 5 and 10 dB SNRs. Figure 3.2 

shows the spectrogram of a typical clean speech of a TIMIT sequence, and Figure 3.3 

those of the speech corrupted by the car noise at -10 db SNR and the corresponding 

speech after the proposed filtering. The FS algorithm is compared against Ephraim-Van 

Trees (EV) [19] and Hu-Loizou (HL) [19] subspace schemes, using three evaluation 

measures, namely, the segmental SNR, the Itakura distance and the MBSD. A 

comparative analysis of the three algorithms in terms of the above mentioned objective 

measures are illustrated in Figures 3.4, 3.5 and 3.6 for the car, babble and F-16 cockpit 

noises. It is easily seen that the proposed FS technique outperforms the EV and HU 

methods from the point of view of all the three measures under low SNR conditions. The 

improvements are substantial at very low SNRs of -10 and -5 dB and diminish with 

increasing SNR, as is to be expected. 

44 



Figure 3.2: Spectrogram of a typical clean speech of a TIMIT sentence 
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Figure 3.3: Comparison of the spectrogram of speech in Figure 2 corrupted by the car 

noise at -10 db SNR with that of the speech after the proposed filtering. 
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3.4. Summary 

In the initial section, the basics of a subspace based speech enhancement system have 

been reviewed. In the subsequent sections an innovative subband-based speech 

enhancement analysis technique that exploits the slow varying characteristics of speech 

and noise signals over narrow frequency segments, has been proposed. The accurate 

covariance estimation of the noise and speech in the subband results in a better 

performance in low SNR conditions as compared to that of full band subspace-based 

speech enhancement techniques. The proposed technique also provides for an inherent 

parallel implementation scheme and reduces the computational complexity. The proposed 

scheme makes no assumptions of the spectral characteristics of the noise, but only assumes 

that the noise and speech are uncorrelated in each of the subbands. The performance of the 

proposed scheme has been evaluated in terms of the Itakora distance measure, segmental 

SNR and modified bark spectral distortion measure (MBSD), and compared with that of two 

of the well-known full band subspace-based speech enhancement techniques, namely, the 

subspace based speech enhancement developed by Ephrime and Van Trees, and the 

generalized subspace based speech enhancement for coloured noise by Yi Hu and Loizou. 

Improvement in speech enhancement using the subband-based subspace speech enhancement 

technique is clearly visible from the results that have been obtained. 

Having presented the subband-based subspace speech enhancement algorithm in this 

chapter, the next chapter, Chapter 4 presents an hardware architecture for implementing 

the speech enhancement algorithm on FPGA. The architecture utilizes the simultaneous 

diagonalization algorithm discussed in Chapter 2 and implements a subspace-based 

speech enhancement processor. 
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Chapter 4 : Multiplier-Free Architecture 

for the Proposed 

Simultaneous Diagonalization 

Scheme 

So far we have described a CORDIC based algorithm for simultaneous symmetric matrix 

diagonalization. We have also presented a frequency-subband speech enhancement 

algorithm. In this chapter, we will describe the hardware architecture that efficiently 

diagonalizes the symmetric covariant matrices of speech and noise, and computes the 

optimal estimator, using which we enhance the noisy speech, thus rendering it to be a 

speech enhancement processor. The necessary supporting hardware modules such as the 

memory modules and controllers are also presented. The architecture is coded in VHDL 

using the Xilinx ISE design flow to target a FPGA implementation. All the simulation 

results are obtained using the ModelSim simulation software from Mentor graphics. The 

time limitation of this Master's thesis has compelled the use of FPGA due to its shorter 

design time compared to that of an ASIC counterpart. However, in Chapter 5, a 

projection of an ASIC equivalent implementation is studied from the perspective of total 

transistor count only. 

The speech processor has been divided into the following sub-blocks. 

1) Eigen domain Filter 

2) Memory Architecture 
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The subsequent subsections explain the architecture in detail. However, the experimental 

results of their FPGA implementation in terms of the hardware utilization and the overall 

system performance measures are discussed in Chapter 5. 

4.1. Architecture of the Eigen Domain Filter 

The eigen-domain filter is responsible for the process of speech enhancement on a frame 

by frame basis. The core of this filter is a CORDIC based diagonalization engine 

(described in Chapter 2), which simultaneously diagonalizes the two symmetric covariant 

matrices. Apart from the CORDIC core, the eigen-domain filter consists of other units as 

well. This includes the autocorrelation unit, eigen-domain filter gain calculation unit, and 

a multiply and accumulate (MAC) unit for executing matrix multiplications which make 

up the entire eigen-domain filter. Dividing the design into subparts also makes 

designing, testing, debugging and design-reusability easier and convenient. The following 

are the sub-blocks of the eigen-domain filter: 

1) CORDIC architecture of a single processing element (PE) 

2) Multiply and accumulate (MAC) unit 

3) The autocorrelation unit 

4) Eigen domain filter gain calculation unit 

5) Jacobi pair (P, Q) generation Unit 
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4.1.1. CORDIC Architecture of a Single Processing Element 

The proposed architecture of a single processing element (PE) is shown in Figure 4.1. 

The operation of the PE is divided into two modes: first, finding the appropriate direction 

of the CORDIC rotation and second, the CORDIC transform. In the first part of the PE 

operation, the desired CORDIC direction is computed, as given by (2.30) and is stored in 

the 1-bit sign register, sign(0), shown in Figure 4.1. In the second mode, the CORDIC 

rotations, as given by (2.29) to (2.31), are computed based on the sign which is already 

computed in the previous mode. This completes one single CORDIC iteration. The 

architecture is fully pipelined for maximum performance in terms of the data transfer 

rates. Due to the shift and add nature of the operations given by (2.29) to (2.31), the 

architecture is well suited for FPGA/ASIC implementation. At the beginning of the 

diagonalization process, the eigen-vector matrix V is initialized to an identity matrix. 

Since the CORDIC iteration is an orthogonal transform, the resultant eigenvector matrix 

V is also an orthogonal matrix. The covariant matrices that are to be simultaneously 

diagonalized are symmetric, and as a result, the eigen-values and eigen-vectors are also 

real. This discards the need for complex arithmetic units. A single PE unit computes one 

CORDIC iteration as given by (2.29) to (2.31), and R such rotations complete a single 

Jacobi iteration. To achieve higher data rates, a number of such PE units could be 

cascaded to increase the overall throughput. This also makes the architecture very 

scalable. There are four registers in between the adders that act as pipeline registers. The 

architecture given in Figure 4.1 has serial data I/O interfacing in order to decrease the 

total number of I/O pins used by this unit. Figure 4.2 shows the I/O block diagram of the 
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PE controller units. These controllers are basic state machines, controlling the state 

transition of the PE unit. The next section describes the state transition of the controllers 

in brief, through finite state machine (FSM) diagrams. The controllers are responsible for 

synchronous operations within each PE. The controller unit consists of a PE master 

controller which in turn synchronizes and controls the PE sign controller and the PE 

execution controller. Figure 4.3 shows the timing diagram of some of the important I/O 

signals of a single PE. 

