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A B S T R A C T 

Fault Detection in Trajectory Tracking of Wheeled 

Mobile Robots 

Hani Khoshdel Nikkhoo 

The problem of fault detection in nonlinear systems with application to trajec­

tory tracking of nonholonomic wheeled mobile robots (WMRs) is addressed in this 

thesis. For the considered application, a nonholonomic wheeled mobile robot -having 

nonlinear kinematics- is required to follow a predefined smooth trajectory (in the ab­

sence of obstacles in the environment). This goal has to be accomplished despite the 

presence of faults that may occur in two of its major subsystems which are vital for 

navigation, namely the driving subsystem and the steering subsystem. These faults 

are assumed to be caused by actuator faults in either of these two subsystems. The 

problem addressed here is to detect the presence of faults and to determine the sub­

system which has been affected by these faults. Toward this end, two different fault 

detection approaches are proposed and investigated. The first approach is based on 

system identification through Extended Kalman Filters (EKF) whereas the second 

one is based on system identification via artificial neural networks. In the former 

approach a novel method for residual generation is proposed while in the latter by 

utilizing the neural network's formal stability properties the desired performance can 

be guaranteed. Each of the proposed fault detection methods is studied subject to 

two different kinds of controllers (namely a dynamic linear controller and a dynamic 

feedback linearization based controller) and two different types of actuator faults 

(namely the Loss-of-Effectiveness fault and Locked-In-Place fault). In this way, the 

impact of the controller strategy on the fault detection approach is also investigated 

and evaluated. 



"The only true wisdom is in knowing you know nothing." 

-Socrates 
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Chapter 1 

Introduction 

1.1 Motivation & Justification of the Research 

With today's broad areas of applications for wheeled mobile robots - ranging from 

industrial manufacturing, logistics, medical and healthcare to space and military de­

ployments - the demands for higher safety, reliability and autonomy have increased 

significantly. In the advent of novel advanced unmanned ground vehicles based on the 

design of classical mobile robots, one of the crucial issues which needs to be dealt with 

is autonomy. Autonomy will be extremely helpful for increasing the overall efficiency 

of modern and sophisticated multi-agent systems by decreasing the amount of human 

support and resources required for mobile robot operations. 

For instance, when mobile robots are used for planet explorations in space mis­

sions, they should be able to operate for a rather long period of time without interven­

tion from the central command and control station based on earth [Anderson 83]. In 

other words, communication with a central station is limited to a short period of time 

even during fault free and healthy conditions. Furthermore, due to the long round trip 
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communication delays 1, the capability of a central station to respond to emergencies 

and stimuli which do not fit into the class of expected perceptions is very limited and 

real-time monitoring is impossible. Consequently, the major subsystems 2 of a mobile 

robot, such as the power subsystem, the driving subsystem, the steering subsystem, 

communication and sensors should be as autonomous as possible. As a matter of 

fact, in such applications, autonomy will play a vital role in the accomplishment of 

the mobile robot mission. 

One of the major characteristics which autonomous systems, in general, and mo­

bile robots in particular, should possess is the capability of fault diagnosis. In other 

words, these complex systems need to be equipped with intelligent mechanisms de­

signed for fast detection and isolation of faults and early detection of performance 

degradations for cost effective and timely maintenance. As a matter of fact, fault 

diagnosis procedures not only contribute to the autonomy these of systems but also 

change the maintenance philosophy which has been used for a long time. With the 

development of advanced fault diagnosis systems maintenance can be done: 

• on condition 

• opportunistic 

• and not "per failure" nor "per schedule" 

In recent years there has been intensive research work on fault diagnosis on a 

variety of components and subcomponents of wheeled mobile robots, such as motors 

[Zanardelli 05], gears [Zheng 02], tires [Roumeliotis 98a], suspension [Luo 05], sensors 

[Carlson 03], etc. But according to a field study reflected in Table 1.1 3, one of the ma-
xFor example, the round trip communication delay between Earth and Mars ranges from about 

6.5 minutes at closest approach to 44 minutes at superior conjunction 
2These subsystems have been extensively explained in Section 4.2 
3The failure rates in Table 1.1 are per hour. For more details see Equation (2.1) 
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Table 1.1: Typical failure rates of mechanical and electromechanical elements 

[RAC 95] 

Mechanical 

Elements 

ball bearing 

sleeve bearing 

belt 

coupling 

gear 

pump 

seal 

valve, hydraulic 

A[h~i] 
Electromechanical 

Elements 

1.64 x 10~6 actuator,general 

2.38 x 10 - 6 brush, general 

19.72 x 10~6 cable, general 

5.54 x 10 - 6 electric motor, general 

4.69 x 10~6 generator, general 

43.65 x 10 - 6 regulator, general 

5.47 x 10-6 

8.83 x 1(T6 

A[h -n 

26 x 10-6 

9 x 1CT6 

i x icr6 

9 x i ( r 6 

73 x 10-6 

13 x 10"6 

jor sources of faults is the actuator. This thesis emphasizes mainly on actuator fault 

which might cause degradation of performance in driving and steering subsystems of 

the Wheeled Mobile Robots (WMRs). 

1.2 Statement of the Problem 

The problem of fault detection and isolation in trajectory tracking of a nonholonomic 

wheeled mobile robot is addressed in this thesis. 

As the name states, the main characteristic of wheeled mobile robots is their 

mobility. Therefore, it is very important to monitor and detect faults and degradation 

of performance in their main components and subsystems which play a key role in 

providing mobility. 
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The case scenario investigated here may be stated as follows: 

"A nonholonomic wheeled mobile robot with nonlinear kinematics is re­

quired to follow a predefined smooth trajectory in the absence of obstacles 

in an environment. Furthermore, faults may occur in two of its major sub­

systems which are vital for its navigation namely the driving subsystem 

and the steering subsystem. These faults are assumed to be caused by 

actuator faults in either of these two subsystems. The problem is to de­

tect and identify the appearance of faults and to determine the subsystem 

which has been affected by these faults" 

The solution should be capable of coping with multiple faults in noisy environ­

ments where external disturbances may exist. 

1.3 Accomplished Tasks and Contributions 

In order to propose a solution for the stated problem, first two different controllers 

are designed which allow the nonholonomic wheeled mobile robot to follow its desired 

predefined trajectory. One of the controllers is based on the tangent linearization 

approach along the reference trajectory, while the other one is based on the dynamic 

feedback linearization method. The designed control commands are of nonlinear time-

varying nature in both cases. The rationale behind designing two different types of 

controllers instead of one is the desire of investigating the impact of the controller 

design and controller robustness on the fault diagnosis behavior and performance. 

With a nonholonomic wheeled mobile robot capable of tracking the desired smooth 

trajectory at our disposal a fault diagnosis module based on residual generation 

scheme with Extended Kalman Filter (EKF) is designed. As a matter of fact, the Ex­

tended Kalman Filter has been used for state estimation of the nonlinear kinematics 
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equations of the system and a novel residual generation method based on the state 

prediction is then proposed. 

Subsequently, an alternative neural network model-based approach is also dis­

cussed and a comprehensive comparative study between the two methodologies is 

conducted. 

1.4 Brief Outline of the Thesis 

This thesis is organized as follows: 

Chapter 2 discusses the major tasks of supervision, monitoring, fault detection 

and fault diagnosis in general. Since the subject of fault diagnosis is distributed over 

a variety of technological fields, the exploited terminology is not unique. Therefore, 

an attempt is made to provide definitions of frequently used terms in this dissertation. 

Also, other background and preliminary results have been discussed and a literature 

survey has also been accomplished. 

Chapter 3 presents the motion control problem of wheeled mobile robots (WMRs). 

With respect to the kinematics of the considered mobile robot, two different control 

strategies for trajectory tracking problem in an obstacle free environment have been 

proposed. The simulation results which approbate the controller designs are also 

given. 

Chapter 4 mainly tries to characterize the proposed Fault Diagnosis Scheme for 

mobile robots. Toward this end, it describes the mathematical foundations of the 

Extended Kalman Filter used for generating the residuals and the required analytical 
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redundancy. It also introduces the injected faults and the way they should be handled. 

Chapter 5 introduces an alternative neural network model-based fault diagno­

sis approach for comparison of results with the formerly proposed Extended Kalman 

Filter approach. Comprehensive simulation and comparison results are also provided. 

Chapter 6 includes a summary of the main topics and contributions presented in 

this dissertation. Furthermore, some of the major needs and suggestions for the future 

of fault detection and isolation (FDI) research on wheeled mobile robot platforms are 

also discussed. 
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Chapter 2 

Backgrounds and Preliminaries 

2.1 Introduction 

Throughout history and until a few decades ago, the term diagnosis was monotonously 

associated with medicine and its various branches concerning the ways of recognition 

of a medical condition or disease by its signs and symptoms. 

Encyclopedia Britannica describes diagnosis as follows: 

"The process of determining the nature of a disease or disorder and dis­

tinguishing it from other possible conditions. The term comes from the 

Greek gnosis, meaning knowledge. 

The diagnosis process is the method by which health professionals select 

one disease over another, identifying one as the most likely cause of the 

person's symptoms. Symptoms that appear early in the course of a disease 

are often more vague and undifferentiated than those that arise as the 

disease progresses, making this the most difficult time to make an accurate 

diagnosis. Reaching an accurate conclusion depends on the timing and 

sequence of the symptoms, past medical history and risk factors for certain 
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diseases, and a recent exposure ro disease.From the large number of facts 

obtained, a list of possible diagnosis can be determined, which are referred 

to as the differential diagnosis. The physician organizes the list with the 

most likely diagnosis given first. Additional information is identified, and 

appropriate tests are selected that will narrow the list to confirm one of 

the possible diseases." 

The advent of technical diagnosis goes back to the early 1970's when various 

researchers in different locations began the development of fault diagnosis mechanisms 

for systems. For instance, Beard [Beard 71] and Jones [Jones 73] reported the well-

known "failure detection filter" for linear systems. Early developments in this field 

are well summarized by Willsky [Willsky 76]. The application of diagnosis methods 

for fault detection of jet engines was first introduced by Rault et al. [Rault 71]. 

Leak detection in a chemical process by correlation methods was done by Siebert and 

Isermann in 1976 [Siebert 76]. 

The first book on the model based fault diagnosis with applications to chemical 

and petrochemical processes was published by Himmelblau [Himmelblau 78]. Ana­

lytical redundancy of multiple observers is the approach used by Clark [Clark 78] to 

detect instrument and sensor failures. 

Parameter estimation techniques were also applied for fault detection of dynamical 

systems by Hohmann [Hohmann 77], Bakiotis [Bakiotis 79], Geiger [Geiger 82], Fil­

bert and Metzger [Filbert 82]. In 1984, Isermann [Isermann 84] summarized process 

fault detection methods based on modeling, parameter and state estimation. He has 

revised that summary twice since then in 1997 and 2005 [Isermann 97a; Isermann 05]. 

Chow and Willsky [Chow 84] were the people who first brought the idea of parity 

equation based method to the literature. Later, this approach was developed further 

due to the efforts of Patton and Chen [Patton 94], Gertler [Gertler 91], Hofiing and 
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Pfeufer [Honing 94]. 

Generally, when the impacts of faults and disturbances have frequency character­

istics which are unlike each other, frequency domain methods can be used for fault 

diagnosis as in such cases the frequency spectra serve as criterion to distinguish the 

faults. Massoumnia et al. [Masoumnia 89], Frank et al. [Frank 00] and Ding et al. 

[Ding 00] were among the first researchers who worked on this idea. 

2.2 Nomenclature in Fault Diagnosis 

A review of the literature will show that the terminology in this field is not con­

sistent. As a result, it will be arduous to apprehend the goals of the contributions 

and to compare the various approaches that have been developed in the field. This 

inconsistency, to some extent, is due to the fast and multidirectional development of 

diagnosis methods and the different variety of their applications. In order to tackle 

this problem, a number of influential scientists in this field began a unified movement 

in 1997 at IFAC to create a common lexicon for all those that are involved with this 

field. Of course, the development of this lexicon is considered to be ongoing; in the 

sense that new definitions, expressions and updates are being appended to it as time 

goes by. 

The following Definitions are based on the proposed terminology by the IFAC 

Technical Committee SAFEPROCESS published in a variety of references [Isermann 97b; 

Gustafsson 00; Simani 03; Isermann 05]. These adopted definitions have been widely 

accepted and used by experts of this field. 

States and Signals: 

• Fault: Unpermitted deviation of at least one characteristic property 
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or parameter of the system from the acceptable, usual or standard 

condition. 

• Failure: A permanent interruption of a system's ability to perform 

a required function under specified operating conditions. 

• Malfunction: An intermittent irregularity in the fulfilment of a 

system's desired function. 

• Error: A deviation between a measured or computed value of an 

output variable and its true or theoretically correct one. 

• Disturbance: An unknown (and uncontrolled) input. 

• Residual: A fault indicator, based on the deviation between mea­

surements and model equation based computations. 

• Symptom: A change of an observable quantity from normal be­

havior. 

Functions: 

• Fault detection: Determination of faults present in a system and 

time of detection. 

• Fault isolation: Determination of kind, location and time of de­

tection of a fault. Follows fault detection. 

• Fault identification: Determination of the size and time-variant 

behavior of fault. Follows fault isolation. 

• Fault diagnosis: Determination of kind, size, location and time 

of a fault. Follows fault detection. Includes fault isolation and iden­

tification. 
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• Monitoring: A continuous real-time task of determining the con­

ditions of a physical system and recognizing and indicating anomalies 

of its behavior. 

• Supervision: Monitoring a physical system and taking appropriate 

actions to maintain the operation in case of faults. 

• Protection: Means by which a potentially dangerous behavior of 

the system is suppressed if possible, or means by which the conse­

quences of a dangerous behavior are avoided. 

Models; 

• Quantitative Model: Use of static and dynamic relations among 

system variables and parameters in order to describe the behavior of 

the system in quantitative mathematical terms. 

• Qualitative Model: Use of static and dynamic relations among 

system variables and parameters in order to describe the behavior of 

the system in qualitative terms such as causalities or if-then rules. 

• Analytical redundancy: Use of two, but not necessarily identical 

ways to determine a quantity where one way uses a mathematical 

process model in analytical form. 

System Properties: 

• Reliability: Ability of a system to perform a required function 

under stated conditions, within a given scope, during a given period 

of time. 

Measures: MTTF = Mean Time To Failure 

MTTF = \ (2.1) 
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where A is the rate of failure, e.g. failures per hour. 

• Safety: Availability of a system not to cause a danger for persons, 

equipment or environment. 

• Availability: Probability that a system or equipment will operate 

satisfactorily and effectively at any point of time measure: 

MTTF 
A = (2.2) 

MTTF + MTTR v ' 

MTTR: Mean Time To Repair 

MTTF = - (2.3) 

where fi is the rate of repair. 

Time dependency of faults: 

• Abrupt fault: Faults modeled by a stepwise function. It represents 

bias in the monitored signal. 

• Incipient fault: Faults modeled by ramp signals. It represents 

drift of the monitored signal. 

• Intermittent fault: Faults modeled by a combination of impulses 

with different amplitudes. 

Fault affixation: 

• Additive fault: Influences a variable by addition of the fault itself. 

They may represent, e.g. offsets of sensors. 

• Multiplicative fault: Is represented by the product of a variable 

with the fault itself. It can appear as parameter changes within a 

process. 
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It is noteworthy to mention that in this thesis, FDIR is used as an abbreviation 

for Fault Detection, Isolation and Recovery. With respect to the definition of the 

concepts introduced, the next sections will try to depict the big picture in FDIR by 

surveying the methodologies used in this area. 

2.3 Model-Free Methods For FDIR 

Typically fault diagnosis methods can be categorized into two major classes: 

those which do not use the mathematical model of the system and those which do. 

The methods which do not use mathematical models of the plants are called model-

free and are defined as follows: 

• Physical Redundancy: Multiple sensors can be utilized to evaluate and mea­

sure the same physical quantity. In this case, any major discrepancy between 

the measured values can be considered as a fault. By utilizing only two parallel 

sensors, fault isolation would not be possible but with three sensors or more, a 

voting scheme can be formed which isolates the faulty sensor. 

