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ABSTRACT 

Pressure Loss Modeling of Non-Symmetric Gas Turbine Exhaust Ducts using CFD 

Steven Farber 

In typical gas turbine applications, combustion gases that are discharged from the turbine 

are exhausted into the atmosphere in a direction that is sometimes different from that of the 

inlet. In such cases, the design of efficient exhaust ducts is a challenging task particularly 

when the exhaust gases are also swirling. Designers are in need for a tool today that can 

guide them in assessing qualitatively and quantitatively the different flow physics in these 

exhaust ducts so as to produce efficient designs. 

In this thesis, a parametric Computational Fluid Dynamics (CFD) based study was 

carried out on non-symmetric gas turbine exhaust ducts where the effects of geometry and 

inlet aerodynamic conditions were examined. The results of the numerical analysis were 

used to develop a total pressure loss model. 

These exhaust ducts comprise an annular inlet, a flow splitter, an annular to rectangular 

transition region, and an exhaust stub. The duct geometry, which is a three-dimensional 

complex one, is approximated with a five-parameter model, which was coupled with a design 

of experiment method to generate a relatively small number of exhaust ducts. The flow in 

these ducts was simulated using CFD for different values of inlet swirl and aerodynamic 

blockage and the numerical results were reviewed so as to assess the effects of the geometric 

and aerodynamic parameters on the total pressure loss in the exhaust duct. These flow 

simulations were used as a data base to generate a total pressure loss model that designers 

can use as a tool to build more efficient non-symmetric gas turbine exhaust ducts. The 

resulting correlation has demonstrated satisfactory agreement with the CFD-based data. 
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Chapter 1 

Introduction 

1.1 B ackground 

Turboprop and Turboshaft gas turbine engines find their way in many aerospace and indus­

trial applications. Figures 1-1 and 1-2 give a schematic layout of such gas turbines where 

each engine component is labelled. Careful review of these two figures demonstrates that 

the engine layout results in two very different exhaust ducts. In the first figure, Fig 1-1, 

an annular exhaust duct is found, where the flow and losses are rather well understood. In 

the second figure, Fig. 1-2, the engine layout does not allow for an annular exhaust duct 

resulting in the exhaust gases being redirected in a direction which differs from the inlet 

direction. A quick overview of the open literature shows that there is very little knowledge 

about these single port annular-to-rectangular exhaust ducts, be it flow physics, shape, de­

sign methods, performance, etc... Therefore, there is a need to study such exhaust ducts 

which redirect the combustion gases in a direction that differs from the inlet direction. 

Significant gains in gas turbine performance can be made by reducing the exhaust duct 

loss. For example, consider a simple gas turbine cycle with a pressure ratio of 10 and at a 

constant power output, a 1% drop in the absolute back pressure to the turbine will result 

in a 1% improvement in the specific fuel consumption, therefore care should be taken to 

design an exhaust duct that would minimize any pressure loss. 
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Figure 1-1: Pratt and Whitney PW200 engine (source: www.pwc.ca) 
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Figure 1-2: Pratt and Whitney PT6 engine (source: www.pwc.ca) 
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Inlet Exit 

Figure 1-3: Exhaust duct geometric features 

1.2 Single Port Annular-to-Rectangular Exhaust Ducts 

As was explained in the previous section, single port annular-to-rectangular exhaust ducts 

find their use in gas turbine applications where the output shaft does not allow for an annular 

exhaust duct application. In this situation, the exhaust gases are required to be redirected, 

crossing over the output shaft, and diffused to ambient through a rectangular exhaust stub. 

The distinct geometric characteristics of these exhaust ducts are an annular inlet followed by 

a flow splitter, an annular to rectangular transition region, and a rectangular exhaust stub, 

see Fig. 1-3. The annular diffuser function is to efficiently diffuse the flow to a low Mach 

number before the gases enter the transitional region. Within the transitional region, the 

gases are forced to make an aggressive 90° turn crossing over the power turbine shaft. It is in 

this region that the lower inlet Mach numbers will result in a lower loss making it important 

to obtain as much diffusion as possible in the upstream annular diffuser. A flow splitter is 

located at the start of the transition region to provide guidance to the gases directing the 

flow around the inner annulus surface. The exhaust gases enter a rectangular duct after 

3 



crossing the inner annulus surface where diffusion is continued and the exhaust gases are 

directed to the ambient atmosphere. In aerospace applications, these exhaust ducts are 

bound to be small in size, making efficient diffusion difficult and sometimes impossible. 

One such application of this exhaust duct configuration is found in PT6 engines produced 

by Pratt and Whitney Canada, Fig. 1-2. A PT6 engine has two spools, one for the gas 

generator, and a mechanically independent power turbine output shaft. The exhaust duct 

is mounted downstream of the last turbine stage. The flow into the exhaust duct is subsonic 

and swirling with the magnitude of swirl varying over the engine operating range. 

1.3 Contribution and Scope of the Present Study 

In this work, a pressure loss model is produced for single port annular-to-rectangular exhaust 

ducts. A parametric study was carried out using Computational Fluid Dynamics (CFD) 

to simulate the flow numerically in exhaust ducts where key geometric and aerodynamic 

parameters are varied and their effect on the total pressure loss is observed. Furthermore, 

the duct geometry is approximated through a five parameter model, which was coupled 

with a design of experiment method to generate a relatively small number of exhaust ducts 

for numerical simulation. The resulting numerical data that was produced, has been used 

as database to generate a total pressure loss model that designers can use as a tool to build 

more efficient non-symmetric gas turbine exhaust ducts. 

The scope of the present study has been divided into the following sections consisting 

of: 

1. Theory and Literature Review 

• summary of past research on simple 2D conical and annular diffusers 

• summary of past research on single port annular-to-rectangular exhaust ducts 

2. Design of Experiment (DOE) 

• n-dimension design space reduced to a five parameter model to approximate the 

duct geometry 

• definition of the key inlet aerodynamic parameters 
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• use methods of DOE to generate a relatively small number of exhaust ducts for 

numerical simulation 

3. Geometry Synthesis 

• synthesis of a single port annular-to-rectangular exhaust duct based on the five 

geometric parameters 

4. Computational Study 

• discussion on the use of a commercial CFD solver 

• definition of the computational domain and grid structure 

5. CFD-Based Parametric Study 

• presentation and discussion of the results of the numerical study 

6. Correlation of the Total to Total Pressure Loss 

• review of a correlation produced by Japikse [7] 

• correlation of the numerical data produced from the present work 

7. Conclusion and Recommendation 

5 



Chapter 2 

Theory and Literature Review 

2.1 Diffuser Performance 

2.1.1 Static Pressure Recovery Coefficient 

The static pressure recovery coefficient is defined as the static pressure rise across the diffuser 

divided by the inlet dynamic head: 

Cp = 5^L (2.1) 

For an incompressible and isentropic flow Bernoulli's equation can be used to define an ideal 

pressure recovery coefficient in terms the Area Ratio: 

C« = ! - ^ (2.2) 

A useful expression for annular diffusers which relates the influence of inlet swirl a.\ to the 

ideal pressure recovery is given by: 

ri tan^ a\ + 1 
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2.1.2 Diffuser Effectiveness 

A useful parameter for evaluating the performance of a diffuser is through the diffuser 

effectiveness: 

This relation relates the actual diffuser pressure recovery to the maximum potential pressure 

recovery. 

2.1.3 Total Pressure Loss Coefficient 

The diffuser total pressure loss coefficient, which is the parameter focused on in this work, 

is determined in the same manner as the static pressure recovery coefficient where the total 

pressure difference between diffuser inlet and outlet is divided by the inlet dynamic head: 

K^-J^ (2.5) 

The total pressure loss coefficient for simple diffusers with uniform inlet and exit flow 

conditions can be determined from Cp and Cpi through: 

K = CPi - Cp (2.6) 

2.2 Conical Diffusers 

2.2.1 Geometry 

Conical diffusers, Fig. 2-1 are commonly characterized by various dimensionless parameters. 

Two of such dimensionless parameters are the dimensionless length, L/D\, and area ratio, 

AR = A2/A1. The AR of a conical diffuser can further be described through the following 

geometric relation: 

A R = [ l + 2(L/£>i)tane]2 (2.7) 

Various studies have been performed on conical diffusers that take account inlet condi­

tions as well as non-dimensional length and area ratio. One such study was performed by 
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Figure 2-1: Conical diffuser presented with dimensional parameters 

Cockrell and Markland and was presented as a performance chart, see Fig. 2-2, in a paper 

written by Sovran and Klomp [1]. This chart presents pressure recovery coefficient (Cp) 

versus non-dimensional length and area ratio. Furthermore the locus of the maximum pres­

sure recovery for both non-dimensional length (Cp*) and area ratio (Cp**) can be found. 

Another study performed by McDonald and Fox [2] has produced a performance map with 

similar results, Fig. 2-3. 

2.2.2 Swirl 

The performance of a conical diffuser can be affected significantly when a swirling component 

is introduced to the flow field. The effects of swirl is different depending on the type of 

swirl distribution (free vortex, forced vortex) effecting both the boundary layer and the core 

of the flow. The importance of swirl on diffuser performance can be seen in the work of 

McDonald et al. [9]. It is evident in Fig. 2-4 that the introduction of swirl can result in a 

conical diffuser approaching the theoretical ideal performance. 

Additional studies were performed by Senoo et al. [10], who studied conical diffuser 

performance with swirling flow inlet conditions. The magnitude of swirl studied is quantified 
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Figure 2-2: Conical diffuser performance chart based on data from Cockrell and Markland 
(Bx « .20) [1] 

through a swirl parameter defined as: 

g = ^ ^ ^ ^ (2.8) 
R J0 (u2) rdr 

These authors identified the development of a Rankin vortex type flow composed of a large 

solid vortex core at the center of the conical diffuser where the axial velocity was very low. 

The total and static pressure distribution for an inlet swirl parameter of g = 0.18 is shown 

in Fig. 2-5. In Fig. 2-6, Senoo et al. have presented stream surfaces of revolution starting 

from the axis to 100% at the wall. Total pressure is observed to rise in the core of the flow up 

to a stream surface at 10% and again for 80% and 90%. This is due to the low momentum 

flow at the core and the wall being dragged along by the main flow, and inversely, the low 

momentum flow slows down the main flow producing a total pressure drop. 

2.2.3 Aerodynamic Blockage 

The effect of aerodynamic blockage in conical diffusers has been studied by many researchers. 

