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ABSTRACT

On the Distribution of Discounted Compound Renewal Sums

with PH Claims

by Ya Fang Wang

The family of phase-type (PH) distributions has many good properties such as
closure under convolution and mixtures and have rational Laplace transforms. PH
distributions are widely used in applications of stochastic models such as in queue-

ing systems, biostatistics and engineering. They are also applied to insurance risk.

In this thesis, we discuss the moment generating function (m.g.f.) of a com-
pound present value risk process with phase-type (PH) deflated claim severities
under a net interest ¢ # 0. This represents a generalization of the classical risk

model § = 0.

A closed form of the m.g.f. of a compound Poisson present value risk process
with PH deflated claims is obtained. We also consider the discounted compound
renewal process and get homogeneous differential equations for its m.g.f. in the
case of PH deflated claims. Applications and some numerical examples are given

to illustrate the results.
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Chapter 1

Introduction

As a generalization of the exponential distribution, phase-type distributions were
first introduced by Neuts (1975). They have been used widely in applications of
stochastic models such as in queueing systems, engineering, biostatistics and reli-
ability. The random variable defined as the absorption time in a continuous-time
Markov chain with n transient states ¢ = 1,2,...,n and one absorbing state 0
has a phase-type (PH) distribution. PH distribution and density functions are

expressed in terms of a vector & and a nonsingular matrix A.

Neuts (1981) gives a detailed introduction of stochastic models in queueing
theory with PH distributions. Asmussen (2003) presents more details about the
properties of PH distributions and their applications to queuing theory. In the
last decade PH distributions have been applied also to insurance risk. Asmussen
(2000) studies the ruin probability in the compound Poisson model with PH claim
severities. Asmussen and Rolski (1991) also introduced some numerical examples
with PH claim severities to compute ruin probabilities. Asmussen, Avram and
Pistorius (2004) show the potential of PH distributions in mathematical finance.
Frostig (2004) obtains the distribution of the time to ruin and upper bounds with

PH claim size distributions.



PH distributions form an interesting family. First it can be represented us-
ing matrices and vectors, which simplifies the computation with mathematical
software such as Maple, Mathematica or Matlab. PH distributions generalize
exponential, Erlang(n) and Cox distributions, which are already known. More-
over they are dense in the class of all distributions defined on the nonnegative
real numbers, hence PH distributions enable algorithmically tractable solutions
for stochastic models. Many papers and theses propose approximation methods
using PH-distributions. For instance Fackwell (2003) presents estimation methods
for PH distributions. Bladt, Gonzalez and Lauritzen (2003) consider the estima-
tion of functionals depending on one or several PH distributions using Markov
chain Monte Carlo methods. Asmussen, Avram and Usabel (2002) present a fast
and simple algorithm for computing finite-horizon ruin probability using an Erlang

(phase—type) approximation and an extrapolation scheme.

In this thesis, we study the problem of obtaining the moment generating func-
tion (m.g.f.) of a compound present value risk process. The m.g.f. is a classical
technique to find the expectation and variance of a random variable, as well as its

probability density function by inverting the moment generation function.

Léveillé and Garrido (2001a) derived the first two moments of a compound
renewal present value risk (CRPVR) process using renewal theory arguments. In
Léveillé and Garrido (2001b) they also obtained recursive formulas for all the mo-
ments of the CRPVR process. Léveillé (2002) discusses further the asymptotic and
finite time distributions of the CRPVR process and gives an analytical expression
for the m.g.f. of the CRPVR process. In this thesis we study the m.g.f. of the
compound Poisson present value risk (CPPVR) process as well as the CRPVR

with PH claim severities.

The thesis is organized as follows. Chapter 2 gives the formal definition of PH



distributions and introduces some of its basic properties and examples. Chapter 3
introduces the model and gives a closed form of the m.g.f. of the CPPVR process
with PH claim severities using matrix-exponential function arguments. Chapter
4 discusses the renewal model. An homogeneous differential equation is obtained
for the m.g.f. of the CRPVR process when the inter-arrival times are Erlang(n)
and claim severities are PH. The application of the results in Chapters 3 and 4
is discussed in Chapter 5. We compare the CPPVR and CRPVR models and see
the impact of different claim frequency assumptions on the compound sum. We
also consider the impact of net interest § # 0 on the CPPVR and CRPVR by
computing expectations and variances. Some numerical examples are also given as

illustrations.



Chapter 2

Phase—Type Distributions

In this chapter we briefly present the definition of phase-type (PH) distributions,
some of their basic properties and examples. Since introduced by Neuts (1975) in
queueing theory and reliability, PH distributions have been applied also to insur-
ance risks. Now that matrix computations can be carried out with mathematical
software such as Maple, Mathematica or Matlab, at least a numerical solution is
possible for some of these applications. This has created an increased interest for

PH distributions in many areas of applied probability.

2.1 The Definition of PH Distributions

A phase-type distribution is defined as a probability distribution that represents
the time to absorption in a continuous-time Markov chain with n transient states
t = 1,2,...,n and one absorbing state 0. Here we consider the mathematical
definition of PH distributions. For details on the probabilistic interpretation and
the properties of PH distributions in Markov chains, please refer to Neuts (1981)
and Asmussen (2003).



Definition 2.1.1. Continuous phase-type Distribution
Let A be an arbitrary non-singular square matriz of order n such as lim,_., e4% =
0, a be a n-dimensional column wvector such that o/1 = 1, where 1 is a n-

dimensional column vector of 1's, that is:

’ n ‘ ’

Qé_=(al Qg e ozn), Za¢:1, a; >0 and l:(1 1 ... 1),
i=1

(2.1)

If the distribution function Fx of a random variable X can be written as:
Fx(z) =1-de?"1, z >0, (2.2)

then we say that Fx is (or X has) a phase-type (PH) distribution with parameters
(2, 4).

Remark 2.1. Note that in the original definition of PH distributions, like that
Neuts (1975) A = (ai;) was the rate matrix of a stationary Markov chain. Conse-
quently it was assumed that a; < 0 and ), a;; = 0 for all j. From Neuts (1981)

we can see these conditions imply those of Definition 2.1.1.

Hence taking the derivative of Fx (see Lemma A.2.4.), we obtain the density
function of X:

fx(@)=-d AL, ©20 (2.3)

The following are some examples of PH distributions (see Fackrell, 2003 and

Neuts, 1981).

Example 2.1.1. If X has an exponential distribution with density function fx(z) =
Ae=>% for A > 0, then it is PH with



Example 2.1.2. If X has an hyper-exponential distribution (also called mixed

exponential) with density function
n
fx@) =Y asxe™, >0, X>0,
i=1
where «; > 0 and Z?=1 a; = 1, then it is also PH with ¢ and A given by:

'
Q=<a1 Qg - an),

and
[ x 0 - 0 )
A 0 —')\2 0
0 0 - A

Example 2.1.3. If X has an Erlang(n) distribution with density

_ 2\ xn—l e—)\m
 (n=10

QZ(I 0o .- 0>/,

a n-dimensional vector and the following matrix of order n

>0, neNT, A>0,

fx ()

then it is also PH with

(<X A 0 - 0 0 )
0 =X A - 0 0
O R S 0.
0 0 0 -+ =\ X
\ 0 0 0 - 0 -X/

Example 2.1.4. If we have n different values A\; > 0 in the previous example, then

it defines a generalized Erlang(n) distribution of order n with o and A as follows:

QZ(l 0o --- 0>/,



and

[\ n 0

0 -2 A2

A— 0 0 —A3
0 0 0

0 0 0

_>\n—1
0

)\'n—l
_)\n

and the density function can be expressed as a mixture of exponentials fx(z) =

o a;e~>* for given polynomial coefficients a; in terms of \; .

i=1

Example 2.1.5. If X has a n-phase Coxian distribution with the following para-

meters, then it is also PH distribution:

Q:(al Qg ... Qn )l,
and
[ “x M 0
0 =X o
A 0 0 =X
0 0 0
\ 0 0 0

where 0 < A1 < A <o < A\,

—)\n——l

)\n—l

__)\n/

Example 2.1.6. If X has the following parameters (a, A), it is called unicycle

PH distribution:

/
.@:(051 Qg ... Oén)a

n

> o

k=1

1, aiZO,



and

[—x A o o 0 )
0 =X X 0 0
A— 0 0 =X 0 0 ’
0 0 0 —An-1 An-1
451 M2 M3 o Hp—1 —)\n)

where y; > 0,fori=1,2,--- ,n—land 0 <A\ < A< - < A\

Example 2.1.7. If A is an upper triangular matrix, we call X acylic or triangle

PH (TPH).

Note that in general, the parameters (o, A) for PH distributions are not unique.

Consider the following PH distribution with density

1
fx(z) = (ZacQ +r—1)e*+e®, >0,

which can be parameterized either with (o, A) or (3,B) given by:

2.1.1 Expectation

From (2.1) the expectation of X is given by:



E(X) :/()00[1—Fx(x)]dx:_'/ow e dzrl.

(2.5)

From the definition of the matrix exponential function (see Appendix A, definition

A.1.4), we have
A/ eA“du:eA‘”—I:/ e du A,
0 0

(2.6)

where I is identity matrix of order n. Given that A™! exists, and assuming that

Az

lim,_,o, e** = 0, we have the following:

/ e du = A‘IA/ erdu = A (e — 1),
0 0
and hence
/ e du = lim eAdu = lim A7 e —1) = —A7 .
0 r—00 0 T—>00

Substituting (2.8) into (2.5) gives:

E(X)=-oA™'1.

Following a similar procedure, one can obtain the n-th moment of X as :

EX™) =(-1)"nld/A™"1, n e NT.

2.1.2 Moment Generating Function

(2.7)

(2.8)

(2.10)

From (2.8) one can also obtain the moment generating function (m.g.f.) of X :

Mx(t) = / e fx(z)dz = —g’/ A u Al =o/ (T +A)'AL,
0 0

The same procedure also gives the Laplace transform fX of X:

—~

fx(s)=—-a (sI-A)'Al, seC.

teC.

(2.11)

(2.12)



For additional properties of PH-distributions and detailed derivations see As-

mussen (2003) and Neuts (1981).