Physical redundancy imposes extra hardware cost and extra space and weight, 

while in some applications like aerospace applications, the latter might be a 

serious problem. 

• Special Sensors: In this approach, special sensors might be use exclusively 

for diagnosis. For instance, special sensors might be utilized to measure some 

fault-indicating physical quantities, such as sound, vibration, elongation, etc in 

some mechanical systems, specific sensors might be used for limit checking in 

hardware. 

• Limit Checking: In this approach, plant measurements are compared by a 
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computer to preset limits and exceeding the threshold indicates a faulty situa­

tion. In most cases, there are at least two levels of limits. The first level plays 

a pre-warning role, while the second triggers an emergency reaction. Although, 

this is an unvarnished approach, it is impaired by two serious shortcoming. 

Firstly, a single component fault may propagate to miscellaneous plant variables, 

causing multiple alarms and making isolation extremely arduous. 

Secondly, due to the normal input variations, the plant variables may alter 

broadly. So, the test thresholds need to be defined conservatively and cautiously. 

• Spectrum Analysis: Since most plant variables display a typical frequency 

spectrum under typical operating conditions, any deviation from this nominal 

spectrum can be interpreted as an indication of faulty conditions. Particular 

faults may have their own exclusive signature in the frequency spectrum which 

makes the fault isolation straightforward. 

• Logical Reasoning: This approach is based on evaluating the symptoms ob­

tained by detection hardware and software. The simplest techniques consist 

of tree of logical rules of the " IF-symptom-AND-symptom-THEN-conclusion" 

type. In this way, each conclusion would be able to serve as a symptom in the 

next rule, until the final conclusion is reached. 

2.4 Model Consistency Based Diagnosis 

Model-based fault diagnosis is based on the comparison of the system's available 

measurements, with a priori information represented by mathematical model of the 

system. To ba capable of detecting a fault, the measurement information (U(t), Y(t)) 

-where U(t) and Y(t) are the input and output vectors of the plant at time t- alone 
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Figure 2.1: Model consistency based diagnosis 

is not sufficient; but a reference which describes the nominal plant behavior is neces­

sary. This reference can be provided by the mathematical model of the plant which 

describes the relation between possible input sequences and output sequences. This 

model is considered to be a representation of the plant behavior B. 

As illustrated in Figure 2.1, assume that the current input-output pair is repre­

sented by point A. If the system is healthy and faultless (and the model is correct) 

then A lies in the set B. But if the system is faulty, it generates a different output 

Y(t) for the given input U(t). If the new input-output pair (U(t), Y(t)) is represented 

by point C, which is out side of B then the fault is detectable. If the faulty system 

generates the input-output pair represented by point B, no inconsistency occurs in 

spite of the existence of the fault. So, the fault is not detectable in this case. 

The consistency-based diagnosis principle is to check whether or not the mea­

surement (U(t),Y(t)) is consistent with the system behavior. If the input-output 

pair is checked with respect to the nominal system behavior, a fault is detected if 

(U(t),Y(t)) $ B holds. If the input-output pair is consistent with the behavior Bf 

of the system subject to the fault, the fault / may have occurred. In this case, / is 

called a fault candidate. To elaborate further, assume that the system behavior is 

known for faults /0> fi, h- Although, the corresponding behaviors B0, Bi, B2 are 

usually different, there are some overlaps most of the time. In other words, there 
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Figure 2.2: Consistency based diagnosis principle 

are input-output pairs that might occur for more than one fault. If the input-output 

pair is shown by the points A,C and D the faults found are /o,/i and fi respectively. 

However, if the measurement sequence is a point like point B, the system might be 

subject to either fault f0 or fault fj. In this case, the diagnosis algorithm cannot make 

a distinction between these faults because of the fact that the measured input-output 

pair may occur for both faults. As a matter of fact, the ambiguity of the diagnosis is 

because of the nature of the system which generates the same information for both 

faults, and is not caused by the diagnoser. There exists no diagnosis method capable 

of removing this ambiguity by means of given measurement information (U(t),Y(t)). 

As a conclusion, it can only be said that Fc = {/o,/i} is the set of all fault 

candidates. The important question of whether or not a fault can be detected, itself 

has been broadly investigated by a number of researchers and is beyond the scope of 

this chapter. The consistency based diagnosis principle can be summarized as follows: 

Model-consistency-based diagnosis: Check if the input-output pair (U(t), Y(t)) 

satisfies the relation (U(t), Y(t)) 6 B/ where By is the behavior of the system subject 

to the faults / G F. 

• Fault detection: If the input-output pair is not consistent with the faultless 
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Figure 2.3: Model consistency based fault diagnosis 

behavior of the system B0; in other words if (U(t),Y(t)) $ B0 then a fault has 

occurred. 

• Fault isolation and identification: If the input-output pair is consistent 

with the behavior By; in other words if (U(t),Y(t)) G B/ then the fault f may 

have occurred; f is a fault candidate in this case. 

Based on the preceding mathematical reasoning, usually a more feasible approach 

which is illustrated in Figure 2.3 is used. In this figure, the residual generation block 

generates the residual signals using available inputs and outputs from the monitored 

system. The fault symptom which is usually named residual should indicate the 

occurrence of a fault. Typically, the value of the residual should be very close to 

zero under healthy (faultless) conditions and distinguishably different from the value 

under faulty conditions. The block which performs the evaluation of residuals is 

basically responsible for checking the decision rule which determines the occurrence 
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of a fault. It may perform a simple threshold test on the instantaneous values or 

moving averages of the residuals. It may consist of statistical methods, generalized 

likelihood ratio (GLR) test, sequential probability ratio testing or a variety of other 

methods for change detection [Basseville 93]. 

Since the decision making process can be rather unequivocal and palpable if the 

residuals are well generated, most of the contributions in the field of quantitative 

model-based fault diagnosis and isolation focus on the residual generation problem. 

2.5 Computational Intelligence Methodologies in 

FDI 

The performance of analytical approaches to FDI systems depend on the accuracy 

of the mathematical model of the monitored system. Therefore, modeling errors 

will affect the performance of the FDI systems. The exploitation of computational 

intelligence approaches, i.e. neural networks, fuzzy logic-based systems, neuro-fuzzy 

hybrid systems, or evolutionary computing techniques such as genetic algorithms 

might be a good counterbalance for modeling errors and uncertainties. 

Patton at al. [Patton 99] in their survey on fault diagnosis recommend that "a 

robust FDI system should combine both numerical (quantitative) and symbolic (qual­

itative) information." The category of hybrid systems called neuro-fuzzy systems rep­

resents an example of such robust systems. Another category of robust FDI systems 

can be created by combining classical approaches, i.e. observer-based or parameter 

estimation, used for residual generation phase, on the one hand, and neural neural 

networks, fuzzy logic or evolutionary computing techniques, used for decision mak­

ing phase, on the other hand. The computational intelligence approaches to fault 
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detection and isolation can be summarized in the following major classes [Palade 06]: 

• Neural Network Applications 

• Fuzzy Logic Applications 

• Neuro-Fuzzy Systems Applications 

• Genetic Algorithms 

2.5.1 Neural Network Applications 

Neural networks are information processing units made of interconnecting process­

ing units which are called neurons. Neurons are independent processing units that 

transform their inputs via a function called activation function. The relationships 

among neurons are featured by weight values that act as the memory of the neu­

ral network. The most significant features of neural networks which makes them a 

merited apparatus for modeling the behavior of a system are: 

• Generalization ability 

• Noise tolerance 

• Fast response once trained 

Neural networks can be utilized for both detection and isolation in FDI systems. In 

the detection phase, the typical behavior of the monitored system can be modeled by 

a neural network. Then by a comparison between the output of the neural network 

with the output of the system, residual signals can be generated. In the isolation 

phase, neural networks can be utilized to fulfil the classification of the residuals into 

the matching categories of faults. There exist some FDI systems that utilize neural 



Chapter 2. Backgrounds and Preliminaries 20 

networks for both detection and isolation, while there are also hybrid FDI systems 

which employ neural networks for either detection or isolation phase only. 

2.5.2 Fuzzy Logic Applications 

Fuzzy logic can be utilized for both fault detection (via modeling), and fault isolation 

(via classification). In order to construct the fuzzy model of the system, Mamdani 

[Mamdani 76] introduced a linguistic tool. Later, Takagi and Sugeno [Takagi 85] 

introduced a mathematical tool to build the fuzzy model of the system. These sorts 

of models are more accurate in comparison to Mamdani models for modeling. The 

price for this gain is the transparency offered by the usage of linguistic terms to human 

subjects which is rather lost. 

Fuzzy logic is also very popular for fault isolation. Because the relationship be­

tween residual signals and the faulty status of the system can be easily expressed by 

a set of If-Then rules. Unlike in fault detection, in fault isolation Mamdani mod­

els are preferred to Takagi-Sugeno models because of the fact that they offer more 

transparency by utilizing linguistic terms. 

2.5.3 Neuro-Fuzzy Systems Applications 

Two notable classes of combinations between neural networks and fuzzy systems 

are mainly utilized in this field. First, there are neuro-fuzzy systems where each 

framework retains its identity. In other words, in such cases the neuro-fuzzy system 

consists of neural networks and fuzzy systems which operate independently while 

their input and outputs are interconnected to gain an added value due to each other's 

capabilities. These neuro-fuzzy systems are categorized under the class of combination 

hybrid intelligent systems [Palade 02]. 
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The second notable class are neuro-fuzzy systems where one of the two frame­

works is integrated into the other. This sort of systems belong to the fusion hybrid 

intelligent system class. Generally, neuro-fuzzy systems can be utilized for both fault 

detection (modeling)[Babuska 02; Palade 02; Uppal 02]and fault isolation (classifica­

tion) [Calado 01]. 

2.5.4 Genetic Algorithms 

Genetic algorithms in the domain of fault diagnosis are usually utilized as a support 

framework for other computational intelligence techniques, especially for parameter 

tuning purposes. Nevertheless, there also exist methods that exploit genetic algo­

rithms as an autonomous technique for fault diagnosis. 

A review of the literature shows that genetic algorithms can be used for fault di­

agnosis either directly or indirectly. Indirectly, genetic algorithms can be used mainly 

for tuning the parameters of computational intelligence based fault diagnosis sys­

tems like neural networks [Marcu 03] or fuzzy-logic based classifiers [Bocaniala 04; 

Bocaniala 05]. Nevertheless, a genetic algorithm can be utilized directly for fault 

diagnosis. For instance, Yangping et al. [Yangping 00] articulate the fault diagnosis 

problem as a function inversion problem, where S = g(T) is the function that is 

desired to be inverted. «S is the available signals from the plant and T is the set 

of faults associated different parts of the plant. The elements in T represent binary 

values denoting whether the corresponding fault occurred or not. Genetic algorithms 

are utilized to calculate p _ 1 in order to determine which faults took place. 
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2.6 Active Fault Diagnosis vs. Passive Fault Diag­

nosis 

Most of the contributions in fault diagnosis are based on passive fault detection. In 

this approach, the fault detection module has no authority to act upon the system. 

In other words, the fault diagnosis module is only capable of monitoring the inputs 

and outputs of the system and then to decide if a fault has occurred and if possible 

of what kind. A significant drawback of the passive approach is that faults can 

be masked by the operation of the system. This can be particularly the case for 

controlled systems as the goal of controllers is usually to maintain some equilibrium 

point even if the behavior of the system changes. This robustness which is felicitous 

in control systems, might mask abnormal behaviors of the system. This issue makes 

tackling fault diagnosis challenging, especially if it is desired to detect faults that 

degrade performance. By the time the controller is no longer capable of maintaining 

the equilibrium point and compensating for the fault, the situation might become 

more severe, with much more severe aftermaths. A good example of this effect is 

the known fact that it is harder for someone who is driving a car which is equipped 

with power steering to distinguish a under inflated or flat front tire, in comparison 

to someone who is driving a car without power steering equipment. This trade-off 

between fault diagnosis performance and controller robustness has been noticed in 

the literature and has induced the investigation of integrated design of controller and 

fault diagnosis module [Tyler 94; Niemann 97; Blanke 06]. 

A more serious situation occurred in 1987 when a pilot flying an F-117 Nighthawk, 

which is a twin-tailed aircraft known as the stealth fighter, encountered bad weather 

during a training mission. One of the tail assemblies was lost but the pilot managed to 

return the fighter to its base and land without ever knowing that there was any missing 
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part of the tail. In this case, the robustness of the control system had the advantage 

of enabling the pilot to return to the base safely; but, it also had the disadvantage 

that the pilot had not realized that the aircraft had reduced capability and that the 

plane was no longer capable of high-speed maneuvers if required [Campbell 04]. 

A substitute for passive detection, which could overcome the problem of faults 

being masked by system operation is active detection. This method acts upon the 

system at critical times or on a periodic basis using a test signal - usually called 

"auxiliary signal"- in order to detect faults which would be left undetected during 

normal plant operations. The structure of this approach is illustrated in Figure 2.4. 

In order to explain the general idea, suppose that there is only one possible type of 

fault. 

In Figure 2.5 set .4o(^) 1S the set of input-output ([/(£), Y(t)) associated with 

normal behavior and A\(v) is the set of input-output associated with faulty behavior. 

The problem of auxiliary signal design for guaranteed failure detection is to find a 

reasonable v such that AQ(V) nA\(v) = 0. 

By "reasonable v" it is meant that it is should not perturb the normal operation of 

the system. Campbell and Nikoukhah [Campbell 04] have comprehensively addressed 

this issue. 
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2.7 Modeling of Faulty Systems 

In order to utilize model-based FDI methodologies, in the first step one should provide 

a mathematical description of the system through which all possible fault cases can 

be shown. The major components which might be faulty are the plant itself, the 

actuators, input and output sensors and finally the controller. 

Fig. 2.6 depicts the fault topology. In this figure the mentioned signals can be 

described as follows: 

• ur(t) is the reference input signal 

• uc(t) is the actuator command signal issued by the controller 

• u*(t) is the actual process input (usually not available) 

• y* (t) is the actual process output (usually not available) 

• u(t) is the measured input signal 

• y(t) is the measured output signal 

• fc(t) represents controller fault 
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Figure 2.6: Modeling of Faulty Systems 

fa(t) represents actuator fault 

fp(t) represents plant components fault 

fu(t) represents the input sensor fault 

• fy(t) represents the output sensor fault 

2.8 Properties of Fault Diagnosis Techniques 

A typical fault diagnosis technique should be able to accomplish the following major 

tasks: 

• Detect and isolate faults in sensors, actuators and components, and 

• Detect and isolate incipient faults as well as abrupt faults 

As a matter of fact in the design of fault diagnosis systems the following questions 

should be considered and answered: 

How to deal with noise in the system? 
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• How to cope with disturbances (additive uncertainty)? 

• How to handle multiple faults? 

• How to deal with nonlinearity? 

• How to create robustness in the face of modeling errors? 

• How to cope with detection delay? 

• How to overcome complication in the FDI algorithm design? 

• How to reduce the complexity in implementation (or execution) of the FDI 

algorithm? 

• What are the requirements for a priori modeling information? 

• How good are self learning and adaptive capabilities? 

2.9 Implementation Issues 

The development and implementation of the fault diagnosis systems can be sum­

marized in Figure 2.7. This framework is a combination of what is proposed by 

[Guide 89; VDI2206 03; Isermann 05] and the functionality of steps proposed in it 

can be described as follows: 

Clearly, the statement of the requirements is the first step. This includes summa­

rizing the desired functions of the fault detection and diagnosis (FDD) system such 

as the faults to be diagnosed (a fault list), determination of the units that can be 

replaced if they contain a fault and the allowable cost for both the final product and 

the different stages of the design. 
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In the next step, specifications are formulated based on the requirements. Here, 

It should be noted how the requirements are can be fulfilled, by partitioning the 

functions, the available sensors and actuators, the available computing power, use of 

further knowledge and definition of milestones. 