(a) PE Master Controller FSM Design 

The PE master controller synchronizes the operation between the PE sign controller unit 

and the PE execution controller. The FSM of the PE master controller is shown in Figure 

4.4. It operates on two 2-by-2 matrices and calculates (2.29) to (2.31). Controlled by the 

"start PE controller Unit" control signal to start the operation, the PE master controller 

asserts the "Done PE Controller" at the end of the execution. 

(b) PE Sign Controller 

The PE sign controller is responsible for calculating the direction of the CORDIC 

rotation as given by (2.33). Figure 4.5 describes the FSM of the sign controller. In the 

first eight clocks, the input data vector is loaded through the data in bus on to the shift-in 

registers. Subsequently the sign of the angle to be rotated is computed as given by (2.33). 

Parameters such as P and N are internal counters that are used by the FSM to keep track 
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of the input data loading and the availability of the data outputs. 

(c) PE Execution Controller 

The PE execution controller is responsible for computing (2.29) to (2.31). The computed 

results are stored in the output shift registers. Figure 4.6 shows the FSM of the PE 

execution controller. The timing diagram is shown in Figure 4.3. 

4.1.2. Multiply and Accumulate (MAC) Unit 

Figure 4.7 shows a simple multiply and accumulate (MAC) unit as described in [75]. A 

MAC unit essentially computes the sum of products. Since any kind of matrix 

multiplication can be mapped to a series of sum-of-product operations, the MAC unit is 

essentially used to perform the computation of matrix multiplication operations. 

Computation of (3.10) in Section 3.1.1 requires a series of matrix multiplication 

operations, which is performed by the MAC unit. The MAC unit is also used by the 

autocorrelation unit to compute a series of matrix multiplication operations. Appropriate 

data is placed on to the data in busses, data in 0 and data in 1 and the output is obtained 

from the data out bus. The MAC unit consists of a multiplication unit and an addition 

unit, with pipeline registers in between each computation element for achieving a higher 

system clock. The accumulator is controlled by a single synchronous reset signal, which 

is used to reset the accumulator before computing a sum-of-products. The autocorrelation 

unit is described next. 
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4.1.3. The Autocorrelation Unit 

The autocorrelation unit consists of two FIFOs that facilitate the computation of the 

autocorrelation coefficients in combination with the MAC unit, which has already been 

discussed before. The architecture of the autocorrelation unit is shown in Figure 4.8. It 

consists of two first-in-first-out (FIFO) memory elements, FIFO-A and FIFO-B and two 

2-to-l multiplexer. The depth of the FIFO buffer is equal to that of the input frame buffer 

length. A dedicated controller synchronizes the internal timing. The FIFOs store the input 

frame and place the corect data on to the data input busses, data in 0 and data in 1 of the 
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MAC unit. The autocorrelation coefficients are computed in the MAC unit and are stored 

appropriately in the memory unit. The autocorrelation coefficients of the input frame are 

computed as follows [71 ] 

N-l-m 

(m) = y x(n) x{n +ni) m = 0, 1, ... N-l (4.1) 

n = 0 
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where r(m) is the autocorrelation coefficient with a lag m and N is the input frame size. 

Thus, it can be seen that the autocorrelation coefficient of any lag is computed as the 

inner product of a two vectors, the input vector x(m) and the shifted form of the input 

vector x(n+m). Implementation of the matrix multiplication is well documented in the 

literature and has been described in [27], [72], [73]. The computation of the m'h lag 

autocorrelation coefficient requires the shifting of the input vector x(n) m times to form 

x(n+m). The delay element in the return path of FIFO-B provides this shift operation. 

Thus, with the calculation of each autocorrelation coefficient, the delay element 

introduces a shift of one to the input vector. This yields a sufficiently accurate estimate of 

the autocorrelation matrix, under the assumption that the signal remains stationary over 

the entire frame. The autocorrelation matrix is a canonical arrangement of the 

autocorrelation coefficients to form a Toeplitz matrix [74]. The Toeplitz matrix is 

diagonalized in the later stages of the speech enhancement processor, which is explained 

in Section 4.3.2. The autocorrelation matrix is assumed to be that of either a noise- or a 

speech-dominant frame. 

The FSM of the autocorrelation controller unit is shown in Figure 4.9. The order of 

complexity of computing all the autocorrelation coefficients is 0(n) [75]. The FSM has 

been parameterized with variable L, which indicates the length of the input frame and 

which is also the size of the input FIFO buffer depth. Other variables such as P and Z, 

used in Figure 4.9, are internal counters used by the controller. 
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Figure 4.9: The FSM of the autocorrelation controller 

4.1.4. Eigen-Domain Filter Gain Calculation Unit 

The eigen-domain filter has been described in Section 3.3, where the eigen-domain filter 

is given by (3.11). The transform is determined by the eigen-vectors while the eigen

values are used for filtering. The eigen-domain filter gain G as described in Section 3.1.1 

is a function of the Lagrange parameter and the eigen-values. The Lagrange parameter is 

computed adaptively based on the input frame SNR. The Lagrange parameter is given by 

(3.13), while (3.14) describes the SNR computation. Figure 4.10 shows the block 

diagram of the eigen domain filter, showing the I/O pins of the unit. This unit has I/O 

pins, namely, data in, data out, start signal, load control signal L and input threshold 

parameter, /uo as an input parameter. The input threshold Lagrange parameter is an 

experimentally-set parameter and for our work it is set to 4. Figure 4.11 shows the 

architecture of the eigen-domain filter gain unit. It consists of an FIFO buffer of length 

equal to that of the input frame size, a 3-to-l MUX, an addition unit and a serial division 

unit. The synchronization of each component is maintained by the eigen-domain gain 

controller unit through the various control signals. In the first n clocks, the accumulator 

computes and holds the summation of the n input data. In the next clock, the value stored 

in the accumulator is shifted by an amount of 2~'°82(n). This completes the computation 

given by (3.14). In the next clock, this computed value in the accumulator is subtracted 

from the value /u0 stored in the register /u0; this completes the computation of (3.13). 

Next, the eigen-domain filter parameter G, given by Az(Az + /u I)'', is computed serially 
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in the subsequent clock cycles in combination with the divide unit. The order of 

complexity of the serial divide operation is 0(1), where / is the number of bits in each 
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Figure 4.10: The eigen-domain filter (with variable SNR) 
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Figure 4.11: The register transfer level (RTL) diagram of the eigen-domain filter 
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word, while that of the overall eigen-domain gain calculation unit is of 0(n x I), where n 

is the size of the input frame buffer. For implementations requiring higher throughput 

rates, a parallel implementation of the divide unit would further improve throughput 

rates. However, for the purpose of this thesis, in order to meet 8000 samples/s data rate, a 

serial divide unit is sufficient. A simple shift and add serial divide unit is implemented as 

given by [75] and the FSM of the divide unit controller is given in Figure 4.12. 