Though in this thesis we consider continuous PH distributions. For comple-
tion, we also define discrete PH distributions. Traditionally a discrete PH random
variable is defined as the absorption time of an evanescent discrete-time Markov
chain {Y3}, with k = 0,1,2,..., on a finite phase space S = {0,1,2,...,n} where

phase 0 is absorbing. Here we give an algebraic definition.

Definition 2.1.2. Discrete phase—type Distributions
Let A be an arbitrary non-singular square matriz of order n, such that limy_.o A* =
0 and I — A is non-singular and a be a n-dimensional column vector such that

o'l =1, where 1 is a n-dimensional column vector of 1's, that is:

/ n ’
Qé=(oz1 Qg - an) ) Zaz':l, a; >0 and _1_:(1 1 --. 1) ]
i=1
(2.13)
If the probability function {px} of a random variable X is given by:

o=/ AN I-A)1, k>1. (2.14)
Then X is called a discrete PH distribution with parameters (a, A). The cumula-
tive distribution function, defined for k =1,2,..., is given by:
F,=1-d A*1.
From the definition of the probability function, the probability generating func-

tion is given:

Z o AFHI - A)12*, ze€C,

k=1

MS

G(z) =

x
I}
A

(A2)" " M(I-A)l=20(I-2A)"'I—-A)l, (2.15)

I
N
M8

~
il

1
where sprad(zA) < 1 (sprad(A) is defined in the Appendix A.1.3.). The expres-

sion (2.15) shows that the probability generating function is a rational function.

10



From Lemma A.2.7. in Appendix A, differentiating (2.15) with respect to z and

letting 2 = 1 gives the first moment
E(X) =o/(I-A)7'L.
Similarly the n-th moment is given by:
E(X™) =nlad/I-A)™A™ ], n=12....

Some discrete random variables have PH distributions. For example, the geo-

metric distribution with probability function
pr=(1-p)*'p, 0<p<l and k>1,
is a discrete PH distribution with parameters (o, A) given by

a=1, A=1-P.

The properties of the following section show that mixtures of geometric and
negative binomial distributions are also discrete PH distributions. In fact, one
can verify that any distribution with finite support on the nonnegative integers is
a discrete PH distribution. Thus, the binomial and hypergeometric distributions
are discrete PH distributions also. However, the Poisson distribution is not a PH
distribution since it does not have a rational probability generating function. For
details on the properties of discrete PH distributions, see Neuts (1981) and Fack-
well (2003).

2.2 Closure Properties

Apart from having analytical expressions for its moments and its m.g.f., the family

of PH distributions is closed under convolution and mixtures.

11



Property 2.2.1. If the distributions Fix of X and Fyof Y are both continuous
PH-distributions with parameters («, A) of order n and (3, B) of order m respec-
tively, then their convolution Fx x Fy is also a PH-distribution with parameter

(7,C). Here v and C are given by

A _A'.];n /B,
7=(c,0,,) and C= =, (2.16)
0 B
/
where 1, = ( 11 ... 1 ) is a vector of order £ x 1.

Proof. The Laplace transform of a PH (v, C) random variable Z can be obtained
from (2.12) as

f2(s) = —(shiym —C)7'C1
—1
[ s1,-A ALf A —a1g )\ (1,
— _(g_/70/m) —..ﬂ_ —é =
0 s, — B 0 B 1,
(sL, — A)™! —(sI, — A)"'A 1,03(sL, — B)~
= —(,07,) R
0 (sL, —B)™1
A —-AlL/p 1,
y p
0 B 1.

= —d/(sl, — A)TTAL, + d/(sI, - A)TTAL AL,
+d/(sI, — A)T'AL, 8/ (sL, — B)'BL,.

Since §'1,, =1, then

A~

fz(s) = (= (sI, — A)'AL,)(—g'(sL, = B) 'BL,) = fx(s)fv(s), s€C,
(2.17)
where fx and fy are the Laplace transforms of a PH(a, A) random variable X of

order n and a PH(3,B) random variable Y of order m, respectively.

O

12



Remark 2.2. The convolution Flx*Fy does not have a unique PH representation.
For instance, it can also be written as a PH(y, C) distribution with
AV B _B-l—mgé-l
1=(,0,), C= . (2.18)
0 A
Property 2.2.2. The mixture §Fx + (1 — 0)Fy, where 0 < § <1, is also a PH
distribution with parameters (v, C)), where v and C are given by:

, A 0 |
= (0, (1-0)3), C= ( ) : (2.19)
0 B

Proof. Let f7 be the Laplace transform of Fx + (1 — 6)Fy, then:

fa(s) = 0fx(s)+ (1= 6)fr(s)
= —0d/(sI, — A)T'AL, — (1 - 0)F'(sI, — B)"'BL,,

-1
, o sIn—A 0 A 0 1,
= —(0d, (1-0)p)
0 sI,,—B 0 B 1

= —II(SI’rH—m - C)—lcl,

where v and C are given in (2.19).
O

Property 2.2.3. If the random variable X is a PH (o, A), then 6X also is a PH
(7, C), where
y=a and C=jA, for 6 > 0.

Proof. Let Y = 68X, then

/

Fr(y) =P(Y <y) =PX <y) =P(X < Zy) =1—ales™1, y>0.

D =

From Properties 2.2.1 and 2.2.3 we obtain the following results.

13



Corollary 2.2.1. If X and Y are both PH-distributions with parameters (o, A)
and (B, B) respectively, then aX + bY also is PH (v, C), where
y A —2A1.0
Y= 0), C= =], a>0, b>0.
0 iB
Note that the parameters (7, C) are not unique. Another representation could

be:

. ;B —3BL,o
y=(@F 0, C= ) , a>0, b>0.
0 =A

Property 2.2.4. Let px be the probability function of a discrete PH with para-
meters (3,S) and Fx be a continuous PH distribution with parameters (o, A).

Then the mixture ;> px F¥* is also a PH with parameter (7, C) given by:

vy = od®F,
C = ARI-Ald®S,

where F}* denotes the k—fold convolution of Fx (where F3) = 1[z > 0]), I is
identity matrix of order n and ® is the Kronecker product. For a proof see Neuts

(1981).

From the definition of the Laplace transform of a PH distribution, we see that
it is a rational polynomial in s. If the maximal degree of the denominator is p then
degree of the numerator is g < p, since the limit of the Laplace transform goes to
zero as s tends to 0co. The question is whether a rational polynomial corresponds
to a PH distribution. The answer is given in O’Cinneide (1990) and is reproduced

here with the following result.

Property 2.2.5. A distribution defined on (0, 00) is a PH distribution if and only

if it satisfies the following conditions:

14



1. it has the point mass at zero, or
2. it has

e a strictly positive density function on (0, c0), and

e a rational Laplace transform (LST) such that there exists a pole of
maximal real part —v that is real, negative and such that—y > Re(—£),

where —¢ is any other pole.

15



Chapter 3

Moments of Compound Poisson

Sums with Discounted PH Claims

The influence of economical and other unstable factors on risk processes makes the
study of inflation and interest on the present value of the surplus process become
very important. In classical risk models, the inflation experienced on claim sever-
ities is assumed to cancel the interest earned on the investment of the surplus. In
this case the analysis is simple and produces very elegant results. However, in the
long run, this assumption may not be true because of unforeseeable factors in the
economy. Then the study of discounted claims becomes necessary, see Garrido and

Léveillé (2004) for a detailed motivation of discounted models.

Léveillé (2002) presents an analytic form of the m.g.f. of a compound Poisson
present value (CPPVR) process. He also gives the asymptotic form of the CPPVR
m.g.f. as time ¢ tends to infinity. In this chapter we consider the m.g.f. of the
CPPVR process with PH claim severities. A nice form of the m.g.f. is obtained in

terms of matrices and vectors using matrix—exponential theory.

The definition of the Poisson process and the model are introduced in the first

16



section. In the second section, the m.g.f. of the CPPVR process is produced and
extensions, limit and asymptotic results are also given. Lastly we give some illus-

trative examples.

3.1 Definitions and Model Assumptions

In this section we introduce the compound Poisson model with discounted PH
claims. As one of the most important stochastic counting processes, the Poisson
process has been studied for many years. Some beautiful results have been ob-
tained. It has been used in classical risk models, queueing systems, genetic studies
and many other fields of applied probability. Traditionally there are three equiva-
lent definitions of the Poisson process. Here we present one that is commonly used

in many probability books, such as Ross (2003).

Definition 3.1.1. Poisson process
The counting process N = {N(t),t > 0} is said to be a Poisson process with
intensity A > 0, iff

2. The process N has independent increments,

3. The number of events in any interval of length t is Poisson distributed with
mean At. That is for all s,t > 0
(At)"

P{N({t+s)—N(s) =n}= ~ e ™M n=012....

In the classical risk model the aggregate claims can be written as

N(t)

St => Xi, t>0, (3.1)

17



where N is a Poisson process, S(0) = 0 and X represents the severity of the i-th

claim: =1,2,...,n.

Now consider the effect of inflation on claims and interest earned on the in-
vestment of the surplus. Léveillé and Garrido (2001a) impose the following model

assumptions:

e Assume that there is an inflationary impact on the risk business and the
inflation rate acting on claim severities at time ¢ is known and denoted o.
The claim severities, {Y} }x>1, are then inflated. Claim occurrence times are

represented by {7k }e>1-

o Let N(t) = sup{k € N;T} < t} for each ¢ > 0, where sup@ = 0 and

N(0) = 0, count the number of claims recorded over the time interval [0, ¢].

Also, if 3, is the known force of interest earned at time s € (0, ¢], then

N(t)
Z(t)y=>_ e Py, t>0, (3.2)
k=1

where B(s) = [} Budu for s € (0,¢] and Z(0) = 0 if N(0) = 0, defines the aggre-

gate discounted value at time 0 of all claims recorded over [0, ¢].

The definition of model:

1. the claim number process N = {N(t),¢ > 0} forms a renewal process. The
inter—arrival times, denoted by, = Ty, — Tx—1, k > 2 and 7, = T} have a

common distribution say F,. Here the T} are the claim occurrence times.