One study by Livesey and Odukwe [13] looked at the length of the pipe preceding the conical 

diffuser. Their results show that as the inlet pipe length is increased, the boundary layer 

thickness increases resulting in a reduction in pressure recovery. A clear presentation of the 

effect of aerodynamic blockage on pressure recovery was made by Dolan and Runstadler 
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Fi gure 2-3: Conical diffuser performance chart from McDonald and Fox [2] 

[11] shown in Fig. 2-7. This study made a comparison between a conical diffuser and a 

straight channel diffuser showing that the aerodynamic blockage is a significant aerodynamic 

parameter. Sharan [12] carried out a study with careful measurements of pressure recovery 

and total pressure loss on a 5° conical diffuser where he varied inlet pipe length, Reynolds 

Number, and turbulence intensity. The results of his work, Fig. 2-8, demonstrate that 

the total pressure losses increase with developing inlet blockage but following losses can 

be seen to fall as a result the inlet flow field developing its own flow structure. Japikse 

[14] has produced a loss map, see Fig. 2-9, using the data from Sharan where the data 

loosely followed the trend of K = CPi - Cp demonstrating that inlet factors such as inlet 

pipe length, Reynolds Number, and turbulence intensity must be considered. Kline [15] has 

compared the results of numerous studies showing that approximately the same reduction 

in pressure recovery for inlet aerodynamic blockage levels of approximately 14%. An early 

correlation was produced by Sovran and Klomp [1] who have postulated that, for geometries 

that are dominated by pressure forces (as oposed to viscous forces) the exit discharge can 

be correlated with inlet blockage and area ratio. The results of their attempt to correlate 

the data of Cockrell and Markland for conical diffuser geometries laying on the Cp* line is 

presented in Fig. 2-10 demonstrating that the data collapse reasonable well. 

10 
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Figure 2-4: Diffuser performance coefficient as a function of area ratio for (a) axial inlet 
flow (b) swirling inlet flow [9]. 

2.3 Annular Diffusers 

Annular diffusers are geometrically represented similar to conical diffusers; however more 

independent variables are present which require more complex relations. As in conical 

diffusers, non-dimensional length is represented as, L/h, and area ratio, AR = A2/A1. The 

AR of a three types of annular diffusers, shown in Fig. 2-11, can further be described 

through the following geometric relation where: 

1. Equiangular case 

AR = l + 2(L//i)sin0 (2.9) 

2. Straight Core is 

AR = 1 + 
2L sin 9 L2 sin2 0 / 1 - r ; / r0 

h{\ + n/r0) + h2 1 + ri/r0 

(2.10) 

3. Double divergent 

AR = 1+2 
L\ s in0 1 + (rj/ro)sinG2 .(L\2 [l - n/ro] (sin2 ©i - sin2 0 2 

h 1 + n/r0 -+lk 1 + n/ro 
(2.11) 
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Figure 2-6: Variation of total pressure along stream surfaces of revolution [10] 
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Figure 2-7: Maximum Pressure Recovery of Conical and Square Diffusers - Mth = 0.8 [11] 
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Figure 2-9: Conical diffuser loss map using Sharan's data [12] 

Curved wall diffusers, which include axial to radial diffusers, are more complicated to 

describe requiring their own derivation of L/h and AR specific to each shape. 

Some of the first used annular diffuser maps produced by Sovran and Klomp [1] and 

Howard et al. [3] were published in 1967, Figs. 2-12 and 2-13. Their research examined an 

extensive selection of geometric diffuser types and produced detailed analysis of performance 

measurements. The diffuser map presented in Fig. 2-12 shows the bulk of configurations 

which gave the best performance. Same as with conical diffusers, the locus of the maximum 

pressure recovery for both non-dimensional length (Cp*) and area ratio (Cp**) can be found. 

The main difference between these studies is that the research of Howard et al. covered 

fully developed inlet flow conditions while Sovran and Klomp covered low inlet blockage of 

approximately .02. 

2.3.1 Swirl 

The effect of inlet swirl on pressure recovery has been studied by researchers and summarized 

by Japikse and Baines [4] in Fig. 2-14. For each of the diffusers tested, a common trend has 

been present. When inlet swirl is introduced the pressure recovery increases to a maximum 

in range of 10° to 20° inlet swirl, and then pressure recovery decreases thereafter. The 

effect of swirl on pressure recovery comes from two effects. The first is to press the flow 

against the outer annulus surface due to the centrifugal force delaying separation on this 
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Figure 2-10: Exit discharge area ratio for conical diffusers on Cp* (based on data from 

Cockrell and Markland)[l] 

surface. The second comes from the centrifugal force destabilizing the inner hub boundary 

layer resulting in the boundary layer approaching flow separation at the hub surface. From 

the results shown in Fig. 2-14, it can be seen that the data of Coladipietro et al. shows that 

equiangular diffusers are more efficient than the others. Elkersh et al. [5] studied equiangular 

diffusers and confirmed the two effects that are produced are due to centrifugal forces acting 

on the outer and inner annulus boundary layers. Their results show improvement in pressure 

recovery up to inlet swirl values of 30°, and then decreasing performance with larger inlet 

swirl values, Fig. 2-15. It is also demonstrated in Fig. 2-15 that the total pressure losses 

tend to increase with increasing inlet swirl. A similar study to Elkersh et al. was performed 

by Dovzhik and Kartavenko [16] on equiangular diffusers confirming that the total pressure 

losses increase with increasing inlet swirl due to the intensity of flow separation at the outlet 

along the inner hub. Klomp [17] has tested eight annular diffuser families where the inner 

wall angles tested were both positive and negative. The results of this study demonstrated 

that all diffusers tested were relatively insensitive to free-vortex type swirl ranging from 0° 

to 25°. Greater inlet swirl levels lead to hub separation which was not found to result in 

decreased performance in all diffusers tested. Swirl was found to have the largest impact 

on the diffuser families with negative inner wall angles. 
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Figure 2-11: Annular diffusers (a) equiangular (b) straight core (c) double divergent 
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Figure 2-12: Annular diffuser performance chart {B\ ~ .02) [1] 
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Figure 2-13: Pressure recovery contours [3] 
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Figure 2-14: Straight annular diffuser performance with swirl [4] 
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2.3.2 Aerodynamic Blockage 

The effect of thick ({3 — 0.10) and thin (/3 = 0.06) inlet boundary layer blockage with swirl 

on annular diffuser performance was presented by Coladipietro et al. [18]. The authors 

comment on the discovery of a forced vortex for the condition of a thick inlet boundary layer 

partly due to the fact that the boundary layer penetrates deeply into the flow and meet near 

the center of the annulus [18]. For the condition of a thin boundary layer, a forced vortex 

is present near the wall but a free vortex is the predominant motion [18]. The authors 

discovered that Cp was higher in diffusers with small non-dimensional length with thin 

boundary layers and large non-dimensional length with thick boundary layers [18]. Japikse 

[4] presented numerous data published by Stevens and Williams [19] in a study showing 

the effect on inlet blockage, Fig. 2-16. From the data in this Fig. Japikse comments that 

increasing inlet blockage results in reducing diffuser pressure recovery, however, when long 

inlet lengths are present thus producing fully developed flow, the result is increasing pressure 
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Figure 2-18: Exit discharge area ratio for annular diffusers on Cp* [1] 
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recovery. Klein [6] has taken the same data from Stevens and Williams and plotted it versus 

inlet blockage, Fig. 2-17, showing dramatic improvement in the total pressure losses with 

increasing inlet lengths. In the same manner as conical diffusers, Sovran and Klomp [1] 

have added their test data on annular diffusers to the correlation presented in Fig. 2-10 for 

conical diffusers, see Fig. 2-18, and found that for the inlet blockage tested the data are in 

agreement for both geometric types. 

2.4 Past Research Contributions 

2.4.1 Loka et al. 

A numerical and experimental study was carried out at Pratt and Whitney Canada to 

achieve optimum integration of the PT6C-67A gas turbine engine on the Bell 609 aircraft 

[20]. The authors conducted the numerical analysis using an in-house finite element, com­

pressible, Navier-Stokes CFD solver with &k — ui turbulence model. The efforts consisted of 

three phases; the first was to optimize the uninstalled engine; secondly the numerical sim­

ulation was expanded to include the installation effects which included the exhaust ejector 

system; lastly, experimental tests were conducted to validate the analysis. 

Experimental Study 

The experimental study was carried out on a full scale exhaust duct, Fig. 2-19. The 

exhaust duct was mounted to a blower which could not attain the normalized flow levels 

of an operating engine, therefore the authors had to extrapolate the data to represent 

exhaust performance for an engine in flight. Inlet conditions were produced through a swirl 

generator, which comprised of a series of adjustable vanes capable of producing swirl angles 

in the range of 0° to 40°. 

Computational Study 

The computation domain consisted of a swept exhaust duct, an exhaust stub, and a plenum 

chamber, Fig. 2-20. The plenum chamber was created to capture the sudden expansion 

of the exhaust gases into the atmosphere. The computational boundary conditions at the 
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exhaust duct inlet were representative of engine profiles produced by the last stage turbine 

rotor blades. Far-field boundary conditions in the plenum were modeled corresponding to 

an aircraft in flight where, mass flow was imposed at the plenum inlet, and ambient static 

pressure at the plenum exit. 

Loss Mechanisms 

Based on the CFD results, the authors [20] suggest that there are three pressure loss mech­

anisms: 

1. Incidence on the flow splitter: The authors have observed a stagnation zone on the 

suction surface of the flow splitter where the flow has separated. This stagnation zone 

results in narrow layer of separated flow along the hub surface which merges with hub 

wake. 

2. A wake being shed from the hub surface due to the cross flow effects: The effect of the 

flow crossing over the hub toward the exit port leads to creating a wake downstream 

of the hub surface. The authors suggest the existence of a Von-Karmen vortex sheet 

and evidence of two counter rotating vortices. 

3. Excessive diffusion along the inner curve resulting in flow separation: A peak in Mach 

number is found at the duct inner curve. The excessive diffusion in this region results 

in the flow separating producing a pressure loss 

From the three loss mechanisms, two can be identified at the duct exit plane by regions of 

low total pressure; Hub separation and separation due to the inner curvature. It is suggested 

that the size of the low pressure regions dictate the magnitude of each loss mechanism. 

The authors have concluded that when there is no swirl at the turbine exit, the main loss 

mechanisms are due to the hub separation and the inner curvature which have been assessed 

to be equal contributors to the pressure losses. At higher swirl conditions, the incidence 

along the flow splitter will lead to larger losses which can not be identified at the duct exit 

because the separation merges with the hub wake. 
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Results and Conclusions 

A comparison was made between the CFD and experimental results where the total-to-total 

pressure loss coefficient, total-to-static pressure loss coefficient, and discharge coefficient are 

compared. The authors conclude that the trends predicted by the CFD are the same as 

what was found from rig testing, however the absolute levels varied between the two. 

2.4.2 Cunningham 

A detailed experimental and computational study was carried out on a single port tractor 

exhaust duct at Queens University in cooperation with P&WC [8]. In this study, the objec­

tive was to determine the effect of inlet conditions and duct geometry on the flow structure 

and the level of overall pressure losses. Conclusions were also made on the suitability of 

boundary conditions for both experimental and computational work. 

Experimental Study 

The experimental study was carried out on a stereolithographic ^ scale model of the tractor 

exhaust duct mounted to an annular cold flow wind tunnel, Fig. 2-21. A total of four 

geometries were studied experimentally. The wind tunnel used was capable of producing 

swirl, mass flow and inlet total pressure distributions similar to those seen in a gas turbine 

engine. The range of swirl studied consisted of zero swirl and two radial profiles provided 

by P&WC which are representative of what a sample PT6 engine exhaust duct would see at 

the duct inlet plane. Total pressure profiling screens were used to produce circumferential 

non-uniform total pressure profiles at inlet to the duct. 