4.1.5. Jacobi Pair (P, Q) Generation Unit 

Jacobi pairs have been described earlier in Sections 2.1 and 2.3. These are index pairs 

that select the elements for the Jacobi transform. Section 2.3.2 also summarizes the 

algorithm in which the Jacobi pairs (P, Q) are generated in order to simultaneously 

diagonalize the multiple matrices using CORDIC. Figure 4.13 shows a complete serial 

implementation of the (P, Q) pair generation algorithm while a complete parallel 

implementation has been described in Figure 4.14. The implementation scheme uses look 

up tables (LUTs). We have chosen this scheme, as LUTs are easily implemented on 

FPGAs [26]. The address to the LUTs comes from a linear address counter. A complete 

Yl\Yl-l ) 

serial implementation would require a single LUT of depth —-— , where n is the order of 

the matrices to be diagonalized, whereas for a complete parallel implementation, n/2 

LUTs would be required, each having a depth of (n-1). An alternate implementation 

scheme would involve computing the (P, Q) pairs on the fly, thereby eliminating the LUT 

scheme, and would be well suited for an ASIC implementation. Figure 4.14 shows n/2 

LUTs generating multiple (P, Q) pairs in parallel. The parallel (P, Q) pair generation 
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facilitates the parallel execution of the Jacobi algorithm. In most practical cases, the 

number of parallel implementation of the Jacobi rotation would be optimized to meet the 

required throughput. 

C Reset } 

Figure 4.12: The FSM of the divide controller 
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4.2. Memory Architecture 
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The memory unit is a very important component of the speech enhancement 

processor. We have seen, that for matrix diagonalization, the core computational element 

consists of matrix transpose, matrix addition and matrix multiplication. These operations 

require accessing the matrix elements in various patterns, which cannot be well supported 

by regular linear memory arrays. During diagonalization, as seen in Chapter 2, each 

Jacobi rotation requires fetching the matrix elements belonging to a row and column as 

pointed by the Jacobi index pair (P, Q). The sequence in which P and Q are generated, is 

also not linear. Thus using a standard linear memory array would drastically reduce the 
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throughput rate as well as increase the hardware over-head to generate nonlinear 

addressing. This is the primary motive behind developing a memory architecture that best 

meets the requirements of the diagonalization core. The design of the memory unit is 

such that it facilitates the diagonalization process in terms of addressing scheme and also 

reduces read/write access time. It is similar to the concept of the transpose memory 

developed in [76]. 

Figure 4.15 shows the I/O block diagram of the dual port multiple row/column shift 

memory (DMSM). The DMSM can perform read and write operations at the same time in 

two different locations and hence, the name dual port. The idea behind this memory is to 

consider it as a vector memory to perform rotation, shift, read and write operations on 

selective rows or columns. The DMSM has three standard groups of I/O busses, namely, 

data input bus and output data bus, address bus and control bus. Data in and Data out 

busses are of width K. The Horr. /Vert, is a 1 bit select line that identifies an operation 

either on a row or on a column. The output select bus is the read address of either a row 

or a column, as specified by the Horr. /Vert, select line. The output select bus is of width 

log2(n), where nxn is the size of the covariance matrices. The shift select bus provides the 

address of either a row or a column on which the shift operation is to be performed. The 

shift select bus is more like the address bus for the data out bus and the input select bus is 

like the address for the data in bus. 

4.2.1. DMSM Memory Cell 
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The DMSM memory cell is the nucleus of the DMSM memory unit. It consists of a 

synchronous D-latch with load enable. The load enable is selected either by the column 

shift or the row shift input signal. The input bus is multiplexed with data from two bus 

sources; the data in horizontal bus and the data in vertical bus. The data in select signal 

selects one of these two busses to facilitate either a row or a column operation. Figure 

4.16 provides the DMSM memory cell structure. 

Data in 

Data out 

log(n) 

\-f- Output Select ^Address 

iog(n) f Busses 
DMSM \h-f- Shift Select 

(nxn) Kbits 
Input Select ~\ 

Horr. 

Control 

./Vert. ) B u s s e s 

DMSM I/O 

Figure 4.15: DMSM I/O block diagram. 
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Row Shift 

Data in Select 

Data in Horr. 
Data in Vert. 

Figure 4.16: DMSM cell I/O block diagram 

4.2.2. DMSM Memory Organization 

68 

file:///h-f-


The memory organization of the entire DMSM memory is shown in Figure 4.17. It has 

nxn DMSM memory cells, two address decoders for row and column decoding, one «-to-

1 multiplexer unit and a few glue-logic. Each DMSM can hold a single nxn matrix at a 

time. Due to repetitive structural elements of the DMSM memory cells, the DMSM 

memory unit is well suited for ASIC implementation, wherein the DMSM block could be 

developed as a hardware hard-macro block. The DMSM has the mechanism to selectively 

shift either a row or a column. The DMSM organization is similar to a linear memory 

array in terms of the addressing scheme. However, selective row/column shift operation 

introduces an extra overhead of a 2-to-l multiplexer in each DMSM memory cell, and 

thereby increases the complexity of the DMSM compared to a linear memory array in 

[75]. 
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Figure 4.17: The internal structure of the DMSM 

4.3. Memory Controller FSM Design 

Having discussed the internal structure of the DMSM unit, this section explains the 

memory controller of the speech enhancement processor and its design. This controller is 

responsible for various memory operations such as read, write and rotate. It is also 

responsible for generating valid addresses to the DMSM unit during the process of matrix 

diagonalization and other matrix manipulation operations involved in the process of 
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speech enhancement. Synchronization between the DMSM unit and the diagonalization 

unit is a challenging task for this controller. This section describes the functionality of the 

memory controller FSM. The entire memory controller is broken down into four parts. A 

single master controller, called the Top Memory Controller, is dedicated for coordinating 

the data flow among the other sub parts. The following are the sub-parts of the memory 

controller FSM. 

a) Top memory controller 

b) Memory controller Mode I 

c) Memory controller Mode II 

d) Memory controller Mode III 

e) Memory controller Mode IV 

The execution of the controllers are sequential, hence only one sub-controller is executed 

at any given moment. Sections below describe the state transition of each of the FSM's. 

Figure 4.18 shows the DMSM controller I/O block diagram. The internal registers and 
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Figure 4.18: DMSM controller I/O block diagram 
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their corresponding internal addresses are also shown. The controller is programmed via 

the internal registers, namely, P, Q, n and Mode. Registers P and Q hold the Jacobi pairs 

(P, Q) for the current operation, while n holds the length of the input frame buffer. The 

register Mode displays the present mode being executed by the controller. This is more 

like a test register used for testing purpose only. These registers are written and read via 

the address, data and control busses used for writing to the internal registers. 

4.3.1. Top Memory Controller 

The state transition diagram of the Top memory controller is given by Figure 4.19. This 

controller synchronizes the other four memory controllers and asserts the "Done Main 

memory controller" signal at the end of the execution. The speech enhancement 

processor contains three DMSM memory elements, namely, DMSM elements A, B and V. 