2. The claim severities { Y% }x>1 are defined as random variables. Let the deflated

claim severities

Xk = e_A(Tk)Yk , k Z 1,

where A(t) = f(f o, ds for any t > 0, satisfy the following assumptions:

18



e {X;}r>1 are independent and identically distributed (i.i.d.),

o {Xi,Tk}k>1 are mutually independent.

From the definition of model, the aggregate discounted sum in (3.2) is

N() N()

Z(t)y=>Y e Py, =>" e PIX,,  t>0, (3.3)
k=1 k=1

where D(T3) = B(t) — A(t) = [,(Bs — as) ds = [ . ds.

If the net interest rates are constant but not zero, that is §;: = 8 —ax = 6 > 0,
then the aggregate discounted value at time 0 of the total claims recorded over the
period [0, ] is then given by

N(t)

Zit)y=> Xy, t>0, (3.4)

k=1
with Z(t) =0 if N(t) = 0. If § = 0 then Z(¢) simply yields the Sparre Andersen
model [see Andersen (1957)].

The following theorem is a key result for the rest of the thesis.

Theorem 3.1.1. For anyt > 0,6 > 0 and any s such the integrals converge

®  at pt—ay t—S5 | @ k41 ;
MZ(t)(S) = 1—{—2 / / / H[MX(86—52j=1 111j) _1]
k=0 Y0 O 0 i=1
xdm(zg41) - . . dm(zg) dm(zy), (3.5)

where m(x) is the renewal function defined in (4.2) and S5, x; =0 for k = 0.
Proof. See Léveillé (2002). O

In the following section we study the moments of the discounted process Z =
{Z(t),t > 0} in (3.4), that is for § > 0, but in the special case where the renewal
process N is a Poisson process and the distribution of the claim severities Flx is

PH.
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3.2 Moments of Compound Poisson Sums with

PH Claims

When we consider the net interest 6 = 0 our model becomes the classical risk
model. In that case the moments of the compound Poisson process are well known
and can be found in any risk theory textbook such as Klugman, Panjer and Willmot
(2004). Léveillé (2002) gives an analytic expression for the m.g.f. of the compound
Poisson present value risk (CPPVR) process with net interest rate 6 > 0. In this
section we study the m.g.f. of the CPPVR process when claim severities have a

PH distribution.

Corollary 3.2.1. Let N = {N(t),t > 0} be a Poisson process with parameter
A > 0. Then for any fited t > 0 and § > 0, the moment generating function

(m.g.f.) of Z(t) is given by
MZ(t)(S) — eAfot [Mx (se~%%)~1]du , s € R, (36)

where Mx is the m.g.f. of the claim severity X.

Proof. This result is given in Léveillé (2002), but we give a different proof here.
For any ¢t > 0,6 > 0 and s € C. Since here the inter—arrival times are exponential

distributed with parameter X, the renewal function is
m(z) = Az, z>0.
Hence (3.5) reduces to:

ad t  pt-z t-k | @ k4l i
Mz(s) = 1+ )‘kH/O /o /0 11 [MX(SB_S L= %) — 1]
k=0 i=1

dl‘k_H o .diIIl .
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Letyi=x14+29+ - -+x;andi=1,2,--- ,k+1, then

t k+1
Mz (s) = 1+Z>\k+1/ / / H MX se y" —l]dka . dyo dyy

Ye =1

k+1

Y41 Y2
= 1+ ZAIC-H / / / H MX 86 éy’) - 1] dyr - .. dyk dyk41 -

(3.7)

Differentiating both sides of (3.7) with respect to t yields
o

%Mz(t)(s) = )\[Mx(se‘ét)_l] (1+(g:>‘k/0t /Oyk_“/oyz

[Mx(se_‘syl) ~1] - [Mx(se_‘;y’“) ~1]dy1dys- - dyk)>
= A[Mx(se"&) = 1Mz (s),

which is a first order homogeneous ordinary differential equation with initial value

Mz(0)(s) = 1. The solution is
Mz (s) = Mo Mx(e™™)-1ldu - g e R (3.8)
O

When the claim severity distribution Fx belongs to the PH family, then the

m.g.f., above can be written more explicitly in matrix form as follows.

Corollary 3.2.2. If the deflated claims {Xy}i>1 have o PH(a, A) distribution
such that sprad{sA™'} < 1 (see Appendiz A, Definition A.1.3.) and N = {N(t),t >

0} forms a Poisson process, then for § > 0
Mzey(s) = exp {30/ In [(Z+ se™ A (I+ 5477 1} . seR.  (3.9)

Proof. The moment generating function of a PH (a,A) is given in (2.11), hence

from Proposition 3.2.1, the moment generating function of Z(t) is given by

Mzw(s) = exp( /[o/ T4+ A) 1Al——11du>

= exp / e T+ A) 1duAl] — )\t) , s € R. (3.10)
0

21



First we need to calculate f(f (se I+ A)~'du. If A™' exists, then

t t
/ (se™™T+A)du = / (se™™AA™ + A)Ndu
0 0

¢
= / (se AT+ D) Tdu ATt
0

Since sprad{sA~'} < 1, then we have sprad{se™®*A~'} < 1. From Lemma A.2.2

in the Appendix we obtain

¢
/ (:se_’suA—1 + I) du Al
0

= /t (I + (1) (se AT + (=1)%(se™ AT +
(=) (se AT 4 Jdu AT

2

= {It+(—1)1[-§(1 e AT + (-1)? [%(1- e 2] (A2 +

HEDH - e AT 4 AT
= {It + [(~1)1§A“1 + (—1)2-;%(14‘1)2 + -+ (—1)’“2—’;(A‘1)’c +] =

[(*1)1§e_étA_1 + ( ) -—26t(A 1)

+( 1)ksk _kdt(A—l }A 1
ké
1 oo 1 B 1 X o ~
= {It—— gzkz1 (_1)k+1E OL SZ k+1 oSt A l)k}A 1

k=1

= {It _2 In(I +sA™) +

; (T + se0tA )}A~ ,

J

(3.11)

the last equality follows from definition A.1.5 of the Appendix. Substituting (3.11)

into (3.10), then the m.g.f. of Z(t) becomes

My(s) = exp {)\g' Tt — Sln(I+ sA™) + %111(1 +se~ AT ATIAL - )\t}

4]
= exp {%g’[ln(I +5e™ A — In(I + sA—l)]l} :
From Lemma A.2.6 then (3.9) follows.
Corollary 3.2.3. For § > 0 we have:
A

E[Z(t)] = -3 (1-edA™1, t>0,
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and

(1—e™ /A1, t>0. (3.14)
Proof. From (3.10) we have

My (s) = exp (Ag’{lt - (—1)1[3(1 — e AT 4

k
VK8 1 kSN A=k -1 _
DML - e AT 4 JATIAL X), (3.15)
and hence
0 A B o
E[Z(t)] = 5 My (s)l=o = —5 (1 — ™) /AT,
and
2 82 )‘ / —26t -2 )‘ —&t A1 2
BIZ(1)*] = 5aMze(8)l=o = 5 /(1 - AT L+ {-5 (1 - ) AT'L).

= V[Z(t)] = E[Z(t)] - {E[Z(®)]}" = % (1-e?) /AL

These moments are consistent with those from Léveillé and Garrido (2001a), which

were obtained using renewal arguments. O

Remark 3.1. Following the same procedure as in Corollary 3.2.1, higher order
moments E[Z(¢)*] can be obtained for k = 0,1,2,.... The regularity shown by the
PH structure leads itself well to a systematic treatment by a symbolic computa-
tional software.

Let p(s) be a polynomial in s:

a a a
p(s) :a13+‘2—232+§383+"'+f‘8k+"' ,
where
A
ap = (-1)F-(1-e ™) d/A*1, keN.

)
Then from (3.15) we have that

Mz(t)(s):ep(s), seR.
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Using Maple one easily verifies the following results:

E[Z(t)®] = 2a3+ 3aga; +a?,

E[Z(t)*] = 6a4+ 8aza; + 3a3 + 6asa; + af

E[Z(t)°] = 24as+ 30a4a; + 20azas + 20aza? + 15a5a; + 10azas + af,
E[Z(t)®] = 120a¢ + 144asa; + 90asay + 9aqa? + 40a3 + 120azaza

+40aza + 15a3 + 45a3a3 + 15aza] + af,
Following the same method we can find E[Z(t)*], for any k > 7.

Corollary 3.2.4. If § — 0, then the m.g.f. in (3.9) reduces to that of the classical

risk model with PH claims:
Mz (s) = M (Frea™0mamt, (3.16)

where Z(t) = S(t) in (8.1) and the X; are i.i.d. with a common PH(a, A) distri-

bution.

Proof. Using (3.12) leads to
lim Mz()(s) = lim exp {io/[ln(l + 86_5tA_1) —In(I+ sA‘l)] 1}
-0 (t) §—0 5"“ L.

From Definition A.1.5 of Appendix A: In[I+se A ™" = Y32 (—1)F 1 L(se™*A™)*
and I’Hospital’s rule implies that

NIE

lim Mz)(s) = %g%eXp{Ag'[t (—1)k(86_6tA_1)k]l}

k=1

M8

(—1)*(sA™)"]1}

= (151_21(1) exp {)\Qz_’ [¢

=~
I

1
= exp {)\g' [t(I+sA)™ - tI]l}

= exp {)\t [&/(T+sA)™'1—1] } ,

which is the moment generating function of the classical risk model for S(t) =
SV X,, with X; having a PH(a, A) distribution.
O
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Remark 3.2.

et

/AT,

. e A A gL
puy A0 =g =5 (L m e DAL= iy

By the I’'Hospital’s rule we have

lim E[Z(t)] = lim — L=

IA=11 _ _ I A —1 —
50 540 5 AYATL=—MaATL=EN@)EX]. (3.17)

By (2.9) we see that this is consistent with the result for the classical risk model

E[S(t)] = E[N(t)] E[X], when X is a PH distributed claim severity. Similarly

- g _ o (L= _(1—6_&) 1A —1112
I e A IR e
= 2xta’A7%1+ (/A1)
Then
2
lim V[Z2(5)] = lim E[2(8)"] ~ lim {]E[Z(t)]} = M(20/A7%1), (3.18)

again, by (2.10) this is consistent with the classical result V[S(¢)] = E[N(¢)]E[X?],
with PH distributed claim severities. A similar procedure gives lims_o E[Z(t)*],

for £ > 2 using Remarks 3.1 and 3.2.

