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ABSTRACT
Multimodal Biometric System Based on Face and Hand Images Taken by
a Cell Phone

Joanna Rokita

One of the methods to improve the recognition rate of humans is multimodal biometrics,
which is based on more than one physiological or behavioral characteristics to identify
an individual. Multimodal biometrics improves not only the performance, but also
nonuniversality and spoofing that are commonly encountered in unibiometric systems.
In this thesis, we built a multibiometric system that works on face and hand images
taken by a camera built into a cell phone. The multimodal fusion is done at the
feature extraction level. The nine facial models are built according to the number of
features / points extracted from the face. Active shape models method is applied in
order to find the concatenated string of facial points in the eyes, nose, and mouth
areas. The face feature vector is constructed by applying Gabor filter to the image
and extracting the key points found by an active shape model. The hand feature
vector contains nine geometric measurements, including heights and widths of four
fingers, and the width of the palm. Support vector machine is used as a classifier for
a multimodal approach. One SVM machine is built for each person in the database
to distinguish that person from the others. The database contains 113 individuals.
As the experiments show, the best accuracy of up to 99.82% has been achieved for

the multibiometric model combining 8 eye points, 4 nose points, and 9 hand features.
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Chapter 1

Introduction

1.1 Introduction

New technologies are designed to make our life easier and safer; however, they are of-
ten not secure enough. One of the most common identification methods is a Personal
Identification Number (PIN), which can be easily eavesdropped by other people or
forgotten by the user. That is why researchers started to work on biometric methods
in order to identify people. Biometrics offers a natural and reliable solution to cer-
tain aspects of identity management by utilizing fully automated or semi-automated
schemes to recognize individuals based on their inherent physical and/or behavioral
characteristics [34]. A biometric system is a pattern recognition system that requires
biometric data from an individual, such as fingerprint, iris, face, hand, voice, etc.
Identification systems which are based on human characteristics such as fingerprint,
hand geometry, face, iris, palm print, etc., have many advantages over the traditional
authentication techniques based on what you know or what you possess [34, 6].

A wide variety of systems require person recognition to confirm or determine the



identity of an individual requesting their services. The purpose of such systems is to
ensure that only legitimate users can access the system. One such system that needs
security access is a cellular phone. Nowadays, the new technology of cell phones allows
us to connect to the internet, do banking transactions, maintain address books, send
personal information, etc. Our research is focused on the security of login to the cell
phones based on face and hand images. Since most cell phones are equipped with
a camera, we built a user verification system based on face, hand, and multimodal

characteristics.

1.2 Owur Approach

The first step of our research was to build the database of face and hand images
taken by the cell phone camera. From 113 individuals, we collected 20 pictures per
person, 16 of them are face images and the remaining 4 are hand images. We used a
Sony-Ericsson K750i cell phone with 2.0 mega pixel camera.

The system described in the thesis consists of three modules:
1. Face authentication system

2. Hand authentication system

3. Multimodal biometrics

Face authentication is based on facial points extracted from the face, such as
points which describe eyes, nose and mouth. We find these points semiautomatically

using active shape models. To be able to construct the feature vector, we convolve



these face models with Gabor filters. We analyze what combinations of facial models
yield the best accuracy against how many impostors are involved in the testing phase.
To be able to compare our method, we run the same experiments using a well-known
method called eigenfaces, which is based on principal component analysis.

Hand authentication utilizes hand geometry features, like width and height of
fingers and width of the palm. These points are found by active shape models.

At the last level of experiments, we combined the face and hand authentication
methods together. Hand features are concatenated with the face Gabor feature vec-
tors. The experiments were run the same way as for the face authentication system,
meaning according to the number of impostors involved in the tests and combinations
of facial points extracted.

In this research we use a support vector machine (SVM) to verify the identity
of a cell phone user. We use radial basis function (RBF) kernel for face and hand
authentication systems as well as for a combination of the two. During training we
use labeled facial images, hand geometry or the combination of both, to design a

classifier which is capable of separating a genuine user from an intruder.

1.3 Our Goal

Our goal is to build a biometric system that works on face and hand images taken
by a camera already built into a cell phone. Images taken by a cell phone camera are
usually of poor quality. They contain the noise resulting from the movement of the

camera or a person because the cell phone camera does not have an image stabilizer.



Also, the images are taken in different environments, outdoors, in the office with
the daylight, fluorescent or incandescent light, in the dark environment using the
flash light. We show that multimodal biometric system obtains the highest accuracy
compared to separate face and hand authentication methods. As the experiments
show, a high accuracy of up to 99.82% has been achieved for multibiometrics on our
database. The system is simple and fast and can be incorporated into cell phones in
future. We also show that when we apply only face authentication, the results are
reasonable. The approach that is presented in this thesis is an improvement of the

preliminary authentication systems introduced in [59, 58].

1.4 Organization of the Thesis

Chapter 2 presents an overview of the field of biometrics and multibiometrics. It
describes the architecture, as well as biometric applications. Chapter 3 then dis-
cusses the face and hand authentication methods developed in this thesis. Also, the
multimodal biometrics system is presented. Experimental results and analysis are
then presented in Chapter 4. A cell phone face and hand database is illustrated
in Chapter 4. Conclusions and directions of possible future work are discussed in

Chapter 5.



Chapter 2

Biometrics

2.1 Introduction

The term biometric comes from the Greek words bios (life) and metrikos (measure).
It is well-known that humans use inputs such as face, voice or gait to recognize
each other. Recognition of people based on their characteristics is important in many
emerging technologies. These days, biometrics is used in a wide variety of applications
that require the verification schemes to confirm the identity of an individual.

In this chapter, we present an overview of biometric methods.

2.2 Biometrics: Overview

Biometrics is a constantly evolving field that is becoming more widespread in the
industry. The term biometrics is described as an automatic personal recognition
system based on physiological or behavioral characteristics [32, 54, 6]. Biometrics
use biological properties of a human, such as fingerprints, iris, voice recognition, face

recognition, and hand geometry to identify individuals. Figure 2.1 shows examples
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of the biological properties used for biometrics.

Biometrics is no Ioﬁger confined to criminal law enforcement. In addition, more
businesses use biometrics to regulate access to buildings and information. Govern-
ments are contemplating the inclusion of biometric identifiers in passports, driver’s
licenses, and possibly a future national ID card. Also, digital video surveillance is
spreading in private and public places.

A biometric system is basically a pattern recognition system that recognizes a
person based on specific physiological or behavioral features. A biometric system

usually runs in two modes:

1. Verification mode, where the system validates a person’s identity by comparing
the captured biometric characteristic with the individual’s biometric template,
which is stored in the system database. Identity verification is typically used
for positive recognition, where the aim is to prevent different people from using

the same identity [54, 68].

2. Identification mode, the system recognizes an individual by searching the entire
template database for a match. The system conducts a one-to-many comparison
to establish an individual’s identity. Identification is a critical component of
negative recognition applications, in which the system establishes whether the
person is who he/she claims to be [54, 68]. The purpose of negative recognition

is to prevent a single person from using multiple identities.

However, each biometric system, regardless if it operates on verification or identi-

fication mode, contains the following parts:



o Biometric readers or sensors

o Feature extractors

e Feature matchers for comparing two sets of biometric features

Physiological biometrics are based on measurements and data derived from direct
measurement of a part of the human body. Here we list some examples of those

biometrics:

e DNA - deoxyribonucleic acid: It is the one-dimensional ultimate unique code
for one individual, except for the identical twins. DNA is currently used mostly

in the forensic applications for person recognition.

e Ear recognition: It is based on matching the distance of salient points on the
pinna from a landmark location on the ear. The evidence from two studies [31,
32] supports the hypothesis that the ear contains unique physiological features,
since in both studies all examined ears were found to be unique though identical
twins were found to have similar, but not identical, ear structures especially in
the Concha and lobe areas. Having shown uniqueness, it remains to ascertain

if the ear provides biometrics which are comparable over time.

e Facial, hand, and hand vein infrared thermogram: The pattern of heat
radiated by the human body is a characteristic of an individual and can be
captured by an infrared camera in an unobtrusive way much like a regular

(visible spectrum) photograph [56].



e Fingerprint: A fingerprint is the pattern of ridges and valleys on the surface
of a fingertip used for recognition. Fingerprints are unique for each person. In
addition, fingerprints of identical twins are different and so are the prints of

each finger of the same person [48].

e Palmprint: The palms of human hands contain patterns of ridges and valleys
much like the fingerprints. The area of the palm is much larger than the area of a
finger and as a result, palmprints are expected to be even more distinctive than
the fingerprints. Some of palmprint techniques distinguish between identical

twins [40].

¢ Retina recognition: The retinal vasculature is rich in structure and is sup-
posed to be a characteristic of each individual and each eye. It is claimed to be
the most secure biometric since it is not easy to change or replicate the retinal

vasculature. Retina is unique for each individual, even for identical twins [32].

¢ Hand and finger geometry: Hand geometry recognition systems are based
on a number of measurements taken from the human hand, including its shape,
size of palm, and lengths and widths of the fingers. The geometry of a hand
and fingers it is not very distinctive, and cannot be used for systems requiring

identification of an individual from a large population [32).

¢ Iris recognition: Iris recognition systems scan the surface of an iris in order
to compare patterns. Each iris is distinctive and, like fingerprints and retinas,

even the irises of identical twins are different [21].
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e Face recognition: Face recognition involves computer recognition of personal
identity based on geometric or statistical features derived from face images [37,

65, 4, 53, 69, 63].

Since face recognition is a non-intrusive method, and facial images are probably the
most common biometric characteristic used by humans to make personal recognition,
we decided to explore this biometric method in our research. Face recognition is
presented in detail in chapter 3.

Behavioral characteristics are based on an action taken by a person. On the other
hand, behavioral biometrics are based on measurements and data derived from an
action and indirectly measure characteristics of the human body. The following are

examples of biometric techniques based on behavioral characteristics:

e Gait: Gait is the way one walks and is a complex spatio-temporal biometric.
Gait is not supposed to be very distinctive, but is sufficiently discriminatory to

allow verification in some low-security applications [32].