It is common to start the fault diagnosis system design with mathematical model­

ing of the process, its signals and expected faults. This accommodates the simulation 

of the behavior without and with faults. 

Design of the methods for fault diagnosis (FD), fault isolation and fault-tolerance 

(if required) is performed based on the considerations of the previous steps. 

The development of the fault diagnosis methods with software-in-the-loop simu­

lators (SiL) is the next step. Here, common software systems are used for simulation 

of the process, the faults and the FDI functions. Moreover, a powerful real-time 

prototype computer together with the real process can be applied (prototyping). 

The FDI system is then mature enough for implementation of the final software for 

the series product microcomputer. As the next step, testing and tuning procedures 

for the FDD-microcomputer hardware and software begins. First tests are made 

by hardware-in-the-loop simulation(RiL). Here the microcomputer operates together 

with other real parts, like actuators and real-time simulation of the process and 

another powerful computer. This requires a special sensor-simulation-interface. HiL 

is performed if expensive tests with the system can be saved or experiments with 

faults are to be made which are not permitted with the real process. Otherwise, tests 

can be conducted with the real process directly. 

Usually the fault diagnosis system is implemented together with other functions, 

e.g. automatic control. System integration needs to be performed considering the 

functional dependencies of all control levels, from lower level control to top level 

process management. 
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The next tests are system tests, including verification and validation. Verification 

examines if the system meets its specifications, i.e. fulfills the functions of the spec­

ifications correctly. Validation considers the system as whole in terms of satisfying 

the requirements, i.e. examines if the system is appropriate for its intended purpose. 

Hence, it includes consideration of correctness of the specification. For critical sys­

tems external regulating authorities have to be convinced to achieve certification. In 

this step, standards and guidelines are checked and tests have to show, e.g. the fault 

coverage for given operating conditions. Field tests are usually undertaken to test 

the system under many different operating conditions, production tolerances of the 

processes and hard environmental conditions. This is a necessary stop before the 

system is given to series production. 

2.10 Summary 

The development of fault diagnosis mechanisms began in early 1970's. But due to 

the fast and multidirectional development of diagnosis methods and the different 

variety of their applications, the terminology used by researchers in this field is still 

not completely consistent. This makes the comprehension of goals, contributions 

and comparison in this field arduous. Therefore, a common nomenclature for fault 

diagnosis is introduced in this chapter. 

In addition, this chapter provides a quick glance at the problem of fault diagnosis 

in general. Fault detection methods based on the knowledge about the model of the 

system, as well as those that do not require a model, have been discussed. Although, 

the description of particular problems is brief but reference to main stream authorities 

has been provided. 

Since this thesis uses a model based approach for fault detection, modeling of 
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faulty system and properties of fault detection techniques is described as well. In the 

end, the development scheme for fault diagnosis systems in the real world is addressed. 

Of course, not all of the methods and problems could have been taken into account 

in this chapter. Nevertheless, this chapter addresses all the fundamental concepts 

which have been used throughout this thesis. 
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Chapter 3 

Trajectory Planning for Wheeled 

Mobile Robots (WMR) 

3.1 Introduction 

With the highly increased demand for autonomous motion capabilities in a variety 

of applications from routine industrial jobs to network-centric operations, wheeled 

mobile robots (WMRs) are playing an important role in providing those capabilities 

on reasonably smooth grounds and surfaces. Due to the heterogeneous applications 

of these robots, their mobility configurations as represented by wheel number, wheel 

type, wheel location and actuation, vehicle structure (single-body or multi-body) can 

be quite different. A rather comprehensive study of kinematics of WMRs can be 

found in [Alexander 89]. 

Another reason which has inspired researchers to investigate the problem of au­

tonomous motion planning and control of WMRs is its theoretical challenges. Specif­

ically, these systems belong to a class of nonholonomic mechanisms because of the 
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pure rolling constraint on the motion of their wheels (rolling without slipping)1. This 

issue has been addressed in [Neimark 72]. 

Basically, in the absence of obstacles in the workspace of WMRs, their major 

motion task will be either moving between two robot postures or following a desired 

trajectory. It has been acknowledged by researchers that feedback stabilization at a 

given posture cannot be achieved with smooth time-invariant control [Campion 91]. 

This articulates that the problem is nonlinear and hence linear control is not suitable, 

even locally, and alternative approaches should be used. Therefore, after a few at­

tempts to design local controllers, the trajectory tracking problem was finally solved 

through utilizing a nonlinear feedback in [Samson 91] and by using a dynamic feed­

back linearization in [De Luca 93; d'Andrea-Novel 95]. Moreover, recursive methods 

through backstepping techniques has also been used in [Jiang 99] to solve the tracking 

problem of nonholonomic chained form. In order to solve the posture stabilization 

problem a variety of time-varying [Samson 93; Samson 95] and discontinuous (of­

ten time-varying) feedback controllers [Canudas de Wit 92; Aicardi 95; S0rdalen 95; 

M'Closkey 97; Morin 97] have been suggested. 

3.2 Basic Motion Tasks 

Usually, the main tasks that we consider for WMRs in the absence of obstacles in an 

environment are trajectory tracking and point-to-point motion . 

• Trajectory tracking is the case where a reference point of WMR should follow 

a trajectory in the cartesian space starting from a given initial configuration. 

Here, a trajectory is defined as a geometric path with an associated timing law. 

1For mathematical definition see Equation (3.3) 
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• Point-to-point motion is the case where the WMR should reach a given goal 

configuration starting from a given initial configuration. 

3.3 Modeling & Control Properties of WMRs 

Suppose qny-1 £ Q is the vector of the generalized coordinates of WMR. Pfaffian 

nonholonomic systems2 are distinguishable by the existence of m non-integrable dif­

ferentiated constraints on the generalized velocities of the form: 

.A(q)q = 0 (3.1) 

In the case of WMRs, this condition arises from the rolling without slipping con­

straint for the wheels. That is, all attainable motions at each instance of time can be 

expressed as: 

q - G(q)w (3.2) 

where w € Rm. This equation represents a driftless 3 nonlinear system and is called 

the (first-order) kinematic model. If we assume the generalized coordinates as q = 

(x, y, 9) £ R3 (n = 3) and rolling without slipping constraint as: 

xsinO — ycos9 = 0 (3-3) 

2The term "nonholonomic" refers to differential constraints that cannot be completely integrated. 

This means they cannot be converted into constraints that involve no derivatives. 
3Problems defined using phase spaces typically have an interesting property known as drift. This 

means that for some x G X, there does not exist any u G U such that f(x,u) = 0. If such u 

does always exist they are called driftless. For instance, in a dynamical system it is impossible to 

instantaneously stop due to momentum, which is a form of drift. For example, a car will drift into a 

brick wall if it is 3 meters away and traveling at 100 km/hr in the direction of the wall. There exists 

no action (e.g., stepping firmly on the brakes) that could instantaneously stop the car. In general, 

there is no way to instantaneously stop in the phase space. 
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then the kinematic model of the robot can be considered as: 
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where v and w are linear velocity and angular velocity of the center of mass of the 

robot. These two variables are assumed as available control inputs (TO = 2). 

3.3.1 Controllability about a Trajectory 

Assume that there is a desired cartesian trajectory which the wheeled mobile robot 

(WMR) wants to follow; it might be convenient to find a corresponding state trajec­

tory qd(t) = (xd(t), yd(t), 9d(t)) but we should keep in mind that this trajectory should 

satisfy the nonholonomic constraint on the motion of the vehicle; in other words, it 

must be consistent with equation (3.3). The way for generating qd(t), vd(t) and wd(t) 

will be discussed later in Section 3.4 . Here, the issue of interest is the controllability 

about such a trajectory. By defining input variations as v — v — vd and UJ — u> — co^ 

and the state tracking error as q — q — qj , the tangent linearization of equation (3.4) 

will be: 

q = 

0 0 -vdsinOd 

0 0 vd cos 0d 

0 0 0 
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U) 

(3.5) 

As witnessed in Equation (3.5), the linearized system is time-varying. Therefore, a 

necessary and sufficient condition is that the controllability Gramian is nonsingular. 

An easier analysis can be done by defining the state tracking error through a rotation 
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matrix as: 
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and using (3.5), we will have: 
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When vd and u>d are constant, the linear system (3.7) becomes time-invariant and 

controllable, since the following controllability matrix has rank 3 if either vj, or Wd is 

nonzero. 

C=[B AB A2B } = 

1 0 0 0 -UJJ VdLUd 

0 0 -u)d vd 0 0 (3.8) 

0 1 0 0 0 0 

Hence, we deduce that linear feedback can locally stabilize the kinematic system 

(3.4) about trajectories which consist of linear or circular paths which are desired 

to be traveled with a constant velocity. Later in Section 3.4, it is shown that local 

stabilization for arbitrary trajectories is feasible if they do not come to a stop. 

3.3.2 Chained Canonical Forms 

For nonholonomic mobile robots, the existence of canonical forms for kinematic mod­

els leads to a systematic and standardized approach of design for both open-loop and 

closed-loop control procedures. Chained form is the most popular canonical struc­

ture. For a system with two inputs and n generalized coordinates the chained form 
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would be as follows: 

i i = « ! 

z2 = u2 

Z3 = z2ux (3.9) 

A two input driftless nonholonomic system with up to four generalized coordi­

nates can always be converted to chained form by static feedback transformation 

[De Luca 98]. In practice, most WMRs can be transformed into chained form. For 

the kinematic model given in Equation (3.4), one can define the following coordinate 

transformation: 

zx = 9 

z2 = x cos 9 + y sin 9 (3.10) 

Z3 = x sin 9 — y cos 9 

and the static state feedback: 

V = U2 + Z3UX 

(3.11) 
W = Mi 

to result in: 

Z\ =U\ 

z2 = u2 (3.12) 

h = z2ux 

It is noteworthy that the transformation in chained form is not unique [Canudas de Wit 93]. 

3.4 Trajectory Tracking 

In order to acquire asymptotic trajectory tracking of a given path, a combination of 

a nominal feedforward with a feedback action on error is required. This error can 
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be defined with respect to either the reference output trajectory (output error) or an 

associated reference state trajectory (state error). 

3.4.1 Generation of the Feedforward Command 

Assume that the representative point (x, y) of the WMR must follow the cartesian 

trajectory (xd(t),yd(t)), with t G [0, T]. Prom the kinematic model Equation (3.4) 

one has: 

9 = ATAN2(y, x) + kn k = 0,l (3.13) 

where ATAN2 is the four-quadrant inverse tangent function (undefined only if both 

arguments are zero). Therefore, the nominal feedforward commands are: 

vd = ±^/xl(t) + yj(t) (3.14) 

,, Vd(t)xd(t) - xd(t)yd{t) 

"'= im+m) {3M) 

where wd(t) has been derived from (3.13) through differentiation. The sign of vd(t) will 

determine forward or backward motion of the vehicle. Obviously, in order to generate 

(wd(t),vd(t)) the desired cartesian motion (xd(t),yd(t)) should be twice differentiable 

in [0, T]. A noticeable property of the WMR is that given an initial posture, a 

consistent desired output trajectory (xd(t),yd(t)) and its derivative, there would exist 

a unique associated state trajectory qd(t) = (xd(t), yd(t), 9d{t)) which can be computed 

in an entirely algebraic way, since 

9d{t) = ATAN2(yd{t), xd{t)) + kit k = 0,l (3.16) 

where the value of k is chosen such that 9d(0) = #(0). If k = 1, a backward motion 

will result. As a result, the nominal orientation 9d(t) may be computed off-line and 

used for defining a state trajectory error. 
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There are a number of facts regarding the implementation of this command which 

should be taken into account: 

Firstly, when the desired linear velocity vd(t) is zero for some i, neither the nom­

inal angular velocity (o>d(£)) (Equation (3.15)) nor the nominal orientation (#<*(£)) 

(Equation (3.16)) would be valid. Such a situation may occur at the beginning of 

the motion, or at a cusp 4 along the geometric path underlying the cartesian tra­

jectory (x,i(i),yd(t)). For the first case, higher order differential information about 

(xd(t), yd(t)) at t = 0 (if available) can be used to determine the consistent initial ori­

entation and the initial angular velocity command. For the second case, continuous 

motion is guaranteed by keeping the same orientation attained at i~; thus, through 

the application of the L'Hoptial analysis in Equation (3.15) the value of u>d(t) would 

be computable. 

Secondly, in a more general case, the reference trajectory may be defined by 

separating the geometric aspects of the path (parameterized by a scalar s) from the 

timing law s — s(t) used for path execution. Here, the kinematic model (the driftless 

nature) of the WMR assists in tackling this zeros velocity problem. For the unicycle 

4In singularity theory a cusp is a singular point of a curve. Spinode is an alternative name, but 

this is less commonly used today. For a curve defined as the zero set of a function of two variables 

f(x, y) = 0, the cusps on the curve will have the following properties: 

1- f(x,y) = 0 

o 21 _ 21 _ n 
*" dx ~ dy — u 

3. The determinant of the Hessian matrix of second derivatives is zero 

A classic example of a curve that has a cusp is the curve defined by x3 — y2 = 0 
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WMR, one can paraphrase the purely geometric relationship as: 

dx 
ds 

dy 
ds 

ds 

— 

cos 9 

sin# 

0 

v' + 

0 

0 

1 

u (3.17) 

where v(t) = v'(s)s(t) and u>(t) = uj'(s)s(t). Zero velocity points with well defined 

geometric tangents (e.g. cusps) are then attained for s(t) = 0. The feedforward 

pseudo velocity commands v'd(s) and w'd(s) are computed by replacing time derivatives 

with space derivatives in Equations (3.14), (3.15). 

3.4.2 Linear Control Design 

The easiest trajectory tracking control design is based on tangent linearization along 

the reference trajectory. It is worth to reconsider the linearization procedure of the 

unicycle WMR around the trajectory. Define the state tracking error e as: 

ei 

e2 

e3 

-
xd — x 

ya-y 

_ e d - e _ 

(3.18) 

cos 9 sin 9 0 

— sin# cos# 0 

0 0 1 

where e is very similar to q« in Equation (3.7) with the only differences being the 

change of sign in the right hand side and computation at the current location instead 

of the desired location. Applying the following nonlinear transformation of velocity 

inputs: 

v = vd cos e3 — tii 

w = wd-u2 

(3.19) 
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the error dynamics would become: 

0 

wd 

0 

wd 0 

0 0 

0 0 

e + 

0 

sine3 

0 

Vd + 

1 0 

0 0 

0 1 

r -i 

Ml 

« 2 

(3.20) 

By linearizing Equation (3.20) around the reference, we obtain the same linear 

time-varying Equation (3.7) with input (ui,u2) and state e. By defining the linear 

feedback law as: 

and the gains as: 

1*1 = —k\e\ 

v>2 = -k2sign(vd(t))e2 - fae3 

k\ = /% = 2£a 

ko = *2(t) 
vd(t) 

(3.21) 

(3.22) 

(3.23) 

a desired closed loop characteristic equation (A + 2£a)(A2 + 2£aA-|-a2), £, a > 0 which 

has constant eigenvalues can be reached. Obviously, the system has one negative real 

eigenvalue at — 2£a and a complex pair eigenvalue with natural angular frequency 

a > 0 and damping coefficient £ £ (0,1). Nevertheless, k2 will go to infinity as 

vd —* 0; in other words, an infinite control effort would be required for the transient 

stage. Therefore, a convenient gain scheduling is attained by defining a = a(t) = 

\fu)1{t) + bvj such that k\ — k3 = 2£-y/u^(£) + bv^ and k2 = b | vd(t) |; where b > 0 

has been defined as an additional degree of freedom. 

In compliance with the controllability analysis in Section 3.3.1, these gains go to 

zero when local controllability around the trajectory is lost because the latter stops. 

This design leads to the following nonlinear time-varying controller in term of the 

nominal control input: 

v = vd cos(9d -9) + h [cos 0(xd - x) + sin 9{yd - y)} (3.24) 
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w = wd + k2sign(vd)[cos9(xd - x) + sin9(yd - y)} + k3(9d - 9) (3.25) 

It is noteworthy that although the closed loop eigenvalues are constant with neg­

ative real part, this control law does not guarantee the asymptotic stability of the 

state tracking error e; because the system is still time-varying. A complete Lyapunov 

based stability analysis can be accomplished by a nonlinear modification as addressed 

in [Nicosia 01; De Luca 03]. 