The covariant matrices that are intended to be diagonalized are stored in DMSM A and B 

on a frame-by-frame basis. DMSM A stores the autocorrelation of speech-dominant 

frames, while DMSM B stores the autocorrelation of noise-dominant frames. The 

computed eigen-vector matrix is stored in DMSM V. Another DMSM element called 

DMSM Tmp is used to store an intermediate matrix of size (nxn). The Top memory 

controller supervises the execution of each sub-memory controller which are described in 

the subsequent sections. 
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Figure 4.19: State transition diagram of the Top memory controller. 
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4.3.2. Memory Controller Mode-I 

The memory controller Mode-I starts to function once the autocorrelation matrix is 

loaded to either DMSM A or B depending on the dominance of the frame by either noise 

or speech. The FSM unit is parameterized by the frame buffer length, number of parallel 

CORDIC elements, etc., which ensures design reusability. Mode-I is responsible for 

initiating the loading of appropriate data into to the CORDIC-based Jacobi 

diagonalization unit and making it ready for the diagonalization. Once the diagonalization 

is complete, it loads the computed eigen-vector and eigen-value matrices into DMSM V 

and A respectively. Figure 4.20 shows the flowchart that describes the important 

operations in Mode - 1 . 

4.3.3. Memory Controller Mode-II 

Computation of the gain matrix described in Section 3.1.1 is the key functionality of the 

memory controller Mode-II. The gain matrix is basically responsible for proper filtering 

operations in the eigen-domain. It requires the computation of the Lagrange parameter as 

shown in Section 3.1.1 and 4.1.3. Since the gain matrix is diagonal, it is temporarily 

stored in a FIFO buffer, called FIFO G. Having computed the gain matrix, the next step is 

to compute the optimal filter, which is done in memory controller Mode-Ill. Due to a low 

data rate requirement of only 8000 samples/s, we implemented the serial matrix 

multiplication using the MAC unit described in Section 4.1.5. However, to speed up the 

process for higher data rate requirements, other fast matrix multiplication techniques 
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could be used as described in [55]. Figure 4.21 shows the flow chart describing the 

important operations in Mode - II. 

Load Eigen domain filter unit with 
eigen values from DMSM A 

W Compute gain matrix 

Load Computed gain matrix to FIFO G 
[Note gain matrix is a diagonal matrix] 

Assert "Mode - II Complete" 

Figure 4.21: Memory controller Mode-II. 

4.3.4. Memory Controller Mode III 

The memory controller Mode - III uses the gain matrix computed in Mode-II and 

performs two serial matrix multiplication operations using the MAC unit. In Mode-II, as 
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the gain matrix was stored in FIFO G, the following operations now take place: Tm/?<— 

V. G & G<~ VTY, where DMSM V contains the eigen-vector matrix, FIFO G contains the 

diagonal elements of the gain metrix as computed in Mode-II, FIFO Y contains the input 

noisy speech vector that is to be enhanced, and DMSM Tmp holds the temporary (nxn) 

matrix. Both DMSM A and B are unavailable for storing the temporary matrix. This is 

due to the fact that the values stored in DMSM A and B are required for estimating the 

next frame autocorrelation. The memory controller Mode - III loads appropriate data on 

to the data bus for the MAC unit to perform matrix multiplication and also to store the 

computed temporary data back to DMSM Tmp and FIFO G respectively. The stored 

matrix in DMSM Tmp and the vector stored in FIFO G are intermediate values and do not 

have any specific physical meaning. In Mode - IV, the matrix multiplication of Tmp and 

G gives the estimated enhanced speech vectors for the current frame, after which the 

entire process repeats for the next speech frame. Figure 4.22 shows the flow chart 

describing the operation in Mode - III. 

4.3.5. Memory Controller Mode IV 

The memory controller Mode-IV computes a serial matrix multiplication operation on 

data from DMSM Tmp and FIFO G. Appropriate data is placed on the data bus for the 

MAC unit to start the computation. The final output vector is obtained after performing 

an overlap-and-add operation with the previous output frame. The resultant vector is the 

estimated enhanced speech vector from the noisy speech vector of the current frame. 

Figure 4.23 shows the flow chart describing the important operations in Mode - IV. 

77 



Load the MAC unit with DMSM V and 
FIFO G for matrix multiplication 
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Figure 4.22: Memory controller Mode-Ill. 
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Load the MAC unit with FIFO G & 
DMSM Tmp 

Compute Tmp.G & store the resultant 
vector in output buffer 

Perform overlap and add operation with 
previous frame 

Assert "Mode - IV Complete" 

Figure 4.23: Memory controller Mode-IV. 

4.4. Parallel Architecture of the Diagonalization Unit 

With the introduction of different hardware elements of the speech enhancement 

processor, we now explore the possibilities of parallel implementation of the speech 
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enhancement algorithm. We have already mentioned in Chapter 2 that the Jacobi 

algorithm has an inherent unique property that facilitates parallel execution of the 

algorithm. The Jacobi algorithm as mentioned in Chapter 2 can have a total of n/2 parallel 

computation elements running at the same time, where nxn is the size of the input frame 

buffer. This algorithm has already been introduced in Section 2.1. The CORDIC 

algorithm, also introduced in Section 2.2, is an iterative algorithm and can be 

implemented in a systolic architecture. Systolic architectures of simple CORDIC 

implementation are well documented in the literature and are given in [29], [36], [37]. 

The purpose of this section is to introduce a parallel implementation scheme for the 

simultaneous diagonalization algorithm introduced in Section 2.3. For a better 

understanding, the algorithm already presented in Section 2.3 is re-written below. 

Algorithm: 
For J = I : Total number of Jacobi Iterations 

For p = 1: n-1 

Par: { 

For all q = {p+l : l:n} 

Seq: { 

For R = 1 : Total number of CORDIC rotations 

Compute equations (2.29) to (2.31) 

End 

} Seq End 
End 

} Par End 
End 

End 

It can be clearly seen that the section under the construct "Par", can be executed in 

parallel. Another interesting point to note is that within each construct "Seq", the 
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CORDIC algorithm is executed in order to compute (2.29) to (2.31). As already shown in 

[37], the CORDIC systolic architecture further provides scope for increasing the overall 

throughput of the system. Figure 4.24 provides a complete parallel implementation 

scheme of the algorithm proposed in Section 2.3. Each row computes a single Jacobi 

transform given by index pairs (P, Q). Thereby, in a complete parallel implementation 

scheme, maximum such possible pairs are N/2. Input to each row is AQ, 2), indicating 

matrices Ai and A2 as given by (2.29) to (2.31). As shown earlier in Section 2.2, a total of 

R CORDIC iterations complete one single Jacobi rotation, therefore each row in Figure 

4.24 comprises of a total of R cascaded PE elements connected in pipeline. Figure 4.24 

provides a complete parallel implementation of the proposed algorithm, consuming a 

total of RxN PE elements. However, in reality, to ensure the best possible cost effective 

implementation, an optimal total number of PE elements are implemented on hardware 

by choosing the best number of parallel Jacobi rotations that sufficiently meet the overall 

system throughput requirement. 