¢ Signature recognition: The way a person signs his/her name is known to be
a characteristic of that individual. Signatures change over a period of time and

are influenced by physical and emotional conditions of the signatories [50].

e Voice recognition: Voice recognition systems use the characteristics of the
voice in order to recognize a person. The behavioral part of the speech of
a person changes over time due to age, medical conditions (such as common
cold), emotional state, etc; therefore, voice is not very distinctive and may not

be appropriate for large-scale identification [10].
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e Keystroke: It is hypothesized that each person types on a keyboard in a
characteristic way. It is not unique to each individual but it offers sufficient

discriminatory information to permit identity verification [49].

There are seven factors defined by Jain, Bolle, and Pankanti [32] that determine

the suitability of a physical or a behavioral trait to be used in a biometric application.

1. Universality: each person accessing the application should posses the trait.

2. Uniqueness: the given trait should be sufficiently different across individuals

comprising the population.

3. Permanence: the characteristic should be sufficiently invariant with respect

to the matching criterion over a period of time.

4. Collectability: the characteristic should be measured quantitatively.

5. Performance: the recognition accuracy and the resources required to achieve

that accuracy should meet the constraints imposed by the application.

6. Acceptability: individuals in the target population that will utilize the appli-

cation should be willing to present their biometric trait to the system.

7. Circumvention: this reflects how easily the system can be fooled using fraud-

ulent methods.

Table 2.1 presents a brief comparison of the physiological and behavioral biometric

techniques based on these seven factors described above.
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DNA High High High Low High Low Low
Ear | Medium | Medium High | Medium | Medium High | Medium
Thermogram High High Low High | Medium High Low
Fingerprint | Medium High High | Medium High | Medium | Medium
Palmprint | Medium High High | Medium High | Medium | Medium
Retina High High | Medium Low High Low Low
Hand geometry | Medium | Medium | Medium High | Medium | Medium | Medium
Iris High High High | Medium High Low Low
Face High Low | Medium High Low High High
Gait | Medium Low Low High Low High | Medium
Signature Low Low Low High Low High High
Voice | Medium Low Low | Medium Low High High
Keystroke Low Low Low | Medium Low | Medium | Medium

Table 2.1: Comparison of biometric technologies [34].

2.2.1 Biometric applications

Several biometric characteristics are in use in various applications. These applications

of biometrics can be divided into three main groups [54, 34}:

1. Commercial applications, such as computer network login, electronic data se-

curity, ecommerce, Internet access, ATM, credit card, physical access control,

cellular phone.

2. Government applications, such as national ID card, correctional facility, drivers

license, social security, welfare-disbursement, border control, passport control,

etc.
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3. Forensic applications, such as corpse identification, criminal investigation, miss-

ing children, etc.

Traditionally, commercial applications have used knowledge-based systems, such as
PIN and passwords; however, these methods are not secure enough because passwords
or PINs are easy to crack and easy to forget. In addition, the password can be shared
by the user with his/her colleagues and then there is no way for the system to know
who the actual user is. Government applications have used token-based systems, such
as ID cards and badges. These systems have their problems as well. Firstly, the token
or ID card can be stolen, shared, duplicated or lost; whereas, biometrics cannot be
stolen, lost or forgotten. Only forensic applications have relied on human experts to
match biometric features. These days, biometric methods are also used more often for
security purposes. The first airport that applied biometrics for passengers verification
was the Schipol airport in Amsterdam (Netherlands). This .airport is equipped with
iris scans that validates passengers (Privium) [565]. The border passage identifies a
passenger using iris recognition. It is safe and considerably faster compared with
manual passport control. Such a system also exists in Canada (CANPASS) [11] at
the airports in the following cities: Edmonton, Winnipeg, Calgary, Halifax, Ottawa,

Montreal, Toronto and Vancouver.

2.2.2 Limitation of unimodal biometric systems

In real world applications there are several problems with unimodal biometric systems
which operate on a single biometric modality. The limitations of unimodal biometric

systems are as follows [34]:
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¢ Noise in sensed data: Noise can be present in the acquired biometric data mainly
due to defective or improperly maintained sensors. For example, accumulation
of dirt or the residual remains on a fingerprint sensor can result in a noisy
fingerprint image. Failure to focus the camera appropriately can lead to blurring

in face and iris images.

e Intra-class variations: Biometric data acquired from an individual during an
authentication session may be different from the data that was used to generate
the template during enrollment. The variations may be due to improper inter-
action of the user with the sensor (e.g., changes due to rotation, translation and
applied pressure when the user places his finger on a fingerprint sensor, changes
in pose and expression when the user stands in front of a camera, etc.), use of
different sensors during enrollment and verication, changes in the ambient en-
vironmental conditions (e.g., illumination changes in a face recognition system)
and inherent changes in the biometric trait (e.g., appearance of wrinkles due to
aging or presence of facial hair in face images, presence of scars in a fingerprint,

etc.).

e Distinctiveness: While a biometric trait is expected to vary significantly across
individuals, there may be large inter-class similarities in the feature sets used
to represent these traits. This limitation restricts the discrimination power
provided by the biometric trait. Inter-user similarity refers to the overlap of the

biometric samples from two different individuals in the feature space.

e Non-universality: While every user is expected to possess the biometric trait
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being acquired, in reality it is possible that some users do not possess that
particular biometric characteristic. The National Institute of Standards and
Technology (NIST) has reported that it is not possible to obtain a good qual-
ity fingerprint from approximately two percent of the population (people with
hand-related disabilities, manual workers with many cuts and bruises on their
fingertips, and people with very oily or dry fingers) [51]. Hence, such people
cannot be enrolled in a fingerprint verification system. Similarly, persons hav-
ing long eye-lashes and those suffering from eye abnormalities or diseases like
glaucoma, cataract, aniridia, and nystagmus cannot provide good quality iris

images for automatic recognition [3].

e Spoof attacks: An individual may attempt to fake the biometric trait. It is easy
for behavioral characteristics, such as when signature and voice are used as an

identifier.

Some of the limitations imposed by unimodal biometric systems can be overcome by
using multiple biometric modalities [5, 39, 7]. Multibiometric systems are described

in the next section.

2.3 Multibiometrics

Biometric systems can also be designed to recognize a person based on information
received from multiple biometric sources. Such systems, known as multibiometric
systems, can be expected to be more accurate due to the presence of multiple pieces

of evidence [29, 43].
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Multimodal biometric systems address the problem of non-universality, since mul-
tiple traits ensure sufficient population coverage. In addition, multimodal biometric
systems provide anti-spoofing measures by making it difficult for an intruder to si-
multaneously spoof the multiple biometric traits of a legitimate user.

The multibiometric systems are divided into five groups. The grouping depends
on the various sources of information. Figure 2.2 shows multibiometric sources, which

are divided into following groups:

1. Multi-sensor, in this system a single biometric trait is imaged using multiple
sensors in order to extract information from registered images. For instance,
the face images of an individual obtained using a thermal infrared camera and

a visible light camera [14].

2. Multi-modal, these systems combine the evidence presented by different body
traits for establishing identity. The cost of these systems is high since new

sensors must be added [52, 13, 28, 58].

3. Multi-instance, these systems use multiple instances of the same body trait.
For example, the left and right index fingers. These systems are cost-effective,
because they require neither new sensors nor new algorithms for feature extrac-

tion [34].

4. Multi-algorithm, in this system the same biometric data is processed using
multiple algorithms. This system does not require the use of new sensors and
therefore is cost-effective. For example, a texture-based algorithm and minutiae-

based algorithm can operate on the same fingerprint image [34].
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5. Multi-sample, in these systems a single sensor is used to obtain multiple
samples of the same biometric trait. For example, face pictures, frontal profile,

left and right profiles.

Multibiometric system architectures are categorized into three system architec-

tures according to the strategies used for information fusion [29, 60]:

o Fusion at the feature extraction level

e Fusion at the matching score level

o Fusion at the decision level

It means that the system is classified depending on how early in the authentication
process the information from the different sensors is combined. Fusion at the feature
extraction level stands for immediate data integration at the beginning of the pro-
cessing chain. The information extracted from the different sensors is encoded into a
joint feature vector, which is then compared to an enrollment template (which itself
is a joint feature vector stored in a database) and is assigned a matching score as in
a single biometric system (see Figure 2.3).

In the fusion at the matching scores, feature vectors are created independently
for each sensor and then are compared to the enrollment templates, which are stored
separately for each biometric trait. Based on the proximity of feature vector and
template, each subsystem now computes its own matching score. These individual
scores are finally combined into a total score, which is handed over to the decision

module. The whole process is shown in Figure 2.4. Examples of feature level fusion
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Figure 2.2: Multibiometric sources.
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o Decision

Decision

Figure 2.4: Block diagram of the fusion at the matching score level.

schemes proposed in the literature can be found in [16] (voice and lip shape), [64] (face

and iris), [41] (hand geometry and palmprint), [59, 58] (face and hand geometry).
In the decision level fusion architecture, a separate authentication decision is made

for each biometric trait. These decisions are then combined into a final vote, as shown

in Figure 2.5. Methods proposed in the literature for decision level fusion include AND

Figure 2.5: Block diagram of the fusion at the decision level.
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and OR rules [17], majority voting [45], weighted majority voting [42], Bayesian deci-
sion fusion [70], the Dempstér—Sha,fer theory of evidence [70] and behavior knowledge
space [30].

It is generally believed that a combination scheme applied as early as possible in
the recognition system is more effective. For example, an integration at the feature
level typically results in a better improvement than at the matching score level. This
is because the feature representation conveys the richest information compared to the
matching score of a matcher, while the abstract labels contain the least amount of
information about the decision being made. However, it is more difficult to perform a
combination at the feature level because the relationship between the feature spaces
of different biometric systems may not be known and the feature representations may
not be compatible.

Multibiometric systems also have a few disadvantages when compared to unibio-
metric systems. They are more expensive and require more resources for computation
and storage than unibiometric systems. Multibiometric systems generally require
additional time for user enrollment, causing some inconvenience to the user; however

multibiometric systems achieves better accuracies.