Computational Study 

Five geometries were studied computationally. The computational domain consisted of an 

inlet annulus, an exhaust duct, and a plenum chamber overlapping the exhaust duct exit, 

Fig. 2-22. The plenum is a large conical domain with boundary conditions to allow the 

exhaust jet to entrain flow freely into the plenum. The plenum also served to allow for 

a non-uniform pressure distribution at the exhaust duct exit plane which results from the 

large stream line curvature in the flow. 
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The computational grid was created using Gambit. Hexahedral elements were primarily 

used to produce a structured mesh with only the annular to rectangular transitional region 

requiring an unstructured grid composed of tetrahedral elements for ease of meshing. The 

boundary layer was defined with prism elements in the first rows of mesh from the duct 

surface. The flow solver used in this study was the commercial code Fluent 5.5. The most 

suitable turbulence model which was available was the RNG k—e model; however the author 

used the realizable k — e turbulence model through the majority of the study due to the 

difficulty in obtaining a converged solution using the former. 

Loss Mechanisms 

Cunningham [8] has identified three geometric parameters affecting the total pressure losses 

base on preliminary testing and literature: 

1. Flow splitter. 

2. Streamlining downstream of the center body. 

3. Stub cross-sectional shape. 

The three main pressure loss mechanisms were found and identified as: 

1. Secondary flows: The secondary flows are generated through the duct bends as well 

as the presence of the flow splitter redirecting the flow across the center-body. 

2. Flow non-uniformity: Present at the stub exit representing undiffused kinetic energy 

and therefore lower static pressure recovery. The exhaust stub cross-sectional shape 

influenced the exit effective area-ratio. 

3. Flow separation and recirculation: The total pressure losses are a function of the flow 

separation and recirculation. Due to the complex shape of the exhaust duct, these 

losses dominated over skin friction losses. Flow separation occurs along the inside 

bend of the duct and in some cases, downstream of the center body. 
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Results and Conclusions 

Cunningham [8] made a comparison of experimental and CFD results concluding that the 

CFD consistently under-predicts the level of pressure losses in the exhaust ducts. CFD 

has on the other hand shown that it is capable of capturing trends in losses by accurately 

predicting changes in magnitude of pressure losses from one geometry to the next. When 

comparing pressure losses due to inlet swirl, Cunningham found that the slope of the trend 

line was under predicted when compared to measured results. This has been explained as 

the inability of the turbulence models to handle the anisotropy of highly swirling flows. 

Table 2.1 summarizes these findings. 

Table 2.1: Summary of performance of CFD analysis in the study of single port gas turbine 
exhaust [8] 

Parameter 
E 

A P t t 
A Pts 

geometry 

flow structure 

efficiency 

inlet conditions 

Suitability 
fair 
fair 
fair 

good 

fair 

excellent 

excellent 

Comments 
Under-predicts distortion and secondary flow 
under-predicts losses 
under-predicts losses 
able to predict correct magnitude and trends 
with change in geometry 
easily gives details of internal flow structure, 
may not be reliable in identifying separation 
very efficient for studying inlet conditions, 
geometry limited by efficiency of mesher 
inlet conditions can be easily specified 

If CFD is to be used to design optimum exhaust ducts, Cunningham has made the 

following recommendations: 

• In terms of predicting the total-to-static losses in the duct, the distribution of inlet 

flow has a large effect on the distribution of the outlet flow. To be able to make a 

realistic estimate of the total-to-static losses, a good estimate of the outlet flow is 

required. To ensure this, velocity boundary conditions should be applied at the inlet 

as this leads to a more realistic flow distribution at the exit. 
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• A large plenum is required at the exit of the duct to produce accurate flow distortions 

in the duct near the exit. 

• Turbulence models which account for swirl should be used if possible. 

• Where possible, boundary conditions should be applied that account for the total 

pressure non-uniformities at the duct inlet resulting from the presence of the engine. 
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Chapter 3 

Design of Experiment 

The work of Loka et al. [20], and Cunnigham [8] have identified many of the geometric and 

aerodynamic parameters responsible for the overall duct loss. In this chapter, more param­

eters are identified. Also discussed here are how the geometric parameters are quantified 

and bounded within a specific design space, giving limits to the magnitude of each param­

eter, for the purpose of creating a loss correlation. Next, combinations of each geometric 

parameter are grouped together to create a set of exhaust duct models which, later, will be 

simulated numerically along with the aerodynamic parameters to produce data for building 

a loss correlation. 

3.1 Geometric Design Space 

A design space can be envisioned as being an n-dimensional box which is capable of contain­

ing all practical exhaust duct shapes and sizes. The size of the box is chosen to allow each 

geometric parameter to be varied from a minimum to a maximum value which is thought 

to cover rather well the design space so that both good and bad performing exhaust ducts 

are represented. For each parameter, a minimum of three changes are required to be able to 

predict a non-linear trend with respect to exhaust duct losses. In this study, each geometric 

parameter will be extended to the minimum and maximum limits of the design space with 

one selection in the center. 
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3.1.1 Equivalent Cone Diffusion Angle 

The exhaust duct region between the inlet and the flow splitter can be represented as an 

annular duct. Quantifying an annulus using one parameter is done through an Equivalent 

Cone DifFuser Angle (ECDA). Equation 3.1 combines inlet annulus area, Ain, exit annulus 

area, Aout and duct length, L, into one convenient parameter. 

ECDA = 2 arctan 
M I Aou± 

(3-1) 

The range of ECDA chosen for the axisymmetric annular duct is to provide for attached 

and separated flow. McDonald et al. [9] have found that optimal pressure recovery can be 

found for conical diffusers at cone angles between 6° and 8° with decreasing performance 

at larger cone angles. The work of Sovran and Klomp [1] has demonstrated that the 

optimum cone angle is 8° provided that the area ratio is large between exit and inlet. It 

was therefore decided that an ECDA of 20° should be sufficient to create flow separation 

given that downstream of the annular duct is the flow splitter and annular to rectangular 

transition region which could influence the streamwise pressure gradient and ensure that 

flow separation will occur. It is also of interest to see the effect of no diffusion before 

the annular to rectangular transition region where higher Mach numbers are expected to 

produce higher pressure losses in this region, therefore the minimum ECDA studied is 0°. 

An ECDA of 10° is used as a middle value as it was found to closely approximate the 

sample P&WC duct and is close to the optimal cone angles found by McDonald et al [9]. 

Figure 3-1 shows the annular ducts which were used in this study upstream of the annular 

to rectangular transition region. 

3.1.2 Flow Splitter Wedge Angle 

A swirling flow will create an incidence angle with the flow splitter leading edge possibly 

leading to form a separated region along the suction surface. It is expected that small wedge 

angles will lead to more severely separated flow resulting from larger incident angles. Using 

the sample duct provided by P&WC as a the reference for a mid point value of around 45°, 

min and max values of 10° and 80° were chosen for this study, Fig. 3-2. 
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Figure 3-2: Duct Wedge Angle Levels Studied 
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Figure 3-3: Gas Path Aspect Ratio 

3.1.3 Gas Path Aspect Ratio 

The annular to rectangular region of the exhaust duct includes a 90° bend where the flow 

will have a strong tendency to separate from the inner curve. While it is not possible 

to avoid making the 90° bend, it is possible to adjust the length of duct over which the 

transition will occur. It is expected that a short duct will lead to severe flow separation 

along the inner curve as a result of an increased pressure gradient. Longer ducts will have 

lower pressure gradients reducing or delaying flow separation. The length of the annular to 

rectangular transition region can be quantified through Eq. 3.2 which adds the duct height 

as an additional parameter. This aspect ratio is the ratio of axial length, L, over radial 

height, H, of a spline curve representing the general flow direction. The length and height 

are measured between the start and end points of the gas path spline as demonstrated in 

Fig. 3-3. 
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Figure 3-4: Gas Path Aspect Ratio Levels Studied 

AS = | (3.2) 

For this study, the height has been fixed while the length varied. The mean gas path 

aspect ratio used is 1.15 which is representative of the sample P&WC duct. To ensure 

that flow separation occurs, an aspect ratio of 0.92 was selected as the minimum because 

of the aggressive turn along the inner curve. An aspect ratio of 1.38 was selected as the 

maximum with the expectation that flow will remain attached along the inner curve. Figure 

3-4 demonstrates these aspect ratios where each cross-section was created with an ECDA 

of 10° and the same exit area. 

3.1.4 Annular to Rectangular Transition Region 

An additional factor affecting the pressure gradient along the annular to rectangular tran­

sition is the remaining area ratio between the flow splitter and the duct exit, see Fig. 3-5 
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Figure 3-5: Duct Locations where Area is Specified 

section 2 to 3. For a constant duct aspect ratio, any change in the area ratio will affect the 

streamwise pressure gradient. Small area ratio ducts will have less diffusion and therefore 

the smallest streamwise pressure gradient. Large area ratio ducts will have increased dif­

fusion, a large streamwise pressure gradient, and increase the possibility of flow separation 

due to the increased boundary layer growth. The area ratios of the annular to rectangular 

transition region have been selected to give, once combined with the annular region, Fig. 

3-5 section 1 to 2, overall area ratios that do not exceed more then 2 from duct inlet to duct 

exit, Fig. 3-5 section 1 to 3. Table 3.1 lists the combined area ratios of the annular section 

with the annular to rectangular section to give overall duct area ratios. 

3.1.5 Exhaust Stubs 

Swept exhaust ducts can be found in turboprop and turboshaft configurations that require 

the engine to be mounted to the aircraft with the output shaft pointed in the fore or aft 

direction. The end result is to have the exhaust gases leave the engine through an exhaust 
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Table 3.1: Exhaust Duct Area Ratio (referenced to figure 3-5) 

ECDA ARi_2 AR2_3 ARi_3 

0° 
10° 
20° 
0° 
10° 
20° 
0° 
10° 
20° 

1.000 
1.000 
1.000 
1.180 
1.180 
1.180 
1.450 
1.450 
1.450 

1.000 
1.175 
1.350 
1.000 
1.175 
1.350 
1.000 
1.175 
1.350 

1.000 
1.175 
1.350 
1.180 
1.387 
1.593 
1.450 
1.704 
1.958 

Pusher Intermediate Tractor 
Figure 3-6: Exhaust Stub Direction 
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stub in a direction which will be dictated by the airframe manufacturer. Three exhaust stub 

configurations are modelled in this study to account for the possible change in the duct losses 

with stub direction. Two of the configurations turn the flow to create a Pusher (S-Shape 

Duct) and Tractor (C-Shape Duct) application while the third takes the exhaust gases 

straight out (Intermediate-Shaped Duct) defining a transitional point, Fig. 3-6. For each 

exhaust stub configuration, the cross-sectional area and length was maintained constant, 

while for the turning exhaust stubs, the turning radius, was maintained constant. 

3.2 Aerodynamic Design Space 

3.2.1 Swirl 

Moderate inlet swirl has been shown to be beneficial in achieving optimum diffusion in two 

dimensional diffusers. Annular diffusers can be designed with a large ECDA (ie. short ducts 

with large diffusion angles), resisting flow separation when swirl is present at the diffuser 

inlet. For the current study, the effect of swirl on diffuser performance is not as apparent as 

it is in two dimensional diffusers. While inlet swirl should still be beneficial in the annular 

portion of the exhaust duct, the flow splitter performance, however, will not benefit from 

large incidence angles and the annular to rectangular region of the exhaust duct will result 

in an asymmetric flow field. 