3.4.3 Dynamic Feedback Linearization 

In this part, following [De Luca 93; d'Andrea-Novel 95; Nicosia 01], a nonlinear con­

troller -based on exact dynamic feedback linearization- has been designed for tra­

jectory tracking. Generally, the dynamic feedback linearization problem for nonholo-

nomic driftless systems [Equation (3.2)] consists of obtaining a dynamic state feedback 

compensator of the form: 

e = a ( q , 0 + K q ,0« ( 3 2 6 ) 

with w-dimensional state £ and m-dimensional external input, such that under a 

state transformation z = T(q,£), Equation (3.2) and Equation (3.26) are equivalent 

to a linear controllable system. Constructive algorithms, which are intrinsically based 

on input-output decoupling, can be found in [Isidori 95]. First, it is necessary to define 

an appropriate m-dimensional system output r) = /i(q), to which a desired behavior 

can be assigned (in this case, tracking a desired trajectory). One then proceeds 

by successively differentiating the output until the input appears in a nonsingular 

way. At some phase, the addition of integrators on the subset of the input channels 

may be necessary in order to avoid subsequent differentiation of the original inputs. 

This dynamic extension algorithm generates the state £ of the dynamic compensator 
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(3.26). The algorithm terminates after a finite number of differentiations whenever the 

system is invertible from the chosen output. If the sum of the output differentiation 

orders equals the dimension n + v of the extended state space, full input-output 

linearization will also be attained. The closed loop system would be equivalent to a 

set of decoupled input-output chains of integrators from Ui to 77; where i = 1, ...,m. 

To elaborate further, this exact linearization procedure for the unicycle WMR model 

[Equation (3.4)] will be carried out here. First, define the linearizing output vector 

as n = (x,y). By differentiating r\ with respect to time we would get: 

V 
x 

y 

cos 9 0 

sin^ 0 

v 

u 

(3.27) 

which shows that only v affects rj and the angular velocity w cannot be found from 

this first-order differential information. Hence, we would require to add an integrator 

(whose state is denoted by £) on the linear velocity input 

v = £ ,£ = a =* ?) = £ 
cos 9 

sin 9 
(3.28) 

This new input a is the linear acceleration of the unicycle. Differentiating further 

yields: 

a = z 
-

cos 9 

sin# 
+ & 

— sin 9 

cos 9 
= 

cos 9 — £ sin 9 

sin 9 £ cos 9 

a 

w 
(3.29) 

and the matrix 
sin 9 £ cos 9 

assumption, we can define: 

cos 9 —£ sin 9 
is nonsingular provided that £ 7̂  0. Under this 

a 

w 

cos 9 

sin# 

1 
-£sin6> 

£cos# 

- 1 r -1 

Ml 

« 2 

(3.30) 
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so, 

V 
Mi 

u2 

= u (3.31) 

As a result, the dynamic compensator would be: 

i — U\ cos 9 + u2 sin 9 

(3.32) 

w •U2 cost/—u\ sint 

Here, the dynamic compensator is one-dimensional, so we have n 4- v = 3 + 1 = 4 

which is equal to the aggregated number of output differentiations in Equation (3.31). 

Hence, in the following new coordinates, the extended system would be fully linearized 

in a control form. 

(3.33) 

Z\ = X 

z3 = x = £ cos 9 

z4 = V — £ s m 9 

This system can be described by the two chains of second-order input-output inte­

grators given by Equation (3.31) rephrased as: 

(3.34) 
z1 = « i 

z2 — u2 

It is noteworthy that the dynamic feedback linearizing controller (3.32) has a 

potential singularity at £ = v = 0 which occurs when the robot is not rolling. The 

appearance of such a singularity in the dynamic extension process has been proven to 

be structural for nonholonomic systems [De Luca 93]. Obviously, this must be taken 

into account when designing control laws on the equivalent linear model. 
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Assume that the unicycle must follow a smooth output trajectory (xd(t),yd(t)) 

which is persistent, i.e., such that the nominal control input vd = \Jx\ + y^ along the 

trajectory does never go to zero. It is rather routine to design a globally exponentially 

stabilizing feedback for the desired trajectory on the equivalent linear and decoupled 

system (3.34). Therefore, the feedback law would be: 

ui = Xd(t) + kpi(xd(t) - x) + kdi(xd(t) - x) 
(3.35) 

u2 = Vd(t) + kp2(yd(t) -y) + kd2{yd{t) - y) 

where kpi > 0, kdi > 0 (i=l,2) are chosen PD gains. In practice, velocities x and y 

can be computed via the last two expressions in Equation (3.33), as a function of the 

robot state and of the compensator state £. Alternatively, one can use estimates of 

x and y obtained from odometric measurements. This approach is more robust with 

respect to unmodeled dynamics. 

There are a number of issues which should be taken into account in applying this 

dynamic feedback linearization approach to the system: 

• The state of the dynamic compensator should be initialized at £(0) = vd(0). 

This guarantees exact trajectory tracking for a matched initial state of the 

robot. In this case, the control law [Equations (3.32) and (3.35)] reduces to 

pure feedforward action. 

• Since this approach is purely based on output tracking error definition, it re­

quires neither the explicit computation of 9d{t) nor the measurement of the 

orientation angle. 

• Problems may arise if the actual command v = £ crosses zero during an initial 

transient. Nevertheless, this situation can be avoided by choosing an appropri­

ate initial state for the dynamic compensator. For instance, an uncomplicated 
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Figure 3.1: The desired eight-shaped reference trajectory which the WMR wants to 

follow 

way to keep the actual command bounded is to reset the state £ whenever its 

value falls below a given threshold. This will generate isolated discontinuities 

with respect to time in the input command v. 

3.5 Simulation Results 

In this section, some simulation results are provided is substantiation of the potency 

of the controllers designed in Section 3.4.2 and Section 3.4.3. 

The reference trajectory which the WMR wants to follow is assumed to be in the 

form of Equation (3.36) 

xd{t) = A! sin(/it) yd(t) = A2 sin(/2t) t E [0, T] (3.36) 

The numerical results are given for the eight-shaped reference trajectory where A\ = 

3, A<i — 4, fi — 1 and /2 = 0.5. Figure 3.1 depicts this trajectory. The trajectory 

starts from the origin with 6^(0) = | rad. A full cycle is completed in T = | ^ ~ 
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12.57 s. The reference initial velocities are: 

vd(0) ~ 3.61 m/s ud(0) = 0 rad/s (3.37) 

These two values are consistent with Equation (3.14) and Equation (3.15). 

In the provided set of simulations, the initial robot configuration is assumed to be 

matched with the desired reference trajectory; in other words, we have q(0) — qd(0). 

Hence, the feedforward commands of Equations (3.14) and (3.15) would acquiesce to 

precise trajectory tracking in ideal conditions. Nevertheless, if the WMR starts at rest 

and nonzero high-level commands vd(0) and a>d(0) are given to the robot, there would 

be some transients before the velocities can be actually achieved; this phenomenon is 

due to actuator and vehicle dynamics. 

Figures 3.2(b), 3.2(c) and 3.2(d) show the results obtained with the dynamic linear 

controller design (Equations 3.24 and 3.25), using the described gains with £ = 3.99 

and 6 = 1 . The tracking of the reference trajectory of Figure 3.1 is quite accurate. The 

small appearing errors are mainly due to quantization and discretization of velocity 

commands as well as to other nonidealities. This is clearly shown in Figure 3.2(d) 

which shows the norm of the cartesian error. 

Similar performance is obtained with the dynamic feedback linearization controller 

(3.32), choosing the gains in Equation (3.35) as kp\ — kP2 = 0.7, kd\ = kd2 — 1 

and initializing the dynamic compensator at £(0) = vd(0). To recognize the slight 

improvement in performance, compare the norm of the cartesian tracking error in 

Figure 3.3(d) with the previous result in Figure 3.2(d). 

3.6 Summary and Conclusions 

With regard to the statement of the problem in Section 1.2, under the considered sce­

nario the nonholonomic wheeled mobile robot with nonlinear kinematics is required to 
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Figure 3.2: Trajectory tracking with dynamic linear feedback design 

follow a predefined smooth trajectory in the absence of obstacles in the environment. 

In order to make the wheeled mobile robot capable of performing this maneuver, de­

signing controllers for trajectory planning are essential. Therefore, two different types 

of controllers have been designed. The first one is based on dynamic linear control 

design strategy while the second one is based on dynamic feedback linearization. 

By comparing Equations (3.35),(3.24) and (3.25) it is obvious that although the 

dynamic linear controller requires both the desired orientation angle 6d{t) and the 

measurement of the orientation angle 9(t), the dynamic feedback linearization ap-
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Figure 3.3: Trajectory tracking with dynamic feedback linearization 

proach is purely based on the output tracking error definition and requires neither 

9&) nor 9{t). 

With respect to the achieved controller performance, by comparing Figure 3.2(d) 

and Figure 3.3(d), one can easily recognize that the performance of the dynamic 

feedback linearization controller is better than the the dynamic linear controller. The 

impact of the controller type on the performance of the fault detection system will 

be studied in Chapter 4-
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Chapter 4 

Fault Detection Design for the 

W M R 

4.1 Introduction 

The particular objective of this chapter is to design appropriate fault detection sys­

tems for the trajectory tracking problem of wheeled mobile robots (WMR). In order to 

do so, first the principal subsystems of wheeled mobile robots which might be subject 

to faults have been introduced. Then, two different techniques -which are developed 

on the ground of the model consistency based scheme as illustrated in Fig. 4.1- are 

proposed for fault detection in a general class of nonlinear systems. Indeed, the mo­

bile robot trajectory tracking problem would essentially be covered as a subclass of 

the studied nonlinear systems. 

The first proposed technique is based on identification of the system via Extended 

Kalman Filtering (EKF). In this technique, a novel residual generation method has 

been introduced. 

The second proposed fault detection scheme, is based on system identification 
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Figure 4.1: Schematic of the exploited model consistency based fault diagnosis ap­

proach 

through artificial neural networks. In this approach, a modified stable backpropaga-

tion algorithm has been used. 

Subsequently in Chapter 5, a comparative study of the performance of these two 

methods is provided. 

4.2 Major Subsystems of WMRs Subject to Faults 

A WMR needs a variety of subsystems to provide its expected functionalities, i.e., mo­

tion on the ground, sensing the surrounding environment, communicating with other 

mobile or stationary systems. The following are some of the most basic subsystems 

which are common among a large number of WMR types. 

• Power Subsystem: This part is in charge of providing energy to all parts of the 

WMR. It usually consists of a power source (such as battery cells) and a power 

distribution network (such as wires, switches, safety circuits). Faults in the 
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power subsystem could cripple the WMR thoroughly or cause complete failure. 

• Driving Subsystem: This subsystem provides the required force for the WMR 

to move forward according to the commands issued by the host computer. It 

typically consists of motors, gearbox, amplifiers, breaks, motion control card 

and encoders. As a matter of fact,this subsystem plays a major role in the 

mobility of a WMR. 

• Steering Subsystem: This subsystem exploits actuators to control the direction 

of the vehicle and therefore orient its heading angle. It usually includes an 

actuator (Hydraulic actuator or linear DC motor), a mechanical linkage made up 

of joints and links and an encoder. Obviously, a fault in the steering subsystem 

will impair the mobility of the WMR. 

• Suspensions: This part helps depress vibration during operation and maintains 

the balance of the WMR. It consists of suspensions and rubber tires. A fault in 

this subsystem, i.e., suspension hardening or flat tire, may not be critical but 

may lead to faulty vehicle control because of the improper balance of the robot. 

• Communication: Usually WMRs need wireless communication to exchange 

command and data with the control center or other stationary or mobile sys­

tems. A serious problem may be posed in case of loss of communication espe­

cially during cooperative activities. Communication delay can be the cause of 

instability in formation manoeuvre control of team of WMRs as well. 

• Sensors: Sensors are responsible to measure quantities such as position, velocity, 

steering angle, relative distance to obstacles, etc. Since these sensors play a 

crucial role in fault diagnosis of WMRs, their measurement reliability needs to 

be certified and guaranteed before the deployment of fault diagnosis methods. 
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Figure 4.2: Signal flow graph of a linear discrete time dynamic system 

4.3 Kalman Filtering 

The Kalman filter, was first introduced by Rudolf E. Kalman in 1960, when he pub­

lished his well-known paper describing a recursive solution to the linear optimal fil­

tering problem. This approach can be applied to both stationary and nonstationary 

environments. In this recursive solution, each updated estimate of the state is derived 

from the previous estimate and the new input data; as a result, only the previous 

estimate needs to be stored. Besides eliminating the necessity of storing the entire 

past data, the Kalman filter is computationally more efficient than computing the 

estimate directly from the entire past observed data at each step. In this part, an 

introductory discussion about Kalman filters is made to pave the road for their appli­

cation in the subsequent parts. I have chosen to follow the original paper by Kalman 

[Kalman 60] for the derivation. Moreover, I have tried to include the highlights of 

the works done by [Grewal 01; Haykin 01; Welch 04]. 

4.3.1 What is a Kalman Filter? 

Consider a linear, discrete-time dynamical system described by the block diagram 

depicted in Figure 4.2. The concept of state is very important in the description 

of a system. The state or state vector is defined as the minimal set of data that is 
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sufficient to uniquely describe the unforced dynamical behavior of the system and is 

denoted by Xk\ the subscript k denotes the discrete time. In other words, the state 

is the least amount of data on the past behavior of the system that is required to 

predict the behavior of the system in the future. Usually, the state xk is unknown 

and we use a set of observed data denoted by yk to estimate it. 

In terms of mathematics, Figure 4.2 includes the following equations: 

• Process equation: 

xk+I = F k + 1 ; k xk + w k (4.1) 

where F k + 1 ) k is the transition matrix taking the state xk from time k to time 

k + 1. The process noise W k is assumed to be additive, white and Gaussian, 

with zero mean and with covariance matrix defined by: 

Qk for n^k 
E[wnwk] = < (4.2) 

0 for n ^ k 

where the superscript T denotes matrix transposition. The dimension of the 

state space is denoted by M. 

Measurement equation: 

y k = H k xk + vk (4.3) 

where yk is the observable at time k and H k is the measurement matrix. The 

measurement noise vk, as the noise defined in the previous equation, is assumed 

to be additive, white and Gaussian with zero mean. Its covariance matrix is 

defined by 

Rk for n = k 
EM]=< (4.4) 

0 for n ^ k 

In addition, the measurement noise vk is assumed to be uncorrelated with the 

process noise w^. The dimension of the measurement space is denoted by N. 
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Now, the general Kalman filtering problem can be addressed as follows: 

"Use the entire observed data, consisting of vectors 2/1,2/2, ••••,Vk to find for 

each k>l the minimum mean-square error estimate of the state x" 

In other words, the problem is jointly solving the process and measurement equa­

tions for the unknown state in an optimum manner. This problem is called filtering 

if i = k, prediction if i > k, and smoothing if 1 < i < k. 

4.3.2 Mathematical Foundation of Optimum Estimates 

Prior to deriving the Kalman filter, it is beneficial to review some of the mathematical 

foundations of optimum estimates. For simplicity reasons, this review is done in the 

context of scalar random variables; but the generalization of these concepts to vector 

random variables is straightforward. Suppose the observable yk — xk + vk is given; 

where xk is an unknown signal and vk is an additive noise component. Let xk denote 

a posteriori estimate of the signal, give the observations yi, 2/2, •••, 2/fc- In practice, the 

estimate xk is different from the unknown signal xk. In order to derive this estimate 

optimally, a cost function for incorrect and imprecise estimates is required. This cost 

function must maintain the following two requirements: 

1. must be nonnegative 

2. must be a nondecreasing function of the estimation error xk defined by 

xk = xk- xk (4.5) 

These two requirements are satisfied by the mean-square error defined by: 

Jk = E[{xk-xk)
2] = E[xl\ (4-6) 
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where E is the expectation operator. Here, the dependence of the cost function Jk 

on time k indicates the nonstationary nature of the recursive estimation process. 