Chapter 3

Face and Hand Authentication

3.1 Introduction

This chapter describes the approach that we implemented for this research, including
face authentication, hand authentication, and multimodal biometrics. Section 3.2
deals with recent face recognition methods and briefly presents our approach for face
recognition. The next section presents a well-known method for face recognition,
principal component analysis (Eigenfaces). The detection of facial points is described
in section 3.2.2. We concatenate facial picture with Gabor filters, as shown in sec-
tion 3.2.3. A Support vector machine (SVM), explained in section 3.5, is applied to
verify the identity of the user based on Gabor features for the face and geometry
features for the hand. One SVM machine is built for each person in the database to

distinguish that person from others.

21



22

3.2 Face Recognition

Face recognition involves computer recognition of personal identity based on geo-
metrical or statistical features derived from face images [71, 8, 23]. Humans can
easily detect and identify faces in a scene; however, to build an automated system
that recognizes faces is still a challenging problem. The problem becomes even more
difficult when one considers the large variations in lighting conditions, poses, facial
expressions, aging, glasses or cosmetics [68].

A face recognition system contains four subsystems that carry out face detection,
face alignment, feature extraction and feature matching. Figure 3.1 shows the overall
face recognition system.

Face localization

. Size and'pose

= ., Alighed face | Face iD

Figure 3.1: Block diagram of the overall face recognition system.

Face detection and coarse facial landmark detection are involved in the first step.
Secondly, face alignment is achieved. Also at this stage the facial components such
as eyes, nose, and mouth are located. Then, the system extracts features that are

suitable for the face verification system. Finally, the system performs matching. It
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matches the feature vector of the input face against those face vectors enrolled in the
database.

Face recognition is one of the primary biometric technologies. It has several ad-
vantages over the biometrics methods: it is natural, nonintrusive, and easy to use.
Among the six biometric indicators considered in [27], facial features scored the high-
est compatibility, shown in Figure 3.2, in a Machine Readable Travel Documents
(MRTD) system based on a number of evaluation factors [27], such as enrollment,

renewal, machine requirements, and public perception.

100

80

60

Weighted percentage

207

Face  Finger Hand Voice  Eye Signature

Figure 3.2: Comparison of various biometric features based on MRTD compatibility.

Face recognition scenarios can be classified into three types:

e face verification (or authentication),
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o face identification (or recognition),
e watch list recognition

Face verification is a one-to-one match that compares a query face image against
a template face image whose identity is being claimed; whereas, face recognition is
a one-to-many matching process that compares a query face image against all the
template images in a face database to determine the identity of the query face. The
watch list method is where a query face image is matched to a list of suspects (one-
to-few matches).

The first face recognition system was introduced by Kanade [37] in 1973. Since
then, face recognition and authentication have become a very active area of research.
Image based face recognition techniques can be divided into three groups: appearance-
based (holistic), feature-based (analytic) and hybrid methods. The appearance-based
methods use the whole face region as a raw input to a recognition system. Eigenface
approach [65] and Fisherface approach [4, 46] are the best known appearance based
methods. Feature based approach [37, 8, 61] used in the early days, is based on facial
feature analysis such as eyes, nose and mouth. These features are first detected, then
the properties and relations, such as areas, distances and angles between the features
are fed into a structural classifier. Hybrid methods use both the local features and
whole face region to recognize a face. Local Feature Analysis (LFA) [53], Elastic
Bunch Graph Matching (EBGM) [69], and methods involving Gabor features [63, 57]
are examples of holistic methdds. The last method (Gabor features) has especially

become very popular since it exhibits desirable characteristics of spatial locality and
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orientation selectivity [35]. Among classification techniques one of the most popular
is Support Vector Machine (SVM) [20, 1]. SVM has been used for face recognition [25,
26] and face veriﬁcatién [36].

Our approach belongs to a class of holistic methods. Figure 3.3 represents the

flowchart of our face identification system. It finds facial feature points that describe

Normatized Feature
= image - ; - ™ vector

Figure 3.3: Flowchart of the face identification system, implemented in this thesis.

eyes, nose and mouth and concatenates those points with Gabor filters. In order to
find those facial points, we use active shape models described in section 3.2.2. We use
the support vector machine as a classifier, see section 3.5. We compare our system

with the PCA approach, described in section 3.2.1.

3.2.1 Principal Component Analysis

The PCA for face analysis and representation was first used in [38]. The first appli-
cation of PCA to face recognition was described in [65]. Because the basis vectors
constructed by PCA have the same dimension as the input face images, they were
named ”eigenfaces”. Figure 3.4 shows the average eigenface for our database.
Principal component analysis (PCA) is a dimensionality reduction technique. The
main idea behind the PCA is that each original image of the training set can be trans-

formed into corresponding eigenfaces. Each eigenface represents only certain features
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Figure 3.4: The average face from our database.

of the face, which may or may not be present in the original image. If the feature is
present in the original image to a higher degree, the share of the corresponding eigen-
face in the sum of the eigenfaces should be greater. If, on the contrary, the particular
feature is not (or almost not) present in the original image, then the corresponding
eigenface should contribute a smaller (or not at all) part to the sum of eigenfaces.
Each digital image can be represented as an array of pixel values. In the m-by-n
image size, the pixel array can be represented as a point in a mn-dimensional image
space by simply writing its pixel values in a fixed position. For example, an 8x8
image may be unwrapped and treated as a vector of length 64. The image is said to
live in m-dimensional space, where m is the number of pixels (and the length of the
vector). This vector representation of the image is considered to be the original space
of the image. A face image of size NxN pixels can be viewed as a vector of dimension
N? as shown in Figure 3.5. However, such a high-dimensional representation is too
detailed. Since facial features are similar in overall configuration across individuals, it
is possible to describe faces quite compactly using PCA. The PCA approach to face

recognition includes following steps [65]. First, the original images of the training
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NxNimage |=—= | | N2x1 vector

Figure 3.5: Mapping NxN image into a vector of dimension N2.

set are transformed into eigenfaces. Then, the weights are calculated for each image
of the training set. Upon observing an unknown image, the weights are calculafced
for this particular image. In the last step the difference between the weights in the
training set and the weights for the unknown image are compared and the closest
difference based on the threshold @ is considered as the recognized image.

Suppose the training set of face images I'y, 5,3, ..., are an N%x1 vectors.

The average face of the set of M images is defined by:

1 M
U= A .
M;r (3.1)

where M is the number of face images in the training set. Then each face I'; differs
from the average face ¥ by ®;

Qi = I‘,' - 'I’ (32)
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In the next step, the covariance matrix C is calculated according to:

M
1 T AT
C=+ Y @,®7 = AA (3.3)

n=1

where A = [®;®, ... ®)/] is MzN% matrix. When the covariance matrix is calculated,
then the eigenvectors (eigenfaces) u; and the corresponding eigenvalues A; of the
covariance matrix have to be calculated. From M eigenvectors (eigenfaces) u;, only
M’ should be chosen, which have the highest eigenvalues.

The covariance matrix C is N?xN?, and determining the N? eigenvectors and
eigenvalues is not very efficient; therefore, a simplified calculation has to be adopted.
If the number of data points in the image space is less than the dimension of the space
(M < N?) there will be only M rather than N? eigenvectors. To find eigenfaces, first
the eigenvectors of M by M matrix AT A have to be calculated. Consider eigenvectors
v; of AT A such that

AT Avy = vy (3.4)
Multiplying both sides by A, we get:
AATAVi = piAVi (35)

We observe that Av; are eigenvectors of C = AAT. We can construct the M by M
matrix L = AT A, and find M eigenvalues that correspond to the M largest eigenvalues
of AAT. Then we have to compute eigenvectors u; = Avjof AAT.

According to this approach, the calculations are reduced from the order of the
number of pixels in the image (N?) to the order of the number of images in the training
set (M). Usually, we will use only a subset of M eigenfaces, the K eigenvectors

corresponding to the K largest eigenvalues.
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In order to represent the face onto this basis, each face (minus the mean) ®; in the

training set can be represented as a linear combination of the best K eigenvectors.

K
®; — mean = ijuj,wj = ul ®; (3.6)

j=1

where u; is an eigenface. Each normalized training face ®; is represented in this basis
by a vector:

Qf = [wiuh.. W], i=1,2,....,. M (3.7)

The process of classification of a new (unknown) face I' to one of the classes,

known faces, proceeds in two steps. A new face I' is transformed into its eigenface

components, projected into ”face space”, by a simple operation:
wp=ut(T=¥),k=1,2,....K (3.8)

This describes a set of point-by-point image multiplications and summations.

The weights for a vector Q7 = [wyw, . .. wk] that describes the contribution of each
eigenface in representing the input face image, treating the eigenfaces as a basis set of
face images. The vector is used to find which of a number of pre-defined face classes,
if any, best describes the face. The best method to check which face class provides
the best description of a new face image is to find the face class k that minimizes the
Euclidean distance

e = [|Q — Q] (3.9)
where (Q;, is a vector describing the kth face class. A face is classified to belong to
class k when the minimum distance ¢; is below some chosen threshold #; otherwise
the face is unknown. If the Euclidean distance exceeds on average some threshold

value 6, we can assume that a new image is not a face at all.
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Figure 3.6: A face image with labeled points.

3.2.2 Active Shape Models

Active shape models [19, 18] are statistical models of the shapes of objects which
iteratively deform to fit into an example of the object in a new image. The shape is
constrained by a point distribution model. We use an active shape model to find facial
feature points. We require a set of training images to be able to build a statistical
model. Each picture of a face for a training set must be annotated with a set of points
defining the key facial features. Each shape in the training set is represented by a set
of n labeled landmark points, which must be consistent from one shape to the next,
see Figure 3.6. We place our points around main facial features such as: eyes, nose
and mouth. These points are used to define the correspondences across the training
set and represent the shape of the face in the image.

For instance, on a face example, the first point may correspond to the right corner
of the right eye. Given a set of such labeled training examples, we align them into a
common coordinate frame. This is accomplished by translating, rotating and scaling
each training shape so as to minimize the sum of squared distances to the mean of

the set of points. When we use n points to describe the face shape, the shape can be
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represented as the 2n element vector x where

X= (21, ., Tn, YLy Yn) (3.10)

To be able to perform statistical analysis on these vectors, we have to represent the
shapes in the same coordinate frame. In our project, we use Procrustes approach [24].
To align single shape z to the mean X, choose the parameters ¢ which minimize
| Si(z) — X |?, where S;(z) specifies a transformation defined by parameters in vector
t.