Consider now the asymptotic behavior of Mz, as t — oo.

Corollary 3.2.5. For § > 0 we have:

Mz, (s) = im Mz, (s) = exp eg’ In(I+ sA‘l)‘ll) ., seR. (3.19)

Proof. The result easily follows from (3.9). O

Remark 3.3. From Equations (3.13) and (3.14) we have

lim E[Z(¢)] = lim -—ig’ 1—e A1 = —i_a_'A_ll, 3.20
t—00 t—o0 (5 5
and
lim V[Z(t)] = lim Sa/(1 - A = oA (3.21)

By a similar procedure we can obtain the asymptotic expression lim;_,, E[Z(¢)*],

for any k£ > 1, using Maple.
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3.3 Examples

In this section, we illustrate the above results with some examples and discuss
the asymptotic behavior as ¢ goes to oo. First consider the following generalized

Erlang(2) example.

Example 3.3.1. (Generalized Erlang(2) distribution) Let N = {N(¢),t > 0}
be a Poisson process with intensity A > 0 and generalized Erlang(2) be deflated
claims with density function:

. )\1)\2(6—')‘190 — 8_)‘290)
N Az — A ’

fx(x) z>0,

1 -1 A\
where A\ < Ag, a = and A =
0 0 —X

By Theorem 3.2.1, the moment generating function of Z(t) here takes the following

form:

st — A T (gm0t — )y T
Mz@)(s) = T Ty ;o s< A

According to Corollary 3.2,1 the expectation and variance of Z(t) are given by

A1 —e™%) 4 A(1 —e™%)
M\ PYR

E[Z(t)] = t>0,

and

t>0.

Ml =€) N1—-e2)/ 1 1
e TS (AL&‘*Xg>’

Consider the classical risk model, by Corollary 3.2.2 we can compute the limit

Viz(®)) =

value as § — O:

. _ AL | EN
<lsl—r>% Mzw(s) = exp [At ()\1 -3 + M—9)(a—s) 1)] ’

S<>\1,

which implies that

lim E[Z(t)] = At (—1— + !

)\1 ;\‘;‘), t>0,

and
1 1 1
Ii Z) =2M =+ — 4+ —= t>0.
lim V[Z(1)] (A§+A1A2+,\g>’
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Similarly we consider the asymptotic value of Z(t) as ¢ increases to infinity.

)

A )m%;( 2o >w%m

tllglo Mz (s) = <)\1 -8 Ay — 8

which implies that
Arl 1
lim E[Z(t)]==(—+—,
261 =5(5+5)

t—oo ) )\1
and
. Arl 1 1
lim V[Z(t)] = E(A_f v 7\—%-) .

Remark 3.4. A similar approach gives lims_,o E[Z(t)*] and lim;_,cc E[Z(t)¥] using
Maple, as in Remark 3.1.

Example 3.3.2. (Generalized Erlang(3)) Let N be a Poisson process with inten-
sity A > 0 and generalized Erlang(3) be deflated claims with the following density

function, for x > 0:

Al A2 A3 (()\3 —_— )\2)6—)\139 -+ ()\1 — )\3)6—)‘296 + ()\2 - )\1)6—>‘3w)
)= (= M0 — )0 ) ’

where A1 < A < As.
By Theorem 3.2.1 we have that the m.g.f. of Z(¢) is given by
hi-s Ay~ 8
<>\3 - se“”) leves YRy
x| =

)\3—8

Mz)(s)

) 5§ < Ap.

Then the asymptotic values of E[Z(t)] and V[Z(t)] are given by Corollary 3.2.1 to
be: 5
Ml—s7%) /1 1 1
E[Z(t)]:i——s—_—)(—Jr—Jr ). t>o,

é AL A2 )\_3
and
M1 —se™2) /1 1 1 1 1 1
i) = ML —se™) (1 Sl T t>0.
V{Z(2)] 5 ()\% ™ A1 \o + A3 + A g * )\722 * >‘§> , g
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By Corollary 3.2.2 we reproduce the following classical results:

AL AL N SA AL + SAL A AL B 1)
/\1 — S ()\1 - S) ()\2 - 8) ()\1 - 8)()\2 - S) ()\3 - S) ’

lim Mage(s) = exp (
for s < A; and

11 1
lim E[Z(8)] = M (— + — + —
lim E[Z(t)] ()\1+)\2+)\3>’ £>0,

while

t>0.

L S SRS SRR S
lim V[Z(t)] = 2Xt ( PYADY]
lim V[Z(t)] = 2Xt (A% T T e T T Aﬁ) ’

Finally we show some asymptotic results by the Corollary 3.2.3 and Remark 3.3.

\ Aoz \ _ AA1Ag
3(A2=X1)(A3—X1) 8(Az—Xx1)(Az3—A2)

. 1 2

lim Mgwp(s) =

t—00 ()() )\1-—3 )\2—8

o , 5§ <\
and by 1
i EZ0] =3 (£ + 1+ 1),
while
lim V[Z(t)] = % (;13‘ + AllAg * )\11)\3 * Azl)\s i ilg i 7\1?) '

Remark 3.5. Here again lims_o E[Z(¢)*] and lim;_. E[Z(¢)*] can be obtained

by the same procedure as in Remark 3.1 and Maple.
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Chapter 4

Renewal Processes

In this chapter we consider the compound renewal present value risk (CRPVR)
process, for the case where the inter—arrival times are PH distributed and the de-
flated claims are also PH. We obtain an homogeneous differential equation for the
moment generation function (m.g.f) of the CRPVR sum at time ¢ and discuss the
asymptotic behavior of this m.g.f. as ¢t goes to infinity. We also give examples to

illustrate the results.

The first section gives a definition of the PH-renewal process and discusses its
first properties. In the second section the special case of the distribution Erlang(n)

is considered.

4.1 The PH-Renewal Process

In this section we define the PH-renewal process and some of its properties, espe-

cially the renewal function and the renewal density.
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4.1.1 Definitions

A Poisson process is a special case of a renewal process with exponential inter—
arrival times. It is discussed in detail in Chapter 3. Here we consider a more

general family of inter—arrival time distributions.

As in the model of Andersen (1957), let {T}}r>1 be the claim occurrence times
and 7, = Ty — Tg—1, for k > 2 and 71 = 17 be the claim inter—arrival times. If
{7 }x>1 are mutually independent and have the same distribution F;, then {7 }x>1

are called renewal times.

Now let N(t) = max{k € N; T} <t} for each ¢, where N(0) = 0, represent the
number of renewals up to time ¢, then N = {N(¢);¢ > 0} is a renewal process. If in
addition the inter—arrival times have a PH distribution, this defines a PH-renewal

process.

Definition 4.1.1. The counting process N = {N(t);t > 0} is said to be a PH-
renewal process if the inter—arrival times 7, = Ty — Tp—1, k > 2 and 1y = T3, have
a common PH distribution say F., and are independent. Here the {Ti}r>1 are the

arrival times.

In this thesis we are particularly concerned with the mean of N(t). The function
m(t) =E[N(®)], t>0, (4.1)

is called the renewal function. The renewal density is then defined as

m(8) = lim E[N(t+ A t)] — E[N(t)]
At—0 At

) t>0.

For instance, the renewal function of a Poisson process is easily obtained to be

mit)=M, t>0,
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where )\ is the parameter of the exponential inter—arrival times.

Now consider inter—arrival times that are PH-distributed with parameters (o, A),

then we have the following result.

Proposition 4.1.1. Consider a renewal process with inter—arrival times which
are PH distributed with parameters (o, A). Then the renewal density exists and is
given by

m/'(z) = o/eAT1a02(_ A)],

Here we use probabilistic methods to prove the result. For the Markov chain

method see Asmussen (2003).

Proof. From Cox (1970) we have:
m(z) =E[N(2)] =) F*z), t>0, (4.2)
k=1

where F** denotes the k—fold convolution of F;, which is the distribution of inter—

arrival times. When the inter-arrival times have PH (o, A) distributions, then

F.(z) =1-de*1, z > 0. (4.3)

By the closure property, the convolution of F; is also PH distribution. Let the F**
for k > 2 be the following PH (i, Ci) forms:
A —Alg,,

o, =, Qp = (Q/) Q,(k—l)n )Ia Cl = A) Ck - )
0 Cr-1

(4.4)
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then from (4.2) and Appendix Definition A.1.4. we have

m(z) = 1-—0/e*®1+1—0ahe®®1l, + - +1—0a}e%"1, + -

First let us prove the following the result using induction on j:
dCl1,, =0, for k>j+1=0. (4.6)
When 7 =1 and k > j + 1, we have

A -Alg,

f—

g;c Ck —1-kn = (gl Q/(Ic——l)n)
Cr—1 Lg—1yn
= oAl - QélAl_a;c—l 1y, =0,
from o) _;1,_, = 1. Suppose j <n -1

QCl1,, =0, for k>j+1. (4.7)

Now prove (4.7) is true, when j = n:

n n-—1 n—i %
A" =g ATl 1 Gy

=

g_;c CZ lkn = (_C_VI Q,(k—l)n ) n
0 k—1 1 (k—1)n
n—1 ) )
= oA"l — Z A 1a) 1 Chi Loty
=0
n-—1
= - Z &A™ 1 a1 Cr g1 (k- (4.8)

i=1
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Assumption (4.7) leads to g}c_lc,ﬁ_ll(k_l)n =0, for k> n > i+ 1, then the result

o, Ci 14, = 0 holds. So we have

m(z) = — {Q’Alﬂc + 51; [/ AL+ 05 C3l o, )2* + —?-}; [/ A®L + 0 CLy, +a5Cil5,]
xz° + +% [@’A™ + ayChly, + -+, Cil, ]2 + - - } . (4.9

Now we show the following result by induction:

o/ A"+ ahCPLy, + - + &, ClL,, = o/ [AQ - 1a)]" AL, (4.10)

When n = 1, obviously (4.10) holds. Suppose then that when j < n — 1 the

following result is true.

o/ AT1 + ahChily, + - +aCi1,, = o/ [AQ—10/)]" AL (4.11)

=j~j=jn

Consider j = n, from (4.8) we have:

n—1 n—1

= o'A"]l - Zg’A"—llg’z_IC;_ll@_l)n - ZQlAn_llQ;z—lcfz—ll(n—l)n
i=1 g=1
n—1

= /A" — ZglAn—il[g_/Ail+ Q/QC;lzn A _|_g;_1Ci_11 (n~1)n} . (4.12)

i=1
Assumptions (4.11) and (4.6) lead to following form of (4.12):

n—1
= A" - A1 [A0-10)] L=/ [A0 - 1o/)]"T'1.(413)

=1

Hence (4.9) can be simplified as:

m(@) = ~{'Alz+ o /AT~ 10)AL2" + 3 o [A(T - 1) "ALe + -
1 ./ n1* k-i—l.