A1,2 (P. Q) 1 • 

A,.2(P.&2 

PE (0. 0) 
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PE 0. o) 

PE (i.i) 

-•I PE(R-I.O) 
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- • A;,2(P.Q), 

-> A',,2(PQ)2 

A I, 2 (P. Q)N/2 • PE (0. N/2) PE (I. N/2) PE, (R-I.N/2) + A-U2(P,Qh 

Figure 4.24: Parallel implementation of N/2 Jacobi rotations for a total of R CORDIC 

iterations. 
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4.5. The Master Controller 

This section integrates all the controllers under a single roof. Figure 4.25 describes 

graphically the hierarchical tree of the controllers. This also enables easier testability and 

design reusability. The controller, "TOP Controller''' is the supreme controller and is 

primarily responsible for synchronization between the rest of the controllers. 

4.5.1. TOP Controller Design 

The master speech processor controller, Top _Contr oiler is described below. It is 

responsible for synchronizing all the blocks. Figure 4.26 shows the FSM of the 

Top_Controiler. This controller operates on a frame by frame basis. It is expected that in 

a system integration this would intern be controlled by a system controller, which could 

either be a microcontroller or a stand-alone controller. The initialization of this controller 

is done through the parameter n, which is the size of the input frame buffer. 

4.6. Frequency-Subband based Speech Enhancement 

Processor 

So far we have described the speech enhancement processor that utilizes the simultaneous 

diagonalization of two symmetric matrices using CORDIC implementation. We have also 

described a technique in Chapter 3, which incorporates an innovative frequency-subband 
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technique into the subband based speech enhancement algorithm. This technique 

considers the subbands rather than considering the full-band signal. Details of this 

technique can be found in Section 3.2. For the sake of this thesis and simplifying the 

problem, we have assumed the presence of a wavelet filter bank as a hardware hard-

macro block as presented in [53]. Figure 4.27 shows the block diagram of a complete 

frequency-subband speech enhancement processor. This could certainly be considered as 

a future product for applications in the field of telecommunication, military use, etc. 

Figure 4.28 shows the flow chart describing the important operations of the frequency 

subband based speech enhancement processor that performs wavelet decomposition 

(assuming the presence of the wavelet filter bank hardware unit as in [53]) and handles 

the I/O frames to/from the AC97 audio codec (DAC/ADC) controller. 
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Figure 4.25: Hierarchy of the speech processor controllers. 
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4.7. Summary 

In this chapter, we have presented the hardware architecture of the speech enhancement 

processor based on the subspace based technique, which we have already described in 

Chapter 3. The core of the hardware consists of the diagonalization architecture that best 

maps the simultaneous diagonalization of two symmetric matrices described earlier in 

Chapter 2. The simultaneous diagonalization architecture is completely multiplier free 

making it very attractive for both the FPGA and ASIC implementations. A high performance 

dual ported memory has been introduced to best assist the diagonalization core and increase 

the overall throughput. The dual port memory increases the throughput of the system by 

reducing the complexity of the memory addressing scheme required for matrix manipulation 

operations such as, forming a Toeplitz autocorrelation matrix from the autocorrelation 

coefficients and performing matrix transpose operations, which otherwise would have 

increased the system overhead significantly. The dual port feature of this memory also helps 

the concurrent data read and write operations. Finally, we have also presented the 

architecture for the frequency subband-based speech enhancement technique. In summary, 

this chapter has described the hardware platform for the subspace-based speech enhancement 

processor that integrates the simultaneous diagonalization technique described in Chapter 2 

and the frequency subband speech enhancement technique described in Chapter 3. 

Some of the intricate details of the architecture have also been discussed. To give an 

insight into the controllers used and their state machine description, the state transition 

diagrams of the significant controllers have been shown. FPGA implementation results of 

the architecture in terms of resources utilization and throughput analysis will be presented 

in Chapter 5. 
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Chapter 5 : Results & Discussion 

So far, we have discussed the CORDIC-based diagonalization technique and its hardware 

architecture. We have also seen the utilization of such simultaneous diagonalization 

algorithms on a subspace based speech enhancement algorithm. Further, techniques have 

been studied to enhance the data rate and reduce complexity by exploring the subband 

behavior of the speech signal. In this chapter we present the simulation results and 

discussions that confirm the theory developed so far. Results presented in this chapter 

include the system level simulation as well as the hardware level simulation. 

5.1 System Level Comparison of Speech Enhancement 

The process of simultaneous diagonalization has already been described in Chapter 2, 

followed by its hardware architecture in Chapter 4. Chapter 3 describes the subspace 

based speech enhancement technique. The architecture of the speech enhancement 

processor is described in Chapter 4, and is coded in VHDL using the Xilinx ISE design 

flow software from Xilinx while the VHDL simulations are performed using the 

ModelSim software from Mentor graphics. The Matlab tool from MathWorks is used for 

performing all the mathematical calculations and in obtaining the performance measures. 

The VHDL model is implemented on a Xilinx FPGA and its resource utilization studied 

and presented later in the chapter. The input stimulus to the FPGA is generated from 
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Matlab and its output vectors are captured using the ChipScope tool which is supported 

by the Xilinx ISE tool chain. This tool captures the data from the data bus of interest on 

the FPGA and stores the data vector in a text file, thereby facilitating the analysis of the 

computed data from the FPGA. The output vectors are used by Matlab to extract the 

performance measure metrics. 

A speech enhancement experiment, which incorporates the simultaneous 

diagonalization technique into the subspace based speech enhancement algorithm, is 

performed. The diagonalization technique described in Chapter 2 is used to 

simultaneously diagonalize the noisy speech and noise autocorrelation matrices. 
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Figure 5.1: Comparison of the proposed (SJR) diagonalization vs. Matlab (Cholesky) 

factorization (SSF) for factory noise in terms of segmental SNR and mean MBSD 

measures of 10 TIMIT sentences from a female speaker. 
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The diagonalization of the covariance matrices of the noisy speech and the noise lead to 

the projection of the noisy signal into a signal-plus-noise subspace and a noise subspace. 

From these two subspaces, the clean speech is estimated by nulling the signal 

components in the noise subspace and retaining the signal subspace. The subspace-based 

speech enhancement technique has already been described in Chapter 3. We evaluate the 

subspace-based speech enhancement algorithm on 10 TIMIT sentences produced by a 

female speaker. Factory noise at various SNR is added linearly from the NOISEX data 

base. Figure 5.1 compares the speech enhancement performance measures of the 

proposed simultaneous diagonalization technique to that of the Matlab-Cholskey 

technique. The performance of the speech enhancement algorithm is observed in terms of 

the SSNR and MBSD measures, from the Xilinx FPGA, for speech data sampled at 8 

KHz, on a frame size of 32 ms of speech, i.e 256 data points, a Hamming window is 

applied with 50% overlap and add. It can be seen from Figure 5.1 that the proposed 

simultaneous diagonalization technique, when incorporated in the subspace-based speech 

enhancement technique, provides a hardware-friendly multiplier-free implementation 

scheme, whose performance results are comparable to that of the Matlab. Achievement of 

the computationally efficient hardware system comes with a cost of a slight compromise 

in the performance of the speech enhancement. Figure 5.1 shows a minimum deviation of 

only 0.5 db in the SSNR measures compared to the Matlab-Cholskey technique, for 

factory noise at 20 db, whereas a maximum deviation of 2 db is seen for noise at 5db. 