Some inlet swirl angle profiles of several similar exhaust ducts can be seen in Fig. 3-7. 

These profiles are produced at P&WC using an in-house code which neglects the upstream 

effect of the downstream diffuser and predicts a circumferentially uniform flow distribution. 

While many profiles can be observed in Fig. 3-7, it was decided that the swirl gradient used 

in the current study would be of a constant gradient which fits within the given sample, 

identified in Fig. 3-7 as the dotted line. This swirl gradient varies by 8° from r, to r0 and 

is identified by the swirl value found crossing mid way along the annulus height, Fig. 3-7 

shows nominal 0°. The range of nominal swirl angles selected to be studied varies from 

nominal 0° to 35°. 

38 



Inlet Swirl Angle at Design Point 

-2 0 2 
Swirl Angle (°) 

Figure 3-7: Sample of exhaust duct inlet swirl gradients 
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3.2.2 Inlet Boundary Layer Blockage 

It is fully evident from Chapter 2 that inlet boundary layer blockage defined by 

f — dA 
Blockage = A

f
V,. x 100 (3.3) 

JAdA 

has a significant effect on diffuser performance. With regards to the diffusers in this study, 

it is expected that the duct pressure losses will increase with increasing inlet boundary layer 

blockage. The presence of an adverse pressure gradient will result in further increasing the 

boundary layer thickness as flow travels downstream from the exhaust duct inlet. As the 

boundary layer thickness grows, the wall shear stress reduces due to a decreasing velocity 

gradient in the direction normal to the wall. Flow separation will occur as the wall shear 

stress approaches zero, contributing further to the exhaust duct losses. A turbulent inlet 

boundary layer will either prevent or delay the onset of flow separation. In the current 

work, three values of boundary layer blockage have been studied and are displayed in Fig. 

3-8. The largest inlet blockage expected to exist in practice is 10%. The presence of the 

turbine upstream of the exhaust duct inlet will likely produce a turbulent boundary layer, 

therefore the minimum expected inlet blockage will be less then 1%. An inlet boundary layer 

blockage between 4% and 8% will give a good mean value for correlating inlet boundary 

layer blockage later on in this study. The 1/7*'1 power law given by 

has been used to define the velocity gradient within the boundary layer. 

3.3 Full Factorial Design 

To find the sensitivity of each of the geometric and aerodynamic parameters on exhaust duct 

performance requires the modelling of numerous exhaust duct cases covering every possible 

combination of parameters. This approach to performing a sensitivity analysis is termed a 

Full Factorial Design requiring tremendous resources to complete a timely analysis. To put 

this into perspective, this study has identified five geometric parameters having a first order 
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Figure 3-8: Boundary layer axial velocity profiles 
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Table 3.2: Geometric Parameters 

Geometric Parameter Levels Number of Levels 
1) ECDA 0°, 10°, 20° 
2) Flow Splitter Wedge Angle 10°, 45°, 80° 
3) AS 0.92, 1.15, 1.38 
4) AR2_3 1.000 , 1.175, 1.350 
5) Stub Direction S-Shape, C-Shape, Straight 

Total Combinations = 

3 
3 
3 
3 
3 

243 

Table 3.3: Aerodynamic Parameters 

Aerodynamic Parameter Levels Number of Levels 
1) Inlet Swirl Angle 0°, 10°, 25°, 35° 
2) Inlet Boundary Layer Blockage Low, Med, High 

Total Combinations — 

4 
3 
12 

effect on exhaust duct performance, where a minimum of three values are needed for each 

parameter in order to find a non-linear effect on exhaust duct performance. Additionally, 

each exhaust duct would need to be modelled using each combination of inlet swirl angle 

and inlet boundary layer blockage. A full-factorial design with five parameters each having 

three values will require 35 = 243 exhaust ducts to analyze as seen in Table 3.2. Each of 

these exhaust ducts would then be modelled using each of the aerodynamic parameters in 

Table 3.3 giving 12 aerodynamic boundary conditions. The total combination of geometric 

and aerodynamic parameters which need to be modelled is 2916, which is an unpractical 

task to perform. Consequently methods of selecting the minimum number of experiments 

required to give the full information about each factor exist and are called partial-fraction 

designs [21]. 
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3.4 Taguchi Design 

Dr. Genichi Taguchi [21] has created a set of guidelines for performing partial-fraction 

designs using a special set of arrays called orthogonal arrays. In an orthogonal array all 

levels of all factors are represented an equal number of times, and the combinations of any 

two factors are also represented an equal number of times. In this respect, an orthogonal 

array can be viewed as being well balanced, providing equal pairing between independent 

parameters therefore reducing the total combination of parameters needed to determine 

their effect on the dependent variable. 

3.4.1 A s s u m p t i o n 

Prior to choosing the orthogonal array, we must understand the assumption that is being 

made in the Taguchi Design. The assumption is that the factors that are selected are 

independent of each other and can be separated. Any interactions are assumed to have a 

higher order effect on the dependent parameter and are confounded within the main effects. 

The objective of this study is to catch the first order effects on exhaust duct losses. While 

some interactions are expected to exist, they are assumed to have a smaller influence on 

the exhaust duct losses then do the independent effects. 

3.4.2 I n t e r a c t i o n s 

Interactions that can be expected are upstream parameters affecting the downstream pa­

rameters, such as flow separation in the annulus on the flow splitter and the annular to 

rectangular transition region. It is not expected that a separated flow will interact with the 

downstream parameters at the end-walls the same way as an attached flow does because of 

changes in the boundary layer, however the stream-wise momentum is going to be an order 

of magnitude larger and will continue to relate stronger to the first order duct losses. There 

is one particular interaction that should not be neglected in this study, namely the inter­

action between the exhaust duct and the exhaust stub direction because the same exhaust 

duct can be used in both pusher and tractor configurations, Fig. 3-6. 
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3.4.3 Selecting an Orthogonal Array 

An orthogonal array is selected by first considering the independent parameters one through 

four in table 3.4. Each of the four parameters consist of three levels, therefore the minimum 

number of geometries needed can be defined to be: 

NV 

NTaguchi = 1 + J2(L* ~ X) (3-5) 
i= l 

Where: 

NV = The number of parameters 

and 

Li = The number of levels for parameter i 

For this study NV is equal to four and Li is equal to three for each of the parameters 

giving nine geometries. An Lg orthogonal array shown in Table 3.4 is well suited for this 

study. To include the interaction with exhaust stub direction, the L% orthogonal array 

is expanded to allow each of the nine geometries to be combined with all stub directions 

yielding 27 geometries to study. Table 3.5 presents the expanded Lg orthogonal array with 

the physical variable to give exhaust duct families A through G. It can be well observed 

that the Taguchi design has reduced the amount of geometries required for the sensitivity 

analysis from 243 in the full factorial design to 27 in the partial factorial design. 
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Table 3.4: L9 Orthogonal Array 

Independent Parameter 
Build Parameter 1 Parameter 2 Parameter 3 Parameter 4 

1 
2 
3 
4 
5 
6 
6 
8 
9 

1 
1 
1 
2 
2 
2 
3 
3 
3 

1 
2 
3 
1 
2 
3 
1 
2 
3 

1 
2 
3 
2 
3 
1 
3 
1 
2 

1 
2 
3 
3 
1 
2 
2 
3 
1 
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Table 3.5: Lg Orthogonal Array Expanded for Stub Direction 

Flow Sp: 
Duct ECDA Wedge I 

~KA O5 io° 
A-2 0° 10° 
A-3 0° 10°^ 

T H O5 45° 
B-2 0° 45° 
B-3 0° 45°_ 

"CM 05 W 
C-2 0° 80° 
C-3 0° 80°_ 
D-l 10° 10° 
D-2 10° 10° 
D-3 10° HT 
E-l 10° 45° 
E-2 10° 45° 
E-3 10° 45°_ 
F- l 10° 80° 
F-2 10° 80° 
F-3 10° 80° 

~~GA W 10° 
G-2 20° 10° 
G-3 20° 1(F 
H-l 20° 45° 
H-2 20° 45° 
H-3 20° 45°_ 

~ f l 20° 80° 
1-2 20° 80° 
1-3 20° 80° 

ie AR2-3 AS Stub Direction 

1.000 092 C-Shape 
1.000 0.92 S-Shape 
1.000 0.92 Straight 
1.175 1.15 C-Shape 
1.175 1.15 S-Shape 
1.175 1.15 Straight 
1.350 1.38 C-Shape 
1.350 1.38 S-Shape 
1.350 1.38 Straight 
1.175 1.38 C-Shape 
1.175 1.38 S-Shape 
1.175 1.38 Straight 
1.350 0.92 C-Shape 
1.350 0.92 S-Shape 
1.350 0.92 Straight 
1.000 1.15 C-Shape 
1.000 1.15 S-Shape 
1.000 1.15 Straight 
1.350 1.15 C-Shape 
1.350 1.15 S-Shape 
1.350 1.15 Straight 
1.000 1.38 C-Shape 
1.000 1.38 S-Shape 
1.000 1.38 Straight 
1.175 0.92 C-Shape 
1.175 0.92 S-Shape 
1.175 0.92 Straight 

46 



Chapter 4 

Geometry Synthesis 

The approach discussed here for geometry synthesis has been designed to produce exhaust 

ducts which can be specified using only key geometric parameters thought to be responsible 

for the total pressure losses in the exhaust duct. The 3D nature of the single port swept 

exhaust duct makes its complete geometric representation impossible using only one dimen­

sional geometric parameters. Therefore assumptions are made to complete the geometry. 

The blanks in the steps discussed in this Chapter have been filled in based on the assump­

tion of how a single port swept exhaust duct should be represented geometrically, and could 

vary with each designer who uses this approach. It is the assumption of this author that the 

steps not discussed here would only represent a second order effect on exhaust duct losses, 

and therefore do not play a crucial role in the current study. 

A sample of a single port swept exhaust duct taken from P&WC is shown in Fig. 4-1. 

This exhaust duct has smooth flowing features which do not contain any sharp edges which 

can disturb the flow. To describe the geometric features of this duct would require complex 

splines and curves which do not suit the present study because of the numerous parameters 

that would be needed. Steps have been taken to simplify the exhaust duct such that it can 

be described by simple one dimensional parameters identified in Chapter 3. 

47 



Figure 4-1: Sample P&WC Single Port Swept Exhaust Duct 
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Figure 4-2: Equivalent Cone Diffusion Angle 

4.1 Equivalent Cone Diffusion Angle 

From examination of the annular region of the sample exhaust duct, the inner and outer 

walls are not straight walled and are found to be represented by splines. The curved 

profile has been made linear, and is now better suited to be described by Eq. 3.1. Further 

examination of the sample exhaust duct shows tha t the hub surface is nearly straight walled 

with a constant radius and has therefore been replicated this way in the current study. The 

cross-sectional profile of the annular region is given in Fig. 4-2 which presents the sample 

geometry with the simplified representation. 
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Figure 4-3: Gas Path Conic 
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4.2 Gas Pa th 

The remaining portion of the gas path continues from the exit of the annular section to 

the duct exit. The profile of the sample duct can be closely reproduced with the use of 

conies as shown in Fig. 4-3. The conies used require five parameters; a start point, an 

end point, a tangent direction at the start point, a tangent direction at the end point, 

and a conic parameter. The start points and tangent directions are set from the preceding 

section defined by the ECDA. The end points are defined by the exhaust duct exit area 

and position. The tangent direction for the end points is always 90° from the duct inlet. A 

conic parameter of 0.45 has been chosen based on a good fit with the sample duct and used 

throughout this study. Once the inner and outer conies have been defined, equally spaced 

points can be located along each curve and joined with straight lines. A gas path spline 

can be constructed by locating the midpoints of each line and then connecting them with a 

spline Fig. 4-4. 