To be able to do the alignment of a set of shapes, we use an iterative approach,

defined as follows:
1. Translate each shape so its center of gravity is at the origin.

2. Choose one example as an initial estimate of the mean shape and scale so

|x|=1.
3. Record the first estimate as X, to define the default reference frame.
4. Align all the shapes with the current estimate of the mean shape.
5. Reestimate the mean from aligned shapes.

6. Apply constraints on the current estimate of the mean by aligning it with X,

and scaling so | X |= 1.

7. If not converged, return to step 4.
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On convergence, all the samples are aligned in a common coordinate frame and can
be analyzed for shépe change.

Suppose now we have s sets of n points x; in d dimensions that are aligned into
a common coordinate frame. These vectors form a distribution in nd dimensional
space.

We can simplify the problem by reducing the dimensionality of the data from nd
using principal component analysis (PCA). The data form a cloud of points in the
nd-D space. PCA is used to pick out the main axes of the cloud, and model only the

first few, which account for most of the variation. It is done by:

1. Compute the mean of the data

s
t=1
2. Compute the covariance of the data
S = L i(x —%)(x; — %) (3.12)
s—13 Q

3. Compute the eigenvectors ¢; and corresponding eigenvalues A; of S
The shape model is then given by:
x =X+ Psbs (3.13)

where P = (¢1]|ds]| ... |¢:) contains the ¢ eigenvectors corresponding to the largest

eigenvalues, and by is a t dimensional vector given by:

bs = PT(x — %) (3.14)
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PTP = I because the eigenvectors are orthogonal.

By choosing a set of shape paraﬁeters bs for the model we define the shape of the
object in an object-oriented coordinate frame. We can create an instance X of the
model in the image frame by defining the position, orientation, and scale parameters
t.

The iterative approach to improving the fit of the instance X = S;(x) to an image

is done as follows:

1. Examine a region of the image around each point X; to find the next nearby

match X point,
2. Update the parameters (t, bs) to best fit the new points X',

3. Repeat until convergence.

3.2.3 Gabor filters

Since Gabor features are robust against local distortions caused by expression, pose
and illumination, Gabor filter has been successfully applied to face recognition and
verification.

Gabor wavelet is a complex planar wave restricted by a two-dimensional Gaussian
envelope. We use 2D Gabor wavelet, which is usually applied for image representation.
Gabor filters are also used for image analysis and in computer vision. Gabor filters
have a high computational cost because use of Gabor filters requires convolution of

the image with Gabor filters in different scales and orientations.
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2D Gabor functions were proposed by Daugman [22] to model the spatial sum-
mation properties of the receptive fields of simple cells in the visual cortex. A Gabor
filter is constructed by modulating a sine / cosine wave with a Gaussian. A 2D Gabor

filter over an image domain (z,y) is defined as follows:

z—20)2 —yg)?
G(:C, y) _ e__[( . 0}~ , (v ﬁJo)_]e~2ﬂ-i[uo(:n—zo)+vo(y—yo)] (315)

where (xo,vo) specify position in the image, («, ) specify filter’s effective width
and lenght, and (ug,vo) specify the filter’s modulation wave vector, which can be
interpreted in polar coordinates as spatial frequency wy = \/m and orientation
0o = arctan(22).

Usually, Gabor wavelets are used with the following parameters:
wo € {0,...,4} (3.16)

B € {0,,7} (317)

The Gabor wavelet representation of an image is the convolution of the image
with a family of Gabor wavelets. The convolution of an image I and a Gabor filter

G(z,y) is defined as follows:

Gwo,@o(xv y) = I(:L', y) * G(xv y) (318)

where z = (z,y).
In our project, we first convolved each image with Gabor filters; however, adopting
the whole Gabor image feature representation, the computation time for classification

was very high. Therefore, to avoid that, we extracted only the pixels that represent
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facial points from the Gabor magnitude part that represent dominant features of the
face, such points describe eyes, mouth, and nose. The size of the feature vector after
convolution with Gabor filters depends on how many points are extracted from the
face. When the image is convolved with Gabor wavelets with 5 frequencies and 8
orientations, the size of feature vector for 1 pixel is 40. Table 3.1 represents the

length of the feature vector according to the number of points extracted from the

face.

Feature Points Size of Feature Vector

8 points for eyes 320

16 points for eyes 640

8 points for eyes, 4 points for nose 480

16 points for eyes, 4 points for nose 800

12 points for mouth, 8 points for eyes 800

12 points for mouth, 16 points for eyes 1120

12 points for mouth, 4 points for nose 640

12 points for mouth, 4 points for nose, 8 points for eyes 960

12 points for mouth, 4 points for nose, 16 points for eyes 1280

Table 3.1: The size of face feature vector according to the number of points extracted
from face.

When a set of 40 complex Gabor wavelets are used, local features are represented
by the set of convolution point z, which contains important information at different
orientations and scales. Therefore, we obtain two Gabor components for every image
pixel: a real part and an imaginary part. In the same way we get two kinds of
features: Gabor magnitude features and Gabor phase features. In our experiments
we use only the magnitude part. In our experiments we use Gabor wavelets with 5

frequencies and 8 orientations, see Figures (3.7) - (3.8) for the whole set of 40 Gabor
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wavelets. The Gabor wavelets with those parameters exhibit desirable characteristics

of spatial frequency, spatial locality, and orientation selectivity.

Figure 3.7: The magnitude at five scales.

Figure 3.8: The real parts at five scales and eight orientations.

Figure 3.9 shows the Gabor wavelet representation (the real part and the mag-
nitude) of a sample image. These representation results display scale, locality, and

orientation properties corresponding to those displayed by the Gabor wavelets in

Figures 3.7 - 3.8.

3.3 Hand Recognition

Hand geometry is an example of biometric based on physiological characteristics.

Hand geometry refers to the geometric structure of human hand. Hand geometry
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(b)

Figure 3.9: Gabor wavelet representation (the real part and the magnitude) of a
sample image. (a) The real part of the representation and (b) the magnitude of the
representation.
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recognition systems are quite good for environments where medium security is re-
quired, and where a medium cost for equipment, and relative low computational
costs are needed [47]. Hand recognition systems are not new; some initial work in
this domain can be traced since the 1970s along with the existence of commercial
systems in the market [2]. Most of the hand-based biometric schemes in the litera-
ture fall into the broad category of geometric features of the hand such as length and
width of fingers, width of palm, aspect ratio of the palm or fingers, thickness of the
palm, etc. [33]. For instance [62] selects 25 features, such as finger widths at different
latitudes, finger and palm heights, finger deviations and the angles of the interfinger
valleys with the horizontal, and model them with Gaussian mixtures; whereas, [33]
obtained 16 features, which include length and width of the fingers, aspect ratio of the
palm to fingers, and thickness of the hand. Also [9] used 30 geometric hand features
including the length and height of fingers and palm.

In our approach, a hand image is captured by the same cell phone camera that
was used to take a face image. The cell phone is fixed above the platform on which
the hand is placed, as shown on Figure 4.1. The platform and location of the cell
phone are designed to put the hand at a fixed location. In our experiments, only left
hand is taken into consideration. We asked people to remove rings and other jewelery
from their fingers.

To detect points in a hand image, we use the same algorithm (active shape models)
as for face points, described in section 3.2.2. We built the system that detects nine
points from the hand image. As shown in Figure 3.10, four of those points are at the

end of four fingers (excluding thumb), and the next five are located at the base of
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each finger. These points represent vertices that we use in measuring the hand. Also

Figure 3.10: Point distribution model for hand.

in our approach, we use the basic measurements for a hand. Figure 3.11 shows nine

geometric features that are extracted from the hand image. They are:

1. The lengths of four fingers: index finger, middle finger, ring finger, and small

finger.

2. The widths of four fingers: index finger, middle finger, ring finger, and small

finger.
3. The width of the palm.

The width of each of the four fingers is extracted by calculating the distance between
the two base points. In order to calculate the lengths, we have to find the middle
point of the two base points. When this point is found, the length of each finger is
calculated by finding the distance between the end point and the middle point. We

repeat this procedure for four fingers.
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Figure 3.11: Nine hand geometry features.

3.4 Multimodal Biometric System

To make the system more secure, researchers often combine different biometric meth-
ods together. The drawback of multiple biometrics is that the user has to use multiple
sensors, eg. face and voice [52] (the face has to be captured by a camera, and voice
has to be recorded), or face and iris [13] (to take those pictures, two different cameras
have to be used), or face and fingerprint [28] (where, the face is captured by a camera,
and a fingerprint by a special scanner). In our approach we use the same sensor, a
cell phone camera, to take pictures of both the user’s face and hands.

The face feature vectors and hand geometry are combined at the feature extraction
level. The combined feature vector is built by concatenating the face features with
hand features. Figure 3.12 represents the block diagram of the fusion for face and
hand feature vectors.

The face feature vectors contain the imaginary part of the Gabor filters convolved
with the points extracted from the face, ie. eyes, nose, mouth. The hand feature

vector includes the basic geometry feature for the hand, described in section 3.3. The
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Figure 3.12: The block diagram of the fusion for face and hand.

same classifier, support vector machines, is used for multimodal biometric system.
To the best of our knowledge, the multibiometrics based on face and hand geom-
etry does not exist. We decided to combine these two characteristics, because only
one sensor is needed to capture both face and hand images. The experiments in sec-
tion 4.5 shows that the multimodal system improved the accuracy rates as compared

to face verification and hand verification separately.

3.5 Support Vector Machines

Support vector machines (SVM) have been accepted as a powerful tool for developing
pattern classification and function approximation systems [1}. The support vector
classifiers devise a computationally efficient way of learning good separating hyper-
plane in a high dimensional feature space [67]. In this research, we apply SVM to
verify the identity of a cell phone user. During training we use labeled facial images
to design a classifier which is capable of separating a genuine user from an intruder.
For a two-class problem, the support vector machine is trained so that direct decision
function maximizes the generalization ability [66, 44, 20]. In SVM, the data that sat-

isfy the equalities are called support vectors. In Figure 3.13 the data corresponding
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to the filled circles and the filled rectangle are support vectors. SV are selected from
the training data so that the distance between two hyperplanes represented by lines
passing through the support vectors is at maximum. For linearly separable cases,
the main decision hyperplane, which is the midway line between two hyperplanes on

Figure 3.13 should minimize classification error [15].