The deviation in performance is seen more at low SNR conditions, whereas in higher 

SNR conditions, both the performance of the two algorithms are comparable. 
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5.2 Hardware Implementation Results of Subspace based 

Speech Enhancement 

Having discussed the overall system performance measures, we now focus on the 

feasibility of the speech processor implementation on a FPGA and later project its 

feasibility for targeting VLSI implementation. The following sub-sections summarizes 

different parameters such as throughput, FPGA resource utilization, total transistor count 

and total logic element used. Sections 5.2.1 to 5.2.3 given below describe the throughput 

analysis, number of logical elements and total transistor count for the CORDIC based 

subspace speech enhancement core. Section 5.2.4 summarizes the specification of the 

core. 

5.2.1 FPGA Resource Utilization 

The proposed CORDIC-based subspace speech enhancement circuit is behaviourally 

modelled in VHDL for a 16 bit fixed point data path. A synthesis report on the FPGA 

resource utilization and timing constrains of a single PE is given in Tables 5.1, 5.2 and 

5.3. The targeted Xilinx FPGA (XC2VP30-7ff896) indicates the average resource 

utilization by a single PE to be less than 2% at a clock speed of 117 MHz. Tables 5.1 and 

5.3 provide an estimate of the total number of PEs that could be accommodated on a 

given FPGA, thereby giving a rough estimate of the total number of PEs that could be 

implemented. Table 5.2, on the other hand, provides the maximum achievable system 

clock frequency corresponding to the minimum clock period, along with minimum input 
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and output hold time. The meta-stability in flip-flops can be avoided by ensuring that the 

data and control inputs are held valid and constant for specified periods before and after 

the clock pulse, called the minimum input hold time and the minimum output hold time 

respectively. Hence, abiding by the timing summary becomes very crucial in the proper 

functioning of the logic circuits. Timing summary report along with FPGA synthesis 

report provides valuable information to the system designer and helps in optimally 

picking design tradeoffs. 

5.2.2 Throughput Analysis 

The throughput is defined as the number of signal samples processed by the speech 

processor per second. Throughput is a function of the frame buffer size used, total 

number of parallel CORDIC based Jacobi elements and the system clock. Figure 5.2 

shows the variation of the throughput as a function of various frame buffer size. A 

threshold of 8000 samples/s has been marked by the dashed red line to indicate the 

minimum throughput requirement. It is clearly seen from the graph that the throughput 

increases significantly with the decrease in the frame buffer size. In other words, for a 

fixed data rate the flexibility in choosing the number of parallel elements is limited by the 

frame buffer size. This is a major design constrain in the CORDIC-based subspace 

speech enhancement engine. Figure 5.3 describes the variation of the throughput as a 

function of the number of parallel CORDIC based Jacobi elements used, for various 

clock frequencies. It clearly shows that a single PE implementation is just not possible to 

meet the minimum throughput rate of 8K samples per second for a system clock less than 
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400MHz. Figures 5.2 and 5.3 provide the design flexibility for optimally choosing the 

system clock and the window size, which indirectly optimizes the design for low power 

consumption. Low power design is an important requirement for a portable device, such 

as the speech enhancement engine, in hand held communication devices. 

Table 5-1: HDL synthesis report of a single PE 

Macro Statistics 

32-bit Add/Sub 

1-bit Registers 

32-bit Registers 

32-bit comparator 

32-bit Mux (4-to-l) 

No. 

8 

1 

20 

1 

8 

Table 5-2: Timing summary of a single PE 

Summary 

Min. clock 

Min. input hold 

Min. output hold 

Time 

4.608 ns (217 MHz) 

5.89 ns 

2.82 ns 



Table 5-3: FPGA resource utilization of a single PE. 

Resources 

No. of Slice 

No. of Slice Flip Flop 

No. of4inputLUTs 

No. Used 

250 out of 13696 

110 out of27392 

477 out of 27392 

Utilized 

<2% 

< 1 % 

<2% 

5.2.3 Number of Logic Elements 

The number of logic elements used is a very important design parameter. This determines 

the total transistor count, routing congestion and the total power consumption. In this 

section we examine as to how the design parameters, such as the frame buffer size and 

the number of parallel elements that adversely affect the number of logic elements are 

being chosen. Figure 5.4 indicates that the number of multiplier elements and the number 

of FIFO elements used remain constant for various window sizes. However, the data 

memory, which is directly related to the window size grows with the increase in the 

window size and almost saturates around the window size of 300 to 400. To maintain a 

window size that is power of 2, suitable for generating hardware addressing, we choose a 

window size of 256. Figure 5.5 shows the total number of registers required for varying 

window size and number of parallel elements used. In Chapter 4, we have seen that the 

number of registers in each of the hardware components is linearly dependent on the 

window size; hence, as expected, it turns out that the overall register count also obeys 
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linear dependencies with the number of PE elements being used. These graphs assist in 

designing for optimal tradeoffs between speed, power and area. 

5.2.4 Transistor Count for ASIC Implementation 

The implementation of the speech enhancement processor has been done on an FPGA 

primarily because of the time constrains. However, the study of the architecture remains 

incomplete unless the feasibility of the architecture is studied for an ASIC 

implementation. This section, therefore, addresses this issue by studying the estimated 

total transistor count for an ASIC implementation of the speech enhancement core. This 

also gives a rough estimate of the design complexity. Table 5.4 lists the transistor count 

assumed in this thesis for the various logic function used. Transistor count is estimated 

based on the area optimized implementation of digital logic circuits which has been 

studied in [5]. As described in [5], the cost functions used in Table 5-4 are defined as 

( b-\ \ 
C(a,b) = 4 2YJ(b-i) + 2b-a+] 

V i=a ) 
(5.1) 

D(a,b,c) = 2b'a+'xc W 

With one of the three inputs to a full adder fixed, (we assume the fixed input is Cin for 

convenience, where Q„ is the input carry bit), we have used 12 and 14 transistors for C,„ 

= 0 and C,„ = 1 respectively, instead of 30 transistors for an ordinary full adder [50]. The 

occurrence rates of Q„ = 0 and Q„ = 1 are statistically assumed to be the same as Bc/2 

bits out of Bc bits. The adder with subtractor selection needs 8 more transistors for an 
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extra 2-to-l MUX and an inverter compared to that needed for the original full adder as 

described in [50]. 

Figure 5.6 shows the transistor counts as a function of the number of parallel PEs for 

various window sizes, keeping the number of CORDIC rotations fixed at 16. Figure 5.7, 

on the other hand, shows the transistor counts for various numbers of parallel CORDIC 

elements (NPCE), keeping the window size fixed at 256. NPCE indicates the number of 

rows in Figure 4.25, i.e., the number of CORDIC operations taking place in parallel. In 

custom ASIC design, data memories are normally considered as hard-macros and are 

hardcoded pre-defined blocks, which are provided directly by the semiconductor vendors. 

These hard-macros are hand layout designs, optimized for area and power consumption. 

Hence, the transistor count given in Figures 5.6 and 5.7 are excluding the data memory 

and considers minimum length transistors. 