4.3 Gas Pa th Aspect Ratio 

Once the inner and outer conies have been defined, equally spaced points can be located 

along each curve and joined with straight lines. A gas path spline can be constructed by 

locating the midpoints of each line and then connecting them with a spline, Fig. 4-4. The 

gas path aspect ratio can now be measured according to Eq. 3.2. 

4.4 Flow Splitter Leading Edge 

The flow splitter is located downstream of the annular duct section at the bottom dead 

center of the exhaust duct, Fig. 4-5). It can be described as being an axisymmetric vane 

with an elliptical leading edge varying from hub to tip centered along a plane not fully 

normal to the axial direction. Large fillets are used at hub and tip of the vane to merge 

smoothly with rest of the domain. The flow splitter smoothly blends from the leading edge 

outward to the exhaust duct through the annular to rectangular duct transition region. 

To construct the flow splitter, a plane is located normal to the gas path spline slightly 
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Gas Path Spline 

"ft 
Figure 4-4: Gas Path Spline and Aspect Ratio 
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Flow Splitter 

Figure 4-5: Flow Splitter 
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downstream of the annular duct segment, Fig. 4-6. With the height of the flow splitter 

located at the bottom dead center of the duct, it's center is located and a circle is drawn 

of diameter D in a plain normal to the line defining the flow splitter height. The circle is 

centered along the symmetry plane of the duct but not constrained to be centered on the 

line defining the flow splitter height. Two lines are drawn at an angle a intersecting the 

symmetry line of the flow splitter and tangent to the circle. The circle is allowed to move 

along the center line with the tangent points falling on the plane positioned normal to the 

gas path spline. The portion of the circle lying downstream of the plane positioned normal 

to the gas path is removed leaving the upstream portion to be the leading edge of the flow 

splitter, Fig. 4-7. The leading edge curve is then extruded to produce the flow splitter 

which is then joined to the upstream annulus through fillets. 

4.5 Flow Splitter Wedge Angle 

The transition of the exhaust duct geometry from annular to rectangular continues from the 

leading edge of the flow splitter through a wedge shaped inner passage directing the flow 

around the hub toward the exhaust duct exit. The P&WC sample duct shown in Fig. 4-8 

demonstrates that the varying leading edge diameter leads to a varying wedge angle from 

hub angle a\ to shroud angle a^- The exhaust ducts created in this study contain a single 

wedge angle as a result of using one leading edge profile from hub to shroud. To smoothly 

merge the wedge angle into the duct transition section a limit was put on the flow splitter 

length to allow a smooth transition to occur as seen in the P&WC sample exhaust duct in 

Fig. 4-8. This limit was taken as being l/8 i fe the length, L, defined in the gas path aspect 

ratio. 

4.6 Duct Exit Cross-Section 

The sample P&WC exhaust duct consists of an exit cross-section that is only symmetric 

across one plane as shown in Fig. 4-9. The duct exit cross-section of the sample P&WC 

exhaust has been developed through optimization for a given set of flow conditions which 

are unknown to this author. For this reason, a fully symmetric exit cross-section, shown as 
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Figure 4-6: Flow Splitter Construction Plane 
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Figure 4-7: Flow Splitter Construction Plane 
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P&WC Sample Duct Simplified Duct Wedge Angle 

Figure 4-8: Flow Splitter Wedge Angle 

the blue profile in Fig. 4-9, has been used throughout this study so not to introduce any 

unknown influences produced by the sample P&WC exhaust duct. 

4.7 Annular to Rectangular Transition Region 

The shape of the exhaust duct from the flow splitter downstream to the exhaust duct 

exit is defined by cross-section profiles built on planes passing through each of the lines 

connecting the inner and outer conies shown in Figs. 4-3 and 4-4. The exhaust duct 

transition from annular to rectangular produces complex cross-sections which cannot be 

defined with straight lines and curves, resulting in the decision to use splines, Fig. 4-10. 

Numerous control points are required to define each cross-section spline making it difficult 

to develop a consistent approach to the design; however, some rules have been created and 

followed throughout this study. The following rules that have been applied are: 

1. The profile is bounded by the annulus hub radius. 

2. The profile is bounded so as not to surpass the gas path inner conic. 
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Figure 4-9: Duct Exit Cross-Sectional Shape 
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Duct Exit 

Figure 4-10: Duct Cross-Sections Downstream of Flow Splitter 

3. The growth in cross-sectional area should be nearly linear. 

4. The exhaust duct geometry should transition smoothly without any waviness or sharp 

edges that may affect the flow of fluid. 

To maintain the wedge angle defined in Sec. 2.2, a cross-section is placed passing through 

a point marking the end of where the wedge angle is held to. Once the cross-sections are 

completed, a surface is passed through them and then joined to the upstream flow splitter 

and annulus, Fig. 4-11. 

4.8 Plenum 

A plenum domain, shown in Fig. 4-12, is created for each duct series as a function of the 

exhaust s tub exit hydraulic diameter. The inlet surface parallel with the stub exit plane 

has a diameter of 10Dhstubexit and the plenum length is \hDhstubexit- The half cone angle 

of the plenum is 30°. 
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Figure 4-11: Duct Surface Passing Through Cross-Sections 
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Figure 4-12: Plenum 
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Chapter 5 

Computational Study 

The computational analysis has been performed using CFX 5.7.1, which is a a commercial 

Computational Fluids Dynamics (CFD) package developed by ANSYS. CFX 5.7.1, solves 

the unsteady Navier-Stokes equations in their conservative form. The computational domain 

is discretized into finite control volumes using a mesh. Each of the governing equations are 

integrated over a control volume, such that the related quantity (mass, momentum, energy 

etc.) is conserved in a discrete sense. The following sections cover the development of the 

computational methodologies and mesh synthesis. 

5.1 Data Reduction 

Data reduction techniques for averaging flow properties must be carefully selected consid­

ering the non-uniformity of the flow through the exhaust ducts considered in this study. 

Errors can be introduced through averaging techniques which will affect the performance 

parameters introduced in Sec. 2.1, where the total pressure loss coefficient is of prime 

interest in the current analysis. 

Perhaps the simplest form of averaging flow parameters (</>) is the area average given 

by: 

Parea = ^ I 5 - 1 ) 

A more apropriate averaging method for non-uniform flows is the mass average method 
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given by: 
J((f>pudA) 

* = 7 O ^ A T (5'2) 

Wyatt [22] has studied the errors generated using averaging methods that include Eqs. 5.1 

and 5.2 in ducts with various velocity profiles. It was demonstrated that total pressure 

losses in a duct for a Mach number of 0.3 resulted in an error of less then . 1 % and 1% 

for the mass average and area average techniques respectively. Based on the above results 

and to be consistent with the work of Cunningham [8], all flow parameters have been mass 

averaged in the present study. 

5.2 Pressure-Velocity Coupling 

To overcome the decoupling of pressure and velocity, CFX 5.7.1 uses a single cell, un-

staggered, collocated grid. The continuity equation is a second order central difference 

approximation to the first order derivative in velocity. A fourth derivative in pressure is 

used to modify the equation to redistribute the influence of pressure and overcome the prob­

lem of checker board oscillations found when variables are collocated. The method used is 

similar to that from Rhie and Chow [23]. A number of extensions are implemented in CFX 

which improve the robustness of the discretisation when pressure varies rapidly. 

5.3 Advection Scheme 

CFX 5.7.1 offers the first order upwind differencing scheme, the high resolution scheme, 

or a specified blend factor to blend between first and second order advection schemes to 

calculate the advection terms in the discrete finite volume equations. The high resolution 

scheme, used in this study, has a blend factor which varies throughout the domain based 

on the local flow field. In flow regions where there are low gradients, the blend factor will 

take on a value close to one representing a second order advection scheme. Flow regions 

with large gradients will have a blend factor near zero representing a first order advection 

scheme to prevent overshoots and undershoots and maintain robustness. 
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5.4 Turbulence Modelling 

A wide range of turbulence models are available in CFX 5.7.1 which include a standard 

k-e, Large-Eddy-Simulation, and the Shear Stress Transport (SST) model. The two most 

appropriate turbulence models for this analysis are the k-e and SST turbulence models. 

5.4.1 k - e 

The k-e model is robust and computationally inexpensive at solving turbulent flows. The 

downfall of this turbulence model is that it predicts the onset of flow separation late and 

tends to under-predict the magnitude of separation. Separated flow has been observed 

in single port swept exhaust dust by Loka et al [20] and Cunningham [8]. Both authors 

have observed flow separation along the exhaust duct hub and inner curve in the annular 

to rectangular transitional region. It is important to note that diffusing flows produce 

unstable boundary layers due to the flow traveling against an adverse pressure gradient. 

The effect of predicting the onset of flow separation late results in over predicting exhaust 

duct efficiencies, where flow separation leads to less pressure recovery and lower discharge 

coefficients. 

5.4.2 SST 

A turbulence model developed to address the deficiencies of the k — e model is the SST 

turbulence model developed by Menter [24]. This model works by solving the k—ui equations 

at the near wall region and then the k — e in the free stream region with a blending function 

for transition between the two models. The k — UJ based SST model takes into account the 

transport of the turbulent shear stress to give highly accurate predictions of the onset and 

the amount of flow separation under adverse pressure gradients. The key reason for the 

deficiencies of the k — e model is that is does not account for the transport of the turbulent 

shear stress resulting in an over prediction of the eddy-viscosity. 

CFX guidelines for using this model requires an overall y+ of less then two and no less 

then 10-15 grid points within the boundary layer. The SST model continues to be accurate 

when these guidelines can not be achieved from the use of scalable wall functions. For fine 
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Figure 5-1: Air solid model of the computational domain 

grids the k — to model is applied, but when a coarser grid is used, the model switches to a 

wall function treatment making use of the logarithmic profile assumptions. For this reason, 

a new near wall treatment was developed by CFX for the k — u> based models that allows 

for a smooth shift from a low-Reynolds number form to a wall function formulation. 

5.5 Computational Domain 

The computational domains studied in this work are composed of an exhaust duct, exhaust 

stub, and a plenum chamber as illustrated in Fig. 5-1. The plenum chamber has been 

modeled to serve multiple functions which include providing a far-field boundary condition 

and a domain for jet flow entrainment. The work of Loka et al, and Cunnigham have 

made use of plenum chambers in their work, both demonstrating that non-uniform pressure 
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gradients exist at the exhaust stub exit. These pressure gradients are found to exist as 

a result of the swirling flow and geometric influences causing streamline curvature. If no 

plenum is modeled, the flow structure at the exhaust stub exit would be strongly influenced 

by the imposed boundary conditions. A realistic exit flow structure can only then be 

achieved if the pressure gradients at the exhaust stub exit are known in advance. 