- 1 cee o 4.14

o @ AT - 1)) AL 4 } (4.14)

Differentiating (4.14) with respect to = yields

1
m'(z) = —{Q’Al +aA(I-1a)Ale+ o/ [A(l- 1)) ALa? + -
L, Nk
+ 2 [AT-1a)] IS (4.15)

33



Using Definition A.1.4. from Appendix A leads to m/(z) = o/eAI-12)2(_A)

D]r—\

which completes the proof.

Additional details on the PH-renewal process and its applications to ruin pro-
babilities and queueing systems can be found in Neuts (1981), Chakravarthy and
Alfa (1997) and Asmussen (2003).

4.1.2 The Moment Generating Function of Z(t)

Consider now the m.g.f. of Z(t), for fixed ¢, when N is a renewal process, we
have an analytic expression in (3.5). In particular, when inter-arrival times are

PH (a, A) distributed, the renewal density can be written as
dm(z) = o/ eB®* (=A)ldz, forB=A(I-1¢).

Hence from Theorem 3.1.1.

Mz (s) = 1+Z// /t ZzlxlkH([MX( 62,1w,)_1]

xg’eBmi(-—A)l) dxk+1...d3$2dl'1, t>0,seR.
Letyi =21+ a2+ - +aifor i =1,2,--- ,k+1, then
Mz)(s)

= 1+Z/ / / (lﬁ MX se”%) ]a’eB(yk“ ) (—A)1

- of BTV (—A) Lo P (- 1>dyk+1 - dya dy

- sz/ /yk“ /2<k+1 [Mx(se W) — ]afemykﬂ 5 (~A)1

o BU(—A)1 o B A)1>dy1 - dyk dYk+1 t>0,seR.
(4.16)
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Differentiating both sides of (4.16) with respect to ¢ yields

%Mz@(s) = [Mx(se™™) — 1]/ e®(—A)L + [Mx(se™®) — 1]

X (g/ot /Oyk---/oyzg[Mx(se"sy")—l]

x o eB(t_y’“)(—A)lg/ eB(yk_yk—-l)(_A)l. o eB(y2-y1)(~A)l
X o €V (—A)ldy; - dyi dyk) , t>0,s€R.

Now let

flts) = ff [ Q[Mx(se‘éw)——1]g'eB<t~yk><—A);

o, eB(yk_yk—l)(—A)l- o eB(yz—yl)(_A)lal eByl(_A)l

X dyy -+ - dyp—1 dyi t>0,seR, (4.17)

therefore we can rewrite (4.17) as

%Mz(t)(s) = [Mx(se™®) — 1]a’ €B(—A)L + [Mx(se™) — 1] f(t,s). (4.18)

This differential equation for Mz (s) can be solved for certain PH distribution,

as we can see in the following section.

4.2 Erlang(n) inter-arrival times

Consider a special case of the PH family of distributions, when inter-arrival times
are Erlang(n) (see example 2.1.3) then we obtain an homogeneous differential equa-

tion for the moment generating function of Z(t).
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Differentiating both sides of (4.17) with respect to ¢ yields

0
5t‘f(t, S)

Yk
= Bt{Z/ / / MX se ‘5?") —1]6_By’°(—A)l
x o eBWs—YE- 1)(~A)l' o eB(yz yl)(__A)lg’ B (—A)1
dy, - - - dyp—1 dyk} +d eBt{ [MX(se“St) — 1] e Bt (—A)

[ste ——1 Z// /W ste‘sy")—l]

x e B (—A)1 o/ eBtve- 1)(—A)_l_---g'eB(y2 v (—A)lo eP(—A)l

[t

g/ eBt(~—A)l

><dy1-~-dyk_2dyk_1}, t>O,SER.

Since here matrix A simplifies to the form (2.4) given in Example 2.1.3, we get
that in the Erlang(n) case the sum of the first row of A equal to 0. Hence
o e Ble Bt( ~A)l =d/(—A)1=0. Then

Z/ / /wH [MX (se~0v —1]g_’BeB(t‘y’°)(—A)1

X o ! By~ 1) A)l eBly2— y1)( A)l

xa’eByl( —A)ldy; - dyg-1 dyx , t>0,s€eR. (4.19)

4.2.1 The Erlang(2) Case

To simplify the first derivations, consider the special case of Erlang(2) inter—arrival

times, that means here (o, A) are given by:
' -2 A

where A > 0. Then we have the following result.

Theorem 4.2.1. If the inter-arrival times are Erlang(2), then the m.g.f. of Z(t)

satisfies:
52

0
My (s) = aa(t) M () + () Mzo(s),  +20, s€R,  (421)
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with initial values Mz)(s) = 1 and 2 Mz (s)] =0 = 0, where ay(t) = 2 [Mx (se™)
—1]/[Mx(se™%) — 1] = 2, ao(t) = X*[Mx(se™®) — 1] and Mx is the m.g.f. of
the deflated claim severity X.

Before we prove Theorem 4.2.1, we need to show the following lemma.

Lemma 4.2.1. If inter-arrival times are Erlang(2), then

0
ot

Proof. Since the inter—arrival times are Erlang(2), then by (4.20), B = A(I— 1&/),

(t,8) = —2Af(t,8) + XMz (s) — X,  t>0,s€R. (4.22)

where using Maple we obtain the following results:
o BeBEW) (L A)] = N2 P-0) - ¢ >, (4.23)

and

1
of BUW) (_A)] = ——%)\e‘”‘(t‘y’“) +3X, 120, 5€R. (4.24)
combining (4.23) and (4.24) we have:

g’ BeB(t—yk) (__A_)]_ =

—2)o eBUE¥R) (—A)1 4 A2, (4.25)

Substituting (4.25) into (4.19) yields

gt t,s) = —2/\2// / H MX (se” y" —1] eBE-w) (~A)1

x of eBW—Ye-1)(_A)]... of eBO2V)(—A)1 o eByl(——A)l
X dyp - dyp— 1dyk‘|‘)\22/ / /y2 Mx (se” y")—l]
X of eBlE—vk- 1)(—A)l"'__ B(y2— yl)(—A)lg eByl(—A)l
dyy « - dyr—1 dyg . (4.26)
Combining (4.16), (4.17) and (4.26) gives (4.22) O
Returning to the proof of Theorem 4.2.1, from expression (4.18) we have
—g;MZ(t)(s) = D [Ma(oe®) — 1)a PH- AL+ [Mx(se™) 1
x o BeP{(—A)L + g—[MX(se”‘”) — 1] f(t, )
+ [Mx(se™) — 1] gtf(t, ). (4.27)
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Substituting (4.22) into (4.27) and combining (4.16) and (4.17) yields Theorem
4.2.1.

Remark 4.1. If § = 0, then the homogeneous differential equation in (4.21) is
given by:

52 0
@Mz(t)(s) = alEZMZ(t)(S) + aoMZ(t)(s) ) t>0, seR, (4.28)

with coefficients a1 = —2X, ap = A?[Mx(s) — 1] that are constant with respect to
t. Solving the differential equation yields the m.g.f. of the Sparre Andersen sum
with Erlang(2) inter-arrival times S(t) = YN X;:
-1 1 1
Mg(s) = e™ {MXZ (s) sinh (At M2 (s)) + cosh (At Mf((s))] .

This result is consistent with an example given earlier in Léveillé (2002) that he

obtained using techniques other than differential equations.

1
Example 4.2.1. Let the inter—arrival times be Erlang(2) that is for ¢ =
0
-A A
and A = . Furthermore, let the deflated claim X have an exponential(6)
0 —=A

distribution and § = 0.01, A = 0.01, # = 1. Then from Theorem 4.2.1, we have

an homogeneous differential equation

0? 0
@Mz(t)(s) = al(t)aMZ(t)(s) + ao(t)MZ(t)(s) , (4.29)
where |
2l —0.01¢
_ m[M@s)] . 0.01(2se -3)
a(t) = M(t,s) 2A= 1—ge001t 7
0.0001s¢~0-01¢ 0
— 2 — —
(I()(t) = )\M(t,S)—W, M(t,S)—m*l

Solving the differential equation with Maple yields

Mz (s)
1 1—
= ;’2’{(3 —-1) [Se—o.ou - 2] In [1 _ Se—so.ou] +se7 0% (s —2) + 25} ) s<1.
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Remark 4.2. From (4.30) the asymptotic behavior of Mz)(s) as t — oo is given

as:
2 2(1—s)In(l—s)

MZ(oo)(S):" , s<1,

52
which is consistent with Léveillé (2002) who obtained this by solving a second

hypergeometric differential equation in Mz ) (s).

Remark 4.3. Taking first and second derivatives of Mz (s) with respect to s in

(4.30) and letting s — 0, we get the first and second moment of Z(t):

E[Z(t)] = é (e—o.o3t — 3001t | 2) ’ £>0),
]E[Z(t)Q] _ % <e—o,o4t _ 008t _ ,—00t | 1) , £>0,

which is consistent with an example Léveillé and Garrido (2001a).