Optimal hyperplane

‘ Maximum

Xq

Figure 3.13: Optimal separating hyperplane in a two-dimensional space.

Suppose we are given a training set of input/output pairs (z;,y;),z: = 1,2,..., M
where z; € R™ and y € {—1, 1} are the labels. The decision function in figure (3.13)
is determined as:

D(z)=wTz+b (3.19)
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where w is an m-dimensional vector, b is a bias term. Fori=1,..., M
>1 or Yy =1
Wz bd =5 Y (3.20)
<-1 for yi=-1
The hyperplane:
D(z)=wTz+b=c for —1<c<1 (3.21)

forms a separating hyperplane that separates x;(1 = 1,...,M). When ¢ = 0, the
separating hyperplane is in the middle of the two hyperplanes with ¢ = 1 and ¢ = —1.
The distance between the separating hyperplane and training data nearest to the
hyperplane is called the margin. The region {z|—1 < D(z) < 1} is the generalization
region for the decision function. The optimal separating hyperplane can be obtained
by minimizing
Lo
Q(w) = gl (322)

with respect to w and b subject to the constraints by combining (3.20):
vi(wTz; +0) > 1 fori=1,...,M (3.23)

In the training phase, the goal is to find support vectors that maximize the margin

of separation, or to minimize ||w||>. It can be solved by:

M
Q(w,b,a) = %wTw - Z a{yi(wTz; + b) — 1} (3.24)

=1

where o = (g, 0Q9,...,a)) and o; are the nonnegative Lagrange multipliers. The
optimal solution of the equation (3.24) is obtained when the (3.24) is simultaneously

minimized with respect to w and b and maximized with respect to «;.

9Q(w, b, @)

5o =0 and (3.25)
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9Q(w,b,a) _

- 0 (3.26)

According to Karush-Kuhn-Tucker (KKT) theorem, the following conditions must

be satisfied at all of the saddle points [1]:

afyi(wTz; +0) -1} =0 for i=1,.... M (3.27)

;20 for i=1,...,.M (3.28)

Thus, only those data points for which y;(w?z; + b) — 1 = 0 can be support vectors
because only these points have a nonzero value of multipliers «;.

From (3.27), a; = 0, or a; # 0 and y;(wTx; + b) = 1 must be satisfied. The
training data z; with a # 0 are called support vectors and these data are considered
to be most important for the classification problem. Using (3.24), we reduce (3.25)

and (3.26), respectively to:

M
w = Z oazye;  and (3.29)
i=1
M
i=1

By substituting (3.29) and (3.30) into (3.24), we obtain the following dual problem.

Maximize
M 1 M
Qa) = Zai ~3 XOGYYTT T (3.31)
i=1 ij=1

with respect to o; subject to the constraints:

M
Zyiai =0 and (3.32)

i=1
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>0, i=1,....M (3.33)

The obtained support vector machine is called the hard-margin support vector ma-

chine because:

M T /M
1 s 1
-2' Z Maiajyiyj:ci T; = 5 (; azyzl‘,) (zzzl: aiyia:i) Z 0 (334)

1,5=1

maximizing (3.32) under the constraints (3.33) is a concave quadratic programming.If
a solution exists then the global optimal solution «;(i = 1,..., M) exists.

From equation (3.29) the decision function is given by:

D(z) = Za,-yia:f:c +b (3.35)

€8

where S is the set of support vectors indices, and from (3.27), we obtain threshold b:
b=y —wlx; (3.36)

In hard-margin support vector machines, we assume that the training data is
linearly separable; however, that does not always happen. For the data that is not
linearly separable, the soft margin support vector machines are introduced. In order
to solve the problem of inseparability, the nonnegative slack variables & > 0 are
introduced. Figure 3.14 shows the inseparable case in a two-dimensional space. To

add slack variables to equation (3.23), we obtain:
vi(wTz; +0) >1—-¢ for i=1,...,.M (3.37)
In this case, we have to minimize the following:

Qb = 3lulF +C Y6 (339
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subject to the constraints:
yi(wlz; +0) >1-¢ for i=1,...,.M (3.39)

where & = (&, ...,&u)T and C is the margin parameter that determines the trade-off
between the maximization of the margin and minimization of the classification error.
Now, the new cost function including nonnegative Lagrange multipliers «; and S;

becomes:

M M M
Qw,b,¢,a,8) = %llwllQ +CY &= apwzi+b) —1+&)— > _Bi& (3.40)
i=1 i=1

i=1

where a = (a1,...,ay)T and 8= (Bi,...,0u)’.

Optimal hyperplane

X4

Figure 3.14: Inseparable case in a two-dimensional space.

For the optimal solution, the KKT conditions must be satisfied:

0Q(w,b,&, a, B)
ow

=0 and (3.41)



3Q(w’gb€’a’ﬁ) =0 and |
0Qw,b.& . 8) _
o€ -

ai(ys(wla; +0)—1+86 =0 for i=1,....M
Bi&; =0 for i=1,....M

041'207 52207 51,.>_0 fOT Z=117M

Using (3.40), we reduce (3.41)- (3.43), respectively:

M
w = E QYT
=1

M
Z o;y; =0
=1

a+5i=C for i=1,....M
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(3.42)

(3.43)

(3.44)

(3.45)

(3.46)

(3.47)

(3.48)

(3.49)

Thus, substituting (3.47)- (3.49) into (3.40), the following dual problem is obtained:

M

§ : 1 T
mgx Q; — Eaiajyiiji Tj

i=1

subject to 0 < oy < C, Zf\ily,-a,-=0fori=l,...,M.

(3.50)
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When the classification problem is not linearly separable in the input space, we
need to use a kernel function K(z z;) to map the data = from the iﬁput space to
the new higher dimensional feature space, where the mapped points become linearly
separable. In this thesis, we used radial basis function kernel (RBF'), which is defined
as follows:

K (i, ;) = exp(—lloi — zl*), 720 (3.51)

In our experiments, we used RBF kernel for soft margin support vector machine
for face and hand verification, and for a combination of the two. We use the LIBSVM

software [12], which is an integrated software for support vector classification.



Chapter 4

Experiments

4.1 Introduction

This chapter describes experiments that were performed for this thesis. This chapter
starts describing the process of building the database described in section 4.2, followed
by experiments and analysis for the face authentication method. Section 4.3 shows
an analysis of experiments based on different facial models and a well-known method
called eigenfaces. Also in this section, the comparison between all face authentication
methods is presented. Section 4.4 represents experiments that were run for the hand
authentication system. The last section discusses multimodal biometric system based

on face and hand cell phone images.

4.2 Face and Hand Database

An important part of the research was gathering the database by using a cell phone
digital camera. The cell phone that was used to take pictures was a Sony Ericsson

K750i. The telephone is able to take pictures up to 1632x1224 pixels; however the
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resolution that we used for the pictures was 640x480. The camera is equipped with
zoom 4x. White balance in the camera was set up in automatic mode, and depending
on the lighting conditions, the images were taken with or without flash. The images
for one person were taken during one session. First we collected 16 face images and
then 4 hand images for each person.

The database contains images from 113 individuals, men and women. The indi-
viduals in the database differ by race: Caucasian, Asian, and African. Their ages
also differ. Most of the people are between 18 - 60 years old. The oldest person is 75;
however, the average age is between 30 - 40 years old. Some of the men have a beard
or mustache.

For face pictures, we asked people to take pictures of themselves, more precisely
of their faces, holding the camera in front of them. The camera was held in front of
the face and zoom was set at 1.5 times. To take the picture, a subject (person) would
use a small mirror built into the camera next to the lens.

Hand pictures were captured by the same cell phone camera that was used to take
the face images. To be able to capture hand images at a fixed position and distance,
the cell phone was located above the platform on which the hand is placed, as shown
on Figure 4.1. The platform and location of the cell phone were designed to put the
hand at a fixed location. We asked people to remove rings and other jewelery from
their fingers. The zoom was also set at 1.5 times, and the flash light was on.

Pictures were taken under different lighting conditions. As you can see on Fig-
ure 4.2, the first 16 images were taken in a dark environment with the flash light

which has 6000K. The last 16 pictures were taken under the tungsten light which has
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(a) | (b)

Figure 4.1: The platform that was used to keep the cell phone in a fixed distance to
be able to capture the hand images. (a) top view, (b) side view

3200K. In comparison, the day light has 5000K. Appendix A contains sample face
and hand images for each individual involved in our experiments.

In some of the images, the subject moved while taking the pictures which resulted
in blur and lack of sharpness. The camera used had auto focus but it is not as good

as the auto focus in digital cameras.

4.3 Face Authentication

In order to apply active shape models to face images, we have to preprocess the
face images. First, the color image is converted to grey scale. Then, each image is
manually cropped to 350x350 pixels in order to eliminate the background, and hair.

By cropping the image, we extracted only part of the head that contains the eyes,



Figure 4.2: Sample face

and hand pictures from our database.

52



53

(a) (b)

Figure 4.3: (a) The original image of a face. (b) The cropped image of the same face
picture.

nose and mouth, see Figure 4.3. We use active shape models from section 3.2.2 on
this preprocessed image to detect the facial points. Then the image is convolved with
Gabor filters described in section 3.2.3 in order to obtain face feature vectors.

We built nine different face models to detect various facial features. To build these
models, we manually labeled 4 out of 16 images for each person. Figure 4.4 shows

the point distribution model for 9 different face models. They include:
e 4 points for each eye,
e 8 points for each eye,
e 4 points for each eye plus 4 points for a nose,

e 8 points for each eye plus 4 points for a nose,

12 points for a mouth plus 4 points for each eye,



12 points for a mouth plus 8 points for each eye,

12 points for a mouth plus 4 points for a nose,
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12 points for a mouth plus 4 points for a nose plus 4 points for each eye,

12 points for a mouth plus 4 points for a nose plus 8 points for each eye.