5.5.1 Boundary Condit ions 

The CFD boundary conditions have been selected as being the most appropriate for deter­

mining the aerodynamic and geometric parameters sensitivity on exhaust duct losses. The 

boundary conditions are not consistent with what is experienced at flight conditions where 

ambient conditions change according to aircraft speed, altitude, and engine installation. 

The following boundary conditions can be seen in Fig. 5-2. 

Duct Inlet 

Ansys CFX contains a large variety of inlet boundary conditions to suit many situations. 

The requirements of this study are to impose a swirl gradient and aerodynamic blockage 

at the duct inlet plane. Total pressure and mass flow boundary condition do allow for an 

imposed flow direction, however, the aerodynamic blockage is an implicit result of the flow 

simulation making these boundary conditions a poor choice for the current study. The 

most suitable inlet boundary condition for this study, that is offered in CFX, is to impose a 

velocity gradient with magnitude and direction. Using this option both a swirl gradient and 

blockage can be controled explicitly. Using the later choice of inlet boundary conditions, 

the velocity magnitude and direction were specified as a function only of radius (constant 

across the circumference). An inlet total temperature of 1530 R was used throughout this 

study, being a common average total temperature for P&WC swept exhaust ducts. The final 

parameters set at the inlet to the exhaust duct are turbulence intensity and eddy viscosity 

ratio. A turbulence intensity of 10% and an eddy viscosity ratio of 300 were suggested by 

P&WC experts and used throughout the study. 
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Figure 5-2: CFD boundary conditions 
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Plenum 

The conical plenum domain has an inlet and an outlet boundary condition. The inlet 

boundary condition is mass flow with direction. The mass flow rate is implicitly defined 

to be 10% of the duct inlet mass flux. The flow direction over the full surface is directed 

normal to the exhaust stub exit plane. A uniform total temperature is imposed at 519 

R. A low inlet turbulence intensity and eddy viscosity ratio of 1% and 1 respectively was 

used. The plenum exit was modeled as an opening allowing both inflow and outflow from 

the same location. The opening static pressure and temperature is set at 14.7psi and 519 

R respectively. For the condition of inflow through the opening, a low turbulence intensity 

and eddy viscosity ratio was selected to match the plenum inlet boundary condition. 

Walls 

The exhaust duct and stub wall have been modeled as no slip and adiabatic. 

5.5.2 Grid Structure 

The computational grid was created using ANSYS ICEM CFD. This meshing package offers 

the capability to create grids in multi-block structured, unstructured hexahedral, tetrahe-

dral, hybrid grids consisting of hexahedral, tetrahedral, pyramidal and prismatic cells. For 

this study, the computational domain was constructed using unstructured tetrahedral ele­

ments with prismatic cells for near wall turbulence model requirements. 

The three components of the computational domain (exhaust duct, stub, and plenum) 

where meshed separately and later assembled in CFX making use of General Grid Interface 

(GGI) which is used to create a fluid-to-fluid interface layer between two grid surfaces which 

do not have matching node locations. The GGI theory involves a control surface treatment 

of the numerical fluxes across the interface. The handling of the interface fluxes is fully 

implicit and fully conservative in mass, momentum, and energy. The advantage of using 

GGI capability of ANSYS CFX, is that a parametric study can be carried out with minimal 

time spent creating computational grids. For one duct series in Chapter 3, only one exhaust 

duct, one curved stub, one straight stub, and one plenum is needed to be meshed in ICEM 

CFD. The C-Shaped domain is created by assembling the exhaust duct, curved stub, and 
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Figure 5-3: Exhaust Duct Inlet Showing Prism Layer Elements (20 layers shown) 

plenum in ANSYS CFX and defining all the fluid-to-fluid interface surfaces. The S-Shaped 

duct is created in ANSYS CFX by rotating the stub and plenum about an axis. To create 

the Intermediate-Shaped duct, the curved stub is swapped with the straight stub, and the 

plenum is rotated and translated in space to match interface surfaces. 

Exhaust Duct and Stub Grid 

The exhaust duct and stub grids are composed of prism elements to resolve the boundary 

layer and tetrahedral elements to resolve the free-stream flow. These two computational 

domains must respect the mesh requirements of the SST turbulence model discussed in 

Sec. 5.4.2 since the walls in these domains are defined in CFX as no-slip surfaces where a 

boundary layer is present. Prism elements are inflated from the walls of each domain up to 
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Figure 5-4: Plenum surface grid 

a height which meets minimum requirement of putting 10-15 nodes in the boundary layer, 

see Fig. 5-3. With the inlet area of the exhaust duct fixed in this study the prism layers 

have been extended to a height of /i/6 measured normal from the wall surfaces. The prism 

elements are formed by first growing one layer to the overall inflation layer height, xn, then 

subdividing them using an exponential growth law with a height ratio of d, giving a smooth 

transition of the last prism layer height, xn_i, to the tetrahedral elements resolving the free 

stream flow. The height of a given prism layer, i, can be calculated from Eq. 5.3. 

Xi = xix G P " 1 (5.3) 
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Figure 5-5: Cross-section of the plenum domain showing element sizes 
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Plenum Grid 

The plenum domain is meshed with the inlet and opening surfaces as was explained in 

Sec. 5.5.1. Only tetrahedral elements are used in this domain because there are no no-

slip surfaces requiring the grid resolution needed to resolve the boundary layer. One more 

surface is included in this domain, shown in Fig. 5-4, having the same cross-sectional shape 

as the exhaust stub exit plane. This surface is included for the GGI interface boundary 

condition used to create the fluid-to-fluid interface which links the flow from the exhaust 

stub to the plenum. The elements on this surface are sized to match the exhaust stub 

tetrahedral size. The remaining surfaces do not require fine elements because high gradient 

are not expected in these regions. The elements on these remaining surfaces are created 

eight times larger then what is used in the exhaust duct and stub grid. Two ease the 

transition from the small elements in the exhaust stub domains to the large elements in the 

plenum, a volume of elements four times larger then the exhaust stub are produced in the 

region where the jet flow first enters the plenum, Fig. 5-5. 

5.5.3 Grid Study 

Prior to fixing the mesh parameters for the current study, a sensitivity analysis has been 

preformed to select the appropriate quantity of prism layers and tetrahedral grid density. 

Selecting the Quantity of Prism Layers 

Three sets of exhaust duct and stub meshes were created to test the sensitivity of the total 

to total pressure losses versus the quantity of prism layers within an overall prism layer 

height of h/6. For the three sets of meshes, total prism layer quantities of n = 20, 25, 

and 30 were studied while the height, x\, of the first node from the wall was maintained 

constant. Each of the meshes was created using the same density of tetrahedral elements 

and same CFD boundary conditions so as to isolate the differences in numerical solution 

with respect to the quantity of prism layers. The results of this analysis are plotted in Fig. 

5-6. It is apparent that increasing the number of prism layers has only a small effect on the 

total pressure losses within the exhaust duct and stub. Total pressure losses varied by only 

2% when going from 20 to 30 prism layer. Considering the small differences in pressure 
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Figure 5-6: ^-^ ploted versus of total number of prism layers 
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Coarse Intermediate Fine 

Figure 5-7: Three grids constructed from tetrahedral sizes of h/3 (coarse), h/6 (intermedi­
ate), and h/12 (fine) 

losses, 20 prism layers have been used thought this study resulting in a 25% reduction in 

nodes versus the 30 prism layer runs. 

Selecting the Grid Density 

Grid dependence on grid density has been examined by constructing computational domains 

using different tetrahedral element sizes. Three domains were created using tetrahedral sizes 

of h/3, h/6, and h/12 while maintaining the same prism parameters as selected in Sec. 5.5.3. 

Figure 5-7 demonstrates that the selected tetrahedral parameters lead to a coarse mesh of 

135465 nodes, an intermediate mesh of 322371 nodes, and a fine mesh of 980284 nodes. The 

three grids were solved numerically using the same boundary condition used in Sec. 5.5.3 and 
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Figure 5-8: ^-^ ploted versus of total number nodes 
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Figure 5-9: Mach contours for the three grid densities 
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the resulting total pressure losses are plotted in Fig. 5-8. It is apparent that grid dependence 

is obtained with a difference in total pressure losses of 1.4% between the intermediate and 

fine grids. Figure 5-9 further demonstrates that grid dependence is obtained by viewing the 

Mach contours on the symmetry plane of the three grids. Examination of Fig. 5-9 shows 

that the coarse grid fails to pick up the flow separation in the exhaust duct and stub along 

the inner bend which is present in the other grids. Figure 5-9 also demonstrates that a lower 

magnitude of flow separation along the exhaust duct center body is obtained in the coarse 

grid where the intermediate and fine grids both demonstrate that flow is separating at the 

same order of magnitude. Based on these results the remainding grids in the current study 

have been created using a maximum tetrahedral size of h/Q with a computation savings of 

nearly 70% less nodes than what was used in the fine grid. 
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Chapter 6 

CFD-Based Parametric Study 

The following sections present the findings of CFD analysis. Each geometric and aerody­

namic parameter is presented and it is demonstrated, qualitatively and quantitative, how 

they are related to the total pressure loss in the exhaust duct. Cross-sections are defined 

throughout the study according to the method discussed in Chapter 4 to evaluate and 

compare the losses between each duct studied. The sections presented in Fig. 6-1 will be 

referenced throughout this Chapter, and distance is calculated along the gas path spline. 

13 (Exit) 

12 
11 
10 
9 
8 
7 
6 \ / / I 

5 \ / / 

3 2 1 (Inlet) 

Figure 6-1: Cross-sections used for data reduction and flow visualization 

Path Spline 
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Section # 
1 (Inlet) 2 .3 4 5 6 7 8 9 10 11 12 13 (Exit) 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 

Distance (in) 

Figure 6-2: Total pressure loss coefficient evaluated at each section defined in figure 6-1 

6.1 Effect of Swirl 

Inlet swirl has been demonstrated to have a large influence on the internal flow structure 

producing higher losses as inlet swirl is increased. As indicated in Fig. 6-2, the losses are 

at a minimum for nominal 0° inlet swirl for a sample exhaust duct with a C-shaped stub. 

In this figure, the total pressure loss coefficient is calculated at each section from Fig. 6-1 

demonstrating how the total pressure losses can be seen to accumulate. To illustrate this, 

contours of the normal component of velocity with vectors of the tangential component is 

plotted on cross-sections for the sample exhaust duct in Figs. 6-3 and 6-4 for inlet boundary 

conditions of nominal 0° and 35° inlet swirl with low inlet blockage. 

The increasing loss between the inlet and section 2 can be attributed to the higher 

velocity gradients. A symmetric flow field can be seen at section 2 for inlet swirl of nominal 

0° where when inlet swirl is higher as in the case of nominal 35° the flow field is asymmetric. 

This asymmetry in flow is caused as a result of an upstream influence of the flow splitter. 