4.2.2 The Erlang(3) Case

Now consider the moment generating function of Z(t) in the Erlang(3) case. The
function f and its derivative with respect to ¢, 5 9 f(t,s), are defined in (4.17) and
(4.19) for any PH distributed inter-arrival times. Now differentiating % f(t,s)

again with respect to t yields:

2

it t Yk y2 K
68752f(t s) = Q'BzeBt{ Z / / / H [MX(Se_éyi) — 1] e B (—A)1
k=1 YO JO 0 =1
XeB(yk_yk—l)(_A)l. o eB(yz—yl)(_A)l_q/ eByl(_A)ldyl .
dye—1 dyk} +d'B eBt{ [MX(se—‘St) —1]e B (-A) 1o eBl(-A)1

[MX se—‘st ——1 Z/ /yk1 / MX se” y")—l]

x e B(—~A)1of eBEve-1)(—A)] .. a’eB(w yl)( A)ld P (—A)1

X dyy - - dyp—2 d?/k—1} -
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As for (4.19) again here o/ B(—A)1 = 0, then

8t2 Z/ / / H MX se ‘sy‘ —I:IQ_/B2BB(t—Z‘/k)<__A)_1-
k=1

i=1
X & ! B(Ye—Yk- 1) A)l o B2~ yl)( A)l

x o eBy (—A)1ldy; - - dyp—1 dys . (4.31)

Similarly to equations (4.23) and (4.24), with Maple we have:

g/]_3’26B(t—yk)(_A)1 — )\38—3%'—%2 [COS (A(t — yk)ﬁ) _ \/gsin ()\(t - yk)\/g)] ,

- 2 2
o BeBEW(_A)L = 2\/— -2 (—A(t ~2?Jk)\/§) ;
Q/ eB(t—yk)(_A)l _ %e—ﬁ%ﬂﬂ [1 — COS ()\(t__égk@) —
Al =) V3
V/3sin (~——————2——-———)} ,

then the following result holds.
o BBt (_ A)1 = —32 o/ BBt (— A)1-3)20/ eBE) (—A)14+ X%, (4.32)

Substituting (4.32) into (4.31) and combining (4.19) and (4.17) shows the following

result.

Lemma 4.2.2. If the inter-arrival times are Erlang(3), then
82

gy (t,s) = =3\ %f(t, s) — 3N f(2, 8) + X* My (s) — A®, t>0, seR.

(4.33)

A method similar to that used in the previous section and differentiating (4.18)
respect to t yields
PX

athZ(t)( )
— _8_2_[M (8 —Jt)_l] ' Bt(—A)l—}—Q——a—[M ( —ét)_l] 'B Bt(—A)l
o [ Mx(se de L+ 25 [Mx(se o'B e 1
 [Mc(se™™) = 1] f B (- A)L 2 M (se™) — 1],
2
+2;%[Mx( "”)—1];%1‘( )+[Mx(se_6t)—1]a%—2- (t,s).  (4.34)
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Substituting (4.32) into (4.34) and combining (4.19) and (4.17) yields the following

result.

Theorem 4.2.2. If the inter-arrival times are Erlang(8), then:

o° o2 0
@Mz(t)(s) ( )8t2MZ(t)( )+a1( )atMZ(t)( )+a0(t)MZ(t)(8), t>0,s€eR,

(4.35)
with initial values Mz)(s) = 1,2 Mz (s)|i=0 = 0, 8tQMZ(,;)( 8)|t=0 = 0, and
where

_ 2% [MX(Se_‘St) - 1]
as(t) = B[MX(:se“‘St) — 1] -3,
ai(t) = é% [Mx (se™®) —1] = 3N [Mx(se™®) — 1] — aa(t) §[Mx(se™*) — 1]
[MX(SB_&) - ].] s

a(t) = M [Mx(se™®) —1].

Remark 4.4, If 6 = 0, then we obtain an homogeneous differential equation:

o3 9 0
%Mz(t)(s) = GQ@MZ@)(S) + a1 &Mz(t)(s) + aoMz)(s), (4.36)
with coefficients a; = —3X,a; = —3A? and ag = A*[Mx(s) — 1] that are constant

with respect to t. Solving this differential equation yields the moment generating
function of the Sparre Andersen sum S(t) = S (f) X; for Erlang(3) inter-arrival

times:

Mz (s)
1 V3t

— m{({zMx( )% Mx(s )%—1]c [————Mx(s)

X sin [\/z/\t MX(S)%] e[_%MX(S)%—”’\t>

W=
op—=

| - v3[1 - Mx(s)

]

1
+ [Mx(s)'?? +1+ Mx(s)%]ewx(s)s-lm} .

4.2.3 The Erlang(n) Case

From the results of Erlang(2) and Erlang(3) we can give a conjecture when the

inter—arrival times are Erlang(n), there is an n-th order homogeneous differential
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equation Mz (s). In order to prove our conjecture we need to prove the following

Lemmas.

In the special case when a PH (o, A) distribution is an Erlang(n) distribution

we have

Lemma 4.2.3. If the inter-arrival times have an Erlang(n) distribution with para-

meters (a, A), then
o B¥(~A)1=0, fork<n-2. (4.37)
where B= A(I-14d/).

Proof. First prove the following result

o/AF1 =0, fork<n-—1. (4.38)
Let
(X x 0 o 0o\ (-1 1 o 0 0
0 -\ A\ 0 0 0 -1 1 0 0
0 0 -\ 0 0 0 0 -1 0 0
A = =\
0 0 O “X A 0 0 0 1 1
\ 0 0 0 0 —\ \ 0 0 0 0 -1

= A(-I+D),

where I is an identity matrix and

(0 1 0 --- 0\ (0 ... 01 ... 0\

001 --- 0 L S :
D=|::: . ¢ |then D*=| 0 -~ 00 -~ 1} (439

000 1

\0 00 0 0) \ k )
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Hence
i k
A= ¥ (—14+D)" = N > (-1 (r)D’H ,  forD®=1. (4.40)
r=0

From the fact that o/ A*1 is sum of the first row of A* and combining (4.38) and
(4.39) we have

/ARl = )F Zk:(—ly (k) =M1 -1F=0. (4.41)

r=0 r

Now we prove the Lemma. From B = A(I — 1&/), we have

Qz_’Bk (_A)_l_: _Qé_IBk—l A(I _lgl)(_—A)l — _ngk—l A2l+Q/Bk_1AlQ/Al-

(4.42)

Consider (4.38) then

—o/ B 'A%l + o/ BF AL /Al = —o/ BT A?] . (4.43)
Recursively applying B = A(I — 1¢/) and (4.38) to (4.43) we have
__0_5_, Bk——l A2l — —Q/ Bk:-—2 A(I _lQ,)Azl — —QI Bk—2 ASl—I-Q/ Bk_2Ang,A2l

= —o/B*"2A3%1

—_ —-—g’ Ak+1l pumat 0, (444)
where k+1 <n —1. Hence o/ B¥(—A)l =0for k < n—2. O

In order to prove the Theorem we also need the following Lemmas.

Lemma 4.2.4. If (o, A) are the parameters for the Erlang(n) distribution and
B=A(I-1¢) then

n—1
o/eP B (—A)L= "= ) N (Z) oeBPBIF (—A)L. (4.45)
k=1
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Proof. By Definition A.1.4. in Appendix A

gIeBac:Bn——l (_A)l _ Z _]%'__IBlﬁ-n—l (—A)lxk
k=0 "
gleBmBn—Q ('—'A-)_]; — Z E]-TQ,BIH%—? (“'A)ll’k
k=0
P (—A)l = Z %_’Bk (—=A)1z".

b
il

0

The coefficient of zF |k > 1 for the right hand side in (4.45) is

_% (?) Ag'BH" (~A)L - % (") No/BM2 (—A)L -
1

gl o) ¥eEt

- k'_’B’“ 1<<n>>\B"‘1 + (Z) MB* 4 (nf 1) A B) (-A)L

- —— B 1[ M +B)" - )\"I—B"](—A)l

= k|_’Bk+n— ( A.) An IBk 1( A)l— %Q,Bk—l()\I“FB)n(—A)l

(4.46)

Next we want to show that (AI+B)" = A" 1, let
(M +B)"=)"C" (4.47)

where .
010 - 0
0 01 0
C=
0 00 1
1 0 0 - 0
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Since

(001 0 00 01 )
10 - 00
=000 - 1|,,C'=[01..00]|=C=I
100 -+ 0
010 - 0 \000‘10)

(4.48)

So (4.46) can be simplified as £a/B**" 1 (—A)L.
Comparing the z* term for k& > 1 in the series expansions for both sides of (4.45),
they have the same coefficients. Now for k£ = 0, using the same procedure in (4.44)

and applying (4.40), the constant term for the left hand side is
mn~—1/__ — _A A" — n, ./ n—r
BN (—A)l = /A" = —X\"g Z <r>D 1. (4.49)

Since (4.49) is the sum of the first row in a matrix —A"> " (=1)"(7)D"™" and
D" =0, then

)\"o/z ( )D” T=-X[1-1)"-1] = A", (4.50)

hence the constant term for the left hand side in (4.45) is A*. From Lemma 4.2.3.
the constant term for the right hand side is also A™. Hence we conclude that the

coefficients of the right and left hand sides of term z* for are equal for k£ > 0, which
leads to Lemma 4.2.4. O

Similar results hold for Lemmas 4.2.1 and 4.2.2.

Lemma 4.2.5. If the inter—arrival times are Erlang(n), then the (n—1)-th deriva-
tive of f(t,s) int is given by

8n——1 . o= 1-k "
pr=y) Z)\ ( ) pmimi ] (68) + X" Mz (s) = X (4.51)

45



Proof. By Lemma 4.2.3. we have

ot Y2
3tn—1ft5 = / / / H MX se” yi —l]g_/Bn'_leB(t_yk)(_A)l

x o eBUs—Yk- 1) A) o eBv2 yl)( A)1

x o BV (—A)1dy; - - dyp_y dys . (4.52)

Substituting (4.45) in Lemma 4.2.4. into (4.51) and combining with (4.16) yields
the result. O

Now we prove the conjecture that there is an homogeneous differential equation

for the m.g.f. of Z(%).