5.2.5 Design Specifications 

Table 5.5 summarizes the design specification of the CORDIC-based speech 

enhancement -processor when implemented on a Xilinx FPGA. A throughput rate of 

11600 Samples/s is achieved on a system operating at 200 MHz and a frame buffer size 

(window size) of 256 data points. An estimated transistor count of 1158 K makes it 

comparable to the 80486 single processor produced by Intel [77], having a total transistor count 

of 1200 K and first produced in 1989. 
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Table 5-4: Transistor count for various digital logic functions. 

Logic 

INV (1 bit) 

XOR(l bit) 

2x1 MUX (1 bit) 

Adder 

(Fixed Cin ) 

Cin=0 (5c/2bits) 

C,,=l (2?c/2bits) 

Adder ( Bc bit) 

Adder/Sub. 

(Fixed Ctn ) 

C t e=0 (5c/2bits) 

C/B=l (5c/2bits) 

Adder/Sub. (Bc bits) 

2" = Bc 

(ROM) 

Decoder 

Data 

Register (1 bit) 

Transistor Count 

2 

8 

6 

\2(Bc/2) 

14(5c/2) 

305c 

(12 + 8)(5c/2) 

(14 + 8)(5c/2) 

30BC+SBC 

C(\,k) 

D(l,k,Bc) 

16 
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Figure 5.2: Throughput vs. the number of parallel PEs used for different window sizes 
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Figure 5.3: Throughput vs. the number of parallel PEs used for different clock rates. 
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Table 5-5: Design specifications of the CORDIC-based speech enhancement processor 

implemented on a Xilinx FPGA (XC2VP30-7ff896). 

Design Parameters 

Throughput 

Number of filter banks 

Window Size 

Clock Speed 

No of parallel PEs 

No of parallel CORDIC elements 

Percentage overlap in frame buffer 

No of CORDIC iterations performed 

No of Jacobi iterations performed 

Data path bit width 

Total Multipliers used 

Total number of FIFO elements 

Word Length 

Total Adders used 

Total Registers used 

Data Memory Used 

Total Mux used (2-to-l equivalent) 

Total Transistor Count 

Values 

11623 Samples/sec 

1 (Single channel) 

256 

200 MHz 

16 (Jacobi Iterations) 

16 

25% 

20 

40 

16 bits 

1 (Multiplier free Diagonalization element) 

4 (16 bits x 256 words) 

16 bits 

2563 

39 K Word (16 bits each) 

16 bits x 192 K 

(Hard Macro) 

1282 

1158 K Approx. (Excluding Data Memory) 
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5.3 Implementation results of the frequency subband 

CORDIC- based subspace speech enhancement 

The frequency subband technique was introduced in Chapter 3 and the architecture for 

the same is subsequently considered in Chapter 4. This section presents the 

implementation results of the frequency subband CORIDC-based subspace speech 

enhancement processor. Implementation in terms of the FPGA resource utilization, 

throughput analysis, number of logic elements used and the total transistor count results 

is studied. 

5.3.1 FPGA Resource Utilization 

The resource utilization of the FPGA (XC2VP30-7ff896) for an NxM processor size is 

given in Tables 5.6, excluding the data memory unit, where N represents the number of 

frequency-subbands and M the number of parallel elements. Tables 5.7 provide the 

timing summary of Table 5.6 for a 16 bit data path. 

5.3.2 Throughput Analysis 

This section shows the dependency of throughput on increasing number of frequency-

subbands, i.e., the number of filter banks. NPE indicates the number of parallel 

processing units. Figure 5.8 presents the net throughput analysis for varying number of 

filter banks. It can be clearly seen that the maximum gain in throughput is up to a 

102 



maximum of 10 subbands, beyond which the increase in throughput is minimal when 

compared to the increase in the number of subbands. 

Table 5-6: FPGA resources for 16 bit data path. 

NxN 

8x8 

16x16 

64x64 

No. of slice 

3221 

6440 

25765 

No. of slice FF 

5108 

10216 

40864 

No. of 4 input LUT 

3452 

6920 

27649 

Table 5-7: FPGA timing summary for 16 bit data path. 

NxN 

8x8 

16x16 

64x64 

Min. Clock 

188.111 MHz 

188.111 MHz 

188.111MHz 

Min. input hold 

2.805 ns 

3.516 ns 

5.624 ns 

Min. output hold 

3.293 ns 

3.293 ns 

3.293 ns 

5.3.3 Number of Logic Elements 

Figures 5.9 to 5.11 show the number of logic elements in the hardware such as MUXs, 

registers, adders, multipliers, data memory and FIFO for varying number of frequency 

subbands and number of parallel PEs. Figure 5.9 shows the total number of registers 

required for varying window size and number of parallel elements used. As expected, the 

variation turns out to be almost linear. These graphs aid in making design tradeoffs 
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between the speed, power and area. Figure 5.10 shows the total number of adders 

required for varying filter bank size and number of parallel CORDIC elements. Figure 

5.11 shows the variation in the 2-to-l MUX, multiplier and FIFO required as a function 

of the number of parallel elements. 

5.3.4 Transistor Count for ASIC Implementation 

The total transistor count estimate is shown in Figures 5.12 and 5.13. Table 5-4 has 

already presented the transistor count estimates of the individual blocks. Figure 5.12 

studies the transistor count dependencies for varying number of filter banks and number 

of parallel PEs. Figure 5.13, on the other hand, shows the transistor counts for various 

numbers of parallel CORDIC elements (NPCE). This once again presents another view of 

the design feasibility for ASIC implementations. However, importing a design from an 

FPGA to an ASIC implementation would require optimization in several dimensions such 

as the ASIC technology to be used, transistor routing and power estimation, and this is 

beyond the scope of this thesis. Hence, only an estimate of an ASIC feasibility is 

projected via the total transistor count. Transistor count shown in Figure 5.12 excludes 

the data memory and assumes the presence of hard-macro memory blocks. 
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Figure 5.8: Throughput results as a function of the number of filter banks for various 

number of parallel PEs. 
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Figure 5.11: number of hardware elements required as a function of the number of 

filter banks. 
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Figure 5.12: Transistor count analysis excluding the data memory, as a function of the 

number of filter banks used, for varying number of PE elements used. 
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Figure 5.13: Transistor count analysis excluding the data memory, as a function of the 

number of filter banks used, for varying number of CORDIC elements used. 
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Table 5-8 Design specifications: Subband based speech enhancement on FPGA. 