The resulting flow field has larger velocity gradients at higher inlet swirl conditions where 
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Figure 6-3: Velocity contours normal to cross-section (nominal 0° swirl) 
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Figure 6-3: Velocity contours normal to cross-section (nominal 0° swirl)....con't 
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Figure 6-4: Velocity contours normal to cross-section (nominal 35° swirl) 
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Figure 6-4: Velocity contours normal to cross-section (nominal 35° swirl)....con't 

83 



viscous shear produces increasing pressure losses. 

A large increase in losses is always found to occur between sections 2 and 3. It is at 

these sections that the exhaust duct begins transitioning from annular to rectangular and 

is where gradients in velocity are highest. Observing Figs. 6-3 and 6-4 at section 3 shows 

that inlet swirl transforms the flow field and introduce regions of peak velocity and flow 

separation due to incidence angles with the flow splitter. The losses rise at section 3 with 

increasing swirl due to increasing asymmetry in the flow field and increasing flow separation. 

Sections 3 through 12 finishes the exhaust duct transition from annular to rectangular, 

and ends at section 12 bringing the flow out in a direction 90° from the inlet. The total 

pressure losses through these sections are found to increase steadily for all inlet swirl con­

ditions as indicated in Fig. 6-2. In Fig. 6-3 for an inlet swirl of nominal 0° high velocity 

flow remains concentrated in the lower portion of section 3 near the hub and then separates 

off the centerboby at section 5 in a manner similar to Von Karman Vortex shedding. This 

low velocity flow can be seen to penetrate in to the core flow field, and is dissipated by 

section 12. Counter rotating vortices are seen to form in the core flow by section 8 due to 

the fluid turning while the low momentum fluid in the boundary layers at the outer sides of 

the section is seen moving opposite to the vortices due to low pressure at the inner surface 

of the bend. For the same sections with inlet swirl as in Fig. 6-4, the flow field is more 

complex. At section 3 the flow is already seen to be separating at the hub and is joined 

at section 4 with the separated flow off the flow splitter. High momentum flow is seen 

concentrated along the left hand side of sections 3 through 9 until it becomes fairly more 

uniform by section 10. The low velocity pocket of separated flow observed at section 4 is 

seen to leave the centerbody at section 5 and can be seen to be almost fully dissipated by 

section 12. The effect of turning the flow 90° is again shown by the presence of two counter 

rotating vortices which are almost fully developed by section 9. 

The remaining duct losses are occurring through the exhaust stub between section 12 

through 13 where in both Figs. 6-3 and 6-4 display flow separation along the inner surface 

due to the momentum of the fluid being pressed along the outer surface in the remaining 

90° turn. The addition of inlet swirl produces a exhaust stub exit flow structure slightly 

asymmetric to what is observed with nominal 0° inlet swirl. 
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Figure 6-5: Mach contours at mid plane demonstrating the effect of stub direction (nominal 
0° inlet swirl) 

6.2 Effect of Stub Direction 

The exhaust stub direction has been shown to have an impact on the internal flow structure 

in the exhaust duct. Figure 6-5 demonstrates through Mach contours the effect of stub 

direction at nominal 0° inlet swirl on the internal flow structure. At the nominal inlet swirl 

of 0° there is more flow separation in the case of the Straight stub and the S-shaped stub 

then what is found in the C-shaped stub. The reason for this is seen in Fig. 6-6 where static 

pressure contours are presented. In the case of the C-shaped stub, a high pressure region 

is present along the outer curvature of the duct which prevents flow separation along the 

inner curvature by forcing the flow to follow the surface. As for the case of the Straight and 

S-shape stubs, this high pressure region is not present to prevent flow separation as seen in 

Fig. 6-6. 
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Figure 6-6: Normalized static pressure contours at mid plane demonstrating the effect of 
stub direction (nominal 0° inlet swirl) 
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Figure 6-7: Total pressure losses calculated for C-shape, Straight, and S-shaped exhaust 
stubs (low inlet blockage) 

The exhaust duct total pressure losses at the exhaust stub exit plane are dependent on 

the stub direction. However, the total pressure losses from exhaust duct inlet to the stub 

inlet are nearly independent of the stub direction. The graph in Fig. 6-7 demonstrates the 

general trend found in this study for a sample exhaust duct. For an inlet swirl angle of 0° 

there is no discernable difference in the total pressure loss coefficient calculated from the 

inlet up to the stub inlet at section 12. After the stub inlet, there is a clear difference in the 

duct losses where the C-shaped stub demonstrates the lower losses with the next highest 

being a Straight stub followed by the S-shaped stub being the worst. The same trend is 

seen for higher inlet swirl conditions where variations in total pressure losses at a given 

section can be less then 5% up to the stub inlet. 

6.3 Effect of ECDA 

As demonstrated in Figs. 6-3 and 6-4, the flow structure in the annular to rectangular 

transition region can be quite complex. A two dimensional flow field becomes asymmetric 
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Mach Number 

Figure 6-8: Mach number contours at mid-plane demonstrating the effect of ECDA (inlet 
conditions: nominal 0° swirl with low blockage) 

by the exit of the annular region at section 2 with flow separation occurring in the down 

stream sections. To produce lower losses downstream of the annulus, it is desirable to reduce 

the fluid Mach number as much as possible. 

The effect of the ECDA tested on the flow field can be seen in Fig. 6-8, where Mach 

contours are plotted at mid plane of three exhaust ducts containing the different values of 

ECDA tested. It is apparent in the figure that an ECDA of 10° led to the lowest mach 

numbers at the exhaust duct exit, with the highest occurring when no diffusion is present. 

The effect of too much diffusion in the annulus is seen in the figure, where flow separation 

is observed along the outer annulus walls of the duct with an ECDA of 20°. 

The total pressure losses are calculated at the exit of the annulus of the ducts tested 

under inlet swirl conditions with low inlet blockage and presented in Fig. 6-9. The minimum 

losses are found to occur in all ducts with an ECDA of 10°. A trend of pressure losses 

increasing with increasing inlet swirl is also present in the figure with the exception of ducts 

G and H which both have ECDA of 20°. For these two ducts flow the flow separation is 
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Figure 6-9: Total pressure losses as a function of ECDA calculated at exit of the annulus 

seen to decrease from nominal 25° inlet swirl to 35° inlet swirl as shown by the contours of 

wall shear stress in Figs. 6-10 and 6-11. 

6.4 Effect of Wedge Angle 

As it was explained in Sec. 6.1 the largest increase in losses is always found to occur between 

section 2 and 3. It is between these two sections that we find the flow splitter. Figure 6-12 

demonstrates the effect of increasing wedge angle on the pressure losses for three exhaust 

ducts with the same ECDA upstream of section 2. At nominal 0° inlet swirl all three duct 

produce similar losses however as inlet swirl is increased the exhaust duct with an 80° wedge 

angle produces lower losses at 25° inlet swirl. To examine why the three exhaust duct are 

not similar at an inlet swirl of 25°, Mach contours are presented in Fig. 6-13 at a given 

cross-section cutting through the flow splitter. It is evident in the figure that the flow has 

separated along the suction surface of the exhaust ducts with wedge angles of 10° and 45° 

while the flow remains attached in the duct with the 80° wedge angle. 
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Figure 6-10: Wall shear stress contours (nominal 25° swirl) 
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Figure 6-11: Wall shear stress contours (nominal 35° swirl) 
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Figure 6-12: Total pressure losses as a function of wedge angle calculated at section 3 

6.5 Effect of Aspect Ratio and Area Ratio in the Annular to 

Rectangular Transition Region 

The effect of aspect ratio and area ratio in the annular to rectangular transition region on 

exhaust duct performance is difficult to quantify from the results of this analysis, because 

they are under the influence of the geometric parameters that precede them (such as ECDA 

and Wedge Angle). It can be seen from the test matrix in Table 3.5 that the influence 

of the aspect ratio and area ratio can not be demonstrated independently from the other 

geometric parameters. Some conclusions can be made when exhaust ducts are compared 

under no inlet swirl and low inlet blockage where those preceding geometric influences are 

at a minimum. Figures 6-14 and 6-15 present normalized static pressure and Mach number 

of four exhaust ducts which represent the combinations of aspect ratio and area ratio which 

are at the corners of the envelop tested. The normalized wall static pressure contours in 

Fig. 6-14 demonstrate that gradients on the wall are largest when the aspect ratio and area 

ratio are at the minimum. This is unfavorable since large pressure gradient will tend to 

promote flow separation off the duct surface. The Mach number contour plots at mid plane 
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Figure 6-13: Mach number contour plot on a plane through the flow splitter 
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Figure 6-14: Normalized wall static pressure contours demonstrating the effect of aspect 
ratio and area ratio in the annular to rectangular transition region 
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Figure 6-15: Mach number contours demonstrating the effect of aspect ratio and area ratio 
in the annular to rectangular transition region 
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in Fig. 6-15 support this theory demonstrating that small aspect ratios do lead to flow 

separation off the inner surface of the exhaust duct reducing the available flow area in the 

streamwise direction. It can be concluded that it is favorable to have the largest available 

aspect ratio to maintain an attached flow. 

6.6 Effect of Inlet Boundary Layer Blockage 

It has been found that the total pressure losses increase as a result of increasing inlet 

boundary layer blockage. As seen in Fig. 6-16 a thick inlet boundary layer is more prone to 

flow separation with the point of separation progressing closer to the inlet for thicker inlet 

boundary layers. These results where expected when flowing against a positive pressure 

gradient. The exhaust ducts with 20° ECDA demonstrated to have the most severe flow 

separation over the other ECDA tested. The global effect of inlet blockage on all exhaust 

ducts tested can be fully seen the Figs. 6-17 and 6-18. With low inlet blockage, there 

no distinct relation to other tested geometric parameters, however increased blockage levels 

have demonstrated higher levels of losses related to large inlet diffusion angles. It is apparent 

in both figures that for medium and large inlet blockage, the exhaust ducts tested with 20° 

ECDA have an overall higher trend of total pressure losses. When comparing medium to 

high inlet blockage the same loss trends are found only at higher levels. 
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Figure 6-16: Mach number contours demonstrating the effect of inlet blockage on three 
exhaust ducts with ECDA of 0°, 10°, and 20° 
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Chapter 7 

Correlation of the Total to Total 

Pressure Loss 

A correlation is presented in the following sections where the total to total pressure loss 

coefficient is related to the geometric and aerodynamic parameters based on the data pro­

duced in the computational flow simulations. The resulting correlation serves as a suitable 

tool for designers when involved in the preliminary design of annular to rectangular exhaust 

ducts. 

The results of the parametric study demonstrate that the geometry of the exhaust duct 

produces a highly asymmetric flow field, under the influence of swirl, and flow separation is 

almost unavoidable when the later is combined with inlet blockage. The favorable approach 

to produce the loss correlation would be to build upon an exact solution of the Navier Stokes 

equation which can be easily be interpreted by a designer. However, an exact solution to 

the Navier Stokes equations does not exist for this complex geometry therefore a numerical 

approach must be taken. 