The optimum value for the estimate Xk, can be derived by invoking the following 

two theorems from stochastic process theory [Kalman 60; Papoulis 02]: 

Theorem 1 (Conditional Mean Estimator). If the stochastic processes{xk} and {yk} 

are jointly Gaussian, then the optimum estimate xk that minimizes the mean-square 

error Jk is the conditional mean estimator: 

xk = E[xk\yi,y2,...,yk] (4.7) 

Theorem 2 (Principle Of Orthogonality). Let the stochastic processes {xk} and {yk} 

be of zero means; i.e., E[xk] = E[yk] = 0 for all k; then the stochastic process {xk} 

and {yk} are jointly Gaussian; or if the optimal estimate xk is restricted to be a linear 

function of the observables and the cost function is the mean-square error; then the 

optimum estimate xk, given the observables y\,y<i, ••-,yk is the orthogonal projection 

of Xk on the space spanned by these observables. 

Now, with respect to these two theorems, the derivation of Kalman filter follows: 

4.3.3 Derivation of the Kalman Filter 

Suppose that at time k, a measurement on a linear dynamical system described by 

(4.1) and (4.3) has been made. The goal is to exploit the information contained in 

the new measurement yk to update the estimate of the the unknown state Xk. 

Let x^ denote a priori estimate of the state, which is accessible at time k. Since 

our objective is a linear estimator, we can articulate the a posteriori estimate Xk as 

a linear combination of the a priori estimate and the new measurement: 

xk = Gjc
1)x^ + G ky k (4.8) 
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where the matrix coefficients Gk and G k are to be derived. In order to find these 

matrices, the Principle of Orthogonality introduced in Theorem [2] should be invoked. 

By defining the state-error vector as: 

xk = xk - xk (4.9) 

we can apply the Principle of Orthogonality as follows: 

£ [*kyk]=0 for i = l ,2 , . . . , f c - l (4.10) 

So, by using (4.10),(4.9), (4.8), and (4.3), for i = 1,2,...,k- 1 we have, 

ElwZ] = £[(xk-xk)yn 

= E[(xk - (G£\ + Gkyk))yn 

= ^ [ ( x k - G ^ - G k C H k X k + wOJy,1] 

= £[(xk - G ^ x - - G k H k x k - G kw k)yH 

= E[(I - G k H k )x k y^ - G^1 W + Gk
x)xky^ - G ^ y * - G k w k yH 

= E[(l - G k H k - Gk
1})xky lT + Gk

x)(xk - xj^y* - G k w k yH 

= 0 (4.11) 

where I is the identity matrix. Since the process noise wk and the measurement noise 

vk are uncorrelated, it follows that: 

E[wkyf] = 0 (4.12) 

Moreover,the Principle of Orthogonality implies that: 

E[{xk-xM = 0 (4.13) 

Hence, with respect to (4.12)and (4.13), (4.11) can be simplified as: 

(I - G k H k - G{V)E{w?} = 0 (4.14) 
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For all arbitrary values of Xk and t/i, (4.14) can only be true if the coefficients Gk and 

G k ' satisfy the following relation: 

I - G k H k - Gk
1} = 0 (4.15) 

In other words: 

I - G k H k = Gk
x) (4.16) 

Now, by plugging (4.16) into (4.1), the a posteriori estimate of the state at time k 

would be: 

xk = x k + G k ( y k - H k x k ) (4.17) 

where G k is called the Kalman gain. 

Now the problem which needs to be taken care of is the derivation of an explicit 

form for Gk . From the Principle of Orthogonality, we have: 

JE[(xk-xk)yk
r] = 0 (4.18) 

It follows that: 

£?[(xk - *k)#n = 0 (4.19) 

where y j is an estimate of yk given the previous measurements yi, y2,..., Vk-i-

Now, we define a new process: 

y k = y k - y k (4.20) 

This new process symbolizes a measure of the new information contained in yk; it 

can also be articulated as follows: 

yk = yk - H k x k 

= H k x k + vk - HfcX^ 

= H k (x k - x k ) + vk 

= H k x k + v k (4.21) 
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Furthermore, by subtracting (4.19) from (4.18) and using the definition of (4.20), it 

can be concluded that: 

£ [ ( x k - x k ) y £ ] = 0 (4.22) 

(4.17) and (4.3) imply that: 

x k - x k = xk - (xj^ + Gk(yk - Hkx£)) 

= (xk - 5£) - G k (H k x k + vk - HkXk) 

= ( x k - x k " ) - G k ( H k ( x k - x k " ) + vk) 

= x^ - GkHkx,; - G kv k 

= ( I - G k H k ) x ^ - G k v k (4.23) 

Therefore using (4.21) and (4.23), from (4.22) we can infer the following: 

E[((I - GkHk)x~k - Gkvk)(Hkxk- + vk)} = 0 (4.24) 

With the knowledge that the measurement noise vk is independent of the state x k 

and therefore x^; so, (4.24) can be simplified as: 

(I - GkHk)£[xk ik
?-]Hk

? - Gk^VkV^] = 0 (4.25) 

So, we define the a priori covariance matrix: 

P.; = E[(xk - Xk-)(xk - Xk-)T] = E[x^-} (4.26) 

By invoking the covariance definitions of (4.4) and (4.26), we can rewrite (4.25) as 

follows: 

(I - GkHOPfc-H? - G k R k - 0 (4.27) 

By solving (4.27) for Gk , the desired formula will be derived: 

Gk = P ^ H ^ H k P ^ H T + R,,]-1 (4.28) 
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where [.]-1 denotes the inverse of the matrix inside the square brackets. Equation 

(4.28) is the desired formula for calculating the Kalman gain Gk, which is defined in 

terms of the a priori covariance matrix P^ . 

In order to accomplish the recursive estimation procedure, we consider the error 

covariance propagation , which characterizes the effect of time on the covariance 

matrices of estimation error. This propagation includes two steps of evolution: 

1. The a priori covariance matrix P k at time k is defined by (4.26). Given P k , 

compute the posteriori covariance matrix P k , which at time k is defined by: 

P k = £[xkx£] = E[(xk - xk)(xk - xk)T] (4.29) 

2. Given the old a posteriori covariance matrix P k - i , compute the updated a priori 

covariance matrix P^ . 

To carry out step 1, we plug (4.23) into (4.29); it is noteworthy that the noise 

process vk is independent of the a priori estimation error x^. So, we would attain: 

P k = ( I - G k H k ) i ? [ x 1 ; x k
? - ] ( I - G k H k ) T + Gk£;[vkvk

r]Gk
: 

= ( I - G k H O P ^ I - G k H k f + GkRkG? (4.30) 

By using (4.27), we would be able to rewrite (4.30) as: 

P k - (I - G k H k ) P " - (I - GkHjOP-H^G? + GkRkG? 

= (I — G k H k ) P k — G k R k G k + G k R k G k 

- ( I - G k H k ) P ^ (4.31) 

For the second step of error covariance propagation, we know that the a priori 

estimate of the state is defined in terms of the old a posteriori estimate as: 

xk = Fk.k.iXk-j (4.32) 



Chapter 4. Fault Detection Design for the WMR 60 

Hence, by using (3.31) and (4.32), the a priori estimation error can be written in 

the form of: 

K = X k - X k 

= ( F k , k - l X k - l ) — ( F k , k - l X k - l ) 

= Fk,k-1 (Xfc-1 - Xk_ ! ) + Wk_ ! 

= F ^ n i k . j + w n (4.33) 

Now, by plugging (4.33) into (4.26) and noting that the process noise wk is indepen­

dent of Xk-x, we attain the following conclusion: 

P- = F^k-iE^i^F^ + E^w^J 

= Fk.k-iPk-iFkVi + Qk-i (4.34) 

This formula describes the dependence of the a priori covariance matrix Pj^ on 

the old a posteriori covariance matrix Pk-i-

Now, with equations (4.32), (4.34), (4.28), (4.17), (4.31) at hand, the Kalman 

algorithm for recursive state estimation can be summarized as follows: 

• State space model: 

xk+1 = Fk+1,kxk + wk 

(4.35) 

yk = Hkxk + vk 

where w^ and vk are independent, zero-mean, Gaussian noise processes of co-

variance matrices Qu and Rk, respectively. 

Initialization: For k — 0, set 

x 0 = E[x0] 
(4.36) 

Po = E[(xo - S[xo])(x0 - £[x„])T] 
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• Computation: For k = 1,2,... compute 

— State estimate propagation: 

K = Fk.k-iXk-! (4.37) 

— Error covariance propagation: 

Pk = Fk .k- iPk- iF j , , . ! + Qk-i (4.38) 

— Kalman gain matrix: 

G k ^ P k H ^ H k P k H ^ + Rk]- 1 (4.39) 

— State estimate update: 

xk = X k + G k ( y k - H k X k ) (4.40) 

— Error covariance update: 

P k = ( I - G k H k ) P k (4.41) 

This summarization, also includes the initialization process. We may select the 

initial state estimate at time k = 0 when no observed data is available as: 

x0 = £[x„] (4.42) 

and the initial value of the a posteriori covariance matrix as: 

Po = £[(x„ - £[x0])(xo - £[x0])T] (4.43) 

This choice of initial conditions has the benefit of yielding an unbiased estimate 

of the state xk . 
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This summarization, also includes the initialization process. We may select the 

initial state estimate at timeA; = 0 when no observed data is available as: 

x0 = £7[xo] (4.44) 

and the initial value of the a posteriori covariance matrix as: 

P 0 = £[(x0 - £[xo])(x0 - £[x0])T] (4.45) 

This choice of initial conditions has the benefit of yielding an unbiased estimate of 

the state Xk. 

4.3.4 Derivation of the Extended Kalman Filter 

Up to this point, the proposed Kalman filter is capable of estimating the state vector 

in a linear model of a dynamical system. However, in practice, we usually have to deal 

with nonlinear models. Hence, we extend the usage of Kalman filtering to nonlinear 

systems by a linearization procedure. The resulting filter is accredited as the Extended 

Kalman Filter (EKF). This extension is feasible because of the fact that the Kalman 

filter is described in terms of difference equations in the case of discrete-time systems. 

In order to describe the extended Kalman filter, consider a nonlinear dynamical 

system described by the following state space model: 

x k + 1 = f ( k , x k ) + wk (4.46) 

y = h(k,xk) + vk (4.47) 

where, as before wk and vk are independent zero mean white Gaussian noise processes 

with covariance matrices Rk and Qk , respectively; f (k, xk) denotes a nonlinear transi­

tion matrix which can be time-variant and h(k, xk) denotes a nonlinear measurement 

matrix that can be time-variant. 
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The fundamental idea of the extended Kalman filter is to linearize the state space 

model of (4.46) and (4.47) at each time instant around the most recent state estimate, 

which would be either Xk or x^, depending upon which particular function is being 

considered. Once a linear estimate of the model is attained, the standard Kalman 

filter equations can be applied. In other words, the following two steps need to be 

taken: 

Step 1 : The following two matrices are constructed: 

Fk+i,k — 

H k = 

<9x | x = X k 

dhfc,xk | 
dx lx=*k 

where the Jacobian | | for a vector of functions 

g(x) = 

gi(x1,x2,...,xn) 

in variables x\, x%, •••, xn is: 

dg 

dx 

dgi 
8x\ 

dgi 
dxi 

dgi 
8x2 

dgi 
8x2 

9gm dgm 
dxi 8x2 

8g\ 
8x„ 

8g? 
8xn 

8gm 

8xn 

(4.48) 

(4.49) 

(4.50) 

(4.51) 

The entries of Fk+i,k and H k are all computable, by having x^ and xk available 

at time k. 

Step 2 :With Fk+i,k and H k at hand, calculating a first-order Taylor approxima­

tion of the nonlinear functions F(&,xk) and H(fc, Xk) around Xk and F(fc,xk") would 
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be feasible. Therefore, F(k, xk) and H(k, xk) are approximated as follows: 

F(k, xk) ~ F(x, xk) + F k + l i k(x, xk) (4.52) 

H(k,xk) ~ H(x,Xk) + Hk+1)k(x,Xk) (4.53) 

Hence, the nonlinear state equation (4.46) and (4.47) can be approximated as: 

xk+i =* Fk+1>kxk + wk + dk (4.54) 

y k ~ H k x k + vk (4.55) 

where dk and yk are defined as: 

dk = f (x, xk) - F k + i ) kx k (4.56) 

The entries of dk are all known at time k; similarly, the entries of yk are all known 

at time k; y k can be regarded as an observation vector at time k. 

As a result, given the state space model of (4.56) and (4.57), we may apply the 

Kalman filter theory of Section 4.3.3 to derive the extended Kalman filter. 

Following is a summary of the extended Kalman filter algorithm: 

• State space model: 

x k + 1 = f(k,xk) + wk 

(4.58) 

y = h(k, Xk) + vk 

where wk and v k are independent, zero-mean, Gaussian noise processes of co-

variance matrices Qk and Rk , respectively. 

Definitions: 

( p , _ 8f(fc,x) i 
I * l r - i - l t — —T: l x =x k 

(4.59) 
H, dh(fc,x) | 
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• Initialization: For k = 0, set 

x0 = E[xo] 

Po = £ [ (x 0 -£ [xo ] ) (xo -£ [x 0 ] ) T ] 

Computation: For k — 1,2,... compute 

(4.60) 

— State estimate propagation: 

x^=f(fc,xk_1) (4.61) 

— Error covariance propagation: 

P k = Fk ,k_1Pk_1Fjk_1 + Qk_i (4.62) 

— Kalman gain matrix: 

Gk = PkHnHkP^H^ + R k ] 1 (4.63) 

— State estimate update: 

xk = Xk" + Gk(yk - h(k, Xk-)) (4.64) 

— Error covariance update: 

Pk = (I - GkHk)Pk (4.65) 

Based on the same logic the continuous extended Kalman filter equations can be 

written as follows1: 

• Nonlinear dynamic model: 

x = f ( t ,x ( t ) )+w(t ) 
(4.66) 

y = h( t ,x ( t ) )+v(t ) 

where w(t) and v(t) are independent, zero-mean, Gaussian noise processes of 

covariance matrices Q(t) and R(t) , respectively. 
1 Please note that for implementation purposes the discrete equations have been used. 
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• Definitions: 

/ FW(t) = ^ | x = * ( t ) 

< HW(t) = ^ U ) 

• Computation: compute 

— Error covariance: 

P(t) = FW(t)P(t) + P(t)FWT(t) + Q(t) - K( t )R( t )K T ( t ) (4.68) 

— Kalman gain matrix: 

K(t) = P ^ H ^ R " 1 (4.69) 

— State estimate: 

x(t) = f(t, x(t)) + K(t)[y(t) - h(t, x(t))] (4.70) 

4.3.5 Fault Detection 

If we define the residual signal r(t) as r(t) = y(t) — y~(i), assuming o convergence of 

the EKF estimator its components will remain in a bounded band when there is no 

fault present in the system and the real model of the system is close to the model used 

in the fault detection design process. However, when the actual model is affected by 

faults, the Kalman filter predictions will have a larger than usual discrepancy from 

system states. Hence, these proposed nonzero error signals can be interpreted as 

appropriate fault signatures. Nonetheless, it is required to perform some distillation 

on these raw residual signals before they can be used for fault detection. For instance, 

they are very likely to include high frequency oscillations which make fault detection 

very difficult. In order to tackle this problem, a moving average technique has been 

used which filters these high frequency oscillations and facilitates the detection of 

faults. The schematic of this approach is depicted in Figure 4.3. 