Design Parameters 

Throughput 

Number of filter banks 

Frame size of each parallel element 

Effective over all frame length 

Clock speed 

No of parallel PEs 

No. of parallel CORDIC elements 

Percentage overlap 

No of CORDIC iterations performed 

No of Jacobi iterations performed 

Data path width 

Total Multipliers used 

Total FIFOs used 

Total Adders used 

Total Registers used 

Total Data Memory used 

Total Mux used 

Transistor Count 

Values 

14488 Samples/sec 

4 per sub-band 

64 words 

256 words (Full-band signal) 

100 MHz 

1 (Jacobi Iterations per sub-band) 

1 per sub-band 

50% 

20 Iterations per sub-band 

40 Iterations per sub-band 

16 bits 

4 (Excluding Filter bank) 

16 (16 bits of 64 words each, excluding Filter 

bank) 

44 (16 bit each, excluding Filter bank) 

12 K (16 bits each, excluding Filter bank) 

(16 bits x 48 K) Hard Macro 

1288 (2-to-l equivalent, excluding Filter bank) 

2400 K Approx 

(Excluding Data Memory & Filter bank) 

108 



5.3.5 Design Specifications 

Table 5-8 summarizes the design specifications of the frequency subband processor. A 

throughput of 14488 samples/s has been achieved on a system operating at 115 MHz. An 

estimated transistor count of 2400 K makes it comparable to the Pentium processor 

produced by Intel in 1993 to have a total transistor count of 3100 K [77]. 

5.4 Summary 

This chapter has presented the reader with the FPGA implementation results of the 

subspace-based speech enhancement algorithms that have already been presented in 

Chapters 2 and 3. The initial part of this chapter presented the overall system 

performance measures in terms of the SSNR and MBSD. The design has been 

categorized into two parts, the full band version of the CORDIC-based subspace speech 

processor and the frequency-subband CORDIC based subspace speech processor. The 

later part of this chapter presented the design tradeoffs in implementing the processor on 

an FPGA. Important design parameters such as the throughput and the number of logic 

elements were presented for varying number of filter banks, number of parallel PEs, 

frame buffer size (Window size) and the system clock. A projection of the feasibility of 

the VLSI implementation of the design has also been shown in terms of the transistor 

count. Design specifications of both the full band and subband designs have been given. 

It has been observed that the VLSI implementation of the speech enhancement processor 
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based on a very high number of subbands become impractical; similarly, achieving a very 

high throughput rate also becomes impractical in the pure full band implementation. An 

optimum design would, therefore, pick the most suitable number of subbands to equally 

take advantage of the increase in throughput rate and retain the implementation feasibility 

in terms of the hardware overhead due to the subbands. This gives us the freedom to 

optimize the design parameters and this could be studied as part of future work. 
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Chapter 6 : Conclusion 

In this thesis, we have explored the simultaneous matrix diagonalization of a number of 

symmetric matrices keeping in mind the hardware implementation issues. As an 

application, we have considered the subspace based speech enhancement problem. Later, 

it has been shown that the use of subband processing enhances the overall system 

performance and also increases the overall system throughput. This has enabled the 

processing of data at a much higher sampling rate compared to the full-band 

implementation. Due to time limitations of the thesis, only an FPGA implementation has 

been studied and a projection of the transistor count has been made for an ASIC 

implementation. 

6.1. Conclusion and Thesis Summary 

We have presented an innovative technique for simultaneous diagonalization of multiple 

symmetric matrices to address the emerging popularity of the eigen-domain signal 

processing technique in realtime. The proposed technique has been based on the Jacobi 

rotation of matrices using the CORDIC iterative approach. Due to the simplicity of its 

computational elements such as shift-and-add, the architecture becomes ideally suited for 

targeting FPGA/ASIC implementation. The proposed diagonalization technique has 

shown better results as compared with that of the Matlab-Cholesky factorization. It has 

111 



been demonstrated that the system performance of the speech enhancement processor is 

at par with the overall system performance achieved from Matlab simulation, using the 

Matlab-Cholskey factorization method, in the presence of reasonable noise conditions. 

A subband-based speech enhancement analysis technique, which exploits the slow 

varying characteristics of the speech and noise signals over narrow frequency segments, 

has also been proposed. The accurate covariance estimation of the noise and speech in the 

subbands has resulted in a better performance under low SNR conditions as compared to 

that of the full band subspace-based speech enhancement technique. The proposed 

technique also provides an inherent parallel implementation scheme and reduces the 

computational complexity. The proposed scheme makes no assumptions of the spectral 

characteristics of the noise, but only assumes that the noise and speech are uncorrelated 

in each of the subbands. 

In the later part of the thesis, we have presented the hardware architecture along with 

simulation results. System level simulations have been performed to highlight the 

performance gain along with hardware implementation results. The speech enhancement 

processor has been implemented both for the full band and the subband algorithms. Also, 

a projection of the processors ASIC counterpart has been suggested from the transistor 

count point of view. 
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6.2. Future Work 

Some of the areas for future development are as follows: 

• ASIC implementation of the proposed simultaneous diagonalization technique for 

high data-rate applications such as software defined radio and video applications 

involving de-noising issues. 

• A custom ASIC implementation would certainly attract more attention from 

industry in using the subspace-based speech enhancement for commercial use. 

• Various other techniques such as incorporating fast number systems such as the 

residue number system could further increase the throughput. 

• Considering various noise models and predefined templates of the noise 

autocorrelation matrices would boost the overall system performance. This would 

provide a better autocorrelation estimate of the noise, which is the key to a better 

speech enhancement performance. 
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Appendix A: 

A Numerical Example 

Below is a numerical example showing the simultaneous diagonalization of two 

randomly generated 8x8 Toeplitz matrices A] and A2. Each of the matrices has gone 

through a total of 20 Jacobi iterations. Further, each of the Jacobi iterations went through 

a total of 20 CORDIC rotations. The diagonalized matrices are shown below as A/'and 

A2\ and their eigen-vectors are given my matrix V. Their corresponding diagonalized 

matrices using the Matlab-Cholesky factorization technique are given by Ai'jnatlab and 

A2'_matlab, while their eigen-values are given by the matrix V_Matlab. Figure A-l 

compares the eigenvectors generated from the proposed diagonalization algorithm with 

that of Matlab-Cholesky factorization. The figure clearly indicates the proximity of both 

the algorithms. Figures A-2 and A-3 shows the mesh plots of the diagonalized matrices in 

order to graphically compare the diagonalized matrices of the proposed algorithm to that 

of the Matlab-Cholesky factorization. It can be clearly observed that the proposed 

technique generates simultaneously diagonalized matrices that are very similar to the 

diagonal matrices generated by Matlab-Cholesky factorization. 
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2.1609 

-0.000 

-0.000 
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-0.000 

-0.000 
-0.000 

-0.000 

-0.000 
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-0.000 
-0.000 

-0.000 

-0.000 

-0.000 

-0.000 

-0.000 

-0.000 
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-0.000 

-0.000 

-0.000 
-0.000 

-0.000 

-0.000 

-0.000 

-0.000 
-3.802 

0.000 

0.000 

0.000 
0.000 
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0.000 

0.000 

0.000 

-0.000 

-0.000 
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-0.000 
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-0.000 
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-0.7343 
-0.2975 

-1.0000 

-1.0000 
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Figure A-1.Comparison of the eigen-values of (a) matrix A 'i and A I'jnatlab (b) matrix 

A'2and A 2'jnatlab 
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Figure A-2.Comparing the mesh plots of the diagonalized matrices (a) matrix A '1 and (b) 
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Figure A-3. Comparing the mesh plots of the diagonalized matrices (a) matrix A '2 and 

(b) matrix Ajjnatlab 
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