We convolve these face models with Gabor filters, as discussed in section 3.2.3, and

according to the face model, we obtain following feature vectors shown in Table 4.1:

Feature Points

Size of Feature Vector

8 points for eyes 320

16 points for eyes 640

8 points for eyes, 4 points for nose 480

16 points for eyes, 4 points for nose 800

12 points for mouth, 8 points for eyes 800

12 points for mouth, 16 points for eyes 1120

12 points for mouth, 4 points for nose 640

12 points for mouth, 4 points for nose, 8 points for eyes 960
12 points for mouth, 4 points for nose, 16 points for eyes 1280

Table 4.1: The size of face feature vectors according to the number of points extracted

from face.

In our experiments, we used RBF kernel for face and hand verification, and for a

combination of the two. We use the LIBSVM software {12}, which is an integrated

software for support vector classification. The SVM is built for each person. 50% of

the face pictures are used for training and the remaining 50% are used for testing.

Training and testing are performed according to face models; therefore, we obtained

nine different classifications. In addition to those classifications, we also tested one

positive person against 5, 10, 15, 20, 25 and 30 impostors. Figure 4.5 shows the
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(e) (h)

Figure 4.4: Nine different face point distribution models: (a) 8 eye points, (b) 16
eye points, (c) 16 eye points, 4 nose points (d) 8 eye points, 12 mouth points, (e)
16 eye points, 12 mouth points, (f) 8 eye points, 4 nose points, (g) 16 eye points, 4
nose points, 12 mouth points, (h) 8 eye points, 4 nose points, 12 mouth points, (i) 12
mouth points, 4 nose points.
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Number of
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Figure 4.5: The diagram of the experiments performed according to the facial point
models and the number of impostors.

graphical interpretation of the experiments we ran for this thesis.

The Table 4.2 presents face verification results according to the nine facial point
models extracted from the face and number of impostors.

As we can see from Table 4.2, in the facial model, which contain 8 eye points, the
best average result, 99.43%, is obtained when one person is tested against 10 impos-
tors. The minimum recognition rate achieved is 90.56%. It is obtained when the tests
are run against 30 impostors. On the other hand, in every group the highest accuracy
is 100%. We notice that the average accuracy has its peak when the system is tested
against 10 negative individuals, and then the average accuracy decreases obtaining
99.19%, 99.07%, 98.82% and 97.58% for 15, 20, 25, 30 impostors respectively.

The next model from the Table 4.2 is based on 16 eye points - 8 points from each
eye. Here, also the maximum accuracy that is obtained is 100% for all groups. The
minimum accuracy is achieved when the tests are performed against 5 impostors,
and it is 95.83%. We observe that the average accuracy is increasing, and obtains
its maximum value 99.45%, when the tests are run against 15 negative individuals.

After it reaches the maximum value, it then starts decreasing up to 98.51% for 30
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Feature Points

Eyes

Nose

Mouth

Accuracy

%

Number of impostors

5

[10 | 15

20

25

30

8

maximuin

100

100 | 100

100

100

100

minimum

95.83

97.72

96.09

98.11

96.85

90.56

average

98.95

99.43

99.19

99.07

98.82

97.58

16

maximum

100

100 | 100

100

100

100

minimum

95.83

97.72

98.43

98.74

98.11

97.48

average

99.14

99.37

99.45

99.04

98.82

98.51

maximum

100

100 | 100

100

100

100

minimum

95.83

97.72

98.43

98.74

98.11

98.11

average

99.33

99.54

99.68

99.20

99.01

98.85

16

maximuin

100

100 | 100

100

100

100

minimum

95.83

97.72

98.48

98.11

97.48

96.22

average

99.24

99.43

99.60

99.08

98.67

98.14

12

maximum

100

100 | 100

100

100

100

minimum

95.83

97.72

98.48

98.74

98.11

97.48

average

99.14

99.54

99.72

99.23

99.01

98.51

16

12

maximum

100

100 | 100

100

100

100

minimum

95.83

97.72

96.09

96.22

97.48

96.22

average

99.05

99.08

99.29

98.82

98.53

98.38

12

maximum

100

100 | 100

100

100

100

minimum

95.83

97.72

98.48

98.74

98.74

97.48

average

99.04

99.21

99.33

99.09

98.97

98.78

12

maximum

100

100 | 100

100

100

100

minimum

95.83

97.72

98.48

98.74

97.48

97.48

average

99.14

99.60

99.72

99.20

98.98

98.70

16

12

maximum

100

100 | 100

100

100

100

minimum

93.75

97.72

96.87

98.74

98.11

96.85

average

98.57

99.08

99.29

99.04

98.66

98.55

Table 4.2: The maximum, minimum, and average accuracy based on 9 facial models
extracted from the face and the number of impostors involved in testing.
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impostors involved in the tests.

The next facial model, whiéh is used in our experiments, contains 12 facial points.
Eight of them represent eyes, and the next four represent the nose. This facial model
obtains better average accuracy rates than the models described in previous sections.
However, the increasing tendency is the same, and again the maximum average ac-
curacy (99.68%) is achieved when tests are performed against 15 impostors. After
reaching the peak, the average accuracy then drops off to 98.85% for 30 negative
individuals involved in the test. Again, 100% is gained for all tests that were run for
this facial model. The same minimum value, as for the previous model, is reached. It
is 95.83%, and again it is achieved for the same number of impostors (5).

Another facial model is based on 16 eye points and 4 nose. The results are slightly
poorer, as the ones when 8 eye points and 4 nose points were extracted. We can
observe the same curve tendency for this facial model. Again, the average accuracy
is growing from 99.24% for 5 impostors in order to reach its peak value at 99.60% for
15 impostors, and then goes down to 98.14% for 30 impostors. Also, the minimum
accuracy, 95.83%, is achieved for 5 impostors.

Facial model, which contains 8 eye points, and 12 mouth points obtained the
best average result of 99.72% when one person is tested against 15 impostors. The
minimum recognition rate achieved is 95.83%. It is obtained when the tests are
run against 5 impostors. Also, in every group the highest accuracy is 100%. We
notice that the average accuracy has its peak when the system is tested against
15 negative individuals, and then the average accuracy decreases obtaining 99.23%,

99.01%, 98.51% for 20, 25, 30 impostors respectively.
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Face verification results based on 16 eye points and 12 mouth points extracted
from the face obtained worse average accuracy rates than other models. However, the
increasing tendency is the same, and again the maximum average accuracy (99.29%)
is achieved when tests are performed against 15 impostors. After reaching the peak,
then the average accuracy drops off to 98.38% for 30 negative individuals involved
in the test. The same minimum value, as for the previous model, is reached. It is
95.83%, and again it is achieved for the same number of impostors (5). Also, 100%
is reached for all tests ran for this facial model.

The next facial model that is presented in the Table 4.2 is based on 12 mouth
points and 4 nose points. As we see, the same minimum average of 95.83% is obtained
for 5 impostors. The same increasing tendency is observed, in which it reaches its
top average accuracy for 15 impostors, and then it de’éreases. The highest average
accuracy achieved for this model is 99.33%; whereas, the smallest is 98.78%, obtained
for 30 impostors. Again, as in previous facial models in every group of impostors, the
100% has been accomplished.

For the last two models, we combine three main parts of the face together, such as
the eye, the nose and the mouth. The facial model based on 8 eye points, 12 mouth
points and 4 nose points proved to be a good model because the highest average
accuracy achieved for 15 impostors is 99.72%. The same growing tendency as in
previous facial models is observed here. The average accuracy is increasing starting
at 99.14% for 5 impostors, 99.60% for 10 impostors, and finally reaches the peak
of 99.72% for 15 impostors. Afterwards, the average accuracy decreases to 99.20%

for 20 impostors, 98.98% for 25 impostors and finally 98.70% for 30 impostors. The
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maximum accuracy of 100% is found in every group.

The last model that is based on points extracted from thé face is a model that
contains 16 eye points, 4 nose points and 12 mouth points. This model obtains poorer
average accuracy rates than the model that contains the same parts of the face, but
a less number of points extracted from the eyes. The minimum accuracy obtained is
93.75% for 5 impostors; however, in this facial model the 100% is achieved in every
group. The highest average accuracy of 99.29% is reached for 15 impostors. After
reaching the peak, the average accuracy then drops off to 98.55% for 30 negative
individuals involved in the test.

In order to compare results obtained from the method that we developed in this
thesis, we used a well-known method called eigenfaces for face verification based on
cell phone images. The next table shows results obtained using the PCA analysis

(eigenface) method.

Accuracy Number of impostors

5 10 | 15 | 20 25 30

maximum | 95.5% | 95.25% | 96.5% | 96.48% | 96.48% | 97.58%

minimum | 90.25% | 90.25% | 90.25% | 94.01% | 94.01% | 94.01%
average | 94.5% | 93.65% | 95.25% | 95.66% | 96.03% | 96.82%

Table 4.3: The maximum, minimum, and average accuracy based on eigenfaces and
the number of impostors involved in testing.

As we expected, the results for eigenfaces are much poorer the the ones that used
facial points convolved with Gabor filters. Here, the maximum average of 97.58% is
achieved for 30. In addition, 100% was never obtained for all tests that we performed.

The highest average accuracy of 96.82% was also obtained for 30 impostors. 93.65%
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is the minimum average accuracy achieved for 10 impostors. The minimum values
reached are low compared to minimum values obtained in our approach, and théy are
between 90.25% to 94.01%.

Figure 4.6 represents the graphical comparison of the face verification methods -
all nine facial models and eigenfaces.