(4.67) 
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Figure 4.3: Schematic of the Proposed Fault Detection Approach Based on Extended 

Kalman Filter (EKF) 

After generating the distilled residual signal, the performance of the model is 

simulated for a large number of fault-free circumstances to determine the threshold 

for each residual signal. Therefore, lower and upper bounds will be obtained which 

determine the minimum and maximum values that each residual signal can reach 

under fault-free operating conditions. When the residual signal values are within 

this region no fault is detected; but whenever a distilled residual signal exceeds its 

thresholds, the Fault Detection module will recognize the existence of a fault. 
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4.4 Neural Network Model Based Fault Detection 

Approach 

In this section, an alternative neural network model based approach for fault diagnosis 

is proposed. Subsequently in the next chapter the performance of this approach is 

compared with the performance of the formerly introduced EKF approach. 

This approach is applicable to a general class of nonlinear systems. Therefore, the 

theory would be explained for a general class of nonlinear systems and essentially the 

mobile robot system which we are concerned about would be covered. 

Consider the general multivariable nonlinear dynamic system characterized by the 

following equation [Zhang 02]: 

x = f(x,u) + B(t-T0)<f>(x,u) (4.71) 

where x G Rn is the state vector of the system, u G RTO is the input vector, / , (j> : 

Rn x Rm i-> Rn are a smooth vector fields, and B(t — T0) is a matrix function 

representing the time profile of the faults. The vector fields / and <j> represent the 

dynamics of the nominal model and the change in the system dynamics due to a fault. 

It is noteworthy to mention that it has been assumed here that the system states and 

controls remain bounded before and after the occurrence of the fault; in other words, 

there exist some stability region S C R" x Rm, such that (x(t), u(t)) G <S, Vi > 0. 

As a matter of fact, the reason for introducing such a uniform boundedness as­

sumption is just a formal one. Here, we deal with the design of a fault detection 

scheme based on the measurement of x(t) and u(t). In fact, since no fault accommo­

dation is considered here, the feedback controller must be such that the measurement 

signals x(t) and u(t) remain bounded for all < > 0 before and after the occurrence of 

a fault. Indeed, both of the controllers designed in Chapter 3 satisfy this condition. 
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Nevertheless, it is crucial to emphasize that both of the discussed fault diagnosis 

schemes in this chapter are not dependent on the structure of the controller. In fact, 

it will become more clear later on, that this approach, as well as the EKF approach, 

will make use of x(t) and u(t) to yield the detection decision, but it will not affect the 

behavior of the system at all. In other words, these two schemes are both categorized 

under passive fault detection schemes as described in Section 2.6. 

Regarding the faults affecting the system, from a qualitative perspective, the term 

B(t — T0)(p(x, u) represents the deviation in the system dynamics due to the fault. 

The matrix B(t — T0) describes the time profile of a fault that happens at some 

unknown time T0; and (f>{x, u) denotes the fault function. This description endorses 

both additive and multiplicative faults and even more general nonlinear faults. 

A neural network state estimator has been used to detect faults. Under normal 

and healthy (fault-free) operating conditions this estimator monitors the system while 

under faulty conditions it detects the occurrence of the fault. 

Based on the system characterization in (4.71), the fault detection estimator would 

be as follows: 

x° = f(x,u) + ^(x,u,W°) (4.72) 

where x° is the estimated state vector, x[> : R" x RTO x W t—• Rn is an online neural 

network approximation model and W° represents a vector of adjustable weights of 

the online neural network approximator. 

Artificial neural networks have been broadly used for system identification due 

to their ability to learn complex mappings from a set of examples. The adaptive 

feature, the mapping property and the capability of neural networks to cope with 

uncertainties, make them an appropriate choice for identification and state estimation 

of nonlinear systems. For the same reasons, they are a suitable option for state 

estimation in the process of residual generation in fault detection applications. 
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A number of different types of artificial neural networks have been used for identifi­

cation of nonlinear systems. Notwithstanding, in most cases no mathematical proof of 

stability is provided. For instance backpropagation is broadly used in identification 

and control problems (e.g. see [Narendra 90; Talebi 00]) and is capable of provid­

ing propitious results. Nevertheless, the major disadvantage of the previous works 

on backpropagation is the lack of mathematical proof of stability. The exploited 

approach here is suitable for identification of general multi-input multi-output non­

linear systems . The weight update mechanism is based on a modified propagation 

algorithm [Abdollahi 06]. Antithetic to many other methods, the employed approach 

here neither assumes knowledge of nonlinearities of the system nor that the nonlinear 

system is linear in its parameters. 

4.4.1 The Neural Network Based Identifier 

In general, consider the following nonlinear system: 

x = Jr{x,u) (4.73) 

where u G Rm is the input vector and x € Rn is the state vector of the system and 

F(.) is an unknown nonlinear function. It is assumed that the open loop system 

(4.73) is stable which is the usual assumption in identification procedures. By adding 

and subtracting Ax to the right hand side of (4.73), where A is an arbitrary Hurwitz 

matrix, we would have: 

x = Ax + G(x,u) (4.74) 

where Q(x, u) = T{x, u) — Ax. Based on (4.74), a recurrent network model denoted 

by N can be built by parameterizing the mapping Q by static feedforward neural 

network architectures. Consequently, the following model would be considered for 
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Figure 4.4: Schematic of the Neural Network Identifier 

identification: 

x = Ax + G(x, u) (4.75) 

where x denotes the estimated states. 

The schematic of this identifier is illustrated in Figure 4.4. With respect to the 

Hurwitz matrix A, the matrix M(s) — (si — A)'1 is defined as an n x n matrix whose 

elements are stable transfer functions. It has been shown [Abdollahi 06] that for any 

x restricted to the compact set S of x 6 R™ and for some sufficiently large number 

of hidden layer neurons, there exist weights and thresholds such that any continuous 

function in the compact set S can be represented as: 

g(x, u) = Wa(Vx) + e(x) (4.76) 

where W and V are ideal unknown weight matrices, x = [x u}T, e(x) < e^ is the 

bounded approximation error of the neural network and a(.) is the transfer function 

of the hidden neurons that is commonly considered as a sigmoidal function: 

*w*) = r r J ^ "1 (4-77) 
where Vi is the ith row of V and ai(Vix) is the ith element of a(Vx). Therefore, the 

function Q can be expressed as follows: 

Q(x, u) = Wa(Vx) (4.78) 
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The identifier can then be articulated as follows: 

x = Ax + Wa(Vx) (4.79) 

By defining the identifier error as x — x — x and using (4.74),(4.78) and (4.79) the 

error dynamics can be stated as: 

x = Ax + Wa(Vx) + w(t) (4.80) 

where W = W — W and w(t) = W^[<T(T^E) — a(Vx)] + e(x) is a bounded disturbance 

term. In other words, ||w(£)|| < w for some positive constant w, because of the 

sigmoidal function. According to the proof in [Abdollahi 06], considering the plant 

model (4.71) and identifier model (4.79), if the weights of the artificial neural network 

are updated according to the following equations: 

x BJ 
W = -^(^)-pm\W (4.81) 

oW 
x ST 
V = -V2(-f) - P2\mV (4.82) 

oV 

then x, W, V G L^, i.e., the estimation error and weights errors are bounded. Here, 

Vi> V2 > 0 are learning rates; p\ and p2 are small positive numbers and J = \{xTx) is 

the neural network objective function. It is noteworthy that the first terms in (4.81) 

and (4.82) are the common backpropagation algorithm terms while the last ones are 

modification terms which add extra damping for robustness. 

The exact calculation of the partial derivatives in (4.81) and (4.82) will lead to 

the following weight matrix update formulae: 

& = -^{xFA^fiaiV^Y - fh\\x\\W (4.83) 

V = -rf2(x
TA-1W{I - A(Vx)))T(l)T - p2p||V r (4.84) 

where A(Vx) = diag{af(Vix)}, i = 1,2,..., m. 

Now, by applying this identifier to the system defined in (4.71) one can easily 

calculate y° which is the estimation of the states. 
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Figure 4.5: Schematic of the Proposed Fault Detection Approach Based on Neural 

Networks 

4.4.2 Fault Detection 

Following a similar path as in Section 4.3.5, if we define the residual signal r(t) = 

y(t) — y°(t), due to convergence of the neural network estimator its components will 

remain in a bounded band when there is no fault present in the system and the real 

model of the system is close to the model used in the fault detection design process. 

However, when the actual model is affected by faults, the neural network estimations 

will have a larger than usual discrepancy from system states. Hence, these proposed 

nonzero error signals can be interpreted as appropriate fault signatures. Nonetheless, 

it is required to perform some distillation on these raw residual signals before they can 

be used for fault detection. For instance, they are very likely to include high frequency 

oscillations which make fault detection very difficult. In order to tackle this problem, 

a moving average technique has been used which filters the high frequency oscillations 
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and facilitates the detection of faults. The schematic of this approach is depicted in 

Figure 4.5. 

Again as described in Section 4.3.5, after generating the distilled residual signal, 

the performance of the model is simulated for a large number of fault-free circum­

stances to determine the threshold for each residual signal. So, we would also be able 

to differentiate between normal learning error in the training and faults. Therefore, 

lower and upper bounds are constructed which determine the minimum and maxi­

mum values that each residual signal can reach under fault-free operating conditions. 

When the residual signal values are within this region no fault is detected; but when­

ever a distilled residual signal exceeds its thresholds, the Fault Detection module will 

recognize the existence of a fault. 

4.5 Summary and Conclusions 

In this chapter, two model consistency based approaches have been proposed to tackle 

the problem of fault detection in wheeled mobile robots as a subclass of nonlinear 

systems. The first approach is based on identification of the system via Extended 

Kalman Filtering (EKF). In this approach, a novel residual generation method has 

been introduced which is based on defining the residual as the difference between the 

measured state values and the a priori estimate2 of the state x^ instead of the usual 

estimate of the state. In general, this approach is suitable for all nonlinear systems for 

which the Jacobian is defined. Nonetheless, this approach requires the computation 

of the Jacobian and an inverse matrix at each iteration which might cause some 

numerical instabilities3 In the second approach, an artificial neural network has been 

2This concept has been introduced in Section 4.3.3. 
3A large number of these kind of problems alongside with their solutions have been addressed in 

[Grewal 01]. 
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used as the state estimator. A modified stable back propagation algorithm has been 

used in this part. The benefit of this algorithm is that it neither assumes knowledge of 

nonlinearities of the system nor that the nonlinear system is linear in its parameters. 

This approach is applicable to the general class of nonlinear systems as well. 
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Chapter 5 

Comparative Study and Simulation 

Results 

5.1 Introduction 

In this chapter the performance of the proposed EKF fault diagnosis approach is 

evaluated in different scenarios and under different types of faults. In each case, the 

results are compared with the results of the alternative neural network model based 

approach which is discussed in Section 4.4. The advantages and disadvantages of each 

approach will be discussed in each case. 

In all the simulation results shown in this chapter, a random signal of the magni­

tude less than 10 - 3 N.m. is considered as the representative of external disturbance. 

Moreover, the measurement noise is considered to be random signal in the range of 

±1CT2 m for x, y and ±10~2 rad for 9. 
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5.2 Controller Performance Under Faulty Condi­

tions 

As the first step towards fault diagnosis design we should analyze the impact of 

different categories of faults on the controlled WMR. Two different types of faults are 

considered here. Firstly, the effects of a locked in place fault1 in the actuator2 of the 

driving subsystem of a WMR in the presence of dynamic linear control and feedback 

linearization control are investigated. The same procedure is then followed for a loss 

of effectiveness fault3 in the actuator of the driving subsystem. 

In the considered scenario here the objective of the wheeled mobile robot is to 

track a trajectory which is described by Equation (5.1), namely 

xd(t) = A1sin(f1t) yd(t) = A2sin(f2t) te[0,T\ (5.1) 

Numerical simulation results are provided for the eight-shaped reference trajectory 

where Ax = 3, A2 = 4, ft = 1 and f2 = 0.5. 

5.2.1 Locked In Place Fault 

Under this scenario the actuator signal of the driving subsystem would remain at a 

fixed value from a certain point of time (here tf — 15s) onward. In other words, 

the actuator response which sets the speed (v) of the WMR would not change after 

the occurrence of such a fault. We would like to see how this fault might affect the 

trajectory tracking of the WMR. 

1This is a common type of fault which is usually considered for case studies. For more details 

see p. 25 of [Simani 03] 
2The reason for considering actuator faults is addressed in Section 1.1 and Table 1.1 
3This is another common type of fault which is usually considered for case studies. For more 

details see p. 25 of [Simani 03] 



Chapter 5. Comparative Study and Simulation Results 78 

In order to see how different controllers react to this type of fault, simulation 

results are given for a wheeled mobile robot under both dynamic linear control and 

feedback linearization based control. 

Dynamic Linear Controller Performance 

In this case the wheeled mobile robot is controlled by the dynamic controller described 

in Section 3.4.2 and is tracking its desired trajectory when a fault occurs at tf — 15s. 

As described before, here the fault has occurred only in the driving subsystem. 

As a result, only v in the governing equations (3.4) has been affected directly. But, 

due to the existence of feedback signals in the control loops, the effect of this driving 

signal fault can be slightly observed in the steering signal as well. This phenomenon 

is observable in Fig. 5.1(a) and Fig. 5.1(b). 

In Fig. 5.1(c) it can be seen that this fault causes wheeled mobile robot to leave its 

desired track completely. As a result, the norm of its tracking error starts to increase 

without a bound (Fig. 5.1(d)). 

Feedback Linearization Based Controller Performance 

In this case the wheeled mobile robot is controlled by the dynamic feedback lineariza­

tion based controller described in Section 3.4.3 and is tracking its desired trajectory 

when a fault occurs at tf = 15s. 

As can be seen in Fig. 5.2(a) and Fig. 5.2(b), similar to the previous case, 

the occurrence of fault in the driving subsystem affects the steering subsystem. By 

comparing Fig. 5.2(b) and Fig. 5.1(b), one can note that the effect of this impact is 

stronger in this case than the previous case. 

With reference to Fig. 5.2(c) one can observe that although the occurrence of 

the fault causes the mobile robot to divert from its desired trajectory, the norm of 
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Figure 5.1: Dynamic Linear controller performance in the presence of a locked in 

place fault which has occurred at t = 15s 

the trajectory tracking error is much less than the previous case (by comparing Fig. 

5.1(d) with Fig. 5.2(d)). 

In summary, the impact of the locked in place fault on the trajectory tracking per­

formance of the wheeled mobile robot is more observable when the robot is controlled 

by the dynamic linear controller rather than the dynamic feedback linearization based 

controller. This fact, makes fault detection easier in the former case while harder in 

the latter. According to the aircraft incident that was described in Section 2.6, this 

robustness might be able to mask the occurrence of a fault. 
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Figure 5.2: Dynamic feedback linearization controller performance in the presence of 

a locked in place fault which has occurred at t = 15s 

5.2.2 Loss of Effectiveness Fault 

In this scenario due to the loss of actuator effectiveness fault from a certain given 

time onwards the system would receive only a certain percentage of the actuator 

signal which it should have. Consequently, the actuator response which sets the speed 

(v) of the WMR would be weaker than the required amount for the desired control. 

Hence, we would like to see how this fault might affect the trajectory tracking of the 

wheeled mobile robot. In the given numerical simulation results the loss of actuator 

effectiveness is assumed to be 50%. 
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Dynamic Linear Controller Performance 

In this case the wheeled mobile robot is controlled by the dynamic controller described 

in Section 3.4.2 and is tracking its desired trajectory when a fault occurs at tf = 15s. 

As shown in Fig. 5.3(a) and Fig. 5.3(b), due to the feedback mechanism and design 

of this type of controller, the loss is recognized and to some extent compensated by 

the controller itself. Although the wheeled mobile robot deviates from its desired 

trajectory, it follows a trajectory with a very similar shape and close distance to the 

desired trajectory (See Fig. 5.3(c)). As a result, the norm of the tracking error -as 

illustrated in Fig. 5.3(d)- will remain rather small. 

Feedback Linearization Based Controller Performance 

In this case the wheeled mobile robot is controlled by the dynamic feedback lineariza­

tion based controller described in Section 3.4.3 and is tracking its desired trajectory 

when a fault occurs at tf = 15s. 