Theorem 4.2.3. If the inter-arrival times are Erlang(n), then the n-th derivative

of the m.g.f. Mz)(s) with respect to t is given by:

an 8n—1 an—?
‘aFMZ(t)(S) = an-1(t )Bt“ =Mz()(s )+an—2(t)5¥n—_'§MZ(t)(3) + -
0
Fau(t) 5 Mz (s) + ao(t) Mz (s) (4.53)
with initial values
a 82 an—l

Mz@)(s) = >8tMZ(t)( $)|t=0 = 0,@M2(t)(3)|t=0 =0, 5 g Mz (s)|e=0 =0,
where

ak(t) =

(o) Mt 8) = S5 V() (T ML) n N
M(t, s) (n—k)A ’

with M(t,s) = Mx(se™®) — 1, fork=1,2,--- ,n—1 and ao(t) = \"M(t, s).
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Proof. Differentiating (4.18) yields

o = (n—1

f(t,s), (4.54)

where M(t,s) = Mx(se™®) — 1.
Substituting (4.51) into (4.54) leads to:

8”‘ -l n—1 8’“ Bt _1—k
M - —M B" —-A)l
9tn Z(t)(s) - ( > 9tk (t S) ( )—

S (") e e

e[ - S () e ) + XMz - ]
- (”;1) T M(t, )0 PB I (AL
+§ K"; 1) %M(t,s) - (Z)A’“M(t,s)} 5: i)

o5 = G

+M(t,5) |\ M — X7

(4.55)
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Since

n—2
n—2\ oF Gr—2—k
+kzo< k )%M(t’s)wﬂt’s)- (4.56)

@
3
|
—_
§
—
»
N
Il
s
|
(™)
N

-9 ko
" . )%M(t,s)a eBtBr2F(_A)1

Substituting (4.56) into (4.55) we have:

8n
5 Mz ()
o1 = (n—1) &
= an—l(t)WMZ(t)(S) + <n L )atk (t S)Oé eBtB" 1= k( A)l
k=0
n—1
n—1\ oF Y\ \k n—2\ 0!
+k2:; ( B >ﬁM(t,s)— (k>x M(t, s) = an-1(t) <k—1> =

an——l——k n—2 _ k
xM(t, s) Wf(t,s) — an-1(t) Z (” . ) gtkM(t s)

k=0
o eBBMER AV + M4, s) [A”MZt(s)] - )\”] , (4.57)

(“;1) %M(t,s)—(’f))\M(t,s)
M(t,s) '

Substituting (4.45) into (4.57) yields:

where a,_1(t) =

an
o M)
o — (n-1) &
= an——l(t)WMZ(t)(s) + Z <n L )%M(t,S)Q/ eBtBnﬁl_k(—A)l‘F M(t, S)
k=1
= /n < |/n—1) o
n _ k ! Bzpyn—1-k -
><|:)\ ;A (k>ge B ( A)l]+kZ:2 ( L )8tkM(t,s)
AW B n—2\ 0F1 on1-k
(k>)\ M(t, s) = an_1(t) (k—-l) prrss -M(t, s) Wf(t, s)
n—2
— Oy 1 ;( k )atk (t s)a BB 2 Ic( A)l
) XMz (s) = X7 (4.58)
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Simplifying (4.58) gives:

- 8;_1Mz(t) Z {(n_ 1) M (t5) — (Z) AeM (¢, s)
—an-1(t) (Z: 1) %}M(t, 3)} g?;%-_-];—f(t, s) + nz—:l (n; 1) 8(12 M(t, s)

n _ k1
_ (k) N M(t,8) — an-1(t) (Z 3 f) g—k_—lM(t, s)] o BBIF(ZA)1
+A" "Mz (s)M(t,s) . (4.59)

Now rewrite (4.59) as

8n
5 Mz@)(s)
1

= an(t )g;—lMZ(t)( )+ nz: l(ngl) (;9;]\/[(15 s) — (Z))\’“M(t,s)

k=3
n—1\ 02
( 5 )8t2M(t s)

- 3k—1 o 1-k
~omtlt) <Z— f) oM S)} g /(6 5) %

n— 2\ 9 53
( ) _an—l(t)< 1 )—8—t—2M(t 8)] 8t3f(t’8)
n— n—1 819 n . L ak—l
' k=2 < k ) atkM(t °) B (/ﬁ))\ M(t,s) — an-1(?) (k - 1> G+—1
x M (t, s)} o BBPIH (AL + X' Mz (s)M (2, s) . (4.60)
Finally
871—-2 n—3 n—3 ak N
atn— Z(t) ( k > 5% t 8)0{ Btpn—3- lc( A)l
k=0
n—3 an -
T k=0 ( k )5tkM(t s) on—2— ookl (8,8). (4.61)
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Substituting (4.61) into (4.60) and simplifying yields:

an
g Mz70(9)
an—— 8n—-2 n
= s OGN0l st s Mitols) + X Mo (M9

<” - 1) SEM(t,9) - (Z) NeM (2, ) — anos (1) (Z 3 f)

ak—l n—3 61(:——2 an—l—k
X WM(L S) - CI,n_Q(t) <k} _ 2) WM(t’ S)} Wf(t, S)

n—1
n—1\ o n—2\ o1
t n— —M(t,
+kz=; ( k )8tk (8,8) —a l(t)<k—1)6tk—1 (t,5)
n—3\ o** Btpn-1—k
—an—2(2) (k 3 2) E{EEM(t’ 8)} o PBYTITR (AL, (4.62)
n-1) 82 s r 8 —an-1()("T2) 2
where an—o(t) = ()i (3 )A)/\I(xgt e )a
Recursively applying %%%M 2)(8), - "5E7M z@t)(s) into (4.62) and repeating the
procedures as (4.60), (4.61) and (4.62), then we have the following result:
871
g Mz (5)
n—1 2
a0 g 9) - 0 M0+ ()
N Z [( ) geens) = (1) ¥e.0) - ) )
ak—l 1 o on—1-k
XwM(t, S) — e = a,g(t)( ) atM(t S):l a—tmf(t, 8)
n—1
n—1\ 6" n\ x n—2
M(t, s) — an_ —
+k=n§:_1 {( L )8tkM(t s) — (k))\ (t,s)—a 1(t)(k_1)

xak_l M(t,s) — ay(t) ! QM(t )| BB 1R (—A)L, (4.63)
AR P Y T =T

("7 &=y 79 M(t,5)—()AmM ¢, s)—an_l(t)(?__J;l)—g%%—_—lrM(t,s)_...—az(t)({)gt—M(t,s)
M(t,s )

for j < 2. Substituting (4.18) into (4.63) and writing in a compact form for the

where a;(t) =

coeflicients gives (4.53). O
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Chapter 5

Applications

In this chapter the actuarial applications of the results obtained in Chapters 3 and
4 are discussed. The risk theory literature is rich in comparisons between com-
pound Poisson sum models for different choices of the claim severity distribution
(heavy tailed, etc..). Here we use the results in Chapter 4 to compare discounted

compound Poisson and renewal sums for the same claim severity distribution.

In the first section we compare the discounted compound Poisson to the renewal
processes. By comparing the expectations and variances of discounted compound
sums Z(t) under a fixed net interest 6 we highlight the differences between the
Poisson and renewal assumptions. By contrast, the second section considers the

impact of varying § values on the compound Poisson and renewal sum processes.

5.1 Comparison of Poisson and Renewal Processes

In this section we assume that the two processes have the same expectation of
inter—arrival times and the same deflated claim size distribution. We illustrate the

behavior of the expectation and variance of the discounted compound sums under
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a fixed interest with the following numerical example.

Example 5.1.1. In the Poisson case, let the inter—arrival times be exponentially
distributed with mean 1/0.005 and the deflated claims be also exponentially dis-

tributed with mean 1. For the renewal process, the inter-arrival times are Erlang(2)

-A
with parameters o = and A = , where A = 0.01. Hence
0 0 =X

they have the same expectation as the Poisson process inter—arrival times. In ad-
dition, as above, deflated claims are exponentially distributed with mean 1. By
the results of Chapters 3 and 4 we can compute the expectation and variance of
Z(t) under a fixed interest, say § = 0.01. Let Ep[Z(t)] and Er[Z(t)] denote the
expectation of the Poisson and renewal models, respectively, while Vp[Z(t)] and

Vr[Z(t)] are the variances. Then from (3.13) and Remark 4.3 we have:

Ep[Z(t)] = 05-05e7%%",  t>0,

1
Er[Z(t)] = 6(e”o-"“—3e‘°-°”+2), t>0.

Similarly, from (3.14) and Remark 4.3 it follows that

Ve[Z()] = 05-05e70%%  ¢>0,

2 1 4 1 1
Vg [Z(t)] = Sy 27004t _ % 003t _ 006t _ - ,—0.02

> 0.
9 2 9 36 4 ’ t20

The above results are consistent with the results of Léveillé and Garrido (2001a).

Figures 5.1 and 5.2 shows the behavior of the mean and variance of the com-

pound sums as functions of time t. We observe that:

e Both expectations and variances in the Poisson and renewal cases converge to
their asymptotic “perpetuity” values as time ¢ goes to infinity. The moments

of such perpetuities are studied in Dufresne (1990).
e Expectations are larger in the Poisson case than in the renewal case.

e Variances are also larger in the Poisson case than in the renewal case.
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To explain these differences recall that the inter—arrival times have the same
mean in both models, say E[7{] = 1/0.005 = 2/0.01 = E[7f], but have different

variances.

In the Poisson case the exponential 7’s have a variance of V[rf'] = (1/0.05)? =
40,000, while in the renewal case the 7/s are Erlang(2) with a much smaller

variance of V[7ff] = 2/(0.01)2 = 20,000 < 40,000 = V[77].

Under the conditions above, this means that in same sense the discounted com-
pound renewal sum is less risky than the discounted compound Poisson sum. Its
claims are recorded essentially at every average inter—arrival times of 2/0.01 = 200
with a small standard deviation around it of v/2/(0.01) = 141.42. This prevents
the shorter inter—arrival times that occur with a large probability in the Poisson

case and that lead to larger present values.