As we observe, the best average results are obtained when 15 impostors were
involved in the testing phase. The highest average accuracy of 99.72% is achieved for
two facial models. One of these two models is based on 8 eye points and 12 mouth
points, and the other one is based on 8 eye points, 4 nose points and 12 mouth points.
From our observations, we concluded that the facial model built from the points
extracted from the eyes (8 points), the nose (4 points) and the mouth (12 points) is
the best model for face verification. The facial model that contains 8 eye points and 4
nose points is also a good model; in addition, this model achieved the highest average
accuracy rates for 30 impostors, and its feature vector is much smaller than the one
for the facial model that contain eyes, nose and mouth. From the experiments, we
noticed that in general, the facial models that contain the combination of 16 eye
points performed worse than the ones that contain 8 eye points. It is clearly visible
from the Diagram 4.6, that the eigenface approach is not as good as our approach for
face verification based on cell phone images. In the eigenface approach, the highest
average accuracy is obtained for 30 impostors. The average accuracy decreases to
93.65% when 10 impostors are involved in the testing phase. So, we proved that the
method we designed using Gabor filters and points extracted from the face was a

good choice.
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Figure 4.6: The comparison of face authentication methods including 9 different facial
models and eigenfaces.
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4.4 Hand Authentication

Hand authentication method is another unimodal biometric system used in this thesis.
As described in section 3.3, we extracted 9 hand geometry features, including the
width of four fingers, the hight of four fingers, and the width of the palm. The
SVM is built for each person where 50% of the hand pictures are used for training
and the remaining 50% are used for testing. We ran the experiments according to
the number of impostors involved in the testing phase. The following table presents

results obtained for hand verification system.

Accuracy Number of impostors

5 10 15 20 [ 25 30

maximum | 100% | 100% | 98.76% | 98.11% | 97.61% | 94.26%

minimum | 91.91% | 89.86% | 87.43% | 84.43% | 81.48% | 77.48%
average | 96.26% | 93.51% | 91.67% | 89.38% | 87.26% | 85.13%

Table 4.4: The maximum, minimum, and average accuracy based hand verification
and the number of impostors involved in testing.

As we see in Table 4.4, the hand authentication system does not perform as well
as face authentication system. The highest average accuracy of 96.26% is achieved
when 5 impostors are involved in the testing. Than the average accuracy decreases
and reached 85.13% for 30 impostors. Only in two groups the 100% was obtained,
when 5 and 10 impostors were involved. When the number of impostors increases,
the average decreases. The hand authentication system based on 9 hand geometry
features is not a strong biometric method. When more people are involved in the

testing phase, the accuracy drops off dramatically.
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4.5 Multimodal Face and Hand Authentication

In this thesis, we also combined two biometric methods together, face and hand. The
architecture for multibiometrics that is used in this thesis is fusion at the feature level.
We concatenate facial features with hand features. Again, we received nine multibio-
metrics models that are based on nine different facial models plus hand features. The
same facial models are used as for the face authentication system. Also, the same ex-
periments used for the face verification system are run for multibiometrics. Table 4.5
presents multibiometric results according to the nine facial point models extracted
from the face and hand geometry features, and number of impostors involved in the
testing phase.

This section describes multibiometric results based on eight eye points extracted
from the face and nine geometry features extracted from the hand. We ran the
experiments according to the number of impostors involved in the testing phase. The
following table represents the results obtained for this combination of eight facial
points and nine hand geometry features.

The multibiometric model, which contains 8 eye points and 9 hand geometry fea-
tures, proved to be a good combination because the highest average accuracy achieved
for 15 impostors is 99.69%. The average accuracy starts increasing at 99.3% for 5
impostors, 99.55% for 10 impostors, and finally reaches its peak of 99.69% for 15
impostors. Afterwards, the average accuracy decreases to 99.54% for 20 impostors,
99.47% for 25 impostors and finally 98.91% for 30 impostors. The maximum accu-

racy of 100% is found in every group. Figure 4.7 shows the average accuracies for
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Feature Points

Eyes | Nose

Mouth | Hand

Accuracy

%

Number of impostors

5

[10 [ 15 | 20

25 | 30

8 -

9

maximum

100

100 | 100 | 100 | 100

100

minimum

95.83

97.72 1 99.21 | 98.11 | 98.11

94.96

average

99.3

99.55 | 99.69 | 99.54 | 99.47

98.91

16 -

maximum

100

100 | 100 | 100 | 100

100

minimum

95.83

97.72 | 98.43 | 98.74 | 98.11

96.22

average

99.19

99.43 | 99.60 | 99.44 | 99.37

99.26

maximum

100

100 | 100 | 100 | 100

100

minimum

95.83

97.72 | 98.43 | 98.74 | 98.74

98.11

average

99.53

99.69 | 99.78 | 99.68 | 99.58

99.51

16 4

maximum

100

100 | 100 | 100 | 100

100

minimum

95.03

97.72 | 98.48 | 98.43 | 98.74

98.11

average

99.27

99.46 | 99.64 | 99.58 | 99.51

99.44

12

maximum

100

160 | 100 | 100 | 100

100

minimum

95.83

97.72 | 98.48 | 98.43 | 98.74

96.22

average

99.65

99.74 | 99.82 | 99.65 | 99.58

99.54

16 -

12

maximum

100

100 | 100 | 100 | 100

100

minimum

95.83

97.72 | 97.65 | 98.43 | 97.48

97.48

average

99.07

99.36 | 99.60 | 99.47 | 99.33

99.12

12

maximuim

100

100 | 100 | 100 | 100

100

minimum

97.91

98.86 | 98.43 | 98.43 | 97.48

97.48

average

99.26

99.51 | 99.67 | 99.38 | 99.26

99.13

12

maximum

100

100 | 100 | 100 | 100

100

minimum

95.83

97.72 | 98.48 | 98.43 | 98.11

97.48

average

99.42

99.69 | 99.76 | 99.65 | 99.54

99.37

16 4

12

maximum

100

100 | 100 | 100 | 100

100

minimum

95.83

97.72 | 97.65 | 97.48 | 97.48

96.22

average

98.95

99.36 | 99.52 | 99.44 | 99.23

98.91

Table 4.5: The maximum, minimum, and average accuracy for multimodal bimoetrics
based on 9 facial models extracted from the face hand geometry features and the
number of impostors involved in testing.
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~e—-multibiometrics (8 eye points, 9 hand features)

-j--face verification (8 eye points)

Figure 4.7: The comparison of the face verification method based on 8 eye points and
multibiometrics based on 8 eye points and 9 hand features.

face verification based on 8 eye features, and the same facial model combined with
hand geometry features. As we can see, this multibiometric method obtains better
average results than unimodal biometric system that is based on 8 facial eye points.
The average accuracy increased in all categories, but the best increase of 1.33% was
obtained for 30 impostors. The smallest increase was achieved in the category where
10 impostors were involved in the testing phase and reached 0.12%.

Next multibiometric model, which is used in our experiments, contains 16 eye
points and 9 hand geometry features. The minimum accuracy obtained for multibio-
metrics is 95.83% for 5 impostors; however, in every group the maximum accuracy of
100% was obtained. The highest average accuracy of 99.60% is reached for 15 impos-
tors. After reaching the peak, the average accuracy then drops off to 98.26% for 30
negative individuals involved in the test. After comparing the multibiometric system

based on 16 eye points and 9 hand features with the face verification system based
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Figure 4.8: The comparison of the face verification method based on 16 eye points
and multibiometrics based on 8 eye points and 9 hand features.

only on 16 eye points, we observe that again multibiometric system obtains better
average accuracy. The graphical comparison between the multibiometric system and
the unimodal facial system based on 16 eye points is presented in Figure 4.8. We
observe that there are slight improvements of 0.05%, 0.06% and 0.15% in average
accuracy for multibiometrics over face verification based on 16 eye points for 5, 10,
and 15 impostors respectively. The average accuracies increase more for 20, 25, and
30 impostors by 0.4%, 0.55%, and 0.75% correspondingly for multibiometrics based
on 16 eye points and hand features.

Another multibiometric model, which contains 8 eye points, 4 nose points and
9 hand geometry features, achieved its highest average accuracy of 99.78% for 15
impostors. The same growing tendency, as in previous multibiometrics models, is
observed here. The average accuracy starts increasing at 99.53% for 5 impostors,

99.69% for 10 impostors, and finally reaches the peak of 99.78% for 15 impostors.
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Figure 4.9: The comparison of the face verification method based on 8 eye points and
4 nose points and multibiometrics based on 8 eye points, 4 nose points and 9 hand
features.

Afterwards, the average accuracy decreases to 99.68% for 20 impostors, 99.58% for
25 impostors and finally 99.51% for 30 impostors. The maximum accuracy of 100%
is found in every group. This multibiometric system obtained better results than the
face verification system based on 8 eye points, 4 nose points, as shown on Figure 4.9.
The average accuracy increased in all categories, but the best increase of 0.66% was
obtained for 30 impostors. The smallest increase was achieved in the category where
15 impostors were involved in the testing phase and reached 0.1%.

The next multibiometric model is based on 16 eye points, 4 nose points and 9 hand
geometry features. As we can see, in this category the best average result, 99.64%, is
obtained when one person is tested against 15 impostors. The minimum recognition
rate achieved is 95.03%, and it is obtained when the tests are run against 5 impos-

tors. The highest accuracy reaches 100% in every group. We notice that the average
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Figure 4.10: The comparison of the face verification method based on 16 eye points
and 4 nose points and multibiometrics based on 16 eye points, 4 nose points and 9
hand features.

accuracy has its peak, when the system is tested against 15 negative individuals, and
the average accuracy then decreases, obtaining 99.58%, 99.51%, 98.44% for 20, 25, 30
impostors respectively. When we compare the multibiometric system based on 16 eye
points, 4 nose points and 9 hand geometry features with the face verification system
based only on facial points that include 16 eye points, and 4 nose points, we observe
that again the multibiometric system obtains better average accuracy. Figure 4.10
presents the comparison of the multibiometric system and the unimodal facial system
based on 16 eye points and 4 nose points. We observe that there are slight improve-
ments of 0.03%, 0.03% and 0.04% in average accuracies for multibiometrics over the
face verification based on 16 eye points and 4 nose points for 5, 10, and 15 impostors
respectively. The average accuracies increase more for 20, 25, and 30 impostors by

0.5%, 0.84%, and 1.3% respectively for multibiometrics based on 16 eye points, 4 nose
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Figure 4.11: The comparison of the face verification method based on 8 eye points
and 12 mouth points and multibiometrics based on 8 eye points, 12 mouth points and
9 hand features.

points and hand features.