As shown in Fig. 5.4(a), the dynamic feedback linearization based controller tries 

to compensate the loss of control. Moreover, the impact of the fault in the driving 

subsystem on the steering subsystem is rather small (See Fig. 5.4(b)). Overall, as 

shown in Fig. 5.4(d) the deviation of the mobile robot from its desired trajectory 

would not be very large. 

5.3 Convergence Properties of EKF 

The performance of the proposed EKF based fault diagnosis technique is very much 

dependent on the identification performance of the Extended Kalman Filter. Hence, 

it is reasonable to investigate the identification performance of the Extended Kalman 

Filter itself before moving on to the next step which is studying the performance of the 
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Figure 5.3: Dynamic linear controller performance in the presence of a 50% loss of 

effectiveness fault which has occurred at t = 15s 

proposed EKF based fault diagnosis technique. In order to do so, estimation under 

healthy conditions has been numerically simulated. In other words, it is assumed that 

the Wheeled Mobile Robot (WMR) is tracking the eight-shaped reference trajectory 

depicted in Figure 3.1 under fault-free conditions and then x, y and 6 are estimated 

by the EKF. As shown in Fig. 5.5(a), Fig. 5.5(b) and 5.5(c) the estimation error 

norms for x, y and 6 would be 0.015, 0.01 and 0.01, respectively. For this simulation 

it is assumed that wk ~ JV(0,10"3), vk ~ N(0,10~2) and P 0 = 10_3I (with respect 

to the formulation described in Section 4.3.4). 
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Figure 5.4: Dynamic feedback linearization controller performance in the presence of 

a 50% loss of effectiveness fault which has occurred at t — 15s 

It is noteworthy that the convergence of the EKF -from a theoretical point of 

view- has been investigated by many researchers (e.g. see [Krener 02; Boutayeb 97]). 

5.4 Permanent-Fault Detection Through EKF Ap­

proach 

In this section the performance of the proposed EKF fault detection technique in the 

presence of permanent faults is investigated. Permanent faults are the group of faults 
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(a) Estimation Error of x (m) (b) Estimation Error of y (m) 

(c) Estimation Error of 9(rad) 

Figure 5.5: Performance of the EKF State Estimator 

which do not disappear after their occurrence. As before, both locked-in-place and 

loss-of-effectiveness faults are considered and in each of these two cases the EKF fault 

detection technique is applied to two different scenarios. In one scenario, the wheeled 

mobile robot is controlled by the dynamic linear controller (see Section 3.4.2) while 

in the other scenario the wheeled mobile robot is controlled by the dynamic feedback 

linearization controller (see Section 3.4.3). In this section, we assume that only the 

driving subsystem of the wheeled mobile robot is subject to fault. 

5.4.1 Locked In Place Fault in the Driving Subsystem (v) 

Under this scenario, the actuator signal of the driving subsystem would freeze at a 

certain point of time (£/ = 15s); in other words, the actuator response which sets the 

speed (v) of the WMR would not change after the occurrence of such a fault. We 
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would like to see how this fault might affect the trajectory tracking of the WMR. 

In order to see how different controllers react to this type of fault, simulation 

results are given for a wheeled mobile robot under both dynamic linear control and 

feedback linearization based control. 

• Dynamic Linear Controller 

Here, it is assumed that the wheeled mobile robot is controlled by the dynamic 

linear approach described in Section 3.4.2. The fault has occurred at tfauit = 

15s. 

According to Fig. 5.6(a), the residual signal for x exceeds its fault detection 

threshold sustainedly at t = 25s; in addition, Fig. 5.6(b) shows that the resid­

ual signal for y exceeds its fault detection threshold sustainedly at t — 30s. 

The residual signal for 9 never exceeds its threshold value. Therefore, we can 

definitely conclude the existence of a fault after t = 30s. 

• Feedback Linearization Based Controller 

In the numerical simulation results shown, it is assumed that the wheeled mobile 

robot is controlled by the dynamic feedback linearization based approach as 

described in Section 3.4.3. The fault has occurred at tfauit = 15s. 

With reference to Fig. 5.15(a), the residual signal for x exceeds its fault detec­

tion threshold sustainedly at t = 30s; in addition Fig. 5.7(b) shows that the 

residual signal for y exceeds its fault detection threshold sustainedly at t — 23s. 

The residual signal for 9 in 5.7(c) never exceeds its threshold value. Therefore, 

we can definitely conclude the existence of a fault after t = 30s. 
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Figure 5.6: EKF Fault Detection Approach for System Subject to Locked In Place 

Fault under Dynamic Linear Control 

5.4.2 Loss of Effectiveness Fault in the Driving Subsystem 

(v) 

In this scenario, due to the loss of actuator effectiveness, from a certain time onwards 

the system would receive only a certain percentage of the actuator signal. As a result 

the actuator response which sets the speed (v) of the WMR would be weaker than 

the required amount for the desired control. Hence, we would like to see how this 

fault might affect the trajectory tracking of the wheeled mobile robot. 

• Dynamic Linear Controller 

The dynamic linear controller designed in Section 3.4.2 is exploited here. The 

fault has occurred at tfauit — 15s. 
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Figure 5.7: EKF Fault Detection Approach for System Subject to Locked In Place 

Fault under Feedback Linearization Based Control 

- 80% Loss of Effectiveness 

With reference to Fig. 5.8(a), the residual signal for x exceeds its fault de­

tection threshold sustainedly at t — 19s; in addition Fig. 5.8(b) shows that 

the residual signal for y exceeds its fault detection threshold sustainedly 

at t — 19s. The residual signal for 9 in 5.8(c) never exceeds its thresh­

old value. Hence, we can definitely conclude the existence of a fault after 

t = 19s. 

— 50% Loss of Effectiveness 

As shown in Fig. 5.9(a), the residual signal for x exceeds its fault detection 

threshold sustainedly at t — 23s; in addition Fig. 5.9(b) shows that the 

residual signal for y exceeds its fault detection threshold sustainedly at 
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(a) Residual for x (m) (b) Residual for y (m) 

(c) Residual for 6(rad) 

Figure 5.8: EKF Fault Detection Approach for System Subject to 80% Loss of Effec­

tiveness Fault under Dynamic Linear Control 

t = 26s. The residual signal for 9 in 5.9(c) never exceeds its threshold 

value. Therefore, we can definitely conclude the existence of a fault after 

t = 26s. 

- 20% Loss of Effectiveness 

As shown in Fig. 5.8(a), Fig. 5.8(b) and Fig.5.8(c) the residuals never 

exceed their threshold values. Hence, we cannot conclude the existence of 

a fault. 

Dynamic Feedback Linearization Controller 

The dynamic feedback linearization controller designed in Section 3.4.3 is ex­

ploited now. The fault has occurred at tfauit — 15s. 
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Figure 5.9: EKF Fault Detection Approach for System Subject to 50% Loss Of Ef­

fectiveness Fault under Dynamic Linear Control 

— 80% Loss of Effectiveness 

As illustrated in Fig. 5.11(a), the residual signal for x exceeds its fault 

detection threshold sustainedly at t = 26s; in addition Fig. 5.11(b) shows 

that the residual signal for y exceeds its fault detection threshold sus­

tainedly at t = 19s. The residual signal for 9 in 5.11(c) never exceeds its 

threshold value. Hence, we can definitely conclude the existence of a fault 

after t = 26s. 

— 50% Loss of Effectiveness 

As shown in Fig. 5.12(a), the residual signal for x exceeds its fault detec­

tion threshold sustainedly at t = 24s; in addition, Fig. 5.12(b) shows that 

the residual signal for y exceeds its fault detection threshold sustainedly 
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Figure 5.10: EKF Fault Detection Approach for System Subject to 20% Loss Of 

Effectiveness Fault under Dynamic Linear Control 

at t — 27s. The residual signal for 9 in 5.12(c) never exceeds its threshold 

value. Therefore, we can definitely conclude the existence of a fault after 

t = 27s. 

- 20% Loss of Effectiveness 

With reference to Fig.5.13(a), Fig. 5.13(b) and Fig. 5.13(c) the residu­

als never exceed their threshold values. Hence, we cannot conclude the 

existence of a fault. 

s i _ — 1 _ — 1 _ — i — i — i — i — i — i 
0 5 10 15 20 25 30 35 40 

Ms) 



Chapter 5. Comparative Study and Simulation Results 91 

Table 5.1: Permanent-Fault detection time fc delay for the EKF approach 

Type of Fault 

Locked in place 

Loss of effectiveness 

(80%) 

Loss of effectiveness 

(50%) 

Loss of effectiveness 

(20%) 

Type of Controller 

Dynamic Linear 

Dynamic Feedback Linearization 

Dynamic Linear 

Dynamic Feedback Linearization 

Dynamic Linear 

Dynamic Feedback Linearization 

Dynamic Linear 

Dynamic Feedback Linearization 

Fault 

Injection 

Time (s) 

15 

15 

15 

15 

15 

15 

15 

15 

Fault 

Detection 

Time (s) 

30 

30 

19 

26 

26 

27 

Not 

Detected 

Not 

Detected 

Fault 

Detect ion 

Delay (s) 

15 

15 

4 

4 

11 

12 

Not 

Detected 

Not 

Detected 
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Figure 5.11: EKF Fault Detection Approach for System Subject to 

Effectiveness Fault under Feedback Linearization Based Control 

fo Loss Of 

5.5 Permanent-Fault Detection Through Neural Net­

work Approach 

In this section, the performance of our proposed neural network model consistency 

fault detection technique in the presence of permanent faults is investigated. Perma­

nent faults are the group of faults which do not disappear after their occurrence. As 

before, both locked-in-place and loss-of-effectiveness faults are considered; and in each 

case the EKF fault detection technique is applied to two different scenarios. In the 

first scenario, the wheeled mobile robot is controlled by the dynamic linear controller 

(see Section 3.4.2) while in the second scenario the wheeled mobile robot is controlled 

by the dynamic feedback linearization controller (see Section 3.4.3). In this section, 
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Figure 5.12: EKF Fault Detection Approach for System Subject to 50% Loss of 

Effectiveness Fault under Feedback Linearization Based Control 

we assume that only the driving subsystem of the wheeled mobile robot is subject to 

fault. 

5.5.1 Locked In Place Fault in the Driving Subsystem (v) 

Under this scenario, the actuator signal of the driving subsystem would freeze at a 

certain point of time (say tj = 15s). In other words, the actuator response which 

sets the speed (v) of the WMR would not change after the occurrence of such a fault. 

We would like to determine how this fault might affect the trajectory tracking of the 

WMR. 

In order to determine how different controllers react to this type of fault, simula­

tion results are given for a wheeled mobile robot under both dynamic linear control 
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Figure 5.13: EKF Fault Detection Approach for System Subject to 20% Loss of 

Effectiveness Fault under Feedback Linearization Based Control 

and feedback linearization based control. 

• Dynamic Linear Controller 

It is assumed that the wheeled mobile robot is controlled by the dynamic linear 

approach described in Section 3.4.2. The fault has occurred at tfauit = 15s. 

According to Fig. 5.14(a), the residual signal for x exceeds its fault detection 

threshold sustainedly at t = 17s; in addition, Fig. 5.14(b) shows that the 

residual signal for y exceeds its fault detection threshold sustainedly at t — 18s. 

The residual signal for 9, depicted in Fig. 5.14(c) exceeds its threshold value at 

t = 21s. Hence, we can definitely conclude the existence of a fault after t = 18s. 

• Feedback Linearization Based Controller 
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Figure 5.14: Neural Network-based Fault Detection Approach Subject to Permanent 

Locked In Place Fault under Dynamic Linear Control 

In the simulation results shown here it is assumed that the wheeled mobile robot 

is controlled by the dynamic feedback linearization based approach described 

in Section 3.4.3. 

According to Fig. 5.15(a), the residual signal for x exceeds its fault detection 

threshold sustainedly at t = 18s; in addition, Fig. 5.15(b) shows that the 

residual signal for y exceeds its fault detection threshold sustainedly at t = 21s. 

The residual signal for 0, depicted in 5.15(c), exceeds its threshold value at 

t = 20s. Hence, we can definitely conclude the existence of a fault after t = 20s. 
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Figure 5.15: Neural Network-based Fault Detection Approach Subject to Permanent 

Locked In Place Fault under Feedback Linearization Based Control 

5.5.2 Loss of Effectiveness Fault in the Driving Subsystem 

(v) 

In this scenario, due to the loss of actuator effectiveness, from a certain time onward 

the system would receive only a certain percentage of the actuator signal. As a result 

the actuator response which sets the speed (v) of the WMR would be weaker than 

the required amount for the desired control. Hence, we would like to see how this 

fault might affect the trajectory tracking of the wheeled mobile robot. 

• Dynamic Linear Controller 

The dynamic linear controller designed in Section 3.4.2 is exploited here. 

— 80% Loss of Effectiveness 



Chapter 5. Comparative Study and Simulation Results 97 

According to Fig. 5.16(a), the residual signal for x exceeds its fault detec­

tion threshold sustainedly at t = 15.5s; in addition Fig. 5.16(b) shows that 

the residual signal for y exceeds its fault detection threshold sustainedly at 

t = 17s. The residual signal for 9 ,depicted in 5.16(c), exceeds its threshold 

value at t — 17s. Hence, we can definitely conclude the existence of a fault 

after t — 17s. 
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Figure 5.16: Neural Network-based Fault Detection Approach Subject to 80% Per­

manent Loss Of Effectiveness Fault under Dynamic Linear Control 

- 50% Loss of Effectiveness 

According to Fig. 5.17(a), the residual signal for x exceeds its fault detec­

tion threshold sustainedly at t = 16.5s; in addition Fig. 5.17(b) shows that 

the residual signal for y exceeds its fault detection threshold sustainedly at 

t = 20s. The residual signal for 9, depicted in 5.17(c), exceeds its threshold 
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value at t = 35s. Hence, we can definitely conclude the existence of a fault 

after t = 20s. 
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Figure 5.17: Neural Network-based Fault Detection Approach Subject to 50% Per­

manent Loss Of Effectiveness Fault under Dynamic Linear Control 

— 20% Loss of Effectiveness 

According to Fig. 5.18(a), the residual signal for x exceeds its fault detec­

tion threshold sustainedly at t = 25s; in addition Fig. 5.18(a) shows that 

the residual signal for y exceeds its fault detection threshold sustainedly 

at t = 30s. The residual signal for 6, depicted in 5.18(c), never exceeds its 

threshold value. Hence, we can definitely conclude the existence of a fault 

after t = 30s. 

• Dynamic Feedback Linearization Based Controller 
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Figure 5.18: Neural Network-based Fault Detection Approach Subject to 20% Per­

manent Loss Of Effectiveness Fault under Dynamic Linear Control 

The dynamic feedback linearization controller designed in 3.4.3 has been ex­

ploited here. 

— 80% Loss of Effectiveness 

According to Fig. 5.19(a), the residual signal for x exceeds its fault detec­

tion threshold sustainedly at t = 18s; in addition Fig. 5.19(b) shows that 

the residual signal for y exceeds its fault detection threshold sustainedly 

at t = 22s. The residual signal for 0, depicted in 5.19(c) never exceeds its 

threshold value. Hence, we can definitely conclude the existence of a fault 

after t = 22s. 

— 50% Loss of Effectiveness 

According to Fig. 5.20(a), the residual signal for x exceeds its fault detec-
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Figure 5.19: Neural Network-based Fault Detection Approach Subject to 80% Per­

manent Loss Of Effectiveness Fault under Feedback Linearization Based Control 

tion threshold sustainedly at t = 19s; in addition Fig. 5.20(b) shows that 

the residual signal for y exceeds its fault detection threshold sustainedly 

at t — 31s. The residual signal for 9 never exceeds its threshold value. 

Therefore, we can definitely conclude the existence of a fault after t = 31s. 