The development of a loss model can follow one of the following two approaches; 1) 

a purely mathematical approach where a reduced order model or a surrogate model is 

constructed from available data (eg. Artificial Neural Networks [25]), and 2) a physical 

approach where a numerical correlation is composed of different terms each of which rep­

resent the effect of one flow feature contributing to the loss. The first approach is a black 
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Figure 7-1: Diffuser effectiveness versus area ratio with low level inlet aerodynamic blockage 
and no inlet swirl [7] 

box to the designer and does not provide the user with the same feedback as do physical 

correlations produced by curve fitting. Through curve fitting, the correlation will provide 

the user with a visual understanding of the functional relations which can even take on a 

physical meaning of the data being analyzed. The approach taken in this work is the second 

one, where the data is correlated through a curve fitting technique similar to what was used 

by Japikse [7] where he correlated annular diffuser effectiveness using available published 

data. 

7.1 Japikse Correlation of Annular Diffusers 

To start the process Japikse has first identified that area ratio is the dominant variable 

related to diffuser effectiveness, once the data was screened for blockage, and noting that 

inlet swirl has been to some extent taken care of through the definition of Cpi in equation 

2.3. He then plotted the data versus area ratio, Fig. 7-1, and discovered that the data 

followed an exponential trend. 

With the equation found in Fig. 7-1, Japikse was able to move on to the other variables 
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Figure 7-2: Diffuser effectiveness with principle geometric effects removed including data at 
all levels of inlet aerodynamic blockage [7] 

by removing the effect of area ratio by dividing out the data by the new expression as 

presented in Fig. 7-2. In this figure, the data has been plotted versus inlet swirl and has 

revealed two trends. The upper trend represents diffusers experiencing mild stall while the 

lower trend represents diffusers with substantial stall. 

The data was again divided by the new equations defined in Fig. 7-2, and the with the 

effects of area ratio and inlet swirl removed from the data Japikse then moved on to inlet 

blockage as shown in Fig. 7-3. From this figure Japikse has determined that there are two 

trends which have been defined. The lower trend (common blockage, "A"), which is seen 

to passes through the square symbols, is data from Coladipietro et al. [18] where tests were 

conducted at two different blockage levels. In these testes, inlet conditions consisted of a 

clean uniform velocity profile where only the boundary layer thickness was varied. The upper 

trend (classical profile blockage, "B") which shows that diffuser performance improves with 

increasing inlet blockage comes from inlet conditions where the boundary layer becomes 

fully developed and contains increase levels of turbulence and vorticity. Dividing the data 

again by the new equations, Japikse represented the data versus inlet blockage in Fig. 7-3 
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Figure 7-3: Diffuser effectiveness with the principle effects of geometry and inlet swirl 
removed according to preceding correlations [7] 

to reveal that the data has collapsed to a value of 1 ± .10. 

The resulting set of equations produced by studying the data trends is the following: 

Cp = CPi (ai , r 2 / r i , 62/61) V (AR) 77 ( « I ) r? (£1) (7.1) 

rj {AR) = 0.72 + 3e(-o.9-i.5Jifl) ( 7 2 ) 

r] (ai) = 1.1 - O-OOOlaJ-9 delayed stall (7.3) 

r)(ai) = 1.1 -0 .0002a? 1 ear/y staM (7.4) 

77 (Bi) = 47.77364B? - 12.17600.Bi + 1.392146 curve 4 , common blockage (7.5) 

77 (Si) = 1.22 + 0.08 x ln(Bi) curve B, classical profile blockage (7.6) 

Now that the diffuser effectiveness can be predicted, Japikse suggest that a reasonable 

first order estimate of the diffuser total pressure loss coefficient can be calculated using Eq. 

2.6 (Cp is evaluated from Eq. 7.1 and Cpi from Eq. 2.3). 
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Figure 7-4: Diffuser effectiveness with the principle effects of geometry, inlet swirl, and inlet 
blockage removed [7] 
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K vs. Inlet Swirl 
Low Inlet blockage (P < 1%) 
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Figure 7-5: Total pressure loss trend in the exhaust for low inlet blockage 

7.2 Correlation of the CFD Results 

It was demonstrated in Sec. 6.2 that the total pressure losses in the exhaust duct are 

independent of the stub direction. For this reason it was chosen to correlate the exhaust 

duct losses independently of the stub losses. The following section presents a corelation to 

predict the total pressure losses between the inlet and section-12 as shown in Fig. 6-1. The 

correlations produced in this work have been found with the help of Windows Excel and 

the statistical package LAB Fit [26]. 

The fist parameter that demonstrated to have the first order impact on losses in the 

exhaust duct is inlet swirl. When inlet blockage was varied some distinct trends appeared 

which demonstrated different behaviors in the losses depending on the magnitude of diffusion 

taking place in the annular inlet of the exhaust duct. For low inlet blockage (j3 ^ 1%) it 

is possible to find a single trend which can be used to normalize the data, Fig. 7-5. For 

medium inlet blockage (4% < (3 ^ 8%) one trend has been defined for an ECDA of 20° and 

one for the lower values tested, Fig. 7-6. When high inlet blockage (/3 > 10%) is present a 
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Figure 7-6: Total pressure loss trend in the exhaust for medium inlet blockage 
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Figure 7-7: Total pressure loss trend in the exhaust for large inlet blockage 
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Figure 7-8: Surface passing through normalized losses for ECDA and aspect ratio (Solid 
circles are points lying above the surface and hollow circles are points lying below) 

correction factor is used to increase the level of the trends used to describe medium inlet 

blockage, Fig. 7-7. To calculate the loss due to intermediate ECDA and blockage levels, it is 

recommended to interpolate between the trends in Fig. 7-6 and then interpolated with Fig. 

7-5 for smaller inlet blockage or select a smaller correction factor for higher inlet blockages. 

The equations derived above have considered the contribution to the losses due to the 

effect of swirl with some consideration to the annular inlet section defined by ECDA. After 

normalizing the data with those equations the effect of swirl with some consideration to 

ECDA have effectively been removed and the other contributing parameters can now be 

evaluated. 

The next parameter considered is the aspect ratio of the exhaust duct. A good fit to 

the data could not be found after trials at correlating the aspect ratio to the normalized 
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Figure 7-9: Normalized losses versus wedge angle with the effects of blockage, swirl, ECDA, 
and aspect ratio removed 

data demonstrating that some other parameter is influencing the losses. It was discovered 

that there may still remain some influence of the annular inlet effecting the data and when 

correlating ECDA with the aspect ratio a surface could be passed through the data with 

satisfactory results, Fig. 7-8. The surface plot in Fig. 7-8 supports the results presented 

in Sec. 6.3 and 6.5 demonstrating that it is favorable to have a large aspect ratio and that 

there is an optimum ECDA between 0° and 20°. 

The data are again normalized with respect to the surface equation defined above and 

plotted against the values of wedge angles tested, Fig. 7-9. A trend is visible and a 

polynomial fit demonstrates that there is an optimum wedge angle near 60°. Once the data 

are normalized again for this trend we see in Fig. 7-10 that there is only minimum influence 

of the area ratio on the normalized pressure losses and a polynomial fit is made to the data. 

The final result of the correlation can be seen in Fig. 7-11. It is demonstrated that 70% 

of the data falls within ±10% error and 85% of the data falls within ±15% error. A more 

detailed breakdown of the accuracy of the correlation is shown in Table 7.1. the resulting 
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Figure 7-10: Normalized losses versus area ratio with the effects of blockage, swirl, ECDA, 
aspect ratio, and wedge angle removed 

Table 7.1: Break Down of Correlation Accuracy 

Error (\(KCFD - KCorreiation\) Data Points(%) 
0.00-0.02 
0.02-0.04 
0.04-0.06 

72 
22 
6 

108 
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Figure 7-11: Plot of CFD losses vs. predicted losses between inlet and section-12 
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set of equations are as follows: 

K = K{Swirl, X blockage)K(ECDA, AspectRatio)K(WedgeAngle)K(AreaRatio) (7.7) 

K(Swirl, low blockage) = 0.101720 cosh(0.047854a) all ECDA (7.8) 

K(Swirl, medium blockage) = 0.112800 cosh(0.047726a) up to 10° ECDA (7.9) 

K(Swirl, medium blockage) = 0.214385 cosh(0.033095a) 20° ECDA (7.10) 

K(Swirl, high blockage) = K(Swirl, medium blockage)(l + £) £ = 0.1 (7.11) 

( 0 78730 \ 

- — — 0.07885ECDA ) +0.0398OECZM 
AspectRatio ) 

(7.12) 

K (WedgeAngle) = 0.00003(WedgeAngle)2 - 0.00338(Wedge Angle) + 1.07369 (7.13) 
K(AreaRatio) = 1.84000(Ar eaRatio) - 0.8Z300(AreaRatio)2 (7.14) 
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Chapter 8 

Conclusion and Recommendation 

8.1 Conclusion 

A parametric CFD study has been carried out where key geometric and aerodynamic pa­

rameters are varied and the effect on the total pressure loss is observed. The results of the 

CFD data were then used to produce a correlation to predict the duct losses. Based on this 

work the following conclusions are made: 

1. Inlet Swirl 

• Inlet swirl was demonstrated to have a high order effect on the pressure loss 

in the exhaust duct. The minimum pressure losses occur when the swirl is at 

a minimum. The introduction of inlet swirl causes an asymmetric flow field 

yielding to flow separation with increased pressure losses. 

2. Stub direction 

• pressure loss at the exhaust duct exit was found to be independent of the stub 

direction. The highest losses occur in the S-shaped stubs as a results unfavorable 

flow separation due to pressure gradients. 

3. ECDA 

• The degree of ECDA demonstrated that too little and too large of an ECDA is 

not favorable. The optimum value of ECDA resulting in the minimum velocity at 
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the inlet to the annular to rectangular transition region without flow separation 

is between 7° and 10°. 

4. Wedge Angle 

• The three wedge angles tested perform similarly for inlet swirls up to 25°. At 

this swirl angle flow separation on the suction surface of the flow splitter occurs 

on the wedge angles of 10° and 45° and is delayed for the 80° flow splitter. At 

35° inlet swirl the 80° wedge flow splitter would separate on the suction surface. 

It is desirable to have a large wedge angle for reduced pressure loss. 

5. Aspect Ratio and Area Ratio 

• It was difficult to quantify the effect of these parameters since they proceed the 

other geometric parameters. A small aspect ratio and area ratio lead to pressure 

gradients that can result in flow separation. 

6. Inlet Boundary Layer Blockage 

• The total pressure losses increase with increasing inlet blockage. Exhaust ducts 

with ECDA of 20° performed to worst of the geometries tested for medium and 

high inlet blockage. 

7. Correlation of the CFD Results 

• The Taguchi Design provided a test matrix that provided the minimum amount 

of exhaust duct models to successfully capture the resulting effects on the total 

pressure loss coefficient. The CFD data has been correlated to the total pressure 

loss coefficient with reasonable accuracy. 

8.2 Recommendation 

Examining the results of the current study, the following recommendations are made for 

the loss modeling of non-symmetric gas turbine exhaust ducts using CFD: 
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1. As future work, it is desirable to include the exhaust stubs in the correlation. To 

do this, first, a survey should be conducted to define common exhaust stubs used 

in turbo-machinery applications which contain non-symmetric gas turbine exhaust 

ducts. Secondly, model them numerically as in the current work and correlate the 

pressure losses. 

2. The correlation produced from the current work serves as a guide for designers to pro­

duce more efficient non-symmetric gas turbine exhaust ducts. To be able to accurate 

predict the total pressure loss will require that the current CFD work be calibrated 

to experimental data. 
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