Multibiometric model, which contains 8 eye points, and 12 mouth points obtained
better average accuracy rates than the multibiometric models described previously.
The highest average accuracy of 99.82% is reached for 15 impostors. After reaching
the peak, the average accuracy then drops off to 99.54% for 30 negative individuals
involved in the test. The minimum accuracy obtained is 95.83% for 5 impostors;
however, in this facial model 100% is achieved in every group. Figure 4.11 shows the
average accuracies for face verification based on 8 eye points and 12 mouth points,
and the same facial model combined with hand geometry features. As we can see,
this multibiometric method obtains better average results than unimodal biometric
system. The average accuracy increased in all categories, but the best increase of

1.03% was obtained for 30 impostors. The increases varies from 0.1% for 15 impostors,
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0.2% for 10 impostors, 0.42% for 20 impostors, 0.51% for 5 impostors, 0.57% for 25
impostors, and finally 1.03% for 30 ibmpostors.

Another multibiometric system is based on 16 eye points, 12 mouth points and
9 hand geometry features. As shown in Table 4.5, this model obtains poorer aver-
age accuracy rates than the multibiometric model based on 8 eye points, 12 mouth
points and 9 hand geometry features. The minimum accuracy obtained is 95.83%
for 5 impostors; however, in this facial model the 100% is achieved in every group.
The highest average accuracy of 99.60% is reached for 15 impostors. After reaching
the peak, the average accuracy then drops off to 99.12% for 30 negative individuals
involved in the test. Again, we observe that the multibiometric system obtains better
results than the face verification system based on the same facial points as multibio-
metric system. As shown on Figure 4.12, the highest improvement of 0.8% is received
for 25 impostors. The smallest increase in average accuracy of 0.02% is obtained for
5 impostors.

The multibiometric model, which contains 12 mouth points, 4 nose points and
9 hand geometry features, achieved its highest average accuracy of 99.67% for 15
impostors. The same growing tendency, as in previous multibiometrics models, is
observed here. The average accuracy starts increasing at 99.26% for 5 impostors,
99.51% for 10 impostors, and finally reaches the peak of 99.67% for 15 impostors.
Afterwards, the average accuracy decreases to 99.38% for 20 impostors, 99.26% for
25 impostors and finally 99.13% for 30 impostors. The maximum accuracy of 100%
is found in every group.

Figure 4.13 shows the average accuracies for face verification based on 12 mouth
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Figure 4.12: The comparison of the face verification method based on 16 eye points
and 12 mouth points and multibiometrics based on 16 eye points, 12 mouth points
and 9 hand features.
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Figure 4.13: The comparison of face verification method based on 12 mouth points
and 4 nose points and multibiometrics based on 12 mouth points, 4 nose points and
9 hand features.
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points and 4 nose points, and the same facial model combined with hand geometry
features. As we can see, this multibiometric method obtains bettef average results
than the unimodal biometric system. The average accuracy is increased in all cate-
gories, but the best increase of 0.35% was obtained for 30 impostors. The smallest
increase was achieved in the category where 5 impostors were involved in the testing
phase and reached 0.22%.

For the last two models, we combine three main parts of the face together, such
as the eyes, the nose, and the mouth, with hand geometry features. In this section,
the multibiometric model based on 8 eye points, 12 mouth points, 4 nose points and
9 hand features is described. As in previous multibiometric models, the experiments
were run against different numbers of impostors involved in the testing phase.

This multibiometric model, which contains 8 eye points, 4 nose points, 12 mouth
points and 9 hand features, achieved the highest average accuracy of 99.76% for
15 impostors. The same growing tendency as in previous multibiometric models is
observed here. The average accuracy increases starting at 99.42% for 5 impostors,
99.69% for 10 impostors, and finally reaches the peak of 99.76% for 15 impostors.
Afterwards, the average accuracy decreases to 99.65% for 20 impostors, 99.54% for
25 impostors and finally 99.37% for 30 impostors. The maximum accuracy of 100%
is found in every group. Again, the multibiometric system based on 8 eye points,
4 nose points, 12 mouth points, and 9 hand geometry features compared with the
face verification system based only on facial points that include 8 eye points, 4 nose
points, and 12 mouth points, we observe that the multibiometric system obtains

better average accuracy. Figure 4.14 shows the comparison of the multibiometric
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Figure 4.14: The comparison of face verification method based on 8 eye points, 4 nose
points and 12 mouth points and multibiometrics based on 8 eye points, 4 nose points,
12 mouth points and 9 hand features.

system and the unimodal facial system based on 16 eye points, 4 nose points, and 12
mouth points. The highest increase in average accuracy of 0.67% is observed when
30 impostors are involved in the testing. The smallest increase is noticed for 15
impostors and it is 0.04%

The last multibiometric model is based on 16 eye points, 4 nose points, 12 mouth
points, and 9 hand geometry features. This multibiometric model obtains poorer
average accuracy rates than the model that contains the same parts of the face, but
less numbers of points extracted from the eyes. The minimum accuracy obtained is
95.83% for 5 impostors; however, in this facial model the 100% is achieved in every
group. The highest average accuracy of 99.52% is reached for 15 impostors. The
average accuracies vary between 98.91% for 30 impostors to 99.52% for 15 impostors.

When we compare the multibiometric system based on 16 eye points, 4 nose
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Figure 4.15: The comparison of face verification method based on 16 eye points, 4
nose points and 12 mouth points and multibiometrics based on 16 eye points, 4 nose
points, 12 mouth points and 9 hand features.

points, 12 mouth points, and 9 hand geometry features, with the face verification
system based only on facial points that include 16 eye points, 4 nose points, and 12
mouth points, we observe that again the multibiometric system obtains better average
accuracy. Figure 4.15 shows the comparison of the multibiometric system and the
unimodal facial system based on 16 eye points, 4 nose points, and 12 mouth points.
The average accuracy increases by 0.38%, 0.28%, 0.23%, 0.4%, 0.57%, and 0.36% for
5, 10, 15, 20, 25, 30 impostors respectively.

The multibiometric system, which combines face features with hand geometry fea-
tures, obtains better results than the face verification method alone. In some models,
the increase of 1.3% for multibiometrics was achieved. The greatest improvements
were obtained when more impostors were involved in the testing mode. The combi-

nation of face and hand images proved to be a good model, because the best average
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accuracy of 99.82% was achieved for the model that is based on 8 eye points, 12 mouth
points and 9 hand geometry features. Also the system that contains the combination
of 8 eye points, 4 nose points and 9 hand features is considered to be the second best,
since the average accuracy obtained for this model reached 99.78%.

Figure 4.16 represents the graphical comparison of all 9 multibiometric authen-
tication methods. As we see, all systems perform well. Most of them, except two
models, obtain average accuracies more than 99% in all categories. The best average
results are obtained when 15 impostors were involved in the testing phase. The high-
est average accuracy of 99.82% is achieved for the model that contains 8 eye points,
12 mouth points and 9 hand geometry features. From the experiments, we noticed
that in general, the multibiometric models that contain the combination of 16 eye
points performed worse than the ones that contain 8 eye points. It is clearly visible
from Figure 4.16 that the multibiometric system obtained much better results than

the unimodal system based on facial features, shown in Figure 4.6.
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Chapter 5

Conclusions

5.1 Summary

Biometrics refers to an automatic recognition of a person based on his/her behavioral
and/or physiological characteristics. Many businesses have already applied biomet-
ric methods in practice, mostly identification or authentication purposes; however,
more of work is left to improve the accuracy rates. Biometrics has been adopted in
a variety of large scale identification applications, such as border control, criminal
investigations and security.

One of the methods to improve the recognition rate is multimodal biometrics,
which is based on more than one physiological or behavioral characteristics to identify
an individual. Multimodal biometrics improves not only the performance, but also
nonuniversality and spoofing.

As introduced earlier, a face recognition system consists of several components,
such as face detection, tracking, alignment, feature extraction and matching. Face

authentication is one of the primary biometric technologies, and it became more
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important in new technologies such as mobile devices, and increased demands on
security. Hand recognition mostly based on hand geometry is also well-known and
quite good for environments where medium security is required. In order to im-
prove the accuracy, researchers combine different unibiometric methods together. In
our approach, we combined at the feature level fusion face and hand authentication
systems.

As shown in face authentication sections, the best average accuracy of 99.72% is
achieved for two facial models. One model is based on 8 eye points and 12 mouth
points, and the other one is based on 8 eye points, 4 nose points and 12 mouth
points. The hand authentication method alone showed that it is a weaker verification
system than the face verification method. As the number of impostors increases,
the average accuracy for hand verification drops off to 85.13%. However, when we
combine those two systems together, we obtain better accuracies. The best average
accuracy of 99.82% is obtained for a multibiometric model that is based on 8 eye
points, 12 mouth points and 9 hand geometry features. The multibiometric models
improved accuracies in all groups of impostors. The improvement rates vary from
0.02% - 1.3% according to face verification system.

A user authentication system based on cell phone images is very important not
only for security reasons but also convenience. If such a system could be built into
the cell phone, people would no longer need to memorize the personal identification
numbers. In our research, we focused on person authentication from cell phone images
by extracting facial points using point distribution model and active shape models,

and geometry hand features obtained from hand images. In order to construct the
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face feature vector, we convolved nine face models with Gabor filters. We analyzed
which combination of facial models obtains the highest accuracy against how many
impostors are involved in the testing phase. Hand authentication is focused on hand
geometry features, like width and height of fingers and width of the palm. We wanted
to build a multibiometric system based on face and hand biometrics. To the best of
our knowledge it is the first system involving multibiometrics based on face and hand
of cell phone pictures. The system is simple and fast. As the experiments show, the

high accuracy of up to 99.82% has been achieved for multibiometrics.

5.2 Future Work

Right now, the system is performing well and achieves high accuracy rates. Devel-
opment of a fully automatic system and incorporating it into a cell phone is left for
future research. Localizing facial feature points and hand critical points are semi-
automated since we have to manually label some of the images in order to build a
model. Automatic detection of points of interest will allow to incorporate the sys-
tem into a cell phone. Moreover, this is a challenging problem to design a chip with

multibiometric system, which can be built into the phone.
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Appendix A

Face and Hand Database

The two figures (A.1) - (A.2) present sample images from all individuals presented
in our database. A sample of one face and one hand picture per each individual is

shown.
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Figure A.1: Sample face and hand pictures from our database for all individuals
involved in experiments.
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Figure A.2: Continuation of sample face and hand pictures from our database for all
individuals involved in experiments.