— 20% Loss of Effectiveness 

According to Fig. 5.6(a), the residual signal for x exceeds its fault detection 

threshold sustainedly at t = 19s. The residual signals for 9 and y never 

exceed their threshold value. Hence, we cannot conclude the existence of 

a fault surely. 
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Table 5.2: Permanent-Fault detection time & delay for the neural network model 

consistency based approach 

Type of Fault 

Locked in place 

Loss of effectiveness 

(80%) 

Loss of effectiveness 

(50%) 

Loss of effectiveness 

(20%) 

Type of Controller 

Dynamic Linear 

Dynamic Feedback Linearization 

Dynamic Linear 

Dynamic Feedback Linearization 

Dynamic Linear 

Dynamic Feedback Linearization 

Dynamic Linear 

Dynamic Feedback Linearization 

Fault 

Injection 

Time (s) 

15 

15 

15 

15 

15 

15 

15 

15 

Fault 

Detect ion 

Time (s) 

18 

20 

17 

22 

20 

31 

30 

Not 

Detected 

Fault 

Detect ion 

Delay (s) 

3 

5 

2 

7 

5 

16 

15 

Not 

Detected 
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Figure 5.20: Neural Network-based Fault Detection Approach Subject to 50% Per­

manent Loss Of Effectiveness Fault under Feedback Linearization Based Control 

5.6 Intermittent-Fault Detection Through EKF Ap­

proach 

In this section, the performance of our proposed EKF fault detection technique in 

the presence of intermittent faults is investigated. Intermittent faults are the group 

of faults which disappear after a specific period of time. As before, both locked-in-

place and loss-of-effectiveness faults are considered; and in each case, the EKF fault 

detection technique is applied to two different scenarios. In the first scenario, the 

wheeled mobile robot is controlled by the dynamic linear controller (see Section 3.4.2) 

while in the second scenario the wheeled mobile robot is controlled by the dynamic 

feedback linearization controller (see Section 3.4.3). In this section, we assume that 
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Figure 5.21: Neural Network-based Fault Detection Approach Subject to 20% Per­

manent Loss Of Effectiveness Fault under Feedback Linearization Based Control 

only the driving subsystem of the wheeled mobile robot is subject to fault. 

5.6.1 Locked In Place Fault in the Driving Subsystem (v) 

Under this scenario, the actuator signal of the driving subsystem would freeze at a 

given point of time ; in other words, the actuator response which sets the speed (v) 

of the WMR would not change after the occurrence of such a fault. We would like to 

determine how this fault might affect the trajectory tracking of the WMR. 

In order to see how different controllers react to this type of fault, simulation 

results are given for a wheeled mobile robot under both dynamic linear control and 

feedback linearization based control. 

• Dynamic Linear Controller It is assumed that the wheeled mobile robot is 

: j . [ 

! • • • ; ; . 1 
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controlled by the dynamic linear approach described in Section 3.4.2.The fault 

has occurred at tfauit — 15s and has disappeared at tfauit_end = 25s. With 

reference to Fig. 5.22(a) and Fig. 5.22(b), we can confirm the existence of a 

fault in the driving subsystem between t = 22s and t = 38s. 
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Ms) 1(») 

(a) Residual for x (m) (b) Residual for y (m) 

(c) Residual for 0(rad) 

Figure 5.22: EKF Fault Detection Approach Subject to Intermittent Locked In Place 

Fault under Dynamic Linear Control 

• Feedback Linearization Based Controller In the simulation results shown 

here, it is assumed that the wheeled mobile robot is controlled by the dynamic 

feedback linearization based approach described in Section 3.4.3. The fault has 

occurred at tfauit = 15s and has disappeared at tfauite,nc[ = 25s. With reference 

to Fig. 5.23(a), Fig. 5.23(b) and Fig. 5.23(c) we cannot confirm the existence 

of a fault during this period. 
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Figure 5.23: EKF Fault Detection Approach Subject to Intermittent Locked In Place 

Fault under Feedback Linearization Based Controller 

5.6.2 Loss Of Effectiveness Fault in the Driving Subsystem 

(v) 

In this scenario, due to the loss of actuator effectiveness, from a certain time onward 

the system would receive only a certain percentage of the actuator signal which it 

should have. As a result, the actuator response which sets the speed (v) of the WMR 

would be weaker than the required amount for the desired control.Hence, we would 

like to see how this fault might affect the trajectory tracking of the wheeled mobile 

robot. 

• Dynamic Linear Controller Here, it is assumed that the wheeled mobile 

robot is controlled by the dynamic linear approach described in Section 3.4.2.The 
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fault has occurred at tfauit = 15s and has disappeared at tfauit_end = 25s. With 

reference to Fig. 5.24(a) and Fig. 5.24(b), we can confirm the existence of a 

fault in the driving subsystem between t = 19s andt = 42s. 
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Figure 5.24: EKF Fault Detection Approach Subject to 80% Intermittent (between 

15s and 25s) Loss Of Effectiveness Fault under Dynamic Linear Control 

• Feedback Linearization Based Controller In the numerical simulation re­

sults here, it is assumed that the wheeled mobile robot is. controlled by the 

dynamic feedback linearization based approach described in Section 3.4.3. Ac­

cording to Fig. 5.24(a) and Fig. 5.24(b), we can confirm the existence of a fault 

in the driving subsystem between t = 25s and t = 45s. 
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Figure 5.25: EKF Fault Detection Approach Subject to 80% Intermittent (between 15s 

and 25s) Loss Of Effectiveness Fault under Feedback Linearization Based Controller 

5.7 Intermittent-Fault Detection Through Neural 

Network Approach 

In this section, the performance of the proposed neural network model consistency 

fault detection technique in the presence of intermittent faults is investigated. Inter­

mittent faults are the group of faults which disappear after a specific period of time. 

As usual, both locked-in-place and loss-of-effectiveness faults have been considered; 

and in each of these two cases, the EKF fault detection technique has been applied 

to two different scenarios. In one scenario, the wheeled mobile robot is controlled 

by the dynamic linear controller (see Section 3.4.2) while in the other scenario the 

wheeled mobile robot is controlled by the dynamic feedback linearization controller 
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Table 5.3: Intermittent-Fault detection time &; delay for the EKF approach 

Type of 

Fault 

Locked in place 

Loss of 

effectiveness 

(80%) 

T y p e of 

Controller 

Dynamic Linear 

Dynamic Feedback 

Linearization 

Dynamic Linear 

Dynamic Feedback 

Linearization 

Fault 

Appearance 

<") 

15 

15 

15 

15 

Fault 

Appearance 

Detec t ion 

00 

22 

-

19 

25 

Fault 

Disappearance 

(») 

25 

25 

25 

25 

Fault 

Disappearance 

D e t e c t i o n (s) 

38 

-

42 

45 

(see Section 3.4.3). In this section, we assume that only the driving subsystem of the 

wheeled mobile robot has been subject to fault. 

5.7.1 Locked In Place Fault in Driving Subsystem (v) 

Under this scenario, the actuator signal of the driving subsystem would freeze at a 

certain point of time (here tf = 15s); In other words, the actuator response which 

sets the speed (v) of the WMR would not change after the occurrence of such a fault. 

We would like to see how this fault might affect the trajectory tracking of the WMR. 

In order to see how different controllers react to this type of fault, simulation 

results are given for a wheeled mobile robot under both dynamic linear control and 

feedback linearization based control. 

• Dynamic Linear Controller Here, it is assumed that the wheeled mobile 

robot is controlled by the dynamic linear approach described in 3.4.2. The fault 
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has occurred at tfauit = 15s and has disappeared at t/auu.end — 25s. With 

reference to 5.26(a) and 5.26(b), we can confirm the existence of a fault in the 

driving subsystem between t = 20s andt = 38s. 
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Figure 5.26: NN Fault Detection Approach Subject to Intermittent Locked In Place 

Fault under Dynamic Linear Control 

• Feedback Linearization Based Controller In the numerical simulation re­

sults here, it is assumed that the wheeled mobile robot is controlled by the 

dynamic feedback linearization based approach described in Section 3.4.3.The 

fault has occurred at tfauit — 15s and has disappeared at tfauit_end = 25s. Ac­

cording to 5.27(a) and 5.27(b), we can confirm the existence of a fault in the 

driving subsystem between t = 22s and£ = 78s 
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Figure 5.27: NN Fault Detection Approach Subject to Intermittent Locked In Place 

Fault under Feedback Linearization Based Control 

5.7.2 Loss Of Effectiveness Fault in Driving Subsystem (v) 

In this scenario, due to the loss of actuator effectiveness, from a certain time onward 

the system would receive only a certain percentage of the actuator signal which it 

should have. As a result, the actuator response which sets the speed (v) of the WMR 

would be weaker than the required amount for the desired control. Hence, we would 

like to see how this fault might affect the trajectory tracking of the wheeled mobile 

robot. 

• Dynamic Linear Controller Here, it is assumed that the wheeled mobile 

robot is controlled by the dynamic linear approach described in 3.4.2.The fault 

has occurred at tfauit = 15s and has disappeared at tfauit_end — 25s. According 
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to 5.28(a) and 5.28(b), we can confirm the existence of a fault in the driving 

subsystem between t = 23s andi = 92s 
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(c) Residual for 9(rad) 

Figure 5.28: NN Fault Detection Approach Subject to 80% Intermittent(between 15s 

and 25s) Loss Of Effectiveness Fault under Dynamic Linear Control 

• Feedback Linearization Based Controller In the numerical simulation re­

sults here, it is assumed that the wheeled mobile robot is controlled by the 

dynamic feedback linearization based approach described in Section 3.4.3. The 

fault has occurred at tfauit — 15s and has disappeared at tfauiten(i = 25s. With 

reference to 5.29(a) and 5.29(a), we can confirm the existence of a fault in the 

driving subsystem between t = 23s andt = 46s. 
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(a) Residual for x (m) (b) Residual for y (m) 

(c) Residual for 9(rad) 

Figure 5.29: NN Fault Detection Approach Subject to 80% Intermittent (between 15s 

and 25s) Loss Of Effectiveness Fault under Feedback Linearization Based Controller 

5.8 Summary and Conclusions 

In Section 5.2.1, the impact of the locked in place fault on the trajectory tracking 

performance of a wheeled mobile robot under both dynamic linear controller and 

dynamic feedback linearization controller has been studied. With regard to Figure 

5.1(d) and 5.2(d), it is evident that the wheeled mobile robot under dynamic linear 

controller is much more affected in comparison to the wheeled mobile robot under 

dynamic feedback linearization controller. In other words, the dynamic feedback 

linearization controller shows a more robust reaction to this kind of fault. 

In Section 5.2.2, the impact of the loss of effectiveness fault on the trajectory 

tracking performance of a wheeled mobile robot under both dynamic linear controller 
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Table 5.4: Intermittent-Fault detection time & delay for the neural network model 

consistency based approach 

Type of 

Fault 

Locked in place 

Loss of 

effectiveness 

(80%) 

T y p e of 

Controller 

Dynamic Linear 

Dynamic Feedback 

Linearization 

Dynamic Linear 

Dynamic Feedback 

Linearization 

Fault 

Appearance 

(s) 

15 

15 

15 

15 

Fault 

Appearance 

D e t e c ­

t i o n ^ ) 

20 

22 

23 

23 

Fault 

Disappearance 

(») 

25 

25 

25 

25 

Fault 

Disappearance 

Detec t ion( s ) 

38 

78 

92 

46 

and dynamic feedback linearization controller has been studied. With regard to Figure 

5.3(d) and 5.4(d), it is observed that the impact of the fault on the performance of 

both these controllers is rather similar and the overall level of impact is much less 

than the impact of locked in place fault. Comparing Table 5.4.2 and Table 5.5.2 

shows that, with regard to Permanent-Faults, for large loss of effectiveness faults the 

extended Kalman filter approach has a better performance than the neural network 

approach. But for detecting locked in place faults and small loss of effectiveness 

faults the performance of the neural network approach is better. These two table 

imply that small loss of effectiveness faults under a robust controller like the dynamic 

feedback linearization controller are not detectable4. With regard to Intermittent-

Fault detection, comparing Table 5.6.2 and Table 5.7.2 shows that the extended 

4This is related to the phenomenon addressed in the aircraft incident story in Section 2.6. 
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Kalman filter approach has a much better capability in detecting the disappearance 

of the fault than neural network approach. 
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Chapter 6 

Concluding Remarks 

6.1 Conclusions 

This thesis has investigated two model consistency based approaches for fault diagno­

sis in wheeled mobile robots (WMR). In the considered application, a nonholonomic 

wheeled mobile robot was required to track a predefined trajectory in an obstacle free 

environment. 

As the first step, two different types of controllers are designed to guarantee that 

the mobile robot is capable of tracking the desired trajectory. However, the actua­

tors, of the different mobile robot subsystems, which perform the control commands 

are vulnerable to a number of faults. The major two subsystems whose actuators 

might affect the vital mobility feature of the wheeled mobile robot and cause un­

wanted deviations from the desired path include the driving subsystem and the the 

steering subsystem. The driving subsystem is responsible for linear velocity (v) of the 

mobile robot, while the steering subsystem is in charge of the angular velocity (to) 

of the wheeled mobile robot. In particular, loss of effectiveness and locked in place 

signals have been considered as two principal faults which might impact those two 
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subsystems. 

In search for the goal of detecting the occurrence of faults in WMR subsystems, 

two different model consistency based fault detection approaches have been proposed. 

The first approach, is based on identification of the system through an Extended 

Kalman Filter (EKF). A novel technique for residual generation has been proposed. 

The performance of the proposed fault detection approach has been studied in tra­

jectory tracking of wheeled mobile robots which is a common application of these 

mobile apparatus. It has been shown that the robustness of the controller has a very 

slight impact on this detection scheme and will not be able to mask the occurrence 

of faults. 

The second approach, is based on identification of the system through a stable 

neural network. A novel model consistency based approach has been proposed which 

does not suffer from lack of proof for stability as a large number of other neural 

network based approaches do. The application of the proposed approach in fault 

detection amid a trajectory tracking mission of a mobile robot has been studied. 

It has been shown that the robustness of the controller slightly impacts the fault 

detection procedure and the amount of fault detection delay time. 

As described in Section 5.8, the overall performance of the extended Kalman 

filter approach can be considered slightly better than the neural network approach 

because it is not only capable of detecting the occurrence of faults but also capable 

of rather quick detection of disappearance of the fault in case of intermittent faults. 

Nevertheless, it should be noted that the neural network approach sometime performs 

better in case of existence of permanent faults and in case of existence of small faults 

under rather robust controllers like the feedback linearization controller. 

In summary, the main contributions of this thesis can be outlined as follows: 
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• Design of a fault detection approach based on Extended Kalman Filters (EKF) 

for a wheeled mobile robot (WMR) which is tracking a predefined trajectory in 

an obstacle free environment. 

• Introduction of a new way of residual generation with Extended Kalman Fil­

ters (EKF) based state prediction. The residual generation approach is novel 

because it is based on defining the residual as the difference between the mea­

sured state values and the a priori estimate1 of the state x^ instead of the usual 

estimate of the state. 

• Design of a fault detection approach based on Artificial Neural Networks for a 

wheeled mobile robot (WMR) which is tracking a predefined trajectory in an 

obstacle free environment. 

6.2 Future Research Directions 

Although fault diagnosis techniques have been rather well developed for linear systems 

in the recent decades, they are far from maturity in field of nonlinear systems and 

their applications. The following are some of the many different subjects which could 

be considered as the future research directions in this field: 

Fault isolation and recovery, are two crucial steps after fault detection. As ob­

served in this thesis, the proposed approaches were not capable of isolating all faults. 

Whereas, in a real world situation, the fault detection step should lead to further 

steps of handling a fault which are isolation and recovery phases. 

Fault prognosis, is another issue of interest. This step which can be added in the 

overall strategy for handling faults would lead to condition based maintenance; as a 

1This concept has been introduced in Section 4.3.3. 
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result, it would be of great practical and economic interest to develop such schemes. 

Active fault diagnosis for nonlinear systems and mobile robots is still an open 

problem. Although this issue has been studied for linear systems, it has remained 

almost untouched for nonlinear systems like mobile robots. 

As a matter of fact, there are a large number of open problems in the area of fault 

diagnosis for nonlinear systems in general and for mobile robots in particular. Here, 

we have tried to discuss the most undeveloped issues. 
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