If we were to extend the comparison to an equal-on-average, Erlang(n) inter—
arrival times, this would even further decrease the variance of the 7%’s, for a fixed
expectation. We can conclude from this analysis that the discounted compound
Poisson process is more risky, in mean and variance, than the corresponding dis-

counted compound renewal process.
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Figure 5.1: The expectations of the discounted compound Poisson and renewal

sums.
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Figure 5.2: The variances of the discounted compound Poisson and renewal sums.
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5.2 Impact of the Net Interest Rate ¢

This section studies the impact of the net interest rate value d on the expectations
and variances of the discounted compound Poisson and renewal processes. First,
we consider the Poisson case.

The same set of parameters as for the numerical examples in the previous section is
used. The inter—arrival times are exponentially distributed with mean 1/0.005 and
the deflated claims are exponential distributions with mean 1. Let Epg.o: [Z (t)],
Epo.00s[Z(t)] and Epo[Z(t)] denote the expectations under the net interest rate
4 = 0.01, 0.005 and 0. Vpgo1 [Z(t)], while Vpg 005 [Z(t)] and Vpp [Z(t)] are the

corresponding variances. These can be calculated as:

]EPO.Ol [Z(t):l = 05— 0.56—0'0“, Ep0.005 [Z(t)] =1- 18_0‘005?5, t> 0,

Epo[Z(t)] = 0.005¢, Vpoo1[Z(t)] = 0.5 —0.5e70%,  ¢>0,
Vpooos[Z(t)] = 1—1e7%0%, Vpo[Z(t)] = 0.01¢, t>0.
- delta=0
™ R delta=0.005
A N Bt delta=0.01
g 7
L>Ij ......................................

Figure 5.3: The expectation of the discounted compound Poisson sums.
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Figure 5.4: The variance of the discounted compound Poisson sums.

Figures 5.3 and 5.4 present the behavior of the expectations and variances for

the discounted compound Poisson sum. As functions of time ¢t we observe that:

e The expectations and variances under 6 = 0.01 and § = 0.005 converge as
time t goes to infinity, except in the classical risk model § = 0. The latter

go to infinity as t — oc.
e The larger the net interest rate J, the smaller the expectations and variances.

From (3.13) and (3.14) we can see that expectations and variances are the de-
creasing function in d, so larger interest rates correspond to smaller expectations
and variances. For § = 0, the expectation and variance are linear functions in ¢

with positive slopes, going to infinity with ¢.

For the renewal case, expectations and variances are calculated under the same

net interest rates § = 0.01, 0.005 and 0. Again we use Erlang(2) inter-arrival
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—-0.01 0.01
times with parameters o = and A = and the deflated

0 0 —0.01
claims are exponentially distributed with mean 1. By similar notations to those in

the Poisson case, we have:

1 — —
Eroo1[Z(t)] = He 003t _ 3,001t | 9)
4 1 _ )
ERQ,OOE, [Z(t)] — g + ge 0.025¢ __ e 0.005t,
ol o021 1
Erol2(0)] = 3% + 505t 1
and
Vroa1[Z(t)] = % + %e—o,ou _ ge‘o'ost _ %e—o.oat _ ie_o.ozt,
_o¥ o o0s L oost_ 2 001t 64 oo
Vrooos|Z(t)] = o +e 5 2 = ’
1 -0.02¢ 3 1 —0.02t 1 —0.04¢ 3
VrlZ(0)] = 3¢+ 155t~ 500" 16° T
" —— delta=0
"""" delta=0.005
"""" delta=0.01
i

Figure 5.5: The expectation of the renewal process under different 4.
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Figure 5.6: The variance of the renewal process under different interest rates.

Figures 5.5 and 5.6 show similar trend as the expectations and variances in

Figures 5.3 and 5.4.

o The variances and expectations converge as ¢ goes to infinity, except in the

classical risk model.
e Larger § corresponds to smaller expectations and variances.

The analysis is the same for the expectations and variance in the Poisson case. The
expectations and variances are decreasing functions in . Now for § = 0, for the
small ¢, the expectation and variance are decreasing functions in §. When ¢ gets
larger the linear term with positive slope dominates the expectation and variance,

hence it goes to infinity with ¢.
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Conclusion

This thesis studies the m.g.f. of the compound Poisson present value risk (CP-
PVR) process and the compound renewal present value risk (CRPVR) process.
We obtain an explicit form for the m.g.f. the discounted compound Poisson sum
with deflated PH claim severities using matrix—exponential arguments. We also
study the asymptotic behavior of the m.g.f. of Z(t) as the time ¢ — 0o and of the
moments of the CPPVR process.

The CRPVR process is considered for the case when the inter—arrival times
have PH distributions and so do the deflated claim severities. We get an homo-
geneous differential equation for the m.g.f. when the inter—arrival times have an
Erlang(n) distribution. The asymptotic behavior is also discussed. Some numeri-

cal examples are given to illustrate the results.

The last chapter presents some actuarial applications of the results obtained in
the Chapters 3 and 4. A comparison of the discounted compound Poisson and re-
newal sums is presented. We can conclude that the discounted compound Poisson
process is more risky in the mean-variance sense, than an equivalent discounted

compound renewal process.
Some future work on the same topic may be considered. Since we now have the

m.g.f. of Z(t) we may try to find the distribution of Z(t). The following suggestions

lead in that direction:
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o generalize the results for discounted compound renewal sums to any PH
inter—arrival distribution and find the close form of the m.g.f. in terms of

vectors and matrices.

e obtain the distribution of the CPPVR and CRPVR sums by inversion of the

Laplace transform.

e give approximations for the distribution of the CPPVR and CRPVR pro-

cesses.
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Appendix A

Matrix Exponential

From the definition, we can see that matrices play a crucial role in PH distributions.
The characteristics of the distribution depend on matrix A. This is illustrated by
the examples of Chapter 1. Hence we give here a brief introduction to matrices.

We discuss some basic properties and definitions that are used in this thesis.

A.1 Definition

In this section first we introduce some definitions, especially that of the matrix
exponential function and some of its properties. We also prove theorems that are
used in the thesis. For the more details on matrix theory readers can refer to the
book Bernstein (2005), that gives formulas and applications to the theory of linear

systems. An alternative choice is Ortega (1987).

Definition A.1.1. Nonsingular and singular matrices

If the determinant |A| # 0, we call A nonsingular, otherwise it is called singu-

lar.
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Note that throughout this thesis, we assume that A is a nonsingular matrix,

hence its inverse A™! exists.

Definition A.1.2. Eigenvalues and FEigenvectors
An eigenvalue of a square matriz A of order n is a real or complex scalar A
satisfying the equation:

Az =Xz,

»

for some nonzero vector z, we call A an eigenvalue and z an eigenvector of A.

Definition A.1.3. Spectral radius of a matriz A of order n
Let Ay, M1, ..., A\, be eigenvalues of A, we define

sprad (A) = max {|\], 1 <i < n}.

Definition A.1.4. Matriz exponential
Let A be square matriz of ordern, then we call matriz exponential, denoted e4

or exp(A), the matriz:
1
A k
e = E _k!A , (A.1)

with €% = I,, where 0 is a zero matriz of order n.

Definition A.1.5. Logarithm of A
Let A be square matriz with order n , then we call B a logarithm of A if B
satisfies:

eBF=A. (A.2)

Then if sprad(A —I) <1, we can define

B-tma=Y T4y (A.3)

l

This leads to the following notion of In(I — A) and In(I + A)

In(I—A)=— i T’ , (A.4)

=1
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and

In(I+A) = i (—1,)”1 Al (A.5)

if sprad(A) <1

A.2 Lemmas
Lemma A.2.1. If X is an eigenvalue of A, then X7 is eigenvalue of A™!,
Proof. Since A is nonsingular, then A1 exits, then we have:
MI—Al=DAAT —A|=|A|MA T —T| = —|A|M|X T - AT,
Hence A7! is an eigenvalue of A™!. O

Lemma A.2.2. If A is a matriz of order n with sprad(A) < 1, then (I— A)™!

exists and
- k k
(I-A)™ = lim Z AR =" Ak
k=0
Proof. See Ortega (1987). O

Lemma A.2.3. Let A and B be square matrices of order n. Then
et = HA+B) teR, (A.6)
if AB= BA.
Proof. See Bernstein (2005). O
Lemma A.2.4. The derivative of a matriz exponential function is given by:
d At

& At _ at
7° evA, teR. (A.7)

Proof. Take a derivative term by term in the series expansion, as in Definition

A.14. O
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Lemma A.2.5. Let A be square nonsingular matrices of order n and sprad(I —

A) < 1. Then we have the following results:

“lmA=Ilndl. (A.8)
Proof.
InA = (A—I)—%(A~I)2+%(A~I)3+---+( )’““k(A I)F +
_lhA = —-[(A—I)——%(A—I)Q %(A—I)
HEDMLA D 4], (A9)
then

l(A—l 1% 4.+ (_1)k+1l

1T k...
3 k(A )+

1
InAt = (A" -1)— §(A‘1 ~I)%*+
Since A™" = [I+ (A —1I)] ~! | from Lemma A.2.2 we have:

A7 = I+ (A-1)!
= I-(A-D+A-I12—-(A-1%*+ . +(-D*A-DF+...,

and hence

nA™ = [~A-D+A-I’-(A-I’+- + (-1 A-TF+..]

——;-[—(A——I)+(A—I)2——(A—I)3+---+(—1)’“(A—I)’“+---]2
%[ A-T+A-12—(A-TP+. 4 (-} (AT +...]°
bk (CDM [ (AT (A TP - (A=) 4

FDRA =D ] (A.10)

By comparing the polynomials in (A.9) and (A.10) for (A — I), we see that they
are exactly the same, hence

—InA=InA"
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Lemma A.2.6. Let A and B be square nonsingular matrices. If AB = BA , then

we have
lnA—-InB=InAB™.

P?'OO?.
—1
elnA—lnB elnAe—-lnB _ AelnB . AB—l ’

from Lemma A.2.4 and Lemma A.2.5 and using that e®AB™ = AB™! then

InA-InB=InAB™!. : ]

Lemma A.2.7. Let A and B be the same order of square matrices, if the inverse
of A + sB exists then

d

c_lg(A +sB)'=—(A+sB)"'B(A +sB)™!. (A.11)

For the proof see Bernstein (2005).
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